WorldWideScience

Sample records for nitride nanosized crystal

  1. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    International Nuclear Information System (INIS)

    Zheng Jie; Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-01

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia

  2. Crystallization of Organic Semiconductor Molecules in Nanosized Cavities

    DEFF Research Database (Denmark)

    Milita, Silvia; Dionigi, Chiara; Borgatti, Francesco

    2008-01-01

    The crystallization of an organic semiconductor, viz., tetrahexil-sexithiophene (H4T6) molecules, confined into nanosized cavities of a self-organized polystyrene beads template, has been investigated by means of in situ grazing incidence X-ray diffraction measurements, during the solvent evapora...

  3. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  5. Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1997-02-01

    A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

  6. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  7. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  8. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal...Sample Size Induced Brittle-to- Ductile Transition of Single-Crystal Aluminum Nitride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  9. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  10. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  11. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  12. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    International Nuclear Information System (INIS)

    Niu, Nan; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-01-01

    We report exceptionally low thresholds (9.1 μJ/cm 2 ) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance

  13. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  14. Crystal structures of superconducting sodium intercalates of hafnium nitride chloride

    International Nuclear Information System (INIS)

    Oro-Sole, J.; Frontera, C.; Beltran-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A.

    2006-01-01

    Sodium intercalation compounds of HfNCl have been prepared at room temperature in naphtyl sodium solutions in tetrahydrofuran and their crystal structure has been investigated by Rietveld refinement using X-ray powder diffraction data and high-resolution electron microscopy. The structure of two intercalates with space group R3-bar m and lattice parameters a=3.58131(6)A, c=57.752(6)A, and a=3.58791(8)A, c=29.6785(17)A is reported, corresponding to the stages 2 and 1, respectively, of Na x HfNCl. For the stage 2 phase an ordered model is presented, showing two crystallographically independent [HfNCl] units with an alternation of the Hf-Hf interlayer distance along the c-axis, according with the occupation by sodium atoms of one out of two van der Waals gaps. Both stages 1 and 2 phases are superconducting with critical temperatures between 20 and 24K, they coexist in different samples with proportions depending on the synthesis conditions, and show a variation in c spacing that can be correlated with the sodium stoichiometry. High-resolution electron microscopy images of the host and intercalated samples show bending of the HfNCl bilayers as well as stacking faults in some regions, which coexist in the same crystal with ordered domains

  15. Influence of nano-size inclusions on spall fracture of copper single crystals

    International Nuclear Information System (INIS)

    Razorenov, S. V.; Ivanchihina, G. E.; Kanel, G. I.; Herrmann, B.; Zaretsky, E. B.

    2007-01-01

    Spall experiments have been carried out for copper in different structural states. The samples were copper single crystals, crystals of Cu+0.1% Si, copper crystals with silica particles of 180 nm average size, and polycrystalline copper. In experiments, the free surface velocity histories were recorded with the VISAR. The recovered samples were studied using optical microscopy and SEM. Solid solution Cu+0.1% Si demonstrates slower spall process than pure copper crystals. At longer pulse durations its spall strength is slightly less than that of pure crystals but approaches the latter with decreasing pulse duration. Fracture of copper with silica inclusions is completed much faster. The spall strength of this material is close to that of Cu+0.1% Si crystals at longer pulse duration and approaches the strength of polycrystalline copper with decreasing the load duration. Fractography of the spall surfaces correlates with the free surface velocity histories. The main fracture surface of the Cu+0.1% Si grains consists of net of dimples ∼4 μm to 40 μm mean diameter. The fracture surfaces of copper with silica inclusions is covered by a net of dimples of 1 μm to 5 μm size

  16. Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes

    International Nuclear Information System (INIS)

    Kamohara, Toshihiro; Akiyama, Morito; Ueno, Naohiro; Nonaka, Kazuhiro; Kuwano, Noriyuki

    2007-01-01

    Highly c-axis-oriented aluminum nitride (AlN) thin films have been prepared on titanium (Ti) bottom electrodes by using AlN interlayers. The AlN interlayers were deposited between Ti electrodes and silicon (Si) substrates, such as AlN/Ti/AlN/Si. The crystallinity and crystal orientation of the AlN films and Ti electrodes strongly depended on the thickness of the AlN interlayers. Although the sputtering conditions were the same, the X-ray diffraction intensity of AlN (0002) and Ti (0002) planes drastically increased, and the full-width at half-maximum (FWHM) of the X-ray rocking curves decreased from 5.1 o to 2.6 o and from 3.3 o to 2.0 o , respectively. Furthermore, the piezoelectric constant d 33 of the AlN films was significantly improved from - 0.2 to - 4.5 pC/N

  17. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Jiang, Leyong; Guo, Jun; Dai, Xiaoyu [SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Xiang, Yuanjiang, E-mail: xiangyuanjiang@126.com [Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082 (China); SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and the thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.

  18. XPS analysis for cubic boron nitride crystal synthesized under high pressure and high temperature using Li3N as catalysis

    International Nuclear Information System (INIS)

    Guo, Xiaofei; Xu, Bin; Zhang, Wen; Cai, Zhichao; Wen, Zhenxing

    2014-01-01

    Highlights: • The cBN was synthesized by Li 3 N as catalyst under high pressure and high temperature (HPHT). • The film coated on the as-grown cBN crystals was studied by XPS. • The electronic structure variation in the film was investigated. • The growth mechanism of cubic boron nitride crystal was analyzed briefly. - Abstract: Cubic boron nitride (cBN) single crystals are synthesized with lithium nitride (Li3N) as catalyst under high pressure and high temperature. The variation of electronic structures from boron nitride of different layers in coating film on the cBN single crystal has been investigated by X-ray photoelectron spectroscopy. Combining the atomic concentration analysis, it was shown that from the film/cBN crystal interface to the inner, the sp 2 fractions are decreasing, and the sp 3 fractions are increasing in the film at the same time. Moreover, by transmission electron microscopy, a lot of cBN microparticles are found in the interface. For there is no Li 3 N in the film, it is possible that Li 3 N first reacts with hexagonal boron nitride to produce Li 3 BN 2 during cBN crystals synthesis under high pressure and high temperature (HPHT). Boron and nitrogen atoms, required for cBN crystals growth, could come from the direct conversion from hexagonal boron nitride with the catalysis of Li 3 BN 2 under high pressure and high temperature, but not directly from the decomposition of Li 3 BN 2

  19. Synthesis, crystal structure and magnetic characterization of a cyanide-bridged Mo-Ni nanosized molecular wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Daopeng; Zhang, Hongyan; Wang, Ping [Shandong Univ. of Technology, College of Chemical Engineering, Zibo (China); Kong, Lingqian [Liaocheng Univ. (China). Dongchang College

    2015-11-01

    By using K{sub 4}[Mo(CN){sub 8}] and [Ni(L)(H{sub 2}O){sub 2}][ClO{sub 4}]{sub 2} as reagents (L = 2,12-dimethyl-3,7,11,17-tetraazabicyclo [11.3.1]heptadeca-1(17),13,15-triene), a new cyanide-bridged Mo-Ni complex containing the building blocks [Ni(H{sub 2}O)(L)]{sup 2+} and [Ni(L)]{sup 2+} bridged by [Mo(CN){sub 8}]{sup 4-} units has been obtained. The complex with the formula {[Ni(H_2O)(L)][Ni(L)][Mo(CN)_8]}{sub 6} . 36H{sub 2}O . 2CH{sub 3}OH (1) was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The structure determination reveals an octadecanuclear cluster in the form of a 36-membered macrocycle, in which the largest intramolecular W..W and Ni..Ni distances are 16.5 and 14.4 Aa, respectively, indicating that complex 1 is a nanosized molecular wheel. Investigation of its magnetic properties has shown weak antiferromagnetic coupling between the adjacent Ni(II) ions bridged by the diamagnetic [Mo(CN){sub 8}]{sup 4-} ions.

  20. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    Science.gov (United States)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  1. Auger electron spectroscopy analysis for growth interface of cubic boron nitride single crystals synthesized under high pressure and high temperature

    Science.gov (United States)

    Lv, Meizhe; Xu, Bin; Cai, Lichao; Guo, Xiaofei; Yuan, Xingdong

    2018-05-01

    After rapid cooling, cubic boron nitride (c-BN) single crystals synthesized under high pressure and high temperature (HPHT) are wrapped in the white film powders which are defined as growth interface. In order to make clear that the transition mechanism of c-BN single crystals, the variation of B and N atomic hybrid states in the growth interface is analyzed with the help of auger electron spectroscopy in the Li-based system. It is found that the sp2 fractions of B and N atoms decreases, and their sp3 fractions increases from the outer to the inner in the growth interface. In addition, Lithium nitride (Li3N) are not found in the growth interface by X-ray diffraction (XRD) experiment. It is suggested that lithium boron nitride (Li3BN2) is produced by the reaction of hexagonal boron nitride (h-BN) and Li3N at the first step, and then B and N atoms transform from sp2 into sp3 state with the catalysis of Li3BN2 in c-BN single crystals synthesis process.

  2. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    International Nuclear Information System (INIS)

    Caskey, Christopher M.; Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy; Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M.; Schwartz, Craig P.; Nordlund, Dennis; Kukliansky, Alon; Natan, Amir; Prendergast, David; Sun, Wenhao; Orvananos, Bernardo

    2016-01-01

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn 3 N 4 spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  4. Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, Christopher M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Colorado School of Mines, Golden, Colorado 80401 (United States); Larix Chemical Science, Golden, Colorado 80401 (United States); Holder, Aaron; Christensen, Steven T.; Biagioni, David; Ginley, David S.; Tumas, William; Perkins, John D.; Lany, Stephan; Zakutayev, Andriy, E-mail: andriy.zakutayev@nrel.gov [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Shulda, Sarah; Diercks, David; Pylypenko, Svitlana; Richards, Ryan M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Schwartz, Craig P.; Nordlund, Dennis [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kukliansky, Alon; Natan, Amir [Tel Aviv University, Tel Aviv-Yafo (Israel); Prendergast, David; Sun, Wenhao [Lawrence Berkeley National Laboratory, Berkley, California 94720 (United States); Orvananos, Bernardo [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); and others

    2016-04-14

    Recent advances in theoretical structure prediction methods and high-throughput computational techniques are revolutionizing experimental discovery of the thermodynamically stable inorganic materials. Metastable materials represent a new frontier for these studies, since even simple binary non-ground state compounds of common elements may be awaiting discovery. However, there are significant research challenges related to non-equilibrium thin film synthesis and crystal structure predictions, such as small strained crystals in the experimental samples and energy minimization based theoretical algorithms. Here, we report on experimental synthesis and characterization, as well as theoretical first-principles calculations of a previously unreported mixed-valent binary tin nitride. Thin film experiments indicate that this novel material is N-deficient SnN with tin in the mixed II/IV valence state and a small low-symmetry unit cell. Theoretical calculations suggest that the most likely crystal structure has the space group 2 (SG2) related to the distorted delafossite (SG166), which is nearly 0.1 eV/atom above the ground state SnN polymorph. This observation is rationalized by the structural similarity of the SnN distorted delafossite to the chemically related Sn{sub 3}N{sub 4} spinel compound, which provides a fresh scientific insight into the reasons for growth of polymorphs of metastable materials. In addition to reporting on the discovery of the simple binary SnN compound, this paper illustrates a possible way of combining a wide range of advanced characterization techniques with the first-principle property calculation methods, to elucidate the most likely crystal structure of the previously unreported metastable materials.

  5. Advances in nanosized zeolites

    Science.gov (United States)

    Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

    2013-07-01

    This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

  6. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  7. Molybdenum Nitride Films: Crystal Structures, Synthesis, Mechanical, Electrical and Some Other Properties

    Directory of Open Access Journals (Sweden)

    Isabelle Jauberteau

    2015-10-01

    Full Text Available Among transition metal nitrides, molybdenum nitrides have been much less studied even though their mechanical properties as well as their electrical and catalytic properties make them very attractive for many applications. The δ-MoN phase of hexagonal structure is a potential candidate for an ultra-incompressible and hard material and can be compared with c-BN and diamond. The predicted superconducting temperature of the metastable MoN phase of NaCl-B1-type cubic structure is the highest of all refractory carbides and nitrides. The composition of molybdenum nitride films as well as the structures and properties depend on the parameters of the process used to deposit the films. They are also strongly correlated to the electronic structure and chemical bonding. An unusual mixture of metallic, covalent and ionic bonding is found in the stoichiometric compounds.

  8. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  9. Phonon-assisted optical bands of nanosized powdery SrAl{sub 2}O{sub 4}:Eu{sup 2+} crystals: Evidence of a multimode Pekarian

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, M. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Institute of Applied Physics, Academiei Street 5, Chisinau MD-2028 (Moldova, Republic of); Brik, M.G. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Spassky, D. [Institute of Physics, University of Tartu, Riia 142, Tartu 51014 (Estonia); Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Tsukerblat, B., E-mail: tsuker@bgu.ac.il [Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Palii, A. [Institute of Applied Physics, Academiei Street 5, Chisinau MD-2028 (Moldova, Republic of); Nazida, A. Nor [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Faculty of Art and Design, Universiti Teknologi MARA (Perak), Seri Iskandar 32610, Bandar Baru Seri Iskandar, Perak (Malaysia); Ahmad-Fauzi, M.N. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2013-12-09

    A stoichiometric powder composed of nanosized grains of SrAl{sub 2}O{sub 4}:Eu{sup 2+} was synthesized by combustion method at 500 °C with the subsequent calcination at 1000 °C. The zero-phonon line position, parameter of the Stokes shift, heat release factor and effective phonon energy were studied experimentally and analyzed in the framework of the multimode Pekar–Huang–Rhys model. Experimental data show that the optical 4f–5d transitions in Eu{sup 2+} ion exhibit a broad asymmetric electron–vibrational bands with a pronounced structure near the maxima. The form-function of the absorption and luminescence bands are theoretically analyzed in the framework of the model of the linear electron–vibrational interaction assuming strong coupling with the local vibration (estimated Pekar–Huang–Rhys parameter a=2S=10 and frequency ℏω=509 cm{sup −1}) and relatively weak interaction with the crystal phonons. The last results in an effective temperature dependent broadening of the discrete lines corresponding to the local vibrations and to a specific shape of the whole phonon assisted band (multimode Pekarian). Providing specific interrelation between the key parameters the calculated absorption and luminescence bands exhibit peculiar temperature dependent structured peaks in a qualitative agreement with the experimental data.

  10. Optimization and characterization of bulk hexagonal boron nitride single crystals grown by the nickel-chromium flux method

    Science.gov (United States)

    Hoffman, Tim

    Hexagonal boron nitride (hBN) is a wide bandgap III-V semiconductor that has seen new interest due to the development of other III-V LED devices and the advent of graphene and other 2-D materials. For device applications, high quality, low defect density materials are needed. Several applications for hBN crystals are being investigated, including as a neutron detector and interference-less infrared-absorbing material. Isotopically enriched crystals were utilized for enhanced propagation of phonon modes. These applications exploit the unique physical, electronic and nanophotonics applications for bulk hBN crystals. In this study, bulk hBN crystals were grown by the flux method using a molten Ni-Cr solvent at high temperatures (1500°C) and atmospheric pressures. The effects of growth parameters, source materials, and gas environment on the crystals size, morphology and purity were established and controlled, and the reliability of the process was greatly improved. Single-crystal domains exceeding 1mm in width and 200microm in thickness were produced and transferred to handle substrates for analysis. Grain size dependence with respect to dwell temperature, cooling rate and cooling temperature were analyzed and modeled using response surface morphology. Most significantly, crystal grain width was predicted to increase linearly with dwell temperature, with single-crystal domains exceeding 2mm in at 1700°C. Isotopically enriched 10B and 11B hBN crystal were produced using a Ni-Cr-B flux method, and their properties investigated. 10B concentration was evaluated using SIMS and correlated to the shift in the Raman peak of the E2g mode. Crystals with enrichment of 99% 10B and >99% 11B were achieved, with corresponding Raman shift peaks at 1392.0 cm-1 and 1356.6 cm-1, respectively. Peak FWHM also decreased as isotopic enrichment approached 100%, with widths as low as 3.5 cm-1 achieved, compared to 8.0 cm-1 for natural abundance samples. Defect selective etching was

  11. An Integrated Approach to III-Nitride Crystal Growth and Wafering

    National Research Council Canada - National Science Library

    Sitar, Z

    2001-01-01

    Centimeter size, transparent AlN crystals were grown at NCSU. TEM and XRT examination performed at ASU and SUNYSB revealed that the crystals are of highest quality and do not contain any visible extended defects...

  12. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    Science.gov (United States)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  13. The steady-state and transient electron transport within bulk zinc-blende indium nitride: The impact of crystal temperature and doping concentration variations

    International Nuclear Information System (INIS)

    Siddiqua, Poppy; O'Leary, Stephen K.

    2016-01-01

    Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.

  14. Growth of large aluminum nitride single crystals with thermal-gradient control

    Science.gov (United States)

    Bondokov, Robert T; Rao, Shailaja P; Gibb, Shawn Robert; Schowalter, Leo J

    2015-05-12

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  15. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    Science.gov (United States)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  16. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  17. Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating

    International Nuclear Information System (INIS)

    Hasegawa, Masashi; Yagi, Takehiko

    2005-01-01

    Syntheses of 3d-transition metal (Ti-Cu) nitrides have been tried in a supercritical nitrogen fluid at high pressures (about 10 GPa) and high temperatures (about 1800 K) using diamond anvil cell and YAG laser heating system. Nitrides, such as TiN, VN, CrN, Mn 3 N 2 , Fe 2 N, Co 2 N and Ni 3 N have been successfully synthesized easily by a simple direct nitriding reaction between metal and fluid nitrogen in a short time, while any Cu nitrides were not synthesized. These results indicate that the ratio of nitrogen to metal, N/M, of the nitride decreases from 1 to 0 with the sequence from the early transition metal nitrides to the late transition metal ones. The systematic change of the N/M ratio and crystal structure of the 3d-transition metal nitrides is discussed and interpreted on the basis of the electron arrangement of the 3d-transition metal which is relevant to its coordination number

  18. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  19. Effect of ion nitriding on the crystal structure of 3 mol% Y2O3-doped ZrO2 thin-films prepared by the sol-gel method

    International Nuclear Information System (INIS)

    Ortiz, A.L.; Diaz-Parralejo, A.; Borrero-Lopez, O.; Guiberteau, F.

    2006-01-01

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y 2 O 3 -doped ZrO 2 (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr 0.94 Y 0.06 O 1.72 N 0.17 stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice

  20. Dispersion of γ-Alumina Nano-Sized Spherical Particles in a Calamitic Liquid Crystal. Study and Optimization of the Confinement Effects

    Science.gov (United States)

    Diez-Berart, Sergio; López, David O.; Sebastián, Nerea; de la Fuente, María Rosario; Salud, Josep; Robles-Hernández, Beatriz; Pérez-Jubindo, Miguel Ángel

    2014-01-01

    We report an experimental study on confined systems formed by butyloxybenzylidene octylaniline liquid crystal (4O.8) + γ-alumina nanoparticles. The effects of the confinement in the thermal and dielectric properties of the liquid crystal under different densities of nanoparticles is analyzed by means of high resolution Modulated Differential Scanning Calorimetry (MDSC) and broadband dielectric spectroscopy. First, a drastic depression of the N-I and SmA-N transition temperatures is observed with confinement, the more concentration of nanoparticles the deeper this depression is, driving the nematic range closer to the room temperature. An interesting experimental law is found for both transition temperatures. Second, the change in shape of the heat capacity peaks is quantified by means of the full width half maximum (FWHM). Third, the confinement does not noticeably affect the molecular dynamics. Finally, the combination of nanoparticles and the external applied electric field tends to favor the alignment of the molecules in metallic cells. All these results indicate that the confinement of liquid crystals by means of γ-alumina nanoparticles could be optimum for liquid crystal-based electrooptic devices. PMID:28788528

  1. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  2. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  3. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  4. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  5. Pure & crystallized 2D Boron Nitride sheets synthesized via a novel process coupling both PDCs and SPS methods

    Science.gov (United States)

    Yuan, Sheng; Linas, Sébastien; Journet, Catherine; Steyer, Philippe; Garnier, Vincent; Bonnefont, Guillaume; Brioude, Arnaud; Toury, Bérangère

    2016-02-01

    Within the context of emergent researches linked to graphene, it is well known that h-BN nanosheets (BNNSs), also referred as 2D BN, are considered as the best candidate for replacing SiO2 as dielectric support or capping layers for graphene. As a consequence, the development of a novel alternative source for highly crystallized h-BN crystals, suitable for a further exfoliation, is a prime scientific issue. This paper proposes a promising approach to synthesize pure and well-crystallized h-BN flakes, which can be easily exfoliated into BNNSs. This new accessible production process represents a relevant alternative source of supply in response to the increasing need of high quality BNNSs. The synthesis strategy to prepare pure h-BN is based on a unique combination of the Polymer Derived Ceramics (PDCs) route with the Spark Plasma Sintering (SPS) process. Through a multi-scale chemical and structural investigation, it is clearly shown that obtained flakes are large (up to 30 μm), defect-free and well crystallized, which are key-characteristics for a subsequent exfoliation into relevant BNNSs.

  6. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  7. Effects of nano-structured photonic crystals on light extraction enhancement of nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Wu, G.M.; Yen, C.C.; Chien, H.W.; Lu, H.C.; Chang, T.W.; Nee, T.E.

    2011-01-01

    The light extraction efficiency of an InGaN/GaN light-emitting diode (LED) can be enhanced by incorporating nano-structured photonic crystals inside the LED structure. We employed plane wave expansion (PWE) method and finite difference time domain (FDTD) method to reveal the optical confinement effects with the relevant parameters. The results showed that band-gap modulation could increase the efficiency for light extraction at the lattice constant of 200 nm and depth of 200 nm for the 468-nm LED. Focused ion beam (FIB) using Ga created the desired nano-structured patterns. The LED device micro-PL (photoluminescence) results have demonstrated that the triangular photonic crystal arrays could increase the peak illumination intensity by 58%. The peak wavelength remained unchanged. The integrated area under the illumination peak was increased by 75%. As the patterned area ratio was increased to 85%, the peak intensity enhancement was further improved to 91%, and the integrated area was achieved at 106%.

