WorldWideScience

Sample records for nitric oxide hydrogen

  1. Effect of nitric oxide and hydrogen sulfide on radiation sensitivity of spores of Bacillus megaterium in suspension

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C

    1966-01-01

    The effect of nitric oxide on the sensitivity to radiation of spores of B. megaterium in water suspension is similar to that seen in vegetative cells of E. coli. The spores are less sensitive in the presence of hydrogen sulfide. 11 references, 1 figure.

  2. Critical evaluation of pressurized microwave-assisted digestion efficiency using nitric acid oxidizing systems (M7)

    International Nuclear Information System (INIS)

    Matusiewicz, H.

    2002-01-01

    Full text: The possibilities of enhancement of a medium-pressure microwave-assisted digestion system for sample preparation in trace element analysis of biological material was investigated. Based on optimal digestion conditions for oxidizing systems with nitric acid, different digestion procedures were examined to minimize residual carbon. The substitution of nitric acid and the addition of hydrogen peroxide and ozone to nitric acid was evaluated. The residual carbon content of the digestate was determined coulometrically. Addition of hydrogen peroxide during organic oxidation reactions does not lower the resolved carbon in the solution. Ozone was tested as an additional, potentially non-contaminating, digestion/oxidation system to the nitric acid used in the sample preparation method. (author)

  3. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  4. Arylboronate ester based diazeniumdiolates (BORO/NO), a class of hydrogen peroxide inducible nitric oxide (NO) donors.

    Science.gov (United States)

    Dharmaraja, Allimuthu T; Ravikumar, Govindan; Chakrapani, Harinath

    2014-05-16

    Here, we report the design, synthesis, and evaluation of arylboronate ester based diazeniumdiolates (BORO/NO), a class of nitric oxide (NO) donors activated by hydrogen peroxide (H2O2), a reactive oxygen species (ROS), to generate NO. We provide evidence for the NO donors' ability to permeate bacteria to produce NO when exposed to H2O2 supporting possible applications for BORO/NO to study molecular mechanisms of NO generation in response to elevated ROS.

  5. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  6. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  7. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    Science.gov (United States)

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  8. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  9. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Recently, SRTC recommended two process changes: (1) a final wash of the tetraphenylborate precipitate feed slurry and (2) the use of nitric acid to neutralize the sludge in the SRAT. The first change produced an aqueous hydrolysis product (PHA) with higher formic acid/formate and copper concentration, and reduced the nitrate content in the PHA by an order of magnitude. The second change is to substitute part of formic acid added to the SRAT with nitric acid, and therefore may reduce the hydrogen generated in the SRAT as well as provide nitrate as an oxidant to balance the redox state of the melter feed. The purpose of this report is to determine the pertinent variables that could affect the hydrogen generation rate with these process changes

  10. Integrating nitric oxide, nitrite and hydrogen sulfide signaling in the physiological adaptions to hypoxia: A comparative approach

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank; Tota, Bruno

    2012-01-01

    Hydrogen sulfide (H2S), nitric oxide (NO) and nitrite (NO2-) are formed in vivo and are of crucial importance in the tissue response to hypoxia, particularly in the cardiovascular system, where these signaling molecules are involved in a multitude of processes including the regulation of vascular...... tone, cellular metabolic function and cytoprotection. This report summarizes current advances on the mechanisms by which these signaling pathways act and may have evolved in animals with different tolerance to hypoxia, as presented and discussed during the scientific sessions of the annual meeting...

  11. Hydrogen Sulfide Increases Nitric Oxide Production and Subsequent S-Nitrosylation in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ping-Ho Chen

    2014-01-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO, two endogenous gaseous molecules in endothelial cells, got increased attention with respect to their protective roles in the cardiovascular system. However, the details of the signaling pathways between H2S and NO in endothelia cells remain unclear. In this study, a treatment with NaHS profoundly increased the expression and the activity of endothelial nitric oxide synthase. Elevated gaseous NO levels were observed by a novel and specific fluorescent probe, 5-amino-2-(6-hydroxy-3-oxo-3H-xanthen-9-ylbenzoic acid methyl ester (FA-OMe, and quantified by flow cytometry. Further study indicated an increase of upstream regulator for eNOS activation, AMP-activated protein kinase (AMPK, and protein kinase B (Akt. By using a biotin switch, the level of NO-mediated protein S-nitrosylation was also enhanced. However, with the addition of the NO donor, NOC-18, the expressions of cystathionine-γ-lyase, cystathionine-β-synthase, and 3-mercaptopyruvate sulfurtransferase were not changed. The level of H2S was also monitored by a new designed fluorescent probe, 4-nitro-7-thiocyanatobenz-2-oxa-1,3-diazole (NBD-SCN with high specificity. Therefore, NO did not reciprocally increase the expression of H2S-generating enzymes and the H2S level. The present study provides an integrated insight of cellular responses to H2S and NO from protein expression to gaseous molecule generation, which indicates the upstream role of H2S in modulating NO production and protein S-nitrosylation.

  12. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Azizah Ugusman

    2010-01-01

    Full Text Available OBJECTIVE: Nitric oxide produced by endothelial nitric oxide synthase (eNOS possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs. METHODS: HUVECs were divided into four groups: control, treatment with 180 μM hydrogen peroxide (H2O2, treatment with 150 μg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H2O2 for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. RESULTS: Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. CONCLUSION: Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  13. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    OpenAIRE

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 2...

  14. Inducible nitric oxide synthase catalyzes ethanol oxidation to α-hydroxyethyl radical and acetaldehyde

    International Nuclear Information System (INIS)

    Porasuphatana, Supatra; Weaver, John; Rosen, Gerald M.

    2006-01-01

    The physiologic function of nitric oxide synthases, independent of the isozyme, is well established, metabolizing L-arginine to L-citrulline and nitric oxide (NO). This enzyme can also transfer electrons to O 2 , affording superoxide (O 2 · - ) and hydrogen peroxide (H 2 O 2 ). We have demonstrated that NOS1, in the presence of L-arginine, can biotransform ethanol (EtOH) to α-hydroxyethyl radical (CH 3 ·CHOH). We now report that a competent NOS2 with L-arginine can, like NOS1, oxidize EtOH to CH 3 ·CHOH. Once this free radical is formed, it is metabolized to acetaldehyde as shown by LC-ESI-MS/MS and HPLC analysis. These observations suggest that NOS2 can behave similarly to cytochrome P-450 in the catalysis of acetaldehyde formation from ethanol via the generation of α-hydroxyethyl radical when L-arginine is present

  15. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat

    Science.gov (United States)

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-01-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg−1, i.p.; 6 h) resulted in an increase (PFlurbiprofen (21 mg kg−1, i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of ‘crosstalk' between NO and H2S in this model of endotoxic shock. PMID:16491094

  16. Therapeutic strategies to address neuronal nitric oxide synthase deficiency and the loss of nitric oxide bioavailability in Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Timpani, Cara A; Hayes, Alan; Rybalka, Emma

    2017-05-25

    Duchenne Muscular Dystrophy is a rare and fatal neuromuscular disease in which the absence of dystrophin from the muscle membrane induces a secondary loss of neuronal nitric oxide synthase and the muscles capacity for endogenous nitric oxide synthesis. Since nitric oxide is a potent regulator of skeletal muscle metabolism, mass, function and regeneration, the loss of nitric oxide bioavailability is likely a key contributor to the chronic pathological wasting evident in Duchenne Muscular Dystrophy. As such, various therapeutic interventions to re-establish either the neuronal nitric oxide synthase protein deficit or the consequential loss of nitric oxide synthesis and bioavailability have been investigated in both animal models of Duchenne Muscular Dystrophy and in human clinical trials. Notably, the efficacy of these interventions are varied and not always translatable from animal model to human patients, highlighting a complex interplay of factors which determine the downstream modulatory effects of nitric oxide. We review these studies herein.

  17. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    Science.gov (United States)

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  18. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  19. Nitric oxide formation in H2/CO syngas non-premixed jet flames

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Richardson, E.S.; van Oijen, J.A.; Luo, K.H.; Jiang, X.

    2015-01-01

    Direct numerical simulations (DNS) of high hydrogen content (HHC) syngas nonpremixed jet flames have been carried out to study the nitric oxide (NO) formation. The detailed chemistry employed is the GRI 3.0 updated with the influence of the NCN radical chemistry using flamelet generated manifolds

  20. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  1. Nitric oxide in the rat cerebellum after hypoxia/ischemia.

    Science.gov (United States)

    Rodrigo, José; Fernández, Ana Patricia; Alonso, David; Serrano, Julia; Fernández-Vizarra, Paula; Martínez-Murillo, Ricardo; Bentura, María Luisa; Martinez, Alfredo

    2004-01-01

    Nitric oxide is a regulatory biological substance and an important intracellular messenger that acts as a specific mediator of various neuropathological disorders. In mammals and invertebrates, nitric oxide is synthesized from L-arginine in the central and peripheral neural structures by the endothelial, neuronal and inducible enzymatic isoforms of nitric oxide synthase. Nitric oxide may affect the function of various neurotransmitter-specific systems, and is involved in neuromodulation, reproductive function, immune response, and regulation of the cerebral blood circulation. This makes nitric oxide the main candidate in brain responses to brain ischemia/hypoxia. The cerebellum has been reported to be the area of the brain that has the highest nitric oxide synthase activity and the highest concentration of glutamate and aspartate. By glutamate receptors and physiological action of nitric oxide, cyclic guanisine-5'-monophosphate may be rapidly increased. The cerebellum significantly differs with respect to ischemia and hypoxia, this response being directly related to the duration and intensity of the injury. The cerebellum could cover the eventual need for nitric oxide during the hypoxia, boosting the nitric oxide synthase activity, but overall ischemia would require de novo protein synthesis, activating the inducible nitric oxide synthase to cope with the new situation. The specific inhibitors of nitric oxide synthesis show neuroprotective effects.

  2. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  3. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  4. 21 CFR 862.3080 - Breath nitric oxide test system.

    Science.gov (United States)

    2010-04-01

    ... Systems § 862.3080 Breath nitric oxide test system. (a) Identification. A breath nitric oxide test system... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath nitric oxide test system. 862.3080 Section... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to...

  5. 21 CFR 868.5165 - Nitric oxide administration apparatus.

    Science.gov (United States)

    2010-04-01

    ... apparatus. (a) Identification. The nitric oxide administration apparatus is a device used to add nitric oxide to gases that are to be breathed by a patient. The nitric oxide administration apparatus is to be used in conjunction with a ventilator or other breathing gas administration system. (b) Classification...

  6. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynin, D; Friedman, G [Electrical and Computer Engineering Department, College of Engineering, Drexel University, Philadelphia, PA (United States); Arjunan, K; Clyne, A Morss [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA (United States); Fridman, A, E-mail: alisam@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA (United States)

    2011-02-23

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 {+-} 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  7. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    International Nuclear Information System (INIS)

    Dobrynin, D; Friedman, G; Arjunan, K; Clyne, A Morss; Fridman, A

    2011-01-01

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 ± 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  8. Nitric oxide in the psychobiology of mental disorders

    Directory of Open Access Journals (Sweden)

    Altan Eşsizoğlu

    2009-03-01

    Full Text Available Nitric oxide is in a gaseous form and is widespread in the human body. It functions by acting as a secondary messenger in the modulatory activities of neuronal functions of the central nervous system. Nitric oxide is the first identified neurotransmitter of the nontraditional neurotransmitter family.Studies conducted on experimental animals demonstrate that nitric oxide has a neuromodulatory efficacy on the secretions of other neurotransmitters and that it has an effect on learning and memory functions, and on various neuronal mechanisms. Many studies have been conducted to investigate the location of nitric oxide in the central nervous system, its effect on anxiety and depression, its relationship with other neurotransmitters, and also about its role on neurotoxicity. There are clinical studies concerning the level of nitrate, a product of nitric oxide metabolism, and also experimental studies concerning its rewarding effect of alcohol and substance use, in patients with depression and schizophrenia. However, limited studies have been conducted to investigate its relationship with stress, which is an important factor in the etiology of psychiatric disorders. These studies demonstrate that nitric oxide is closely related with stress physiology.Nitric oxide is a neuromodulator, which is frequently being mentioned about nowadays in psychiatry. Clinical and experimental studies play an important role in the psychobiology of psychiatric disorders.

  9. Cellular signaling with nitric oxide and cyclic GMP

    Directory of Open Access Journals (Sweden)

    F. Murad

    1999-11-01

    Full Text Available During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.

  10. Nitric Oxide Metabolites and Asymmetric Dimethylarginine Concentrations in Breast Milk

    Directory of Open Access Journals (Sweden)

    Hakan Öztürk

    2017-04-01

    Full Text Available Objective: Nitric oxide plays a preventive role in the development of necrotizing enterocolitis. Oral nitrite and nitrate intake has gained importance with the discovery of the conversion of nitrite to nitric oxide in acidic medium out of the synthesis of nitric oxide from L-arginine. Objective of this study was to examine the breast milk concentrations of nitric oxide and asymmetric dimethylarginine which is a competitive inhibitor of nitric oxide and to compare these concentrations in terms of gestational age and maturity of breast milk. Study Design: Forty-one women were included in the study. Milk samples were collected from 3 groups of mothers as term, late preterm and preterm on the postpartum days 3, 7 and 28. Results: When breast milk concentrations of nitric oxide were compared according to the postnatal day of the milk independently from gestational age; nitric oxide concentration was higher in the colostrum than in the transition milk and mature milk (p=0,035; p=0,001; respectively. For the comparison of asymmetric dimethylarginine concentrations among these groups and days; no statistically significant difference was observed in terms of gestational age and maturity of the milk (p=0.865, p=0.115; respectively. Conclusion: The highest nitric oxide concentration was found in the colostrum, suggesting that colostrum is a valuable food for newborns. Plasma concentrations of asymmetric dimethylarginine were negatively correlated with nitric oxide and did not show a correlation with breast milk, suggesting that asymmetric dimethylargininedoesn’t make nitric oxide inhibition in breast milk.

  11. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide

    Science.gov (United States)

    2012-01-01

    Background In ancient times, plants were recognized for their medicinal properties. Later, the arrival of synthetic drugs pushed it to the backstage. However, from being merely used for food, plants are now been widely explored for their therapeutic value. The current study explores the potential of skin and flesh extracts from a hard-necked Rocambole variety of purple garlic in preventing cardiomyocyte hypertrophy and cell death. Methods Norepinephrine (NE) was used to induce hypertrophy in adult rat cardiomyocytes pretreated with garlic skin and flesh extracts. Cell death was measured as ratio of rod to round shaped cardiomyocytes. Fluorescent probes were used to measure apoptosis and oxidative stress in cardiomyocytes treated with and without extracts and NE. Pharmacological blockade of nitric oxide (NO) and hydrogen sulfide (H2S) were used to elucidate the mechanism of action of garlic extracts. Garlic extract samples were also tested for alliin and allicin concentrations. Results Exposure of cardiomyocytes to NE induced an increase in cell size and cell death; this increase was significantly prevented upon treatment with garlic skin and flesh extracts. Norepinephrine increased apoptosis and oxidative stress in cardiomyocytes which was prevented upon pretreatment with skin and flesh extracts; NO, and H2S blockers significantly inhibited this beneficial effect. Allicin and alliin concentration were significantly higher in garlic flesh extract when compared to the skin extract. Conclusion These results suggest that both skin and flesh garlic extracts are effective in preventing NE induced cardiomyocyte hypertrophy and cell death. Reduction in oxidative stress may also play an important role in the anti-hypertrophic and anti-apoptotic properties of garlic extracts. These beneficial effects may in part be mediated by NO and H2S. PMID:22931510

  12. Hydrogen sulfide and nitric oxide metabolites in the blood of free-ranging brown bears and their potential roles in hibernation

    DEFF Research Database (Denmark)

    Revsbech, Inge G; Shen, Xinggui; Chakravarti, Ritu

    2014-01-01

    inhibitors of mitochondrial respiration, hydrogen sulfide (H2S) and nitric oxide (NO), in winter-hibernating and summer-active free-ranging Scandinavian brown bears. We found that levels of sulfide metabolites were overall similar in summer-active and hibernating bears but their composition in the plasma...... differed significantly, with a decrease in bound sulfane sulfur in hibernation. High levels of unbound free sulfide correlated with high levels of cysteine (Cys) and with low levels of bound sulfane sulfur, indicating that during hibernation H2S, in addition to being formed enzymatically from the substrate...... Cys, may also be regenerated from its oxidation products, including thiosulfate and polysulfides. In the absence of any dietary intake, this shift in the mode of H2S synthesis would help preserve free Cys for synthesis of glutathione (GSH), a major antioxidant found at high levels in the red blood...

  13. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  14. On hydrazine oxidation in nitric acid media

    International Nuclear Information System (INIS)

    Zil'berman, B.Ya.; Lelyuk, G.A.; Mashkin, A.N.; Yasnovitskaya, A.L.

    1988-01-01

    Yield of products of radiolytic ( 60 Co gamma radiation) and chemical hydrazine (HZ) oxidation in nitric acid media is studied. Under radiolyte HZ oxidation by nitric acid hydrazoic acid, ammonia and nitrogen appear to be the reaction products. HN 3 yield maximum under HZN oxidation makes up ∼ 0.35 mol per a mol of oxiduzed HZN. Under chemical oxidation HZN is oxidized by HNO 3 according to reaction catalysed by technetium HN 3 yield makes up ∼ 0.35 mol per a mol of oxidized HZN. Radiation-chemical oxidation of HN 3 proceeds up to its complete decomposition, decomposition rate is comparable with HZ oxidation rate. Under the chemical oxidation HN 3 is more stable, it is slowly decomposed after complete HZ decomposition

  15. Physiological Levels of Nitric Oxide Diminish Mitochondrial Superoxide. Potential Role of Mitochondrial Dinitrosyl Iron Complexes and Nitrosothiols

    Directory of Open Access Journals (Sweden)

    Sergey I. Dikalov

    2017-11-01

    Full Text Available Mitochondria are the major source of superoxide radicals and superoxide overproduction contributes to cardiovascular diseases and metabolic disorders. Endothelial dysfunction and diminished nitric oxide levels are early steps in the development of these pathological conditions. It is known that physiological production of nitric oxide reduces oxidative stress and inflammation, however, the precise mechanism of “antioxidant” effect of nitric oxide is not clear. In this work we tested the hypothesis that physiological levels of nitric oxide diminish mitochondrial superoxide production without inhibition of mitochondrial respiration. In order to test this hypothesis we analyzed effect of low physiological fluxes of nitric oxide (20 nM/min on superoxide and hydrogen peroxide production by ESR spin probes and Amplex Red in isolated rat brain mitochondria. Indeed, low levels of nitric oxide substantially attenuated both basal and antimycin A-stimulated production of reactive oxygen species in the presence of succinate or glutamate/malate as mitochondrial substrates. Furthermore, slow releasing NO donor DPTA-NONOate (100 μM did not change oxygen consumption in State 4 and State 3. However, the NO-donor strongly inhibited oxygen consumption in the presence of uncoupling agent CCCP, which is likely associated with inhibition of the over-reduced complex IV in uncoupled mitochondria. We have examined accumulation of dinitrosyl iron complexes and nitrosothiols in mitochondria treated with fast-releasing NO donor MAHMA NONOate (10 μM for 30 min until complete release of NO. Following treatment with NO donor, mitochondria were frozen for direct detection of dinitrosyl iron complexes using Electron Spin Resonance (ESR while accumulation of nitrosothiols was measured by ferrous-N-Methyl-D-glucamine dithiocarbamate complex, Fe(MGD2, in lysed mitochondria. Treatment of mitochondria with NO-donor gave rise to ESR signal of dinitrosyl iron complexes while ESR

  16. Mitochondrial dysfunction associated with nitric oxide pathways in glutamate neurotoxicity.

    Science.gov (United States)

    Manucha, Walter

    Multiple mechanisms underlying glutamate-induced neurotoxicity have recently been discussed. Likewise, a clear deregulation of the mitochondrial respiratory mechanism has been described in patients with neurodegeneration, oxidative stress, and inflammation. This article highlights nitric oxide, an atypical neurotransmitter synthesized and released on demand by the post-synaptic neurons, and has many important implications for nerve cell survival and differentiation. Consequently, synaptogenesis, synapse elimination, and neurotransmitter release, are nitric oxide-modulated. Interesting, an emergent role of nitric oxide pathways has been discussed as regards neurotoxicity from glutamate-induced apoptosis. These findings suggest that nitric oxide pathways modulation could prevent oxidative damage to neurons through apoptosis inhibition. This review aims to highlight the emergent aspects of nitric oxide-mediated signaling in the brain, and how they can be related to neurotoxicity, as well as the development of neurodegenerative diseases development. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    Science.gov (United States)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  18. Reproducibility of exhaled nitric oxide measurements in overweight and obese adults

    NARCIS (Netherlands)

    Thijs, Willemien; de Mutsert, Renée; le Cessie, Saskia; Hiemstra, Pieter S.; Rosendaal, Frits R.; Middeldorp, Saskia; Rabe, Klaus F.

    2014-01-01

    Exhaled nitric oxide is a noninvasive measure of airway inflammation that can be detected by a handheld device. Obesity may influence the reproducibility of exhaled nitric oxide measurements, by - for instance - decreased expiratory reserve volume. We analyzed triple exhaled nitric oxide

  19. JS-K, a Nitric Oxide Prodrug, Has Enhanced Cytotoxicity in Colon Cancer Cells with Knockdown of Thioredoxin Reductase 1

    Science.gov (United States)

    Edes, Kornelia; Cassidy, Pamela; Shami, Paul J.; Moos, Philip J.

    2010-01-01

    Background The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1 have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin reductase in redox initiated apoptotic processes is warranted. Methodology The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured. Conclusions/Significance In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1 was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner. PMID:20098717

  20. Nitric oxide-induced interstrand cross-links in DNA.

    Science.gov (United States)

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  1. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes.

    Science.gov (United States)

    Kellogg, Dean L; McCammon, Karen M; Hinchee-Rodriguez, Kathryn S; Adamo, Martin L; Roman, Linda J

    2017-09-01

    Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H 2 O 2 ) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H 2 O 2 -induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H 2 O 2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H 2 O 2 -stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H 2 O 2 -activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  2. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  3. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  4. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  5. Estimation of the nitric oxide formed from hydroxylamine by Nitrosomonas

    Science.gov (United States)

    Anderson, J. H.

    1965-01-01

    1. Nitric oxide that was produced by reducing nitrite with an excess of acidified potassium iodide under nitrogen in Warburg respirometer flasks was rapidly absorbed by a solution of permanganate in sodium hydroxide held in the side arm. A small amount of nitrous oxide (or nitrogen) that was also produced was not absorbed. 2. By using a quantitative method for the recovery of nitrite from samples of the alkaline permanganate, it was found that the sum of the nitrite N formed and the residual nitrous oxide N was equivalent to the nitrite N used to generate the gases. These results showed that alkaline permanganate completely oxidized nitric oxide to nitrite. The method was suitable for determining 0·4–20 μmoles of nitric oxide. 3. The technique was used to determine the nitric oxide content of the nitrogenous gas that was produced anaerobically from hydroxylamine by an extract of the autotrophic nitrifying micro-organism Nitrosomonas in the presence of methylene blue as electron acceptor. PMID:14342235

  6. The correlation between total antioxidant capacity and nitric oxide ...

    African Journals Online (AJOL)

    DNA damage was measured by comet assay and nitric oxide concentration was evaluated by Griess assay. TAC was measured in seminal plasma based on the generation of peroxyl radicals from 2,2-azinobis (2-amidino propane) dihydrochlorid (AAPH). Our results show that the means of DNA damage and nitric oxide ...

  7. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  8. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  9. Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway.

    Science.gov (United States)

    Achike, Francis I; Kwan, Chiu-Yin

    2003-09-01

    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or

  10. Dynamics of the water dimer + nitric oxide collision

    Energy Technology Data Exchange (ETDEWEB)

    Ree, Jong Baik [Dept. of Chemistry Education, Chonnam National University, Gwangju (Korea, Republic of); Kim, Yoo Hang [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of); Shin, Hyung Kyu [Dept. of Chemistry, University of Nevada, Nevada (Korea, Republic of)

    2017-02-15

    Collision-induced intermolecular energy transfer and intramolecular vibrational redistribution in the collision of a water dimer and nitric oxide are studied by use of quasiclassical procedures. Intermolecular energy flow is shown to occur mainly through a direct-mode mechanism transferring relatively large amounts in strong collisions. About a quarter of the energy initially deposited in the dimer transfers to the ground state NO, while the rest redistributes among internal motions of the collision system. The main portion of initial energy deposited in the dimer redistributes in the stretches of the donor monomer through the 1:1 resonance followed by in the bend through the 1:2 resonance. Energy transfer from the excited NO to the ground-state dimer is equally efficient, transferring more than half the initial excitation to the donor monomer, the efficiency that is attributed to the internal modes operating as energy reservoirs. The hydrogen bond shares about 15% of the initial excitation stored in both dimer-to-NO and NO-to-dimer processes as a result of strong coupling of the hydrogen bond with the proton-donor OH bond of the monomer. A small fraction of collisions proceeds through a complex-mode mechanism and lead to NO dissociation, the dissociated O atom showing a propensity to form a new hydrogen bond.

  11. Cannula sensor for nitric oxide detection

    Energy Technology Data Exchange (ETDEWEB)

    Glazier, S.A. [National Institute of Standard and Technology, Gaithersburg, MD (United States)

    1995-12-31

    Nitric oxide (NO) has received much attention because of its numerous roles in mammalian systems. It has been found in the brain and nervous system to act as a neurotransmitter, in blood vessels as a blood pressure regulator, in the immune system to act as a bactericide and tumorcide, and in other postulated roles as well. Nitric oxide is produced in mammalian cells by the enzyme nitric oxide synthetase. Once produced, NO is oxidized or reacts rapidly with components in living systems and hence has a short half-life. Only a few sensors have been constructed which can detect NO at nanomolar to micromolar levels found in these systems. We are currently examining the use of a cannula sensor employing oxyhemoglobin for NO detection. This sensor continuously draws in liquid sample at a low rate and immediately reacts it with oxyhemoglobin. The absorbance changes which accompany the reaction are monitored. The sensor has a linear response range from approximately 50 to 1000 nM of NO in aqueous solution. Its utility in monitoring NO produced by stimulated murine macrophage cells (RAW 264.7) in culture is currently being examined. The sensor design is generic in that it can also employ fluorescence and chemiluminescence detection chemistries which may allow lower detection limits to be achieved. Details of the sensor`s performance will be given.

  12. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  13. Zeolites as catalyzer to environmental control. Nitric oxide removal

    International Nuclear Information System (INIS)

    Montes, C.; Zapata N, M; Villa H, A.L.

    1995-01-01

    Zeolites and the microporous materials related to them are a class of environmental catalysts, it which are used to remove the produced gases in combustion process (as mobile sources). In this work the importance that has catalysis for environment improvement is emphasized. A review of recent progress in the use of certain zeolitic material as catalysts for nitric oxide elimination of combustion systems is presented. More used nitric oxide removal methods are presented, as well as its advantages and disadvantages. Furthermore, it is emphasized on the need of accomplishing more investigation projects on the development of an active catalyst for the decomposition of the nitric oxide in its elements (N and O)

  14. Pu-erh Tea Reduces Nitric Oxide Levels in Rats by Inhibiting Inducible Nitric Oxide Synthase Expression through Toll-Like Receptor 4

    Science.gov (United States)

    Xu, Yang; Wang, Guan; Li, Chunjie; Zhang, Min; Zhao, Hang; Sheng, Jun; Shi, Wei

    2012-01-01

    Pu-erh tea undergoes a unique fermentation process and contains theabrownins, polysaccharides and caffeine; although it is unclear about which component is associated with the down regulation of nitric oxide levels or how this process is mediated. To address this question we examined the effects of pu-erh tea on nitric oxide synthase (NOS) genes. Cohorts of rats were separately given four-week treatments of water as control, pu-erh tea, or the tea components: theabrownins, caffeine or polysaccharides. Five experimental groups were injected with lipopolysaccharides (LPS) to induce nitric oxide (NO) production, while the corresponding five control groups were injected with saline as a negative control. The serum and liver NO concentrations were examined and the NOS expression of both mRNA and protein was measured in liver. The results showed that the rats which were fed pu-erh tea or polysaccharides had lower levels of NO which corresponded with the down-regulation of inducible nitric oxide synthase (iNOS) expression. We further demonstrate that this effect is mediated through reduction of Toll-like receptor 4 (TLR4) signaling. Thus we find that the polysaccharide components in pu-erh tea reduce NO levels in an animal model by inhibiting the iNOS expression via signaling through TLR4. PMID:22837686

  15. Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide

    Science.gov (United States)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681

  16. SOIL NITROUS OXIDE, NITRIC OXIDE, AND AMMONIA EMISSIONS FROM A RECOVERING RIPARIAN ECOSYSTEM IN SOUTHERN APPALACHIA

    Science.gov (United States)

    The paper presents two years of seasonal nitric oxide, ammonia, and nitrous oxide trace gas fluxes measured in a recovering riparian zone with cattle excluded and in an adjacent riparian zone grazed by cattle. In the recovering riparian zone, average nitric oxide, ammonia, and ni...

  17. Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance.

    Science.gov (United States)

    Lee, J; Kim, H T; Solares, G J; Kim, K; Ding, Z; Ivy, J L

    2015-02-01

    Boosting nitric oxide production during exercise by various means has been found to improve exercise performance. We investigated the effects of a nitric oxide releasing lozenge with added caffeine (70 mg) on oxygen consumption during steady-state exercise and cycling time trial performance using a double-blinded randomized, crossover experimental design. 15 moderately trained cyclists (7 females and 8 males) were randomly assigned to ingest the caffeinated nitric oxide lozenge or placebo 5 min before exercise. Oxygen consumption and blood lactate were assessed at rest and at 50%, 65% and 75% maximal oxygen consumption. Exercise performance was assessed by time to complete a simulated 20.15 km cycling time-trial course. No significant treatment effects for oxygen consumption or blood lactate at rest or during steady-state exercise were observed. However, time-trial performance was improved by 2.1% (p<0.01) when participants consumed the nitric oxide lozenge (2,424±69 s) compared to placebo (2,476±78 s) and without a significant difference in rating of perceived exertion. These results suggest that acute supplementation with a caffeinated nitric oxide releasing lozenge may be a practical and effective means of improving aerobic exercise performance. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China); Zhang, Qunye, E-mail: wz.zhangqy@sdu.edu.cn [Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong (China); Li, Guorong, E-mail: grli@sdnu.edu.cn [Shandong Provincial Key Laboratory of Animal Resistant Biology, School of Life Sciences, Shandong Normal University, Jinan 250014 (China)

    2015-03-13

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.

  19. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein S-nitrosylation in breast cancer cells

    International Nuclear Information System (INIS)

    Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling; Ma, Long; Liu, Tingting; Chai, Rongfei; Zheng, Zhaodi; Zhang, Qunye; Li, Guorong

    2015-01-01

    As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-induced inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation

  20. Non-asthmatic patients show increased exhaled nitric oxide concentrations

    Directory of Open Access Journals (Sweden)

    Beatriz M. Saraiva-Romanholo

    2009-01-01

    Full Text Available OBJECTIVE: Evaluate whether exhaled nitric oxide may serve as a marker of intraoperative bronchospasm. INTRODUCTION: Intraoperative bronchospasm remains a challenging event during anesthesia. Previous studies in asthmatic patients suggest that exhaled nitric oxide may represent a noninvasive measure of airway inflammation. METHODS: A total of 146,358 anesthesia information forms, which were received during the period from 1999 to 2004, were reviewed. Bronchospasm was registered on 863 forms. From those, three groups were identified: 9 non-asthmatic patients (Bronchospasm group, 12 asthmatics (Asthma group and 10 subjects with no previous airway disease or symptoms (Control group. All subjects were submitted to exhaled nitric oxide measurements (parts/billion, spirometry and the induced sputum test. The data was compared by ANOVA followed by the Tukey test and Kruskal-Wallis followed by Dunn's test. RESULTS: The normal lung function test results for the Bronchospasm group were different from those of the asthma group (p <0.05. The median percentage of eosinophils in induced sputum was higher for the Asthma [2.46 (0.45-6.83] compared with either the Bronchospasm [0.55 (0-1.26] or the Control group [0.0 (0] (p <0.05; exhaled nitric oxide followed a similar pattern for the Asthma [81.55 (57.6-86.85], Bronchospasm [46.2 (42.0 -62.6] and Control group [18.7 (16.0-24.7] (p< 0.05. CONCLUSIONS: Non-asthmatic patients with intraoperative bronchospasm detected during anesthesia and endotracheal intubation showed increased expired nitric oxide.

  1. Role of nitric oxide in glucose-, fructose and galactose-induced ...

    African Journals Online (AJOL)

    Previous studies have shown that the infusion of glucose, fructose and galactose resulted in significant increases in intestinal glucose uptake (IGU) and the role of nitric oxide in these responses was not known. The present study was designed to investigate the role of nitric oxide in the observed increases in IGU.

  2. Pain modulation by nitric oxide in the spinal cord.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio M Freire

    2009-09-01

    Full Text Available Nitric oxide (NO is a versatile messenger molecule first associated with endothelial relaxing effects. In the central nervous system (CNS, NO synthesis is primarily triggered by activation of N-methyl-D-aspartate (NMDA receptors and has a Janus face, with both beneficial and harmful properties, depending on concentration and the identity of its synthetic enzyme isoform. There are three isoforms of the NO synthesizing enzyme nitric oxide synthase (NOS: neuronal (nNOS, endothelial (eNOS, and inducible nitric oxide synthase (iNOS, each one involved with specific events in the brain. In CNS, nNOS is involved with modulation of synaptic transmission through long-term potentiation in several regions, including nociceptive circuits in the spinal cord. Here, we review the role played by NO on central pain sensitization.

  3. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so-called del......SUMMARY: Nitric oxide (NO) is a very important molecule in the regulation of cerebral and extra cerebral cranial blood flow and arterial diameters. It is also involved in nociceptive processing. Glyceryl trinitrate (GTN), a pro-drug for NO, causes headache in normal volunteers and a so......-called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...

  4. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  5. Influence of nitric oxide on histamine and carbachol – induced ...

    African Journals Online (AJOL)

    The study aimed to determine the influence of nitric oxide (NO) on the action of histamine and carbachol on acid secretion in the common African toad – Bufo regularis. Gastric acidity was determined by titration method. The acid secretion was determined when nitric oxide was absent following administration of NO synthase ...

  6. Comparison the effects of nitric oxide and spermidin pretreatment on alleviation of salt stress in chamomile plant (Matricaria recutita L.

    Directory of Open Access Journals (Sweden)

    Fazelian Nasrin

    2012-08-01

    Full Text Available Salt stress is an important environmental stress that produces reactive oxygen species in plants and causes oxidative injuries. In this investigation, salt stress reduced the shoot and root length, while increased the content of malondealdehyde, Hydrogen peroxide, and the activity of Ascorbate peroxidase andguaiacol peroxidase. Pretreatment of chamomile plants under salt stress with sodium nitroprussideand Spermidin caused enhancement of growth parameters and reduction of malondealdehyde and Hydrogen peroxide content. Pretreatment of plants with sodium nitroprusside remarkably increased Ascorbate peroxidase activity, while Spermidin pre-treatment significantly increased guaiacol peroxidase activity. Application of sodium nitroprusside or Spermidin with Methylene blue which is known to block cyclic guanosine monophosphate signaling pathway, reduced the protective effects of sodium nitroprussideand Spermidin in plants under salinity condition. The result of this study indicated that Methylene blue could partially and entirely abolish the protective effect of Nitric oxide on some physiological parameter. Methylene blue also has could reduce the alleviation effect of Spermidin on some of parameters in chamomile plant under salt stress, so with comparing the results of this study it seems that Spermidin probably acts through Nitric oxide pathway, but the use of 2-4- carboxyphenyl- 4,4,5,5- tetramethyl-imidazoline-1-oxyl-3-oxide is better to prove.

  7. A plasma needle generates nitric oxide

    International Nuclear Information System (INIS)

    Stoffels, E; Gonzalvo, Y Aranda; Whitmore, T D; Seymour, D L; Rees, J A

    2006-01-01

    Generation of nitric oxide (NO) by a plasma needle is studied by means of mass spectrometry. The plasma needle is an atmospheric glow generated by a radio-frequency excitation in a mixture of helium and air. This source is used for the treatment of living tissues, and nitric oxide may be one of the most important active agents in plasma therapy. Efficient NO generation is of particular importance in the treatment of cardiovascular diseases. Mass spectrometric measurements have been performed under various plasma conditions; gas composition in the plasma and conversion of feed gases (nitrogen and oxygen) into other species has been studied. Up to 30% of the N 2 and O 2 input is consumed in the discharge, and NO has been identified as the main conversion product

  8. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress.

    Science.gov (United States)

    Zhang, Yin Hua

    2017-01-01

    Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S -nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  9. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    International Nuclear Information System (INIS)

    Na, Young Ho; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup; Kumar, Naresh

    2015-01-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development. (paper)

  10. Circulating nitric oxide products do not solely reflect nitric oxide release in cirrhosis and portal hypertension

    DEFF Research Database (Denmark)

    Afzelius, Pia; Bazeghi, Nassim; Bie, Peter

    2011-01-01

    Patients with cirrhosis often develop a systemic vasodilatation and a hyperdynamic circulation with activation of vasoconstrictor systems such as the renin-angiotensin-aldosterone system (RAAS), and vasopressin. Increased nitric oxide (NO) synthesis has been implicated in the development of this ...

  11. Hyperbaric oxygen therapy may overcome nitric oxide blockage during cyanide intoxication

    DEFF Research Database (Denmark)

    Polzik, Peter; Hansen, Marco Bo; Olsen, Niels Vidiendal

    2017-01-01

    PURPOSE: To determine the effects of a blockade of nitric oxide (NO) synthesis on hyperbaric oxygen (HBO₂) therapy during cyanide (CN) intoxication. METHODS: 39 anesthetized female Sprague-Dawley rats were exposed to CN intoxication (5.4 mg/kg intra-arterially) with or without previous nitric oxide...

  12. Resveratrol and Endothelial Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-10-01

    Full Text Available Nitric oxide (NO derived from the endothelial NO synthase (eNOS has antihypertensive, antithrombotic, anti-atherosclerotic and antiobesogenic properties. Resveratrol is a polyphenol phytoalexin with multiple cardiovascular and metabolic effects. Part of the beneficial effects of resveratrol are mediated by eNOS. Resveratrol stimulates NO production from eNOS by a number of mechanisms, including upregulation of eNOS expression, stimulation of eNOS enzymatic activity and reversal of eNOS uncoupling. In addition, by reducing oxidative stress, resveratrol prevents oxidative NO inactivation by superoxide thereby enhancing NO bioavailability. Molecular pathways underlying these effects of resveratrol involve SIRT1, AMPK, Nrf2 and estrogen receptors.

  13. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?

    International Nuclear Information System (INIS)

    Liu Jing; Gupta, Ramesh C.; Goad, John T.; Karanth, Subramanya; Pope, Carey

    2007-01-01

    Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with no significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation

  14. Endothelial Nitric Oxide Synthase Phosphorylation at Threonine 495 and Mitochondrial Reactive Oxygen Species Formation in Response to a High H2O2 Concentration

    DEFF Research Database (Denmark)

    Guterbaum, Thomas Jeremy; Braunstein, Thomas Hartig; Fossum, A

    2013-01-01

    Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein end...

  15. Three Gaseous Neurotransmitters, Nitric oxide, Carbon Monoxide, and Hydrogen Sulfide, Are Involved in the Neurogenic Relaxation Responses of the Porcine Internal Anal Sphincter.

