WorldWideScience

Sample records for nighttime stomatal conductance

  1. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    Science.gov (United States)

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.

  2. Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Víctor Resco de Dios

    2018-06-01

    Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.

  3. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    Science.gov (United States)

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  5. Populus species from diverse habitats maintain high night-time conductance under drought.

    Science.gov (United States)

    Cirelli, Damián; Equiza, María Alejandra; Lieffers, Victor James; Tyree, Melvin Thomas

    2016-02-01

    We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among

  6. Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland

    Directory of Open Access Journals (Sweden)

    Tarek S. El-Madany

    2017-09-01

    Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.

  7. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  8. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    Science.gov (United States)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  9. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  10. Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective

    International Nuclear Information System (INIS)

    Avissar, R.

    1993-01-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  11. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    Science.gov (United States)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  12. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    Science.gov (United States)

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  13. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  14. Using Plant Temperature to Evaluate the Response of Stomatal Conductance to Soil Moisture Deficit

    Directory of Open Access Journals (Sweden)

    Ming-Han Yu

    2015-10-01

    Full Text Available Plant temperature is an indicator of stomatal conductance, which reflects soil moisture stresses. We explored the relationship between plant temperature and soil moisture to optimize irrigation schedules in a water-stress experiment using Firmiana platanifolia (L. f. Marsili in an incubator. Canopy temperature, leaf temperature, and stomatal conductance were measured using thermal imaging and a porometer. The results indicated that (1 stomatal conductance decreased with declines in soil moisture, and reflected average canopy temperature; (2 the variation of the leaf temperature distribution was a reliable indicator of soil moisture stress, and the temperature distribution in severely water-stressed leaves exhibited greater spatial variation than that in the presence of sufficient irrigation; (3 thermal indices (Ig and crop water stress index (CWSI were theoretically proportional to stomatal conductance (gs, Ig was certified to have linearity relationship with gs and CWSI have a logarithmic relationship with gs, and both of the two indices can be used to estimate soil moisture; and (4 thermal imaging data can reflect water status irrespective of long-term water scarcity or lack of sudden rainfall. This study applied thermal imaging methods to monitor plants and develop adaptable irrigation scheduling, which are important for the formulation of effective and economical agriculture and forestry policy.

  15. Solar-induced chlorophyll fluorescence tracks the trend of canopy stomatal conductance and transpiration at diurnal and seasonal scales

    Science.gov (United States)

    Zhang, Y.; Shan, N.; Ju, W.; Chen, J.

    2017-12-01

    Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.

  16. Application of thermography for monitoring stomatal conductance of Coffea arabica under different shading systems.

    Science.gov (United States)

    Craparo, A C W; Steppe, K; Van Asten, P J A; Läderach, P; Jassogne, L T P; Grab, S W

    2017-12-31

    Stomatal regulation is a key process in the physiology of Coffea arabica (C. arabica). Intrinsically linked to photosynthesis and water relations, it provides insights into the plant's adaptive capacity, survival and growth. The ability to rapidly quantify this parameter for C. arabica under different agroecological systems would be an indispensable tool. Using a Flir E6 MIR Camera, an index that is equivalent to stomatal conductance (I g ) was compared with stomatal conductance measurements (g s ) in a mature coffee plantation. In order to account for varying meteorological conditions between days, the methods were also compared under stable meteorological conditions in a laboratory and I g was also converted to absolute stomatal conductance values (g 1 ). In contrast to typical plant-thermography methods which measure indices once per day over an extended time period, we used high resolution hourly measurements over daily time series with 9 sun and 9 shade replicates. Eight daily time series showed a strong correlation between methods, while the remaining 10 were not significant. Including several other meteorological parameters in the calculation of g 1 did not contribute to any stronger correlation between methods. Total pooled data (combined daily series) resulted in a correlation of ρ=0.66 (P≤2.2e-16), indicating that our approach is particularly useful for situations where absolute values of stomatal conductance are not required, such as for comparative purposes, screening or trend analysis. We use the findings to advance the protocol for a more accurate methodology which may assist in quantifying advantageous microenvironment designs for coffee, considering the current and future climates of coffee growing regions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance.