  8. Effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} thin-films prepared by the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Diaz-Parralejo, A. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Borrero-Lopez, O. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Guiberteau, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-06-30

    We investigated the effect of ion nitriding on the crystal structure of 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} (3YSZ) thin-films prepared by the sol-gel method. For this purpose, we used X-ray diffractometry to determine the crystalline phases, the lattice parameters, the crystal sizes, and the lattice microstrains, and glow discharge-optical emission spectroscopy to obtain the depth profiles of the elemental chemical composition. We found that nitrogen atoms substitute oxygen atoms in the 3YSZ crystal, thus leading to the formation of unsaturated-substitutional solid solutions with reduced lattice parameters and Zr{sub 0.94}Y{sub 0.06}O{sub 1.72}N{sub 0.17} stoichiometric formula. We also found that ion nitriding does not affect the grain size, but does generate lattice microstrains due to the increase in point defects in the crystalline lattice.

  9. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqua, Poppy; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada)

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  10. Synthesis of nanosized powders of stabilized zirconia

    International Nuclear Information System (INIS)

    Takodoro, Sandra Kiyoko

    2000-01-01

    Zirconia solid solutions containing 3 mol % Yttria or 12 mol % ceria have been prepared by the coprecipitation technique followed by azeotropic distillation. The aim of this work is the synthesis of tetragonal zirconia polycrystals nanosized powders that sinter at comparatively lower temperatures attaining high densification, and without using any milling procedure. The main results show that: 1- the dopant cation has a strong influence on the crystallization behavior of the precipitates; 2- the used techniques allowed for obtaining high values of specific surface area (∼130 m 2 .g -1 ); 3- the optimization of the synthesis and processing parameters are responsible for obtaining high densification (≥97% of the theoretical value), at lower temperatures (∼1200 deg C) with average grain sizes lower than 500 nm; 4- impedance spectroscopy results show a strong correlation between the electrical resistivity and the microstructure of sintered ceramics.(author)

  11. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  12. Characterization of nanosized Al2(WO4)3

    International Nuclear Information System (INIS)

    Nihtianova, D.; Velichkova, N.; Nikolova, R.; Koseva, I.; Yordanova, A.; Nikolov, V.

    2011-01-01

    Graphical abstract: TEM method allows to detect small quantities of impurities not detectable by other methods. In our case impurities of W 5 O 14 are detected in Al 2 (WO 4 ) 3 nanopowder. Highlights: → Nanosized Al 2 (WO 4 ) 3 by simple co-precipitation method. → Spherical particles with mean size of 22 nm distributed between 10 and 40 nm at 630 o C. → XRD, DTA and TEM confirm well defined products with perfect structure. → TEM locality allows detection of impurities not detectable by XRD and DTA. -- Abstract: Nanosized aluminum tungstate Al 2 (WO 4 ) 3 was prepared by co-precipitation reaction between Na 2 WO 4 and Al(NO 3 ) 3 aqueous solutions. The powder size and shape, as well as size distribution are estimated after different conditions of powder preparation. The purity of the final product was investigated by XRD and DTA analyses, using the single crystal powder as reference. Between the specimen and the reference no difference was detected. The crystal structure of Al 2 (WO 4 ) 3 nanosized powder was confirmed by TEM (SAED, HRTEM). In additional, TEM locality allows to detect some W 5 O 14 impurities, which are not visible by conventional X-ray powder diffraction and thermal analyses.

  13. A nanoindentation study of magnetron co-sputtered nanocrystalline ternary nitride coatings

    Directory of Open Access Journals (Sweden)

    Yeung W.Y.

    2006-01-01

    Full Text Available Nanoindentation testing was used to determine the hardness, elastic modulus and plasticity parameter of three newly developed ternary nitride coatings with nano-sized grains. With decreasing nitrogen deposition pressure, grain diameter of the coatings decreases that leads to both higher nanohardness and elastic modulus with conservation of satisfactory values of plasticity characteristic.

  14. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  15. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  16. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  17. Application of the ellipsoid modeling of the average shape of nanosized crystallites in powder diffraction

    DEFF Research Database (Denmark)

    Katerinopoulou, Anna; Balic Zunic, Tonci; Lundegaard, Lars Fahl

    2012-01-01

    Anisotropic broadening correction in X-ray powder diffraction by an ellipsoidal formula is applied on samples with nanosized crystals. Two cases of minerals with largely anisotropic crystallite shapes are presented. The properly applied formalism not only improves the fitting of the theoretical...

  18. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  19. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  20. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Stan, G.E. [National Institute of Materials Physics, 105 bis Atomistilor Street, 077125 Magurele (Romania); Stroescu, H.; Gartner, M.; Anastasescu, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Fogarassy, Zs. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Konkoly Thege Miklos u. 29-33, H-1121 Budapest (Hungary); Mihailescu, N. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania); Szekeres, A., E-mail: szekeres@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Bakalova, S. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, 077125 Magurele (Romania)

    2016-06-30

    Highlights: • Multi-stage pulsed laser deposition of aluminum nitride at different temperatures. • 800 °C seed film boosts the next growth of crystalline structures at lower temperature. • Two-stage deposited AlN samples exhibit randomly oriented wurtzite structures. • Band gap energy values increase with deposition temperature. • Correlation was observed between single- and multi-stage AlN films. - Abstract: We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN “seed” layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4–2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0–5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  1. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  2. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  3. Grain Refinement and Mechanical Properties of Cu-Cr-Zr Alloys with Different Nano-Sized TiCp Addition.

    Science.gov (United States)

    Zhang, Dongdong; Bai, Fang; Wang, Yong; Wang, Jinguo; Wang, Wenquan

    2017-08-08

    The TiC p /Cu master alloy was prepared via thermal explosion reaction. Afterwards, the nano-sized TiC p /Cu master alloy was dispersed by electromagnetic stirring casting into the melting Cu-Cr-Zr alloys to fabricate the nano-sized TiC p -reinforced Cu-Cr-Zr composites. Results show that nano-sized TiC p can effectively refine the grain size of Cu-Cr-Zr alloys. The morphologies of grain in Cu-Cr-Zr composites changed from dendritic grain to equiaxed crystal because of the addition and dispersion of nano-sized TiC p . The grain size decreased from 82 to 28 μm with the nano-sized TiC p content. Compared with Cu-Cr-Zr alloys, the ultimate compressive strength (σ UCS ) and yield strength (σ 0.2 ) of 4 wt% TiC p -reinforced Cu-Cr-Zr composites increased by 6.7% and 9.4%, respectively. The wear resistance of the nano-sized TiCp-reinforced Cu-Cr-Zr composites increased with the increasing nano-sized TiCp content. The wear loss of the nano-sized TiC p -reinforced Cu-Cr-Zr composites decreased with the increasing TiC p content under abrasive particles. The eletrical conductivity of Cu-Cr-Zr alloys, 2% and 4% nano-sized TiCp-reinforced Cu-Cr-Zr composites are 64.71% IACS, 56.77% IACS and 52.93% IACS, respectively.

  4. The inverse perovskite nitrides (Sr{sub 3}N{sub 2/3-x})Sn, (Sr{sub 3}N{sub 2/3-x})Pb, and (Sr{sub 3}N)Sb. Flux crystal growth, crystal structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Manisha; Bobnar, Matej; Ormeci, Alim; Prots, Yurii; Hoehn, Peter [Chemische Metallkunde, Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Stoiber, Dominik; Niewa, Rainer [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany)

    2018-02-15

    Black single crystals with metallic luster of (Sr{sub 3}N{sub 2/3-x})E (E = Sn, Pb) and (Sr{sub 3}N)Sb were grown in lithium flux from strontium nitride, Sr{sub 2}N, and tin, lead, or antimony, respectively. Nitrogen deficiency in the tin and the lead compound is a result of the higher ionic charge of the tetrelide ions E{sup 4-} as compared to the antimonide ion Sb{sup 3-}. In contrast to microcrystalline samples from solid state sinter reactions obtained earlier, the flux synthesis induces nitrogen order in the nitrogen deficient tetrelides. The antimony compound crystallizes as inverse cubic perovskite [a = 517.22(5) pm, Z = 1, space group Pm3m, no. 221] with fully occupied nitrogen site, whereas the nitrogen deficient tin and lead compounds exhibit partially ordered arrangements and a certain phase width in respect to nitrogen contents. For the tetrelides, the nitrogen order leads to a cubic 2 x 2 x 2 superstructure [E = Sn: a = 1045.64(8) pm for x = 0, a = 1047.08(7) pm for x = 0.08; and E = Pb: a = 1050.7(1) pm for x = 0, space group Fm3m, no. 225] as derived from single-crystal X-ray diffraction data. The metallic tetrelides show diamagnetic behavior, which is consistent with electronic structure calculations. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  6. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  7. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    Science.gov (United States)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  8. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  9. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  10. Predicted stability, structures, and magnetism of 3d transition metal nitrides: the M4N phases

    NARCIS (Netherlands)

    Fang, C.M.; Koster, R.S.; Li, W.F.; van Huis, M.A.

    2014-01-01

    The 3d transition metal nitrides M4N (Sc4N, Ti4N, V4N, Cr4N, Mn4N, Fe4N, Co4N, Ni4N, and Cu4N) have unique phase relationships, crystal structures, and electronic and magnetic properties. Here we present a systematic density functional theory (DFT) study on these transition metal nitrides, assessing

  11. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  12. Optical properties of photopolymerizable nanocomposites containing nanosized molecular sieves

    International Nuclear Information System (INIS)

    Naydenova, I; Leite, E; Babeva, Tz; Pandey, N; Baron, T; Martin, S; Toal, V; Yovcheva, T; Sainov, S; Mintova, S

    2011-01-01

    Acrylamide-based photopolymerizable nanocomposites containing three types of nanosized crystals with controlled microporosity, Silicalite-1 (MFI-structure), AlPO-18 (AEI-structure) and Beta (BEA-structure) are studied. The influence of the porous nanoparticles on the average refractive index, optical scattering and holographic recording properties of the nanocomposite are characterized. The redistribution of nanoparticles as a result of the holographic recording in the layers is investigated by Raman spectroscopy. It is observed that in all three nanocomposites the nanoparticles are redistributed according to the illuminating light pattern. This redistribution improves the refractive index modulation only in the case of the MFI nanoparticles, while no improvement is observed in AEI and BEA doped layers. The results can be explained by the hydrophobic/hydrophilic nature of the nanoparticles and their interactions, or absence of interactions, with the host photopolymer

  13. Synthesis and dissolution behavior of nanosized silicon and magnesium co-doped fluorapatite obtained by high energy ball milling

    NARCIS (Netherlands)

    Ahmadi, T.; Monshi, A.; Mortazavi, V.; Fathi, M. H.; Sharifi, S.; Beni, B. Hashemi; Abed, A. Moghare; Kheradmandfard, M.; Sharifnabi, A.

    Nanosized hydroxyapatite (HA) powders exhibit a greater surface area than coarser crystals and are expected to show an improved bioactivity. In addition, properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. The aim of this study was to prepare and

  14. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  15. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  16. Some new aspects of microstructural development during sintering of silicon nitride

    International Nuclear Information System (INIS)

    Feuer, H.; Woetting, G.; Gugel, E.

    1994-01-01

    The mechanical properties of silicon nitride ceramics strongly depend on their microstructure. However, there is still a lively discussion about the parameters controlling the microstructural development. The current research was stimulated by the observation that a bimodal grain-size distribution in dense silicon nitride has a very beneficial effect on the mechanical properties, especially on the fracture toughness. This paper is focused on the relationship between the α-β-transformation and the densification of silicon nitride powders with different characteristics and sintering additives. Effects of β-grains originally present in the silicon nitride powder, of added β-silicon nitride seeds and of β-crystals formed by the α/β-transformation on the resulting microstructure and on the properties are discussed. The results are summarised in a model describing prerequisites and processing conditions, which are necessary to achieve a bimodal microstructure, i. e. a self-reinforced silicon nitride ceramic. (orig.)

  17. Preparation and mechanical properties of carbon nanotube-silicon nitride nano-ceramic matrix composites

    Science.gov (United States)

    Tian, C. Y.; Jiang, H.

    2018-01-01

    Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.

  18. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  19. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  20. High-density amorphous ice: nucleation of nanosized low-density amorphous ice

    Science.gov (United States)

    Tonauer, Christina M.; Seidl-Nigsch, Markus; Loerting, Thomas

    2018-01-01

    The pressure dependence of the crystallization temperature of different forms of expanded high-density amorphous ice (eHDA) was scrutinized. Crystallization at pressures 0.05-0.30 GPa was followed using volumetry and powder x-ray diffraction. eHDA samples were prepared via isothermal decompression of very high-density amorphous ice at 140 K to different end pressures between 0.07-0.30 GPa (eHDA0.07-0.3). At 0.05-0.17 GPa the crystallization line T x (p) of all eHDA variants is the same. At pressures  >0.17 GPa, all eHDA samples decompressed to pressures  <0.20 GPa exhibit significantly lower T x values than eHDA0.2 and eHDA0.3. We rationalize our findings with the presence of nanoscaled low-density amorphous ice (LDA) seeds that nucleate in eHDA when it is decompressed to pressures  <0.20 GPa at 140 K. Below ~0.17 GPa, these nanosized LDA domains are latent within the HDA matrix, exhibiting no effect on T x of eHDA<0.2. Upon heating at pressures  ⩾0.17 GPa, these nanosized LDA nuclei transform to ice IX nuclei. They are favored sites for crystallization and, hence, lower T x . By comparing crystallization experiments of bulk LDA with the ones involving nanosized LDA we are able to estimate the Laplace pressure and radius of ~0.3-0.8 nm for the nanodomains of LDA. The nucleation of LDA in eHDA revealed here is evidence for the first-order-like nature of the HDA  →  LDA transition, supporting water’s liquid-liquid transition scenarios.

  1. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  2. Plasma-arc reactor for production possibility of powdered nano-size materials

    International Nuclear Information System (INIS)

    Hadzhiyski, V; Mihovsky, M; Gavrilova, R

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  3. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  4. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  5. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  6. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  7. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud; Ooi, Boon S.

    2016-01-01

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  8. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  9. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.

    Science.gov (United States)

    Mayyas, Mohannad; Pahlevani, Farshid; Maroufi, Samane; Liu, Zhao; Sahajwalla, Veena

    2017-03-01

    Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO 2 ). Interactions between TiO 2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO 2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO 2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO 2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  11. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  12. Nanosized lithium titanates produced by plasma technique

    International Nuclear Information System (INIS)

    Grabis, J; Orlovs, A; Rasmane, Dz

    2007-01-01

    The synthesis of nanosized lithium titanates is studied by evaporation of coarse grained commercially available titanium and lithium carbonate particles in radio-frequency plasma flow with subsequent controlling formation and growth conditions of product particles. In accordance with the XRD analysis the phase composition of the obtained powders is determined by feeding rate of precursors and strongly by ratio of lithium and titanium. The Li 2 TiO 3 and Li 4 Ti 5 O 12 particles containing small amounts of extra phases were obtained at ratio of Li/Ti = 2 and Li/Ti = 0.8 respectively, feeding rate of precursors being in the range of 0.6-0.9 kg/h. Specific surface area of powders is in the range of 20-40 m2/g depending on concentration of vapours in gas flow and cooling rate of the products. Additional calcination of nanosize particles at 800-900 deg. C improves phase composition of lithium titanates

  13. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  14. Crystallo-chemistry of actinide nitrides (U1-yPuy)N and effect of impurities

    International Nuclear Information System (INIS)

    Beauvy, M.; Coulon-Picard, E.; Pelletier, M.

    2004-01-01

    Investigations on actinide nitrides has been done in our Laboratories for Fast Breeder Reactors since the seventies and some properties are reported to show the interest for these fuels. Today, the actinide nitrides are reconsidered as possible fuels for the future fission reactors (GFR and LMFR selected by the international forum Generation IV). The results of new investigations on crystal structure of mixed mono-nitrides (U,Pu)N, and the effects of oxygen and carbon contaminations on this structure are presented. The cubic 'NaCl-fcc' type structure of actinide nitrides AnN with space group O5/h-Fm3m does not respect the 'Vegard law' model for the mixed nitrides (U 1-y Pu y )N. These nitrides are usually considered with strong metallic character associated with partial ionic bonding, but the ionic contribution in the An-N bonding determined in this work is very important and near 41.6% for UN and PuN. From results published on resistivity of mixed nitrides, the data on bonding must be also modified for partial covalence. This is in good agreement with the experimental lattice parameters which are not compatible with dominant metallic bonding. The numbers of bonding electrons in the nitrides (U 1-y Pu y )N are reevaluated and the low values proposed comparatively with those previously published confirm the strong ionic character with high concentration of An 3+ ions. The solubility of oxygen and carbon in actinide nitrides (U 1-y Pu y )N are discussed from measurements on volume concentration of actinide oxide phase, total oxygen and carbon contents, and lattice parameter of nitrides. The oxygen solubility limit in UN is near 1000 ppm, with a lightly higher value of 1200 ppm for the mixed nitride (U 0.8 Pu 0.2 )N. The effects of oxygen or carbon atoms in the lattice of (U 1-y Pu y )N are analysed

  15. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  16. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  17. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  18. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  19. Plasma-spray synthesis and characterization of ti-based nitride and oxide nanogranules

    Energy Technology Data Exchange (ETDEWEB)

    Antipas, Georgios S.E., E-mail: gantipas@metal.ntua.gr [School of Mining Engineering and Metallurgy, National Technical University of Athens, Athens (Greece)

    2014-09-15

    The synthesis of nanosized Ti-based nanogranules via plasma spraying is reported. The synthesis route involved use of both nitrogen and oxygen gases with varying results. In the case of nitrogen, a mixture of titanium nitrides were produced, yielding both the Ti2N and the sub-stoichiometric TiN0.61 compounds. In the case of oxygen, both the stoichiometric rutile and TiO ceramic phases were indexed. Based on EDS analysis, even fractional oxygen concentrations caused tungsten impurities which originated from the cathode electrode. The method yielded particle mass median sizes of the order of 15nm and the smallest particles detected were 5nm. (author)

  20. Lignin from Micro- to Nanosize: Applications

    Directory of Open Access Journals (Sweden)

    Stefan Beisl

    2017-11-01

    Full Text Available Micro- and nanosize lignin has recently gained interest due to improved properties compared to standard lignin available today. As the second most abundant biopolymer after cellulose, lignin is readily available but used for rather low-value applications. This review focuses on the application of micro- and nanostructured lignin in final products or processes that all show potential for high added value. The fields of application are ranging from improvement of mechanical properties of polymer nanocomposites, bactericidal and antioxidant properties and impregnations to hollow lignin drug carriers for hydrophobic and hydrophilic substances. Also, a carbonization of lignin nanostructures can lead to high-value applications such as use in supercapacitors for energy storage. The properties of the final product depend on the surface properties of the nanomaterial and, therefore, on factors like the lignin source, extraction method, and production/precipitation methods, as discussed in this review.

  1. Preparation of nanosize carbon powders by pulsed wire discharge

    Energy Technology Data Exchange (ETDEWEB)

    Minami, C.; Kinemuchi, Y.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan); Hirata, T.; Hatakeyama, R. [Tohoku Univ., Graduate School of Engineering, Sendai, Miyagi (Japan)

    2002-06-01

    Nanosize powders of carbons were tried to be synthesized by pulsed discharge of graphite wires in several kinds of ambient gases. When the wire was discharged in N{sub 2} gas, nanosize powders have been successfully produced. The result of X-ray diffraction analysis indicated that nanosize powders produced in N{sub 2} gas at 750 Torr were amorphous carbon containing glassy carbons, while mass-spectrum analysis demonstrated the production of fullerenes at 600 Torr. If the wire is discharged in Ar gas, dielectric breakdown takes place between electrodes, producing no carbon powders. (author)

  2. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  3. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  4. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  5. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C.; Villarreal, M. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Prieto, P. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Center of Excellence for Novel Materials, CENM, Cali (Colombia)

    2013-10-31

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN]{sub n} multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm{sup 2} and 0.094*10{sup −3} mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures.

  6. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    International Nuclear Information System (INIS)

    Escobar, C.; Villarreal, M.; Caicedo, J.C.; Aperador, W.; Caicedo, H.H.; Prieto, P.

    2013-01-01

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN] n multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm 2 and 0.094*10 −3 mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

  7. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  8. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    Science.gov (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  9. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah, E-mail: a.f.shojaie@guilan.ac.ir; Zanjanchi, Mohammad Ali

    2011-03-31

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  10. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2011-01-01

    Nano-sized zinc oxide was synthesized and deposited onto cellulosic fibers using the sol-gel process at ambient temperature. The prepared materials were characterized using several techniques including scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction and thermogravimetric analysis. X-ray diffraction studies of the ZnO-coated fiber indicate formation of the hexagonal crystal phase which was satisfactory crystallized on the fiber surface. The electron micrographs show formation of zinc oxide nanoparticles within 10-15 nm in size which have been homogeneously dispersed on the fiber surface. The prepared materials show significant photocatalytic self-cleaning activity, which was monitored by diffuse reflectance spectroscopy. The photoactivity was studied upon measuring the photodegradation of methylene blue and eosin yellowish under UV-Vis irradiation. The photocatalytic activity of the treated fabrics was fully maintained performing several cycles of photodegradation.

  11. The Synthesis and Modification of Nanosized Clickable Latex Particles

    KAUST Repository

    Almahdali, Sarah

    2013-01-01

    This research aims to add to the current knowledge available for miniemulsion polymerization reactions and to use this knowledge to synthesize multifunctional nanosized latex particles that have the potential to be used in catalysis. The physical

  12. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The nanosize catalysts role in the modern hydroprocesses

    International Nuclear Information System (INIS)

    Irisova, K N; Smirnov, V K; Talisman, E L

    2011-01-01

    Introduction of the modern technological procedures operating the catalytic systems with different nanosized characteristics is the only way to fabricate components of commercial oils that meet the current requirements. Specifications to the individual catalysts, which form a catalytic system, differ both in nanostructural features of the support porosity and in distribution of nanosized active site. These specifications are related to the purpose of the process and the role of the catalyst in the process.

  14. Investigations on the structural and optical properties of sphere-shaped indium nitride (InN)

    Energy Technology Data Exchange (ETDEWEB)

    Bagavath, C.; Kumar, J. [Anna University, Crystal Growth Centre, Chennai, Tamil Nadu (India); Nasi, L. [IMEM-CNR, Parma (Italy)

    2017-04-15

    Indium nitride (InN) sphere-shaped micro crystals and nano crystals were made using sol-gel method. The crystalline size of the samples were calculated using X-ray diffraction, which were found to increase with the increase of nitridation temperature and time. High resolution-transmission electron microscopy images exhibited the distinct sphere shape of InN with different size of micro and nanometers. The calculated band gap of InN spheres using photo luminescence and UV-visible absorption spectra, was found to be 1.2 eV. Optical phonon modes of InN were determined from micro-Raman studies. (orig.)