    Science.gov (United States)

    Folasire, Oladayo; Mills, Kylie A; Sellers, Donna J; Chess-Williams, Russ

    2016-01-31

    The internal anal sphincter (IAS) plays an important role in maintaining continence and a number of neurotransmitters are known to regulate IAS tone. The aim of this study was to determine the relative importance of the neurotransmitters involved in the relaxant and contractile responses of the porcine IAS. Responses of isolated strips of IAS to electrical field stimulation (EFS) were obtained in the absence and presence of inhibitors of neurotransmitter systems. Contractile responses of the sphincter to EFS were unaffected by the muscarinic receptor antagonist, atropine (1 μM), but were almost completely abolished by the adrenergic neuron blocker guanethidine (10 μM). Contractile responses were also reduced (by 45% at 5 Hz, P 40-50% reduction), zinc protoprophyrin IX (10 μM), an inhibitor of carbon monoxide synthesis (20-40% reduction), and also propargylglycine (30 μM) and aminooxyacetic acid (30 μM), inhibitors of hydrogen sulphide synthesis (15-20% reduction). Stimulation of IAS efferent nerves releases excitatory and inhibitory neurotransmitters: noradrenaline is the predominant contractile transmitter with a smaller component from ATP, whilst 3 gases mediate relaxation responses to EFS, with the combined contributions being nitric oxide > carbon monoxide > hydrogen sulfide.

  16. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N-Nitro-L-arginine induces cortical spreading ischemia when K+0+ is increased in the subarachnoid space

    DEFF Research Database (Denmark)

    Dreier, J.P.; Körner, K.; Ebert, Nathalie

    1998-01-01

    Cerebral blood flow, nitric oxide, potassium, spreading depression, vasospasm, migraine, migrainous stroke, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)......Cerebral blood flow, nitric oxide, potassium, spreading depression, vasospasm, migraine, migrainous stroke, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS)...

  17. Continuous determination of nitric oxide and nitrogen dioxide in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, S; Yamate, N; Mitsuzawa, S; Mori, M

    1966-10-01

    Continuous determinations of nitric oxide and nitrogen dioxide in that atmospheric air by the use of a modified Saltzman reagent is described. Measurement was made intermittently, once every 30 min., by an automatic continuous analyzer equipped with a single-path colorimeter. The response of the analyzer was obtained as an average of the concentration of nitrogen oxides over a period of 25 min. Two bubblers were used for absorbing nitrogen oxides into the modified Saltzman reagent, whose transmittance was measured for the determination. One bubbler was designed to absorb nitrogen dioxide, and the other, nitric oxide plus nitrogen dioxide after the oxidation of the nitric oxide by permanganate. The oxidizing efficiency of the permanganate was 96-100%. The acetic acid in the Saltzman reagent was replaced with n-propyl alcohol in the modified Saltzman reagent; the spontaneous coloration and corrosive quality of the reagent was decreased by this substitution. The concentration of nitric oxide was obtained from the difference between the two responses of the analyzer, while the concentration of nitrogen dioxide could be read directly from the indication of the recorder. The transmittance ratio method was applied to the measurements, accurate determinations were possible, even at high blank values. Therefore, the reagent was used repeatedly by cycling it on the basis of measuring the difference in the coloration of the reagent before and after the absorption of nitrogen oxides. The analyzer could be used for a long period without changing the reagent.

  18. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  19. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  20. Studies on nitric oxide removal in simulated gas compositions under plasma-dielectric/catalytic discharges

    International Nuclear Information System (INIS)

    Rajanikanth, B.S.; Rout, Satyabrata

    2001-01-01

    Application of pulsed electrical discharges for gas cleaning is gaining prominence, mainly from the energy consideration point of view. This present paper presents recent work on applying the electrical discharge plasma technology for treating gaseous pollutants, in general, and nitric oxide, in particular, as this is one of the major contributors to air pollution. The present work focuses attention on pulsed electrical discharge technique for nitric oxide removal from simulated gas compositions and study of effect of packed dielectric pellets, with and without a coating of catalyst, on the removal process. Experiments were conducted in a cylindrical corona reactor energized by repetitive high voltage pulses. The effects of various parameters, viz. pulse voltage magnitude, pulse frequency, initial nitric oxide concentration and gas mixture composition on nitric oxide removal efficiency, are discussed. When the reactors were filled with different dielectric pellets like, barium titanate, alumina, and alumina coated with palladium catalyst, the improvement in nitric oxide removal efficiency is studied and discussed. The power dissipated in the reactor and the energy consumed per nitric oxide molecule removed was calculated. Further results and comparative study of various cases are presented in the paper

  1. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria

    Science.gov (United States)

    Argininosuccinate lyase (ASL) is required for the synthesis and channeling of L-arginine to nitric oxide synthase (NOS) for nitric oxide (NO) production. Congenital ASL deficiency causes argininosuccinic aciduria (ASA), the second most common urea cycle disorder, and leads to deficiency of both urea...

  2. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  3. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  4. Interactions between cytokines and nitric oxide.

    Science.gov (United States)

    Liew, F Y

    1995-01-01

    There is now an impressive range of evidence supporting the important role of cytokines in sleep regulation (see Krueger et al., 1995; De Simoni et al., 1995). It has also been reported that inhibition of nitric oxide (NO) synthesis suppresses sleep in rabbits (Kapás et al., 1994). This is not surprising, since NO is closely involved in neurotransmission (Garthwaite, 1991; Schuman and Madison, 1994) and cytokines are the major inducers of NO synthesis (Hibbs et al., 1990). Further, it is now clear that NO plays an important role in modulating immune responses, possibly through the differential regulation of cytokine synthesis (Taylor-Robinson et al., 1994). In this article, I will provide evidence for the interactions between cytokines and nitric oxide, and discuss their implications in the regulation of immune responses. I shall illustrate these mainly with results from my coworkers and I, from our laboratory rather than attempting an exhaustive review of the subject.

  5. Vascular nitric oxide: Beyond eNOS

    Directory of Open Access Journals (Sweden)

    Yingzi Zhao

    2015-10-01

    Full Text Available As the first discovered gaseous signaling molecule, nitric oxide (NO affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC to produce cyclic guanosine monophosphate (cGMP, although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA or production of cyclic inosine monophosphate (cIMP] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  6. Adrenoceptor-activated nitric oxide synthesis in salivary acinar cells

    DEFF Research Database (Denmark)

    Looms, Dagnia; Dissing, Steen; Tritsaris, Katerina

    2000-01-01

    We investigated the cellular regulation of nitric oxide synthase (NOS) activity in isolated acinar cells from rat parotid and human labial salivary glands, using the newly developed fluorescent nitric oxide (NO) indicator, DAF-2. We found that sympathetic stimulation with norepinephrine (NE) caused...... a strong increase in NO synthesis that was not seen after parasympathetic stimulation with acetylcholine. In rat parotid acinar cells, we furthermore investigated to which extent the NOS activity was dependent on the intracellular free Ca2+ concentration ([Ca2+]i) by simultaneously measuring NO synthesis...

  7. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks

    DEFF Research Database (Denmark)

    Thomsen, L L; Kruuse, C; Iversen, Helle Klingenberg

    1994-01-01

    Supersensitivity to induction of headache and arterial dilatation by a donor of nitric oxide (nitroglycerin) has recently been demonstrated in migraine sufferers. The aims of the present study were to examine whether the nitric oxide donor nitroglycerin may induce a typical migraine attack......, to exclude placebo-related effects and to describe the relation between middle cerebral artery dilatation and provoked migraine. Nitroglycerin (0.5 μg/kg/min for 20 min) or placebo was infused into 12 migraine patients in a double-blind cross-over trial. Blood velocity in the middle cerebral artery...

  8. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  9. Nitric oxide as a mediator of gastrointestinal mucosal injury?—Say it ain't so

    Directory of Open Access Journals (Sweden)

    Paul Kubes

    1995-01-01

    Full Text Available Nitric oxide has been suggested as a contributor to tissue injury in various experimental models of gastrointestinal inflammation. However, there is overwhelming evidence that nitric oxide is one of the most important mediators of mucosal defence, influencing such factors as mucus secretion, mucosal blood flow, ulcer repair and the activity of a variety of mucosal immunocytes. Nitric oxide has the capacity to down-regulate inflammatory responses in the gastrointestinal tract, to scavenge various free radical species and to protect the mucosa from injury induced by topical irritants. Moreover, questions can be raised regarding the evidence purported to support a role for nitric oxide in producing tissue injury. In this review, we provide an overview of the evidence supporting a role for nitric oxide in protecting the gastrointestinal tract from injury.

  10. The myth of nitric oxide in central cardiovascular control by the nucleus tractus solitarii

    Directory of Open Access Journals (Sweden)

    Talman W.T.

    1997-01-01

    Full Text Available Considerable evidence suggests that nitroxidergic mechanisms in the nucleus tractus solitarii (NTS participate in cardiovascular reflex control. Much of that evidence, being based on responses to nitric oxide precursors or inhibitors of nitric oxide synthesis, has been indirect and circumstantial. We sought to directly determine cardiovascular responses to nitric oxide donors microinjected into the NTS and to determine if traditional receptor mechanisms might account for responses to certain of these donors in the central nervous system. Anesthetized adult Sprague Dawley rats that were instrumented for recording arterial pressure and heart rate were used in the physiological studies. Microinjection of nitric oxide itself into the NTS did not produce any cardiovascular responses and injection of sodium nitroprusside elicited minimal depressor responses. The S-nitrosothiols, S-nitrosoglutathione (GSNO, S-nitrosoacetylpenicillamine (SNAP, and S-nitroso-D-cysteine (D-SNC produced no significant cardiovascular responses while injection of S-nitroso-L-cysteine (L-SNC elicited brisk, dose-dependent depressor and bradycardic responses. In contrast, injection of glyceryl trinitrate elicited minimal pressor responses without associated changes in heart rate. It is unlikely that the responses to L-SNC were dependent on release of nitric oxide in that 1 the responses were not affected by injection of oxyhemoglobin or an inhibitor of nitric oxide synthesis prior to injection of L-SNC and 2 L- and D-SNC released identical amounts of nitric oxide when exposed to brain tissue homogenates. Although GSNO did not independently affect blood pressure, its injection attenuated responses to subsequent injection of L-SNC. Furthermore, radioligand binding studies suggested that in rat brain synaptosomes there is a saturable binding site for GSNO that is displaced from that site by L-SNC. The studies suggest that S-nitrosocysteine, not nitric oxide, may be an

  11. Comparison Between the Acute Pulmonary Vascular Effects of Oxygen with Nitric Oxide and Sildenafil

    Directory of Open Access Journals (Sweden)

    Ronald W. Day

    2015-03-01

    Full Text Available Objective. Right heart catheterization is performed in patients with pulmonary arterial hypertension to determine the severity of disease and their pulmonary vascular reactivity. The acute pulmonary vascular effect of inhaled nitric oxide is frequently used to identify patients who will respond favorably to vasodilator therapy. This study sought to determine whether the acute pulmonary vascular effects of oxygen with nitric oxide and intravenous sildenafil are similar. Methods. A retrospective, descriptive study of 13 individuals with pulmonary hypertension who underwent heart catheterization and acute vasodilator testing was performed. The hemodynamic measurements during five phases (21% to 53% oxygen, 100% oxygen, 100% oxygen with 20 ppm nitric oxide, 21% to 51% oxygen, and 21% to 51% oxygen with 0.05 mg/kg to 0.29 mg/kg intravenous sildenafil of the procedures were compared.Results. Mean pulmonary arterial pressure and pulmonary vascular resistance acutely decreased with 100% oxygen with nitric oxide, and 21% to 51% oxygen with sildenafil. Mean pulmonary arterial pressure (mm Hg, mean ± standard error of the mean was 38 ± 4 during 21% to 53% oxygen, 32 ± 3 during 100% oxygen, 29 ± 2 during 100% oxygen with nitric oxide, 37 ± 3 during 21% to 51% oxygen, and 32 ± 2 during 21% to 51% oxygen with sildenafil. There was not a significant correlation between the percent change in pulmonary vascular resistance from baseline with oxygen and nitric oxide, and from baseline with sildenafil (r2 = 0.011, p = 0.738. Conclusions. Oxygen with nitric oxide and sildenafil decreased pulmonary vascular resistance. However, the pulmonary vascular effects of oxygen and nitric oxide cannot be used to predict the acute response to sildenafil. Additional studies are needed to determine whether the acute response to sildenafil can be used to predict the long-term response to treatment with an oral phosphodiesterase V inhibitor.

  12. Glufosinate ammonium stimulates nitric oxide production through N-methyl D-aspartate receptors in rat cerebellum.

    Science.gov (United States)

    Nakaki, T; Mishima, A; Suzuki, E; Shintani, F; Fujii, T

    2000-09-01

    Glufosinate ammonium, a structural analogue of glutamate, is an active herbicidal ingredient. The neuronal activities of this compound were investigated by use of a microdialysis system that allowed us to measure nitric oxide production in the rat cerebellum in vivo. Kainate (0.3-30 nmol/10 microliter), N-methyl-D-aspartate (NMDA) (3-300 nmol/10 microliter) and glufosinate ammonium (30-3000 nmol/10 microliter), which were administered through the microdialysis probe at a rate of 1 microliter/min for 10 min, stimulated nitric oxide production. The glufosinate ammonium-elicited increase in nitric oxide production was suppressed by an inhibitor of nitric oxide synthase and was antagonized by NMDA receptor antagonists, but not by a kainate/(+/-)-alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. These results suggest that glufosinate ammonium stimulates nitric oxide production through NMDA receptors.

  13. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    Science.gov (United States)

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is

  14. Increase of hepatic nitric oxide levels in a nutritional model of fatty ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... (MDA) and protein carbonyl (PC), and also nitric oxide (NO) in over fed broiler breeder hens, 198 hens. (30 weeks old) .... The total protein in the liver tissue was determined by a method ... Table 1. Egg production and LHS in broiler breeder hens .... trations of nitric oxide metabolites (nitrates-nitrites) in rat.

  15. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus.

    Directory of Open Access Journals (Sweden)

    Giovanna Romano

    Full Text Available Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.

  16. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes

  17. Nitric-phosphoric acid oxidation of organic waste materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.

    1995-01-01

    A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO x vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180 degrees C; more stable compounds were decomposed at 200 degrees C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time

  18. Nitric oxide levels in the anterior chamber of vitrectomized eyes with silicon oil

    Directory of Open Access Journals (Sweden)

    Paulo Escarião

    2013-10-01

    Full Text Available PURPOSE: To investigate the nitric oxide levels in the anterior chamber of eyes who underwent pars plana vitrectomy (PPV with silicone oil. METHODS: Patients who underwent PPV with silicon oil injection, from february 2005 to august 2007, were selected. Nine patients (nine eyes participated in the study (five women and four men. Nitric oxide concentration was quantified after the aspiration of aqueous humor samples during the procedure of silicon oil removal. Data such as: oil emulsification; presence of oil in the anterior chamber; intraocular pressure and time with silicone oil were evaluated. Values of p <0.05 were considered to be statistically significant. RESULTS: A positive correlation between nitric oxide concentration and time with silicon oil in the vitreous cavity (r=0.799 was observed. The nitric oxide concentration was significantly higher (p=0.02 in patients with silicon oil more than 24 months (0.90µmol/ml ± 0.59, n=3 in the vitreous cavity comparing to patients with less than 24 months (0.19µmol/ml ± 0.10, n=6. CONCLUSION: A positive correlation linking silicone oil time in the vitreous cavity with the nitric oxide concentration in the anterior chamber was observed.

  19. Carboxyhemoglobin formation secondary to nitric oxide therapy in the setting of interstitial lung disease and pulmonary hypertension.

    Science.gov (United States)

    Ruisi, Phillip; Ruisi, Michael

    2011-01-01

    Carbon monoxide (CO) has been widely recognized as an exogenous poison, although endogenous mechanisms for its formation involve heme-oxygenase (HO) isoforms, more specifically HO-1, in the setting of oxidative stress such as acute respiratory distress syndrome, sepsis, trauma, and nitric oxide use have been studied. In patients with refractory hypoxemia, inhaled nitric oxide (iNO) therapy is used to selectively vasodilate the pulmonary vasculature and improve ventilation-perfusion match. Inhaled nitric oxide is rapidly inactivated on binding to hemoglobin in the formation of nitrosyl- and methemoglobin in the pulmonary vasculature. Hence, inhaled nitric oxide has minimal systemic dissemination. Several experimental design studies involving lab rats have demonstrated increased levels of carboxyhemoglobin and exhaled CO as a result of nitric oxide HO-1 induction.

  20. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  1. Enhancement of vascular targeting by inhibitors of nitric oxide synthase

    International Nuclear Information System (INIS)

    Davis, Peter D.; Tozer, Gillian M.; Naylor, Matthew A.; Thomson, Peter; Lewis, Gemma; Hill, Sally A.

    2002-01-01

    Purpose: This study investigates the enhancement of the vascular targeting activity of the tubulin-binding agent combretastatin A4 phosphate (CA4P) by various inhibitors of nitric oxide synthases. Methods and Materials: The syngeneic tumors CaNT and SaS growing in CBA mice were used for this study. Reduction in perfused vascular volume was measured by injection of Hoechst 33342 24 h after drug administration. Necrosis (hematoxylin and eosin stain) was assessed also at 24 h after treatment. Combretastatin A4 phosphate was synthesized by a modification of the published procedure and the nitric oxide synthase inhibitors L-NNA, L-NMMA, L-NIO, L-NIL, S-MTC, S-EIT, AMP, AMT, and L-TC, obtained from commercial sources. Results: A statistically significant augmentation of the reduction in perfused vascular volume by CA4P in the CaNT tumor was observed with L-NNA, AMP, and AMT. An increase in CA4P-induced necrosis in the same tumor achieved significance with L-NNA, L-NMMA, L-NIL, and AMT. CA4P induced little necrosis in the SaS tumor, but combination with the inhibitors L-NNA, L-NMMA, L-NIO, S-EIT, and L-TC was effective. Conclusions: Augmentation of CA4P activity by nitric oxide synthase inhibitors of different structural classes supports a nitric oxide-related mechanism for this effect. L-NNA was the most effective inhibitor studied

  2. Increasing the Fungicidal Action of Amphotericin B by Inhibiting the Nitric Oxide-Dependent Tolerance Pathway

    Directory of Open Access Journals (Sweden)

    Kim Vriens

    2017-01-01

    Full Text Available Amphotericin B (AmB induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB’s fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB’s action. Hence, superoxide radicals were important for AmB’s fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.

  3. Processes regulating nitric oxide emissions from soils

    DEFF Research Database (Denmark)

    Pilegaard, Kim

    2013-01-01

    , the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes......Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources...

  4. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    Zheng, Dongyun; Liu, Xiaojun; Zhu, Shanying; Cao, Huimin; Chen, Yaguang; Hu, Shengshui

    2015-01-01

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  5. NOpiates: Novel Dual Action Neuronal Nitric Oxide Synthase Inhibitors with μ-Opioid Agonist Activity.

    Science.gov (United States)

    Renton, Paul; Green, Brenda; Maddaford, Shawn; Rakhit, Suman; Andrews, John S

    2012-03-08

    A novel series of benzimidazole designed multiple ligands (DMLs) with activity at the neuronal nitric oxide synthase (nNOS) enzyme and the μ-opioid receptor was developed. Targeting of the structurally dissimilar heme-containing enzyme and the μ-opioid GPCR was predicated on the modulatory role of nitric oxide on μ-opioid receptor function. Structure-activity relationship studies yielded lead compound 24 with excellent nNOS inhibitory activity (IC50 = 0.44 μM), selectivity over both endothelial nitric oxide synthase (10-fold) and inducible nitric oxide synthase (125-fold), and potent μ-opioid binding affinity, K i = 5.4 nM. The functional activity as measured in the cyclic adenosine monosphospate secondary messenger assay resulted in full agonist activity (EC50 = 0.34 μM). This work represents a novel approach in the development of new analgesics for the treatment of pain.

  6. Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing

    Directory of Open Access Journals (Sweden)

    Marcin Magierowski

    2015-05-01

    Full Text Available Nitric oxide (NO and hydrogen sulfide (H2S are known as biological messengers; they play an important role in human organism and contribute to many physiological and pathophysiological processes. NO is produced from l-arginine by constitutive NO synthase (NOS and inducible NOS enzymatic pathways. This gaseous mediator inhibits platelet aggregation, leukocyte adhesion and contributes to the vessel homeostasis. NO is known as a vasodilatory molecule involved in control of the gastric blood flow (GBF and the maintenance of gastric mucosal barrier integrity in either healthy gastric mucosa or that damaged by strong irritants. Biosynthesis of H2S in mammals depends upon two enzymes cystathionine-β-synthase and cystathionine γ-lyase. This gaseous mediator, similarly to NO and carbon monoxide, is involved in neuromodulation, vascular contractility and anti-inflammatory activities. For decades, H2S has been known to inhibit cytochrome c oxidase and reduce cell energy production. Nowadays it is generally considered to act through vascular smooth muscle ATP-dependent K+ channels, interacting with intracellular transcription factors and promote sulfhydration of protein cysteine moieties within the cell, but the mechanism of potential gastroprotective and ulcer healing properties of H2S has not been fully explained. The aim of this review is to compare current results of the studies concerning the role of H2S and NO in gastric mucosa protection and outline areas that may pose new opportunities for further development of novel therapeutic targets.

  7. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. ORIGINAL ARTICLE Relationship between endothelial nitric oxide ...

    African Journals Online (AJOL)

    salah

    The haplotype analysis confirmed ... hand, no consistent association was shown between the two SNPs and SBP or. DBP. ... Endothelial nitric oxide synthase gene polymorphisms and risk of MI .... type (-786T*+894G), the haplotypes ... Tests adjusted for age, BMI, diabetes, current smoking and alcohol consumption.

  9. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  10. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  11. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  12. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  13. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.

    Science.gov (United States)

    Michel, J B; Feron, O; Sase, K; Prabhakar, P; Michel, T

    1997-10-10

    Nitric oxide is synthesized in diverse mammalian tissues by a family of calmodulin-dependent nitric oxide synthases. The endothelial isoform of nitric oxide synthase (eNOS) is targeted to the specialized signal-transducing membrane domains termed plasmalemmal caveolae. Caveolin, the principal structural protein in caveolae, interacts with eNOS and leads to enzyme inhibition in a reversible process modulated by Ca2+-calmodulin (Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997) J. Biol. Chem. 272, 15583-15586). Caveolin also interacts with other structurally distinct signaling proteins via a specific region identified within the caveolin sequence (amino acids 82-101) that appears to subserve the role of a "scaffolding domain." We now report that the co-immunoprecipitation of eNOS with caveolin is completely and specifically blocked by an oligopeptide corresponding to the caveolin scaffolding domain. Peptides corresponding to this domain markedly inhibit nitric oxide synthase activity in endothelial membranes and interact directly with the enzyme to inhibit activity of purified recombinant eNOS expressed in Escherichia coli. The inhibition of purified eNOS by the caveolin scaffolding domain peptide is competitive and completely reversed by Ca2+-calmodulin. These studies establish that caveolin, via its scaffolding domain, directly forms an inhibitory complex with eNOS and suggest that caveolin inhibits eNOS by abrogating the enzyme's activation by calmodulin.

  14. Nitric oxide and TGF-β1 inhibit HNF-4α function in HEPG2 cells

    International Nuclear Information System (INIS)

    Lucas, Susana de; Lopez-Alcorocho, Juan Manuel; Bartolome, Javier; Carreno, Vicente

    2004-01-01

    This study analyzes if the profibrogenic factors nitric oxide and transforming growth factor-β1 (TGF-β1) affect hepatocyte nuclear factor-4α (HNF-4α) function. For this purpose, HepG2 cells were treated with TGF-β1 or with a nitric oxide donor to determine mRNA levels of coagulation factor VII and HNF-4α. Treatment effect on factor VII gene promoter was assessed by chloramphenicol acetyl-transferase assays in cells transfected with the pFVII-CAT plasmid. HNF-4α binding and protein levels were determined by gel shift assays and Western blot. TGF-β1 and nitric oxide downregulated factor VII mRNA levels by inhibiting its gene promoter activity. This inhibition is caused by a decrease in the DNA binding of HNF-4α. TGF-β1 induces degradation of HNF-4α in the proteasome while nitric oxide provokes nitrosylation of cysteine residues in this factor. TGF-β1 and nitric oxide inhibit HNF-4α activity. These findings may explain the loss of liver functions that occurs during fibrosis progression

  15. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    Science.gov (United States)

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a

  16. Altered contractile response due to increased beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Amour, Julien; Loyer, Xavier; Le Guen, Morgan; Mabrouk, Nejma; David, Jean-Stéphane; Camors, Emmanuel; Carusio, Nunzia; Vivien, Benoît; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno

    2007-09-01

    In the diabetic heart, the positive inotropic response to beta-adrenoceptor stimulation is altered and beta1 and beta2 adrenoceptors are down-regulated, whereas beta3 adrenoceptor is up-regulated. In heart failure, beta3-adrenoceptor stimulation induces a negative inotropic effect that results from endothelial nitric oxide synthase (NOS3)-derived nitric oxide production. The objective of our study was to investigate the role of beta3-adrenoceptor in diabetic cardiomyopathy. beta-Adrenergic responses were investigated in vivo (dobutamine echocardiography) and in vitro (left ventricular papillary muscle) in healthy and streptozotocin-induced diabetic rats. The effect of beta3-adrenoceptor inhibition on the inotropic response was studied in vitro. Immunoblots and NOS activities were performed in heart homogenates (electron paramagnetic resonance) and isolated cardiomyocytes. Data are mean percentage of baseline +/- SD. The impaired positive inotropic effect was confirmed in diabetes both in vivo (121 +/- 15% vs. 160 +/- 16%; P < 0.05) and in vitro (112 +/- 5% vs. 179 +/- 15%; P < 0.05). In healthy rat, the positive inotropic effect was not significantly modified in presence of beta3-adrenoceptor antagonist (174 +/- 20%), nonselective NOS inhibitor (N -nitro-l-arginine methylester [l-NAME]; 183 +/- 19%), or selective NOS1 inhibitor (vinyl-l-N-5-(1-imino-3-butenyl)-l-ornithine [l-VNIO]; 172 +/- 13%). In diabetes, in parallel with the increase in beta3-adrenoceptor protein expression, the positive inotropic effect was partially restored by beta3-adrenoceptor antagonist (137 +/- 8%; P < 0.05), l-NAME (133 +/- 11%; P < 0.05), or l-VNIO (130 +/- 13%; P < 0.05). Nitric oxide was exclusively produced by NOS1 within diabetic cardiomyocytes. NOS2 and NOS3 proteins were undetectable. beta3-Adrenoceptor is involved in altered positive inotropic response to beta-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by NOS1-derived nitric oxide in diabetic

  17. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity

    OpenAIRE

    Gladwin, Mark T.; Schechter, Alan N.; Shelhamer, James H.; Pannell, Lewis K.; Conway, Deirdre A.; Hrinczenko, Borys W.; Nichols, James S.; Pease-Fye, Margaret E.; Noguchi, Constance T.; Rodgers, Griffin P.; Ognibene, Frederick P.

    1999-01-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of β-chain cysteine 93, raise the possibilty of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P50, did not respo...

  18. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    Supplementary data: Endothelial nitric oxide synthase polymorphism G298T in association with oxidative DNA damage in coronary atherosclerosis. Rajesh G. Kumar, Mrudula K. Spurthi, Kishore G. Kumar, Sanjib K. Sahu and Surekha H. Rani. J. Genet. 91, 349–352. Table 1. The demographic and clinical data of the CHD ...

  20. Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna.

    Directory of Open Access Journals (Sweden)

    Bethany R Hannas

    2010-08-01

    Full Text Available Nitrate and nitrite (jointly referred to herein as NO(x are ubiquitous environmental contaminants to which aquatic organisms are at particularly high risk of exposure. We tested the hypothesis that NO(x undergo intracellular conversion to the potent signaling molecule nitric oxide resulting in the disruption of endocrine-regulated processes.These experiments were performed with insect cells (Drosophila S2 and whole organisms Daphnia magna. We first evaluated the ability of cells to convert nitrate (NO(3(- and nitrite (NO(2(- to nitric oxide using amperometric real-time nitric oxide detection. Both NO(3(- and NO(2(- were converted to nitric oxide in a substrate concentration-dependent manner. Further, nitric oxide trapping and fluorescent visualization studies revealed that perinatal daphnids readily convert NO(2(- to nitric oxide. Next, daphnids were continuously exposed to concentrations of the nitric oxide-donor sodium nitroprusside (positive control and to concentrations of NO(3(- and NO(2(-. All three compounds interfered with normal embryo development and reduced daphnid fecundity. Developmental abnormalities were characteristic of those elicited by compounds that interfere with ecdysteroid signaling. However, no compelling evidence was generated to indicate that nitric oxide reduced ecdysteroid titers.Results demonstrate that nitrite elicits developmental and reproductive toxicity at environmentally relevant concentrations due likely to its intracellular conversion to nitric oxide.

  1. The effect of inhaled nitric oxide in acute respiratory distress syndrome in children and adults

    DEFF Research Database (Denmark)

    Karam, O; Gebistorf, F; Wetterslev, J

    2017-01-01

    on mortality in adults and children with acute respiratory distress syndrome. We included all randomised, controlled trials, irrespective of date of publication, blinding status, outcomes reported or language. Our primary outcome measure was all-cause mortality. We performed several subgroup and sensitivity......Acute respiratory distress syndrome is associated with high mortality and morbidity. Inhaled nitric oxide has been used to improve oxygenation but its role remains controversial. Our primary objective in this systematic review was to examine the effects of inhaled nitric oxide administration......% CI) 1.59 (1.17-2.16)) with inhaled nitric oxide. In conclusion, there is insufficient evidence to support inhaled nitric oxide in any category of critically ill patients with acute respiratory distress syndrome despite a transient improvement in oxygenation, since mortality is not reduced and it may...

  2. Nitric oxide enhances osmoregulation of tobacco ( Nicotiana ...

    African Journals Online (AJOL)

    This study was carried out to investigate the effect of the intracellular signaling molecule nitric oxide (NO) on osmoregulation of tobacco cells under osmotic stress caused by phenylethanoid glycosides 6000 (PEG 6000). The results show that the PEG stress induced a specific pattern of endogenous NO production with two ...

  3. Inhibition of Inducible Nitric Oxide Synthase, Cycleooxygenase-2 ...

    African Journals Online (AJOL)

    HP

    Won Chung, Jin Uk Oh, Sehyung Lee and Sung-Jin Kim* ... was determined by Western blot analysis for iNOS and COX-2 expression in LPS-stimulated RAW ..... Nitric oxide-scavenging and antioxidant effects ofUraria crinite root. Food.

  4. Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis

    NARCIS (Netherlands)

    Heeringa, P; van Goor, H; Itoh-Lindstrom, Y; Maeda, N; Falk, RJ; Assmann, KJM; Kallenberg, CGM; Jennette, JC

    Nitric oxide (NO) radicals generated by endothelial nitric oxide synthase (eNOS) are involved in the regulation of vascular tone. In addition, NO radicals derived from eNOS inhibit platelet aggregation and leukocyte adhesion to the endothelium and, thus, may have anti-inflammatory effects. To study

  5. Trigeminocardiac reflex by mandibular extension on rat pial microcirculation: role of nitric oxide.

    Directory of Open Access Journals (Sweden)

    Dominga Lapi

    Full Text Available In the present study we have extended our previous findings about the effects of 10 minutes of passive mandibular extension in anesthetized Wistar rats. By prolonging the observation time to 3 hours, we showed that 10 minutes mandibular extension caused a significant reduction of the mean arterial blood pressure and heart rate respect to baseline values, which persisted up to 160 minutes after mandibular extension. These effects were accompanied by a characteristic biphasic response of pial arterioles: during mandibular extension, pial arterioles constricted and after mandibular extension dilated for the whole observation period. Interestingly, the administration of the opioid receptor antagonist naloxone abolished the vasoconstriction observed during mandibular extension, while the administration of Nω-Nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, abolished the vasodilation observed after mandibular extension. Either drug did not affect the reduction of mean arterial blood pressure and heart rate induced by mandibular extension. By qRT-PCR, we also showed that neuronal nitric oxide synthase gene expression was significantly increased compared with baseline conditions during and after mandibular extension and endothelial nitric oxide synthase gene expression markedly increased at 2 hours after mandibular extension. Finally, western blotting detected a significant increase in neuronal and endothelial nitric oxide synthase protein expression. In conclusion mandibular extension caused complex effects on pial microcirculation involving opioid receptor activation and nitric oxide release by both neurons and endothelial vascular cells at different times.

  6. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats.

    Science.gov (United States)

    Bank, N; Aynedjian, H S; Khan, G A

    1994-09-01

    Either acute or chronic inhibition of nitric oxide synthesis by L-arginine analogues results in increases in mean arterial pressure and reductions in renal blood flow. The role of endogenous vasoconstrictors in mediating these effects is not entirely clear. In the present study, nitric oxide was inhibited in male Sprague-Dawley rats by oral administration of nitro-L-arginine for 3 weeks. At the end of this time, mean arterial pressure was 30 to 40 mm Hg higher than in normal controls, renal blood flow and glomerular filtration rate were 25% to 30% lower, and renal vascular resistance was markedly increased. Intravenous infusion of receptor antagonists for angiotensin II, thromboxane, epinephrine, and endothelin-1 had no significant effect on the hypertension. Inhibition of prostaglandin synthesis and furosemide-induced diuresis in the presence of angiotensin blockade also had no effect on blood pressure. Renal vascular resistance was also unaffected by these interventions, except that saralasin did reduce renal resistance in both control and nitric oxide-inhibited groups. However, the absolute level of renal vascular resistance remained higher in the latter group. Calcium channel blockade partially corrected blood pressure and renal resistance, but the levels remained significantly higher than in control animals. The findings are consistent with the view that the increase in vascular smooth muscle tone caused by inhibition of nitric oxide synthesis cannot be accounted for by overexpression of common endogenous vasoconstrictors. Rather, the generalized increase in vascular smooth muscle tone appears to be due to a direct effect of reduced nitric oxide availability, which may lead to an increase in intracellular calcium concentration or sensitivity.

  7. Serum ferritin, serum nitric oxide, and cognitive function in pediatric thalassemia major

    Directory of Open Access Journals (Sweden)

    Septiana Nur Qurbani

    2017-06-01

    Full Text Available Background Hemolysis and repeated blood transfusions in children with thalassemia major cause iron overload in various organs, including the brain, and may lead to neurodegeneration. Hemolysis also causes decreased levels of nitric oxide, which serves as a volume transmitter and slow dynamic modulation, leading to cognitive impairment. Objective To assess for correlations between serum ferritin as well as nitric oxide levels and cognitive function in children with thalassemia major.  Methods This analytical study with cross-sectional design on 40 hemosiderotic thalassemia major patients aged 6−14 years, was done at the Thalassemia Clinic in Dr. Hasan Sadikin Hospital, Bandung, West Java, from May to June 2015. Serum ferritin measurements were performed by an electrochemiluminescence immunoassay; serum nitric oxide was assayed by a colorimetric procedure based on Griess reaction; and cognitive function was assessed by the Wechsler Intelligence Scale for Children test. Statistical analysis was done using Spearman’s Rank correlation, with a significance value of 0.05. Results Abnormal values in verbal, performance, and full scale IQ were found in 35%, 57.5% and 57.5%, respectively. Serum nitric oxide level was significantly correlated with performance IQ (P=0.022, but not with verbal IQ (P=0.359 or full scale IQ (P=0.164. There were also no significant correlations between serum ferritin level and full scale, verbal, or performance IQ (P=0.377, 0.460, and 0.822, respectively. Conclusion Lower serum nitric oxide level is significantly correlated to lower cognitive function, specifically in the performance IQ category. However, serum ferritin level has no clear correlation with cognitive function.

  8. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Birenbaum, Aurélie; Tesse, Angela; Loyer, Xavier; Michelet, Pierre; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno; Amour, Julien

    2008-12-01

    In senescent heart, beta-adrenergic response is altered in parallel with beta1- and beta2-adrenoceptor down-regulation. A negative inotropic effect of beta3-adrenoceptor could be involved. In this study, the authors tested the hypothesis that beta3-adrenoceptor plays a role in beta-adrenergic dysfunction in senescent heart. beta-Adrenergic responses were investigated in vivo (echocardiography-dobutamine, electron paramagnetic resonance) and in vitro (isolated left ventricular papillary muscle, electron paramagnetic resonance) in young adult (3-month-old) and senescent (24-month-old) rats. Nitric oxide synthase (NOS) immunolabeling (confocal microscopy), nitric oxide production (electron paramagnetic resonance) and beta-adrenoceptor Western blots were performed in vitro. Data are mean percentages of baseline +/- SD. An impaired positive inotropic effect (isoproterenol) was confirmed in senescent hearts in vivo (117 +/- 23 vs. 162 +/- 16%; P < 0.05) and in vitro (127 +/- 10 vs. 179 +/- 15%; P < 0.05). In the young adult group, the positive inotropic effect was not significantly modified by the nonselective NOS inhibitor N-nitro-L-arginine methylester (L-NAME; 183 +/- 19%), the selective NOS1 inhibitor vinyl-L-N-5(1-imino-3-butenyl)-L-ornithine (L-VNIO; 172 +/- 13%), or the selective NOS2 inhibitor 1400W (183 +/- 19%). In the senescent group, in parallel with beta3-adrenoceptor up-regulation and increased nitric oxide production, the positive inotropic effect was partially restored by L-NAME (151 +/- 8%; P < 0.05) and L-VNIO (149 +/- 7%; P < 0.05) but not by 1400W (132 +/- 11%; not significant). The positive inotropic effect induced by dibutyryl-cyclic adenosine monophosphate was decreased in the senescent group with the specific beta3-adrenoceptor agonist BRL 37344 (167 +/- 10 vs. 142 +/- 10%; P < 0.05). NOS1 and NOS2 were significantly up-regulated in the senescent rat. In senescent cardiomyopathy, beta3-adrenoceptor overexpression plays an important role in the

  9. Nitric Oxide- and Hydrogen Peroxide-Responsive Gene Regulation during Cell Death Induction in Tobacco1[W

    Science.gov (United States)

    Zago, Elisa; Morsa, Stijn; Dat, James F.; Alard, Philippe; Ferrarini, Alberto; Inzé, Dirk; Delledonne, Massimo; Van Breusegem, Frank

    2006-01-01

    Nitric oxide (NO) and hydrogen peroxide (H2O2) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H2O2 during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H2O2 alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H2O2, whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H2O2 signaling pathways. These results consolidate significant cross-talk between NO and H2O2, provide new insight into the early transcriptional response of plants to increased NO and H2O2 levels, and identify target genes of the combined action of NO and H2O2 during the induction of plant cell death. PMID:16603664

  10. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  11. Regulation and control of nitric oxide (NO) in macrophages

    DEFF Research Database (Denmark)

    Kovacevic, Zaklina; Sahni, Sumit; Lok, K.H.

    2017-01-01

    We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores and transp......We recently demonstrated that a novel storage and transport mechanism for nitric oxide (NO) mediated by glutathione-S-transferase P1 (GSTP1) and multidrug resistance protein 1 (MRP1/ABCC1), protects M1-macrophage (M1-MØ) models from large quantities of endogenous NO. This system stores...... be responsible for delivering cytotoxic NO as DNICs via MRP1 from M1-MØs, to tumor cell targets....

  12. The effect of nitric oxide releasing cream on healing pressure ulcers

    Directory of Open Access Journals (Sweden)

    Vahid Saidkhani

    2016-01-01

    Full Text Available Background: Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. Materials and Methods: In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29 and control (placebo cream; n = 29. In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH. At the outset of the study (before using the cream, the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. Results: Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing between the two groups was statistically significant (P = 0.04. Conclusions: Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future.

  13. The effect of nitric oxide releasing cream on healing pressure ulcers

    Science.gov (United States)

    Saidkhani, Vahid; Asadizaker, Marziyeh; Khodayar, Mohammad Javad; Latifi, Sayed Mahmoud

    2016-01-01

    Background: Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO) has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. Materials and Methods: In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29) and control (placebo cream; n = 29). In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH). At the outset of the study (before using the cream), the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. Results: Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing) between the two groups was statistically significant (P = 0.04). Conclusions: Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future. PMID:27186212

  14. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Science.gov (United States)

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  15. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Elena Lima-Cabello

    2016-01-01

    Full Text Available Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome.