    Science.gov (United States)

    Dai, Yongjiu; Dickinson, Robert E.; Wang, Ying-Ping

    2004-06-01

    The energy exchange, evapotranspiration, and carbon exchange by plant canopies depend on leaf stomatal control. The treatment of this control has been required by land components of climate and carbon models. Physiological models can be used to simulate the responses of stomatal conductance to changes in atmospheric and soil environments. Big-leaf models that treat a canopy as a single leaf tend to overestimate fluxes of CO2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems.A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes is presented in this paper. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis stomatal conductance model for sunlit and shaded leaves separately, and for the simultaneous transfers of CO2 and water vapor into and out of the leaf—leaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response to the radiation weight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3) a well-built quasi-Newton Raphson method for simultaneous solution of temperatures of the sunlit and shaded leaves.The model was incorporated into the Common Land Model (CLM) and is denoted CLM 2L. It was driven with observational atmospheric forcing from two forest sites [Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) and Boreal Ecosystem Atmosphere Study (BOREAS)] for 2 yr of simulation. The

  18. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Directory of Open Access Journals (Sweden)

    A. Anav

    2018-04-01

    Full Text Available Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ∼  7.7 TgO3. Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb extending from the surface to the upper troposphere (up to 650 hPa. Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  19. Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone

    Science.gov (United States)

    Anav, Alessandro; Proietti, Chiara; Menut, Laurent; Carnicelli, Stefano; De Marco, Alessandra; Paoletti, Elena

    2018-04-01

    Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ˜ 7.7 TgO3). Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.

  20. Evaluation of the stomatal conductance formulation in the EMEP ozone deposition model for Picea abies

    Science.gov (United States)

    Wieser, G.; Emberson, L. D.

    It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.

  1. [Suitability of four stomatal conductance models in agro-pastoral ecotone in North China: A case study for potato and oil sunflower.

    Science.gov (United States)

    Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu

    2016-11-18

    The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal

  2. A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species

    International Nuclear Information System (INIS)

    Op de Beeck, M.; De Bock, M.; Vandermeiren, K.; Temmerman, L. de; Ceulemans, R.

    2010-01-01

    In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g st ) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g st variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g st variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O 3 flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.

  3. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand.

    Science.gov (United States)

    Prado, Santiago Alvarez; Cabrera-Bosquet, Llorenç; Grau, Antonin; Coupel-Ledru, Aude; Millet, Emilie J; Welcker, Claude; Tardieu, François

    2018-02-01

    Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform. We have analysed jointly 4 experiments with contrasting environmental conditions imposed to a panel of 254 maize hybrids. Estimated whole-plant stomatal conductance closely correlated with gas-exchange measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were identified by genome wide association studies and co-located with QTLs of transpiration and biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the differences in allelic effects between experiments, thereby providing strong hypotheses for mechanisms of stomatal control and a way to select relevant candidate genes among the 1-19 genes harboured by QTLs. The combination of allelic effects, as affected by environmental conditions, accounted for the variability of stomatal conductance across a range of hybrids and environmental conditions. This approach may therefore contribute to genetic analysis and prediction of stomatal control in diverse environments. © 2017 John Wiley & Sons Ltd.

  4. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    Science.gov (United States)

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  6. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic

  7. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  8. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    Science.gov (United States)

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.

  9. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    NARCIS (Netherlands)

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  10. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation

    NARCIS (Netherlands)

    Lammertsma, E.I.; de Boer, H.J.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F.

    2011-01-01

    A principle response of C3 plants to increasing concentrations of atmospheric CO2 (CO2) is to reduce transpirational water loss by decreasing stomatal conductance (gs) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate.

  11. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    Science.gov (United States)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  12. Contribution of competition for light to within-species variability in stomatal conductance

    Science.gov (United States)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.

    2010-05-01

    Sap flux (JS) measurements were collected across two stands dominated by either trembling aspen or sugar maple in northern Wisconsin. Observed canopy transpiration (EC-obs) values derived from JS were used to parameterize the Terrestrial Regional Ecosystem Exchange Simulator ecosystem model. Modeled values of stomatal conductance (GS) were used to determine reference stomatal conductance (GSref), a proxy for GS that removes the effects of temporal responses to vapor pressure deficit (D) on spatial patterns of GS. Values of GSref were compared to observations of soil moisture, several physiological variables, and a competition index (CI) derived from a stand inventory, to determine the underlying cause of observed variability. Considerable variability in GSref between individual trees was found, with values ranging from 20 to 200 mmol m-2 s-1 and 20 to 100 mmol m-2 s-1 at the aspen and maple stands, respectively. Model-derived values of GSref and a sensitivity to D parameter (m) showed good agreement with a known empirical relationship for both stands. At both sites, GSref did not vary with topographic position, as indicated by surface soil moisture. No relationships were observed between GSref and tree height (HT), and a weak correlation with sapwood area (AS) was only significant for aspen. Significant nonlinear inverse relationships between GSref and CI were observed at both stands. Simulations with uniform reductions in incident photosynthetically active radiation (Q0) resulted in better agreement between observed and simulated EC. Our results suggest a link between photosynthesis and plant hydraulics whereby individual trees subject to photosynthetic limitation as a result of competitive shading exhibit a dynamic stomatal response resulting in a more conservative strategy for managing hydrologic resources.

  13. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    Science.gov (United States)

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  14. Modeling daily gas exchange of a Douglas-fir forest : comparison of three stomatal conductance models with and without a soil water stress function

    NARCIS (Netherlands)

    Wijk, van M.T.; Dekker, S.C.; Bouten, W.; Bosveld, F.C.; Kohsiek, W.; Kramer, K.; Mohren, G.M.J.