  15. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    2017-02-01

    Full Text Available The nano-sized SiCp/Al–Cu composites were successfully fabricated by combining semisolid stirring with ball milling technology. Microstructures were examined by an olympus optical microscope (OM, field emission scanning electron microscope (FESEM and transmission electron microscope (TEM. Tensile properties were studied at room temperature. The results show that the α-Al dendrites of the composites were strongly refined, especially in the composite with 3 wt. % nano-sized SiCp, of which the morphology of the α-Al changes from 200 μm dendritic crystal to 90 μm much finer equiaxial grain. The strength and ductility of the composites are improved synchronously with the addition of nano-sized SiCp particles. The as-cast 3 wt. % nano-sized SiCp/Al–Cu composite displays the best tensile properties, i.e., the yield strength, ultimate tensile strength (UTS and fracture strain increase from 175 MPa, 310 MPa and 4.1% of the as-cast Al–Cu alloy to 220 MPa, 410 MPa and 6.3%, respectively. The significant improvement in the tensile properties of the composites is mainly due to the refinement of the α-Al dendrites, nano-sized SiCp strengthening, and good interface combination between the SiCp and Al–Cu alloys.

  16. Fabrication of aluminum nitride crucibles for molten salt and plutonium compatibility studies

    International Nuclear Information System (INIS)

    Phillips, J.A.

    1991-01-01

    The overall objective of this research was to fabricate a calcium oxide sinter-aided aluminum nitride crucible and determine the compatibility of this crucible with molten chloride salts and plutonium metal in the DOR process. Calcium oxide sinter-aided aluminum nitride was preferred over yttrium oxide sinter-aided aluminum nitride because of (1) the presence of calcium chloride, calcium oxide, and calcium metal in the molten salts utilized in the DOR process, and (2) the higher volatility of the secondary phases formed compared with phases resulting from the addition of yttrium oxide during the aluminum nitride sintering process. The calcium oxide system may yield a higher purity crystal structure with fewer secondary phases present than in the yttrium oxide system. The secondary phases that are present in the grain boundaries may be unreactive with the calcium chloride salt due to the presence of calcium in the secondary phases

  17. The combined effects of Fe and H2 on the nitridation of silicon

    Science.gov (United States)

    Shaw, N. J.

    1982-01-01

    In view of the support offered by previous work for the suggestion that Fe may affect alpha-Si3N4 formation and microstructural development, a two-part study was conducted to differentiate the effects of H2 and Fe in, first, the nitridation of pure and of Fe-containing powder in N2 and N2-4% H2, and then the nitridation of (1 1 1) Si single crystal wafers with and without Fe powder on the surface. The degree of nitridation is most strongly affected by H2 at 1200 C, but by Fe at 1375 C, where Fe-containing samples in either atmosphere were almost completely nitrided. While neither H2 nor Fe alone changed the ratio of alpha-Si3N4 to beta-Si3N4, the combination of H2 and Fe increased it at both temperatures.

  18. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  19. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  20. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  1. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  2. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  3. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  4. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  5. Apatite formability of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Keshri, Anup K; Agarwal, Arvind; Singh, Virendra; Seal, Sudipta

    2011-01-01

    This study investigates the ability of boron nitride nanotubes (BNNTs) to induce apatite formation in a simulated body fluid environment for a period of 7, 14 and 28 days. BNNTs, when soaked in the simulated body fluid, are found to induce hydroxyapatite (HA) precipitation on their surface. The precipitation process has an initial incubation period of ∼ 4.6 days. The amount of HA precipitate increases gradually with the soaking time. High resolution TEM results indicated a hexagonal crystal structure of HA needles. No specific crystallographic orientation relationship is observed between BNNT and HA, which is due to the presence of a thin amorphous HA layer on the BNNT surface that disturbs a definite orientation relationship.

  6. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  7. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  8. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2016-07-01

    Full Text Available Glass ionomer cements (GICs are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.

  9. Creep of FINEMET ribbons during crystallization

    NARCIS (Netherlands)

    Csach, K; Miskuf, J; Jurikova, A; Ocelik, Vaclav

    2004-01-01

    The application of FINEMET-type materials with specific magnetic properties prepared by the crystallization of amorphous alloys is often limited by their brittleness. The structure of these materials consists of nanosized Fe-based grains surrounded by an amorphous phase. Then the final macroscopic

  10. Preferential spin canting in nanosize zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Pune 411112 (India); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Institut für Physik der Kondensierten Materie,Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Baggio-Saitovitch, E.M. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with Fe{sup III} in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects. - Highlights: • Spinel structure ZnFe{sub 2}O{sub 4} nanoparticles in the uniform size range of 10.0±0.5 nm have been synthesized using the citrate precursor route. • Canting of the spins of A- and B-sublattice sites has been studied by low temperature and high magnetic field Mössbauer spectroscopy. • A-site spins are aligned antiparallel to the applied field with only small angular scatter. • B-site spins are strongly canted in contrast to earlier quoted only partial canting. • B site spin structure deviates significantly from a collinear antiferromagnetic arrangement.

  11. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  12. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  13. Leachability of nitrided ilmenite in hydrochloric acid

    OpenAIRE

    Swanepoel, J.J.; van Vuuren, D.S.; Heydenrych, M.

    2011-01-01

    Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200°C) chlorination reaction will not react with chlorine. It is therefore necessary to remove as much iron as possible from the nitrided ilmenite. Hydrochloric acid leaching is a possible process route to remove metallic iron from nitrided ilmenite without excessive dissolution o...

  14. Development of Antibiotics Impregnated Nanosized Silver Phosphate-Doped Hydroxyapatite Bone Graft

    Directory of Open Access Journals (Sweden)

    Waraporn Suvannapruk

    2013-01-01

    Full Text Available Nanosized Ag3PO4 loaded hydroxyapatite which was prepared by a novel low temperature phosphorization of 3D printed calcium sulfate dihydrate at the nominal silver concentration of 0.001 M and 0.005 M was impregnated by two antibiotics including gentamicin and vancomycin. Phase composition, microstructure, antibiotics loading, silver content, antimicrobial performance, and cytotoxic potential of the prepared samples were characterized. It was found that the fabricated sample consisted of hydroxyapatite as a main phase and spherical-shaped silver phosphate nanoparticles distributing within the cluster of hydroxyapatite crystals. Antibacterial activity of the samples against two bacterial strains (gram negative P. aeruginosa and gram positive S. aureus was carried out. It was found that the combination of antibiotics and nanosized Ag3PO4 in hydroxyapatite could enhance the antibacterial performance of the samples by increasing the duration in which the materials exhibited antibacterial property and the size of the inhibition zone depending on the type of antibiotics and bacterial strains compared to those contained antibiotics or nanosilver phosphate alone. Cytotoxic potential against osteoblasts of antibiotics impregnated nanosilver phosphate hydroxyapatite was found to depend on the combination of antibiotics content, type of antibiotics, and nanosilver phosphate content.

  15. Fabrication of vanadium nitride by carbothermal nitridation reaction

    International Nuclear Information System (INIS)

    Wang Xitang; Wang Zhuofu; Zhang Baoguo; Deng Chengji

    2005-01-01

    Vanadium nitride is produced from V 2 O 5 by carbon-thermal reduction and nitridation. When the sintered temperature is above 1273 K, VN can be formed, and the nitrogen content of the products increased with the firing temperature raised, and then is the largest when the sintered temperature is 1573 K. The C/V 2 O 5 mass ratio of the green samples is the other key factor affecting on the nitrogen contents of the products. The nitrogen content of the products reaches the most when the C/V 2 O 5 mass ratio is 0.33, which is the theoretical ratio of the carbothermal nitridation of V 2 O 5 . (orig.)

  16. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    International Nuclear Information System (INIS)

    Aubert, Tangi; Burel, Agnès; Esnault, Marie-Andrée; Cordier, Stéphane; Grasset, Fabien; Cabello-Hurtado, Francisco

    2012-01-01

    Highlights: ► We investigated the effect of nanosized Mo 6 clusters on the growth of rapeseed plants. ► The aggregation state of the clusters depends on the dispersion medium. ► The concentration-dependant toxicity of the clusters depends on aggregation state. ► We took into account the possible contribution to toxicity of dissolved ionic species. ► The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs 2 Mo 6 Br 14 as cluster precursor. [Mo 6 Br 14 ] 2− cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  17. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Tangi [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Burel, Agnes [Electronic Microscopy Department, University of Rennes 1, 2 av. du Professeur Leon-Bernard, Campus de Villejean, 35043 Rennes (France); Esnault, Marie-Andree [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cordier, Stephane; Grasset, Fabien [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cabello-Hurtado, Francisco, E-mail: francisco.cabello@univ-rennes1.fr [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of nanosized Mo{sub 6} clusters on the growth of rapeseed plants. Black-Right-Pointing-Pointer The aggregation state of the clusters depends on the dispersion medium. Black-Right-Pointing-Pointer The concentration-dependant toxicity of the clusters depends on aggregation state. Black-Right-Pointing-Pointer We took into account the possible contribution to toxicity of dissolved ionic species. Black-Right-Pointing-Pointer The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs{sub 2}Mo{sub 6}Br{sub 14} as cluster precursor. [Mo{sub 6}Br{sub 14}]{sup 2-} cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  18. Simulation of the Nitriding Process

    Science.gov (United States)

    Krukovich, M. G.

    2004-01-01

    Simulation of the nitriding process makes it possible to solve many practical problems of process control, prediction of results, and development of new treatment modes and treated materials. The presented classification systematizes nitriding processes and processes based on nitriding, enables consideration of the theory and practice of an individual process in interrelation with other phenomena, outlines ways for intensification of various process variants, and gives grounds for development of recommendations for controlling the structure and properties of the obtained layers. The general rules for conducting the process and formation of phases in the layer and properties of the treated surfaces are used to create a prediction computational model based on analytical, numerical, and empirical approaches.

  19. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  20. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  1. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  2. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  3. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0370-1972",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("Online Submission","http://www.manuscriptxpress.org/osm/",""),new Array("","","x"));writeJournalLinks("", "40001185");issue nav --> Previous Issue | Next Issue >issue nav -->Volume 241, Issue13 (November 2004)Articles in the Current Issue:Rapid Research NoteStrong Eu emission of annealed Y2O3:Eu nanotube and nano-sized crystals

    Science.gov (United States)

    Sekita, Masami; Iwanaga, Kenichi; Hamasuna, Tomomi; Mohri, Shinji; Uota, Masafumi; Yada, Mitsunori; Kijima, Tsuyoshi

    2004-11-01

    We have observed a drastic increase of the Eu3+ emission intensity by annealing nanotubes and nano-sized hexagonal-mesostructured crystals of the Y2O3:Eu system together with bulk samples. It is found that there are three Eu3+ sites in all samples. Stark splitting schemes are proposed for the three homogeneous sites.

  4. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    International Nuclear Information System (INIS)

    Malik, Ritu; Misra, Amit; Tondwal, Shailesh; Venkatesh, K S

    2008-01-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  5. Nanoscaffold matrices for size-controlled, pulsatile transdermal testosterone delivery: nanosize effects on the time dimension

    Science.gov (United States)

    Malik, Ritu; Tondwal, Shailesh; Venkatesh, K. S.; Misra, Amit

    2008-10-01

    Pulsatile transdermal testosterone (T) has applications in hormone supplementation and male contraception. Pulsatile T delivery was achieved by assembling crystalline and nanoparticulate T in nucleation-inhibiting polymer matrices of controlled porosity. Different interference patterns observed from various polymeric films containing T were due to the various particle sizes of T present in the polymer matrices. Scanning electron microscopy was used to determine the size and shape of T crystals. Skin-adherent films containing T nanoparticles of any size between 10-500 nm could be prepared using pharmaceutically acceptable vinylic polymers. Drug release and skin permeation profiles were studied. The dissolution-diffusion behavior of nanoparticles differed from crystalline and molecular states. Nanosize may thus be used to engineer chronopharmacologically relevant drug delivery.

  6. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  7. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  8. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  9. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de, E-mail: wellingtonmarcos@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH{sub 3} and N{sub 2} gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  10. Rare-earth doped boron nitride nanotubes: Synthesis and characterization

    International Nuclear Information System (INIS)

    Silva, Wellington Marcos; Sousa, Edesia Martins Barros de

    2016-01-01

    Full text: Boron nitride is a heat and chemically resistant refractory compound of boron and nitrogen atoms with the chemical formula BN. This structure exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexagonal form (h-BN) corresponding to graphite is the most stable and soft among BN polymorph. However, boron nitride nanotubes (BNNTs) were first time synthesized in 1995 [1] and have a type of one-dimensional (1D) nanostructure. Recently the BNNTs have attracted significant interest for scientific and technological applications due to their Wide bandgap. The Wide-bandgap semiconductors doped with rare-earth are considered as a new type of luminescent material, combining special Wide bandgap semiconducting properties with the rare-earth luminescence feature. BNNTs have a stable wide bandgap of 5.5 eV and super thermal and chemical stabilities, which make BNNTs an ideal nanosized luminescent material [2]. In this study, we report a simple and efficient route for the synthesis of BNNTs doped with samarium and europium. High quality BNNTs doped was produced via CVD technique using NH 3 and N 2 gases as source. Boron amorphous, catalyst and oxides rare-earth powder were used as precursor. Detailed studies involving energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscope (TEM) were performed in order to characterize the BNNTs as grown. [1] Chopra, N. G.; Luyken, R. J. et al. Science, v. 269, p. 966-967, 1995. [2] Chen, H.; Chen, Y. et al. Adv. Matter. v. 19, p. 1845-1848, 2007. (author)

  11. Electrical and Optical Properties of Nanosized Perovskite-type La ...

    African Journals Online (AJOL)

    Electrical and Optical Properties of Nanosized Perovskite-type La 0.5 Ca 0.5 MO 3 (M=Co,Ni) ... In addition, the TEM images show that the average particle size of ... of both compounds decreases exponentially by increasing the temperature.

  12. Modification of unsaturated polyester resins using nano-size core ...

    African Journals Online (AJOL)

    Modification of unsaturated polyester resins using nano-size core-shell particles. MO Munyati, PA Lovell. Abstract. No Abstract Available Journal of Science and Technology Special Edition 2004: 24-31. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  13. Synthesis of nanosized metal particles from an aerosol

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2013-10-01

    Full Text Available The synthesis of metallic nanoparticles from the precursor solution of salts using the ultrasonic spray pyrolysis method was considered in this work. During the control of process parameters (surface tension and density, the concentration of solution, residence time of aerosol in the reactor, presence of additives, gas flow rate, decomposition temperature of aerosol, type of precursor and working atmosphere it is possible to guide the process in order to obtain powders with such a morphology which satisfies more complex requirements for the desired properties of advanced engineering materials.  Significant advance in the improvement of powder characteristics (lower particles sizes, better spheroidity, higher surface area was obtained by the application of the ultrasonic generator for the preparation of aerosols. Ultrasonic spray pyrolysis is performed by the action of a powerful source of ultrasound on the corresponding precursor solution forming the aerosol with a constant droplet size, which depends on the characteristics of liquid and the frequency of ultrasound. The produced aerosols were transported into the hot reactor, which enables the reaction to occur in a very small volume of a particle and formation of  nanosized powder. Spherical, nanosized particles of metals (Cu, Ag, Au, Co were produced with new and improved physical and chemical characteristics at the IME, RWTH Aachen University. The high costs associated with small quantities of produced nanosized particles represent a limitation of the USP-method. Therefore, scale up of the ultrasonic spray pyrolysis was performed as a final target in the synthesis of nanosized powder.

  14. Membrane with Stable Nanosized Microstructure and Method for Producing same

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane, comprising in this order a first catalyst layer, an electronically and ionically conducting layer having a nanosized microstructure, and a second catalyst layer, characterized in that the electronically and ionically conducting layer is formed from...... an electrolyte material, a grain growth inhibitor and/or grain boundary modifier, and a method for producing same....

  15. Mössbauer and magnetization studies of nanosize chromium ferrite ...

    African Journals Online (AJOL)

    Nanosize chromium ferrite (CrF) powder samples were synthesized by citrate precursor route in the size range of 6 to 35 nm. The structural and magnetic behaviour of these samples were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized ...

  16. Nanosize boride particles in heat-treated nickel base superalloys

    International Nuclear Information System (INIS)

    Zhang, H.R.; Ojo, O.A.; Chaturvedi, M.C.

    2008-01-01

    Grain boundary microconstituents in aged nickel-based superalloys were studied by transmission electron microscopy techniques. A nanosized M 5 B 3 boride phase, possibly formed by intergranular solute desegregation-induced precipitation, was positively identified. The presence of these intergranular nanoborides provides reasonable clarification of a previously reported reduction of grain boundary liquation temperature during the weld heat affected zone thermal cycle

  17. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  18. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  19. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  20. Unveiling the Structural Origin of the High Carrier Mobility of a Molecular Monolayer on Boron Nitride

    OpenAIRE

    Xu, Rui; He, Daowei; Zhang, Yuhan; Wu, Bing; Liu, Fengyuan; Meng, Lan; Liu, Jun-Fang; Wu, Qisheng; Shi, Yi; Wang, Jinlan; Nie, Jia-Cai; Wang, Xinran; He, Lin

    2014-01-01

    Very recently, it was demonstrated that the carrier mobility of a molecular monolayer dioctylbenzothienobenzothiophene (C8-BTBT) on boron nitride can reach 10 cm2/Vs, the highest among the previously reported monolayer molecular field-effect transistors. Here we show that the high-quality single crystal of the C8-BTBT monolayer may be the key origin of the record-high carrier mobility. We discover that the C8-BTBT molecules prefer layer-by-layer growth on both hexagonal boron nitride and grap...

  1. The anharmonic phonon decay rate in group-III nitrides

    International Nuclear Information System (INIS)

    Srivastava, G P

    2009-01-01

    Measured lifetimes of hot phonons in group-III nitrides have been explained theoretically by considering three-phonon anharmonic interaction processes. The basic ingredients of the theory include full phonon dispersion relations obtained from the application of an adiabatic bond charge model and crystal anharmonic potential within the isotropic elastic continuum model. The role of various decay routes, such as Klemens, Ridley, Vallee-Bogani and Barman-Srivastava channels, in determining the lifetimes of the Raman active zone-centre longitudinal optical (LO) modes in BN (zincblende structure) and A 1 (LO) modes in AlN, GaN and InN (wurtzite structure) has been quantified.

  2. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  3. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  4. Prospects of III-nitride optoelectronics grown on Si

    International Nuclear Information System (INIS)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-01-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al 2 O 3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. (review article)

  5. Solution and precipitation of excess phases and nitrogen partition between solid solution and nitrides in corrosion-resistant steel

    International Nuclear Information System (INIS)

    Kaputkina, L.M.; Svyazhin, A.G.; Prokoshkina, V.G.

    2006-01-01

    Experimental study results on dissolution and precipitation of nitrides during crystallization and heat treatment of high nitrogen austenitic steels are presented. It is established that even on rapid crystallization most of nitrogen is in nitrides, and for their dissolution high temperatures and long-term holding at heat are needed. A nitrogen content in the steel should be optimized according to the structure required (austenite or austenite + excess phases). It is noted that a high nitrogen concentration in the steel is not necessarily efficient to attain a high strength [ru

  6. Precipitated nanosized titanium dioxide for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, S.A. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine); Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Lisnycha, T.V. [Institute for Sorption and Problems of Endoecology, 13 Gen. Naumov St., 03164 Kyiv (Ukraine); Chernukhin, S.I. [Joint Department of Electrochemical Energy Systems, 38A Vernadsky Ave., 03142 Kyiv (Ukraine)

    2011-02-15

    Two types of titanium dioxide samples precipitated from aqueous solutions of titanium tetrachloride are investigated. Crystalline materials are obtained by means of neutralization of TiCl{sub 4} with the solution of an alkali metal hydroxide. The change of the order of mixing leads to amorphous materials. The evolution of the samples upon the thermal treatment is characterized using XRD, SEM, TEM and porosity studies. The application of crystalline TiO{sub 2} as an electrode material in lithium-ion 2016 sample cells enable one to yield specific currents up to 3350 mA g{sup -1}. On the other hand, the thermal treatment of initially amorphous materials does not lead to complete crystallization, and the presence of amorphous TiO{sub 2} is well seen as the so-called capacity behavior of cyclic voltammetry curves. (author)

  7. High-phase-purity zinc-blende InN on r-plane sapphire substrate with controlled nitridation pretreatment

    International Nuclear Information System (INIS)

    Hsiao, C.-L.; Wu, C.-T.; Hsu, H.-C.; Hsu, G.-M.; Chen, L.-C.; Liu, T.-W.; Shiao, W.-Y.; Yang, C. C.; Gaellstroem, Andreas; Holtz, Per-Olof; Chen, C.-C.; Chen, K.-H.

    2008-01-01

    High-phase-purity zinc-blende (zb) InN thin film has been grown by plasma-assisted molecular-beam epitaxy on r-plane sapphire substrate pretreated with nitridation. X-ray diffraction analysis shows that the phase of the InN films changes from wurtzite (w) InN to a mixture of w-InN and zb-InN, to zb-InN with increasing nitridation time. High-resolution transmission electron microscopy reveals an ultrathin crystallized interlayer produced by substrate nitridation, which plays an important role in controlling the InN phase. Photoluminescence emission of zb-InN measured at 20 K shows a peak at a very low energy, 0.636 eV, and an absorption edge at ∼0.62 eV is observed at 2 K, which is the lowest bandgap reported to date among the III-nitride semiconductors

  8. Protein crystals as scanned probes for recognition atomic force microscopy.

    Science.gov (United States)

    Wickremasinghe, Nissanka S; Hafner, Jason H

    2005-12-01

    Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.