  16. Interleukin 1 beta induces diabetes and fever in normal rats by nitric oxide via induction of different nitric oxide synthases

    DEFF Research Database (Denmark)

    Reimers, J I; Bjerre, U; Mandrup-Poulsen, T

    1994-01-01

    Substantial in vitro evidence suggests that nitric oxide may be a major mediator of interleukin 1 (IL-1) induced pancreatic beta-cell inhibition and destruction in the initial events leading to insulin-dependent diabetes mellitus. Using NG-nitro-L-arginine methyl ester, an inhibitor of both...

  17. On EPR detection of nitric oxide in vivo

    NARCIS (Netherlands)

    van Faassen, E.E.H.

    2008-01-01

    Nitric oxide (NO ) is a peculiar radical: Ground state is not paramagnetic (g = 0 since orbital and spin magnetic moments cancel); low reactivity with other molecules except superoxide (O2 ); thermodynamically unstable; dimerizes to N2O2; difficult to detect in-vivo.

  18. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  19. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    Science.gov (United States)

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-04

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Arginine affects appetite via nitric oxide in ducks.

    Science.gov (United States)

    Wang, C; Hou, S S; Huang, W; Xu, T S; Rong, G H; Xie, M

    2014-08-01

    The objective of the study was to investigate the mechanism by which arginine regulates feed intake in Pekin ducks. In experiment 1, one hundred forty-four 1-d-old male Pekin ducks were randomly allotted to 3 dietary treatments with 6 replicate pens of 8 birds per pen. Birds in each group were fed a corn-corn gluten meal diet containing 0.65, 0.95, and 1.45% arginine. Ducks fed the diet containing 0.65% arginine had lower feed intake and plasma nitric oxide level (P ducks were allotted to 1 of 2 treatments. After 2 h fasting, birds in the 2 groups were intraperitoneally administrated saline and l-NG-nitro-arginine methyl ester HCl (L-NAME) for 3 d, respectively. Feed intake (P study implied that arginine modifies feeding behavior possibly through controlling endogenous synthesis of nitric oxide in Pekin ducks. © Poultry Science Association Inc.

  1. Nitric Oxide - Its Importance in Swallowing, Inflammatory Bowel Disease and Cirrhotic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    ABR Thomson

    2001-01-01

    Full Text Available Nitric oxide is a neurotransmitter found in the central and peripheral nervous systems. Nitric oxide synthase (NOS is localized in the central nervous system, including the nucleus of the solitary tract, nucleus ambiguus and dorsal motor nucleus of the vagus. These are regions that are implicated in the central control of swallowing and esophageal motility. In rats and rabbits, NOS has been shown to be present in the nucleus subcentralis of the nucleus of the solitary tract, and is thought to be responsible for the central programming of the striated muscle component of esophageal peristalsis. Beyak and co-workers from the University of Toronto, Toronto, Ontario provided evidence that the L-arginine-nitric oxide pathway is implicated in the central control of swallowing and esophageal motility. They studied oropharyngeal swallowing as well as esophageal peristalsis, and determined the functional role of brain stem nitric oxide by examining the effects of blockade of central nervous system NOS on swallowing, and on primary and secondary peristalsis. Administering NOS inhibitors intravenously or intracerebroventricularly into the fourth ventricle produced a number of oropharyngeal swallows and induced primary peristalsis in the smooth muscle portion of the esophageal body. NOS reduced the number of oropharyngeal swallows and the incidence of primary peristalsis in both smooth and striated muscle, and reduced the amplitude of peristalsis and smooth muscle contraction. This suggests that nitric oxide is a functional neurotransmitter in the central pattern generator responsible for swallowing and the central control of esophageal peristalsis. Peripherally administered NOS inhibitor can access structures within the blood-brain barrier to affect neuronal activity and physiological function. The central pattern generated for swallowing and esophageal peristalsis is suggested to be a serial network of linked neurons within the nucleus of the solitary

  2. Nitrosation of melatonin by nitric oxide: a computational study.

    Science.gov (United States)

    Turjanski, A G; Sáenz, D A; Doctorovich, F; Estrin, D A; Rosenstein, R E

    2001-09-01

    Melatonin is being increasingly promoted as a therapeutic agent for the treatment of jet lag and insomnia, and is an efficient free radical scavenger. We have recently characterized a product for the reaction of melatonin with nitric oxide (NO), N-nitrosomelatonin. In the present work, reaction pathways with N1, C2, C4, C6 and C7 as possible targets for its reaction with NO that yield the respective nitroso derivatives have been investigated using semiempirical AM1 computational tools, both in vacuo and aqueous solution. Specifically, two different pathways were studied: a radical mechanism involving the hydrogen atom abstraction to yield a neutral radical followed by NO addition, and an ionic mechanism involving addition of nitrosonium ion to the indolic moiety. Our results show that the indolic nitrogen is the most probable site for nitrosation by the radical mechanism, whereas different targets are probable considering the ionic pathway. These results are in good agreement with previous experimental findings and provide a coherent picture for the interaction of melatonin with NO.

  3. DMPD: Regulation of nitric oxide synthesis and apoptosis by arginase and argininerecycling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17513437 Regulation of nitric oxide synthesis and apoptosis by arginase and arginin...tion of nitric oxide synthesis and apoptosis by arginase and argininerecycling. A...erecycling. Mori M. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. (.png) (.svg) (.html) (.csml) Show Regulation of nitric oxide synthe...sis and apoptosis by arginase and argininerecycling. PubmedID 17513437 Title Regula

  4. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    Science.gov (United States)

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  5. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin.

    Science.gov (United States)

    Stamler, J S; Jaraki, O; Osborne, J; Simon, D I; Keaney, J; Vita, J; Singel, D; Valeri, C R; Loscalzo, J

    1992-01-01

    We have recently shown that nitric oxide or authentic endothelium-derived relaxing factor generated in a biologic system reacts in the presence of specific protein thiols to form S-nitrosoprotein derivatives that have endothelium-derived relaxing factor-like properties. The single free cysteine of serum albumin, Cys-34, is particularly reactive toward nitrogen oxides (most likely nitrosonium ion) under physiologic conditions, primarily because of its anomalously low pK; given its abundance in plasma, where it accounts for approximately 0.5 mM thiol, we hypothesized that this plasma protein serves as a reservoir for nitric oxide produced by the endothelial cell. To test this hypothesis, we developed a methodology, which involves UV photolytic cleavage of the S--NO bond before reaction with ozone for chemiluminescence detection, with which to measure free nitric oxide, S-nitrosothiols, and S-nitrosoproteins in biologic systems. We found that human plasma contains approximately 7 microM S-nitrosothiols, of which 96% are S-nitrosoproteins, 82% of which is accounted for by S-nitroso-serum albumin. By contrast, plasma levels of free nitric oxide are only in the 3-nM range. In rabbits, plasma S-nitrosothiols are present at approximately 1 microM; 60 min after administration of NG-monomethyl-L-arginine at 50 mg/ml, a selective and potent inhibitor of nitric oxide synthetases, S-nitrosothiols decreased by approximately 40% (greater than 95% of which were accounted for by S-nitrosoproteins, and approximately 80% of which was S-nitroso-serum albumin); this decrease was accompanied by a concomitant increase in mean arterial blood pressure of 22%. These data suggest that naturally produced nitric oxide circulates in plasma primarily complexed in S-nitrosothiol species, principal among which is S-nitroso-serum albumin. This abundant, relatively long-lived adduct likely serves as a reservoir with which plasma levels of highly reactive, short-lived free nitric oxide can be

  6. Nitric oxide and non-quantal acetylcholine release

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František

    2003-01-01

    Roč. 7, č. 3 (2003), s. 241-243 ISSN 1211-7579. [Celostátní konference biologické psychiatrie /11./. Luhačovice, 11.06.2003-14.06.2003] R&D Projects: GA ČR GA305/02/1333 Institutional research plan: CEZ:AV0Z5011922; CEZ:MSM 113100003 Keywords : nitric oxide Subject RIV: ED - Physiology

  7. Hydrogen generation in SRAT with nitric acid and late washing flowsheets

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1992-01-01

    Melter feed preparation processes, incorporating a final wash of the precipitate slurry feed to Defense Waste Processing Facility (DWPF) and a partial substitution of the SRAT formic acid requirement with nitric acid, should not produce peak hydrogen generation rates during Cold Chemical Runs (CCR's) and radioactive operation greater than their current, respective hydrogen design bases of 0.024 lb/hr and 1.5 lb/hr. A single SRAT bench-scale process simulation for CCR-s produced a DWPF equivalent peak hydrogen generation rate of 0.004 lb/hr. During radioactive operation, the peak hydrogen generation rate will be dependent on the extent DWPF deviates from the nominal precipitate hydrolysis and melter feed preparation process operating parameters. Two actual radioactive sludges were treated according to the new flowsheets. The peak hydrogen evolution rates were equivalent to 0.038 and 0.20 lb/hr (DWPF scale) respectively. Compared to the formic acid -- HAN hydrolysis flowsheets, these peak rates were reduced by a factor of 2.5 and 3.4 for Tank 15 and Tank 11 sludges, respectively

  8. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis.

    Science.gov (United States)

    Bian, Meng; Xu, Qingxia; Xu, Yanquan; Li, Shan; Wang, Xiaoyun; Sheng, Jiahe; Wu, Zhongdao; Huang, Yan; Yu, Xinbing

    2016-01-01

    Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.

  9. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Weihrauch, Dorothee; Billstrom, Amie R; Zielonka, Jacek; Krolikowski, John G; Bienengraeber, Martin W; Warltier, David C; Pratt, Philip F; Kersten, Judy R

    2009-02-01

    Nitric oxide is known to be essential for early anesthetic preconditioning (APC) and ischemic preconditioning (IPC) of myocardium. Heat shock protein 90 (Hsp90) regulates endothelial nitric oxide synthase (eNOS) activity. In this study, the authors tested the hypothesis that Hsp90-eNOS interactions modulate APC and IPC. Myocardial infarct size was measured in rabbits after coronary occlusion and reperfusion in the absence or presence of preconditioning within 30 min of isoflurane (APC) or 5 min of coronary artery occlusion (IPC), and with or without pretreatment with geldanamycin or radicicol, two chemically distinct Hsp90 inhibitors, or N-nitro-L-arginine methyl ester, a nonspecific nitric oxide synthase NOS inhibitor. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells or mouse cardiomyocytes, in the absence or presence of Hsp90 inhibitors or N-nitro-L-arginine methyl ester. Interactions between Hsp90 and eNOS, and eNOS activation, were assessed with immunoprecipitation, immunoblotting, and confocal microscopy. APC and IPC decreased infarct size (by 50% and 59%, respectively), and this action was abolished by Hsp90 inhibitors. N-nitro-L-arginine methyl ester blocked APC but not IPC. Isoflurane increased nitric oxide production in human coronary artery endothelial cells concomitantly with an increase in Hsp90-eNOS interaction (immunoprecipitation, immunoblotting, and immunohistochemistry). Pretreatment with Hsp90 inhibitors abolished isoflurane-dependent nitric oxide production and decreased Hsp90-eNOS interactions. Isoflurane did not increase nitric oxide production in mouse cardiomyocytes, and eNOS was below the level of detection. The results indicate that Hsp90 plays a critical role in mediating APC and IPC through protein-protein interactions, and suggest that endothelial cells are important contributors to nitric oxide-mediated signaling during APC.

  10. Role of nitric oxide in pheromone-mediated intraspecific communication in mice.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2009-12-07

    Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.

  11. Nitric oxide and neopterin in bipolar affective disorder

    NARCIS (Netherlands)

    Hoekstra, R.; Fekkes, D.; Pepplinkhuizen, L.; Loonen, A.J.M.; Tuinier, S.; Verhoeven, W.M.A.

    2006-01-01

    Background: There is an increasing interest in the role of nitric oxide (NO) and pterines in the pathophysiology of neuropsychiatric disorders. The results so far show an inconsistent pattern. Methods: In the present study, neopterin and a measure of NO synthesis in plasma of symptomatic and

  12. NITRIC OXIDE AND ENDOTHELIN-1 IN CHILDREN WITH DIGESTIVE DISORDERS

    Directory of Open Access Journals (Sweden)

    I. V. Panova

    2012-01-01

    Full Text Available The important part in the group of biological compounds, participating in the regulation of the functions of the gastro-intestinal tract, is assigned to endothelial factors because of their impact on the majority of physiological and pathophysiological processes of the digestive system. The article provides information about physiological role of nitric oxide and endothelin-1 and presents a review of scientific data on the participation of nitric oxide and endothelin-1 in the pathogenesis of many digestive system diseases, emphasizing chronic inflammatory disorders of the upper gastrointestinal tract. The authors accentuate the importance of endothelium endocrine function research in children with esophagogastroduodenal disorders at the beginning of puberty, which is the critical period of ontogenesis.

  13. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells.

    Science.gov (United States)

    Friedl, R; Moeslinger, T; Kopp, B; Spieckermann, P G

    2001-12-01

    1. In this study, we investigated the effect of Panax ginseng root aqueous extracts upon inducible nitric oxide synthesis in RAW 264.7 cells. Panax ginseng root extract has been used in the Asian world for centuries as a traditional herb to enhance physical strength and resistance and is becoming more and more popular in Europe and North America. 2. Incubation of murine macrophages (RAW 264.7 cells) with increasing amounts of aqueous extracts of Panax ginseng (0.05 - 0.8 microg microl(-1)) showed a dose dependent stimulation of inducible nitric oxide synthesis. 3. Polysaccharides isolated from Panax ginseng showed strong stimulation of inducible nitric oxide synthesis, whereas a triterpene-enriched fraction from an aqueous extract of Panax ginseng did not show any stimulation. 4. Inducible nitric oxide synthase protein expression was enhanced in a dose dependent manner as revealed by immunoblotting when cells were incubated with increasing amounts of Panax ginseng extract. This was associated with an incline in inducible nitric oxide synthase mRNA-levels as determined by semiquantitative polymerase chain reaction and electromobility shift assay studies indicated enhanced nuclear factor-kappaB DNA binding activity. 5. As nitric oxide plays an important role in immune function, Panax ginseng treatment could modulate several aspects of host defense mechanisms due to stimulation of the inducible nitric oxide synthase.

  14. Treatment Of Sunitinib-Induced Hypertension In Solid Tumors By Nitric Oxid Donors

    Directory of Open Access Journals (Sweden)

    Luís A. Leon

    2015-08-01

    Hypertension (HT is one of the most common adverse effects of angiogenesis inhibitors. Hypertension observed in clinical trials appears to correlate with the potency of VEGF kinase inhibitor against VEGFR-2: agents with higher potency are associated with a higher incidence of hypertension. Although the exact mechanism by TKIs induce hypertension has not yet been completely clarified, two key hypotheses have been postulated. First, some studies have pointed to a VEGF inhibitors-induced decrease in nitric oxide synthase (NOS and nitric oxide (NO production, that can result in vasoconstriction and increased blood pressure. VEGF, mediated by PI3K/Akt and MAPK pathway, upregulates the endothelial nitric oxide synthase enzyme leading to up-regulation of NO production. So inhibition of signaling through the VEGF pathway would lead to a decrease in NO production, resulting in an increase in vascular resistance and blood pressure. Secondly a decrease in the number of microvascular endothelial cells and subsequent depletion of normal microvessel density (rarefaction occurs upon VEGF signaling inhibition.

  15. Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Orlando A

    2013-04-01

    Full Text Available Antonina Orlando,1 Francesca Re,1 Silvia Sesana,1 Ilaria Rivolta,1 Alice Panariti,1 Davide Brambilla,2 Julien Nicolas,2 Patrick Couvreur,2 Karine Andrieux,2 Massimo Masserini,1 Emanuela Cazzaniga1 1Department of Health Sciences, University of Milano-Bicocca, Monza, Italy; 2Institut Galien Paris Sud, University Paris-Sud, Châtenay-Malabry, France Background: As part of a project designing nanoparticles for the treatment of Alzheimer’s disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the β-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration. Methods: The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate nanoparticles (PEG-PACA. We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken. Results: Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL, together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in

  16. Nitric oxide in health and disease of the respiratory system

    NARCIS (Netherlands)

    Ricciardolo, Fabio L. M.; Sterk, Peter J.; Gaston, Benjamin; Folkerts, Gert

    2004-01-01

    During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO

  17. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  18. Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice.

    Science.gov (United States)

    Gawali, Nitin B; Chowdhury, Amrita A; Kothavade, Pankaj S; Bulani, Vipin D; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-01-05

    In view of the reports that nitric oxide modulates the neurotransmitters implicated in obsessive-compulsive disorder (OCD), patients with OCD exhibit higher plasma nitrate levels, and drugs useful in OCD influence nitric oxide. Agmatine is a polyamine and widely distributed in mammalian brain which interacts with nitrergic systems. Hence, the present study was carried out to understand the involvement of nitrergic systems in the anticompulsive-like effect of agmatine. We used marble-burying behaviour (MBB) of mice as the animal model of OCD, and nitric oxide levels in hippocampus (HC) and cortex homogenate were measured. Results revealed that, agmatine (20 and 40mg/kg, i.p) significantly inhibited the MBB. Intraperitoneal administration of nitric oxide enhancers viz. nitric oxide precursor - l-arginine (l-ARG) (400mg/kg and 800mg/kg) increased MBB as well as brain nitrites levels, whereas treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) neuronal nitric oxide synthase inhibitor (30mg/kg and 50mg/kg, i.p.) and 7-nitroindazole (7-NI) (20mg/kg and 40mg/kg) attenuated MBB and nitrites levels in brain. Further, in combination studies, the anticompulsive-like effect of agmatine (20mg/kg, ip) was exacerbated by prior administration of l-ARG (400mg/kg) and conversely l-NAME (15mg/kg) or 7-NI (10.0mg/kg) attenuated OCD-like behaviour with HC and cortex changes in the levels of NO. None of the above treatment had any significant influence on locomotor activity. In conclusion, Agmatine is effective in ameliorating the compulsive-like behaviour in mice which appears to be related to nitric oxide in brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Total Glucosides of Paeonia lactiflora Pall Suppress Nitric Oxide ...

    African Journals Online (AJOL)

    iNOS) expression and ... Keywords: Total glucosides, Paeonia lactiflora, Nitric oxide, iNOs, Nuclear factor-κB. Tropical Journal of Pharmaceutical Research ... Nuclear factor (NF)-κB is the key transcriptional factor regulating iNOS gene transcription.

  20. Experience with inhaled nitric oxide therapy in hypoxic respiratory failure of the newborn.

    Science.gov (United States)

    Sehgal, Arvind; Callander, Ian; Stack, Jacqueline; Momsen, Tracey; Sterling-Levis, Katy

    2005-01-01

    Respiratory diseases are the commonest cause of morbidity and mortality in newborns. Inhaled nitric oxide (iNO) has been shown to be effective in the management of persistent pulmonory hypertension of newborn (PPHN). To retrospectively analyse data to determine the effectiveness of inhaled nitric oxide (iNO) in the management of newborns with PPHN in terms of survival and changes in oxygenation status. Neo-natal data since inception of iNO therapy at the unit (past six years) was reviewed. Pertinent demographic and clinical information was collected from medical records of newborns that received inhaled nitric oxide therapy during their stay. Details of underlying illnesses, other therapeutic modalities, arterial blood gas, ventilatory and nitric oxide parameters were assessed and analysed to ascertain efficacy of iNO. A total of 36 babies (gestational age ranging from 24-41 weeks) received iNO during this period; two were excluded from final analysis. Overall survival rate was 80 percent. There was a statistically significant increase in systemic oxygenation (PaO2) from 41.1 +/- 2.1 mmHg to 128.5 +/- 13.2 mmHg and a decline in oxygenation index (OI) from 49.4 +/- 5.9 to 17.3 +/- 2.5, when assessed after four hours (P < 0.001). Mean duration of iNO therapy was 63 +/- 7.3 hours and the maximum methaemoglobin levels were noted to be 2.1 percent. Inhaled nitric oxide appears to be an effective rescue therapy for the management of PPHN associated with hypoxic respiratory failure. It is safe and well tolerated with no evidence of clinical or biochemical side effects.

  1. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  2. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms With Acute Rejection in Liver Transplant Recipients.

    Science.gov (United States)

    Azarpira, Negar; Namazi, Soha; Malahi, Sayan; Kazemi, Kourosh

    2016-06-01

    Polymorphisms of the endothelial nitric oxide synthase gene have been associated with altered endothelial nitric oxide synthase activity. The purpose of this study was to investigate the relation between endothelial nitric oxide synthase -786T/C and 894G/T polymorphism and their haplotypes on the occurrence of acute rejection episodes in liver transplant recipients. We conducted a case control study in which 100 liver transplant recipients and 100 healthy controls were recruited from Shiraz Transplant Center. The patients used triple therapy including tacrolimus, mycophenolate mofetil, and prednisolone for immunosuppression maintenance. DNA was extracted from peripheral blood and endothelial nitric oxide synthase polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism. Patients included 60 men and 40 women (mean age, 32.35 ± 10.2 y). There was a significant association of endothelial nitric oxide synthase 894G/T and acute rejection episode. The GT* gen-otype and acute rejection episodes had a significant association (odds ratio, 2.42; 95% confidence interval, 0.97-6.15; P = .03). The GG and GT* genotype and T* allele frequency were significantly different between patients and control subjects (P = .001). Haplotype TT* was higher in recipients than control subjects (odds ratio, 2.17; 95% confidence interval, 1.12-4.25; P = .01). Haplotype TG was higher in the control group (odds ratio, 0.62; 95% confidence interval, 0.40-0.96; P = .02). Our results suggest a relation between different endothelial nitric oxide synthase geno-types and risk of acute rejection episodes. However, further study is necessary to determine genetic susceptibility for transplant patients.

  3. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    Science.gov (United States)

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  4. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog.

    Science.gov (United States)

    Marsala, Jozef; Lukácová, Nadezda; Cízková, Dása; Lukác, Imrich; Kuchárová, Karolína; Marsala, Martin

    2004-03-01

    In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the

  5. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla.

    Science.gov (United States)

    Kim, N Y; Pae, H O; Ko, Y S; Yoo, J C; Choi, B M; Jun, C D; Chung, H T; Inagaki, M; Higuchi, R; Kim, Y C

    1999-10-01

    Bioassay-guided fractionation of an H2O extract of the barks of Fraxinus rhynchophylla has furnished two inducible nitric oxide synthase (iNOS) inhibitory compounds, ferulaldehyde (1) and scopoletin (3) together with a coumarin, fraxidin (2). Compounds 1 and 3 showed inhibition of nitric oxide (NO) synthesis in a dose-dependent manner by murine macrophage-like RAW 264.7 cells stimulated with interferon-gamma (IFN-gamma) plus lipopolysaccharide (LPS). The inhibition of NO synthesis of 1 was reflected in the decreased amount of iNOS protein, as determined by Western blotting.

  6. Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes

    NARCIS (Netherlands)

    Sprangers, F.; Sauerwein, H. P.; Romijn, J. A.; van Woerkom, G. M.; Meijer, A. J.

    1998-01-01

    There is increasing evidence for the existence of intrahepatic regulation of glucose metabolism by Kupffer cell products. Nitric oxide (NO) is known to inhibit gluconeogenic flux through pyruvate carboxylase and phosphoenolpyruvate carboxykinase. However, NO may also influence glucose metabolism at

  7. Synthesis by sol-gel and characterization of catalysts Ag/Al2O3- CeO2 for the elimination of nitric oxide

    International Nuclear Information System (INIS)

    Zayas R, M.L.

    2005-01-01

    The environmental pollution is one from the big problems to solve at the present time, because the quality of the alive beings life is affected. For such reason, more clean and economic technologies are required, that it conduces to develop new catalytic alternatives to diminish the nitrogen oxides that due to its chemical processes in the environment contribute considerably in the air pollution. The main objective of the present work, is the preparation and characterization of catalytic materials with base of silver supported in simple and mixed aluminium oxides (Al 2 O 3 ) and Cerium oxide (CeO 2 ), and its catalytic evaluation that through of the reduction of nitric oxide (NO) using hydrogen (H 2 ) as reducer agent. It was synthesized alumina (Al 2 O 3 ) and Cerium oxide (CeO 2 ) and mixed oxides (Al 2 O 3 - CeO 2 ), by the sol-gel method and the cerium oxide (CeO 2 ) by precipitation of the cerium nitrate (III) hexa hydrated. The oxides were stabilized thermally at 900 C by 5 hr. The catalysts were prepared by impregnation using silver nitrate (AgNO 3 ), the nominal concentration of Ag was of 5% in weight. The catalysts were reduced at 400 C by 2 hr, in hydrogen flow of 60 cc/min. The characterization of the catalytic materials was carried out through different techniques as: nitrogen adsorption to determine the surface area BET, scanning electron microscopy (SEM) to observe the final morphology of the catalysts, X-ray diffraction (XRD) to identify the crystalline phases of the catalytic materials, Infrared spectroscopy (DRIFT) to know the structural characterization of the catalysts, reduction to programmed temperature (TPR) to evidence the interaction metal-support. The catalytic properties of the catalysts were evaluated in the model reaction NO + H 2 , to determine the activity and selectivity. The results indicate that the preparation technique, the precursors and the thermal treatments that underwent these materials influence in the catalyst and by

  8. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  9. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75

    OpenAIRE

    Cáceres, Lucía; Necakov, Aleksandar S.; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J.H.; Krause, Henry M.

    2011-01-01

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer part...

  10. Neuronal nitric oxide synthase-deficient mice have impaired Renin release but normal blood pressure

    DEFF Research Database (Denmark)

    Sällström, Johan; Carlström, Mattias; Jensen, Boye L

    2008-01-01

    BackgroundNitric oxide deficiency is involved in the development of hypertension, but the mechanisms are currently unclear. This study was conducted to further elucidate the role of neuronal nitric oxide synthase (nNOS) in blood pressure regulation and renin release in relation to different sodiu......-116; doi:10.1038/ajh.2007.16American Journal of Hypertension (2008) 21 111-116; doi:10.1038/ajh.2007.16....

  11. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  12. Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase.

    Science.gov (United States)

    Di Monte, D A; Royland, J E; Jakowec, M W; Langston, J W

    1996-12-01

    The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.

  13. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-01-01

    Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.

  14. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  15. Modulation of glucose uptake in adipose tissue by nitric oxide ...

    Indian Academy of Sciences (India)

    Madhu

    ion-dependent breakdown and trans-nitrosation reactions are ... [McGrowder D, Ragoobirsingh D and Brown P 2006 Modulation of glucose uptake in adipose tissue by nitric oxide-generating ... Briefly, nicotinamide (Sigma Chemical Co.,.

  16. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin

    NARCIS (Netherlands)

    Lechner, Matthias; Lirk, Philipp; Rieder, Josef

    2005-01-01

    Inducible nitric oxide synthase (iNOS) is one of three key enzymes generating nitric oxide (NO) from the amino acid l-arginine. iNOS-derived NO plays an important role in numerous physiological (e.g. blood pressure regulation, wound repair and host defence mechanisms) and pathophysiological

  17. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet.

    Science.gov (United States)

    Sargi, Sheisa Cyléia; Dalalio, Márcia Machado de Oliveira; Visentainer, Jesuí Vergílio; Bezerra, Rafael Campos; Perini, João Ângelo de Lima; Stevanato, Flávia Braidotti; Visentainer, Jeane Eliete Laguila

    2012-05-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H₂O₂), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H₂O₂. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H₂O₂, predominantly in the chronic phase of infection.

  18. Reactive oxygen species and nitric oxide signaling in bystander cells.

    Science.gov (United States)

    Jella, Kishore Kumar; Moriarty, Roisin; McClean, Brendan; Byrne, Hugh J; Lyng, Fiona M

    2018-01-01

    It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell

  19. Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by ...

    African Journals Online (AJOL)

    Inhibition of Nitric Oxide and Prostaglandin E 2 Expression by Methanol Extract of Polyopes affinis in Lipopolysaccharide-stimulated BV2 Microglial Cells through Suppression of Akt-dependent NF-kB Activity and MAPK Pathway.

  20. Nitric oxide nanoparticles

    Science.gov (United States)

    Schairer, David O.; Martinez, Luis R.; Blecher, Karin; Chouake, Jason S.; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M.; Nosanchuk, Joshua D.; Friedman, Adam J.

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections. PMID:22286699

  1. Isoxazole derivatives as new nitric oxide elicitors in plants

    Directory of Open Access Journals (Sweden)

    Anca Oancea

    2017-04-01

    Full Text Available Several 3,5-disubstituted isoxazoles were obtained in good yields by regiospecific 1,3-dipolar cycloaddition reactions between aromatic nitrile oxides, generated in situ from the corresponding hydroxyimidoyl chlorides, with non-symmetrical activated alkynes in the presence of catalytic amounts of copper(I iodide. Effects of 3,5-disubstituted isoxazoles on nitric oxide and reactive oxygen species generation in Arabidopsis tissues was studied using specific diaminofluoresceine dyes as fluorescence indicators.

  2. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed......-nitroso-N-acetylpenicillamine (SNAP) (1) confirmed denitrification as the main NO consumption pathway, with N2O as its major product, (2) showed that denitrification combines one free NO molecule with one NO molecule formed from nitrite to produce N2O, and (3) suggested that NO inhibits N2O reduction....

  3. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  4. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  5. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    International Nuclear Information System (INIS)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi

    2015-01-01

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H 2 S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H 2 S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H 2 S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H 2 S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H 2 S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H 2 S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions

  6. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Kazuki; Okuda, Kosaku; Uehara, Takashi, E-mail: uehara@pharm.okayama-u.ac.jp

    2015-01-02

    Highlights: • PTEN is S-sulfhydrated endogenously in SH-SY5Y human neuroblastoma cells. • Preventing this modification by knocking down CBS renders PTEN sensitive to NO. • pAkt levels are increased significantly in CBS siRNA-transfected cells. • H{sub 2}S functions as an endogenous regulator of PTEN in neuronal cells. - Abstract: Hydrogen sulfide (H{sub 2}S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H{sub 2}S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity. In the present study, we assessed the effect of H{sub 2}S on the direct modification of PTEN and the resulting downstream signaling. A modified biotin switch assay in SH-SY5Y human neuroblastoma cells revealed that PTEN is S-sulfhydrated endogenously. Subsequently, site-directed mutagenesis demonstrated that both Cys71 and Cys124 in PTEN are targets for S-sulfhydration. Further, the knockdown of cystathionine β-synthetase (CBS) using siRNA decreased this modification in a manner that was correlated to amount of H{sub 2}S. PTEN was more sensitive to NO under these conditions. These results suggest that the endogenous S-sulfhydration of PTEN via CBS/H{sub 2}S plays a role in preventing the S-nitrosylation that would inhibition its enzymatic activity under physiological conditions.

  7. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  8. Fe-Chlorophyllin Promotes the Growth of Wheat Roots Associated with Nitric Oxide Generation

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2010-12-01

    Full Text Available : Effects of Fe-chlorophyllin on the growth of wheat root were investigated in this study. We found that Fe-chlorophyllin can promote root growth. The production of nitric oxide in wheat root was detected using DAF-2DA fluorescent emission. The intensity of fluorescent in the presence of 0.1 mg/L Fe-chlorophyllin was near to that observed with the positive control of sodium nitroprusside (SNP, the nitric oxide donor. IAA oxidase activity decreased with all treatments of Fe-chlorophyllin from 0.01 to 10 mg/L. At the relatively lower Fe-chlorophyllin concentration of 0.1 mg/L, the activity of IAA oxidase displayed a remarkable decrease, being 40.1% lower than the control. Meanwhile, Fe-chlorophyllin treatment could increase the activities of reactive oxygen scavenging enzymes, such as superoxide dismutase (SOD and peroxidase (POD, as determined using non-denaturing polyacrylamide gel electrophoresis. These results indicate that Fe-chlorophyllin contributes to the growth of wheat root associated with nitric oxide generation.

  9. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  10. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation...... mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full...

  11. Absorption of nitric oxide from simulated flue gas using different absorbents at room temperature and atmospheric pressure

    International Nuclear Information System (INIS)

    Yu, Hesheng; Zhu, Qunyi; Tan, Zhongchao

    2012-01-01

    Effective removal of nitrogen oxides (NO x ) from flue gas allows more fossil fuels to be produced and utilized with less negative impact on the environment. It would be more cost-effective, however, if nitric oxide (NO) is oxidized to soluble nitrate and nitrite and then removed from the air by existing desulfurization wet scrubbers. This paper compares the effectiveness of three different oxidants for this purpose, namely, ethylenediaminetetraacetic acid; iron (2+) (Fe(II)–EDTA), hexamminecobalt(II) chloride ([Co(NH 3 ) 6 ]Cl 2 ), and hydrogen peroxide (H 2 O 2 ). Experimental results using column reactors showed that [Co(NH 3 ) 6 ]Cl 2 was more effective over the same period of time. The best initial NO removal efficiency of about 96.45% was measured at the inlet flow rate of 500 ml/min; the temperature of approximately 19 °C; the pH value of around 10.5; and the concentrations of [Co(NH 3 ) 6 ]Cl 2 , NO and O 2 of 0.06 mol/L, 500 ppm and 5.0%, respectively.

  12. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase

    DEFF Research Database (Denmark)

    Ebbesson, Lars O E; Tipsmark, Christian K; Holmqvist, Bo

    2005-01-01

    We investigated the relationship between nitric oxide (NO) and Na(+),K(+)-ATPase (NKA) in the gill of anadromous Atlantic salmon. Cells containing NO-producing enzymes were revealed by means of nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphor...

  13. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    Science.gov (United States)

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  15. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  16. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  17. Cellular inactivation of nitric oxide induces p53-dependent ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2016; 15 (8): 1595-1603 ... Cellular inactivation of nitric oxide induces p53-dependent apoptosis in ... apoptosis induced by a selective iNOS inhibitor, N-[(3-aminomethyl) benzyl] acetamidine (1400W), .... and nitrate. ... Nitrite production was measured in culture media.

  18. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  19. Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle

    Science.gov (United States)

    Tripathi, Durgesh K.; Mishra, Rohit K.; Singh, Swati; Singh, Samiksha; Vishwakarma, Kanchan; Sharma, Shivesh; Singh, Vijay P.; Singh, Prashant K.; Prasad, Sheo M.; Dubey, Nawal K.; Pandey, Avinash C.; Sahi, Shivendra; Chauhan, Devendra K.

    2017-01-01

    The present study investigates ameliorative effects of nitric oxide (NO) against zinc oxide nanoparticles (ZnONPs) phytotoxicity in wheat seedlings. ZnONPs exposure hampered growth of wheat seedlings, which coincided with reduced photosynthetic efficiency (Fv/Fm and qP), due to increased accumulation of zinc (Zn) in xylem and phloem saps. However, SNP supplementation partially mitigated the ZnONPs-mediated toxicity through the modulation of photosynthetic activity and Zn accumulation in xylem and phloem saps. Further, the results reveal that ZnONPs treatments enhanced levels of hydrogen peroxide and lipid peroxidation (as malondialdehyde; MDA) due to severely inhibited activities of the following ascorbate–glutatione cycle (AsA–GSH) enzymes: ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase, and its associated metabolites ascorbate and glutathione. In contrast to this, the addition of SNP together with ZnONPs maintained the cellular functioning of the AsA–GSH cycle properly, hence lesser damage was noticed in comparison to ZnONPs treatments alone. The protective effect of SNP against ZnONPs toxicity on fresh weight (growth) can be reversed by 2-(4carboxy-2-phenyl)-4,4,5,5-tetramethyl- imidazoline-1-oxyl-3-oxide, a NO scavenger, and thus suggesting that NO released from SNP ameliorates ZnONPs toxicity. Overall, the results of the present study have shown the role of NO in the reducing of ZnONPs toxicity through the regulation of accumulation of Zn as well as the functioning of the AsA–GSH cycle. PMID:28220127

  20. Exercise promotes collateral artery growth mediated by monocytic nitric oxide.

    Science.gov (United States)

    Schirmer, Stephan H; Millenaar, Dominic N; Werner, Christian; Schuh, Lisa; Degen, Achim; Bettink, Stephanie I; Lipp, Peter; van Rooijen, Nico; Meyer, Tim; Böhm, Michael; Laufs, Ulrich

    2015-08-01

    Collateral artery growth (arteriogenesis) is an important adaptive response to hampered arterial perfusion. It is unknown whether preventive physical exercise before limb ischemia can improve arteriogenesis and modulate mononuclear cell function. This study aimed at investigating the effects of endurance exercise before arterial occlusion on MNC function and collateral artery growth. After 3 weeks of voluntary treadmill exercise, ligation of the right femoral artery was performed in mice. Hindlimb perfusion immediately after surgery did not differ from sedentary mice. However, previous exercise improved perfusion restoration ≤7 days after femoral artery ligation, also when exercise was stopped at ligation. This was accompanied by an accumulation of peri-collateral macrophages and increased expression of endothelial nitric oxide synthase and inducible nitric oxide synthase (iNOS) in hindlimb collateral and in MNC of blood and spleen. Systemic monocyte and macrophage depletion by liposomal clodronate but not splenectomy attenuated exercise-induced perfusion restoration, collateral artery growth, peri-collateral macrophage accumulation, and upregulation of iNOS. iNOS-deficient mice did not show exercise-induced perfusion restoration. Transplantation of bone marrow-derived MNC from iNOS-deficient mice into wild-type animals inhibited exercise-induced collateral artery growth. In contrast to sedentary controls, thrice weekly aerobic exercise training for 6 months in humans increased peripheral blood MNC iNOS expression. Circulating mononuclear cell-derived inducible nitric oxide is an important mediator of exercise-induced collateral artery growth. © 2015 American Heart Association, Inc.

  1. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Science.gov (United States)

    Hyde, Embriette R; Andrade, Fernando; Vaksman, Zalman; Parthasarathy, Kavitha; Jiang, Hong; Parthasarathy, Deepa K; Torregrossa, Ashley C; Tribble, Gena; Kaplan, Heidi B; Petrosino, Joseph F; Bryan, Nathan S

    2014-01-01

    The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  2. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.

    Directory of Open Access Journals (Sweden)

    Embriette R Hyde

    Full Text Available The microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources. Interestingly, this pathway is dependent upon oral nitrate-reducing bacteria, since humans lack this enzyme activity. This pathway appears to represent a newly recognized symbiosis between oral nitrate-reducing bacteria and their human hosts in which the bacteria provide nitrite and nitric oxide from nitrate reduction. Here we measure the nitrate-reducing capacity of tongue-scraping samples from six healthy human volunteers, and analyze metagenomes of the bacterial communities to identify bacteria contributing to nitrate reduction. We identified 14 candidate species, seven of which were not previously believed to contribute to nitrate reduction. We cultivated isolates of four candidate species in single- and mixed-species biofilms, revealing that they have substantial nitrate- and nitrite-reduction capabilities. Colonization by specific oral bacteria may thus contribute to host NO homeostasis by providing nitrite and nitric oxide. Conversely, the lack of specific nitrate-reducing communities may disrupt the nitrate-nitrite-nitric oxide pathway and lead to a state of NO insufficiency. These findings may also provide mechanistic evidence for the oral systemic link. Our results provide a possible new therapeutic target and paradigm for NO restoration in humans by specific oral bacteria.

  3. Combination of nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy as a novel therapeutic application to manage the pain and treat many clinical conditions

    Science.gov (United States)

    Halasa, Salaheldin; Dickinson, Eva

    2014-02-01

    From hypertension to diabetes, cancer to HIV, stroke to memory loss and learning disorders to septic shock, male impotence to tuberculosis, there is probably no pathological condition where nitric oxide does not play an important role. Nitric oxide is an analgesic, immune-modulator, vasodilator, anti-apoptotic, growth modulator, angiogenetic, anti-thrombotic, anti-inflammatory and neuro-modulator. Because of the above actions of nitric oxide, many clinical conditions associated with abnormal Nitric oxide (NO) production and bioavailability. Our novel therapeutic approach is to restore the homeostasis of nitric oxide and replace the lost cells by combining nitric oxide therapy, anti-oxidative therapy, low level laser therapy, plasma rich platelet therapy and stem cell therapy.

  4. Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.

    1993-01-01

    Measurements from the Solar Mesosphere Explorer (SME) satellite have shown that low-latitude nitric oxide densities at 110 km decrease by about a factor of 8 from January 1982 to April 1985. This time period corresponds to the descending phase of the last solar cycle where the monthly smoothed sunspot number decreased from more than 150 to less than 25. In addition, nitric oxide was observed to vary by a factor of 2 over a solar rotation, during high solar activity. A one-dimensional, globally averaged model of the thermosphere and upper mesosphere has been used to study the height distribution of nitric oxide (NO) and its response to changes in the solar extreme ultraviolet radiation (EUV) through the solar cycle and over a solar rotation. The primary source of nitric oxide is the reaction of excited atomic nitrogen, N( 2 D), with molecular oxygen. The atomic nitrogen is created by a number of ion-neutral reactions and by direct dissociation of molecular nitrogen by photons and photoelectrons. The occurrence of the peak nitric oxide density at or below 115 km is a direct consequence of ionization and dissociation of molecular nitrogen by photoelectrons, which are produced by the solar flux below 30.0 nm (XUV). Nitric oxide is shown to vary over the solar cycle by a factor of 7 at low latitudes in the lower thermosphere E region, due to the estimated change in the solar EUV flux, in good agreement with the SME satellite observations. The NO density is shown to be strongly dependent on the temperature profile in the lower thermosphere and accounts for the difference between the current model and previous work. Wavelengths less than 1.8 nm have little impact on the NO profile. A factor of 3 change in solar flux below 5.0 nm at high solar activity produced a factor of 2 change in the peak NO density, consistent with SME observations over a solar rotation; this change also lowered the peak to 100 km, consistent with rocket data. 52 refs., 10 figs., 5 tabs

  5. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Mahua G Choudhury

    Full Text Available The air-breathing singhi catfish (Heteropneustes fossilis is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a the possible induction of inducible nitric oxide synthase (iNOS gene with enhanced production of nitric oxide (NO by intra-peritoneal injection of lipopolysaccharide (LPS (a bacterial endotoxin, and (b to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted

  6. Tolerance and withdrawal to anticonvulsant action of clonazepam: role of nitric oxide.

    Science.gov (United States)

    Gupta, N; Bhargava, V K; Pandhi, P

    2000-05-01

    The use of clonazepam in the long-term treatment of epilepsy is greatly inhibited by its capacity to induce tolerance and dependence. A means of preventing or minimizing the tolerance and dependence inducing properties is required. Here the role of nitric oxide in preventing the development of tolerance and withdrawal hyperexcitability was studied. In Wistar rats, clonazepam at a dose of 0.25 mg/kg i.p. twice daily produced tolerance to its anticonvulsant action in 28 days. After sudden cessation of therapy it produced hyperexcitability. Tolerance was shown by a decrease in seizure threshold to near control value while withdrawal hyperexcitability was evidenced by a significant decrease in seizure threshold below the control value. L-Arginine (a donor of nitric oxide) and N omega-nitro-L-arginine (an inhibitor of nitric oxide synthase) were given in doses of 150 mg/kg and 8 mg/kg, respectively on day 1, 3, 7, 14, 21 and 28 with clonazepam. Withdrawal hyperexcitability was seen on day 1, 2 and 4 after cessation of drug therapy. Electroshock was used as a model of epilepsy and seizure thresholds were determined by an up and down method of Kimball et al. L-Arginine was found to inhibit the development tolerance as well as withdrawal hyperexcitability when administered with clonazepam while N omega-L-arginine did not prevent either the development of tolerance or withdrawal hyperexcitability in the electroshock model. In the PTZ model, however, L-arginine had no effect on the anticonvulsant action and withdrawal hyperexcitability while inhibition of nitric oxide synthesis prevented withdrawal hyperexcitability in PTZ-induced seizures.

  7. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase

    International Nuclear Information System (INIS)

    Yang, Jin Won; Yoon, Se Young; Oh, Soo Jin; Kim, Sang Kyum; Kang, Keon Wook

    2006-01-01

    Algal fucoidan is a marine sulfated polysaccharide with a wide variety of biological activities including anti-thrombotic and anti-inflammatory effects. This study evaluated the effect of fucoidan on the expression of inducible nitric oxide synthase (iNOS) in a macrophage cell line, RAW264.7. Low concentration range of fucoidan (10 μg/ml) increased the basal expression level of iNOS in quiescent macrophages. However, we found for the first time that fucoidan inhibited the release of nitric oxide (NO) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). Western blot analysis revealed that fucoidan suppressed the LPS-induced expression of the inducible nitric oxide synthase (iNOS) gene. Moreover, the activation of both nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) are key steps in the transcriptional activation of the iNOS gene. Here, it was revealed that fucoidan selectively suppressed AP-1 activation, and that the activation of AP-1 appears to be essential for the induction of iNOS in activated macrophages. This inhibitory effect on AP-1 activation by fucoidan might be associated with its NO blocking and anti-inflammatory effects

  8. Detection of nitric acid and nitric oxides in the terrestrial atmosphere in the middle-infrared spectral region

    Directory of Open Access Journals (Sweden)

    M. I. Blecka

    1996-11-01

    Full Text Available A proposal for combined space and ground-based observations of the vertical distributions and the column densities of nitric acid and nitric oxide concentrations in the earth's atmosphere is discussed. We focus on the aspects that are particular to the idea of correlative measurements: geometrical considerations, simulations of the solar absorption spectra in the middle-infrared region corresponding to the different observational geometries, and the associated retrieval methods. These studies are done specifically for the Belgian-French experiment MIRAS (MIR Infrared Atmospheric Spectrometer onboard the Russian Space Station MIR and correlative ground-based FTIR measurements in the Tatra mountains.

  9. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nitric oxide and chronic colitis

    Directory of Open Access Journals (Sweden)

    Matthew B Grisham

    1996-01-01

    Full Text Available Nitric oxide (NO is thought to play an important role in modulating the inflammatory response by virtue of its ability to affect bloodflow, leukocyte function and cell viability. The objective of this study was to assess the role that NO may play in mediating the mucosal injury and inflammation in a model of chronic granulomatous colitis using two pharmacologically different inhibitors of nitric oxide synthase (NOS. Chronic granulomatous colitis with liver and spleen inflammation was induced in female Lewis rats via the subserosal (intramural injection of peptidoglycan/polysaccharide (PG/PS derived from group A streptococci. Chronic NOS inhibition by oral administration of NG-nitro-L-arginine methyl ester (L-NAME (15 µmol/kg/day or amino-guanidine (AG (15 µmol/ kg/day was found to attenuate the PG/PS-induced increases in macroscopic colonic inflammation scores and colonic myeloperoxidase activity. Only AG -- not L-NAME – attenuated the PG/PS-induced increases in colon dry weight. Both L-NAME and AG significantly attenuated the PG/PS-induced increases in spleen weight whereas neither was effective at significantly attenuating the PG/PS-induced increases in liver weight. Although both L-NAME and AG inhibited NO production in vivo, as measured by decreases in plasma nitrite and nitrate levels, only AG produced significantly lower values (38±3 versus 83±8 µM, respectively, P<0.05. Finally, L-NAME, but not AG, administration significantly increased mean arterial pressure from 83 mmHg in colitic animals to 105 mmHg in the PG/PS+ L-NAME-treated animals (P<0.05. It is concluded that NO may play an important role in mediating some of the pathophysiology associated with this model of chronic granulomatous colitis.

  11. Nitric oxide radical scavenging potential of some Elburz medicinal ...

    African Journals Online (AJOL)

    Some plants scavenge nitric oxide (NO) with high affinity. For this purpose, forty extracts from 26 medicinal plants, growing extensively in Elburz mountains, were evaluated for their NO scavenging activity. Total phenolic and flavonoid contents of these extracts were also measured by Folin Ciocalteu and AlCl3 colorimetric ...

  12. Hydrogen sulfide potentiates interleukin-1β-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg

    2006-01-01

    Hydrogen sulfide (H 2 S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H 2 S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1β (IL-1β). Although H 2 S by itself showed no effect on NO production, it augmented IL-β-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-κB. IL-1β activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H 2 S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1β-induced NF-κB activation, iNOS expression, and NO production either in the absence or presence of H 2 S. Our findings suggest that H 2 S enhances NO production and iNOS expression by potentiating IL-1β-induced NF-κB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs

  13. How to protect liver graft with nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Hassen Ben Abdennebi; Mohamed Amine Zaoualí; Izabel Alfany-Fernandez; Donia Tabka; Joan Roselló-Catafau

    2011-01-01

    Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting "endogenous" pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative "exogenous" pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.

  14. Continuous electrochemical monitoring of nitric oxide production in murine macrophage cell line RAW 264.7

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Králová, Jana; Kubala, Lukáš; Číž, Milan; Lojek, Antonín; Gregor, Č.; Hrbáč, J.

    2009-01-01

    Roč. 394, č. 5 (2009), s. 1497-1504 ISSN 1618-2642 R&D Projects: GA AV ČR(CZ) 1QS500040507 Grant - others:GA ČR(CZ) GP524/05/P135 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nitric oxide * macrophage s RAW 264.7 * nitric oxide sensor Subject RIV: BO - Biophysics Impact factor: 3.480, year: 2009

  15. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    Science.gov (United States)

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  16. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... Nitric oxide (NO) has been recognized during the past two decades as one of the most versatile players in the immune system. Even though the molecular mechanisms responsible by the naturally acquired immunity against malaria are still to be clarified, the production of NO seems to play an important role.

  17. Melatonin inhibits endothelin-1 and induces endothelial nitric oxide ...

    African Journals Online (AJOL)

    Although, I/R augmented the endothelin-1 (ET-1) gene expression and the level of big endothelin-1 (big ET-1) in liver tissue, melatonin attenuated these increases. Conversely, non-significant decrease in endothelial nitric oxide synthase (eNOS) mRNA expression in I/R group was significantly elevated by melatonin in ...

  18. Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension.

    Science.gov (United States)

    Pan, Xiaogui; Zhang, Yi; Tao, Sai

    2015-01-01

    Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.

  19. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  20. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents.

    Science.gov (United States)

    Maciag, Anna E; Saavedra, Joseph E; Chakrapani, Harinath

    2009-09-01

    Nitric oxide (NO) prodrugs of the diazeniumdiolate class are routinely used as reliable sources of nitric oxide in chemical and biological laboratory settings. O(2)-(2,4-dinitrophenyl) diazeniumdiolates, which are derivatized forms of ionic diazeniumdiolates, have been found to show potent anti-proliferative activity in a variety of cancer cells, presumably through the effects of NO. One important member of this class of diazeniumdiolates, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K), has shown promise as a novel cancer therapeutic agent in a number of animal models. This review describes the developments in chemical and biochemical characterization and structure-activity relationship of JS-K and its analogues. In addition, some molecular mechanistic insights into the observed anti-proliferative activity of JS-K are discussed. Finally, a structural motif is presented for O(2)-(aryl) diazeniumdiolate nitric oxide prodrugs that show potency comparable with that of JS-K.

  1. Calcium mobilization in HeLa cells induced by nitric oxide.

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-01-01

    Nitric oxide (NO) has been proposed to be involved in tumor growth and metastasis. However, the mechanism by which nitric oxide modulates cancer cell growth and metastasis on cellular and molecular level is still not fully understood. This work utilized confocal microscopy and fluorescence microplate reader to investigate the effects of exogenous NO on the mobilization of calcium, which is one of the regulators of cell migration, in HeLa cells. The results show that NO elevates calcium in concentration-dependent manner in HeLa cells. And the elevation of calcium induced by NO is due to calcium influx and calcium release from intracellular calcium stores. Moreover, calcium release from intracellular stores is dominant. Furthermore, calcium release from mitochondria is one of the modulation pathways of NO. These findings would contribute to recognizing the significance of NO in cancer cell proliferation and metastasis. © Wiley Periodicals, Inc.

  2. Nitric oxide and HSV vaginal infection in BALB/c mice

    International Nuclear Information System (INIS)

    Benencia, Fabian; Gamba, Gisela; Cavalieri, Hernan; Courreges, Maria Cecilia; Benedetti, Ruben; Villamil, Soledad Maria; Massouh, Ernesto Jorge

    2003-01-01

    Here we study the role of nitric oxide in the vaginal infection of Balb/c mice with herpes simplex virus type 2. Inducible nitric oxide synthase (iNOS) mRNA was detected by RT-PCR in vaginal tissue and inguinal lymph nodes early postinfection. iNOS was also found to be activated in cells recovered from vaginal washings of infected animals. Animals treated with aminoguanidine (AG), an iNOS inhibitor, showed a dose-dependent increase in vaginal pathology after viral infection compared to controls. Viral titers in vaginal washings and vaginas were higher in AG-treated mice. Treated animals presented higher PMN counts in vaginal washings compared to controls. Histopathology studies revealed a profound inflammatory exudate in vaginal tissue of treated animals. Finally, RT-PCR analysis showed increased expression of the chemokines MIP-2 and RANTES in vaginal tissue and inguinal lymph nodes of these animals

  3. Synthesis of N-(Methoxycarbonylthienylmethylthioureas and Evaluation of Their Interaction with Inducible and Neuronal Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Michael D. Threadgill

    2010-04-01

    Full Text Available Two isomeric N-(methoxycarbonylthienylmethylthioureas were synthesised by a sequence of radical bromination of methylthiophenecarboxylic esters, substitution with trifluoroacetamide anion, deprotection, formation of the corresponding isothiocyanates and addition of ammonia. The interaction of these new thiophene-based thioureas with inducible and neuronal nitric oxide synthase was evaluauted. These novel thienylmethylthioureas stimulated the activity of inducible Nitric Oxide Synthase (iNOS.

  4. Hyperglycemia adversely modulates endothelial nitric oxide synthase during anesthetic preconditioning through tetrahydrobiopterin- and heat shock protein 90-mediated mechanisms.

    Science.gov (United States)

    Amour, Julien; Brzezinska, Anna K; Jager, Zachary; Sullivan, Corbin; Weihrauch, Dorothee; Du, Jianhai; Vladic, Nikolina; Shi, Yang; Warltier, David C; Pratt, Phillip F; Kersten, Judy R

    2010-03-01

    Endothelial nitric oxide synthase activity is regulated by (6R-)5,6,7,8-tetrahydrobiopterin (BH4) and heat shock protein 90. The authors tested the hypothesis that hyperglycemia abolishes anesthetic preconditioning (APC) through BH4- and heat shock protein 90-dependent pathways. Myocardial infarct size was measured in rabbits in the absence or presence of APC (30 min of isoflurane), with or without hyperglycemia, and in the presence or absence of the BH4 precursor sepiapterin. Isoflurane-dependent nitric oxide production was measured (ozone chemiluminescence) in human coronary artery endothelial cells cultured in normal (5.5 mm) or high (20 mm) glucose conditions, with or without sepiapterin (10 or 100 microm). APC decreased myocardial infarct size compared with control experiments (26 +/- 6% vs. 46 +/- 3%, respectively; P < 0.05), and this action was blocked by hyperglycemia (43 +/- 4%). Sepiapterin alone had no effect on infarct size (46 +/- 3%) but restored APC during hyperglycemia (21 +/- 3%). The beneficial actions of sepiapterin to restore APC were blocked by the nitric oxide synthase inhibitor N (G)-nitro-L-arginine methyl ester (47 +/- 2%) and the BH4 synthesis inhibitor N-acetylserotonin (46 +/- 3%). Isoflurane increased nitric oxide production to 177 +/- 13% of baseline, and this action was attenuated by high glucose concentrations (125 +/- 6%). Isoflurane increased, whereas high glucose attenuated intracellular BH4/7,8-dihydrobiopterin (BH2) (high performance liquid chromatography), heat shock protein 90-endothelial nitric oxide synthase colocalization (confocal microscopy) and endothelial nitric oxide synthase activation (immunoblotting). Sepiapterin increased BH4/BH2 and dose-dependently restored nitric oxide production during hyperglycemic conditions (149 +/- 12% and 175 +/- 9%; 10 and 100 microm, respectively). The results indicate that tetrahydrobiopterin and heat shock protein 90-regulated endothelial nitric oxide synthase activity play a central

  5. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles

    DEFF Research Database (Denmark)

    Howitt, Lauren; Kuo, Ivana Y; Ellis, Anthie

    2013-01-01

    arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L nifedipine) and T-type (1 µmol/L mibefradil, 3 µmol/L NNC 55-0396) calcium channels to vascular tone, following acute or chronic inhibition of nitric oxide. Acute inhibition with l-NAME (10 µmol...... was reversed by acute scavenging of superoxide with tempol (1 mmol/L), or inhibition of NADPH oxidase with apocynin (500 µmol/L) or DPI (5 µmol/L). CONCLUSION: We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone......, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function....

  6. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  7. Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid ...

    African Journals Online (AJOL)

    patients after intra-articular injection of sodium hyaluronate, while the effect is insignificant in severe patients. Thus, sodium hyaluronate can effectively improve nitric oxide levels in synovial fluid, reduce ..... Modern Med Health, 2014; 1:.

  8. Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid ...

    African Journals Online (AJOL)

    Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid in Osteoarthritis Patients ... Tropical Journal of Pharmaceutical Research ... and moderate phase patients after intra-articular injection of sodium hyaluronate, while the effect ...

  9. Nitric oxide-dependent activation of CaMKII increases diastolic sarcoplasmic reticulum calcium release in cardiac myocytes in response to adrenergic stimulation.

    Science.gov (United States)

    Curran, Jerry; Tang, Lifei; Roof, Steve R; Velmurugan, Sathya; Millard, Ashley; Shonts, Stephen; Wang, Honglan; Santiago, Demetrio; Ahmad, Usama; Perryman, Matthew; Bers, Donald M; Mohler, Peter J; Ziolo, Mark T; Shannon, Thomas R

    2014-01-01

    Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failure, this CaMKII-dependent effect is exaggerated and becomes potentially arrhythmogenic. Recent evidence has indicated that CaMKII activation can be regulated by cellular oxidizing agents, such as reactive oxygen species. Here, we investigate how the cellular second messenger, nitric oxide, mediates CaMKII activity downstream of the adrenergic signaling cascade and promotes the generation of arrhythmogenic spontaneous Ca(2+) waves in intact cardiomyocytes. Both SCaWs and SR Ca(2+) leak were measured in intact rabbit and mouse ventricular myocytes loaded with the Ca-dependent fluorescent dye, fluo-4. CaMKII activity in vitro and immunoblotting for phosphorylated residues on CaMKII, nitric oxide synthase, and Akt were measured to confirm activity of these enzymes as part of the adrenergic cascade. We demonstrate that stimulation of the β-AR pathway by isoproterenol increased the CaMKII-dependent SR Ca(2+) leak. This increased leak was prevented by inhibition of nitric oxide synthase 1 but not nitric oxide synthase 3. In ventricular myocytes isolated from wild-type mice, isoproterenol stimulation also increased the CaMKII-dependent leak. Critically, in myocytes isolated from nitric oxide synthase 1 knock-out mice this effect is ablated. We show that isoproterenol stimulation leads to an increase in nitric oxide production, and nitric oxide alone is sufficient to activate CaMKII and increase SR Ca(2+) leak. Mechanistically, our data links Akt to nitric oxide synthase 1 activation downstream of β-AR stimulation. Collectively, this evidence supports the hypothesis that CaMKII is

  10. THE ESTROGENS / CHROMIUM INTERACTION IN THE NITRIC OXIDE GENERATION.

    Science.gov (United States)

    Sawicka, Ewa; Piwowar, Agnieszka; Musiala, Tomasz; Dlugosz, Anna

    2017-05-01

    The interaction of estrogens with environmental toxins in free radicals generation: reactive oxygen species (ROS) or reactive nitrogen species (RNS) which participates in cancerogenesis is not yet recognized. Chromium(VI) is widely present in environment. One of its toxicity pathway is free radicals generation. Estrogens have the ability to scavenge free radicals, but may also act as prooxidants. Both chromium(VI) and estrogens are classified by International Agency for Research on Cancer (IARC) as carcinogens, so synergistic effect seems very dangerous. The interaction of chromium and estrogens in ROS generation are partly described but there are no reports on estrogen/chromium interaction on nitric oxide (NO) generation. The aim of the study was to examine the interaction of chromium(VI) and 17-p-estradiol (E2) on NO level in human blood as well as the role of E2 metabolites: 4-hydroxyestradiol (4-OHE2) and 16a-hydroxyestrone (16α-OHE1) in these processes. The NO level was estimated with the diagnostic kit (Nitric Oxide Colorimetric Detection Kit from Arbor Assays) in human blood in vitm. The results showed that Cr(VI) in used concentration (0.5; 1.0 and 5.0 gg/mL) decreases significantly NO level in blood, acting antagonistically to E2 and 4-OHE2. Estrogens (E2, 4-OHE2 and 16α-OHEI) do not protect against inhibiting effect of Cr(VI) on nitric oxide generation in blood because after combined exposure the decreased production of NO in blood was noted. In conclusion, presented results provide the information about the character of estrogen/Cr(VI) interaction in NO level in human blood. It is important knowledge for cardio protected effect e.g., hormone replacement therapy in environmental or occupational exposure to Cr(VI), chromium supplementation, also important for cancer risk evaluation.

  11. Dysfunctional nitric oxide signalling increases risk of myocardial infarction.

    Science.gov (United States)

    Erdmann, Jeanette; Stark, Klaus; Esslinger, Ulrike B; Rumpf, Philipp Moritz; Koesling, Doris; de Wit, Cor; Kaiser, Frank J; Braunholz, Diana; Medack, Anja; Fischer, Marcus; Zimmermann, Martina E; Tennstedt, Stephanie; Graf, Elisabeth; Eck, Sebastian; Aherrahrou, Zouhair; Nahrstaedt, Janja; Willenborg, Christina; Bruse, Petra; Brænne, Ingrid; Nöthen, Markus M; Hofmann, Per; Braund, Peter S; Mergia, Evanthia; Reinhard, Wibke; Burgdorf, Christof; Schreiber, Stefan; Balmforth, Anthony J; Hall, Alistair S; Bertram, Lars; Steinhagen-Thiessen, Elisabeth; Li, Shu-Chen; März, Winfried; Reilly, Muredach; Kathiresan, Sekar; McPherson, Ruth; Walter, Ulrich; Ott, Jurg; Samani, Nilesh J; Strom, Tim M; Meitinger, Thomas; Hengstenberg, Christian; Schunkert, Heribert

    2013-12-19

    Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the α1 subunit of soluble guanylyl cyclase (α1-sGC), and CCT7 encodes CCTη, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce α1-sGC as well as β1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in α1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

  12. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  13. Ribavirin in Cancer Immunotherapies: Controlling Nitric Oxide Augments Cytotoxic Lymphocyte Function

    Directory of Open Access Journals (Sweden)

    Richard E. Kast

    2003-01-01

    Full Text Available Either ribavirin (RBV or cyclophosphamide (CY can shift an immune response from Th2 toward a Thi cytokine profile. CY is used in this role in various current cancer immunotherapy attempts but with mixed success. More potent and reliable immunoadjuvants and Th1 response biasing methods are needed. RBV is used today mainly to augment interferon-alpha treatment of hepatitis C. RBV shifts an immune response from Th2 toward Th1 more effectively than CY and may be a safe and useful adjuvant for current cancer immunotherapeutic efforts. RBV is thought to act by inhibition of tetrahydrobiopterin synthesis. Tetrahydrobiopterin is an essential cofactor for all known isoforms of nitric oxide synthase. Lowered nitric oxide favors Th1 development as high levels favor Th2 weighting.

  14. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  15. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  16. Requirement of argininosuccinate lyase for systemic nitric oxide production.

    Science.gov (United States)

    Erez, Ayelet; Nagamani, Sandesh C S; Shchelochkov, Oleg A; Premkumar, Muralidhar H; Campeau, Philippe M; Chen, Yuqing; Garg, Harsha K; Li, Li; Mian, Asad; Bertin, Terry K; Black, Jennifer O; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K; Summar, Marshall; O'Brien, William E; Harrison, David G; Mitch, William E; Marini, Juan C; Aschner, Judy L; Bryan, Nathan S; Lee, Brendan

    2011-11-13

    Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.

  17. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum

    International Nuclear Information System (INIS)

    Cames, B.

    1997-01-01

    In nuclear fuel processing by the PUREX process, the purification of plutonium in nitric acid medium requires the oxidation of Pu(III) to Pu(IV), and of hydrazinium nitrate to nitrogen. The study helped to characterize the electrochemical behavior of the oxidation of hydrazinium nitrate and the reduction of nitric acid to nitrous acid, a compound which can chemically oxidize hydrazinium nitrate and Pu(III). Electro-analytical studies on polycrystalline platinum showed that hydrazine is oxidized in two potential zones, which depend on the surface texture of the platinum anode. Electrolysis in separate compartments, carried out in medium-acid media (2 and 4 mo/l) in the potential zone where these processes take place, showed that, at 0.9 V/ECS, the hydrazine oxidation reactions involved are: a four-electron process (75 %) with nitrogen formation and a one-electron process (25 %) with formation of nitrogen and ammonium ion. By contrast, electrolysis carried out at 0.65 V/ECS (with reactivation of the electrode at - 0.2 V/ECS to remove the poison from the platinum) allowed the selective oxidation of hydrazine to nitrogen by the four-electron reaction. Nitric acid can only be reduced to nitrous acid in the absence of hydrazine. For medium-acid media (≤ 6 mol/l), this reaction takes place at potentials below - 0.2 V/ECS. However, the production rate of nitrous acid (partial order 0 with respect to nitric acid) is very low compared with the values obtained for strongly-acid media (6 to 10 mol/l) at the potential of - 0.1 V/ECS. Note that, in concentrated nitric medium, the selectivity of the reduction reaction is 47 to 85 % for nitrous acid, depending on the nitric acid concentration (6 to 10 mol/l) and the potential imposed (- 0.1 ≤ E ≤ 0.6 V/ECS). A kinetic study helped to determine the hydrazine oxidation rates as a function of the operating conditions. In all cases, the reaction rate is of partial order 0 with respect to hydrazine. These studies accordingly

  18. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  19. Hydrogen oxidation in Azospirillum brasilense

    Energy Technology Data Exchange (ETDEWEB)

    Tibelius, K.

    1984-01-01

    Hydrogen oxidation by Azospirillum brasilense Sp7 was studied in N/sub 2/-fixing and NH/sub 4//sup +/-grown batch cultures. The K/sub m/ for H/sub 2/ of O/sub 2/-dependent H/sup 3/H oxidation in whole cells was 9 uM. The rates of H/sup 3/H and H/sub 2/ oxidation were very similar, indicating that the initial H/sub 2/ activation step in the overall H/sub 2/ oxidation reaction was not rate-limiting and that H/sup 3/H oxidation was a valid measure of H/sub 2/-oxidation activity. Hydrogen-oxidation activity was inhibited irreversibly by air. In N-free cultures the O/sub 2/ optima for O/sub 2/-dependent H/sub 2/ oxidation, ranging from 0.5-1.25% O/sub 2/ depending on the phase of growth, were significantly higher than those of C/sub 2/H/sub 2/ reduction, 0.15-0.35%, suggesting that the H/sub 2/-oxidation system may have a limited ability to aid in the protection of nitrogenase against inactivation by O/sub 2/. Oxygen-dependent H/sub 2/ oxidation was inhibited by NO/sub 2//sup +/, NO, CO, and C/sub 2/H/sub 2/ with apparent K/sub 1/ values of 20, 0.4, 28, and 88 uM, respectively. Hydrogen-oxidation activity was 50 to 100 times higher in denitrifying cultures when the terminal electron acceptor for growth was N/sub 2/O rather than NO/sub 3//sup -/, possibly due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO in NO/sub 3//sup -/-grown cultures.

  20. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... ISSN 1684–5315 © 2008 Academic Journals. Full Length Research Paper. Variation of nitric oxide levels in imported Plasmodium falciparum malaria episodes. De Sousa, Karina*, Silva, Marcelo S. and Tavira, Luís T. Instituto de Higiene e Medicina Tropical, Centro de Malária e outras Doenças Tropicais, ...

  1. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  2. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  3. Nanocarriers for Nitric Oxide Delivery

    Directory of Open Access Journals (Sweden)

    Juliana Saraiva

    2011-01-01

    Full Text Available Nitric oxide (NO is a promising pharmaceutical agent that has vasodilative, antibacterial, and tumoricidal effects. To study the complex and wide-ranging roles of NO and to facilitate its therapeutic use, a great number of synthetic compounds (e.g., nitrosothiols, nitrosohydroxyamines, N-diazeniumdiolates, and nitrosyl metal complexes have been developed to chemically stabilize and release NO in a controlled manner. Although NO is currently being exploited in many biomedical applications, its use is limited by several factors, including a short half-life, instability during storage, and potential toxicity. Additionally, efficient methods of both localized and systemic in vivo delivery and dose control are needed. One strategy for addressing these limitations and thus increasing the utility of NO donors is based on nanotechnology.

  4. L-arginine increases nitric oxide and attenuates pressor and heart ...

    African Journals Online (AJOL)

    olayemitoyin

    heart rate responses to change in posture in sickle cell anemia subjects. 1 .... the standing position and measurements made immediately. Arterial ... pressure was the difference between systolic and diastolic ... Table 3. Effect of L-Arginine Supplementation on Blood Pressure Parameters, Plasma L-Arginine and Nitric Oxide.

  5. Rocuronium Bromide Inhibits Inflammation and Pain by Suppressing Nitric Oxide Production and Enhancing Prostaglandin E2 Synthesis in Endothelial Cells.

    Science.gov (United States)

    Baek, Sang Bin; Shin, Mal Soon; Han, Jin Hee; Moon, Sang Woong; Chang, Boksoon; Jeon, Jung Won; Yi, Jae Woo; Chung, Jun Young

    2016-12-01

    Rocuronium bromide is a nondepolarizing neuromuscular blocking drug and has been used as an adjunct for relaxation or paralysis of the skeletal muscles, facilitation of endotracheal intubation, and improving surgical conditions during general anesthesia. However, intravenous injection of rocuronium bromide induces injection pain or withdrawal movement. The exact mechanism of rocuronium bromide-induced injection pain or withdrawal movement is not yet understood. We investigated whether rocuronium bromide treatment is involved in the induction of inflammation and pain in vascular endothelial cells. For this study, calf pulmonary artery endothelial (CPAE) cells were used, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Western blot, nitric oxide detection, and prostaglandin E 2 immunoassay were conducted. Rocuronium bromide treatment inhibited endothelial nitric oxide synthase and suppressed nitric oxide production in CPAE cells. Rocuronium bromide activated cyclooxygenase-2, inducible nitric oxide synthase and increased prostaglandin E 2 synthesis in CPAE cells. Rocuronium bromide induced inflammation and pain in CPAE cells. Suppressing nitric oxide production and enhancing prostaglandin E 2 synthesis might be associated with rocuronium bromide-induced injection pain or withdrawal movement.

  6. Auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism

    Science.gov (United States)

    Cai, Weiming; Hu, Liwei; Hu, Xiangyang; Cui, Dayong; Cai, Weiming

    Gravitropism is the asymmetric growth or curvature of plant organs in response to gravistimulation. There is a complex signal transduction cascade which involved in the differential growth of plants in response to changes in the gravity vector. The role of auxin in gravitropism has been demonstrated by many experiments, but little is known regarding the molecular details of such effects. In our studies before, mediation of the gravitropic bending of soybean roots and rice leaf sheath bases by nitric oxide, cGMP and gibberellins, are induced by auxin. The asymmetrical distribution of nitric oxide, cGMP and gibberellins resulted from the asymmetrical synthesis of them in bending sites. In soybean roots, inhibitions of NO and cGMP synthesis reduced differential NO and cGMP accumulation respectively, which both of these effects can lead to the reduction of gravitropic bending. Gibberellin-induced OsXET, OsEXPA4 and OsRWC3 were also found involved in the gravitropic bending. These data indicated that auxin-induced nitric oxide, cGMP and gibberellins were involved in the gravitropism. More experiments need to prove the more detailed mechanism of them.

  7. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    Science.gov (United States)

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Induction of insulin secretion in engineered liver cells by nitric oxide

    Directory of Open Access Journals (Sweden)

    Özcan Sabire

    2007-10-01

    Full Text Available Abstract Background Type 1 Diabetes Mellitus results from an autoimmune destruction of the pancreatic beta cells, which produce insulin. The lack of insulin leads to chronic hyperglycemia and secondary complications, such as cardiovascular disease. The currently approved clinical treatments for diabetes mellitus often fail to achieve sustained and optimal glycemic control. Therefore, there is a great interest in the development of surrogate beta cells as a treatment for type 1 diabetes. Normally, pancreatic beta cells produce and secrete insulin only in response to increased blood glucose levels. However in many cases, insulin secretion from non-beta cells engineered to produce insulin occurs in a glucose-independent manner. In the present study we engineered liver cells to produce and secrete insulin and insulin secretion can be stimulated via the nitric oxide pathway. Results Expression of either human insulin or the beta cell specific transcription factors PDX-1, NeuroD1 and MafA in the Hepa1-6 cell line or primary liver cells via adenoviral gene transfer, results in production and secretion of insulin. Although, the secretion of insulin is not significantly increased in response to high glucose, treatment of these engineered liver cells with L-arginine stimulates insulin secretion up to three-fold. This L-arginine-mediated insulin release is dependent on the production of nitric oxide. Conclusion Liver cells can be engineered to produce insulin and insulin secretion can be induced by treatment with L-arginine via the production of nitric oxide.

  9. Inhibition of DNA repair by whole body irradiation induced nitric oxide leads to higher radiation sensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Sharma, Deepak; Santosh Kumar, S.; Raghu, Rashmi; Maurya, D.K.; Sainis, K.B.

    2007-01-01

    Full text: It is well accepted that the sensitivity of mammalian cells is better following whole body irradiation (WBI) as compared to that following in vitro irradiation. However, the underlying mechanisms are not well understood. Following WBI, the lipid peroxidation and cell death were significantly higher in lymphocytes as compared to that in vitro irradiated lymphocytes. Further, WBI treatment of tumor bearing mice resulted in a significantly higher inhibition of EL-4 cell proliferation as compared to in vitro irradiation of EL-4 cells. The DNA repair was significantly slower in lymphocytes obtained from WBI treated mice as compared to that in the cells exposed to same dose of radiation in vitro. Generation of nitric oxide following irradiation and also its role in inhibition of DNA repair have been reported, hence, its levels were estimated under both WBI and in vitro irradiation conditions. Nitric oxide levels were significantly elevated in the plasma of WBI treated mice but not in the supernatant of in vitro irradiated cells. Addition of sodium nitroprusside (SNP), a nitric oxide donor to in vitro irradiated cells inhibited the repair of DNA damage and sensitized cells to undergo cell death. It also enhanced the radiation-induced functional impairment of lymphocytes as evinced from suppression of mitogen-induced IL-2, IFN-γ and bcl-2 mRNA expression. Administration of N G -nitro-L-arginine-methyl-ester(L-NAME), a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. Our results indicated that nitric oxide plays a role in the higher radiosensitivity of lymphocytes in vivo by inhibiting repair of DNA damage

  10. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75.

    Science.gov (United States)

    Cáceres, Lucía; Necakov, Aleksandar S; Schwartz, Carol; Kimber, Sandra; Roberts, Ian J H; Krause, Henry M

    2011-07-15

    Nitric oxide gas acts as a short-range signaling molecule in a vast array of important physiological processes, many of which include major changes in gene expression. How these genomic responses are induced, however, is poorly understood. Here, using genetic and chemical manipulations, we show that nitric oxide is produced in the Drosophila prothoracic gland, where it acts via the nuclear receptor ecdysone-induced protein 75 (E75), reversing its ability to interfere with its heterodimer partner, Drosophila hormone receptor 3 (DHR3). Manipulation of these interactions leads to gross alterations in feeding behavior, fat deposition, and developmental timing. These neuroendocrine interactions and consequences appear to be conserved in vertebrates.

  11. OXIDATION OF TRANSURANIC ELEMENTS

    Science.gov (United States)

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  12. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  13. Electrochemical reduction of oxygen and nitric oxide at low temperature on La1−xSrxMnO3+δ cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2013-01-01

    in the nitric oxide containing atmosphere compared to the activity in the oxygen containing atmosphere at 200°C. At 300 and 400°C the activity in the nitric oxide and oxygen containing atmospheres were similar. The highest ratio between the cathodic current densities in the nitric oxide and oxygen containing......Six La1−xSrxMnO3+δ (x=0, 0.05, 0.15, 0.25, 0.35, 0.50) perovskites were synthesised and characterised by powder XRD and cyclic voltammetry on cone-shaped electrodes in 10% oxygen in argon or 1% nitric oxide in argon at 200, 300 and 400°C. The activity of the manganite based perovskites were highest...

  14. Daily life negative mood and exhaled nitric oxide in asthma.

    Science.gov (United States)

    Ritz, Thomas; Kullowatz, Antje; Bill, Michelle N; Rosenfield, David

    2016-07-01

    Psychosocial stress and negative affect have been linked to asthma exacerbations, but longitudinal studies demonstrating a daily life association between negative affect and airway nitric oxide are missing. The longitudinal association between negative mood fluctuations, exhaled nitric oxide, and lung function in asthma was examined. Self-assessments of the fraction of exhaled nitric oxide (FeNO), spirometry (forced expiratory volume in the first second, FEV1), negative mood, and daily activities were obtained from 20 patients with asthma for 2 months, resulting in 1108 assessments for the analyses (approximately 55 per patient). Concurrent and prospective associations between FeNO, FEV1, and negative mood were analyzed using mixed effects regression models for longitudinal data. Negative mood was positively associated with changes in FeNO during the same day, and to a stronger extent when prior day negative mood was included in the prediction. FeNO and negative mood were positively associated with same-day FEV1, with the latter relation being partially mediated by changes in FeNO. Associations between FeNO and FEV1 were stronger in younger patients, with earlier onset of asthma, or with lower asthma control. Findings were not changed when controlling for physical activity, medication, cold symptoms, air pollution, and hours spent outside. Daily life changes of negative mood in asthma are positively associated with FeNO changes and FeNO increases are associated with a mild bronchodilation. These findings indicate that psychological influences need to be considered when using FeNO as indicator of airway inflammation and guide for treatment decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  16. Nitric oxide synthase isoforms in spontaneous and salt hypertension

    Czech Academy of Sciences Publication Activity Database

    Hojná, Silvie; Kuneš, Jaroslav; Zicha, Josef

    2007-01-01

    Roč. 25, Suppl. 2 (2007), S 338-S 338 ISSN 0263-6352. [European Meeting on Hypertension /17./. 15.06.2007-19.06.2007, Milan] R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide synthase isoforms * spontaneous and salt hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  17. Comparison of nitric oxide binding to different pure and mixed protoporphyrin IX monolayers

    NARCIS (Netherlands)

    Knoben, W.; Crego-Calama, M.; Brongersma, S.H.

    2012-01-01

    The nitric oxide (NO) binding properties of monolayers of four different protoporphyrins IX adsorbed on aluminum oxide surfaces have been investigated. XPS and AFM results are consistent with the presence of a monolayer of porphyrins, bound to the surface by their carboxylic acid groups and with the

  18. Kinetic analysis of nitric oxide reduction using biogas as reburning fuel

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Emission of nitric oxide (NO) from coal combustion continues to be a significant ... mass has been focused as a renewable fuel without CO2 addition, and researches ..... Giles DE, Som S, Aggarwal SK (2006). NOx emission ...

  19. Variations in exhaled nitric oxide concentration after three types of dives

    NARCIS (Netherlands)

    van Ooij, Pieter-Jan; Houtkooper, Antoinette; van Hulst, Rob

    2010-01-01

    An increase in exhaled nitric oxide concentration (FENO) occurs during an exacerbation of chronic obstructive lung disease or other inflammatory processes of the airway. Raised FENO levels are also observed during normobaric, mild hyperoxic exposures, whereas after hyperbaric hyperoxic exposure the

  20. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  1. Nitric oxide synthase inhibition and cerebrovascular regulation

    DEFF Research Database (Denmark)

    Iadecola, C; Pelligrino, D A; Moskowitz, M A

    1994-01-01

    tone and may play an important role in selected vasodilator responses of the cerebral circulation. Furthermore, evidence has been presented suggesting that NO participates in the mechanisms of cerebral ischemic damage. Despite the widespread attention that NO has captured in recent years and the large......There is increasing evidence that nitric oxide (NO) is an important molecular messenger involved in a wide variety of biological processes. Recent data suggest that NO is also involved in the regulation of the cerebral circulation. Thus, NO participants in the maintenance of resting cerebrovascular...