  9. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnonic crystals for data processing

    International Nuclear Information System (INIS)

    Chumak, A V; Serga, A A; Hillebrands, B

    2017-01-01

    Magnons (the quanta of spin waves) propagating in magnetic materials with wavelengths at the nanometer-scale and carrying information in the form of an angular momentum can be used as data carriers in next-generation, nano-sized low-loss information processing systems. In this respect, artificial magnetic materials with properties periodically varied in space, known as magnonic crystals, are especially promising for controlling and manipulating magnon currents. In this article, different approaches for the realization of static, reconfigurable, and dynamic magnonic crystals are presented along with a variety of novel wave phenomena discovered in these crystals. Special attention is devoted to the utilization of magnonic crystals for processing of analog and digital information. (paper)

  11. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1980-01-01

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author) [pt

  12. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  13. Microstructure and Mechanical Performance of Cu-Sn-Ti-Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles

    Science.gov (United States)

    Leinenbach, Christian; Transchel, Robert; Gorgievski, Klea; Kuster, Friedrich; Elsener, Hans Rudolf; Wegener, Konrad

    2015-05-01

    A Cu-Sn-Ti-based active brazing filler alloy was in situ reinforced with nanosized TiC particles by adding different amounts of a cellulose nitride-based binder. The TiC particles emanate from a reaction of the Ti within the filler alloy with the carbon from the binder that does not decompose completely during heating. The correlation between the microstructure and mechanical performance was studied. In addition, the effect of different binder amounts on the shear strength and cutting performance of brazed diamond grains was studied in shear tests and single grain cutting tests. The results clearly show that the mechanical performance of the brazed diamond grains can be improved by the formation of TiC particles. This is attributed to particle strengthening of the filler alloy matrix as well as to the decreasing grain size and more homogeneous distribution of the (Cu,Sn)3Ti5 phase with increasing amount of binder.

  14. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  15. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  16. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    Science.gov (United States)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  17. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  18. Gallium nitride at the millennial transition

    International Nuclear Information System (INIS)

    Pankovo, J.I.

    2000-01-01

    The properties of gallium nitride were uncovered in the early years of exploratory research and endowed with negative electron affinity that could be used to make efficient cold cathodes and even dynodes for electron multipliers. GaN has another property i.e. polar nature of the crystal which makes this material piezo-electric and has non-linear optical properties. The piezo-electric properties led to new piezo electric effect may cause interfacial charge. The non-uniform distribution of acceptors, there is also presence of threading and other dislocation in GaN. Defects reappear where two adjacent overgrowth merge, but the good lateral overgrow region is large enough to make lasers. Injection lasers benefit from strong electrical and optical environment. This was achieved by using quantum wells of InGaN in GaN and this can be doped with rare earth elements to exploit the atomic transition between core levels in these elements. The emission efficiency of electrically excited Er in GaN is nearly temperature incentive from 80K to room temperature. An other application of GaN is as a heterojunction emitter for a bi-polar transistor (HBT) that can operate at high temperatures. (A.B.)

  19. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  20. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  1. Nanosized Selenium: A Novel Platform Technology to Prevent Bacterial Infections

    Science.gov (United States)

    Wang, Qi

    As an important category of bacterial infections, healthcare-associated infections (HAIs) are considered an increasing threat to the safety and health of patients worldwide. HAIs lead to extended hospital stays, contribute to increased medical costs, and are a significant cause of morbidity and mortality. In the United States, infections encountered in the hospital or a health care facility affect more than 1.7 million patients, cost 35.7 billion to 45 billion, and contribute to 88,000 deaths in hospitals annually. The most conventional and widely accepted method to fight against bacterial infections is using antibiotics. However, because of the widespread and sometimes inappropriate use of antibiotics, many strains of bacteria have rapidly developed antibiotic resistance. Those new, stronger bacteria pose serious, worldwide threats to public health and welfare. In 2014, the World Health Organization (WHO) reported antibiotic resistance as a global serious threat that is no longer a prediction for the future but is now reality. It has the potential to affect anyone, of any age, in any country. The most effective strategy to prevent antibiotic resistance is minimizing the use of antibiotics. In recent years, nanomaterials have been investigated as one of the potential substitutes of antibiotics. As a result of their vastly increased ratio of surface area to volume, nanomaterials will likely exert a stronger interaction with bacteria which may affect bacterial growth and propagation. A major concern of most existing antibacterial nanomaterials, like silver nanoparticles, is their potential toxicity. But selenium is a non-metallic material and a required nutrition for the human body, which is recommended by the FDA at a 53 to 60 μg daily intake. Nanosized selenium is considered to be healthier and less toxic compared with many metal-based nanomaterials due to the generation of reactive oxygen species from metals, especially heavy metals. Therefore, the objectives of

  2. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  3. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  4. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  5. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  6. Evaluations of parameters peculiar to the third group nitrides: BN, AIN, GaN and InN

    CERN Document Server

    Davydov, S Y

    2002-01-01

    The estimations of dielectric, optical electrooptical, magnetic and phonon characteristics of XN (X = B, Al, Ga, In) crystals are obtained by means of simple methods using both quantum mechanics and semiempirical approaches. The values of deformation potentials and magnetic susceptibility these nitrides are defined. The calculation results are compared with experimental data and data obtained by other authors

  7. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  8. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  9. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Schurz, Christian M.; Shlyk, Larysa; Schleid, Thomas; Niewa, Rainer [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Two different polymorphs of the metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) are known to crystallize in layered structures. The two crystal structures differ in the way {sub {infinity}}{sup 2}{l_brace}X[M{sub 2}N{sub 2}]X{r_brace} slabs are stacked along the c-axes. Metal atoms and/or organic molecules can be intercalated into the van-der-Waals gap between these layers. After such an electron-doping via intercalation the prototypic band insulators change into superconductors with moderate high critical temperatures T{sub c} up to 25.5 K. This review gathers information on synthesis routes, structural characteristics and properties of the prototypic nitride halides and the derivatives after electron-doping with a focus on superconductivity. (orig.)

  10. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Figueiredo, R.S. de.

    1991-07-01

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H 4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  11. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  12. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  13. Increased carrier lifetimes in epitaxial silicon layers on buried silicon nitride produced by ion implantation

    International Nuclear Information System (INIS)

    Skorupa, W.; Kreissig, U.; Hensel, E.; Bartsch, H.

    1984-01-01

    Carrier lifetimes were measured in epitaxial silicon layers deposited on buried silicon nitride produced by high-dose nitrogen implantation at 330 keV. The values were in the range 20-200 μs. The results are remarkable taking into account the high density of crystal defects in the epitaxial layers. Comparing with other SOI technologies the measured lifetimes are higher by 1-2 orders of magnitude. (author)

  14. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  15. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  16. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  17. Ductility and work hardening in nano-sized metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. Z., E-mail: dzchen@caltech.edu [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Gu, X. W. [Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); An, Q.; Goddard, W. A. [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  18. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  19. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  20. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  1. Heavy Ion Irradiation Effects in Zirconium Nitride

    International Nuclear Information System (INIS)

    Egeland, G.W.; Bond, G.M.; Valdez, J.A.; Swadener, J.G.; McClellan, K.J.; Maloy, S.A.; Sickafus, K.E.; Oliver, B.

    2004-01-01

    Polycrystalline zirconium nitride (ZrN) samples were irradiated with He + , Kr ++ , and Xe ++ ions to high (>1.10 16 ions/cm 2 ) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nano-indentation. Nano-indentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples. (authors)

  2. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    Science.gov (United States)

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  3. Application of Nanosize Zeolite Molecular Sieves for Medical Oxygen Concentration

    Directory of Open Access Journals (Sweden)

    Mingfei Pan

    2017-07-01

    Full Text Available The development of a portable oxygen concentrator is of prime significance for patients with respiratory problems. This paper presents a portable concentrator prototype design using the pressure/vacuum swing adsorption (PVSA cycle with a deep evacuation step (−0.82 barg instead of desorption with purge flow to simplify the oxygen production process. The output of the oxygen concentrator is a ~90 vol % enriched oxygen stream in a continuous adsorption and desorption cycle (cycle time ~90 s. The size of the adsorption column is 3 cm in diameter and 20 cm in length. A Li+ exchanged 13X nanosize zeolite is used as the adsorbent to selectively adsorb nitrogen from air. A dynamic model of the pressure and vacuum swing adsorption units was developed to study the pressurization and depressurization process inside the microporous area of nanosized zeolites. The describing equations were solved using COMSOL Multiphysics Chemical Engineering module. The output flow rate and oxygen concentration results from the simulation model were compared with the experimental data. Velocity and concentration profiles were obtained to study the adsorption process and optimize the operational parameters.

  4. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  5. Toward Edge-Defined Holey Boron Nitride Nanosheets

    Science.gov (United States)

    Lin, Yi; Liao, Yunlong; Chen, Zhongfan; Connell, John W.

    2015-01-01

    "Holey" two-dimensional (2D) nanosheets with well-defined holy morphology and edge chemistry are highly desirable for applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. For example, holey grapheme is currently under extensive investigation for energy storage applications because of the improvement in ion transport due to through the thickness pathways provided by the holes. Without the holes, the 2D materials have significant limitations for such applications in which efficient ion transport is important. As part of an effort to apply this approach to other 2D nanomaterials, a method to etch geometrically defined pits or holes on the basal plane surface of hexagonal boron nitride (h-BN) nanosheets has been developed. The etching, conducted via heating in ambient air using metal nanoparticles as catalysts, was facile, controllable, and scalable. Starting h-BN layered crystals were etched and subsequently exfoliated into boron nitride nanosheets (BNNSs). The as-etched and exfoliated h-BN nanosheets possessed defined pit and hole shapes that were comprised of regulated nanostructures at the edges. The current finding are the first step toward the bulk preparation of holey BNNSs with defined holes and edges.

  6. Progress in Group III nitride semiconductor electronic devices

    International Nuclear Information System (INIS)

    Hao Yue; Zhang Jinfeng; Shen Bo; Liu Xinyu

    2012-01-01

    Recently there has been a rapid domestic development in group III nitride semiconductor electronic materials and devices. This paper reviews the important progress in GaN-based wide bandgap microelectronic materials and devices in the Key Program of the National Natural Science Foundation of China, which focuses on the research of the fundamental physical mechanisms of group III nitride semiconductor electronic materials and devices with the aim to enhance the crystal quality and electric performance of GaN-based electronic materials, develop new GaN heterostructures, and eventually achieve high performance GaN microwave power devices. Some remarkable progresses achieved in the program will be introduced, including those in GaN high electron mobility transistors (HEMTs) and metal—oxide—semiconductor high electron mobility transistors (MOSHEMTs) with novel high-k gate insulators, and material growth, defect analysis and material properties of InAlN/GaN heterostructures and HEMT fabrication, and quantum transport and spintronic properties of GaN-based heterostructures, and high-electric-field electron transport properties of GaN material and GaN Gunn devices used in terahertz sources. (invited papers)

  7. Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Min; Li, Ying; Hu, Yemin; Zhu, Mingyuan; Jin, Hongming; Li, Wenxian

    2015-01-01

    Graphical abstract: Nano-sized LiFePO4/C composite with core-shell structure was fabricated via a well-designed approach as cathode material forlithium ion battery. The nano-sized LiFePO4/C composite with whole carbon shell coating layer showed an excellent electrical performance. - Abstract: Nano-sized composite with LiFePO 4 -core and carbon-shell was synthesized via a facile route followed by heat treatment at 650 °C. X-ray diffraction (XRD) shows that the core is well crystallized LiFePO 4 . The electron microscopy (SEM and TEM) observations show that the core-shell structured LiFePO 4 /C composite coating with whole carbon shell layer of ∼2.8 nm, possesses a specific surface area of 51 m 2 g −1 . As cathode material for lithium ion battery, the core-shell LiFePO 4 /C composite exhibits high initial capacity of 161 mAh g −1 at 0.1 C, excellent high-rate discharge capacity of 135 mAh g −1 at 5 C and perfect cycling retention of 99.6% at 100 th cycle. All these promising results should be contributed to the core-shell nanostructure which prevents collapse of the particle structure in the long-term charge and discharge cycles, as well as the large surface area of the nano-sized LiFePO 4 /C composite which enhances the electronic conductivity and shortens the distance of lithium ion diffusion

  8. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  9. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  10. Evidence for atomic scale disorder in indium nitride from perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R; Shrestha, S K; Byrne, A P; Ridgway, M C; Edge, A V J; Vianden, R; Penner, J; Timmers, H

    2005-01-01

    The crystal lattice of bulk grains and state-of-the-art films of indium nitride was investigated at the atomic scale with perturbed angular correlation spectroscopy using the 111 In/Cd radioisotope probe. The probe was introduced during sample synthesis, by diffusion and by ion implantation. The mean quadrupole interaction frequency ν Q = 28 MHz was observed at the indium probe site in all types of indium nitride samples with broad frequency distributions. The observed small, but non-zero, asymmetry parameter indicates broken symmetry around the probe atoms. Results have been compared with theoretical calculations based on the point charge model. The consistency of the experimental results and their independence of the preparation technique suggest that the origin of the broad frequency distribution is inherent to indium nitride, indicating a high degree of disorder at the atomic scale. Due to the low dissociation temperature of indium nitride, furnace and rapid thermal annealing at atmospheric pressure reduce the lattice disorder only marginally

  11. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  12. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  13. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  14. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    Science.gov (United States)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  15. Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer

    Science.gov (United States)

    Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, very encouraging results have been attained as several transducers have continued to operate under irradiation. The irradiation is ongoing and will continue to approximately mid-2015.

  16. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  17. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  18. Nanosized f.c.c. thallium inclusions in aluminium

    International Nuclear Information System (INIS)

    Johnson, E.; Johansen, A.; Thoft, N.B.; Andersen, H.H.; Sarholt-Kristensen, L.

    1993-01-01

    Ion implantation of pure aluminium with thallium induces the formation of nanosized crystalline inclusions of thallium with a f.c.c. structure. The size of the inclusions depends on the implantation conditions and subsequent annealing treatments and is typically in the range from 1 to 10 nm. The inclusions are aligned topotactically with the aluminium matrix with a cube-cube orientation relationship and they have a truncated octahedral shape bounded by {111} and {001} planes. The lattice parameter of the f.c.c. thallium inclusions is 0.484 ± 0.002 nm, which is slightly but significantly larger than in the high-pressure f.c.c. thallium phase known to be stable above 3.8 GPa. (Author)

  19. Nanosized Minicells Generated by Lactic Acid Bacteria for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huu Ngoc Nguyen

    2017-01-01

    Full Text Available Nanotechnology has the ability to target specific areas of the body, controlling the drug release and significantly increasing the bioavailability of active compounds. Organic and inorganic nanoparticles have been developed for drug delivery systems. Many delivery systems are through clinical stages for development and market. Minicell, a nanosized cell generated by bacteria, is a potential particle for drug delivery because of its size, safety, and biodegradability. Minicells produced by bacteria could drive therapeutic agents against cancer, microbial infection, and other diseases by targeting. In addition, minicells generated by lactic acid bacteria being probiotics are more interesting than others because of their benefits like safety, immunological improvement, and biodegradation. This review aims to highlight the stages of development of nanoparticle for drug delivery and discuss their advantages and limitations to clarify minicells as a new opportunity for the development of potential nanoparticle for drug delivery.

  20. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  1. Hot isostatic pressing of nanosized WC-Co hardmetals

    International Nuclear Information System (INIS)

    Azcona, I.; Ordonez, A.; Sanchez, J.M.; Castro, F.; Dominguez, L.

    2001-01-01

    A new technique based on hot isostatic pressing (HIP) has been developed to produce dense nanosized WC-Co hardmetals without the addition of grain growth inhibitors. The glass encapsulation process is the key for the effective application of isostatic pressure at temperatures well below those usually required for reaching the closed porosity state in the WC-Co system. Fully dense WC-Co samples with cobalt contents ranging from 10 to 12 wt. % have been obtained by this technique at temperatures between 1000 o C and 1200 o C with 150 MPa of applied isostatic pressure for 30 minutes. The role of isostatic pressure on the activation of densification mechanisms is discussed. (author)

  2. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  3. Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study

    International Nuclear Information System (INIS)

    Lin, Changpeng; Rao, Zhonghao

    2017-01-01

    Highlights: • Different contributions to thermal conductivity are obtained. • Thermal conductivity of paraffin could be improved by boron nitride. • Crystallization effect from boron nitride was the key factor. • Paraffin nanocomposite is the desirable candidate for thermal energy storage. - Abstract: While paraffin is widely used in thermal energy storage today, its low thermal conductivity has become a bottleneck for the further applications. Here, we construct two kinds of paraffin-based phase change material nanocomposites through introducing boron nitride (BN) nanostructures into n-eicosane to enhance the thermal conductivity. Molecular dynamics (MD) simulation was adopted to estimate their thermal conductivities and related thermal properties. The results indicate that, after adding BN nanostructures, the latent heat of composites is reduced compared with the pure paraffin and they both show a glass-like thermal conductivity which increases as the temperature rises. This happens because the increasing temperature leads to gradually smaller inconsistency in vibrational density of state along three directions and increasingly significant overlaps among them. Furthermore, by decomposing the thermal conductivity, it is found that the major contribution to the overall thermal conductivity comes from BN nanostructures, while the contribution of n-eicosane is insignificant. Though the thermal conductivity from n-eicosane term is small, it has been improved greatly compared with amorphous state of n-eicosane, mainly due to the crystallization effects from BN nanostructures. This work will provide microscopic views and insights into the thermal mechanism of paraffin and offer effective guidances to enhance the thermal conductivity.

  4. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  5. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  6. Investigation of the thermoluminescent properties of nanosized Alpha-Al2 O3 doped with carbon for application in digital radiography

    International Nuclear Information System (INIS)

    Silva, Edna C.

    2013-01-01

    Thermoluminescent (TL) materials are mainly used in personal and environmental dosimetry. In addition to these applications, their use as the sensor element in the manufacturing of digital radiographic films has been investigated. Particularly, there is an interest concerned to the influence of the particle size in the TL response and in the resolution of the digital imaging. Aluminum oxide, or alumina, is a mineral found in the ruby or sapphire form, and may be synthetically produced in the alpha or gamma crystalline phase. Since the 50s, these materials have been studied in their diverse forms and phases. Particularly, the microsized α-Al 2 O 3 :C is considered one of the best TL dosimeter ever produced in the word. In this work, nanosized alumina particulates in the alpha phase, sintered at different temperatures and doped with different concentrations of carbon, were investigated aiming application in industrial radiography and medical diagnosis. The mixture of the oxide powder with the carbon source was pressed and sintered at temperatures of 1740 deg C and 1745 deg C, under reducing atmosphere. For doping purposes we have used two sources of carbon, graphite and high purity polyvinyl acetate (PVA), respectively. During the sintering process, intentional inclusion of oxygen vacancies into the oxide crystal lattice is performed, allowing the inclusion of carbon atoms into the crystal lattice. Among the samples studied, the nanosized alumina doped with 0.01at.% of carbon and sintered at 1745 deg C has shown an excellent thermoluminescent response, with sensitivity higher than that of LiF: Mg, Ti (TLD-100), when irradiated under similar conditions. This is an excellent result, since the material with nanosized particles offers the best features for radiographic image. Thus, it is concluded that the α-Al 2 O 3 doped with 0.01at.% of carbon is a good candidate for use in TL films for application in digital radiography. (author)

  7. The enhanced photoactivity of nanosized Bi2WO6 catalyst for the degradation of 4-chlorophenol

    International Nuclear Information System (INIS)

    Fu Hongbo; Yao Wenqing; Zhang Liwu; Zhu Yongfa

    2008-01-01

    Nanosized Bi 2 WO 6 catalyst exhibited the enhanced photoactivity for the degradation of 4-chlorophenol (4-CP) under visible irradiation compared to the sample prepared by high-temperature solid reaction. The photoactivity of the catalyst was sensitive to pH variation of the suspension. Nanosized Bi 2 WO 6 catalyst showed the highest activity at pH 7.2. The photodegradation of 4-CP by nanosized Bi 2 WO 6 catalyst followed a pseudo-first-order reaction. After three recycling runs for the photodegradation of 4-CP, the activity of the catalyst did not show any significant loss, suggesting that the catalyst was stable under visible irradiation

  8. Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid

    Science.gov (United States)

    Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.

    2017-11-01

    Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.

  9. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  10. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  11. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin

    2011-02-19

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  12. Cr-doped III-V nitrides: Potential candidates for spintronics

    KAUST Repository

    Amin, Bin; Arif, Suneela K.; Ahmad, Iftikhar; Maqbool, Muhammad; Ahmad, Roshan; Goumri-Said, Souraya; Prisbrey, Keith A.

    2011-01-01

    Studies of Cr-doped III-V nitrides, dilute magnetic alloys in the zincblende crystal structure, are presented. The objective of the work is to investigate half-metallicity in Al 0.75Cr 0.25N, Ga 0.75Cr 0.25N, and In 0.75Cr 0.25N for their possible application in spin-based electronic devices. The calculated spin-polarized band structures, electronic properties, and magnetic properties of these compounds reveal that Al 0.75Cr 0.25N and Ga 0.75Cr 0.25N are half-metallic dilute magnetic semiconductors while In 0.75Cr 0.25N is metallic in nature. The present theoretical predictions provide evidence that some Cr-doped III-V nitrides can be used in spintronics devices. © 2011 TMS.

  13. Zr{sub 2}N{sub 2}Se. The first zirconium(IV) nitride selenide by the oxidation of zirconium(III) nitride with selenium

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Falk; Hack, Bettina; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Lerch, Martin [Institute for Chemistry, Technical University of Berlin (Germany)

    2012-08-15

    The oxidation of zirconium(III) nitride (ZrN) with suitable amounts of selenium (Se) in the presence of sodium chloride (NaCl) as flux yields small yellow brownish platelets of the first zirconium(IV) nitride selenide with the composition Zr{sub 2}N{sub 2}Se. The new compound crystallizes in the hexagonal space group P6{sub 3}/mmc (no. 194) with a = 363.98(2) pm, c = 1316.41(9) pm (c/a = 3.617) and two formula units per unit cell. The crystallographically unique Zr{sup 4+} cations are surrounded by three selenide and four nitride anions in the shape of a capped trigonal antiprism. The Se{sup 2-} anions are coordinated by six Zr{sup 4+} cations as trigonal prism and the N{sup 3-} anions reside in tetrahedral surrounding of Zr{sup 4+} cations. These [NZr{sub 4}]{sup 13+} tetrahedra become interconnected via three edges each to form {sup 2}{sub ∞}{[(NZr_4_/_4)_2]"2"+} double layers parallel to the (001) plane, which are held together by monolayers of Se{sup 2-} anions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  15. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  16. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  17. Sonochemical synthesis and characterization of nano-sized zinc(II coordination complex as a precursor for the preparation of pure-phase zinc(II oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar

    2017-01-01

    Full Text Available In current study, nanoparticles and single crystals of a Zn(II coordination complex, [Zn(dmphI2](1, {dmph=2,9-dimethyl-1,10-phenanthroline(neocuproine}, have been synthesized by the reaction of zinc(II acetate, KI and neocuproine as ligand in methanol using sonochemical and heat gradient methods, respectively. The nanostructure of 1 was characterized by scanning electron microscopy (SEM, X-ray powder diffraction (XRD, FT-IR spectroscopy and elemental analyses, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stability of nano-sized 1 has been studied by thermogravimetric (TG and differential thermal analyses (DTA. Structural determination of compound 1 reveals the Zn(II ion is four-coordinated in a distorted tetrahedral configuration by two N atoms from a 2,9-dimethyl-1,10-Phenanthroline ligand and two terminal I atoms. The effect of supercritical condition on stability, size and morphology of nano-structured compound 1 has also been studied. The XRD pattern of the residue obtained from thermal decomposition of nano-sized compound 1 at 600 °C under air atmosphere provided pure phase of ZnO with the average particles size of about 31 nm.