  2. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-rela...

  3. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  4. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine.

    OpenAIRE

    Galea, E; Regunathan, S; Eliopoulos, V; Feinstein, D L; Reis, D J

    1996-01-01

    Agmatine, decarboxylated arginine, is a metabolic product of mammalian cells. Considering the close structural similarity between L-arginine and agmatine, we investigated the interaction of agmatine and nitric oxide synthases (NOSs), which use L-arginine to generate nitric oxide (NO) and citrulline. Brain, macrophages and endothelial cells were respectively used as sources for NOS isoforms I, II and III. Enzyme activity was measured by the production of nitrites or L-citrulline. Agmatine was ...

  5. Ultra-low power thin film transistors with gate oxide formed by nitric acid oxidation method

    International Nuclear Information System (INIS)

    Kobayashi, H.; Kim, W. B.; Matsumoto, T.

    2011-01-01

    We have developed a low temperature fabrication method of SiO 2 /Si structure by use of nitric acid, i.e., nitric acid oxidation of Si (NAOS) method, and applied it to thin film transistors (TFT). A silicon dioxide (SiO 2 ) layer formed by the NAOS method at room temperature possesses 1.8 nm thickness, and its leakage current density is as low as that of thermally grown SiO 2 layer with the same thickness formed at ∼900 deg C. The fabricated TFTs possess an ultra-thin NAOS SiO 2 /CVD SiO 2 stack gate dielectric structure. The ultrathin NAOS SiO 2 layer effectively blocks a gate leakage current, and thus, the thickness of the gate oxide layer can be decreased from 80 to 20 nm. The thin gate oxide layer enables to decrease the operation voltage to 2 V (cf. the conventional operation voltage of TFTs with 80 nm gate oxide: 12 V) because of the low threshold voltages, i.e., -0.5 V for P-ch TFTs and 0.5 V for N-ch TFTs, and thus the consumed power decreases to 1/36 of that of the conventional TFTs. The drain current increases rapidly with the gate voltage, and the sub-threshold voltage is ∼80 mV/dec. The low sub-threshold swing is attributable to the thin gate oxide thickness and low interface state density of the NAOS SiO 2 layer. (authors)

  6. The effect of energetic electron precipitation on the nitric oxide density in the lower thermosphere

    International Nuclear Information System (INIS)

    Saetre, Camilla

    2006-12-01

    The objective of this thesis has been the study of the chemical effects of the electron precipitation in the upper atmosphere, and mainly the increase of thermospheric nitric oxide (NO). NO plays an important role in the temperature balance for the mesosphere and thermosphere.In this project auroral electron precipitation data, derived from the Polar Ionospheric X-ray Imaging Experiment (PIXIE) and the Ultraviolet Imager (UVI) on board the Polar satellite, have been used together with NO density measurements from the Student Nitric Oxide Explorer (SNOE)

  7. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics.

    Science.gov (United States)

    Singh, Nimisha; Patel, Khushbu; Sahoo, Suban K; Kumar, Rajender

    2018-03-01

    Nitric oxide releasing superparamagnetic (Fe 3 O 4 -Au@NTHP) nanoparticles were synthesized by conjugation of human biomarker of nitric oxide, N-nitrosothioproline with iron oxide-gold (Fe 3 O 4 -Au) core shell nanoparticles. The structure and morphology of the prepared nanoparticles were confirmed by ATR-FTIR, HR-TEM, EDAX, XPS, DLS and VSM measurements. N-nitrosothioproline is a natural molecule and nontoxic to humans. Thus, the core shell nanoparticles prepared were highly biocompatible. The prepared Fe 3 O 4 -Au@NTHP nanoparticles also provided an excellent release of nitric oxide in dark and upon light irradiation for cancer treatment. The amount of NO release was controllable with the wavelength of light and time of irradiation. The developed nanoparticles provided efficient cellular uptake and good cytotoxicity in picomolar range when tested on HeLa cancerous cells. These nanoparticles on account of their controllable NO release can also be used to release small amount of NO for killing cancerous cells without any toxic effect. Furthermore, the magnetic and photochemical properties of these nanoparticles provides dual platform for magneto therapy and phototherapy for cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  9. Inhibition of inducible nitric oxide synthesis by azathioprine in a macrophage cell line.

    Science.gov (United States)

    Moeslinger, Thomas; Friedl, Roswitha; Spieckermann, Paul Gerhard

    2006-06-20

    Azathioprine is used as an anti-inflammatory agent. Although there are numerous data demonstrating cytotoxic and immunosuppressive properties of azathioprine and its metabolite 6-mercaptopurine, the mechanism of the anti-inflammatory action of azathioprine has not yet been fully clarified. During our study, we investigated the effects of azathioprine on the inducible nitric oxide synthase (iNOS) in lipopolysaccharide stimulated murine macrophages (RAW 264.7) by measurement of iNOS protein (immunoblotting), iNOS mRNA (semiquantitative competitive RT-PCR), and NO production (nitrite levels). Azathioprine (0-210 muM) induces a concentration dependent inhibition of inducible nitric oxide synthesis (IC50: 33.5 muM). iNOS protein expression showed a concentration dependent reduction as revealed by immunoblotting when cells were incubated with increasing amounts of azathioprine. Azathioprine decreases iNOS mRNA levels as shown by semiquantitative competitive RT-PCR. In contrast, 6-mercaptopurine showed no inhibition of inducible nitric oxide synthesis. Azathioprine did not reduce iNOS mRNA stability after the addition of actinomycin D. Enzymatic activity assays with increasing concentrations of azathioprine (0-210 muM) showed no statistically significant inhibition of iNOS enzyme activity compared to cell lysates without azathioprine. Nuclear translocation of NF-kappaB p65 subunit and binding of NF-kappaB p50 subunit from nuclear extracts to a biotinylated-consensus sequence was unaffected by azathioprine treatment. iNOS inhibition by azathioprine was associated with a decreased expression of IRF-1 (interferon regulatory factor 1) and IFN-beta (beta-interferon) mRNA. Azathioprine induced iNOS inhibition seems to be associated with an action of the methylnitroimidazolyl substituent. This suggests a route to the rational design of nontoxic anti-inflammatory agents by replacing the 6-mercaptopurine component of azathioprine with other substituents. The inhibition of

  10. Neuronal Nitric-Oxide Synthase Deficiency Impairs the Long-Term Memory of Olfactory Fear Learning and Increases Odor Generalization

    Science.gov (United States)

    Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.

    2013-01-01

    Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…

  11. Inhaled Nitric Oxide for the Prevention of Impaired Arterial Oxygenation during Myocardial Revascularization with Extracorporeal Circulation

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2011-01-01

    Full Text Available Objective: to study the efficacy of inhaled nitric oxide used intraoperatively to prevent lung oxygenating dysfunction in patients with coronary heart disease after myocardial revascularization under extracorporeal circulation (EC. Subjects and methods. Thirty-two patients aged 55.0±2.0 years were examined. The inclusion criteria were the standard course of surgical intervention (the absence of hemorrhage, acute cardiovascular insufficiency, perioperative myocardial infarction, etc., a pulmonary artery wedge pressure of less than 15 – mm Hg throughout the study, and the baseline arterial partial oxygen tension/inspired mixture oxygen fraction (PaO2/FiO2 ratio of at least 350 mm Hg. There was a control group (n=21; Group 1 that used no special measures to prevent and/or to correct lung oxygenating dysfunction and Group 2 (n=11 that received inhaled nitric oxide. Ihe administration of inhaled nitric oxide at a concentration of 10 ppm was initiated after water anesthesia, stopped during EC, and resumed in the postperfusion period. Results. At the end, PaO2/FiO2 and intrapulmonary shunt fraction did not differ between the groups (p>0.05. Before EC, the patients receiving inhaled nitric oxide had a lower intrapulmonary blood shunting (8.9±0.7 and 11.7±1.0%; p<0.05. There were no intergroup differences in the values of PaO2/FiO2 at this stage. In the earliest postperfusion period, PaO2/FiO2 was higher in Group 2 than that in Group 1. At the end of operations, Groups 1 and 2 had a PaO2/FiO2 of 336.0±16.8 and 409.0±24.3 mm Hg, respectively (p<0.05 and an intrapulmonary shunt fraction of 14.5±1.0 and 10.4±1.0% (p<0.05. At the end of surgery, the rate of a reduction in PaO2/FiO2 to the level below 350 mm Hg was 52.4±11.1% in Group 1 and 18.2±11.6% in Group 2 (p<0.05. Six hours after surgery, PaO2/FiO2 values less than 300 mm Hg were diagnosed in 61.9±10.5% of Group 1 patients and in 27.3±13.4% of Group 2 ones (p<0.05. Conclusion. The

  12. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  13. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  14. Reduction of nitric oxide by arc vaporized carbons (AVC)

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, S C; Chen, Y K; Green, M L.H. [The Catalysis Centre, Inorganic Chemistry Laboratory, University of Oxford, Oxford (United Kingdom)

    1996-07-04

    The reduction of nitric oxide by arc vaporized carbons (AVC) including the compound C{sub 6}0, fullerene soot and carbon nanotubes, giving dinitrogen and carbon oxides has been studied. It is found that the AVC carbons are more active towards oxidation by NO than by oxygen gas at low temperatures (300-400C). In contrast, conventional carbons such as graphite and microporous carbons are more readily oxidised by oxygen than by NO. The addition of copper salts and to a lesser extent, cobalt salts, to fullerene soot substantially promote NO reduction. The high intrinsic activity for NO reduction by AVC carbons compared to graphitic carbons is attributed to the presence of five membered carbon rings in the AVC carbons

  15. Contribution of myeloperoxidase and inducible nitric oxide synthase to pathogenesis of psoriasis

    Directory of Open Access Journals (Sweden)

    Nursel Dilek

    2016-12-01

    Full Text Available Introduction : Histological changes of psoriasis include invasion of neutrophils into the epidermis and formation of Munro abscesses in the epidermis. Neutrophils are the predominant white blood cells in circulation when stimulated; they discharge the abundant myeloperoxidase (MPO enzyme that uses hydrogen peroxide to oxidize chloride for killing ingested bacteria. Aim: To investigate the contribution of neutrophils to the pathogenesis of psoriasis at the blood and tissue levels through inducible nitric oxide synthase (iNOS and MPO. Material and methods: A total of 50 adult patients with a chronic plaque form of psoriasis and 25 healthy controls were enrolled to this study. Serum MPO and iNOS levels were measured using ELISA method. Two biopsy specimens were taken in each patient from the center of the lesion and uninvolved skin. Immunohistochemistry was performed for MPO and iNOS on both normal and psoriasis vulgaris biopsies. Results: While a significant difference between serum myeloperoxidase levels were detected, a similar statistical difference between participants in the serum iNOS levels was not found. In immunohistochemistry, intensely stained leukocytes with MPO and intensely staining with iNOS in psoriatic skin was observed. Conclusions : Neutrophils in psoriasis lesions are actively producing MPO and this indirectly triggers the synthesis of iNOS. Targeting of MPO or synthesis of MPO in the lesion area may contribute to development of a new treatment option.

  16. The Effect of Central Amygdala Nitric Oxide in Expression Of Drug Seeking Behaviors

    Directory of Open Access Journals (Sweden)

    Mahnaz Rahimpour

    2011-11-01

    Full Text Available Introduction: Previous studies shows L-arginin (nitric oxide precursor increases conditioned place preference and drug seeking behaviors whereas LG-nitro-arginine methyl ester L-NAME( as nitric oxide synthase inhibitor decreases this process. In this project, effects of intra-central amygdale bilateral injection of nitric oxide agents on drug-seeking behaviors including rearing, sniffing and compartment entrance were investigated. Method: animals were wistar male rats (200-250 g which allowed to be recovered after they’re being suffered from a surgery by strereotaxis apparatus to be cannulated in coordination of central amygdale nucleus (CeA. CPP was conducted using a five-day schedule of unbiased procedure. Findings: morphine (2.5-10 mg/kg s.c induced significant drug-seeking behaviors. Naloxone (0.1-0.4 mg/kg i.p injection pretesting (after conditioning by morphine 7.5 mg/kg decreased the expression of behaviors. When L-arginine (0.3-3 µgr/rat injected intra–CeA prior to naloxone (0.4 mg/kg, increased behaviors but L-NAME (0.3-3 µgr/rat intra–CeA injections prior to L-arginine (0.3 µgr/rat pretesting, caused significant decreasement of L-arginine response. Conclusion: NO in the CeA may play an important role in the drug seeking behaviors induced of morphine.

  17. Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.

    Science.gov (United States)

    Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2012-06-01

    We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates. Conventional intracellular microelectrode and tension recording techniques were used. The nitric oxide donor sodium nitroprusside (10 μM) abolished spontaneous contractions and slow wave activity in 5 young and 5 aging prostates. Upon adding the nitric oxide synthase inhibitor L-NAME (10 μM) the frequency of spontaneous contractile and electrical activity was significantly increased in each age group. This increase was significantly larger in 4 to 8 preparations of younger vs aging prostates (about 40% to 50% vs about 10% to 20%, 2-way ANOVA pguinea pig prostates (Student paired t test pproduction. This may further explain the increase in prostatic smooth muscle tone observed in age related prostate specific conditions, such as benign prostatic hyperplasia. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Oxidation of urate by a therapeutic nitric oxide/air mixture

    International Nuclear Information System (INIS)

    Hicks, M.; Nguyen, L.; Day, R.; Rogers, P.

    1996-01-01

    Full text: Little is known about the potential toxicological consequences of therapeutic exposure of lung tissue to inhaled nitric oxide (NO). This route of administration is currently being successfully employed for the treatment of pulmonary hypertension and other lung pathologies including acute reperfusion injury in lung transplant patients. The toxicity of NO lies in its ability to act as an oxidant either in its own right or in concert with oxygen or with the superoxide free radical. One important interaction may be the reaction of these products with protective antioxidants in the lung epithelial lining fluid. One such antioxidant found in significant concentrations in both upper and lower airways is uric acid. In the present study, urate solutions (30μM) were exposed to a therapeutic concentration of NO gas, (35 ppm in air), for up to 90 minutes. Oxidative changes were followed spectrophotometrically and by HPLC. Significant loss of uric acid was observed with a concomitant formation of nitrite and allantoin, the stable oxidation product of NO and the major oxidation product of uric acid, respectively. No oxidation of urate was observed in the presence of air alone or when urate was incubated with nitrite. Uric acid oxidation could also be prevented by passing the NO / air stream through 10% KOH before the uric acid solution. This strategy removed trace amounts of higher oxides of nitrogen, (especially NO 2 ), from the NO / air stream. Thus, therapeutic inhalation of NO may deplete soluble antioxidants such as uric acid, especially during long-term chronic exposure unless care is taken to minimise formation of higher oxides of nitrogen

  19. Development of hydrogen oxidizing bacteria using hydrogen from radiolysis or metal corrosion

    International Nuclear Information System (INIS)

    Libert, M.F.; Sellier, R.; Marty, V.; Camaro, S.

    2000-01-01

    The effect of many parameters need to be studied to characterize the long term behavior of nuclear waste in a deep repository. These parameters concern the chemical effects, radiolytic effects, mechanical properties, water composition, and microbiological activity. To evaluate microbial activity in such an environment, work was focused on an inventory of key nutrients (C, H, 0, N, P, S) and energy sources required for bacterial growth. The production of hydrogen in the nuclear waste environment leads to the growth of hydrogen oxidizing bacteria, which modify the gas production balance. A deep repository containing bituminized waste drums implies several sources of hydrogen: - water radiolysis; -corrosion of metal containers; - radiolysis of the embedding matrix (bitumen). Two deep geological disposal conditions leading to H 2 production in a bituminized nuclear waste environment were simulated in the present study: - H 2 production by iron corrosion under anaerobic conditions was simulated by adding 10% of H 2 in the atmosphere; - H 2 production by radiolysis of bitumen matrix was approached by subjecting this material to external gamma irradiation with a dose rate near real conditions (6 Gy/h). The presence of dissolved H 2 in water allows the growth of hydrogen oxidizing bacteria leading to: - CO 2 and N 2 production; - H 2 consumption; - lower NO 3 - concentration caused by reduction to nitrogen. In the first case, hydrogen consumption is limited by the NO 3 - release rate from the bitumen matrix. In the second case, however, under gamma radiation at a low dose rate, hydrogen production is weak, and the hydrogen is completely consumed by microorganisms. Knowledge about these hydrogen oxidizing bacteria is just beginning to emerge. Heterotrophic denitrifying bacteria adapt well to hydrogen metabolism (autotrophic metabolism) by oxidizing H 2 instead of hydrocarbons. (authors)

  20. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.

    Science.gov (United States)

    Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria

    2017-01-01

    Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.

  1. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Travis Shane [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mincher, Bruce Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmitt, Nicholas C [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  2. of endothelial nitric oxide synthase gene and serum level of vascular ...

    African Journals Online (AJOL)

    uwerhiavwe

    Davignon and Ganz, 2004). NO is synthe- sized via a reaction that includes the conversion of L- arginine to L-citruline catalyzed by endothelial nitric oxide synthase (eNOS), which is one of the three isoforms of the enzyme (Mayer and Hemmens, 1997) ...

  3. Hydrogen storage inside graphene-oxide frameworks

    International Nuclear Information System (INIS)

    Chan Yue; Hill, James M

    2011-01-01

    In this paper, we use applied mathematical modelling to investigate the storage of hydrogen molecules inside graphene-oxide frameworks, which comprise two parallel graphenes rigidly separated by perpendicular ligands. Hydrogen uptake is calculated for graphene-oxide frameworks using the continuous approximation and an equation of state for both the bulk and adsorption gas phases. We first validate our approach by obtaining results for two parallel graphene sheets. This result agrees well with an existing theoretical result, namely 1.85 wt% from our calculations, and 2 wt% arising from an ab initio and grand canonical Monte Carlo calculation. This provides confidence to the determination of the hydrogen uptake for the four graphene-oxide frameworks, GOF-120, GOF-66, GOF-28 and GOF-6, and we obtain 1.68, 2, 6.33 and 0 wt%, respectively. The high value obtained for GOF-28 may be partly explained by the fact that the benzenediboronic acid pillars between graphene sheets not only provide mechanical support and porous spaces for the molecular structure but also provide the higher binding energy to enhance the hydrogen storage inside graphene-oxide frameworks. For the other three structures, this binding energy is not as large in comparison to that of GOF-28 and this effect diminishes as the ligand density decreases. In the absence of conflicting data, the present work indicates GOF-28 as a likely contender for practical hydrogen storage.

  4. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Kao Ming-Ching

    2011-02-01

    Full Text Available Abstract Background Hyperbaric oxygen therapy (HBOT is a known adjuvant for treating ischemia-related inner ear diseases. Controversies still exist in the role of HBOT in cochlear diseases. Few studies to date have investigated the cellular changes that occur in inner ears after HBOT. Nitric oxide, which is synthesized by nitric oxide synthase (NOS, is an important signaling molecule in cochlear physiology and pathology. Here we investigated the effects of hyperbaric oxygen on eardrum morphology, cochlear function and expression of NOS isoforms in cochlear substructures after repetitive HBOT in guinea pigs. Results Minor changes in the eardrum were observed after repetitive HBOT, which did not result in a significant hearing threshold shift by tone burst auditory brainstem responses. A differential effect of HBOT on the expression of NOS isoforms was identified. Upregulation of constitutive NOS (nNOS and eNOS was found in the substructures of the cochlea after HBOT, but inducible NOS was not found in normal or HBOT animals, as shown by immunohistochemistry. There was no obvious DNA fragmentation present in this HBOT animal model. Conclusions The present evidence indicates that the customary HBOT protocol may increase constitutive NOS expression but such upregulation did not cause cell death in the treated cochlea. The cochlear morphology and auditory function are consequently not changed through the protocol.

  5. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  6. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    International Nuclear Information System (INIS)

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Pettersen, Erik Olai; Vollan, Hilde Synnove; Reger, Katharina; Görlach, Agnes

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2 - 0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. (author)

  7. Constitutive nitric oxide synthase (cNOS activity in Langerhans islets from streptozotocin diabetic rats

    Directory of Open Access Journals (Sweden)

    Fonovich de Schroeder T.M.

    1998-01-01

    Full Text Available Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.

  8. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  9. Human endogenous retrovirus W env increases nitric oxide production and enhances the migration ability of microglia by regulating the expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Xiao, Ran; Li, Shan; Cao, Qian; Wang, Xiuling; Yan, Qiujin; Tu, Xiaoning; Zhu, Ying; Zhu, Fan

    2017-06-01

    Human endogenous retrovirus W env (HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis (MS). These diseases are accompanied by immunological reactions in the central nervous system (CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter-nitric oxide (NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase (hiNOS) and enhanced the promoter activity of hiNOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.

  10. Involvement of the nitric oxide in melatonin-mediated protection against injury.

    Science.gov (United States)

    Fan, Wenguo; He, Yifan; Guan, Xiaoyan; Gu, Wenzhen; Wu, Zhi; Zhu, Xiao; Huang, Fang; He, Hongwen

    2018-05-01

    Melatonin is a hormone mainly synthesized by the pineal gland in vertebrates and known well as an endogenous regulator of circadian and seasonal rhythms. It has been demonstrated that melatonin is involved in many physiological and pathophysiological processes showing antioxidant, anti-apoptotic and anti-inflammatory properties. Nitric oxide (NO) is a free radical gas in the biological system, which is produced by nitric oxide synthase (NOS) family. NO acts as a biological mediator and plays important roles in different systems in humans. The NO/NOS system exerts a broad spectrum of signaling functions. Accumulating evidence has clearly revealed that melatonin regulates NO/NOS system through multiple mechanisms that may influence physiological and pathophysiological processes. This article reviews the latest evidence for the effects of melatonin on NO/NOS regulation in different organs and disease conditions, the potential cellular mechanisms by which melatonin is involved in organ protection are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Anti-Biofilm Efficacy of Nitric Oxide-Releasing Silica Nanoparticles

    OpenAIRE

    Hetrick, Evan M.; Shin, Jae Ho; Paul, Heather S.; Schoenfisch, Mark H.

    2009-01-01

    The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that ≥ 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (≥ 99.999% killing) against gram-negative...

  12. Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Anna Jamroz-Wiśniewska

    Full Text Available Adipose tissue hormone leptin induces endothelium-dependent vasorelaxation mediated by nitric oxide (NO and endothelium-derived hyperpolarizing factors (EDHF. Previously it has been demonstrated that in short-term obesity the NO-dependent and the EDHF-dependent components of vascular effect of leptin are impaired and up-regulated, respectively. Herein we examined the mechanism of the EDHF-dependent vasodilatory effect of leptin and tested the hypothesis that alterations of acute vascular effects of leptin in obesity are accounted for by chronic hyperleptinemia. The study was performed in 5 groups of rats: (1 control, (2 treated with exogenous leptin for 1 week to induce hyperleptinemia, (3 obese, fed highly-palatable diet for 4 weeks, (4 obese treated with pegylated superactive rat leptin receptor antagonist (PEG-SRLA for 1 week, (5 fed standard chow and treated with PEG-SRLA. Acute effect of leptin on isometric tension of mesenteric artery segments was measured ex vivo. Leptin relaxed phenylephrine-preconstricted vascular segments in NO- and EDHF-dependent manner. The NO-dependent component was impaired and the EDHF-dependent component was increased in the leptin-treated and obese groups and in the latter group both these effects were abolished by PEG-SRLA. The EDHF-dependent vasodilatory effect of leptin was blocked by either the inhibitor of cystathionine γ-lyase, propargylglycine, or a hydrogen sulfide (H2S scavenger, bismuth (III subsalicylate. The results indicate that NO deficiency is compensated by the up-regulation of EDHF in obese rats and both effects are accounted for by chronic hyperleptinemia. The EDHF-dependent component of leptin-induced vasorelaxation is mediated, at least partially, by H2S.

  13. Geomagnetic control of mesospheric nitric oxide concentration from simultaneous D and F region ionization measurements

    International Nuclear Information System (INIS)

    Pradhan, S.N.; Shirke, J.S.

    1978-01-01

    Investigations are made of D-region electron density profiles derived from 'partial reflection' measurements over a low latitude station (Ahmedabad) during a year of low solar activity. The index relating the electron density with the solar zenith angle is found to increase towards lower zenith angles suggesting both diurnal and seasonal variations in the Nitric oxide concentration. A close correlation is also found between the electron density at 80 km and the maximum ionization density in the F region above. This is interpreted as due to concomitant variation of a sizeable fraction of the Nitric oxide concentration in the mesosphere and lower thermosphere with the overhead F region ionization. A simplified global model is presented for the mesospheric Nitric oxide concentration based on the morphological features of F region and the relationship existing between the ionization levels in F and D regions. Many observed features of the D region ionization including the solar zenith angle dependence, latitudinal and geomagnetic anomaly and long term variability are explained on the basis of this model

  14. Investigations on the oxidation of nitric acid plutonium solutions with ozone

    International Nuclear Information System (INIS)

    Boehm, M.

    1983-01-01

    The reaction of ozone with nitric acid Pu solutions was studied as a function of reaction time, acid concentration and Pu concentration. Strong nitric acid Pu solutions are important in nuclear fuel element production and reprocessing. The Pu must be converted into hexavalent Pu before precipitation from the homogeneous solution together with uranium-IV, ammonia and CO 2 in the form of ammonium uranyl/plutonyl carbonate (AUPuC). Formation of a solid phase during ozonation was observed for the first time. The proneness to solidification increases with incrasing plutonium concentrations and with decreasing acid concentrations. If the formation of a solid phase during ozonation of nitric acid Pu solutions cannot be prevented, the PU-IV oxidation process described is unsuitable for industrial purposes as Pu solutions in industrial processes have much higher concentrations than the solutions used in the present investigation. (orig./EF) [de

  15. Progress report on nitric-phosphoric acid oxidation

    International Nuclear Information System (INIS)

    Pierce, R.A.

    1994-01-01

    The purpose of this program has been to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste stream. This technology is being developed to convert hazardous liquid and solid organics to inorganic gases and salts while simultaneously performing a surface decontamination of the noncombustible items. Pu-238 waste is an issue because it must be shipped to WIPP. However, the presence of organics and Pu-238 waste is an issue because it must be shipped to WIPP. However, the presence of organics and Pu-238 exceeds packaging requirements because of concerns of hydrogen generation. If the TRU can be separated from the organics, the allowable heat load of a container increases a factor of 25. More importantly, since the current shipping package is limited by volume and not heat loading, destroying the organic compounds and decontaminating noncombustible can potentially create a three-order magnitude decrease in the number of shipments that must be made to WIPP. The process envisioned will be configured to handle 1 million pounds (as of 12/91) of a wide range of solid TRU-contaminated waste of which 600,000 pounds is combustible. The process will oxidize the combustibles (a mixture of 14% cellulose, 3% rubber, 64% plastics, 9% absorbed oil, 4% resins and sludges, and 6% miscellaneous organics) without requiring separation from the 400,000 pounds of noncombustibles. The system is being developed to operate below 200 C at moderate pressures (0--15 psig). This report primarily discusses results obtained over the past 3 1/2 months and their impact on the feasibility of a pilot-scale system

  16. Nitric oxide in plants: an assessment of the current state of knowledge

    DEFF Research Database (Denmark)

    Mur, Luis A J; Mandon, Julien; Persijn, Stefan

    2013-01-01

    Background and aims After a series of seminal works during the last decade of the 20th century nitric oxide (NO) is now firmly placed in the pantheon of plant signals. NO acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes...... of NO production from DEANO (diethylamine nitric oxide), S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP) following infiltration of tobacco leaves which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather....... By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. Scope and conclusions The following questions will be considered. Whilst cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms...

  17. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell......Nitric oxide (NO) is an important signalling molecule that has been suggested to be a key molecule for induction and maintenance of migraine attacks based on clinical studies, animal experimental studies and the expression of nitric oxide synthase (NOS) immunoreactivity within the trigeminovascular......, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...

  18. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  19. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700 0 C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate

  20. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  1. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse

    Directory of Open Access Journals (Sweden)

    Sophie A. Bradley

    2016-01-01

    Full Text Available Nitric oxide (NO is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS, new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Huntington’s.

  2. Exhaled nitric oxide in stable chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Beg Mohammed F S; Alzoghaibi, Mohammad A; Habib, Syed S; Abba, Abdullah A

    2009-01-01

    The objective of the study was to test the hypothesis that fraction of exhaled nitric oxide (FENO) is elevated in nonsmoking subjects with stable chronic obstructive pulmonary disease (COPD) and compare it with the results in patients with asthma and a control population. Pulmonology Clinic at a University Hospital. Twenty five control subjects, 25 steroid naive asthmatics and 14 COPD patients were studied. All the patients were nonsmokers and stable at the time of the study. All subjects completed a questionnaire and underwent spirometry. Exhaled nitric oxide was measured online by chemiluminescence, using single-breath technique. All the study subjects were males. Subjects with stable COPD had significantly higher values of FENO than controls (56.54+ - 28.01 vs 22.00 + -6.69; P =0.0001) but lower than the subjects with asthma (56.54+ - 28.01 vs 84.78+ - 39.32 P 0.0285). The FENO values in COPD subjects were inversely related to the FEV 1 /FVC ratio. There was a significant overlap between the FENO values in COPD and the control subjects. There is a significant elevation in FENO in patients with stable COPD, but the elevation is less than in asthmatic subjects. Its value in clinical practice may be limited by the significant overlap with control subjects. (author)

  3. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    Directory of Open Access Journals (Sweden)

    C. H. A. von Savigny

    1999-11-01

    Full Text Available Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS. The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.Key words. Atmospheric composition and structure (airglow and aurora; thermosphere – composition and chemistry; instruments and techniques

  4. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus.

    Science.gov (United States)

    Masha, Andi; Dinatale, Stefano; Allasia, Stefano; Martina, Valentino

    2011-09-01

    This mini-review takes into consideration the physiology, synthesis and mechanisms of action of the nitric oxide (NO) and, subsequently, the causes and effects of the NO bioavailability impairment. In diabetes mellitus the reduced NO bioavailability is caused by the increased free radicals production, secondary to hyperglycemia. The reactive oxygen species oxidize the cofactors of the nitric oxide synthase, diminishing their active forms and consequently leading to a decreased NO production. Furthermore the decreased concentration of reduced glutathione results in a diminished production of nitrosoglutathione. These molecules are important intermediates of the NO pathway and physiologically activate the soluble guanylate cyclase. Their decrease in oxidative states of the cell, therefore, leads to a reduced cGMP production which represents the principal molecule that carries out NO's major effects. Finally we considered the eventual therapeutic strategies to improve NO bioavailability by acting on the causes of its decrease. Therefore the treatments proposed are based on the possibility to counteract the oxidation and, in this context, the physiopathological mechanisms strongly support the treatment with thiols.

  5. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Sarkar

    Full Text Available M. phaseolina, a global devastating necrotrophic fungal pathogen causes charcoal rot disease in more than 500 host plants. With the aim of understanding the plant-necrotrophic pathogen interaction associated with charcoal rot disease of jute, biochemical approach was attempted to study cellular nitric oxide production under diseased condition. This is the first report on M. phaseolina infection in Corchorus capsularis (jute plants which resulted in elevated nitric oxide, reactive nitrogen species and S nitrosothiols production in infected tissues. Time dependent nitric oxide production was also assessed with 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate using single leaf experiment both in presence of M. phaseolina and xylanases obtained from fungal secretome. Cellular redox status and redox active enzymes were also assessed during plant fungal interaction. Interestingly, M. phaseolina was found to produce nitric oxide which was detected in vitro inside the mycelium and in the surrounding medium. Addition of mammalian nitric oxide synthase inhibitor could block the nitric oxide production in M. phaseolina. Bioinformatics analysis revealed nitric oxide synthase like sequence with conserved amino acid sequences in M. phaseolina genome sequence. In conclusion, the production of nitric oxide and reactive nitrogen species may have important physiological significance in necrotrophic host pathogen interaction.

  6. Nitric oxide in a diesel engine : laser-based detection and interpretation

    NARCIS (Netherlands)

    Stoffels, G.G.M.

    1999-01-01

    Nitric oxide (NO) is one of the most polluting components in the exhaust gases of a diesel engines. Therefore, knowledge of the time and place where it is produced during the combustion process is of interest to find a way to reduce diesel engine emissions. Non-intrusive optical diagnostics, based

  7. Hyperglycemia and Oxidative Stress Strengthen the Association Between Myeloperoxidase and Blood Pressure

    NARCIS (Netherlands)

    van der Zwan, L.P.; Scheffer, P.G.; Dekker, J.M.; Stehouwer, C.D.A.; Heine, R.J.; Teerlink, T.

    2010-01-01

    Scavenging of the vasodilator nitric oxide by myeloperoxidase activity in the vasculature may contribute to hypertension. Because hydrogen peroxide is a cosubstrate of myeloperoxidase, hyperglycemia-induced oxidative stress may strengthen the relationship between myeloperoxidase and blood pressure.

  8. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  9. Simulation of nitrous oxide and nitric oxide emissions from tropical primary forests in the Costa Rican Atlantic Zone

    Science.gov (United States)

    Shuguanga Liu; William A. Reiners; Michael Keller; Davis S. Schimel

    2000-01-01

    Nitrous oxide (N2O) and nitric oxide (NO) are important atmospheric trace gases participating in the regulation of global climate and environment. Predictive models on the emissions of N2O and NO emissions from soil into the atmosphere are required. We modified the CENTURY model (Soil Sci. Soc. Am. J., 51 (1987) 1173) to simulate the emissions of N2O and NO from...

  10. Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection

    Science.gov (United States)

    Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.

    2011-06-01

    S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.

  11. [Techniques and complementary techniques. Complementary treatments: nitric oxide, prone positioning and surfactant].

    Science.gov (United States)

    Martos Sánchez, I; Vázquez Martínez, J L; Otheo de Tejada, E; Ros, P

    2003-11-01

    The management of hypoxic respiratory failure is based on oxygen delivery and ventilatory support with lung-protective ventilation strategies. Better understanding of acute lung injury have led to new therapeutic approaches that can modify the outcome of these patients. These adjunctive oxygenation strategies include inhaled nitric oxide and surfactant delivery, and the use of prone positioning. Nitric oxide is a selective pulmonary vasodilator that when inhaled, improves oxygenation in clinical situations such as persistent pulmonary hypertension of the newborn, pulmonary hypertension associated with congenital heart disease, and acute respiratory distress syndrome (ARDS). When applied early in ARDS, prone positioning improves distribution of ventilation and reduces the intrapulmonary shunt. The surfactant has dramatically decreased mortality caused by hyaline membrane disease in premature newborns, although the results have been less successful in ARDS. Greater experience is required to determine whether the combination of these treatments will improve the prognosis of these patients.

  12. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    International Nuclear Information System (INIS)

    Wu Defeng; Cederbaum, Arthur

    2006-01-01

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N G -Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 ± 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 ± 5%, while, SNAP or DETA-NONO increased viability to 66 ± 8 or 71 ± 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA-induced oxidative stress and

  13. NITRIC OXIDE ACTIVITY OF NEUTROPHIL IN BLOOD AND CEREBROSPINAL FLUID OF THE CHILDREN WITH BACTERIAL AND VIRAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    V. P. Molochniy

    2014-01-01

    Full Text Available The article presents the results of study of nitric oxide activity of neutrophil leucocytic and freeradical processes in blood and cerebrospinal fluid of the children with bacterial and viral meningitison the acute period diseases. The peculiarities or activity of freeradical processes and nitric oxide of cerebrospinal fluid with bacterial meningitis in acute period diseases and activities of studies of ferments with the health children. 

  14. Exhaled nitric oxide in diagnosis and management of respiratory diseases

    Directory of Open Access Journals (Sweden)

    Abba Abdullah

    2009-01-01

    Full Text Available The analysis of biomarkers in exhaled breath constituents has recently become of great interest in the diagnosis, treatment and monitoring of many respiratory conditions. Of particular interest is the measurement of fractional exhaled nitric oxide (FENO in breath. Its measurement is noninvasive, easy and reproducible. The technique has recently been standardized by both American Thoracic Society and European Respiratory Society. The availability of cheap, portable and reliable equipment has made the assay possible in clinics by general physicians and, in the near future, at home by patients. The concentration of exhaled nitric oxide is markedly elevated in bronchial asthma and is positively related to the degree of esinophilic inflammation. Its measurement can be used in the diagnosis of bronchial asthma and titration of dose of steroids as well as to identify steroid responsive patients in chronic obstructive pulmonary disease. In primary ciliary dyskinesia, nasal NO is diagnostically low and of considerable value in diagnosis. Among lung transplant recipients, FENO can be of great value in the early detection of infection, bronchioloitis obliterans syndrome and rejection. This review discusses the biology, factors affecting measurement, and clinical application of FENO in the diagnosis and management of respiratory diseases.

  15. Effects of Curcumin on the Proliferation and Mineralization of Human Osteoblast-Like Cells: Implications of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Juan D. Pedrera-Zamorano

    2012-11-01

    Full Text Available Curcumin (diferuloylmethane is found in the rhizomes of the turmeric plant (Curcuma longa L. and has been used for centuries as a dietary spice and as a traditional Indian medicine used to treat different conditions. At the cellular level, curcumin modulates important molecular targets: transcription factors, enzymes, cell cycle proteins, cytokines, receptors and cell surface adhesion molecules. Because many of the curcumin targets mentioned above participate in the regulation of bone remodeling, curcumin may affect the skeletal system. Nitric oxide (NO is a gaseous molecule generated from L-arginine during the catalization of nitric oxide synthase (NOS, and it plays crucial roles in catalization and in the nervous, cardiovascular and immune systems. Human osteoblasts have been shown to express NOS isoforms, and the exact mechanism(s by which NO regulates bone formation remain unclear. Curcumin has been widely described to inhibit inducible nitric oxide synthase expression and nitric oxide production, at least in part via direct interference in NF-κB activation. In the present study, after exposure of human osteoblast-like cells (MG-63, we have observed that curcumin abrogated inducible NOS expression and decreased NO levels, inhibiting also cell prolifieration. This effect was prevented by the NO donor sodium nitroprusside. Under osteogenic conditions, curcumin also decreased the level of mineralization. Our results indicate that NO plays a role in the osteoblastic profile of MG-63 cells.

  16. Genetic responses against nitric oxide toxicity

    Directory of Open Access Journals (Sweden)

    B. Demple

    1999-11-01

    Full Text Available The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1 synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.

  17. Storm time variation of radiative cooling of thermosphere by nitric oxide emission

    Science.gov (United States)

    Krishna, M. V. Sunil; Bag, Tikemani; Bharti, Gaurav

    2016-07-01

    The fundamental vibration-rotation band emission (Δν=1, Δ j=0,± 1) by nitric oxide (NO) at 5.3 µm is one of the most important cooling mechanisms in thermosphere. The collisional vibrational excitation of NO(ν=0) by impact with atomic oxygen is the main source of vibrationally excited nitric oxide. The variation of NO density depends on latitude, longitude and season. The present study aims to understand how the radiative flux gets influenced by the severe geomagnetic storm conditions. The variation of Nitric Oxide (NO) radiative flux exiting thermosphere is studied during the superstorm event of 7-12 November, 2004. The observations of TIMED/SABER suggest a strong anti-correlation with the O/N_2 ratio observed by GUVI during the same period. On a global scale the NO radiative flux showed an enhancement during the main phase on 8 November, 2004, whereas maximum depletion in O/N_2 is observed on 10 November, 2004. Both O/N_2 and NO radiative flux were found to propagate equatorward due to the effect of meridional wind resulting from joule and particle heating in polar region. Larger penetrations is observed in western longitude sectors. These observed variations are effectively connected to the variations in neutral densities. In the equatorial sectors, O/N_2 shows enhancement but almost no variation in radiative flux is observed. The possible reasons for the observed variations in NO radiative emission and O/N_2 ratios are discussed in the light of equator ward increase in the densities and prompt penetration.

  18. Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis

    International Nuclear Information System (INIS)

    Leterrier, Marina; Airaki, Morad; Palma, José M.; Chaki, Mounira; Barroso, Juan B.; Corpas, Francisco J.

    2012-01-01

    Environmental contamination by arsenic constitutes a problem in many countries, and its accumulation in food crops may pose health complications for humans. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved at various levels in the mechanism of responding to environmental stress in higher plants. Using Arabidopsis seedlings exposed to different arsenate concentrations, physiological and biochemical parameters were analyzed to determine the status of ROS and RNS metabolisms. Arsenate provoked a significant reduction in growth parameters and an increase in lipid oxidation. These changes were accompanied by an alteration in antioxidative enzymes and the nitric oxide (NO) metabolism, with a significant increase in NO content, S-nitrosoglutathione reductase (GSNOR) activity and protein tyrosine nitration as well as a concomitant reduction in glutathione and S-nitrosoglutathione (GSNO) content. Our results indicate that 500 μM arsenate (AsV) causes nitro-oxidative stress in Arabidopsis, being the glutathione reductase and the GSNOR activities clearly affected. - Highlights: ► In Arabidopsis, arsenate provokes damages in the membrane integrity of root cells. ► As induces an oxidative stress according to an increase in lipid oxidation. ► NO content and protein tyrosine nitration increases under arsenate stress. ► Arsenate provokes a reduction of GSH, GSSG and GSNO content. ► Arsenate induces a nitro-oxidative stress in Arabidopsis. - Arsenic stress affects nitric oxide (NO) and glutathione (GSH) metabolism which provokes a nitro-oxidative stress.

  19. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice

    Directory of Open Access Journals (Sweden)

    Cyrus Jalili

    2016-02-01

    Full Text Available Background: The predominant phytoestrogen in soy and derived products is the isoflavone Genistein. Genistein has antioxidant properties. Morphine is a main psychoactive chemical in opium that can increase the generation of free radicals and therefore it could adversely affects the spermatogenesis. Objective: The main goal was to investigate whether the Genistein could protect morphine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone and nitric oxide in blood serum. Materials and Methods: In this study, various doses of Genistein (0, 1, 2, and 3 mg/kg and Genistein plus morphine (0, 1, 2, and 3 mg/kg were administered interaperitoneally to 48 male mice for 30 consequent days. These mice were randomly assigned to 8 groups (n=6 and sperm parameters (sperm cells viability, count, motility and morphology, testis weight and histology, testosterone hormone (ELISA method, FSH and LH hormones (immunoradiometry and serum nitric oxide (griess assay were analyzed and compared. Results: The results indicated that morphine administration significantly decreased testosterone (0.03 ng/mg LH and FSH level, histological parameters, count, viability (55.3%, morphology and motility of sperm cells (1%, testis weight (0.08 gr and increase nitric oxide compared to saline group (p=0.00. However, administration of Genistein and Genistein plus morphine significantly boosted motility, morphology, count, viability of sperm cells, seminiferous tubules diameter, germinal thickness, testosterone, LH and FSH while decrease nitric oxide level in all groups compared to morphine group (p<0.025. Conclusion: It seems that Genistein administration could increase the quality of spermatozoa and prevent morphine- induced adverse effects on sperm parameters.

  20. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.; Joshi, Meenal M.; Tijare, Saumitra N.; Polshettiwar, Vivek; Labhsetwar, Nitin K.; Rayalu, Sadhana Suresh

    2012-01-01

    of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  1. Integrative medical therapy: examination of meditation's therapeutic and global medicinal outcomes via nitric oxide (review).

    Science.gov (United States)

    Stefano, George B; Esch, Tobias

    2005-10-01

    Relaxation techniques are part of the integrative medicine movement that is of growing importance for mainstream medicine. Complementary medical therapies have the potential to affect many physiological systems. Repeatedly studies show the benefits of the placebo response and relaxation techniques in the treatment of hypertension, cardiac arrhythmias, chronic pain, insomnia, anxiety and mild and moderate depression, premenstrual syndrome, and infertility. In itself, relaxation is characterized by a decreased metabolism, heart rate, blood pressure, and rate of breathing as well as an increase in skin temperature. Relaxation approaches, such as progressive muscle relaxation, autogenic training, meditation and biofeedback, are effective in lowering systolic and diastolic blood pressure in hypertensive patients by a significant margin. Given this association with changes in vascular tone, we have hypothesized that nitric oxide, a demonstrated vasodilator substance, contribute to physiological activity of relaxation approaches. We examined the scientific literature concerning the disorders noted earlier for their nitric oxide involvement in an attempt to provide a molecular rationale for the positive effects of relaxation approaches, which are physiological and cognitive process. We conclude that constitutive nitric oxide may crucially contribute to potentially beneficial outcomes and effects in diverse pathologies, exerting a global healing effect.

  2. Nitric Oxide Generating Polymeric Coatings for Subcutaneous Glucose Sensors

    Science.gov (United States)

    2007-10-01

    primary polymer which was then aminated (2) for attachment of (Boc)3-cyclen-N-acetic acid (1). After the conjugation via EDC coupling chemistry, the Boc...dipping procedure is repeated 5 times. This is the needle-type NO sensor currently used (e.g., Figure 4 device but w/o the SePEI and alginic acid ...Cha, M. E. Meyerhoff, " Polymethacrylates with Covalently Linked Cu(II)-Cyclen Complex for the In-Situ Generation of Nitric Oxide from Nitrosothiols in

  3. Tracing the success of scaling and root planning (SRP in patients with chronic periodontitis by salivary nitric oxide

    Directory of Open Access Journals (Sweden)

    Mahmood Khosravi Samani

    2012-09-01

    Full Text Available Introduction: Salivary biomarkers may elucidate orodental inflammatory processes. Nitric oxide (NO may help us to diagnose such changes . Methods: In this case-control study, all referral patients diagnosed with 130% sites were enrolled as generalized mild to moderate periodontitis group (PG. All PG and healthy control group (CG’ individuals underwent scaling and root planning (SRP. The periodontal indices were recorded at baseline (day0 in both PG and CG, in addition to 14 days after SRP (day 14 : salivary nitric oxide level on same occasions also recorded. Results: Twenty seven individuals were enrolled as PG and 17 individuals were assessed in CG. All indices were improved with SRP after 14 days. Except for NO, none of the periodontal indices subsided to the normal values of CG. Conclusions: Nitric oxide is a sensitive biomarker in tracing periodontal inflammation.

  4. Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

    Science.gov (United States)

    Rao, Minxi; Smith, Brian C; Marletta, Michael A

    2015-05-05

    Nitric oxide (NO) plays an important signaling role in all domains of life. Many bacteria contain a heme-nitric oxide/oxygen binding (H-NOX) protein that selectively binds NO. These H-NOX proteins often act as sensors that regulate histidine kinase (HK) activity, forming part of a bacterial two-component signaling system that also involves one or more response regulators. In several organisms, NO binding to the H-NOX protein governs bacterial biofilm formation; however, the source of NO exposure for these bacteria is unknown. In mammals, NO is generated by the enzyme nitric oxide synthase (NOS) and signals through binding the H-NOX domain of soluble guanylate cyclase. Recently, several bacterial NOS proteins have also been reported, but the corresponding bacteria do not also encode an H-NOX protein. Here, we report the first characterization of a bacterium that encodes both a NOS and H-NOX, thus resembling the mammalian system capable of both synthesizing and sensing NO. We characterized the NO signaling pathway of the marine alphaproteobacterium Silicibacter sp. strain TrichCH4B, determining that the NOS is activated by an algal symbiont, Trichodesmium erythraeum. NO signaling through a histidine kinase-response regulator two-component signaling pathway results in increased concentrations of cyclic diguanosine monophosphate, a key bacterial second messenger molecule that controls cellular adhesion and biofilm formation. Silicibacter sp. TrichCH4B biofilm formation, activated by T. erythraeum, may be an important mechanism for symbiosis between the two organisms, revealing that NO plays a previously unknown key role in bacterial communication and symbiosis. Bacterial nitric oxide (NO) signaling via heme-nitric oxide/oxygen binding (H-NOX) proteins regulates biofilm formation, playing an important role in protecting bacteria from oxidative stress and other environmental stresses. Biofilms are also an important part of symbiosis, allowing the organism to remain in a

  5. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  6. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Katrin F Nickel

    Full Text Available BACKGROUND: A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. PRINCIPAL FINDINGS: Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs. Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS and soluble guanylate cyclase (sGC subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot. In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs. Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1. CONCLUSION: These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.

  7. Sesquiterpene lactone trilobolide activates production of interferon-γ and nitric oxide

    Czech Academy of Sciences Publication Activity Database

    Kmoníčková, Eva; Harmatha, Juraj; Vokáč, Karel; Kostecká, Petra; Farghali, H.; Zídek, Zdeněk

    2010-01-01

    Roč. 81, č. 8 (2010), s. 1213-1219 ISSN 0367-326X R&D Projects: GA ČR GA305/07/0061 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : trilobolide * nitric oxide * sesquiterpene lactones Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.899, year: 2010

  8. Chemiluminescence from the reaction of Ba 3D with nitric oxide

    International Nuclear Information System (INIS)

    Johnson, S.A.; Solarz, R.W.; Dubrin, J.W.; Brotzmann, R.

    1977-01-01

    The reaction of laser excited Ba*( 3 D) states with nitric oxide is presented. BaO product is not detected, although the channel is thermodynamically open, and instead chemiluminescence is observed. Experiments which suggest that radiative recombination, Ba + NO → BaNO* → BaNO, is the observed reaction channel will also be presented

  9. Different sources of nitric oxide mediate neurovascular coupling in the lateral geniculate nucleus of the cat

    Directory of Open Access Journals (Sweden)

    Carmen De Labra

    2009-09-01

    Full Text Available Understanding the link between neuronal responses and metabolic signals is fundamental to our knowledge of brain function and it is a milestone in our efforts to interpret data from modern non invasive optical techniques such as fMRI, which are based on the close coupling between metabolic demand of active neurons and local changes in blood flow. The challenge is to unravel the link. Here we show, using spectrophotometry to record oxyhemoglobin (OxyHb and metahemoglobin (MetHb (surrogate markers of cerebral flow and nitric oxide levels respectively together with extracellular neuronal recordings in vivo and applying a multiple polynomial regression model, that the markers are able to predict up about 80% of variability in neuronal response. Furthermore, we show that the coupling between blood flow and neuronal activity is heavily influenced by nitric oxide (NO. While neuronal responses show the typical saturating response, blood flow shows a linear behaviour during contrast-response curves, with nitric oxide from different sources acting differently for low and high intensity.

  10. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    Science.gov (United States)

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity. In vitro evidence from primary cultures of mesencephalic cells.

    Science.gov (United States)

    Sheng, P; Cerruti, C; Ali, S; Cadet, J L

    1996-10-31

    METH is a monoaminergic toxic that destroys dopamine terminals in vivo. Oxidative mechanisms associated with DA metabolism are thought to play an important role in its toxic effects. These ideas were supported by the demonstration that CuZn-superoxide dismutase (CuZnSOD) transgenic mice were protected against the toxic effects of the drug. In the present study, we sought to determine if nitric oxide (NO) production was also involved in METH-induced neurotoxicity using primary cultures obtained from fetal rat mesencephalon. METH caused dose- and time-dependent cell death in vitro. Blockade of nitric oxide (NO) formation with several nitric oxide (NO) synthase blockers attenuated METH-mediated toxicity. Moreover, inhibition of ADP-ribosylation with nicotinamide and benzamide also provided protection against the toxicity of the drug. These results, together with our previous results in transgenic mice, support a role for free radicals in METH-induced toxic effects.

  12. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  13. Factors determining the activity of catalysts of various chemical types in the oxidation of hydrogen. I. Oxidation and isotope exchange of hydrogen on cobalt monoxide-oxide

    International Nuclear Information System (INIS)

    Polgikh, L.Y.; Golodets, G.I.; Il'chenko, N.I.

    1985-01-01

    On the basis of data on the kinetics of the reaction 2H 2 + O 2 = 2H 2 O isotope exchange H 2 + D 2 = 2HD under the conditions of oxidative catalysis, and the kinetic isotope effect, a mechanism is proposed for the oxidation of hydrogen on cobalt monoxide-oxide. At low temperatures the reaction proceeds according to a mechanism of alternating reduction-reoxidation of the surface with the participation of hydrogen adsorbed in molecular form; at increased temperature and low P 02 /P /SUB H2/ ratios, a significant contribution to the observed rate is made by a mechanism including dissociative chemisorption of hydrogen

  14. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  15. A method for nitric oxide radical scavenging properties of sulfur containing compounds.

    NARCIS (Netherlands)

    Vriesman, M.F.; Haenen, G.R.M.M.; Westerveld, G.J.; Paquay, J.B.G.; Voss, H.P.; Bast, A.

    1997-01-01

    A new method for the quantification of the nitric oxide (NO) scavenging activity of compounds in aqueous solutions is described using an amperometric NO sensor. After correction for the spontaneous degradation of NO, second-order rate kinetics of the scavenging reaction are observed.

  16. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer.

    Science.gov (United States)

    Patel, Jayendrakumar B; Shah, Franky D; Shukla, Shilin N; Shah, Pankaj M; Patel, Prabhudas S

    2009-01-01

    Oral cancer is the leading malignancy in India. Nitric oxide and antioxidant enzymes play an important role in etiology of oral cancer. Therefore, the present study evaluates nitric oxide and antioxidant enzyme levels in healthy individual without tobacco habits (NHT, N=30) and healthy individuals with tobacco habits (WHT, n=90), patients with oral precancers (OPC, n=15) and oral cancer patients (n=126). Blood samples were collected from the subjects. NO2 + NO3 (nitrite+nitrate), superoxide dismutase (SOD) and catalase levels were estimated using highly specific spectrophotometeric methods. Statistical analysis was done by SPSS statistical software version 10. Mean plasma NO2 + NO3 levels were elevated in patients with OPC and oral cancer patients as compared to the controls. Mean activities of erythrocyte SOD and catalase were higher in WHT than NHT. Erythrocyte SOD and catalase levels were higher in WHT and patients with OPC as compared to NHT. The erythrocyte SOD and catalase activities were lower in oral cancer patients than patients with OPC. The erythrocyte SOD activity was higher in advanced oral cancer than the early disease. Erythrocyte catalase activity was lower in poorly differentiated tumors than well and moderately differentiated tumors. Pearson's correlation analysis revealed that alterations in plasma NO2 + NO3 levels were negatively associated with changes in erythrocyte SOD activities. The data revealed that the alterations in antioxidant activities were associated with production of nitric oxide in oral cancer, which may have significant role in oral carcinogenesis.

  17. Metal oxide/hydrogen battery; Kinzoku sankabutsu/suiso denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, M.; Niki, H. [Toshiba Research and Development Centre, Komukai, Kawasaki (Japan)

    1995-07-04

    The metal oxide-hydrogen battery consisting mainly of hydrogen storage alloy has high energy density and high volume efficiency. However, it is disadvantageous that the self-discharge takes place since the discharge capacity is lowered due to the delivery of stored hydrogen from the hydrogen electrode. This invention relates to the metal oxide-hydrogen battery consisting of hydrogen storage alloy. Hydrogen storage alloy which is composed of LaNi5 system homogeneous solid solution having an equilibrium plateau pressure of less than 1 atm at 20{degree}C is used. As a result, the battery voltage change and the self-discharge can be reduced, and the cell performance can be improved. Examples of LaNi5 system hydrogen storage alloy are ANi(5-x)Mx (A = La, Mm, and Ca, M = Al, Mn, Si, Ge, Fe, B, Ga, Cu, In, and Co). LaNi(4.7)Al(0.3) and MmNi(4.2)Mn(0.8) are preferable. 3 figs.

  18. Inhibition of the adrenomedullin/nitric oxide signaling pathway in early diabetic retinopathy.

    Science.gov (United States)

    Blom, Jan J; Giove, Thomas J; Favazza, Tara L; Akula, James D; Eldred, William D

    2011-06-01

    The nitric oxide (NO) signaling pathway is integrally involved in visual processing and changes in the NO pathway are measurable in eyes of diabetic patients. The small peptide adrenomedullin (ADM) can activate a signaling pathway to increase the enzyme activity of neuronal nitric oxide synthase (nNOS). ADM levels are elevated in eyes of diabetic patients and therefore, ADM may play a role in the pathology of diabetic retinopathy. The goal of this research was to test the effects of inhibiting the ADM/NO signaling pathway in early diabetic retinopathy. Inhibition of this pathway decreased NO production in high-glucose retinal cultures. Treating diabetic mice with the PKC β inhibitor ruboxistaurin for 5 weeks lowered ADM mRNA levels and ADM-like immunoreactivity and preserved retinal function as assessed by electroretinography. The results of this study indicate that inhibiting the ADM/NO signaling pathway prevents neuronal pathology and functional losses in early diabetic retinopathy.

  19. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  20. The role of nitric oxide in the maintenance of vasoactive balance

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga; Šimko, F.

    2007-01-01

    Roč. 56, Suppl.2 (2007), S7-S16 ISSN 0862-8408 Grant - others:VEGA(SK) 2/6148/26; VEGA(SK) 1/3429/06; APPV(SK) 0596-06 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide * vasorelaxation and vasoconstriction factors * hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.505, year: 2007

  1. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    Science.gov (United States)

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  2. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx?

    Directory of Open Access Journals (Sweden)

    Isabelle eGuillas

    2013-09-01

    Full Text Available Nitric oxide (NO emerged as one of the major signalling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of nitric oxide into complex signalling networks. Beside the close relationships between NO and calcium or phosphatidic acid signalling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids. This mini-review summarises our current knowledge of the influence NO and sphingolipids might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although sphingolipid-NO interplays are common features in signalling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.

  3. Does increased Nitric Oxide production and oxidative stress due to high fat diet affect cardiac function after myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Marjan Aghajani

    2017-01-01

    Full Text Available Background &Objectives: High fat (HF diet by affecting the oxidative stress and nitric oxide (NO production may lead to different effects on function of the heart after myocardial infarction (MI. In the present study we aimed to address the hypothesis that high release of NO by activated macrophages affects LV function after MI.Methods: The animals were randomly divided into four groups comprising each of 10 rats: 1 Sham; 2 MI; 3 Sham+ HF diet; 4 MI+ HF diet. Animals fed with HF diet 30 days before sham and MI surgery. MI was induced by permanent ligation of left anterior descending coronary artery (LAD. Nitric oxide (NO production of peritoneal macrophages, the concentrations of MDA in the heart and the infarct size were measured.Results: Our study indicated that HF has adverse effects on myocardium and it may increase NO production as well as oxidative stress, resulting in augmentation of infarct size.Conclusion: Our results add to our knowledge that HF diet was associated with overproduction of NO by peritoneal macrophages and ROS that lead to development of infarct size and adverse remodeling.

  4. Hazards analyses of hydrogen evolution and ammonium nitrate accumulation in DWPF -- Revision 1

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.

    1994-01-01

    This revision consists of two reports, the first of which is an analysis of potential ammonium nitrate explosion hazards in the DWPF (Defense Waste Processing Facility). Sections describe the effect of impurities (organic and inorganic (chlorides, chromates, metals and oxides)); the consequences of a hydrogen deflagration or detonation; the role of confinement; the action of heat on ammonium nitrate; the thermal decomposition of ammonium nitrate; the hazard of spontaneous heating; and the explosive decomposition of ammonium nitrate. The second report, Hazard analysis of hydrogen evolution in DWPF: Process vessels and vent system for the late wash/nitric acid flowsheet, contains a description of a revised model for hydrogen generation based on the late wash/nitric acid process. The second part of the report is a sensitivity analysis of the base case conditions and the hydrogen generation model

  5. Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance...... of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals....

  6. Numerical investigation of influence thermal preparation coal on nitric oxides formation in combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Chernetskaya, N. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Chernetsky, M.; Dekterev, A. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2013-07-01

    Emissions of nitrogen oxides from coal combustion are a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog. Coal thermalpreparation before furnace delivery is effective method to reduce NOx emissions, shown by experiments in small-scale facilities (Babiy VI, Alaverdov PI, Influence of thermal preparation pulverized coal on nitric oxides outlet for combustion different metamorphized coal. ATI, 1983). This paper presents the mathematical model of burning thermal preparation coal. Validation of the model was carried out on laboratory-scale plant of All-Russia thermal engineering institute. Modeling of low-emissive burner with preliminary heating coal dust is made for the purpose of search of burner optimal constructions which provides low concentration of nitric oxides in the boiler. For modeling are used in-house CFD code ''{sigma}Flow'' (Dekterev AA, Gavrilov AA, Harlamov EB, Litvintcev KY, J Comput Technol 8(Part 1):250-255, 2003).

  7. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults

    DEFF Research Database (Denmark)

    Gebistorf, Fabienne; Karam, Oliver; Wetterslev, Jørn

    2016-01-01

    BACKGROUND: Acute hypoxaemic respiratory failure (AHRF) and mostly acute respiratory distress syndrome (ARDS) are critical conditions. AHRF results from several systemic conditions and is associated with high mortality and morbidity in individuals of all ages. Inhaled nitric oxide (INO) has been...

  8. Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La1−xSrxCoO3−delta Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    Six La1-xSrxCoO3- (x= 0, 0.05, 0.15, 0.25, 0.35, 0.50) perovskites were synthesised and characterised by powder XRD and cyclic voltammetry on cone-shaped electrodes in either air or nitric oxide in argon at 200, 300 and 400oC. At 200oC the current densities in air was highest for the strontium.......50Sr0.50CoO3-, in both air and the nitric oxide containing atmosphere. This was attributed to a rate limiting chemical step (i.e. dissociation of oxygen or nitric oxide) in the reaction sequence....

  9. Neuronal Nitric Oxide Synthase Induction in the Antitumorigenic and Neurotoxic Effects of 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Magdalena Gorska

    2014-08-01

    Full Text Available Objective: 2-Methoxyestradiol, one of the natural 17β-estradiol derivatives, is a novel, potent anticancer agent currently being evaluated in advanced phases of clinical trials. The main goal of the study was to investigate the anticancer activity of 2-methoxy-estradiol towards osteosarcoma cells and its possible neurodegenerative effects. We used an experimental model of neurotoxicity and anticancer activity of the physiological agent, 2-methoxyestradiol. Thus, we used highly metastatic osteosarcoma 143B and mouse immortalized hippocampal HT22 cell lines. The cells were treated with pharmacological (1 μM, 10 μM concentrations of 2-methoxyestradiol. Experimental: Neuronal nitric oxide synthase and 3-nitrotyrosine protein levels were determined by western blotting. Cell viability and induction of cell death were measured by MTT and PI/Annexin V staining and a DNA fragmentation ELISA kit, respectively. Intracellular levels of nitric oxide were determined by flow cytometry. Results: Here we demonstrated that the signaling pathways of neurodegenerative diseases and cancer may overlap. We presented evidence that 2-methoxyestradiol, in contrast to 17β-estradiol, specifically affects neuronal nitric oxide synthase and augments 3-nitrotyrosine level leading to osteosarcoma and immortalized hippocampal cell death. Conclusions: We report the dual facets of 2-methoxyestradiol, that causes cancer cell death, but on the other hand may play a key role as a neurotoxin.

  10. Formation and electrical characteristics of silicon dioxide layers by use of nitric acid oxidation method

    International Nuclear Information System (INIS)

    Imal, S.; Takahashi, M.; Matsuba, K.; Asuha; Ishikawa, Y.; Kobayashi, Hikaru

    2005-01-01

    SiO 2 /Si structure can be formed at low temperatures by use of nitric acid (HNO 3 ) oxidation of Si (NAOS) method. When Si wafers are immersed in ∼ 40 wt% HNO 3 solutions at 108 deg C, ∼ 1 nm SiO 2 layers are formed. The subsequent immersion in 68 wt% HNO 3 (i.e., azeotropic mixture of HNO 3 with water) at 121 deg C increases the SiO 2 thickness. The 3,5 nm-thick SiO 2 layers produced by this two-step NAOS method possess a considerably low leakage current density (e.g. 1 x 10 2 A/cmi 2 at the forward gate bias, V G , of 1.5 V), in spite of the low temperature oxidation, and further decreased (e.g., 8 x 10 4 A/cm 2 at V G = 1.5 V) by post-metallization annealing at 250 deg C in hydrogen atmosphere. In order to increase the SiO 2 thickness, a bias voltage is applied during the NAOS method. When 10 V is applied to Si with respect to a Pt counter electrode both immersed in 1 M HNO 3 solutions at 25 deg C, SiO 2 layers with 8 nm thickness can be formed for 1 h(Authors)

  11. Modulation of Fibrosis in Systemic Sclerosis by Nitric Oxide and Antioxidants

    Directory of Open Access Journals (Sweden)

    Audrey Dooley

    2012-01-01

    Full Text Available Systemic sclerosis (scleroderma: SSc is a multisystem, connective tissue disease of unknown aetiology characterized by vascular dysfunction, autoimmunity, and enhanced fibroblast activity resulting in fibrosis of the skin, heart, and lungs, and ultimately internal organ failure, and death. One of the most important and early modulators of disease activity is thought to be oxidative stress. Evidence suggests that the free radical nitric oxide (NO, a key mediator of oxidative stress, can profoundly influence the early microvasculopathy, and possibly the ensuing fibrogenic response. Animal models and human studies have also identified dietary antioxidants, such as epigallocatechin-3-gallate (EGCG, to function as a protective system against oxidative stress and fibrosis. Hence, targeting EGCG may prove a possible candidate for therapeutic treatment aimed at reducing both oxidant stress and the fibrotic effects associated with SSc.

  12. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  13. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  14. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  15. Nitric oxide synthase induction and cytotoxic-related oxidant formation in conjunctival epithelium of dry eye (Sjögren´s syndrome).

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Ardan, Taras; Šimonová, Zuzana; Čejka, Čestmír; Malec, J.; Jirsová, K.; Filipec, M.; Dostřelová, D.; Brůnová, B.

    2007-01-01

    Roč. 17, - (2007), s. 10-17 ISSN 1089-8603 R&D Projects: GA MZd NR8828; GA ČR GA304/06/1379 Institutional research plan: CEZ:AV0Z50390512 Keywords : Nitric oxide * Cytotoxic nitrogen-related oxidants * Ocular surface Subject RIV: FF - HEENT, Dentistry Impact factor: 2.900, year: 2007

  16. Manipulation of nitric oxide in an animal model of acute liver injury ...

    African Journals Online (AJOL)

    We evaluated the impact of altering nitric oxide release on acute liver injury, the associated gut injury and bacterial translocation, at different time intervals. Methods: An acute rat liver injury model induced by D-galactosamine was used. Sprague Dawley rats were divided into four main groups: normal control, acute liver ...

  17. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  18. Thalidomide ameliorates portal hypertension via nitric oxide synthase independent reduced systolic blood pressure.

    Science.gov (United States)

    Theodorakis, Nicholas G; Wang, Yining N; Korshunov, Vyacheslav A; Maluccio, Mary A; Skill, Nicholas J

    2015-04-14

    Portal hypertension is a common complication of liver cirrhosis and significantly increases mortality and morbidity. Previous reports have suggested that the compound thalidomide attenuates portal hypertension (PHT). However, the mechanism for this action is not fully elucidated. One hypothesis is that thalidomide destabilizes tumor necrosis factor α (TNFα) mRNA and therefore diminishes TNFα induction of nitric oxide synthase (NOS) and the production of nitric oxide (NO). To examine this hypothesis, we utilized the murine partial portal vein ligation (PVL) PHT model in combination with endothelial or inducible NOS isoform gene knockout mice. Wild type, inducible nitric oxide synthase (iNOS)(-/-) and endothelial nitric oxide synthase (eNOS)(-/-) mice received either PVL or sham surgery and were given either thalidomide or vehicle. Serum nitrate (total nitrate, NOx) was measured daily for 7 d as a surrogate of NO synthesis. Serum TNFα level was quantified by enzyme-linked immunosorbent assay. TNFα mRNA was quantified in liver and aorta tissue by reverse transcription-polymerase chain reaction. PHT was determined by recording splenic pulp pressure (SPP) and abdominal aortic flow after 0-7 d. Response to thalidomide was determined by measurement of SPP and mean arterial pressure (MAP). SPP, abdominal aortic flow (Qao) and plasma NOx were increased in wild type and iNOS(-/-) PVL mice when compared to sham operated control mice. In contrast, SPP, Qao and plasma NOx were not increased in eNOS(-/-) PVL mice when compared to sham controls. Serum TNFα level in both sham and PVL mice was below the detection limit of the commercial ELISA used. Therefore, the effect of thalidomide on serum TNFα levels was undetermined in wild type, eNOS(-/-) or iNOS(-/-) mice. Thalidomide acutely increased plasma NOx in wild type and eNOS(-/-) mice but not iNOS(-/-) mice. Moreover, thalidomide temporarily (0-90 min) decreased mean arterial pressure, SPP and Qao in wild type, e

  19. Dual inhibition of nitric oxide and prostaglandin E-2 production by polysubstituted 2-aminopyrimidines

    Czech Academy of Sciences Publication Activity Database

    Zídek, Z.; Kverka, Miloslav; Dusilová, Adéla; Kmoníčková, E.; Jansa, P.

    2016-01-01

    Roč. 57, July 1 (2016), s. 48-56 ISSN 1089-8603 Institutional support: RVO:61388971 Keywords : Pyrimidines * Nitric oxide * Prostaglandin E-2 Subject RIV: EE - Microbiology, Virology Impact factor: 4.181, year: 2016

  20. Interactions of hydrogen isotopes and oxides with metal tubes

    International Nuclear Information System (INIS)

    Longhurst, G. R.; Cleaver, J.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  1. Interactions of hydrogen isotopes and oxides with metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G. R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Cleaver, J. [Idaho State Univ., 921 South 8th Avenue, Pocatello, ID 83201 (United States)

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  2. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    International Nuclear Information System (INIS)

    Longhurst, Glen R.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results

  3. Olfactory Dysfunctions and Decreased Nitric Oxide Production in the Brain of Human P301L Tau Transgenic Mice.

    Science.gov (United States)

    Hu, Yang; Ding, Wenting; Zhu, Xiaonan; Chen, Ruzhu; Wang, Xuelan

    2016-04-01

    Different patterns of olfactory dysfunction have been found in both patients and mouse models of Alzheimer's Disease. However, the underlying mechanism of the dysfunction remained unknown. Deficits of nitric oxide production in brain can cause olfactory dysfunction by preventing the formation of olfactory memory. The aim of this study was to investigate the behavioral changes in olfaction and alterations in metabolites of nitric oxide, nitrate/nitrite concentration, in the brain of human P301L tau transgenic mice. The tau mice showed impairments in olfaction and increased abnormal phosphorylation of Tau protein at AT8 in different brain areas, especially in olfactory bulb. We now report that these olfactory deficits and Tau pathological changes were accompanied by decreased nitrate/nitrite concentration in the brain, especially in the olfactory bulb, and reduced expression of nNOS in the brain of tau mice. These findings provided evidence of olfactory dysfunctions correlated with decreased nitric oxide production in the brain of tau mice.

  4. The role of nitric oxide in regulation of the cardiovascular system in reptiles.

    Science.gov (United States)

    Skovgaard, Nini; Galli, Gina; Abe, Augusto; Taylor, Edwin W; Wang, Tobias

    2005-10-01

    The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.

  5. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase.

    Science.gov (United States)

    Caranto, Jonathan D; Lancaster, Kyle M

    2017-08-01

    Ammonia (NH 3 )-oxidizing bacteria (AOB) emit substantial amounts of nitric oxide (NO) and nitrous oxide (N 2 O), both of which contribute to the harmful environmental side effects of large-scale agriculture. The currently accepted model for AOB metabolism involves NH 3 oxidation to nitrite (NO 2 - ) via a single obligate intermediate, hydroxylamine (NH 2 OH). Within this model, the multiheme enzyme hydroxylamine oxidoreductase (HAO) catalyzes the four-electron oxidation of NH 2 OH to NO 2 - We provide evidence that HAO oxidizes NH 2 OH by only three electrons to NO under both anaerobic and aerobic conditions. NO 2 - observed in HAO activity assays is a nonenzymatic product resulting from the oxidation of NO by O 2 under aerobic conditions. Our present study implies that aerobic NH 3 oxidation by AOB occurs via two obligate intermediates, NH 2 OH and NO, necessitating a mediator of the third enzymatic step.

  6. Novel Insights into the Electrochemical Detection of Nitric Oxide in Biological Systems

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Hrbáč, J.; Kuchta, R.; Kadlec, J.; Kubala, Lukáš

    2014-01-01

    Roč. 60, č. 1 (2014), s. 8-12 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GP13-40882P Institutional support: RVO:68081707 Keywords : nitric oxide * electrochemical detector * biological systems Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  7. New Evidence for Cross Talk between Melatonin and Mitochondria Mediated by a Circadian-Compatible Interaction with Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Marzia Arese

    2013-05-01

    Full Text Available Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10−9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours’ incubation; both findings compatible with the melatonin circadian cycle.

  8. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease?

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Kroigaard, Christel; Simonsen, Ulf

    2010-01-01

    IMPORTANCE OF THE FIELD: Cardiovascular risk factors are often associated with endothelial dysfunction, which is also prognostic for occurrence of cardiovascular events. Endothelial dysfunction is reflected by blunted vasodilatation and reduced nitric oxide (NO) bioavailability. Endothelium...

  9. In Vivo Imaging of Nitric Oxide by Magnetic Resonance Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Rakesh Sharma

    2014-01-01

    Full Text Available Nitric oxide (NO biosensors are novel tools for real-time bioimaging of tissue oxygen changes and physiological monitoring of tissue vasculature. Nitric oxide behavior further enhances its role in mapping signal transduction at the molecular level. Spectrometric electron paramagnetic resonance (EPR and fluorometric imaging are well known techniques with the potential for in vivo bioimaging of NO. In tissues, NO is a specific target of nitrosyl compounds for chemical reaction, which provides a unique opportunity for application of newly identified NO biosensors. However, the accuracy and sensitivity of NO biosensors still need to be improved. Another potential magnetic resonance technique based on short term NO effects on proton relaxation enhancement is magnetic resonance imaging (MRI, and some NO biosensors may be used as potent imaging contrast agents for measurement of tumor size by MRI combined with fluorescent imaging. The present review provides supporting information regarding the possible use of nitrosyl compounds as NO biosensors in MRI and fluorescent bioimaging showing their measurement limitations and quantitative accuracy. These new approaches open a perspective regarding bioimaging of NO and the in vivo elucidation of NO effects by magnetic resonance techniques.

  10. Nitric oxide metabolites in gnotobiotic piglets orally infected with Salmonella enterica serovar Typhimurium

    Czech Academy of Sciences Publication Activity Database

    Trebichavský, Ilja; Zídek, Zdeněk; Franková, Daniela; Zahradníčková, Marie; Šplíchal, Igor

    2001-01-01

    Roč. 46, č. 4 (2001), s. 353-358 ISSN 0015-5632 R&D Projects: GA ČR GA524/01/0917 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitric oxide metabolites Subject RIV: EC - Immunology Impact factor: 0.776, year: 2001

  11. The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study.

    Science.gov (United States)

    Mels, Catharina M C; Huisman, Hugo W; Smith, Wayne; Schutte, Rudolph; Schwedhelm, Edzard; Atzler, Dorothee; Böger, Rainer H; Ware, Lisa J; Schutte, Aletta E

    2016-02-01

    Inadequate substrate availability and increased nitric oxide synthase inhibitor levels attenuate nitric oxide (NO) synthesis, whereas increased vascular oxidative stress may lead to inactivation of NO. We compared markers of NO synthesis capacity and oxidative stress in a bi-ethnic male population. Inter-relationships of ambulatory blood pressure and urinary albumin-to-creatinine ratio with NO synthesis capacity and oxidative stress markers were investigated. NO synthesis capacity markers (L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA)) and oxidative stress markers (serum peroxides, total glutathione, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase) were measured. Black men displayed higher blood pressure and albumin-to-creatinine ratio (all p creatinine ratio. In white men, albumin-to-creatinine ratio was positively associated with ADMA (R (2) = 0.18; β = 0.39; p creatinine ratio displayed a favorable NO synthesis capacity. This may be counteracted by increased inactivation of NO, although it was not linked to vascular or renal phenotypes. In white men, reduced NO synthesis capacity may lower NO bio-availability, thereby influencing the albumin-to-creatinine ratio.

  12. Effect of Exposure to Pill Contraceptive Low-dose Levels of Homocysteine and Nitric Oxide in Healthy Women

    Directory of Open Access Journals (Sweden)

    A Dehghani

    2016-07-01

    Full Text Available Introduction: Cardiovascular disease is one of the public health priorities. Consumption of oral contraceptives increase the risk of cardiovascular disease and it still remains a concern. This study aimed to investigate the effect of exposure on pill contraceptive low-dose  levels on homocysteine and nitric oxide. methods: In this cohort ( retrospective+ prospective study, 100 women with normal menstrual cycle aged betwen 20-35 years old refered to health care centers of Yazd, Iran in 2015.  This study was conducted through face to face interviews by the researcher who asked for demographic and anthropometric characteristics. Anthropometic indices  was measured and the levels of homosysteine and nitric oxide was determined. The data were analyzed using t-test, chi- square test and ANOVA by SPSS 21. Results: The mean and standard deviation of homocysteine levels in the exposed group acompared to non-exposed group were (3/848±2/357 μmol/L and (3/284±1/616 μmol/L as well as the mean and standard deviation of nitric oxide in the exposed group were (p-value=0/41 and (181/360±90/44μM and in the non-exposed group were (162/654±90/913 μM and (p-value=0/29 , respectively.According to these results, there was not found any statistical significant  difference among these results. Conclusion: Taking low dose oral contraceptives in healthy women did not change any differences in homocysteine and nitric oxide levels as a modifiable risk factors for cardiovascular disease.

  13. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi.

    Science.gov (United States)

    Triquell, María Fernanda; Díaz-Luján, Cintia; Romanini, María Cristina; Ramirez, Juan Carlos; Paglini-Oliva, Patricia; Schijman, Alejandro Gabriel; Fretes, Ricardo Emilio

    2018-03-25

    The innate immune response of the placenta may participate in the congenital transmission of Chagas disease through releasing reactive oxygen and nitrogen intermediates. Placental explants were cultured with 1 × 10 6 and 1 × 10 5 trypomastigotes of Tulahuen and Lucky strains and controls without parasites, and with the addition of nitric oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME) and N-acetyl cysteine (NAC) as the reactive oxygen species (ROS) scavenger. Detachment of the syncytiotrophoblast (STB) was examined by histological analysis, and the nitric oxide synthase, endothelial (eNOS), and nitrotyrosine expressions were analyzed by immunohistochemistry, as well as the human chorionic gonadotrophin (hCG) levels in the culture supernatant through ELISA assays. Parasite load with qPCR using Taqman primers was quantified. The higher number of T. cruzi (10 6 ) increased placental infection, eNOS expression, nitrosative stress, and STB detachment, with the placental barrier being injured by oxidative stress. The higher number of parasites caused deleterious consequences to the placental barrier, and the inhibitors (l-NAME and NAC) prevented the damage caused by trypomastigotes in placental villi but not that of the infection. Moreover, trophoblast eNOS played a key role in placental infection with the highest inoculum of Lucky, demonstrating the importance of the enzyme and nitrosative-oxidative stress in Chagas congenital transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Sruti Shiva

    2013-01-01

    Full Text Available Nitrite, long considered a biologically inert metabolite of nitric oxide (NO oxidation, is now accepted as a physiological storage pool of NO that can be reduced to bioactive NO in hypoxic conditions to mediate a spectrum of physiological responses in blood and tissue. This graphical review will provide a broad overview of the role of nitrite in physiology, focusing on its formation and reduction to NO as well as its regulation of the mitochondrion—an emerging subcellular target for its biological actions in tissues.

  15. Hydrogen interaction with oxidized Si(111) probed with positrons

    International Nuclear Information System (INIS)

    Lynn, K.G.; Nielsen, B.; Welch, D.O.