  18. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  19. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    Science.gov (United States)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  20. Mn3O4 nano-sized crystals: Rapid synthesis and extension to ...

    Indian Academy of Sciences (India)

    applications such as magnetic storage media, catalysis, electrodes, ion ... catalyst in various oxidation and reduction reactions.4–6 .... FEI Tecnai G2 F20) and a scanning electronic micro- .... complexes containing nickel ions and cobalt ions.

  1. Magnetotransport properties of ferromagnetic LaMnO3+δ nano-sized crystals

    International Nuclear Information System (INIS)

    Markovich, V.; Jung, G.; Fita, I.; Mogilyansky, D.; Wu, X.; Wisniewski, A.; Puzniak, R.; Titelman, L.; Vradman, L.; Herskowitz, M.; Gorodetsky, G.

    2010-01-01

    Transport and magnetic properties of LaMnO 3+δ nanoparticles with average size of 18 nm have been investigated. The ensemble of nanoparticles exhibits a paramagnetic to ferromagnetic (FM) transition at T C ∼246 K, while the spontaneous magnetization disappears at T∼270 K. It was found that the blocking temperature lies slightly below T C . The temperature dependence of the resistivity shows a metal-insulator transition at T∼192 K and low-temperature upturn at T<50 K. The transport at low temperatures is controlled by the charging energy and spin-dependent tunnelling through grain boundaries. The low temperature I-V characteristics are well described by indirect tunnelling model while at higher temperatures both direct and resonant tunnelling dominates.

  2. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  3. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  4. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  5. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  6. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  7. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  8. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  9. Simple method of preparing nitrogen - doped nanosized TiO2 powders of high photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Nguyen Van Hung; Dang Thi Thanh Le

    2014-01-01

    Nitrogen-doped nanosized TiO 2 powders were prepared by a simple thermal treatment method of the mixture of titanium dioxide and urea. The prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis-DRS) and Fourier transform infrared (FT-IR) spectroscopy. The results showed that the crystal structure of N-TiO 2 was a mixture of anatase and rutile phases, and the average particle size was 31 nm calculated from XRD results. The UV-vis spectra indicate an increase in absorption of visible light when compared to undoped TiO 2 . The photocatalytic activity of nitrogen-doped TiO 2 powder was evaluated by the decomposition of methylene blue under visible light irradiation. And it was found that nitrogen-doped TiO 2 powders exhibited much higher photocatalytic activity than undoped TiO 2 . Moreover, the study also showed that, the doping N atoms improve the growth of the TiO 2 crystal and phase transformation. (author)

  10. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp; Nakano, Takuya; Kitamura, Takayuki

    2013-03-01

    The purpose of this work is to examine the effect of microscopic structure on the mechanical properties of nano-sized components (nano-components). We developed a bending specimen with a substructure that can be observed by means of a transmission electron microscope (TEM). We examined the plastic behavior of a Cu bi-crystal and the Cu/Si interfacial cracking in a nano-component. TEM images indicated that an initial plastic deformation takes place near the interface edge (the junction between the Cu/Si interface and the surface) in the Cu film with a high critical resolved shear stress (400–420 MPa). The deformation developed preferentially in a single grain. Interfacial cracking took place at the intersection between the grain boundary and the Cu/Si interface, where a high stress concentration existed due to deformation mismatch. These results indicate that the characteristic mechanical behavior of a nano-component is governed by the microscopic stress field, which takes into account the crystallographic structure. - Highlights: ► A nano-component specimen including a bi-crystal copper layer was prepared. ► A loading test with in-situ transmission electron microscopy was conducted. ► The plastic and cracking behaviors were governed by microscopic stress. ► Stress defined under continuum assumption was still present in nano-components.

  11. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).

    Science.gov (United States)

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.

  12. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  13. Tribological properties of nanosized calcium carbonate filled polyamide 66 nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, Kaito [Department of Mechanical Engineering, Graduate School of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan (Japan); Nishitani, Yosuke [Department of Mechanical Engineering, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo, 192-0015 Japan (Japan); Kitano, Takeshi [Polymer Centre, Faculty of Technology, Tomas Bata University in Zlin, T.G.M. 275, Zlin, 767 72 Czech Republic (Czech Republic); Eguchi, Kenichiro [Shiraishi Central Laboratories, 4-78 Motohama,Amagasaki,Hyogo,660-0085 Japan (Japan)

    2016-03-09

    For the purpose of developing high performance tribomaterials for mechanical sliding parts such as gears, bearings and so on, nanosized calcium carbonate (nano-CaCO{sub 3}) filled polyamide 66 (PA66) nanocomposites were investigated. The nano-CaCO{sub 3} was a kind of precipitated (colloid typed) CaCO{sub 3}, and its average particle size was 40, 80 and 150 nm. Surface treatment was performed by fatty acid on the nano-CaCO{sub 3} and its volume fraction in the nanocomposite was varied from 1 to 20vol.%. These nanocomposites were melt-mixed by a twin screw extruder and injection-molded. Tribological properties were measured by two types of sliding wear testers such as ring-on-plate type and ball-on-plate type one under dry condition. The counterface, worn surface and wear debris were observed by digital microscope and scanning electron microscope. It was found that the nano-CaCO{sub 3} has a good effect on the tribological properties, although the effect on the frictional coefficient and specific wear rate is differed by the volume fraction and the type of sliding wear modes. This is attributed to the change of wear mechanisms, which is the change of form of the transfer films on the counterface and the size of wear debris. It follows from these results that PA66/nano-CaCO{sub 3} nanocomposites may be possible to be the high performance tribomaterials.

  14. The Synthesis and Modification of Nanosized Clickable Latex Particles

    KAUST Repository

    Almahdali, Sarah

    2013-05-01

    This research aims to add to the current knowledge available for miniemulsion polymerization reactions and to use this knowledge to synthesize multifunctional nanosized latex particles that have the potential to be used in catalysis. The physical properties of the latex can be adjusted to suit various environments due to the multiple functional groups present. For this research, styrene, pentafluorostyrene, azidomethyl styrene, pentafluorostyrene with azidomethyl styrene and pentafluorostyrene with styrene latexes were produced, and analyzed by dynamic light scattering. The latexes were synthesized using a miniemulsion polymerization technique found through this research. Potassium oleate and potassium 1,1,2,2,3,3,4,4-nonafluorobutane-1-sulfonate were used as surfactants during the miniemulsion polymerization reaction to synthesize pentafluorostyrene with azidomethyl styrene latex. Transmission electron microscopy data and dynamic light scattering data have been collected to analyze the structure of this latex, and it has been synthesized using a number of conditions, differing in reaction time, surfactant amount and sonication methods. We have also improved the solubility of the latex through a copper(I) catalyzed 1,3-dipolar azide-alkyne reaction, by clicking (polyethylene glycol)5000 onto the azide functional groups.

  15. Structure and organization of nanosized-inclusion-containing bilayer membranes

    Science.gov (United States)

    Ren, Chun-Lai; Ma, Yu-Qiang

    2009-07-01

    Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.

  16. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  17. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles.

    Science.gov (United States)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2013-05-10

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip ('dendritic nanotip') with a single terminal nanotip ('single nanotip') for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4-5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10(4) particles ml(-1). The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles.

  18. Nanotip analysis for dielectrophoretic concentration of nanosized viral particles

    International Nuclear Information System (INIS)

    Yeo, Woon-Hong; Lee, Hyun-Boo; Kim, Jong-Hoon; Chung, Jae-Hyun; Lee, Kyong-Hoon

    2013-01-01

    Rapid and sensitive detection of low-abundance viral particles is strongly demanded in health care, environmental control, military defense, and homeland security. Current detection methods, however, lack either assay speed or sensitivity, mainly due to the nanosized viral particles. In this paper, we compare a dendritic, multi-terminal nanotip (‘dendritic nanotip’) with a single terminal nanotip (‘single nanotip’) for dielectrophoretic (DEP) concentration of viral particles. The numerical computation studies the concentration efficiency of viral particles ranging from 25 to 100 nm in radius for both nanotips. With DEP and Brownian motion considered, when the particle radius decreases by two times, the concentration time for both nanotips increases by 4–5 times. In the computational study, a dendritic nanotip shows about 1.5 times faster concentration than a single nanotip for the viral particles because the dendritic structure increases the DEP-effective area to overcome the Brownian motion. For the qualitative support of the numerical results, the comparison experiment of a dendritic nanotip and a single nanotip is conducted. Under 1 min of concentration time, a dendritic nanotip shows a higher sensitivity than a single nanotip. When the concentration time is 5 min, the sensitivity of a dendritic nanotip for T7 phage is 10 4 particles ml −1 . The dendritic nanotip-based concentrator has the potential for rapid identification of viral particles. (paper)

  19. Radiation Damage and Fission Product Release in Zirconium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Gerald W. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-08-29

    Zirconium nitride is a material of interest to the AFCI program due to some of its particular properties, such as its high melting point, strength and thermal conductivity. It is to be used as an inert matrix or diluent with a nuclear fuel based on transuranics. As such, it must sustain not only high temperatures, but also continuous irradiation from fission and decay products. This study addresses the issues of irradiation damage and fission product retention in zirconium nitride through an assessment of defects that are produced, how they react, and how predictions can be made as to the overall lifespan of the complete nuclear fuel package. Ion irradiation experiments are a standard method for producing radiation damage to a surface for observation. Cryogenic irradiations are performed to produce the maximum accumulation of defects, while elevated temperature irradiations may be used to allow defects to migrate and react to form clusters and loops. Cross-sectional transmission electron microscopy and grazing-incidence x-ray diffractometry were used in evaluating the effects that irradiation has on the crystal structure and microstructure of the material. Other techniques were employed to evaluate physical effects, such as nanoindentation and helium release measurements. Results of the irradiations showed that, at cryogenic temperatures, ZrN withstood over 200 displacements per atom without amorphization. No significant change to the lattice or microstructure was observed. At elevated temperatures, the large amount of damage showed mobility, but did not anneal significantly. Defect clustering was possibly observed, yet the size was too small to evaluate, and bubble formation was not observed. Defects, specifically nitrogen vacancies, affect the mechanical behavior of ZrN dramatically. Current and previous work on dislocations shows a distinct change in slip plane, which is evidence of the bonding characteristics. The stacking-fault energy changes dramatically with

  20. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  1. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Chen, Y.; Fitzgerald, J.D.; Chadderton, L.; Williams, J.S.; Campbell, S.J.

    2002-01-01

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  2. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  3. Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer?

    Science.gov (United States)

    Surai, Peter F.; Kochish, Ivan I.; Velichko, Oksana A.

    2017-12-01

    Recently, a comprehensive review paper devoted to roles of nano-Se in livestock and fish nutrition has been published in the Nanoscale Research Letters. The authors described in great details an issue related to nano-Se production and its possible applications in animal industry and medicine. However, molecular mechanisms of nano-Se action were not described and the question of how nano-Se is converted into active selenoproteins is not resolved. It seems likely that the gut microbiota can convert nano-Se into selenite, H2Se or Se-phosphate with the following synthesis of selenoproteins. This possibility needs to be further studied in detail, and advantages and disadvantages of nano-Se as a source of Se in animal/poultry/fish nutrition await critical evaluations.

  4. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  5. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  6. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  7. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  8. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  9. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  10. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    International Nuclear Information System (INIS)

    Nistor, L C; Nistor, S V; Dinca, G; Georgeoni, P; Landuyt, J van; Manfredotti, C; Vittone, E

    2002-01-01

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp 3 bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m -2 is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond

  11. Microstructure and spectroscopy studies on cubic boron nitride synthesized under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C [National Institute for Materials Physics, Bucharest (Romania); Nistor, S V [National Institute for Materials Physics, Bucharest (Romania); Dinca, G [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Georgeoni, P [Dacia Synthetic Diamonds Factory, Bucharest (Romania); Landuyt, J van [University of Antwerpen - RUCA, EMAT, Antwerpen (Belgium); Manfredotti, C [Experimental Physics Department, University of Turin, Turin (Italy); Vittone, E [Experimental Physics Department, University of Turin, Turin (Italy)

    2002-11-11

    High-resolution electron microscopy (HREM) studies of the microstructure and specific defects in hexagonal boron nitride (h-BN) precursors and cubic boron nitride (c-BN) crystals made under high-pressure high-temperature conditions revealed the presence of half-nanotubes at the edges of the h-BN particles. Their sp{sup 3} bonding tendency could strongly influence the nucleation rates of c-BN. The atomic resolution at extended dislocations was insufficient to allow us to determine the stacking fault energy in the c-BN crystals. Its mean value of 191 pm, 15 mJ m{sup -2} is of the same order of magnitude as that of diamond. High-frequency (94 GHz) electron paramagnetic resonance studies on c-BN single crystals have produced new data on the D1 centres associated with the boron species. Ion-beam-induced luminescence measurements have indicated that c-BN is a very interesting luminescent material, which is characterized by four luminescence bands and exhibits a better resistance to ionizing radiation than CVD diamond.

  12. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  13. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  14. Synthesis of hexagonal boron nitride with the presence of representative metals

    Energy Technology Data Exchange (ETDEWEB)

    Budak, Erhan, E-mail: erhan@ibu.edu.t [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey); Bozkurt, Cetin [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey)

    2010-11-15

    Hexagonal boron nitride (h-BN) samples were prepared using the modified O'Connor method with KNO{sub 3} and Ca(NO{sub 3}){sub 2} at different temperatures (1050, 1250, and 1450 deg. C). The samples were characterized by FTIR, XRD, and SEM techniques. Usage of representative metals exhibited a positive effect on the crystallization of h-BN and they caused the formation of nano-scale products at relatively low temperature. XRD results indicated that there was an increase in interlayer spacing due to the d-{pi} interaction. The calculated lattice constants were very close to the reported value for h-BN.

  15. Germanium nitride and oxynitride films for surface passivation of Ge radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maggioni, G., E-mail: maggioni@lnl.infn.it [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Carturan, S. [Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Fiorese, L. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali, Università di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Pinto, N.; Caproli, F. [Scuola di Scienze e Tecnologie, Sezione di Fisica, Università di Camerino, Via Madonna delle Carceri 9, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Napoli, D.R. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell’Universita’2, I-35020 Legnaro, Padova (Italy); Giarola, M.; Mariotto, G. [Dipartimento di Informatica—Università di Verona, Strada le Grazie 15, I-37134 Verona (Italy)

    2017-01-30

    Highlights: • A surface passivation method for HPGe radiation detectors is proposed. • Highly insulating GeNx- and GeOxNy-based layers are deposited at room temperature. • Deposition parameters affect composition and electrical properties of the layers. • The improved performance of a GeNx-coated HPGe diode is assessed. - Abstract: This work reports a detailed investigation of the properties of germanium nitride and oxynitride films to be applied as passivation layers to Ge radiation detectors. All the samples were deposited at room temperature by reactive RF magnetron sputtering. A strong correlation was found between the deposition parameters, such as deposition rate, substrate bias and atmosphere composition, and the oxygen and nitrogen content in the film matrix. We found that all the films were very poorly crystallized, consisting of very small Ge nitride and oxynitride nanocrystallites, and electrically insulating, with the resistivity changing from three to six orders of magnitude as a function of temperature. A preliminary test of these films as passivation layers was successfully performed by depositing a germanium nitride film on the intrinsic surface of a high-purity germanium (HPGe) diode and measuring the improved performance, in terms of leakage current, with respect to a reference passivated diode. All these interesting results allow us to envisage the application of this coating technology to the surface passivation of germanium-based radiation detectors.

  16. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  17. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  18. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  19. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  20. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  1. Characterization of food-grade titanium dioxide: the presence of nanosized particles.

    Science.gov (United States)

    Yang, Yu; Doudrick, Kyle; Bi, Xiangyu; Hristovski, Kiril; Herckes, Pierre; Westerhoff, Paul; Kaegi, Ralf

    2014-06-03

    Titanium dioxide (TiO2) is widely used in food products, which will eventually enter wastewater treatment plants and terrestrial or aquatic environments, yet little is known about the fraction of this TiO2 that is nanoscale, or the physical and chemical properties of TiO2 that influence its human and environmental fate or toxicity. Instead of analyzing TiO2 properties in complex food or environmental samples, we procured samples of food-grade TiO2 obtained from global food suppliers and then, using spectroscopic and other analytical techniques, quantified several parameters (elemental composition, crystal structure, size, and surface composition) that are reported to influence environmental fate and toxicity. Another sample of nano-TiO2 that is generally sold for catalytic applications (P25) and widely used in toxicity studies, was analyzed for comparison. Food-grade and P25 TiO2 are engineered products, frequently synthesized from purified titanium precursors, and not milled from bulk scale minerals. Nanosized materials were present in all of the food-grade TiO2 samples, and transmission electron microscopy showed that samples 1-5 contained 35, 23, 21, 17, and 19% of nanosized primary particles (average hydrodynamic diameter of >100 nm. Food-grade samples contained phosphorus (P), with concentrations ranging from 0.5 to 1.8 mg of P/g of TiO2. The phosphorus content of P25 was below inductively coupled plasma mass spectrometry detection limits. Presumably because of a P-based coating detected by X-ray photoelectron spectroscopy, the ζ potential of the food-grade TiO2 suspension in deionized water ranged from -10 to -45 mV around pH 7, and the iso-electric point for food-grade TiO2 (grade materials, and although the presence of amorphous TiO2 could not be ruled out, it is unlikely on the basis of Raman analysis. The food-grade TiO2 was solar photoactive. Cationic dyes adsorbed more readily to food-grade TiO2 than P25, indicating very different potentials for

  2. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  3. Synthesis of Si, N co-Doped Nano-Sized TiO2 with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method

    Directory of Open Access Journals (Sweden)

    Peisan Wang

    2018-05-01

    Full Text Available Τhe photocatalytic activity in the range of visible light wavelengths and the thermal stability of the structure were significantly enhanced in Si, N co-doped nano-sized TiO2, and synthesized through high-energy mechanical milling of TiO2 and SiO2 powders, which was followed by calcination at 600 °C in an ammonia atmosphere. High-energy mechanical milling had a pronounced effect on the mixing and the reaction between the starting powders and greatly favored the transformation of the resultant powder mixture into an amorphous phase that contained a large number of evenly-dispersed nanocrystalline TiO2 particles as anatase seeds. The experimental results suggest that the elements were homogeneously dispersed at an atomic level in this amorphous phase. After calcination, most of the amorphous phase was crystallized, which resulted in a unique nano-sized crystalline-core/disordered-shell morphology. This novel experimental process is simple, template-free, and provides features of high reproducibility in large-scale industrial production.

  4. Separation of zirconium--hafnium by nitride precipitation

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.

    1977-01-01

    A method is described for the separation of a light reactive metal (e.g., zirconium) from a heavy reactive metal (e.g., hafnium) by forming insoluble nitrides of the metals in a molten metal solvent (e.g., copper) inert to nitrogen and having a suitable density for the light metal nitride to form a separate phase in the upper portion of the solvent and for the heavy metal nitride to form a separate phase in the lower portion of the solvent. Nitriding is performed by maintaining a nitrogen-containing atmosphere over the bath. The light and heavy metals may be an oxide mixture and carbothermically reduced to metal form in the same bath used for nitriding. The nitrides are then separately removed and decomposed to form the desired separate metals. 16 claims, 1 figure

  5. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Matsui, T.; Ohse, R.W.

    1986-01-01

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  6. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    International Nuclear Information System (INIS)

    Araujo, Rafael B.; Almeida, J. S. de; Ferreira da Silva, A.

    2013-01-01

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented

  7. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  8. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  9. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  10. Corrosion stability of cermets on the base of titanium nitride

    International Nuclear Information System (INIS)

    Kajdash, O.N.; Marinich, M.A.; Kuzenkova, M.A.; Manzheleev, I.V.