    1989-01-01

    A variable-energy positron beam was utilized to study the interface action of hydrogen with Si(111) covered by an ultrahigh-vacuum thermally grown oxide of 2-3 nm thickness. It was observed that positrons implanted at shallow depth (< 100 nm) after diffusion are trapped either at the interface between the oxide and the Si or in the oxide. The positron-annihilation characteristics of these trapped positrons are found to be very sensitive to hydrogen exposure. The momentum distribution of the annihilating positron-electron pair, as observed in the Doppler broadening of the annihilation line, broadens considerably after exposure to hydrogen. The effect recovers after annealing at ≅ 1100 K, suggesting a hydrogen binding at the interface of ∼ 3 ± 0.3 eV. (author). 18 refs., 3 figs

  16. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, H; Leusink, J; Bos, I Sophie T; Zaagsma, J; Meurs, H

    2006-01-01

    Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production - due to competition with neuronal

  17. Oxygen binding to nitric oxide marked hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1979-04-01

    Electron spin resonance spectra of organic phosphate free human hemoglobin marked with nitric oxide at the sixth coordination position of one of the four hemes allow to observe the transition from the tense (T) to the relaxed (R) conformation, as a function of parcial oxygen pressure. The spectra are composites of contributions from α sub(T), α sub(R) and β chains spectra, showing the presence of only two conformations: T and R. In the absence of organic phosphates NO binds to α and β chains with the same probability, but in the presence of phosphates NO combines preferentially with α chains. The dissociation of NO proceeds at least an order of magnitude faster in T than in R configuration. (author) [pt

  18. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  19. Medicinal chemistry and anti-inflammatory activity of nitric oxide-releasing NSAI drugs.

    Science.gov (United States)

    Koç And, Esra; Küçükgüzel, S Güniz

    2009-05-01

    Nitric Oxide, which acts as a non-specific cytotoxic mediator and a biological messenger on immunological competence, has been gaining significantly increasing importance. As an alternative to conventional NSAIDs having significant side effects, pharmacologically improved and therapeutically enhanced NO releasing non-steroidal anti-inflammatory drugs with less side effects are being planned to produce.

  20. Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO{sub 2}/Si and SiO{sub 2}/SiC structures

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H., E-mail: koba771@ybb.ne.jp [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Imamura, K.; Kim, W.-B.; Im, S.-S.; Asuha [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2010-07-15

    We have developed low temperature formation methods of SiO{sub 2}/Si and SiO{sub 2}/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO{sub 3} aqueous solutions at 120 deg. C), an ultrathin (i.e., 1.3-1.4 nm) SiO{sub 2} layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 deg. C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 deg. C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO{sub 2} gap-state density, and (iii) high band discontinuity energy at the SiO{sub 2}/Si interface arising from the high atomic density of the NAOS SiO{sub 2} layer. For the formation of a relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in {approx}40 wt% HNO{sub 3} and azeotropic HNO{sub 3} aqueous solutions, respectively. In this case, the SiO{sub 2} formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO{sub 2} layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO{sub 2} layer is slightly higher than that for thermal oxide. When PMA at 250 deg. C in hydrogen is performed on the two-step NAOS SiO{sub 2} layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 deg. C. A relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer can also be formed on SiC at 120 deg. C by use of the two-step NAOS method. With no treatment before the NAOS method

  1. [Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis].

    Science.gov (United States)

    Camargo, Alejandra B; Manucha, Walter

    Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Electrochemical Reduction of Oxygen and Nitric oxide at low Temperature on La1-xSrxCr0.97V0.03O3-δ Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2013-01-01

    Five La1-xSrxCr0.97V0.03O3-δ (x = 0, 0.05, 0.15, 0.25, 0.35) perovskites were synthesized and characterized by powder XRD and cyclic voltammetry on cone-shaped electrodes in 10% oxygen in argon or 1% nitric oxide in argon at 200, 300 and 400°C. It was shown that the activation energy for the redu......Five La1-xSrxCr0.97V0.03O3-δ (x = 0, 0.05, 0.15, 0.25, 0.35) perovskites were synthesized and characterized by powder XRD and cyclic voltammetry on cone-shaped electrodes in 10% oxygen in argon or 1% nitric oxide in argon at 200, 300 and 400°C. It was shown that the activation energy...... for the reduction of oxygen is higher than the activation energy for the reduction nitric oxide. The activity for the reduction of both oxygen and nitric oxide was shown to be highest for the end member La0.65Sr0.35Cr0.97V0.03O3-δ. The highest ratio between the current densities in the nitric oxide and oxygen...... containing atmospheres was found for the end member LaCr0.97V0.03O3-δ. The chromites also showed activity as anodes for either oxygen evolution or oxidation of nitric oxide to nitrogen dioxide....

  3. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  4. Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia

    Directory of Open Access Journals (Sweden)

    Poonsit Hiransai

    2016-11-01

    Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-M-induced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7 macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.

  5. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    Science.gov (United States)

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  6. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen

    Science.gov (United States)

    Quinteros, Fernanda A.; Duvilanski, Beatriz H.; Cabilla, Jimena P.

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary. PMID:27611913

  7. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    Directory of Open Access Journals (Sweden)

    Sonia A Ronchetti

    Full Text Available Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2 are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS activity and expression and may thereby modulate the production of nitric oxide (NO, an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  8. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen.

    Science.gov (United States)

    Ronchetti, Sonia A; Machiavelli, Leticia I; Quinteros, Fernanda A; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-01-01

    Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.

  9. Evaluation of salivary oxidate stress biomarkers, nitric oxide and C-reactive protein in patients with oral lichen planus and burning mouth syndrome.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Aznar-Cayuela, Cristina; Rubio, Camila P; Ceron, José J; López-Jornet, Pia

    2017-05-01

    The aim of this study was to evaluate oxidative stress factors and C-reactive protein in the saliva of patients with oral lichen planus (OLP) and burning mouth syndrome (BMS). This consecutive, cross-sectional study included 20 patients with OLP, 19 with burning mouth syndrome (BMS), and 31 control subjects. The oral cavity of each patient was examined and patients responded to a quality of life questionnaire (OHIP-14) and the xerostomia inventory. The following parameters were measured in whole non-stimulated saliva: trolox equivalent antioxidant capacity (TEAC); total antioxidant capacity (TAC); cupric reducing antioxidant capacity (CUPRAC); ferric reducing ability of plasma (FRAP); C-reactive protein (CRP); nitric oxide; nitrates; and nitrites. The OLP group presented statistically significant differences in reactive oxygen species (ROS) (29 600 cps) in comparison with the control group (39 679 cps) (P < 0.05). In the BMS group, ROS was 29 707 cps with significant difference in comparison with the control group (P < 0.05). Significantly higher salivary nitric oxide (145.7 μmol) and nitrite (141.0 μmol) levels were found in OLP patients in comparison with control group (P < 0.05). Increases in nitric oxide and C-reactive protein were found in the saliva of OLP patients in comparison with BMS and control patients. Further studies are required to confirm these findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effect of Nitric Oxide Application on Reduction of Undesirable Effects of Chilling on Washington Navel orange (Citrus sinensis L. Fruit During Storage

    Directory of Open Access Journals (Sweden)

    bahareh ghorbani

    2018-02-01

    content, peroxide hydrogen content, and the induction of antioxidant enzymes in Washington Navel orange (Citrus sinensis L. fruit during storage at 5±1°C. Materials and Methods: Washington Navel orange (Citrus sinensis L. fruits were harvested at commercial maturity from a commercial orchard in Kerman, Iran, and transported to the laboratory on the same day. Orange fruits were treated with 0.25 and 0.5 mM nitric oxide for 5 min and then stored at 5±1°C and relative humidity of 85-90 % for 5 months. No nitric oxide use was considered as control. The experiment was arranged in completely randomized design (CRD with three replicates. Characteristics such as chilling injury, total soluble solids, titratable acidity, pH, ascorbic acid, and activity of antioxidant enzymes (peroxidase and catalase were evaluated in the present experiment. Results and Discussion: The results showed that use of nitric oxide in fruits reduced significantly chilling injury, ion leakage, lipid peroxidation and hydrogen peroxide compared to control, though it increased activity of antioxidant enzymes. According to these results, unlike organic acids which decreased in treated and non-treated fruits, total soluble solids, ascorbic acid and pH of the fruits increased during storage, however, nitric oxide treatment reduced the rate of changes, be either reducing or increasing, in the mentioned parameters compared to control. So, fruits treated with 0.5 mMol nitric oxide showed the highest effect on the reduction of chilling injury. In the present study, the results indicated that NO significantly reduced CI of orange fruits during storage at 5±1 °C. NO has been applied to reduce the development of chilling injury symptoms in a number of horticultural crops. Thus NO has the potential of application in postharvest treatment by alleviating chilling injury and maintaining quality, and the aim of this study was to determine how NO alleviates the anti-oxidative systems, probably one of the mechanisms of

  11. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    Science.gov (United States)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  12. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  13. Myeloperoxidase potentiates nitric oxide-mediated nitrosation.

    Science.gov (United States)

    Lakshmi, Vijaya M; Nauseef, William M; Zenser, Terry V

    2005-01-21

    Nitrosation is an important reaction elicited by nitric oxide (NO). To better understand how nitrosation occurs in biological systems, we assessed the effect of myeloperoxidase (MPO), a mediator of inflammation, on nitrosation observed during NO autoxidation. Nitrosation of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ; 10 mum) to 2-nitrosoamino-3-methylimidazo[4,5-f]quinoline (N-NO-IQ) was monitored by HPLC. Using the NO donor spermine NONOate at pH 7.4, MPO potentiated N-NO-IQ formation. The minimum effective quantity of necessary components was 8.5 nm MPO, 0.25 mum H(2)O(2)/min, and 0.024 mum NO/min. Autoxidation was only detected at >/=1.2 mum NO/min. MPO potentiation was not affected by a 40-fold excess flux of H(2)O(2) over NO or less than a 2.4-fold excess flux of NO over H(2)O(2). Potentiation was due to an 8.8-fold increased affinity of MPO-derived nitrosating species for IQ. Autoxidation was inhibited by azide, suggesting involvement of the nitrosonium ion, NO(+). MPO potentiation was inhibited by NADH, but not azide, suggesting oxidative nitrosylation with NO(2)(.) or an NO(2)(.)-like species. MPO nonnitrosative oxidation of IQ with 0.3 mm NO(2)(-) at pH 5.5 was inhibited by azide, but not NADH, demonstrating differences between MPO oxidation of IQ with NO compared with NO(2)(-). Using phorbol ester-stimulated human neutrophils, N-NO-IQ formation was increased with superoxide dismutase and inhibited by catalase and NADH, but not NaN(3). This is consistent with nitrosation potentiation by MPO, not peroxynitrite. Increased N-NO-IQ formation was not detected with polymorphonuclear neutrophils from two unrelated MPO-deficient patients. Results suggest that the highly diffusible stable gas NO could initiate nitrosation at sites of neutrophil infiltration.

  14. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides

    Science.gov (United States)

    Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp

    2000-01-01

    Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...

  15. Decrease in emissions of nitric oxides during burning of Kuznetsk hard coal

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gedike, I.A.; Lobov, G.V.

    1983-01-01

    Results are presented of introducing and studying the plan for gradual combustion of Kuznetsk hard coals on a BKZ-210-140 F type boiler. Supply of 16-18% theoretically necessary air through the nozzle of the tertiary injection made it possible to reduce 1.5-fold the emissions of nitric oxides without reducing the economy of the furnace process.

  16. The role of nitric oxide during embryonic epidermis development of Xenopus laevis

    Czech Academy of Sciences Publication Activity Database

    Tománková, Silvie; Abaffy, Pavel; Šindelka, Radek

    2017-01-01

    Roč. 6, č. 6 (2017), s. 862-871 ISSN 2046-6390 R&D Projects: GA AV ČR LK21305; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Development * Nitric oxide * Epidermis * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 2.095, year: 2016

  17. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  18. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    KAUST Repository

    Turias, Francesc; Solà , Miquel; Falivene, Laura; Cavallo, Luigi; Poater, Albert

    2015-01-01

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  19. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    KAUST Repository

    Turias, Francesc

    2015-09-09

    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  20. Nitrogen isotope exchange between nitric oxide and nitric acid

    International Nuclear Information System (INIS)

    Axente, D.; Abrudean, M.; Baldea, A.

    1996-01-01

    The rate of nitrogen isotope exchange between NO and HNO 3 has been measured as a function of nitric acid concentration of 1.5-4M x 1 -1 . The exchange rate law is shown to be R=k[HNO 3 ] 2 [N 2 O 3 ] and the measured activation energy is E=67.78 kJ x M -1 (16.2 kcal x M -1 ). It is concluded that N 2 O 3 participates in 15 N/ 14 N exchange between NO and HNO 3 at nitric acid concentrations higher than 1.5M x 1 -1 . (author). 7 refs., 3 figs., 4 tabs

  1. Nitric oxide as an indicator for severity of injury in polytrauma.

    Science.gov (United States)

    Beitl, E; Banasova, A; Vlcek, M; Mikova, D; Hampl, V

    2016-01-01

    Patients with injuries to multiple organs or organ systems are in a serious risk of shock, multiorgan failure and death. Although there are scoring systems available to assess the extent of polytrauma and guide the prognosis, their usefulness is limited by their considerably subjective nature. As the production of nitric oxide (NO) by many cell types is elevated in tissue injury, we hypothesized that serum concentration of NO (and its oxidation products, NOx) represents a suitable marker of polytrauma correlating with prognosis. We wanted to prove that nitric oxide could serve as an indicator for severity of injury in polytrauma. We measured serum NOx and standard biochemical parameters in 93 patients with various degrees of polytrauma, 15 patients with minor injuries and 20 healthy volunteers. On admission, serum NOx was higher in patients with moderate polytrauma than both in controls and patients with minor injury, and it was even higher in patients with severe polytrauma. Surprisingly, NOx on admission was normal in the group of patients that required cardiopulmonary resuscitation or died within 48 hours after admission. In the groups, where it was elevated on admission, serum NOx dropped to normal values within 12 hours. Blood lactate levels on admission were elevated in proportion to the severity of subsequent clinical course. Elevated serum NOx and blood lactate in patients with polytrauma are markers of serious clinical course, while normal NOx combined with a very high lactate may signal a fatal prognosis (Fig. 4, Ref. 8).

  2. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia.

    Science.gov (United States)

    Motta-Mejia, Carolina; Kandzija, Neva; Zhang, Wei; Mhlomi, Vuyane; Cerdeira, Ana Sofia; Burdujan, Alexandra; Tannetta, Dionne; Dragovic, Rebecca; Sargent, Ian L; Redman, Christopher W; Kishore, Uday; Vatish, Manu

    2017-08-01

    Preeclampsia, a multisystem hypertensive disorder of pregnancy, is associated with increased systemic vascular resistance. Placentae from patients with preeclampsia have reduced levels of endothelial nitric oxide synthase (eNOS) and, thus, less nitric oxide (NO). Syncytiotrophoblast extracellular vesicles (STBEV), comprising microvesicles (STBMV) and exosomes, carry signals from the syncytiotrophoblast to the mother. We hypothesized that STBEV-bound eNOS (STBEV-eNOS), capable of producing NO, are released into the maternal circulation. Dual-lobe ex vivo placental perfusion and differential centrifugation was used to isolate STBEV from preeclampsia (n=8) and normal pregnancies (NP; n=11). Plasma samples of gestational age-matched preeclampsia and NP (n=6) were used to isolate circulating STBMV. STBEV expressed placental alkaline phosphatase, confirming placental origin. STBEV coexpressed eNOS, but not inducible nitric oxide synthase, confirmed using Western blot, flow cytometry, and immunodepletion. STBEV-eNOS produced NO, which was significantly inhibited by N   G -nitro-l-arginine methyl ester (eNOS inhibitor; P preeclampsia-perfused placentae had lower levels of STBEV-eNOS (STBMV; P preeclampsia women had lower STBEV-eNOS expression compared with that from NP women ( P preeclampsia placentae, as well as in plasma. The lower STBEV-eNOS NO production seen in preeclampsia may contribute to the decreased NO bioavailability in this disease. © 2017 The Authors.

  3. The influence of nitric oxide and mercury chloride on leaf mesophyll structure under natural drought conditions

    Directory of Open Access Journals (Sweden)

    Mykola M. Musiyenko

    2012-03-01

    Full Text Available It is established that under natural drought conditions starch was accumulated in the central part of chloroplasts of mesophyll cells and chloroplasts were localized on the periphery of cells at plasmalemma. After treatment wheat plants by nitric oxide donor the decreasing of starch deposits number and close contacts between chloroplasts were indicated, elongated nucleus was localized in the centre of cells. After treatment wheat plant by mercury chloride chloroplasts in the cells lost their oval shape and contacts, increased eventually deposition of starch, indicating the acceleration of aging tissues. Thus, nitric oxide in drought conditions reduced the destructive effect of drought on mesophyll cells, and mercury chloride caused deformation of the membrane cell.

  4. Nitric oxide production and monoamine oxidase activity in cancer patients during interferon-a therapy

    NARCIS (Netherlands)

    D. Fekkes (Durk); A.R. van Gool (Arthur); M. Bannink (Marjolein); S. Sleijfer (Stefan); W.H.J. Kruit (Wim); B. van der Holt (Bronno); A.M.M. Eggermont (Alexander); M.W. Hengeveld (Michiel); G. Stoter (Gerrit)

    2009-01-01

    textabstractAbstract Both increased and decreased nitric oxide (NO) synthesis have been reported in patients treated with interferon-alpha (IFN-alpha). Animal studies showed that IFN-alpha administration results in increased levels of biogenic amines, subsequent activation of monoamine oxidases

  5. High pressure oxidation of sponge-Zr in steam/hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    A thermogravimetric apparatus for operation in 1 and 70 atm steam-hydrogen or steam-helium mixtures was used to investigate the oxidation kinetics of sponge-Zr containing 215 ppm Fe. Weight-gain rates, reflecting both oxygen and hydrogen uptake, were measured in the temperature range 350-400 C. The specimens consisted of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk. The edges of the disk specimens were coated with a thin layer of pure gold to avoid the deleterious effect of corners. Following each experiment, the specimens were examined metallographically to reveal the morphology of the oxide and/or hydride formed. Two types of oxide, one black and uniform and the other white and nodular, were observed on sponge-Zr surfaces oxidized in steam environments at 70 atm. The oxidation rate when white-nodular oxide formed was a factor of two higher than that of black-uniform oxide at 400 C for steam contents above 1 mol%. The oxidation rate was independent of total pressure, the carrier gas (H 2 or He) and steam content above ∝1 mol%. The oxidation kinetics of sponge-Zr follows a linear law for maximum reaction times up to ∝6 days. The oxidation rate in steam-hydrogen mixtures at 70 atm total pressure decreases when the steam content approaches the steam-starved region (∝0.5 mol% steam at 400 C and ∝0.02 mol% steam at 350 C). Lower steam concentrations cause massive hydriding of the specimens. Even at steam concentrations above the critical value, direct hydrogen absorption from the gas was manifest by hydrogen pickup fractions greater than unity. (orig.)

  6. DMPD: Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function and fate. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15691589 Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...(.png) (.svg) (.html) (.csml) Show Nitric oxide and cell viability in inflammatory cells: a role for NO inmacrophage function...ty in inflammatory cells: a role for NO inmacrophage function and fate. Authors Bosca L, Zeini M, Traves PG,

  7. Uso do óxido nítrico em pediatria Inhaled nitric oxide in pediatrics

    Directory of Open Access Journals (Sweden)

    José R. Fioretto

    2003-11-01

    Full Text Available OBJETIVO: Rever a literatura sobre óxido nítrico inalatório e descrever suas principais indicações clínicas em pediatria. FONTES DOS DADOS: Revisão bibliográfica e seleção de publicações mais relevantes sobre óxido nítrico inalatório, utilizando a base de dados Medline (últimos dez anos e a base de dados Cochrane de revisões sistemáticas. SÍNTESE DOS DADOS: A revisão incluiu os seguintes tópicos: introdução; metabolismo e efeitos biológicos; aplicações clínicas; dose, administração e retirada do gás; precações e efeitos adversos e contra-indicações. Quanto às aplicações clínicas, foram descritos o uso de óxido nítrico em hipertensão pulmonar persistente e insuficiência respiratória de recém-nascidos, síndrome do desconforto respiratório agudo, hipertensão pulmonar primária, cirurgia cardíaca, doença pulmonar obstrutiva crônica, anemia falciforme e broncoespasmo. CONCLUSÕES: O óxido nítrico inalatório é um tratamento com amplas possibilidades de utilização em clínica pediátrica. Seu uso é seguro em ambiente de terapia intensiva sob monitorização rigorosa. Como vasodilatador pulmonar seletivo, o óxido nítrico tem efeitos benéficos sobre as trocas gasosas e ventilação. Estudos controlados que enfoquem a administração precoce do gás são necessários em muitas condições, principalmente na síndrome do desconforto respiratório agudo.OBJECTIVE: To review the literature on inhaled nitric oxide and to describe its main clinical applications in pediatrics. SOURCES OF DATA: A 10 year literature review with selection of the most important publications on inhaled nitric oxide, using the Medline and Cochrane Systematic Review databases. SUMMARY OF THE FINDINGS: This review was organized as follows: introduction; metabolism and biological effects; clinical applications; dosage, gas administration and weaning; precautions and side-effects. Inhaled nitric oxide use was described in

  8. The effects of H1-antihistamines on the nitric oxide production by RAW 264.7 cells with respect to their lipophilicity

    Czech Academy of Sciences Publication Activity Database

    Králová, Jana; Račková, L.; Pekarová, Michaela; Kubala, Lukáš; Nosál, R.; Jančinová, V.; Číž, Milan; Lojek, Antonín

    2009-01-01

    Roč. 9, 7-8 (2009), s. 990-995 ISSN 1567-5769 R&D Projects: GA AV ČR(CZ) 1QS500040507; GA ČR(CZ) GA525/06/1196 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : H1-antihistamines * nitric oxide * inducible nitric oxide synthase Subject RIV: BO - Biophysics Impact factor: 2.214, year: 2009

  9. A study of hydrogen permeation in aluminum alloy treated by various oxidation processes

    International Nuclear Information System (INIS)

    Song Wenhai; Long Bin

    1997-01-01

    A set of oxide coatings was formed on the surface of an Al alloy (wt%: Fe, 0.24; Si, 1.16; Cu, 0.05-0.2; Zn, 0.1; Al, residual) by means of various oxidation processes. The hydrogen permeability through the aluminum alloy and its coating materials was determined by a vapor phase permeation technique at temperatures ranging from 400 to 500 C using high-purity H 2 (99.9999%) gas with an upstream hydrogen pressure of 10 4 -10 5 Pa. The experimental results show that the hydrogen permeability through aluminum oxide coating is 100-2000 times lower than that through the aluminum alloy substrate. This means that the aluminum oxide is a significant hydrogen permeation barrier. A high hydrogen permeation resistance was observed in an oxide layer prefilmed in 200 C water, while an anodized aluminum oxide film had a less obstructive effect, possibly caused by the porous structure of the anodic oxide. The hydrogen permeability through films of aluminum oxide was not a simple function of the aluminum-oxide phase configuration. (orig.)

  10. Flavonoid-rich apples and nitrate-rich spinach augment nitric oxide status and improve endothelial function in healthy men and women: a randomized controlled trial.

    Science.gov (United States)

    Bondonno, Catherine P; Yang, Xingbin; Croft, Kevin D; Considine, Michael J; Ward, Natalie C; Rich, Lisa; Puddey, Ian B; Swinny, Ewald; Mubarak, Aidilla; Hodgson, Jonathan M

    2012-01-01

    Flavonoids and nitrates in fruits and vegetables may protect against cardiovascular disease. Dietary flavonoids and nitrates can augment nitric oxide status via distinct pathways, which may improve endothelial function and lower blood pressure. Recent studies suggest that the combination of flavonoids and nitrates can enhance nitric oxide production in the stomach. Their combined effect in the circulation is unclear. Here, our objective was to investigate the independent and additive effects of flavonoid-rich apples and nitrate-rich spinach on nitric oxide status, endothelial function, and blood pressure. A randomized, controlled, crossover trial with healthy men and women (n=30) was conducted. The acute effects of four energy-matched treatments (control, apple, spinach, and apple+spinach), administered in random order, were compared. Measurements included plasma nitric oxide status, assessed by measuring S-nitrosothiols+other nitrosylated species (RXNO) and nitrite, blood pressure, and endothelial function, measured as flow-mediated dilatation of the brachial artery. Results are means and 95% CI. Relative to control, all treatments resulted in higher RXNO (control, 33 nmol/L, 26, 42; apple, 51 nmol/L, 40, 65; spinach, 86 nmol/L, 68, 110; apple+spinach, 69 nmol/L, 54, 88; Pflow-mediated dilatation (Peffect was observed on diastolic blood pressure. The combination of apple and spinach did not result in additive effects on nitric oxide status, endothelial function, or blood pressure. In conclusion, flavonoid-rich apples and nitrate-rich spinach can independently augment nitric oxide status, enhance endothelial function, and lower blood pressure acutely, outcomes that may benefit cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients

    Directory of Open Access Journals (Sweden)

    Taysa Ribeiro Schalcher

    2013-09-01

    Full Text Available Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.

  12. Investigating nitric oxide signalling involvement in the antidepressant action of ketamine

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2012-01-01

    Stress-induced excessive glutamate transmission at N-methyl-D-aspartate receptors (NMDA-R’s) may underlie a primary mechanism in the physiology that leads to depression, and ketamine, an NMDA-R antagonist, has been shown to rapidly relieve depression in humans. A number of downstream mechanisms...... have been suggested to mediate the antidepressant action of ketamine, including the activation of extracellular-signal-regulated kinases 1/2 (ERK1/2), protein kinase B (or Akt) and the mammalian target of rapamycin (mTOR). However, the mechanism(s) that are affected immediately downstream of NMDA......-R’s remain unclear. Neuronal nitric oxide synthase (nNOS) is directly coupled to and activated by NMDA-R’s, and the uncoupling of the nNOS-NMDA-R complex prevents NMDA-R-mediated excitotoxicity. Therefore, we investigated whether the antidepressant mechanism of ketamine involves the inhibition of nitric...

  13. Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress

    Directory of Open Access Journals (Sweden)

    Marcela eSimontacchi

    2015-11-01

    Full Text Available Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant´s ontogeny and environmental fluctuations.Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant´s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signalling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.

  14. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    Science.gov (United States)

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  15. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  16. Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ

    Directory of Open Access Journals (Sweden)

    Yongwei Qin

    2016-04-01

    Full Text Available miR-155 (microRNA-155 is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m infection. Transfection with anti-miR-155 enhances nitric oxide (NO synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ activated macrophages. More importantly, miR-155 can directly bind to the 3′UTR of CCAAT/enhancer binding protein β (C/EBPβ, a positive transcriptional regulator of nitric oxide synthase (NOS2, and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious.

  17. Roles of Glutamates and Metal ions in a Rationally Designed Nitric Oxide Reductase Based on Myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Y Lin; N Yeung; Y Gao; K Miner; S Tian; H Robinson; Y Lu

    2011-12-31

    A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

  18. Nitric oxide-related drug targets in headache

    DEFF Research Database (Denmark)

    Olesen, Jes

    2010-01-01

    -called delayed headache that fulfils criteria for migraine without aura in migraine sufferers. Blockade of nitric oxide synthases (NOS) by L-nitromonomethylarginine effectively treats attacks of migraine without aura. Similar results have been obtained for chronic the tension-type headache and cluster headache....... Inhibition of the breakdown of cyclic guanylate phosphate (cGMP) also provokes migraine in sufferers, indicating that cGMP is the effector of NO-induced migraine. Similar evidence suggests an important role of NO in the tension-type headache and cluster headache. These very strong data from human...... experimentation make it highly likely that antagonizing NO effects will be effective in the treatment of primary headaches. Nonselective NOS inhibitors are likely to have side effects whereas selective compounds are now in early clinical trials. Antagonizing the rate limiting cofactor tetrahydrobiopterin seems...

  19. Nitric oxide: cancer target or anticancer agent?

    Science.gov (United States)

    Mocellin, Simone

    2009-03-01

    Despite the improved understanding of nitric oxide (NO) biology and the large amount of preclinical experiments testing its role in cancer development and progression, it is still debated whether NO should be considered a potential anticancer agent or instead a carcinogen. The complexity of NO effects within a cell and the variability of the final biological outcome depending upon NO levels makes it highly challenging to determine the therapeutic value of interfering with the activity of this intriguing gaseous messenger. This uncertainty has so far halted the clinical implementation of NO-based therapeutics in the field of oncology. Accordingly, only an in depth knowledge of the mechanisms leading to experimental tumor regression or progression in response to NO will allow us to exploit this molecule to fight cancer.

  20. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  1. Nitric oxide bioavailability dysfunction involves in atherosclerosis.

    Science.gov (United States)

    Chen, Jing-Yi; Ye, Zi-Xin; Wang, Xiu-Fen; Chang, Jian; Yang, Mei-Wen; Zhong, Hua-Hua; Hong, Fen-Fang; Yang, Shu-Long

    2018-01-01

    The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Conversion of nitric oxide in the combustion products of a gaseous fuel on exposure to a beam of accelerated electrons

    International Nuclear Information System (INIS)

    Belousova, E.V.; Gavrilov, A.F.; Gol'danskii, V.I.; Dzantiev, B.G.; Pavlova, S.U.; Shvedchikov, A.P.

    1986-01-01

    The results are given of an experimental investigation of the radiation chemical effect of a beam of accelerated electrons on the combustion products of a gaseous fuel (propane). The effects of the initial concentration, temperature, and dose on the relative concentration of nitric oxide [NO]/[NO] 0 in the irradiated mixture were studied and the radiation chemical yields for the consumption of nitric oxide G(-NO) were studied. The quite high values of G(-NO) obtained suggest that the method described may be suitable for removing nitrogen oxides from the exhaust gases from thermoelectric power plants

  3. Nitric Oxide and Interlukin-6 Levels in Intellectual Disability Adults with Epilepsy

    Science.gov (United States)

    Carmeli, Eli; Beiker, Reut; Morad, Mohammed

    2009-01-01

    Nitric oxide (NO) and interlukin-6 (IL-6) are highly reactive mediators that have been shown to play different roles in a variety of different biological process. The role of NO and IL-6 in the neuropathogenesis of brain seizures is still questionable. In order to evaluate the role of NO and IL-6 in neurological disorders such as seizures, we…

  4. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  5. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples

    Directory of Open Access Journals (Sweden)

    Yong-Biao Liu

    2016-12-01

    Full Text Available Nitric oxide (NO fumigation under ultralow oxygen (ULO conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  6. Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples.

    Science.gov (United States)

    Liu, Yong-Biao; Yang, Xiangbing; Simmons, Gregory

    2016-12-02

    Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.

  7. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  8. Nitric Oxide-Sensitive Pulmonary Hypertension in Congenital Rubella Syndrome

    Directory of Open Access Journals (Sweden)

    Francesco Raimondi

    2015-01-01

    Full Text Available Persistent pulmonary hypertension is a very rare presentation of congenital virus infection. We discuss the case of complete congenital rubella syndrome presenting at echocardiography with pulmonary hypertension that worsened after ductus ligation. Cardiac catheterization showed a normal pulmonary valve and vascular tree but a PAP=40 mmHg. The infant promptly responded to inhaled nitric oxide while on mechanical ventilation and was later shifted to oral sildenafil. It is not clear whether our observation may be due to direct viral damage to the endothelium or to the rubella virus increasing the vascular tone via a metabolic derangement.

  9. Metal oxide-hydrogen secondary battery; Kinzoku sankabutsu-suiso niji denchi

    Energy Technology Data Exchange (ETDEWEB)

    Hosobuchi, H.; Edoi, M.; Katsumata, T.

    1995-06-06

    Recently, the metal oxide - hydrogen secondary battery characterized by employing the hydrogen storage alloy as the hydrogen negative electrode draws attention. However, the secondary batteries equipped with the negative electrode composed of hydrogen storage alloy powder have such shortcoming that the charge-discharge cycle life is rather short and it changes widely from battery to battery, as the hydrogen storage alloy is disintegrated. This invention solves the problem. Employing the alloy having a composition expressed as LmNi(w)Co(X)Mn(y)Al(z) (Lm = rare earth elements including La) can suppress the disintegration of hydrogen storage alloy powder during the charge-discharge cycle. In addition, controlling the oxygen content in the hydrogen storage alloy powder to 500 - 1500ppm can reduce the oxidation corrosion of the hydrogen storage alloy, resulting in suppression of its deterioration. 1 fig., 2 tabs.

  10. Ropivacaine-Induced Contraction Is Attenuated by Both Endothelial Nitric Oxide and Voltage-Dependent Potassium Channels in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2013-01-01

    Full Text Available This study investigated endothelium-derived vasodilators and potassium channels involved in the modulation of ropivacaine-induced contraction. In endothelium-intact rat aortae, ropivacaine concentration-response curves were generated in the presence or absence of the following inhibitors: the nonspecific nitric oxide synthase (NOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, the neuronal NOS inhibitor Nω-propyl-L-arginine hydrochloride, the inducible NOS inhibitor 1400W dihydrochloride, the nitric oxide-sensitive guanylyl cyclase (GC inhibitor ODQ, the NOS and GC inhibitor methylene blue, the phosphoinositide-3 kinase inhibitor wortmannin, the cytochrome p450 epoxygenase inhibitor fluconazole, the voltage-dependent potassium channel inhibitor 4-aminopyridine (4-AP, the calcium-activated potassium channel inhibitor tetraethylammonium (TEA, the inward-rectifying potassium channel inhibitor barium chloride, and the ATP-sensitive potassium channel inhibitor glibenclamide. The effect of ropivacaine on endothelial nitric oxide synthase (eNOS phosphorylation in human umbilical vein endothelial cells was examined by western blotting. Ropivacaine-induced contraction was weaker in endothelium-intact aortae than in endothelium-denuded aortae. L-NAME, ODQ, and methylene blue enhanced ropivacaine-induced contraction, whereas wortmannin, Nω-propyl-L-arginine hydrochloride, 1400W dihydrochloride, and fluconazole had no effect. 4-AP and TEA enhanced ropivacaine-induced contraction; however, barium chloride and glibenclamide had no effect. eNOS phosphorylation was induced by ropivacaine. These results suggest that ropivacaine-induced contraction is attenuated primarily by both endothelial nitric oxide and voltage-dependent potassium channels.

  11. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  12. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles

    DEFF Research Database (Denmark)

    Uhrenholt, Torben Rene; Schjerning, J; Vanhoutte, Paul M. G.

    2007-01-01

    Vasoconstriction and increase in the intracellular calcium concentration ([Ca(2+)](i)) of vascular smooth muscle cells may cause an increase of endothelial cell [Ca(2+)](i), which, in turn, augments nitric oxide (NO) production and inhibits smooth muscle cell contraction. This hypothesis was test...

  13. Effect of Nitric Oxide, Vitamin E and Selenium on Streptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Nader, Manar M.; Eissa, Laila A.; Gamil, Nariman M.; Ammar, El-Sayed M.

    2007-01-01

    Diabetes mellitus is characterized by a series of complications that may affect many organs. This study aimed to investigate the role of nitric oxide (NO) as a physiological mediator in the body via the use of L-arginine as NO precursor Ng-nitro-arginine methyl ester (L-NAME) as Nitric oxide synthase (NOS) enzyme inhibitor in diabetic rats. The effect of vitamin E as antioxidant and selenium as a potent insulin-mimetic agent in diabetic rats were studied. The possible combination of selenium or vitamin E with L-arginine was studied in the same animal model to show the ability of these treatments to ameliorate some of the biochemical changes that are worsen with the development of diabetes such as lipid profile, plasma glucose, blood malondialdehyde (MDA), plasma nitric oxide and plasma b-2 microglobulin levels. Experimental diabetes was induced in male rats by I.V. injection of Streptozotocin (STZ) (50mg/kg). Diabetic rats showed a significant increase (P<0.05) in the plasma level of glucose, triglycerides, total cholesterol, LDL-cholesterol, b2-micro globulin, blood MDA as a result of increased oxidative stress while there was a significant decrease in plasma HDL-cholesterol, and nitrate/nitrite levels. L-arginine, vitamin E and selenium administration produced a significant decrease in plasma glucose level of diabetic arts (13%, 29.11%, 61.65%) respectively from its initial value, so as they showed a significant reduction in blood MDA level, plasma triglyceride, total cholesterol, LDL-Ch.. levels when compared with the initial diabetic values. Combined therapy of vitamin E and L-arginine showed no significant change of any of the measured parameters (except for nitrate/nitrite level) on comparison either with vitamin E or with L-arginine treated group. The combined therapy of selenium and L-arginine showed a significant decrease nearly to normal level in the plasma glucose concentration and may be of clinical significance. (author)

  14. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  15. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin.

    Science.gov (United States)

    Ribeiro-Junior, Jerônimo Aparecido; Franchin, Marcelo; Cavallini, Miriam Elias; Denny, Carina; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2015-01-01

    The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH) groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg) reduced the ulcerative lesions induced by the ethanol (P 0.05). These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  16. The value of exhaled nitric oxide to identify asthma in smoking patients with asthma-like symptoms

    DEFF Research Database (Denmark)

    Malinovschi, Andrei; Backer, Vibeke; Harving, Henrik

    2012-01-01

    The fraction of nitric oxide in exhaled air (FeNO) is used in asthma diagnosis and management. Smoking reduces FeNO and 20-35% of asthmatics are smoking. However no guidelines exist on the diagnostic value of FeNO in smokers. Therefore we assessed the value of FeNO to diagnose asthma in a populat...... in a population of subjects with asthma-like symptoms and different smoking habits.......The fraction of nitric oxide in exhaled air (FeNO) is used in asthma diagnosis and management. Smoking reduces FeNO and 20-35% of asthmatics are smoking. However no guidelines exist on the diagnostic value of FeNO in smokers. Therefore we assessed the value of FeNO to diagnose asthma...

  17. Gastroprotective Effect of Geopropolis from Melipona scutellaris Is Dependent on Production of Nitric Oxide and Prostaglandin

    Directory of Open Access Journals (Sweden)

    Jerônimo Aparecido Ribeiro-Junior

    2015-01-01

    Full Text Available The aim of this study was to evaluate the gastroprotective activity of ethanolic extract of geopropolis (EEGP from Melipona scutellaris and to investigate the possible mechanisms of action. The gastroprotective activity of the EEGP was evaluated using model ulcer induced by ethanol. To elucidate the possible mechanisms of action, we investigated the involvement of the nonprotein sulfhydryl (NP-SH groups, nitric oxide and prostaglandins. In addition, the antisecretory activity of EEGP was also evaluated by pylorus ligated model. The EEGP orally administrated (300 mg/kg reduced the ulcerative lesions induced by the ethanol (P0.05. These results support the alternative medicine use of geopropolis as gastroprotective and the activities observed show to be related to nitric oxide and prostaglandins production.

  18. Role of the L-citrulline/L-arginine cycle in iNANC nerve-mediated nitric oxide production and airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, Ham; Leusink, John; Zaagsma, Johan; Meurs, Herman

    2006-01-01

    Nitric oxide synthase (NOS) converts L-arginine into nitric oxide (NO) and L-Citrulline. In NO-producing cells, L-citrulline can be recycled to L-arginine in a two-step reaction involving argininosuccinate synthase (ASS) and -lyase (ASL). In guinea pig trachea, L-arginine is a limiting factor in

  19. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  20. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  1. The effect of a selective neuronal nitric oxide synthase inhibitor 3-bromo 7-nitroindazole on spatial learning and memory in rats.