    1991-01-01

    Corrosion resistance of titanium nitride and its cermets in 5% of HCl, 7% of HNO 3 , 10% of H 2 SO 4 is studied. It is established that alloys TiN-Ni-Mo alloyed with chromium (from 10 to 15%) possess the highest corrosion resistance. Cermet TiN-Cr has the higher stability than titanium nitride due to formation of binary nitride (Ti, Cr)N

  11. Novel methods for matter interferometry with nanosized objects

    Science.gov (United States)

    Arndt, Markus

    2005-05-01

    We discuss the current status and prospects for novel experimental methods for coherence^1,2 and decoherence^3 experiments with large molecules. Quantum interferometry with nanosized objects is interesting for the exploration of the quantum-classical transition. The same experimental setup is also promising for metrology applications and molecular nanolithography. Our coherence experiments with macromolecules employ a Talbot-Lau interferometer. We discuss some modifications to this scheme, which are required to extend it to particles with masses in excess of several thousand mass units. In particular, the detection in all previous interference experiments with large clusters and molecules, was based on either laser ionization^1 (e.g. Fullerenes) or electron impact ionization^2 (e.g. Porphyrins etc.). However, most ionization schemes run into efficiency limits when the mass and complexity of the target particle increases. Here we present experimental results for an interference detector which is truly scalable, i.e. one which will even improve with increasing particle size and complexity. ``Mechanically magnified fluorescence imaging'' (MMFI), combines the high spatial resolution, which is intrinsic to Talbot Lau interferometry with the high detection efficiency of fluorophores adsorbed onto a substrate. In the Talbot Lau setup a molecular interference pattern is revealed by scanning the 3^rd grating across the molecular beam^1. The number of transmitted molecules is a function of the relative position between the mask and the molecular density pattern. Both the particle interference pattern and the mechanical mask structure may be far smaller than any optical resolution limit. After mechanical magnification by an arbitrary factor, in our case a factor 5000, the interference pattern can still be inspected in fluorescence microscopy. The fluorescent molecules are collected on a surface which is scanned collinearly and synchronously behind the 3rd grating. The

  12. Raman spectroscopy of pharmaceutical cocrystals in nanosized pores of mesoporous silica

    International Nuclear Information System (INIS)

    Ohta, Ryuichi; Ajito, Katsuhiro; Ueno, Yuko

    2017-01-01

    The Raman spectroscopy of pharmaceutical cocrystals based on caffeine and oxalic acid in nanosized pores of mesoporous silica has been demonstrated at various molar amounts. The Raman peak shifts of caffeine molecules express the existence of pharmaceutical cocrystals in mesoporous silica. The molar amount dependence of the peak shifts describes that caffeine and oxalic acid cocrystallized on the surface of the nanosized pores and piled up layer by layer. This is the first report that shows the Raman spectroscopy is a powerful tool to observe the synthesis of pharmaceutical cocrystals incorporated in the nanosized pores of mesoporous silica. The results indicate a way to control the size of cocrystals on a nanometer scale, which will provide higher bioavailability of pharmaceuticals. (author)

  13. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  14. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  15. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  16. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  17. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  18. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  19. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  20. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  1. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  2. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    Science.gov (United States)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  3. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  4. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  5. Novel phthalocyanine crystals as a conductive filler in crosslinked epoxy materials: Fractal particle networks and low percolation thresholds

    NARCIS (Netherlands)

    Chen, Zhe; Brokken-Zijp, J.C.M.; Michels, M.A.J.

    2006-01-01

    Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (c 0.9 vol %). The relationship between the volume conductivity and the filler

  6. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    Science.gov (United States)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  7. Iron single crystal growth from a lithium-rich melt

    Science.gov (United States)

    Fix, M.; Schumann, H.; Jantz, S. G.; Breitner, F. A.; Leineweber, A.; Jesche, A.

    2018-03-01

    α -Fe single crystals of rhombic dodecahedral habit were grown from a Li84N12Fe∼3 melt. Crystals of several millimeter along a side form at temperatures around T ≈ 800 ° C. Upon further cooling the growth competes with the formation of Fe-doped Li3N. The b.c.c. structure and good sample quality of α -Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90 ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.

  8. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  9. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  10. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  11. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  12. Using Moessbauer spectroscopy as key technique in the investigation of nanosized magnetic particles for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Morais, P. C., E-mail: pcmor@unb.br [Universidade de Brasilia, Nucleo de Fisica Aplicada, Instituto de Fisica (Brazil)

    2008-01-15

    This paper describes how cobalt ferrite nanoparticles, suspended as ionic or biocompatible magnetic fluids, can be used as a platform to built complex nanosized magnetic materials, more specifically magnetic drug delivery systems. In particular, the paper is addressed to the discussion of the use of the Moessbauer spectroscopy as an extremely useful technique in supporting the investigation of key aspects related to the properties of the hosted magnetic nanosized particle. Example of the use of the Moessbauer spectroscopy in accessing information regarding the nanoparticle modification due to the empirical process which provides long term chemical stability is included in the paper.

  13. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  14. A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available While separating two natural nano-sized triterpenic acids via bromolactonization, we serendipitously discovered that arjuna-bromolactone is an excellent gelator of various organic solvents. A simple and efficient method for the separation of two triterpenic acids and the gelation ability and solid state 1D-helical self-assembly of nano-sized arjuna-bromolactone are reported.

  15. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Eng-Poh, E-mail: epng@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Awala, Hussein [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ghoy, Jia-Pei [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia); Vicente, Aurélie [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Ling, Tau Chuan [Institute of Biological Sciences, Faculty of Science, University of Malaya (Malaysia); Ng, Yun Hau [School of Chemical Engineering, The University of New South Wales, Sydney (Australia); Mintova, Svetlana [Laboratoire Catalyse & Spectrochimie, CNRS-ENSICAEN, Université de Caen (France); Adam, Farook, E-mail: farook@usm.my [School of Chemical Sciences, Universiti Sains Malaysia, USM, 11800 Penang (Malaysia)

    2015-06-01

    Synthesis of EMT zeolite nanocrystals from rice husk ash biomass (RHA) under continuous ultrasonic irradiation is reported. The aging, nucleation and crystallization stages of EMT zeolite in the system were monitored at ambient temperature, and compared with the conventional hydrothermal method. It was found that ultrasonic wave induced rapid crystal growth of the nanosized EMT zeolite. Complete crystallization of EMT nanocrystals was achieved within 24 h which was much faster than conventional hydrothermal synthesis (36 h). Furthermore, XRD and TEM analyses revealed that more nuclei were formed during the nucleation stage, allowing the preparation of smaller zeolite nanocrystals with high crystallinity. The results also showed that sonocrystallization produced EMT zeolite with high yield (ca. 80%). The ultrasound-prepared EMT nanocrystals were also found to have high porosity and high hydrophilicity, making the material promising for water sorption applications including vapor sensing, heat pump and adsorption technologies. - Highlights: • Nanosized EMT zeolites are formed from rice husk ash under ultrasonic irradiation. • The effects of ultrasonic waves in nanosized EMT zeolite synthesis are studied. • Ultrasound induces rapid crystal growth and produces high zeolite yield. • Smaller zeolite nanocrystals with high crystallinity and large defect sites are obtained. • Improved surface hydrophilicity of crystals is beneficial for water sorption applications.

  16. Studies on silicon nitrides; Chikka keiso ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-31

    Sinters of silicon nitrides have excellent properties as a structural material, but their technological repercussion effect is not as much as has been expected. The cause is in insufficient understanding on the mutual relationship between microstructures and mechanical properties. Therefore, methods of controlling structures were first discussed in the studies on synthesis of high-tenacity ceramics. In order to achieve high reliability in material strength, discussions were given on means to have a structure developed with high reproducibility. Development was performed on {beta} powder which shows no abnormal grain growth and is stable at elevated temperatures. Then, quantitative evaluation was made on factors to manifest a self-compounding structure with columnar particles grown in ultrafine particles. The relationship between its chemical composition, microstructure and mechanical properties was also discussed. Particle shapes of silicon carbides and their fracture tenacity values were considered theoretically by using a drawing model. To evaluate the microstructure, it is important to determine the grain boundary composition, whereas an electric field radiation type high-performance electron microscope was developed. In discussing the fracture mechanism, a model was structured for behavior of covalent binding crystals against external stress. 164 refs., 95 figs., 10 tabs.

  17. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2007-08-15

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns

    International Nuclear Information System (INIS)

    Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J.; Agullo-Rueda, F.; Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E.; Trampert, A.; Jahn, U.

    2007-01-01

    A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E 2 phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E 2 peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  20. Structural phase transition at 205 K in stoichiometric vanadium nitride

    International Nuclear Information System (INIS)

    Kubel, F.; Lengauer, W.; Yvon, K.; Knorr, K.; Junod, A.

    1988-01-01

    Vanadium nitride (NaCl structure, [N]/[V]≥0.99, space group Fm3-barm, a = 4.1328(3) A at 298 K) transforms at 205(5) K into a tetragonal, noncentrosymmetric low-temperature modification [space group P4-bar2m, a = 4.1314(3) A, c = 4.1198(3) A at 45 K]. The low-temperature structure was refined from single-crystal x-ray diffraction data collected at two different temperatures (150 K, R = 2.3% for 301 reflections; 20 K, R = 3.9% for 393 reflections). It is characterized by a clustering of the metal atoms into tetrahedral V 4 units with V-V intracluster distances of 2.8534(9) and 2.8515(7) A, and V-V intercluster distances in the range of 2.9147(9) and 2.9853(7) A at 20 K. High-resolution heat-capacity data are presented (20--330 K). A discontinuity is observed at the onset of structural transformation, 204 +- 1 K

  1. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions

    International Nuclear Information System (INIS)

    Zhang, Bin; Yang, Gang

    2014-01-01

    A two dimensional (2D) micromorphic model is developed for monolayer hexagonal boron nitride (h-BN). Theoretical expressions of phonon dispersions for 2D crystals are derived based on the simplified governing equations of specialized three dimensional micromorphic crystals. The constitutive constants of governing equations of the h-BN micromorphic model are determined, which is performed by fitting the available phonon dispersions data of experimental measurements and first-principles calculations with our theoretical expressions. The obtained Young’s modulus and Poisson’s ratio of h-BN are comparable with the results of ab initio calculations and inelastic x-ray scattering experiments, thus the constitutive relations of the h-BN model are verified, which also indicates that mechanical properties of monolayer h-BN could be characterized by our 2D micromorphic model

  2. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  3. Microstructure and initial growth characteristics of the low temperature microcrystalline silicon films on silicon nitride surface

    International Nuclear Information System (INIS)

    Park, Young-Bae; Rhee, Shi-Woo

    2001-01-01

    Microstructure and initial growth characteristics of the hydrogenated microcrystalline Si (μc-Si:H) films grown on hydrogenated amorphous silicon nitride (a-SiN x :H) surface at low temperature were investigated using high resolution transmission electron microscope and micro-Raman spectroscopy. With increasing the Si and Si - H contents in the SiN x :H surfaces, μc-Si crystallites, a few nanometers in size, were directly grown on amorphous nitride surfaces. It is believed that the crystallites were grown through the nucleation and phase transition from amorphous to crystal in a hydrogen-rich ambient of gas phase and growing surface. The crystallite growth characteristics on the dielectric surface were dependent on the stoichiometric (x=N/Si) ratio corresponding hydrogen bond configuration of the SiN x :H surface. Surface facetting and anisotropic growth of the Si crystallites resulted from the different growth rate on the different lattice planes of Si. No twins and stacking faults were observed in the (111) lattice planes of the Si crystallites surrounding the a-Si matrix. This atomic-scale structure was considered to be the characteristic of the low temperature crystallization of the μc-Si:H by the strain relaxation of crystallites in the a-Si:H matrix. [copyright] 2001 American Institute of Physics

  4. Crystal Structures of GaN Nanodots by Nitrogen Plasma Treatment on Ga Metal Droplets

    Directory of Open Access Journals (Sweden)

    Yang-Zhe Su

    2018-06-01

    Full Text Available Gallium nitride (GaN is one of important functional materials for optoelectronics and electronics. GaN exists both in equilibrium wurtzite and metastable zinc-blende structural phases. The zinc-blende GaN has superior electronic and optical properties over wurtzite one. In this report, GaN nanodots can be fabricated by Ga metal droplets in ultra-high vacuum and then nitridation by nitrogen plasma. The size, shape, density, and crystal structure of GaN nanodots can be characterized by transmission electron microscopy. The growth parameters, such as pre-nitridation treatment on Si surface, substrate temperature, and plasma nitridation time, affect the crystal structure of GaN nanodots. Higher thermal energy could provide the driving force for the phase transformation of GaN nanodots from zinc-blende to wurtzite structures. Metastable zinc-blende GaN nanodots can be synthesized by the surface modification of Si (111 by nitrogen plasma, i.e., the pre-nitridation treatment is done at a lower growth temperature. This is because the pre-nitridation process can provide a nitrogen-terminal surface for the following Ga droplet formation and a nitrogen-rich condition for the formation of GaN nanodots during droplet epitaxy. The pre-nitridation of Si substrates, the formation of a thin SiNx layer, could inhibit the phase transformation of GaN nanodots from zinc-blende to wurtzite phases. The pre-nitridation treatment also affects the dot size, density, and surface roughness of samples.

  5. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  6. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  7. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion....... As representative examples, a metal (Pt), an alloy (PtSn), and a metal carbide (beta-Mo2C) were supported on conventional and mesoporous zeolite carriers, respectively, and the degree of particle dispersion was compared by TEM imaging. On conventional zeolites, the supported material aggregated on the outer surface...

  8. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    Science.gov (United States)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  9. A nitride-based epitaxial surface layer formed by ammonia treatment of silicene-terminated ZrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wiggers, F. B., E-mail: F.B.Wiggers@utwente.nl; Van Bui, H.; Schmitz, J.; Kovalgin, A. Y.; Jong, M. P. de [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Friedlein, R.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2016-04-07

    We present a method for the formation of an epitaxial  surface layer involving B, N, and Si atoms on a ZrB{sub 2}(0001) thin film on Si(111). It has the potential to be an insulating growth template for 2D semiconductors. The chemical reaction of NH{sub 3} molecules with the silicene-terminated ZrB{sub 2}  surface was characterized by synchrotron-based, high-resolution core-level photoelectron spectroscopy and low-energy electron diffraction. In particular, the dissociative chemisorption of NH{sub 3} at 400 °C leads to surface  nitridation, and subsequent annealing up to 830 °C results in a solid phase reaction with the ZrB{sub 2} subsurface layers. In this way, a new nitride-based epitaxial  surface layer is formed with hexagonal symmetry and a single in-plane crystal orientation.

  10. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    KAUST Repository

    Smirnov, A. M.

    2016-01-20

    We calculate the critical thickness for misfit dislocation (MD) formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs). It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ∼70° for Al0.13Ga0.87N/GaN (h0h̄ 1) semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1−xN/GaN heterostructures.

  11. Coating of Titanium Nitride on Stainless Steel Targets by a 4 kJ Plasma Focus Device

    Science.gov (United States)

    Omrani, M.; Habibi, M.; Amrollahi, R.

    2012-08-01

    Titanium nitride thin films were deposited on stainless steel (SS316L) targets by using a 4 kJ plasma focus device. The corresponding energy flux delivered to SS316L surface is estimated to be 2.69 × 1013 kev cm-3 ns-1. X-ray diffraction analysis reveals the formation of a nanocrystalline titanium nitride coating on the surface of targets. Thickness of the elements found on the surface of treated samples which are obtained by Rutherford backscattering spectrometry analysis (RBS) were (×1015 at/cm2) .45% Ti, 50% N and 5% Fe. Scanning electron microscopy was used to indicate changes in surface morphology. Existence of grains in different size confirms the formation of TiN crystals on the surface of targets.

  12. Mixing of nanosize particles by magnetically assisted impaction techniques

    Science.gov (United States)

    Scicolone, James V.

    Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel

  13. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  14. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  15. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  16. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  17. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  18. III-Nitride Membranes for Thermal Bio-Sensing and Solar Hydrogen Generation

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2017-09-01

    III-nitride nanostructures have generated tremendous scientific and technological interests in studying and engineering their low dimensional physics phenomena. Among these, 2D planar, free standing III-nitride nanomembranes are unrivalled in their scalability for high yield manufacture and can be mechanically manipulated. Due to the increase in their surface to volume ratio and the manifestation of quantum phenomena, these nanomembranes acquire unique physical properties. Furthermore, III-nitride membranes are chemically stable and biocompatible. Finally, nanomembranes are highly flexible and can follow curvilinear surfaces present in biological systems. However, being free-standing, requires especially new techniques for handling nanometers or micrometers thick membrane devices. Furthermore, effectively transferring these membrane devices to other substrates is not a direct process which requires the use of photoresists, solvents and/or elastomers. Finally, as the membranes are transferred, they need to be properly attached for subsequent device fabrications, which often includes spin coating and rinsing steps. These engineering complications have impeded the development of novel devices based on III-nitride membranes. In this thesis, we demonstrate the versatility of III-nitride membranes where we develop a thermal bio-sensor nanomembrane and solar energy photo-anode membrane. First, we present a novel preparation technique of nanomembranes with new characteristics; having no threading dislocation cores. We then perform optical characterization to reveal changes in their defect densities compared to the bulk crystal. We also study their mechanical properties where we successfully modulate their bandgap emission by 55 meV through various external compressive and tensile strain fields. Furthermore, we characterize the effect of phonon-boundary scattering on their thermal properties where we report a reduction of thermal conductivity from 130 to 9 W/mK. We employ

  19. Optical and Temporal Carrier Dynamics Investigations of III-Nitrides for Semiconductor Lighting

    KAUST Repository

    Ajia, Idris A.

    2018-05-22

    III-nitride semiconductors suffer significant efficiency limitations; ‘efficiency’ being an umbrella term that covers an extensive list of challenges that must be overcome if they are to fulfil their vast potential. To this end, it is imperative to understand the underlying phenomena behind such limitations. In this dissertation, I combine powerful optical and structural characterization techniques to investigate the effect of different defects on the carrier dynamics in III-nitride materials for light emitting devices. The results presented herein will enhance the current understanding of the carrier mechanisms in such devices, which will lead to device efficiency improvements. In the first part of this dissertation, the effects of some important types of crystal defects present in III-nitride structures are investigated. Here, two types of defects are studied in two different III-nitride-based light emitting structures. The first defects of interest are V-pit defects in InGaN/GaN multiple quantum well (MQW) blue LEDs, where their contribution to the high-efficiency of such LEDs is discussed. In addition, the effect of these defects on the efficiency droop phenomenon in these LEDs is elucidated. Secondly, the optical effects of grain boundary defects in AlN-rich AlGaN/AlGaN MQWs is studied. In this study, it is shown that grain boundary defects may result in abnormal carrier localization behavior in these deep ultraviolet (UV) structures. While both defects are treated individually, it is evident from these studies that threading dislocation (TD) defects are an underlying contributor to the more undesirable outcomes of the said defects. In the second part, the dissertation reports on the carrier dynamics of III-nitride LED structures grown on emerging substrates—as possible efficiency enhancing techniques—aimed at mitigating the effects of TD defects. Thus, the carrier dynamics of GaN/AlGaN UV MQWs grown, for the first time, on (2̅01) – oriented β-Ga2O

  20. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  1. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  2. Process for producing ceramic nitrides anc carbonitrides and their precursors

    Science.gov (United States)

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  3. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    Energy Technology Data Exchange (ETDEWEB)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  4. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Radiation Synthesis of PEGDA and Acrylated Palm Oil Nanosized Gel for Bioactives Immobilization

    International Nuclear Information System (INIS)

    Hamzah, M.Y.; Tajau, R.; Dahlan, K.Z. Mohd; Mahmood, M.H.; Hashim, K.

    2010-01-01

    The use of microemulsion in the development of nanosized gel based on polyethylene glycol diacrylate (PEGDA) and acrylated palm oil (APO) is demonstrated. PEGDA was solubilized in n-heptane with use of AOT at 0.15M concentration to form reverse micelles, while APO was solubilized with SDS in water to form direct micelles. Both of these systems were depicted by means of ternary phase diagram. These micelles were than irradiated at 1,3,5,10,15 and 30kGy using gamma irradiation or EB to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reactions in the micelles formed. The nanosized gel was evaluated in terms of particle diameter using dynamic light scattering and the images of the nanosized gel were studied using transmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by concentration of surfactants and radiation dose. This study showed that this method can be utilized to produce nanosized gel. Future work include the attachment of functional group to the nano sized gel, loading of drug such as curcumin and further characterization using dynamic light scattering. (author)

  6. Radiation Synthesis of PEGDA and Acrylated Palm Oil Nanosized Gel for Bioactives Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, M. Y.; Tajau, R.; Dahlan, K.Z. Mohd; Mahmood, M. H.; Hashim, K., E-mail: m_yusof@nuclearmalaysia.gov.my [Makmal Nanoteknologi, Blok 64, BTS, Jafan Denghil, Agensi Nuklear Malaysia, Bangi 43000 Kajang, Selangor (Malaysia)

    2010-07-01

    The use of microemulsion in the development of nanosized gel based on polyethylene glycol diacrylate (PEGDA) and acrylated palm oil (APO) is demonstrated. PEGDA was solubilized in n-heptane with use of AOT at 0.15M concentration to form reverse micelles, while APO was solubilized with SDS in water to form direct micelles. Both of these systems were depicted by means of ternary phase diagram. These micelles were than irradiated at 1,3,5,10,15 and 30kGy using gamma irradiation or EB to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reactions in the micelles formed. The nanosized gel was evaluated in terms of particle diameter using dynamic light scattering and the images of the nanosized gel were studied using transmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by concentration of surfactants and radiation dose. This study showed that this method can be utilized to produce nanosized gel. Future work include the attachment of functional group to the nano sized gel, loading of drug such as curcumin and further characterization using dynamic light scattering. (author)

  7. Synthesis and characterization of nano-sized CaCO3 in purified diet

    Science.gov (United States)

    Mulyaningsih, N. N.; Tresnasari, D. R.; Ramahwati, M. R.; Juwono, A. L.; Soejoko, D. S.; Astuti, D. A.

    2017-07-01

    The growth and development of animals depend strongly on the balanced nutrition in the diet. This research aims is to characterize the weight variations of nano-sized calcium carbonate (CaCO3) in purified diet that to be fed to animal model of rat. The nano-sized CaCO3 was prepared by milling the calcium carbonate particles for 20 hours at a rotation speed of 1000 rpm and resulting particle size in a range of 2-50 nm. Nano-sized CaCO3 added to purified diet to the four formulas that were identified as normal diet (N), deficiency calcium (DC), rich in calcium (RC), and poor calcium (PC) with containing in nano-sized CaCO3 much as 0.50 %, 0.00 %, 0.75 % and 0.25 % respectively. The nutritional content of the purified diet was proximate analyzed, it resulted as followed moisture, ash, fat, protein, crude fiber. The quantities of chemical element were analyzed by atomic absorption spectrometry (AAS), it resulted iron, magnesium, potassium and calcium. The results showed that N diet (Ca: 16,914.29 ppm) were suggested for healthy rats and RC diet (Ca: 33,696.13 ppm) for conditioned osteoporosis rats. The crystalline phases of the samples that were examined by X-ray diffraction showed that crystalline phase increased with the increasing concentration of CaCO3.

  8. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing

    2016-08-03

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity is investigated by adding an organosilane surfactant as a mesopore-generating agent.

  9. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae

    NARCIS (Netherlands)

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on

  10. Elaboration and Characterization of Nano-Sized AlxMoyOz/Al Thermites

    National Research Council Canada - National Science Library

    Comet, M; Spitzer, D

    2006-01-01

    ...) has been developed at the Institut franco-allemand de recherches de Saint Louis (ISL). This process consists of a new sol-gel method nano-sized mixed AlxMoyOz phases whose structure is correlated to the chemical composition...

  11. Primary particles and their agglomerate formation as modifying risk factors of nonfibrous nanosized dust.

    Science.gov (United States)

    Schneider, J; Walter, D; Brückel, B; Rödelsperger, K

    2013-01-01

    The incidence of certain cancers correlates with the number of dust particles in the air. Nanosized particles differ from coarser particles by their increasing tendency to form agglomerates. The dissociation of biodurable agglomerates after deposition in the alveolar region resulted in a higher toxic potential. Biodurable dusts in the urban and workplace environment were analyzed to determine an effect-relevant exposure parameter. The characterization of the dusts relating to their number of primary particles (P(p)) and agglomerates and aggregates (A + A) was performed by electron microscopy. Diesel soot, toner material, and seven further dust samples in the workplace environment are composed of high numbers of nanosized primary particles (agglomerates. Primary particles of rock, kaoline, and seven further dusts sampled in the workplace are not nanosized. In a multivariate analysis that predicted lung tumor risk, the mass, volume, and numbers of A + A and P(p) per milligram dust were shown to be relevant parameters. Dose-response relationships revealed an increased tumor risk in rats with higher numbers of P(p) in nanosized dust, which occurs unintentionally in the environment.

  12. TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS

    Science.gov (United States)

    TRANSPORT AND DEPOSITION OF NANO-SIZE PARTICLES IN THE UPPER HUMAN RESPIRATORY AIRWAYS. Zhe Zhang*, Huawei Shi, Clement Kleinstreuer, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Chong S. Kim, National Health and En...

  13. Dynamic Solubility Limits in Nanosized Olivine LiFePO4

    NARCIS (Netherlands)

    Wagemaker, Marnix; Singh, Deepak P.; Borghols, Wouter J.H.; Lafont, Ugo; Haverkate, Lucas; Peterson, Vanessa K.; Mulder, Fokko M.

    2011-01-01

    Because of its stability, nanosized olivine LiFePO4 opens the door toward high-power Li-ion battery technology for large-scale applications as required for plug-in hybrid vehicles. Here, we reveal that the thermodynamics of first-order phase transitions in nanoinsertion materials is distinctly

  14. Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hendriksen, Peter Vang

    1995-01-01

    Samples of interacting nanosized maghemite particles have been studied by Mössbauer spectroscopy and magnetization measurements. The apparent blocking temperatures obtained from Mössbauer spectroscopy and zero-field-cooled magnetization curves are nearly identical, but the values obtained from...

  15. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  16. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  17. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  18. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  19. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  20. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  1. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  2. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  3. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  4. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  5. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  6. Electronic structure of nitride-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Winkelnkemper, Momme

    2008-11-07

    In the present work the electronic and optical properties of In{sub x}Ga{sub 1-x}N/GaN and GaN/AlN QDs are studied by means of eight-band k.p theory. Experimental results are interpreted in detail using the theoretical results. The k.p model for the QD electronicstructure calculations accounts for strain, piezo- and pyroelectric effects, spin-orbit and crystal-field splitting, and is implemented for arbitrarily shaped QDs on a finite differences grid. Few-particle corrections are included using the self-consistent Hartree method. Band parameters for the wurtzite and zinc-blende phases of GaN, AlN, and InN are derived from first-principle G{sub 0}W{sub 0} band-structure calculations. Reliable values are also provided for parameters that have not been determined experimentally yet. The electronic properties of nitride QDs are dominated by the large built-in piezo- and pyroelectric fields, which lead to a pronounced red-shift of excitonic transition energies and extremely long radiative lifetimes in large GaN/AlN QDs. In In{sub x}Ga{sub 1-x}N/GaN QDs these fields induce a pronounced dependence of the radiative excitonic lifetimes on the exact QD shape and composition. It is demonstrated that the resulting variations of the radiative lifetimes in an inhomogeneous QD ensemble are the origin of the multi-exponential luminescence decay frequently observed in time-resolved ensemble measurements on In{sub x}Ga{sub 1-x}N/GaN QDs. A polarization mechanism in nitride QDs based on strain-induced valence-band mixing effects is discovered. Due to the valence-band structure of wurtzite group-III nitrides and the specific strain situation in c-plane QDs, the confined hole states are formed predominantly by the two highest valence bands. In particular, the hole ground state (h{sub 0} {identical_to} h{sub A}) is formed by the A band, and the first excited hole state (h{sub 1} {identical_to} h{sub B}) by the B band. It is shown that the interband transitions involving h{sub A} or h

  7. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  8. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  9. Doping of III-nitride materials

    OpenAIRE

    Pampili, Pietro; Parbrook, Peter J.

    2016-01-01

    In this review paper we will report the current state of research regarding the doping of III-nitride materials and their alloys. GaN is a mature material with both n-type and p-type doping relatively well understood, and while n-GaN is easily achieved, p-type doping requires much more care. There are significant efforts to extend the composition range that can be controllably doped for AlGaInN alloys. This would allow application in shorter and longer wavelength optoelectronics as well as ex...

  10. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  11. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  12. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  13. The failure of aluminium nitride under shock

    International Nuclear Information System (INIS)

    Pickup, I.M.; Bourne, N.K.

    2002-01-01

    The shear strength of aluminium nitride has been measured over a range of impact stresses by measuring lateral stresses in plate impact experiments. The range of impact stress spanned several key shock thresholds for the material, pre and post Hugoniot elastic limit and up to values where the hexagonal to cubic phase transition starts. The shear strength measurements indicate significant inelastic damage at stress levels in excess of the HEL, but a significant recovery of strength at the highest impact stress was observed. This stress equates to the phase transition stress. The shear strength behaviour is compared to that of silicon carbide, which does not exhibit a phase change at these impact velocities

  14. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  15. Electrical properties of nanosized non-barrier inhomogeneities in Zn-based metal-semiconductor contacts to InP

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1998-01-01

    We have found that the electrical properties of carriers across the metal-semiconductor interface for alloyed Zn based metallizations to n- and p-InP are dominated by nanosized non-barrier inhomogeneities. The effective area covered by the nanosized regions is a small fraction of the contact area...... resulting in high values of the specific contact resistance to p-InP. For n(-)-InP, thermionic emission across nanosized inhomogeneities dominates the carrier flow when T-ann > 440 degrees C. (C) 1998 Elsevier Science B.V....

  16. A submerged ceramic membrane reactor for the p-nitrophenol hydrogenation over nano-sized nickel catalysts.

    Science.gov (United States)

    Chen, R Z; Sun, H L; Xing, W H; Jin, W Q; Xu, N P

    2009-02-01

    The catalytic hydrogenation of p-nitrophenol to p-aminophenol over nano-sized nickel catalysts was carried out in a submerged ceramic membrane reactor. It has been demonstrated that the submerged ceramic membrane reactor is more suitable for the p-nitrophenol hydrogenation over nano-sized nickel catalysts compared with the side-stream ceramic membrane reactor, and the membrane module configuration has a great influence on the reaction rate of p-nitrophenol hydrogenation and the membrane treating capacity. The deactivation of nano-sized nickel is mainly caused by the adsorption of impurity on the surface of nickel and the increase of oxidation degree of nickel.

  17. Novel Crystal Structure C60 Nanowire

    Science.gov (United States)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  18. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...

  19. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  20. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  1. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  2. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  3. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  4. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  5. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  6. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  7. Nanoscratch characterization of indium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Derming [Chin-Yi Univ. of Technology, Taichung, Taiwan (China). Dept. of Mechanical Engineering

    2014-01-15

    In this study we used RF plasma-assisted molecular beam epitaxy for the epitaxial growth of single-crystalline indium nitride (InN) thin films on aluminum nitride buffer layers/Si (111) substrates. We then used scratch techniques to study the influence of the c-axis orientation of the InN films and the beam interactions on the tribological performance of these samples. When grown at 440, 470, and 500 C, the coefficients of friction were 0.18, 0.22, and 0.26, respectively, under a normal force (F{sub n}) of 2000 {mu}N; 0.19, 0.23, and 0.27, respectively, under a value of Fn of 4000 {mu}N; and 0.21, 0.24, and 0.28, respectively, under a value of F{sub n} of 6000 {mu}N. These measured values increased slightly upon increasing the growth temperature because of the resulting smaller sizes of the apertures and/or pores in the inner films. The sliding resistance of the ploughed area was observed. The contact sliding line became increasingly noticeable upon increasing the value of F{sub n}; the plot of the friction with respect to the penetration depth revealed a significant relation in its adhesion properties presentation. (orig.)

  8. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    International Nuclear Information System (INIS)

    Bhattacharya, Barnali; Sarkar, Utpal

    2016-01-01

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  9. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  10. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Barnali; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2016-10-20

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  11. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  12. Optical and Temporal Carrier Dynamics Investigations of III-Nitrides for Semiconductor Lighting

    KAUST Repository

    Ajia, Idris A.

    2018-01-01

    In the first part of this dissertation, the effects of some important types of crystal defects present in III-nitride structures are investigated. Here, two types of defects are studied in two different III-nitride-based light emitting structures. The first defects of interest are V-pit defects in InGaN/GaN multiple quantum well (MQW) blue LEDs, where their contribution to the high-efficiency of such LEDs is discussed. In addition, the effect of these defects on the efficiency droop phenomenon in these LEDs is elucidated. Secondly, the optical effects of grain boundary defects in AlN-rich AlGaN/AlGaN MQWs is studied. In this study, it is shown that grain boundary defects may result in abnormal carrier localization behavior in these deep ultraviolet (UV) structures. While both defects are treated individually, it is evident from these studies that threading dislocation (TD) defects are an underlying contributor to the more undesirable outcomes of the said defects. In the second part, the dissertation reports on the carrier dynamics of III-nitride LED structures grown on emerging substrates—as possible efficiency enhancing techniques—aimed at mitigating the effects of TD defects. Thus, the carrier dynamics of GaN/AlGaN UV MQWs grown, for the first time, on (2̅01) – oriented β-Ga2O3 is studied. It is shown to be a candidate substrate for highly efficient vertical UV devices. Finally, results from the carrier dynamics investigation of an AlGaN/AlGaN MQW LED structure homoepitaxially grown on AlN substrate are discussed, where it is shown that its high-efficiency is sustained at high temperatures through the thermal redistribution of carriers to highly efficient recombination sites.

  13. Enhanced photoactivity from single-crystalline SrTaO2N nanoplates synthesized by topotactic nitridation

    International Nuclear Information System (INIS)

    Fu, Jie; Skrabalak, Sara E.

    2017-01-01

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO 2 N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO 2 N nanoplates form by topotactic nitridation of aerosol-prepared Sr 2 Ta 2 O 7 nanoplates and SrTaO 2 N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO 2 N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO 2 N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Enhanced Photoactivity from Single-Crystalline SrTaO2 N Nanoplates Synthesized by Topotactic Nitridation.

    Science.gov (United States)

    Fu, Jie; Skrabalak, Sara E

    2017-11-06

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO 2 N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO 2 N nanoplates form by topotactic nitridation of aerosol-prepared Sr 2 Ta 2 O 7 nanoplates and SrTaO 2 N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO 2 N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO 2 N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhanced photoactivity from single-crystalline SrTaO{sub 2}N nanoplates synthesized by topotactic nitridation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie; Skrabalak, Sara E. [Department of Chemistry, Indiana University, Bloomington, IN (United States)

    2017-11-06

    There are few methods yielding oxynitride crystals with defined shape, yet shape-controlled crystals often give enhanced photoactivity. Herein, single-crystalline SrTaO{sub 2}N nanoplates and polyhedra are achieved selectively. Central to these synthetic advances is the crystallization pathways used, in which single-crystalline SrTaO{sub 2}N nanoplates form by topotactic nitridation of aerosol-prepared Sr{sub 2}Ta{sub 2}O{sub 7} nanoplates and SrTaO{sub 2}N polyhedra form by flux-assisted nitridation of the nanoplates. Evaluation of these materials for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) showed improved performance for the SrTaO{sub 2}N nanoplates, with a record apparent quantum efficiency (AQE) of 6.1 % for OER compared to the polyhedra (AQE: 1.6 %) and SrTaO{sub 2}N polycrystals (AQE: 0.6 %). The enhanced performance from the nanoplates arises from their morphology and lower defect density. These results highlight the importance of developing new synthetic routes to high quality oxynitrides. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  17. Nano-sized crystalline drug production by milling technology.

    Science.gov (United States)

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  18. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  19. Method of production of hollow silicon nitride articles

    International Nuclear Information System (INIS)

    Parr, N.L.; Brown, R.L.

    1971-01-01

    The hollow articles prepared according to the invention have a high density, exhibit no internal stresses and correspond to high demands of tolerance and surface quality. One obtains these by flame spraying silicon powder on a pre-heated form designed with separating agent - e.g. NaCl. After removing the form, the silicon is nitridated to silicon nitride by heating in N 2 or in an atmosphere of ammonia. This process can be interrupted if the article is also to be mechanically processed, and then the nitridation can be completed. (Hoe/LH) [de

  20. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  1. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  2. Characteristics of Au/PZT/TiO2/Nitride/Si structure capacitors with ICP nitride treatments

    International Nuclear Information System (INIS)

    Min, Hyung Seob; Kim, Tae Ho; Jeon, Chang Bae; Lee, Jae Gab; Kim, Ji Young

    2002-01-01

    In this study, the characteristics of PZT/TiO 2 ferroelectric gate stack capacitors with Inductively Coupled Plasma (ICP) nitridation were investigated for field effect transistor (FET)-type Ferroelectric Random Access Memory (FeRAM) applications. If a high accumulation capacitance is to be had, the ICP nitridation time needs to be optimized. While a short ICP treatment time results in thermal oxide growth due to lack of nitrogen, a long nitridation time causes a nitride layer which is too thick. Au/PZT(200 nm)/TiO 2 (40 nm)/Nitride/Si (MeFINS) structure capacitors show a memory window (ΔV) of 1.6 V under ±3-V operation while Au/PZT(200 nm)/TiO 2 (40 nm)/Si (MeFIS) capacitors without nitride treatment exhibit a small memory window of 0.6 V. At the same time, the capacitance of the MeFINS device is almost twice that of the MeFIS capacitor. This result implies that the ICP nitride treatment suppresses the formation of a low dielectric constant interfacial SiO x layer and alleviates the series capacitance problem

  3. Low temperature aluminum nitride thin films for sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Zamponi, C.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Institute for Materials Science, Chair for Inorganic Functional Materials, Kiel University, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Institute for Materials Science, Chair for Synthesis and Real Structure, Kiel University, D-24143 Kiel (Germany)

    2016-07-15

    A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/V up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.

  4. Engineering Strain for Improved III-Nitride Optoelectronic Device Performance

    Science.gov (United States)

    Van Den Broeck, Dennis Marnix

    Due to growing environmental and economic concerns, renewable energy generation and high-efficiency lighting are becoming even more important in the scientific community. III-Nitride devices have been essential in production of high-brightness light-emitting diodes (LEDs) and are now entering the photovoltaic (PV) realm as the technology advances. InGaN/GaN multiple quantum well LEDs emitting in the blue/green region have emerged as promising candidates for next-generation lighting technologies. Due to the large lattice mismatch between InN and GaN, large electric fields exist within the quantum well layers and result in low rates of radiative recombination, especially for the green spectral region. This is commonly referred to as the "green gap" and results in poor external quantum efficiencies for light-emitting diodes and laser diodes. In order to mitigate the compressive stress of InGaN QWs, a novel growth technique is developed in order to grown thick, strain-relaxed In yGa1-yN templates for 0.08 structure, "semibulk" InGaN templates were achieved with vastly superior crystal and optical properties than bulk InGaN films. These semibulk InGaN templates were then utilized as new templates for multiple quantum well active layers, effectively reducing the compressive strain in the InGaN wells due to the larger lattice constant of the InGaN template with respect to a GaN template. A zero-stress balance method was used in order to realize a strain-balanced multiple quantum well structure, which again showed improved optical characteristics when compared to fully-strain active regions. The semibulk InGaN template was then implemented into "strain-compensated" LED structures, where light emission was achieved with very little leakage current. Discussion of these strain-compensated devices compared to conventional LEDs is detailed.

  5. New routes to nitrogen-rich transition metal nitrides: Synthesis of novel polymorphs of Hf3N4

    Science.gov (United States)

    Salamat, Ashkan; Hector, A.; Gray, B.; Kimber, S.; Bouvier, P.; McMillan, P.

    2013-06-01

    One of the most obvious features of transition metal nitride chemistry is that the maximum formal oxidation state of the metal is rarely as high as in the corresponding oxides or fluorides. Much of the interest in the high oxidation phases stems from the desire to identify the next generation of photocatalytic materials with tuneable bandgaps. Experiments in the laser heated diamond anvil cell (LHDAC) between the direct reaction of metals and nitrogen have previously produced a number of important new main group nitride phases. This technique has also demonstrated its potential for formation of new nitrogen-rich transition metal nitride phases. Alternative methods with the development of ``soft'' routes to new phases with high nitrogen content also offer the possibility of obtaining metastable phases through topotactic conversions. Using LHDAC in situ with synchrotron angle dispersive diffraction techniques we have crystallised at high pressures and temperatures two novel polymorphs of Hf3N4. Starting with an amide-derived nanocrystalline Hf3N4 sample we have identified a novel tetragonal (I4/ m) polymorph at 15 GPa and 1500K and a second high pressure orthorhombic (Pnma) polymorph at 30 GPa and 2000 K. This study demonstrates that the combination of precursor-based synthesis and high-pressure crystallization could be very productive in synthesis of such nitrogen-rich phases.

  6. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    Science.gov (United States)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  7. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  8. Effect of nano-sized, elemental selenium supplement on the proteome of chicken liver.

    Science.gov (United States)

    Gulyas, G; Csosz, E; Prokisch, J; Javor, A; Mezes, M; Erdelyi, M; Balogh, K; Janaky, T; Szabo, Z; Simon, A; Czegledi, L

    2017-06-01

    The nano-sized (100-500 nm) selenium has higher bioavailability and relatively lower toxicity compared to other selenium forms. The objective of the present study was to compare liver proteome profiles of broiler chicken fed with control diet without Se supplementation and diet supplemented with nano-Se with 4.25 mg/kg DM. Differential proteome analyses were performed by two-dimensional gel electrophoresis (2D-PAGE) followed by tryptic digestion and protein identification by liquid chromatography-mass spectrometry (LC-MS). Seven hundred and eight spots were detected, and 18 protein spots showed significant difference in their intensity (p selenium supplementation induced a dietary stress. Selenium supplementation may influence the metabolism of fatty acids and carbohydrates and antioxidant system, and increase the quantity of cytoskeletal actin and the expression of actin regulatory protein as well. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  9. NANO-SIZED PIGMENT APPLICATIONS IN İZNİK TILES

    Directory of Open Access Journals (Sweden)

    Esin GÜNAY

    2012-12-01

    Full Text Available Traditional İznik tiles are known as “unproducable” due to its high quartz content. İznik tiles contain four different layers as “body, engobe (slip, decors and glaze” and each one has some different starting materials. Recent studies have showed that the production techniques and the particle size of pigments are important parameters in development of colours. TUBITAK MRC and İznik Foundation carried out an experimental work to improve and understand the effects of nanotechnology application to İznik tiles. High quartz content was kept as it is and pigments were applied in decorationas nano-sized pigments.İznik tiles were produced and comparison was carried out between traditional and modern İznik tiles in colour and brightness. Characterization techniques were used in order to understand andcompare the results and also the effects of nano-sized pigments to İznik tiles.

  10. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  11. Optical characterisation of III-V nitride-based multiphase and diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Wegscheider, M.

    2009-01-01

    The present work is devoted to the investigation of the optical properties of transition metal doped Gallium nitride. The Gallium nitride layers are epitaxially grown in a full metalorganic chemical vapour deposition process whereas the transition metals iron or manganese as well as the n and p-type dopants silicon and magnesium are incorporated simultaneously. Background and driving force of the realization of such material systems is basically the evocation of ferromagnetic spin alignment where free carriers ensure the correspondence between the localized spin state provided by the metal ions. The production of completely new devices for semiconductor industries based on the possibility to switch on or off the ferrimagnetic alignment by changing the free carrier concentration can be expected in the near future. In this context photoluminescence studies in the ultraviolet and mid infrared spectral range at temperatures between the liquid helium point and room temperature at atmospheric pressure were made. These measurements basically provide information on optical transitions between the conduction and valence band and deep defects as well as on crystal field forced transitions within the d-orbitals of the metal ion involved. In this context valuable knowledge could have been gained on doping concentrations, growth fashions and parameters, formation of secondary phases as well as on the doping efficiency and incorporation sites of the metal atoms. (author) [de

  12. Are Fe and Co implanted ZnO and III-nitride semiconductors magnetic?

    CERN Document Server

    AUTHOR|(CDS)2081284; Bharuth-Ram, Krish

    The chemical nature, lattice site locations and magnetic behaviour of Fe and/or Co ions implanted in nitrides (GaN, AlN, and InN) and in ZnO have been investigated using Mössbauer spectroscopy and vibrating sample magnetometer (VSM) techniques. Mössbauer data on nitride and $^{56}$Fe pre-implanted ZnO samples were obtained from emission Mössbauer spectroscopy (eMS) measurements at the ISOLDE facility, CERN, following the implantation of radioactive $^{57}$Mn$^{*}$ which $\\beta$$^{-}$decays to the 14.4 keV Mössbauer state of $^{57}$Fe. In addition, conversion electron Mössbauer spectroscopy (CEMS) data were collected on ZnO single crystals co-implanted with $^{57}$Fe + $^{56}$Fe and $^{57}$Fe + $^{59}$Co ions in a box profile. Emission Mössbauer spectra obtained for GaN and AlN reveal magnetic structure in the ‘wings’ assigned to high spin Fe$^{3+}$ weakly coupled to the lattice showing spin-lattice relaxation effects. The observed spin-relaxation rate (τ$^{-1}$) closely follows a ${T}^{2}$ temperat...

  13. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  14. Fabrication of carbide and nitride pellets and the nitride irradiations Niloc 1 and Niloc 2

    International Nuclear Information System (INIS)

    Blank, H.