    Science.gov (United States)

    Gocmez, Semil Selcen; Yazir, Yusufhan; Sahin, Deniz; Karadenizli, Sabriye; Utkan, Tijen

    2015-04-01

    Since the discovery of nitric oxide (NO) as a neuronal messenger, its way to modulate learning and memory functions is subject of intense research. NO is an intercellular messenger in the central nervous system and is formed on demand through the conversion of L-arginine to L-citrulline via the enzyme nitric oxide synthase (NOS). Neuronal form of nitric oxide synthase may play an important role in a wide range of physiological and pathological conditions. Therefore the aim of this study was to investigate the effects of chronic 3-bromo 7-nitroindazole (3-Br 7-NI), specific neuronal nitric oxide synthase (nNOS) inhibitor, administration on spatial learning and memory performance in rats using the Morris water maze (MWM) paradigm. Male rats received either 3-Br 7-NI (20mg/kg/day) or saline via intraperitoneal injection for 5days. Daily administration of the specific neuronal nitric oxide synthase (nNOS) inhibitor, 3-Br 7-NI impaired the acquisition of the MWM task. 3-Br 7-NI also impaired the probe trial. The MWM training was associated with a significant increase in the brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. BDNF mRNA expression in the hippocampus did not change after 3-Br 7-NI treatment. L-arginine significantly reversed behavioural parameters, and the effect of 3-Br 7-NI was found to be NO-dependent. There were no differences in locomotor activity and blood pressure in 3-Br 7-NI treated rats. Our results may suggest that nNOS plays a key role in spatial memory formation in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoporosis.

    Science.gov (United States)

    Armour, K E; Van'T Hof, R J; Grabowski, P S; Reid, D M; Ralston, S H

    1999-12-01

    Inflammatory disease is associated with increased production of nitric oxide (NO) and activation of the inducible nitric oxide synthase (iNOS) pathway. Several studies have addressed the role of NO as a mediator of cytokine effects on bone cell activity in vitro. Stimulatory and inhibitory actions have been found, however, depending on the concentrations produced and model system used. In view of this, it has been difficult to predict whether increased production of NO during inflammation is likely to increase bone loss or prevent it. We have investigated the pathogenic role of NO in an animal model of inflammation-induced osteoporosis (IMO). NO production was increased in IMO when compared with controls (+344%; p turnover, but L-NMMA had no effect on bone mass in control animals. This study has important implications for many inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, and inflammatory bowel disease which are associated with increased NO production and osteoporosis. Our data not only suggest that iNOS activation and increased NO production contribute to the pathogenesis of osteoporosis in these situations, but also suggest that NOS inhibitors could be of therapeutic value in the prevention and treatment of such bone loss.

  3. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    Science.gov (United States)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  4. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  5. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1

    DEFF Research Database (Denmark)

    Guan, Xinfu; Stoll, Barbara; Lu, Xiaofeng

    2003-01-01

    (n = 8) received consecutive intravenous infusions of saline, GLP-2, and GLP-2 plus N(G)-Nitro-L-arginine methyl ester (L-NAME, 50 micromol x kg(-1) x hour(-1)) for 4 hours each. RESULTS: GLP-2 acutely increased portal-drained visceral (PDV) blood flow rate (+25%) and intestinal blood volume (+51......%) in TPN-fed piglets. GLP-2 also increased intestinal constitutive nitric oxide synthase (NOS) activity and endothelial NOS protein abundance. GLP-2 acutely increased PDV glucose uptake (+90%) and net lactate production (+79%). Co-infusion of GLP-2 plus L-NAME did not increase either PDV blood flow rate......, and this response is nitric oxide-dependent. These findings suggest that GLP-2 may play an important physiological role in the regulation of intestinal blood flow and that nitric oxide is involved in GLP-2 receptor function....

  6. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  7. S-nitrosylation mediates nitric oxide -auxin crosstalk in auxin signaling and polar auxin transport

    Science.gov (United States)

    Nitric oxide (NO) and auxin phytohormone cross talk has been implicated in plant development and growth. Addition and removal of NO moieties to cysteine residues of proteins, is termed S-nitrosylation and de-nitrosylation, respectively and functions as an on/off switch of protein activity. This dyna...

  8. Relationship between endothelial nitric oxide synthase (eNOS) and natural history of intracranial aneurysms: meta-analysis.

    Science.gov (United States)

    Paschoal, Eric Homero Albuquerque; Yamaki, Vitor Nagai; Teixeira, Renan Kleber Costa; Paschoal Junior, Fernando Mendes; Jong-A-Liem, Glaucia Suzanna; Teixeira, Manoel Jacobsen; Yamada, Elizabeth Sumi; Ribeiro-Dos-Santos, Ândrea; Bor-Seng-Shu, Edson

    2018-01-01

    The aneurysmal subarachnoid hemorrhage is a major public health problem described as a sudden drastic event with no warning symptoms and high morbidity and mortality rates. The role of the endothelial isoform of nitric oxide synthase gene polymorphism in intracranial aneurysms (IAs) is still a matter of controversy with divergent findings among European, American, and Asian populations. Our study purposed to test the association between intracranial aneurysms formation and nitric oxide gene polymorphisms through a systematic review and meta-analysis. Systematic search on Medline, Lilacs, and EMBASE was performed. The primary search resulted in 139 papers, out of which 9 met our inclusion criteria after a full text analysis. The dominant T786C model found a significant association with IA (OR 1.22, 95 % CI 1.04-1.44, p = 0.01), so did studies of the recessive T786C model (OR 0.37, 95 % CI 0.30-0.45, p < 0.0001) but with opposite effect. Our findings support the presence of the T786C polymorphism as a predictor for the development of intracranial aneurysm in the cerebral vascular system. More studies are necessary in order to elucidate the pathways of the endothelial nitric oxide synthase (eNOS) in cerebrovascular diseases and in defining how different allelic combinations of the eNOS gene single-nucleotide polymorphism (SNP) could favor this pathological process.

  9. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds

    Directory of Open Access Journals (Sweden)

    A.C. Pereira

    2011-09-01

    Full Text Available During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP production, which in turn leads to protein kinase G (PKG activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

  10. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  11. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  12. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.

    Science.gov (United States)

    Landers, J G; Esch, Tobias

    2015-12-01

    Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by

  13. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  14. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Mahua G. [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India); Saha, Nirmalendu, E-mail: nsaha@nehu.ac.in [Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022 (India)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). Black-Right-Pointing-Pointer Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. Black-Right-Pointing-Pointer Activation of NF{kappa}B that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly

  15. Influence of environmental ammonia on the production of nitric oxide and expression of inducible nitric oxide synthase in the freshwater air-breathing catfish (Heteropneustes fossilis)

    International Nuclear Information System (INIS)

    Choudhury, Mahua G.; Saha, Nirmalendu

    2012-01-01

    Highlights: ► High environmental ammonia caused more production and accumulation of NO in air-breathing catfish (Heteropneustes fossilis). ► Hyper-ammonia stress caused induction and zonal specific expression of iNOS enzyme protein, mRNA expression in different tissues. ► Activation of NFκB that resulted under hyper-ammonia stress was believed to be the cause of induction of iNOS gene. - Abstract: Nitric oxide (NO) is a highly versatile and unique ubiquitous signaling molecule, and is known to play diverse physiological functions in mammals including those of adaptation to various stresses. The present study reports on the influence of exposure to high external ammonia (HEA) on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), that produces NO from L-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis), which is reported to tolerate a very HEA. Some levels of NO were found to be present in all the tissues and also in plasma of control fish, which further enhanced significantly in fishes treated with high concentrations of environmental ammonia (25 and 50 mM ammonium chloride) for 7 days, accompanied by more efflux of NO from the perfused liver. This was accomplished by the induction of iNOS activity in different tissues of fish exposed to HEA, which otherwise was not detectable in control fish. Exposure to 25 mM ammonium chloride also led to a significant expression of iNOS protein in different tissues, followed by further increase at 50 mM ammonium chloride. Further, there was an increase in the expression of iNOS mRNA in ammonia-treated fish, thus suggesting that the expression of iNOS gene under hyper-ammonia stress was probably regulated at the transcriptional level. Immunocytochemical analysis indicated that the expression of iNOS in different tissues was zonal specific and not expressed uniformly throughout the organ. Hyper-ammonia stress also led to activation and nuclear

  16. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  17. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  18. Hydrogen generation monitoring and mass gain analysis during the steam oxidation for Zircaloy using hydrogen and oxygen sensors

    International Nuclear Information System (INIS)

    Fukumoto, Michihisa; Hara, Motoi; Kaneko, Hiroyuki; Sakuraba, Takuya

    2015-01-01

    The oxidation behavior of Zircaloy-4 at high temperatures in a flowing Ar-H_2O (saturated at 323 K) mixed gas was investigated using hydrogen and oxygen sensors installed at a gas outlet, and the utility of the gas sensing methods by using both sensors was examined. The generated amount of hydrogen was determined from the hydrogen partial pressure continuously measured by the hydrogen sensor, and the resultant calculated oxygen amount that reacted with the specimen was in close agreement with the mass gain gravimetrically measured after the experiment. This result demonstrated that the hydrogen partial pressure measurement using a hydrogen sensor is an effective method for examining the steam oxidation of this metal as well as monitoring the hydrogen evolution. The advantage of this method is that the oxidation rate of the metal at any time as a differential quantity is able to be obtained, compared to the oxygen amount gravimetrically measured as an integral quantity. When the temperature was periodically changed in the range of 1173 K to 1523 K, highly accurate measurements could be carried out using this gas monitoring method, although reasonable measurements were not gravimetrically performed due to the fluctuating thermo-buoyancy during the experiment. A change of the oxidation rate was clearly detected at a monoclinic tetragonal transition temperature of ZrO_2. From the calculation of the water vapor partial pressure during the thermal equilibrium condition using the hydrogen and oxygen partial pressures, it became clear that a thermal equilibrium state is maintained when the isothermal condition is maintained, but is not when the temperature increases or decreases with time. Based on these results, it was demonstrated that the gas monitoring system using hydrogen and oxygen sensors is very useful for investigating the oxidation process of the Zircaloy in steam. (author)

  19. The antidiabetic effect of L-carnitine in rats: the role of nitric oxide system

    Directory of Open Access Journals (Sweden)

    Shaghayegh Hajian-Shahri

    2017-11-01

    Full Text Available Background: Nowadays, the use of L-carnitine in the treatment of diabetes is increasing. This study was conducted to investigate the effect of co-administration of L-arginine (precursor for the synthesis of nitric oxide and nitro-L-arginine (nitric oxide synthesis inhibitor on antidiabetic activity of L-carnitine in diabetic rats. Materials and Methods: In this study, 50 male rats weighing 180-201g were divided into five groups: (1 non diabetic control rats; (2 untreated diabetic rats; (3 diabetic rats treated with L-carnitine 300 mg/kg (4; diabetic rats treated with L-carnitine 300 mg/kg + L-arginine 300 mg/kg; and (5 diabetic rats treated with L-carnitine (300 mg/kg + nitro-L-arginine (1mg/kg. Type 1 diabetes was induced by a single intraperitoneal injection of 110 mg/kg body weight alloxan. After 30 days, liver malondialdehyde levels, lipid profile, serum glucose, and glycated hemoglobin serum levels were measured. Results: Blood glucose, liver enzymes, glycated hemoglobin, and liver malondialdehyde levels significantly decreased in diabetic rats treated with L-carnitine compared to the untreated diabetic group (P<0.05. The co-administration of L-arginine and L-carnitine led to a significant decrease in glycated hemoglobin levels and serum glucose, in a manner similar to the group received only L-carnitine. Also, L-arginine and nitro-l-arginine had similar effects on liver lipid peroxidation and serum biochemical parameters. Conclusion: The results suggest that the hypoglycemic effect of L-carnitine is mediated independently from nitric oxide pathways. The interaction between L-carnitine and L-arginine may not be synergistic. So, their combined administration is not recommended for the diabetic patients.

  20. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    Science.gov (United States)

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  1. Stability aspects of hydrogen-doped indium oxide

    OpenAIRE

    Jost, Gabrielle; Hamri, Alexander Nordin; Köhler, Florian; Hüpkes, Jürgen

    2015-01-01

    Transparent conductive oxides play an important role as contact layers in various opto-electronic devices such as solar cells or LEDs. Whilst crystalline materials e.g. zinc oxide (ZnO), tin oxide (Sn2O3) or tin doped indium oxide (ITO) have already been vastly investigated and applied [1] hydrogen doped indium oxide (In2O3:H) entered the scene a while ago as a new material with a superior trade-off between electrical and optical performance. In2O3:H is commonly deposited at room temperature...

  2. Weaning of inhaled nitric oxide: is there a best strategy?

    Directory of Open Access Journals (Sweden)

    Anita M. Ware

    2015-04-01

    Full Text Available Background: Inhaled nitric oxide (iNO has been used in the treatment of pulmonary hypertension in neonates for many years. iNO was approved by the FDA in 1999 for hypoxic respiratory failure (HRF in term and near term infants, defined as > 34 weeks gestational age (GA. iNO is used for persistent pulmonary hypertension of the newborn (PPHN, secondary pulmonary hypertension caused by congenital heart disease (CHD, congenital diaphragmatic hernia (CDH, meconium aspiration syndrome (MAS, pneumonia, respiratory distress syndrome (RDS, and other pathologies. iNO has its effect locally on the pulmonary vasculature and has been studied extensively regarding its effect on morbidities such as: need for extracorporeal membrane oxygenation (ECMO, oxygen requirements, and mechanical ventilatory support. However, protocols for weaning iNO and for the duration of iNO weaning have not been studied extensively. It has been shown that an abrupt discontinuation leads to rebound pulmonary hypertension.Methods: Electronic literature search and review of published articles on the use of iNO in the neonate.Results: Electronic databases including Medline and PubMed were searched from the years 1995-2015, using the keywords "iNO", "nitric oxide", "neonate", and "weaning nitric oxide." This search revealed 2,124 articles. Articles were determined to be eligible for review if they included a specific protocol for weaning iNO, and were published in English. 16 articles with specific protocols for iNO weaning have been identified and reviewed. The studies had enrolled a total of 1,735 neonates either at term either preterm and with a mean birth weight of 3.3 kg (± 2 kg. Main diagnoses included MAS, CHD (total anomalous pulmonary venous return [TAPVR], d-transposition of the great vessels [DTGV], atrial septal defect [ASD], pulmonary atresia [PA], hypoplastic left heart syndrome [HLH], pneumonia, RDS, hyaline membrane disease (HMD, PPHN, CDH, sepsis, pulmonary hypoplasia

  3. Two-dimensional metal dichalcogenides and oxides for hydrogen evolution

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Vojvodic, Aleksandra; Thygesen, Kristian Sommer

    2015-01-01

    We explore the possibilities of hydrogen evolution by basal planes of 2D metal dichalcogenides and oxides in the 2H and 1T class of structures using the hydrogen binding energy as a computational activity descriptor. For some groups of systems like the Ti, Zr, and Hf dichalcogenides the hydrogen...

  4. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  5. Inhaled Nitric Oxide in preterm infants: a systematic review and individual patient data meta-analysis

    Directory of Open Access Journals (Sweden)

    Schreiber Michael D

    2010-03-01

    Full Text Available Abstract Background Preterm infants requiring assisted ventilation are at significant risk of both pulmonary and cerebral injury. Inhaled Nitric Oxide, an effective therapy for pulmonary hypertension and hypoxic respiratory failure in the full term infant, has also been studied in preterm infants. The most recent Cochrane review of preterm infants includes 11 studies and 3,370 participants. The results show a statistically significant reduction in the combined outcome of death or chronic lung disease (CLD in two studies with routine use of iNO in intubated preterm infants. However, uncertainty remains as a larger study (Kinsella 2006 showed no significant benefit for iNO for this combined outcome. Also, trials that included very ill infants do not demonstrate significant benefit. One trial of iNO treatment at a later postnatal age reported a decrease in the incidence of CLD. The aim of this individual patient meta-analysis is to confirm or refute these potentially conflicting results and to determine the extent to which patient or treatment characteristics may explain the results and/or may predict benefit from inhaled Nitric Oxide in preterm infants. Methods/Design The Meta-Analysis of Preterm Patients on inhaled Nitric Oxide (MAPPiNO Collaboration will perform an individual patient data meta-analysis to answer these important clinical questions. Studies will be included if preterm infants receiving assisted ventilation are randomized to receive inhaled Nitric Oxide or to a control group. The individual patient data provided by the Collaborators will be analyzed on an intention-to-treat basis where possible. Binary outcomes will be analyzed using log-binomial regression models and continuous outcomes will be analyzed using linear fixed effects models. Adjustments for trial differences will be made by including the trial variable in the model specification. Discussion Thirteen (13 trials, with a total of 3567 infants are eligible for inclusion

  6. Nitric Oxide Binds to and Modulates the Activity of a Pollen Specific Arabidopsis Diacylglycerol Kinase

    KAUST Repository

    Wong, Aloysius Tze

    2014-01-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO

  7. Exhaled nitric oxide in spray painters exposed to isocyanates : Effect modification by atopy and smoking

    NARCIS (Netherlands)

    Jonaid, Badri Sadat; Pronk, Anjoeka; Doekes, Gert; Heederik, Dick

    2014-01-01

    Background: Isocyanate asthma is one of the most frequently identified forms of occupational asthma in industrialised countries. The underlying mechanisms have not been clarified. There is only limited information about the relationship between exhaled nitric oxide (eNO) and occupational exposure to

  8. Exhaled nitric oxide in spray painters exposed to isocyanates: Effect modification by atopy and smoking

    NARCIS (Netherlands)

    Jonaid, B.S.; Pronk, A.; Doekes, G.; Heederik, D.

    2014-01-01

    Background: Isocyanate asthma is one of the most frequently identified forms of occupational asthma in industrialised countries. The underlying mechanisms have not been clarified. There is only limited information about the relationship between exhaled nitric oxide (eNO) and occupational exposure to

  9. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  10. Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle Trachemys scripta

    DEFF Research Database (Denmark)

    Misfeldt, Mikkel; Fago, Angela; Gesser, Hans

    2009-01-01

    Nitric oxide (NO) may influence cardiac mechanical performance relative to O2 consumption by depressing respiration rate and by affecting the excitation-contraction coupling. Such effects of NO should be particularly important during hypoxia in species such as the hypoxia-tolerant turtle Trachemys....... This effect was particularly pronounced under O2 deficiency and may therefore contribute towards preserving cardiac function and to the overall excellent hypoxic tolerance of the turtle...

  11. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  12. Effect of Shisha (Waterpipe Smoking on Lung Functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi Young Adult Shisha Smokers

    Directory of Open Access Journals (Sweden)

    Sultan Ayoub Meo

    2014-09-01

    Full Text Available Shisha (waterpipe smoking is becoming a more prevalent form of tobacco consumption, and is growing worldwide, particularly among the young generation in the Middle East. This cross-sectional study aimed to determine the effects of shisha smoking on lung functions and Fractional Exhaled Nitric Oxide (FeNO among Saudi young adults. We recruited 146 apparently healthy male subjects (73 control and 73 shisha smokers. The exposed group consisted of male shisha smokers, with mean age 21.54 ± 0.41 (mean ± SEM range 17–33 years. The control group consisted of similar number (73 of non-smokers with mean age 21.36 ± 0.19 (mean ± SEM range 18–28 years. Between the groups we considered the factors like age, height, weight, gender, ethnicity and socioeconomic status to estimate the impact of shisha smoking on lung function and fractional exhaled nitric oxide. Lung function test was performed by using an Spirovit-SP-1 Electronic Spirometer. Fractional Exhaled Nitric Oxide (FeNO was measured by using Niox Mino. A significant decrease in lung function parameters FEV1, FEV1/FVC Ratio, FEF-25%, FEF-50%, FEF-75% and FEF-75–85% was found among shisha smokers relative to their control group. There was also a significant reduction in the Fractional Exhaled Nitric Oxide among Shisha smokers compared to control group.

  13. Protective Effect of Nitric Oxide (NO against Oxidative Damage in Larix gmelinii Seedlings under Ultraviolet-B Irradiation

    Directory of Open Access Journals (Sweden)

    Haiqing Hu

    2016-10-01

    Full Text Available Ultraviolet-B (UV-B stress appears to be more striking than other research works because of the thin ozone layer. The protective influence of an exogenous nitric oxide donor and sodium nitroprusside (SNP on the growth properties of Larix gmelinii seedlings was investigated under ultraviolet-B radiation conditions. The results indicated that 0.1 mM SNP could effectively alleviate the damage caused by ultraviolet-B radiation, and improved the seedling growth properties, the relative water content, and photosynthetic pigment content in leaves. Additionally, the photosynthetic capacity and antioxidant enzyme activity were increased during the exposure. On the contrary, the damage caused by active oxygen was decreased in SNP-treated seedling leaves. The damage caused by ultraviolet-B radiation was slightly reduced after treating with 0.01 mM SNP. Nevertheless, treatment with 0.5 mM SNP had a negative effect under ultraviolet-B radiation. Furthermore, supplementing NO (nitric oxide improved the photosynthetic capacity and antioxidant enzyme activity and alleviated the damage of caused by active oxygen. The best effective concentration of SNP was 0.1 mM. Therefore, a suitable amount of exogenous NO can protect the Larix gmelinii seedlings and increase their tolerance to ultraviolet-B radiation.

  14. Nitric oxide activation by distal redox modulation in tetranuclear iron nitrosyl complexes.

    Science.gov (United States)

    de Ruiter, Graham; Thompson, Niklas B; Lionetti, Davide; Agapie, Theodor

    2015-11-11

    A series of tetranuclear iron complexes displaying a site-differentiated metal center was synthesized. Three of the metal centers are coordinated to our previously reported ligand, based on a 1,3,5-triarylbenzene motif with nitrogen and oxygen donors. The fourth (apical) iron center is coordinatively unsaturated and appended to the trinuclear core through three bridging pyrazolates and an interstitial μ4-oxide moiety. Electrochemical studies of complex [LFe3(PhPz)3OFe][OTf]2 revealed three reversible redox events assigned to the Fe(II)4/Fe(II)3Fe(III) (-1.733 V), Fe(II)3Fe(III)/Fe(II)2Fe(III)2 (-0.727 V), and Fe(II)2Fe(III)2/Fe(II)Fe(III)3 (0.018 V) redox couples. Combined Mössbauer and crystallographic studies indicate that the change in oxidation state is exclusively localized at the triiron core, without changing the oxidation state of the apical metal center. This phenomenon is assigned to differences in the coordination environment of the two metal sites and provides a strategy for storing electron and hole equivalents without affecting the oxidation state of the coordinatively unsaturated metal. The presence of a ligand-binding site allowed the effect of redox modulation on nitric oxide activation by an Fe(II) metal center to be studied. Treatment of the clusters with nitric oxide resulted in binding of NO to the apical iron center, generating a {FeNO}(7) moiety. As with the NO-free precursors, the three reversible redox events are localized at the iron centers distal from the NO ligand. Altering the redox state of the triiron core resulted in significant change in the NO stretching frequency, by as much as 100 cm(-1). The increased activation of NO is attributed to structural changes within the clusters, in particular, those related to the interaction of the metal centers with the interstitial atom. The differences in NO activation were further shown to lead to differential reactivity, with NO disproportionation and N2O formation performed by the more

  15. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  16. DNA sequence changes induced by two nitric oxide donor drugs in the supF assay

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, M.N.; Dipple, A. [ABL-Basic Research Program, Frederick, MD (United States); Wink, D.A.; Keefer, L.K. [National Cancer Institute, Frederick, MD (United States)

    1994-09-01

    To refine our understanding of the mutational spectra one might expect on exposure of human cells to nitric oxide (NO), we have treated the plasmid pSP189 at pH 7.4 with two compounds that generate NO spontaneously in solution, and then sequenced the mutations found when the treated plasmid was transfected into human Ad293 cells and allowed to replicate. G{center_dot}C {yields} A{center_dot}T transitions were the most abundant mutation observed with these NO donor drugs, whereas in previous work, A{center_dot}T {yields} G{center_dot}C transitions predominated when nitric oxide gas was bubbled through the plasmid solution under otherwise identical conditions. A difference in reactive intermediates formed in solution- versus gas-phase NO exposure was demonstrated by treating buffered 2,2{prime}-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) or ferrocyanide, in the presence or absence of azide, aerobically with preformed solutions of NO, with solutions of the two NO-releasing compounds, or with gaseous mixtures of equimolar NO/O{sub 2} in air; oxidation of these substrates was extensive with the gas-phase NO source whether azide was present or not, while azide almost completely quenched the oxidation pathway in the solution-phase reactions.

  17. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  18. NOSH-NBP, a Novel Nitric Oxide and Hydrogen Sulfide- Releasing Hybrid, Attenuates Ischemic Stroke-Induced Neuroinflammatory Injury by Modulating Microglia Polarization

    Directory of Open Access Journals (Sweden)

    Jing Ji

    2017-05-01

    Full Text Available NOSH-NBP, a novel nitric oxide (NO and hydrogen sulfide (H2S-releasing hybrid, protects brain from ischemic stroke. This study mainly aimed to investigate the therapeutic effect of NOSH-NBP on ischemic stroke and the underlying mechanisms. In vivo, transient middle cerebral artery occlusion (tMCAO was performed in C57BL/6 mice, with NO-NBP and H2S-NBP as controls. NO and H2S scavengers, carboxy-PTIO and BSS, respectively, were used to quench NO and H2S of NOSH-NBP. In vitro, BV2 microglia/BMDM were induced to the M1/2 phenotype, and conditioned medium (CM experiments in BV2 microglia, neurons and b.End3 cerebral microvascular endothelial cells (ECs were performed. Microglial/macrophage activation/polarization was assessed by flow cytometry, Western blot, RT-qPCR, and ELISA. Neuronal and EC survival was measured by TUNEL, flow cytometry, MTT and LDH assays. Transmission electron microscopy, EB extravasation, brain water content, TEER measurement and Western blot were used to detect blood–brain barrier (BBB integrity and function. Interestingly, NOSH-NBP significantly reduced cerebral infarct volume and ameliorated neurological deficit, with superior effects compared with NO-NBP and/or H2S-NBP in mice after tMCAO. Both NO and H2S-releasing groups contributed to protection by NOSH-NBP. Additionally, NOSH-NBP decreased neuronal death and attenuated BBB dysfunction in tMCAO-treated mice. Furthermore, NOSH-NBP promoted microglia/macrophage switch from an inflammatory M1 phenotype to the protective M2 phenotype in vivo and in vitro. Moreover, the TLR4/MyD88/NF-κB pathway and NLRP3 inflammasome were involved in the inhibitory effects of NOSH-NBP on M1 polarization, while peroxisome proliferator activated receptor gamma signaling contributed to NOSH-NBP induced M2 polarization. These findings indicated that NOSH-NBP is a potential therapeutic agent that preferentially promotes microglial/macrophage M1–M2 switch in ischemic stroke.

  19. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    Science.gov (United States)

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  20. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    Science.gov (United States)

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  1. Biological indication of nitric oxides; Zum bioindikativen Nachweis von Stickoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Belotti, E.; Kaemmerer, D.; Mangold, U.; Tempes, D.; Arndt, U.

    1992-12-31

    The authors demonstrate the need for a nitrogen oxide bio-indicator and suggest to use nitrate reductase activity in exposed plant leaves to be established in vivo as the action criterium. Studies on the suitability of different plants and cultivation conditions are presented. Their results are taken to show that large-leaved plants like sunflower or tomato grown with ammonia as the only nitrogen source are best suited for bio-indication of nitric oxides. (orig.) [Deutsch] Der Beitrag zeigt die Notwendigkeit eines Bioindikators fuer Stickoxide auf und schlaegt als Wirkungskriterium die Nitratreduktase-Aktivitaet in den Blaettern exponierter Pflanzen, ermittelt mit der in-vivo-Methode, vor. Untersuchungen zur Eignung verschiedener Pflanzen und Anzuchtbedingungen werden vorgestellt. Aus ihnen ist abzuleiten, dass mit Ammonium als einziger Stickstoffquelle angezogene grossblaettrige Kulturpflanzen, etwa Sonnenblume oder Tomate, am ehesten fuer den bioindikativen Nachweis von Stickoxiden geeignet sind. (orig.)

  2. The role of nitric oxide in reproduction

    Directory of Open Access Journals (Sweden)

    McCann S.M.

    1999-01-01

    Full Text Available Nitric oxide (NO plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH. The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP. NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG.

  3. Nitric oxide and cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Livio Dai Cas

    2007-06-01

    Full Text Available The endothelium is a dynamic organ with many properties that takes part in the regulation of the principal mechanisms of vascular physiology. Its principal functions include the control of blood-tissue exchange and permeability, the vascular tonus, and the modulation of inflammatory or coagulatory mechanisms. Many vasoactive molecules, produced by the endothelium, are involved in the control of these functions. The most important is nitric oxide (NO, a gaseous molecule electrically neutral with an odd number of electrons that gives the molecule chemically reactive radical properties. Already known in the twentieth century, NO, sometimes considered as a dangerous molecule, recently valued as an important endogenous vasodilator factor. Recently, it was discovered that it is involved in several physiological mechanisms of endothelial protection (Tab. I. In 1992, Science elected it as “molecule of the year”; 6 yrs later three American researchers (Louis Ignarro, Robert Furchgott and Fried Murad obtained a Nobel Prize for Medicine and Physiology “for their discoveries about NO as signal in the cardiovascular system”.

  4. Efficacy and residue analysis of nitric oxide fumigation of strawberries for control of Drosophila suzukii

    Science.gov (United States)

    Nitric oxide (NO) has been demonstrated as an effective fumigant against various insect pests on postharvest products under ultralow oxygen (ULO) conditions. NO showed efficacy against all life stages of insect pests with varied fumigation time and temperature, and had feasible cost-effectiveness to...

  5. Hydrogen traps in the oxide/alloy interface region of Zr-Nb alloys

    International Nuclear Information System (INIS)

    Khatamian, D.

    1995-03-01

    In this study the 1 H( 15 N,αγ) 12 C nuclear reaction has been used to measure hydrogen profiles of anodically oxidized Zr-Nb specimens containing various amounts of niobium. The profiles have been correlated with oxygen profiles, obtained using a Scanning Auger Microprobe (SAM), and with X-ray diffraction patterns. In addition, unoxidized Zr-2.5Nb (Zr-2.5 wt% Nb) samples were implanted with oxygen and hydrogen to study the interaction between these two species when dissolved in the alloy. All the anodically oxidized specimens, except the pure Zr and the single-phase β-Zr (Zr-20Nb) samples, displayed hydrogen peaks beneath the oxide layer. These results, in conjunction with the results from the implanted specimens, indicate that the hydrogen moves under the influence of a stress gradient to the sub-oxide region, where the metal lattice has been expanded due to superficial oxide growth. The results show that dissolved oxygen sites in Zr-2.5Nb alloy do not trap hydrogen. (author). 16 refs., 6 figs

  6. Role of Polymorphisms of Inducible Nitric Oxide Synthase and Endothelial Nitric Oxide Synthase in Idiopathic Environmental Intolerances

    Directory of Open Access Journals (Sweden)

    Chiara De Luca

    2015-01-01

    Full Text Available Oxidative stress and inflammation play a pathogenetic role in idiopathic environmental intolerances (IEI, namely, multiple chemical sensitivity (MCS, fibromyalgia (FM, and chronic fatigue syndrome (CFS. Given the reported association of nitric oxide synthase (NOS gene polymorphisms with inflammatory disorders, we aimed to investigate the distribution of NOS2A −2.5 kb (CCTTTn as well as Ser608Leu and NOS3 −786T>C variants and their correlation with nitrite/nitrate levels, in a study cohort including 170 MCS, 108 suspected MCS (SMCS, 89 FM/CFS, and 196 healthy subjects. Patients and controls had similar distributions of NOS2A Ser608Leu and NOS3 −786T>C polymorphisms. Interestingly, the NOS3 −786TT genotype was associated with increased nitrite/nitrate levels only in IEI patients. We also found that the NOS2A −2.5 kb (CCTTT11 allele represents a genetic determinant for FM/CFS, and the (CCTTT16 allele discriminates MCS from SMCS patients. Instead, the (CCTTT8 allele reduces by three-, six-, and tenfold, respectively, the risk for MCS, SMCS, and FM/CFS. Moreover, a short number of (CCTTT repeats is associated with higher concentrations of nitrites/nitrates. Here, we first demonstrate that NOS3 −786T>C variant affects nitrite/nitrate levels in IEI patients and that screening for NOS2A −2.5 kb (CCTTTn polymorphism may be useful for differential diagnosis of various IEI.

  7. Oxidation mechanism of porous Zr_2Fe used as a hydrogen getter

    International Nuclear Information System (INIS)

    Cohen, Dror; Nahmani, Moshe; Rafailov, Genadi; Attia, Smadar; Shamish, Zorik; Landau, Miron; Merchuk, Jose; Zeiri, Yehuda

    2016-01-01

    We determined the oxidation mechanism of porous ST-198, which mainly comprises Zr_2Fe. Oxidation kinetics depended on temperature, oxygen partial pressure, and oxidation extent. The passivation role of oxidation in hydrogen scavenging is probably due to the development of a surface oxide, independent of oxygen concentration. Zr_2Fe would be a superior hydrogen getter in oxygen-contaminated environments at high temperatures, as most oxygen will be consumed at the outer shell by mass transfer limitations, protecting the bulk of the getter for hydrogen scavenging. - Highlights: • Porous Zr_2Fe–O_2 interactions are characterized in detail. • Gettering efficiency at low temperature is hampered by oxide layer formation. • Gettering is better at high temperatures as outer shell consumes maximum oxygen.

  8. Dual inhibition of nitric oxide and prostaglandin E2 production by polysubstituted 2-aminopyrimidines

    Czech Academy of Sciences Publication Activity Database

    Zídek, Zdeněk; Kverka, Miloslav; Dusilová, Adéla; Kmoníčková, Eva; Jansa, Petr

    2016-01-01

    Roč. 57, jul (2016), s. 48-56 ISSN 1089-8603 R&D Projects: GA ČR(CZ) GAP303/12/0172 Institutional support: RVO:68378041 ; RVO:61388963 Keywords : pyrimidines * nitric oxide * prostaglandin E-2 Subject RIV: FR - Pharmacology ; Medidal Chemistry; CC - Organic Chemistry (UOCHB-X) Impact factor: 4.181, year: 2016

  9. A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide.

    Science.gov (United States)

    Reinhardt, Christopher J; Zhou, Effie Y; Jorgensen, Michael D; Partipilo, Gina; Chan, Jefferson

    2018-01-24

    Photoacoustic (PA) imaging is an emerging imaging modality that utilizes optical excitation and acoustic detection to enable high resolution at centimeter depths. The development of activatable PA probes can expand the utility of this technology to allow for detection of specific stimuli within live-animal models. Herein, we report the design, development, and evaluation of a series of Acoustogenic Probe(s) for Nitric Oxide (APNO) for the ratiometric, analyte-specific detection of nitric oxide (NO) in vivo. The best probe in the series, APNO-5, rapidly responds to NO to form an N-nitroso product with a concomitant 91 nm hypsochromic shift. This property enables ratiometric PA imaging upon selective irradiation of APNO-5 and the corresponding product, tAPNO-5. Moreover, APNO-5 displays the requisite photophysical characteristics for in vivo PA imaging (e.g., high absorptivity, low quantum yield) as well as high biocompatibility, stability, and selectivity for NO over a variety of biologically relevant analytes. APNO-5 was successfully applied to the detection of endogenous NO in a murine lipopolysaccharide-induced inflammation model. Our studies show a 1.9-fold increase in PA signal at 680 nm and a 1.3-fold ratiometric turn-on relative to a saline control.

  10. Alveolar-derived exhaled nitric oxide is reduced in obstructive sleep apnea syndrome.

    Science.gov (United States)

    Foresi, Antonio; Leone, Clementina; Olivieri, Dario; Cremona, George

    2007-09-01

    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular diseases, in particular systemic arterial hypertension. We postulated that intermittent nocturnal hypoxia in OSAS may be associated to decreased fractional exhaled nitric oxide (FENO) levels from distal airspaces. Multiple flow rate measurements have been used to fractionate nitric oxide (NO) from alveolar and bronchial sources in 34 patients with OSAS, in 29 healthy control subjects, and in 8 hypertensive non-OSAS patients. The effect of 2 days of treatment with nasal continuous positive airway pressure (nCPAP) on FENO was examined in 18 patients with severe OSAS. We found that the mean [+/- SE] concentrations of exhaled NO at a rate of 50 mL/s was 21.8 +/- 1.9 parts per billion (ppb) in patients with OSAS, 25.1 +/- 3.3 ppb in healthy control subjects, and 15.4 +/- 1.7 ppb in hypertensive control patients. The mean fractional alveolar NO concentration (CANO) in OSAS patients was significantly lower than that in control subjects (2.96 +/- 0.48 vs 5.35 +/- 0.83 ppb, respectively; p bronchial FENO, is impaired in patients with OSAS and that this impairment is associated with an increased risk of hypertension. NO production within the alveolar space is modified by treatment with nCPAP.

  11. Nitric Oxide PLIF Measurements in the Hypersonic Materials Environmental Test System (HYMETS)

    Science.gov (United States)

    Inman, Jennifer A.; Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.; McRae, Colin D.

    2013-01-01

    Planar laser-induced fluorescence (PLIF) of naturally occurring nitric oxide (NO) has been used to obtain instantaneous flow visualization images, and to make both radial and axial velocity measurements in the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. This represents the first application of NO PLIF flow visualization in HYMETS. Results are presented at selected facility run conditions, including some in a simulated Earth atmosphere (75% nitrogen, 20% oxygen, 5% argon) and others in a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon), for specific bulk enthalpies ranging from 6.5 MJ/kg to 18.4 MJ/kg. Flow visualization images reveal the presence of large scale unsteady flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core flow for specific bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core flow for specific bulk enthalpies above about 16 MJ/kg. Axial velocimetry was performed using molecular tagging velocimetry (MTV). Axial velocities of about 3 km/s were measured along the centerline. Radial velocimetry was performed by scanning the wavelength of the narrowband laser and analyzing the resulting Doppler shift. Radial velocities of +/- 0.5 km/s were measured.

  12. Galanin enhances systemic glucose metabolism through enteric Nitric Oxide Synthase-expressed neurons

    Directory of Open Access Journals (Sweden)

    Anne Abot

    2018-04-01

    Full Text Available Objective: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. Methods: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut–brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism were assessed. Results: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. Conclusion: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D. Keywords: Galanin, Enteric nervous system, Diabetes

  13. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    Science.gov (United States)

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    Science.gov (United States)

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein

  15. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Isosorbide 5 mononitrate administration increases nitric oxide blood levels and reduces proteinuria in IgA glomerulonephritis patients with abnormal urinary endothelin/cyclic GMP ratio.

    Science.gov (United States)

    Roccatello, D; Mengozzi, G; Ferro, M; Cesano, G; Polloni, R; Mosso, R; Bonetti, G; Inconis, T; Paradisi, L; Sena, L M

    1995-09-01

    An endothelin urinary hyperexcretion, which is not counterbalanced by an adequate increase in cGMP biosynthesis, was previously detected in some patients with IgA Nephropathy (IgAN). Since this imbalance might potentiate local ET1-mediated hemodynamics effects, 9 IgAN patients with an increased (> or = 0.1) urinary ET1/cGMP ratio (group 1) and 5 IgAN patients with comparable renal function and reduced ET1/cGMP ratio (group 2) were given standard doses of isosorbide 5 mononitrate (as a nitric oxide source). Blood nitric oxide (NO) levels, as detected by electron paramagnetic resonance, significantly increased after isosorbide administration (p effective renal plasma flow (p counterbalancing effects of nitric oxide on endothelin-mediated mesangial contraction.

  17. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    Science.gov (United States)

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  18. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF

  19. The activity of inducible nitric oxide synthase in rejected skin xenografts is selectively inhibited by a factor produced by grafted cells

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Pindjáková, Jana; Zajícová, Alena; Krulová, Magdalena; Železná, Blanka; Matoušek, Petr; Svoboda, Petr

    2005-01-01

    Roč. 12, č. 3 (2005), s. 227-234 ISSN 0908-665X R&D Projects: GA MZd(CZ) NR7816; GA ČR(CZ) GP310/02/D162; GA ČR(CZ) GD310/03/H147; GA MŠk(CZ) ME 300; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915; CEZ:AV0Z50110509 Keywords : inducible nitric oxide synthase production * nitric oxide * suppressive molecule Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.114, year: 2005

  20. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.