    1991-01-01

    Besides the relatively well-known advanced LMFBR mixed carbide fuel an advanced mixed nitride is also an attractive candidate for the optimised fuel cycle of the European Fast Reactor, but the present knowledge about the nitride is still insufficient and should be raised to the level of the carbide. For such an optimised fuel cycle the following general conditions have been set up for the fuel: (i) the burnup of the optimised MN and MC should be at least 15 a/o or even beyond, at moderate linear ratings of less than 75 kW/m (ii) the fuel will be used in a He-bonding pin concept and (iii) as far as available an advanced economic pellet fabrication method should be employed. (iv) The fuel structure must contain 15 - 20% porosity in order to accomodate the fission product swelling at high burnup. This report gives a comprehensive description of fuel and pellet fabrication and characterization, irradiation, and post-irradiation examination. From the results important conclusions can be drawn about future work on nitrides

  15. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  17. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  18. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  19. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  20. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    International Nuclear Information System (INIS)

    Qiu Lingguang; Gu Lina; Hu Gang; Zhang Lide

    2009-01-01

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen) 2 (H 2 O) 2 ] 2+ (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M 1 (H 2 O) 6 ].[M 2 (phen) 2 (H 2 O) 2 ] 2 .2(BTC).xH 2 O (M 1 , M 2 =Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24), were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit

  1. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  2. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  3. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    Directory of Open Access Journals (Sweden)

    Keiji Okuda

    Full Text Available Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm. We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  4. Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats.

    Science.gov (United States)

    Okuda, Keiji; Fu, Hai Ying; Matsuzaki, Takashi; Araki, Ryo; Tsuchida, Shota; Thanikachalam, Punniyakoti V; Fukuta, Tatsuya; Asai, Tomohiro; Yamato, Masaki; Sanada, Shoji; Asanuma, Hiroshi; Asano, Yoshihiro; Asakura, Masanori; Hanawa, Haruo; Hao, Hiroyuki; Oku, Naoto; Takashima, Seiji; Kitakaze, Masafumi; Sakata, Yasushi; Minamino, Tetsuo

    2016-01-01

    Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.

  5. Kinetic model for transformation from nano-sized amorphous $TiO_2$ to anatase

    OpenAIRE

    Madras, Giridhar; McCoy, Benjamin J

    2006-01-01

    We propose a kinetic model for the transformation of nano-sized amorphous $TiO_2$ to anatase with associated coarsening by coalescence. Based on population balance (distribution kinetics) equations for the size distributions, the model applies a first-order rate expression for transformation combined with Smoluchowski coalescence for the coarsening particles. Size distribution moments (number and mass of particles) lead to dynamic expressions for extent of reaction and average anatase particl...

  6. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    International Nuclear Information System (INIS)

    Wang Hua; Zhu Meifang; Li Yaogang; Zhang Qinghong; Wang Hongzhi

    2011-01-01

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO 2 were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N 2 adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  7. Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae.

    Science.gov (United States)

    Bergami, Elisa; Bocci, Elena; Vannuccini, Maria Luisa; Monopoli, Marco; Salvati, Anna; Dawson, Kenneth A; Corsi, Ilaria

    2016-01-01

    Nano-sized polymers as polystyrene (PS) constitute one of the main challenges for marine ecosystems, since they can distribute along the whole water column affecting planktonic species and consequently disrupting the energy flow of marine ecosystems. Nowadays very little knowledge is available on the impact of nano-sized plastics on marine organisms. Therefore, the present study aims to evaluate the effects of 40nm anionic carboxylated (PS-COOH) and 50nm cationic amino (PS-NH2) polystyrene nanoparticles (PS NPs) on brine shrimp Artemia franciscana larvae. No signs of mortality were observed at 48h of exposure for both PS NPs at naplius stage but several sub-lethal effects were evident. PS-COOH (5-100μg/ml) resulted massively sequestered inside the gut lumen of larvae (48h) probably limiting food intake. Some of them were lately excreted as fecal pellets but not a full release was observed. Likewise, PS-NH2 (5-100µg/ml) accumulated in larvae (48h) but also adsorbed at the surface of sensorial antennules and appendages probably hampering larvae motility. In addition, larvae exposed to PS-NH2 undergo multiple molting events during 48h of exposure compared to controls. The activation of a defense mechanism based on a physiological process able to release toxic cationic NPs (PS-NH2) from the body can be hypothesized. The general observed accumulation of PS NPs within the gut during the 48h of exposure indicates a continuous bioavailability of nano-sized PS for planktonic species as well as a potential transfer along the trophic web. Therefore, nano-sized PS might be able to impair food uptake (feeding), behavior (motility) and physiology (multiple molting) of brine shrimp larvae with consequences not only at organism and population level but on the overall ecosystem based on the key role of zooplankton on marine food webs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hua; Zhu Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li Yaogang [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Zhang Qinghong, E-mail: zhangqh@dhu.edu.cn [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, Shanghai 201620 (China); Wang Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China)

    2011-04-08

    The aim of this study was to investigate the mechanical property effects of co-filling dental resin composites with porous diatomite and nanosized silica particles (OX-50). The purification of raw diatomite by acid-leaching was conducted in a hot 5 M HCl solution at 80 deg. C for 12 h. Both diatomite and nanosized SiO{sub 2} were silanized with 3-methacryloxypropyltrimethoxysilane. The silanized inorganic particles were mixed into a dimethacrylate resin. Purified diatomite was characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and an N{sub 2} adsorption-desorption isotherm. Silanized inorganic particles were characterized using Fourier transform infrared spectroscopy and a thermogravimetric analysis. The mechanical properties of the composites were tested by three-point bending, compression and Vicker's microhardness. Scanning electron microscopy was used to show the cross-section morphologies of the composites. Silanization of diatomite and nanosized silica positively reinforced interactions between the resin matrix and the inorganic particles. The mechanical properties of the resin composites gradually increased with the addition of modified diatomite (m-diatomite). The fracture surfaces of the composites exhibited large fracture steps with the addition of m-diatomite. However, when the mass fraction of m-diatomite was greater than 21 wt.% with respect to modified nanosized silica (mOX-50) and constituted 70% of the resin composite by weight, the mechanical properties of the resin composites started to decline. Thus, the porous structure of diatomite appears to be a crucial factor to improve mechanical properties of resin composites.

  9. How to estimate hardness of crystals on a pocket calculator

    International Nuclear Information System (INIS)

    Simunek, Antonin

    2007-01-01

    A generalization of the semiempirical microscopic model of hardness is presented and applied to currently studied borides, carbides, and nitrides of heavy transition metals. The hardness of OsB, OsC, OsN, PtN, RuC, RuB 2 , ReB 2 , OsB 2 , IrN 2 , PtN 2 , and OsN 2 crystals in various structural phases is predicted. It is found that none of the transition metal crystals is superhard, i.e., with hardness greater than 40 GPa. The presented method provides materials researchers with a practical tool in the search for new hard materials

  10. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  11. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  12. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    Jianxin ZHOU; Xiangqian SHEN; Maoxiang JING

    2006-01-01

    Nanosized Ni-Mn oxide powders have been successfully prepared by thermal decomposition of the Ni-Mn citrate gel precursors. The powder materials derived from calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET).The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m2/g and nanometer particle sizes of 15~30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.

  13. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  14. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  16. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  17. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  18. Optical properties of indium nitride films

    International Nuclear Information System (INIS)

    Tyagaj, V.A.; Evstigneev, A.M.; Krasiko, A.N.; Andreeva, A.F.; Malakhov, V.Ya.

    1977-01-01

    Reflection and transmission spectra of heavily doped indium nitride are studied at lambda=0.5-5 μm. Dispersion of the refractive index near the plasma resonance frequency, h.f. dielectric constant (epsilonsub(infinity)=9.3), and extinction coefficient near the transmission maximum of films have been determined from the analysis of interference pattern. The reflection spectrum exhibits maximum in the infrared range and optical effective mass is found through its position (msub(opt)*=0.11msub(0)). Free carrier absorption coefficient is shown to vary according to the law K approximately lambdasup(2.9+-0.1) which is characteristic of electron scattering by charged impurities. The analysis of absorption spectra near the threshold of interband transitions has lead to the conclusion that free carriers are localized in the lateral extremum of conduction band (or out of the center of the Brillouin zone), therefore the Burstein-Moss effect is absent

  19. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  20. Boron nitride: A new photonic material

    International Nuclear Information System (INIS)

    Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O'Connel, J.; Henry, A.

    2014-01-01

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp 2 -BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  1. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  2. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  3. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  4. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  5. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  6. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  7. CEMS of nitride coatings in agressive environments

    Science.gov (United States)

    Hanžel, D.; Agudelo, A. C.; Gancedo, J. R.; Lakatos-Varsanyi, M.; Marco, J. F.

    1998-12-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Mössbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  8. CEMS of nitride coatings in agressive environments

    International Nuclear Information System (INIS)

    Hanzel, D.; Agudelo, A.C.; Gancedo, J.R.; Lakatos-Varsanyi, M.; Marco, J.F.

    1998-01-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO 2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature

  9. CEMS of nitride coatings in agressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, D. [University of Ljubljana, J. Stefan Institute (Slovenia); Agudelo, A.C.; Gancedo, J.R. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain); Lakatos-Varsanyi, M. [Eoetvoes University, Department of Physical Chemistry (Hungary); Marco, J.F. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain)

    1998-12-15

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO{sub 2} atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  10. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  11. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  12. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  13. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    Science.gov (United States)

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  14. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    pact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C,. 1300°C, 1350°C and 1400°C). ... Reaction sintered silicon nitride; nitridation; reaction kinetics. 1. Introduction. Formation of ..... cation of silica layer resulted in active oxidation of silicon at high temperature to ...

  15. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  16. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  17. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  18. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  19. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  20. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  1. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  2. Morphology and thermal stability of Ti-doped copper nitride films

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Wu Zhiguo; Li Huajun; Geng Baisong; Li Chun; Yan Pengxun

    2007-01-01

    A weakly Ti-doped copper nitride (Cu 3 N) film was prepared by cylindrical magnetron sputtering. The XPS results indicate that Ti atoms do not substitute for the Cu atoms but probably locate at the grain boundaries. The columnar grains size is about half of that of the undoped Cu 3 N film and the surface is smoother. For weakly Ti-doped Cu 3 N films, a dense layer appears on top of the columnar crystals. The RMS of the Cu film formed by annealing of the weakly Ti-doped Cu 3 N film is more than twice larger than that of the film before annealing. Compared with the undoped Cu 3 N film, it possesses fine thermal stability both in vacuum and in atmosphere

  3. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  4. Spatially selective hydrogen irradiation of dilute nitride semiconductors: a brief review

    Science.gov (United States)

    Felici, Marco; Pettinari, Giorgio; Biccari, Francesco; Capizzi, Mario; Polimeni, Antonio

    2018-05-01

    We provide a brief survey of the most recent results obtained by performing spatially selective hydrogen irradiation of dilute nitride semiconductors. The striking effects of the formation of stable N–H complexes in these compounds—coupled to the ultrasharp diffusion profile of H therein—can be exploited to tailor the structural (lattice constant) and optoelectronic (energy gap, refractive index, electron effective mass) properties of the material in the growth plane, with a spatial resolution of a few nm. This can be applied to the fabrication of site-controlled quantum dots (QDs) and wires, but also to the realization of the optical elements required for the on-chip manipulation and routing of qubits in fully integrated photonic circuits. The fabricated QDs—which have shown the ability to emit single photons—can also be deterministically coupled with photonic crystal microcavities, proving their inherent suitability to act as integrated light sources in complex nanophotonic devices.

  5. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  6. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    Science.gov (United States)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  7. Cubic boron nitride (cBN) - A new material for advanced optoelectronic devices. Properties and perspectives

    International Nuclear Information System (INIS)

    Nistor, S.V.; Nistor, L.C.; Dinca, G.

    2001-01-01

    Cubic boron nitride (cBN) exhibits, besides exceptional thermal and mechanical properties similar to diamond, an excellent ability to be n or p doped, which makes it a strong candidate for advanced, high - temperature optical and microelectronic devices. Despite its outstanding characteristics, there are quite a few reports concerning the physical properties of cBN. This is partly due to the absence of natural cBN gems and the extreme difficulties in producing enough large (mm 3 sized) single crystals, or single phase thin films, for physical characterization. The state of the art knowledge concerning the basic properties of crystalline cBN, as well as our recent results of microstructure and defect properties studies will be presented. (authors)

  8. Crystalline and amorphous phases in carbon nitride films produced by intense high-pressure plasma

    International Nuclear Information System (INIS)

    Gurarie, V.N.; Orlov, A.V.; Bursill, L.A.; JuLin, P.; Nugent, K.W.; Chon, J.W.; Prawer, S.

    1997-01-01

    Carbon-nitride films are prepared using a high-intensity pulsed plasma deposition technique. A wide range of nitrogen pressure and discharge intensity are used to investigate their effect on the morphology, nitrogen content, structure, bonding, phase composition and mechanical characteristics of the CN films deposited. Increasing the nitrogen pressure from 0.1 atm to 10 atm results in an increase of nitrogen incorporation into CN films to maximum of 45 at %. Under the high-energy density deposition conditions which involve ablation of the quartz substrate the CN films are found to incorporate in excess of 60 at %N. Raman spectra of these films contain sharp peaks characteristic of a distinct crystalline CN phase. TEM diffraction patterns for the films deposited below 1 atm unambiguously show the presence of micron-sized crystals displaying a cubic symmetry. (authors)

  9. Thermal diode made by nematic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Djair, E-mail: djfmelo@gmail.com [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Fernandes, Ivna [Instituto de Física, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, 57072-900 Maceió, AL (Brazil); Moraes, Fernando [Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa, PB (Brazil); Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Fumeron, Sébastien [Institut Jean Lamour, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre les Nancy (France); Pereira, Erms [Escola Politécnica de Pernambuco, Universidade de Pernambuco, Rua Benfíca, 455, Madalena, 50720-001 Recife, PE (Brazil)

    2016-09-07

    This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of such structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect to the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed. - Highlights: • An escaped radial disclination as a thermal diode made by a nematic liquid crystal. • Rectifying effects comparable to those caused by carbon and boron nitride nanotubes. • Thermal rectification increasing with radius and decreasing with height of the tube. • Asymmetric BCs cause rectification from the spatial asymmetry produced by the escape. • Symmetric BCs provide rectifications smaller than those yields by asymmetric BCs.

  10. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  11. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  12. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    Science.gov (United States)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  13. Origin and effective reduction of inversion domains in aluminum nitride grown by a sublimation method

    Science.gov (United States)

    Shigetoh, Keisuke; Horibuchi, Kayo; Nakamura, Daisuke

    2017-11-01

    Owing to the large differences in the chemical properties between Al and N polarities in aluminum nitride (AlN), the choice of the polar direction for crystal growth strongly affects not only the quality but also the shape (facet formation) of the grown crystal. In particular, N-polar (0 0 0 -1) has been considered to be a more preferable direction than Al-polar (0 0 0 1) for sublimation growth because compared to Al-polar (0 0 0 1), N-polar (0 0 0 -1) exhibits better stability at high growth rate (high supersaturation) conditions and enables easier lateral enlargement of the crystal. However, some critical growth conditions induce polarity inversion and hinder stable N-polar growth. Furthermore, the origin of the polarity inversion in AlN growth by the sublimation method is still unclear. To ensure stable N-polar growth without polarity inversion, the formation mechanism of the inversion domain during AlN sublimation growth must be elucidated. Therefore, herein, we demonstrate homoepitaxial growth on an N-polar seed and carefully investigate the obtained crystal that shows polarity inversion. Annular bright-field scanning transmission electron microscopy reveals that polarity is completely converted to the Al polarity via the formation of a 30 nm thick mixed polar layer (MPL) just above the seed. Moreover, three-dimensional atom probe tomography shows the segregation of the oxygen impurities in the MPL with a high concentration of about 3 atom%. Finally, by avoiding the incorporation of oxygen impurity into the crystal at the initial stage of the growth, we demonstrate an effective reduction (seven orders of magnitude) of the inversion domain boundary formation.

  14. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  15. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c

  16. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  17. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  18. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  19. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.

    Science.gov (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song

    2013-12-23

    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  20. Preparation of high-content hexagonal boron nitride composite film and characterization of atomic oxygen erosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Li, Min; Gu, Yizhuo; Wang, Shaokai, E-mail: wsk@buaa.edu.cn; Zhang, Zuoguang

    2017-04-30

    Highlights: • Hexagonal boron nitride nanosheets can be well exfoliated with the help of nanofibrillated cellulose. • A carpet-like rough surface and distortion in crystal structure of h-BN are found in both h-BN film and h-BN/epoxy film after AO exposure. • H-BN/epoxy film exhibits a higher mass loss and erosion yield, different element content changes and chemical oxidations compared with h-BN film. - Abstract: Space aircrafts circling in low earth orbit are suffered from highly reactive atomic oxygen (AO). To shield AO, a flexible thin film with 80 wt.% hexagonal boron nitride (h-BN) and h-BN/epoxy film were fabricated through vacuum filtration and adding nanofibrillated cellulose fibers. H-BN nanosheets were hydroxylated for enhancing interaction in the films. Mass loss and erosion yield at accumulated AO fluence about 3.04 × 10{sup 20} atoms/cm{sup 2} were adopted to evaluate the AO resistance properties of the films. A carpet-like rough surface, chemical oxidations and change in crystal structure of h-BN were found after AO treatment, and the degrading mechanism was proposed. The mass loss and erosion yield under AO attack were compared between h-BN film and h-BN/epoxy film, and the comparison was also done for various types of shielding AO materials. Excellent AO resistance property of h-BN film is shown, and the reasons are analyzed.

  1. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study

  2. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-01-01

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes

  3. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  4. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  5. Analysis of mechanical properties of steel 1045 plasma nitriding: with and without tempering

    International Nuclear Information System (INIS)

    Machado, N.T.B.; Passos, M.L.M. dos; Riani, J.C.; Recco, A.A.C.

    2014-01-01

    The purpose of this study was to evaluate the possibility of tempering during the nitriding of AISI 1045 steel. The objective was to evaluate the possibility of eliminating this phase, with the nitriding properties remaining unaltered. For this, three parameter samples were compared: quenched, tempered and nitrided for 2h; quenching and nitrided for 2h and quenching and nitrided for 4h. The analysis techniques used for characterizing the samples before and after nitriding were optical microscopy, hardness Rockwell C (HRC), scanning electron microscopy (SEM), X-ray diffraction (XRD). Results showed that phase γ is the most favorable of all parameters tested. The hardness assays showed that samples with different initial hardness (with and without tempering) and even nitriding time showed similar mechanical properties. This fact suggests that the tempering process occurred parallel to the nitriding process. (author)

  6. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  7. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  8. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  9. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: a risk to human health?

    Science.gov (United States)

    Nohynek, Gerhard J; Dufour, Eric K

    2012-07-01

    Personal care products (PCP) often contain micron- or nano-sized formulation components, such as nanoemulsions or microscopic vesicles. A large number of studies suggest that such vesicles do not penetrate human skin beyond the superficial layers of the stratum corneum. Nano-sized PCP formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Modern sunscreens contain insoluble titanium dioxide (TiO₂) or zinc oxide (ZnO) nanoparticles (NP), which are efficient filters of UV light. A large number of studies suggest that insoluble NP do not penetrate into or through human skin. A number of in vivo toxicity tests, including in vivo intravenous studies, showed that TiO₂ and ZnO NP are non-toxic and have an excellent skin tolerance. Cytotoxicity, genotoxicity, photo-genotoxicity, general toxicity and carcinogenicity studies on TiO₂ and ZnO NP found no difference in the safety profile of micro- or nano-sized materials, all of which were found to be non-toxic. Although some published in vitro studies on insoluble nano- or micron-sized particles suggested cell uptake, oxidative cell damage or genotoxicity, these data are consistent with those from micron-sized particles and should be interpreted with caution. Data on insoluble NP, such as surgical implant-derived wear debris particles or intravenously administered magnetic resonance contrast agents suggest that toxicity of small particles is generally related to their chemistry rather than their particle size. Overall, the weight of scientific evidence suggests that insoluble NP used in sunscreens pose no or negligible risk to human health, but offer large health benefits, such as the protection of human skin against UV-induced skin ageing and cancer.

  10. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  11. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  12. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  13. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  14. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  15. Structure of extremely nanosized and confined In-O species in ordered porous materials

    International Nuclear Information System (INIS)

    Ramallo-Lopez, J.M.; Renteria, M.; Miro, E.E.; Requejo, F.G.; Traverse, A.

    2003-01-01

    Perturbed-angular correlation, x-ray absorption, and small-angle x-ray scattering spectroscopies were suitably combined to elucidate the local structure of highly diluted and dispersed InO x species confined in the porous of the ZSM5 zeolite. This novel approach allow us to determined the structure of extremely nanosized In-O species exchanged inside the 10-atom-ring channel of the zeolite, and to quantify the amount of In 2 O 3 crystallites deposited onto the external zeolite surface

  16. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    such as pH, Total Suspended Solid(TSS), turbidity, and electrical conductivity.The five sites where stormwater was sampled from used two different methods of stormwater treatment: settling and filtration, and four different treatment techniques: detention ponds, stormwater pond, disc filter and combined...... sedimentation tanks. From all sites, inlet and outlet stormwater were collected,and pollutant concentrations were quantified as well as the removal efficiencies calculated. The colloidal and nano-sized particle-enhanced transportation of pollutants was also scrutinised in the stormwater.The μm-range PSD...

  17. Laser induced morphology change of silver colloids: formation of nano-size wires

    International Nuclear Information System (INIS)

    Tsuji, Takeshi; Watanabe, Norihisa; Tsuji, Masaharu

    2003-01-01

    We have performed laser irradiation at 355 nm onto spherical silver colloids in pure water, which were prepared by laser ablation of silver plate in pure water. In addition to size-reduced particles due to fragmentation, we have found that nano-size wire structures were formed in solution for the first time. The width of the wires was in the 10-100 nm range, and the length of long wires was more than 1 μm. Electron diffraction patterns revealed that these wires were composed of pure silver. It was suggested that the wires were formed via fusion of particles photo-thermally melted by laser irradiation

  18. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, Moritz W.; Rodriguez-Niño, Daniella; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-01-01

    The impact of support morphology and composition on the intrinsic activity of Ni supported on MFI-type zeolite was explored in the hydrodeoxygenation of methyl stearate, tristearate, and algae oil (mixture of triglycerides). The nano-sized structure of the support (self-pillared nanosheets) is beneficial for the activity of the catalysts. Higher Ni dispersion and concomitant higher reaction rates were obtained on nano-structured supports than on zeolite with conventional morphology. Rates normalized to accessible Ni atoms (TOF), however, varied little with support morphology. Acidity of the support increases the rate of Ni-catalyzed C-O hydrogenolysis per surface metal site.

  19. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  20. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.