    2000-01-01

    Modeling stomatal conductance is a key element in predicting tree growth and water use at the stand scale. We compared three commonly used models of stomatal conductance, the Jarvis-Loustau, Ball-Berry and Leuning models, for their suitability for incorporating soil water stress into their

  15. Environmental controls on saltcedar (Tamarix spp.) transpiration and stomatal conductance and implications for determining evapotranspiration by remote sensing

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.; morino, K.

    2012-12-01

    Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf

  16. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    Science.gov (United States)

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  17. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake

    Energy Technology Data Exchange (ETDEWEB)

    Elvira, Susana [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Alonso, Rocio [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Gimeno, Benjamin S. [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain)]. E-mail: benjamin.gimeno@ciemat.es

    2007-04-15

    The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O{sub 3}) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O{sub 3} stomatal conductance model used to estimate tree O{sub 3} uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O{sub 3} treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l{sup -1}. The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g {sub max}, f {sub min}, and new f {sub VPD}, f {sub temp} and f {sub phen} functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species.

  18. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake

    International Nuclear Information System (INIS)

    Elvira, Susana; Alonso, Rocio; Gimeno, Benjamin S.

    2007-01-01

    The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O 3 ) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O 3 stomatal conductance model used to estimate tree O 3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O 3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l -1 . The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g max , f min , and new f VPD , f temp and f phen functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species

  19. Stomatal conductance of semi-natural Mediterranean grasslands: Implications for the development of ozone critical levels

    International Nuclear Information System (INIS)

    Alonso, R.; Bermejo, V.; Sanz, J.; Valls, B.; Elvira, S.; Gimeno, B.S.

    2007-01-01

    Intra-genus and intra-specific variation and the influence of nitrogen enrichment on net assimilation and stomatal conductance of some annual Trifolium species of Mediterranean dehesa grasslands were assessed under experimental conditions. Also gas exchange rates were compared between some Leguminosae and Poaceae species growing in the field in a dehesa ecosystem in central Spain. The results showed that the previously reported different O 3 sensitivity of some Trifolium species growing in pots does not seem to be related to different maximum g s values. In addition, no clear differences on gas exchange rates could be attributed to Leguminosae and Poaceae families growing in the field, with intra-genus variation being more important than differences found between families. Further studies are needed to increase the database for developing a flux-based approach for setting O 3 critical levels for semi-natural Mediterranean species. - The stomatal conductance model incorporated within the EMEP DO 3 SE deposition module needs to be re-parameterised for Mediterranean semi-natural vegetation

  20. Modelling of stomatal conductance and ozone deposition flux of Norway Spruce using deposition model

    Czech Academy of Sciences Publication Activity Database

    Zapletal, M.; Chroust, P.; Večeřa, Zbyněk; Mikuška, Pavel; Cudlín, Pavel; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Janouš, Dalibor; Taufarová, Klára

    2009-01-01

    Roč. 12, 2-3 (2009), s. 75-81 ISSN 1335-339X R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40310501 Keywords : ozone concentration * ozone deposition * stomatal conductance * deposition velocity * resistance model * tropo-spheric ozone Subject RIV: DG - Athmosphere Sciences, Meteorology

  1. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Science.gov (United States)

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  2. Detecting the differences in responses of stomatal conductance to moisture stresses between deciduous shrubs and Artemisia subshrubs.

    Science.gov (United States)

    Gao, Qiong; Yu, Mei; Zhou, Chan

    2013-01-01

    Shrubs and subshrubs can tolerate wider ranges of moisture stresses in both soil and air than other plant life forms, and thus represent greater nonlinearity and uncertainty in ecosystem physiology. The objectives of this paper are to model shrub/subshrub stomatal conductance by synthesizing the field leaf gas exchanges data of 24 species in China, in order to detect the differences between deciduous shrubs and Artemisia subshrubs in their responses of stomatal conductance to changes in the moisture stresses. We revised a model of stomatal conductance by incorporating the tradeoff between xylem hydraulic efficiency and cavitation loss risk. We then fit the model at the three hierarchical levels: global (pooling all data as a single group), three functional groups (deciduous non-legume shrubs, deciduous legume shrubs, and subshrubs in Artemisia genus), and individual observations (species × sites). Bayesian inference with Markov Chain Monte Carlo method was applied to obtain the model parameters at the three levels. We found that the model at the level of functional groups is a significant improvement over that at the global level, indicating the significant differences in the stomatal behavior among the three functional groups. The differences in tolerance and sensitivities to changes in moisture stresses are the most evident between the shrubs and the subshrubs: The two shrub groups can tolerate much higher soil water stress than the subshrubs. The analysis at the observation level is also a significant improvement over that at the functional group level, indicating great variations within each group. Our analysis offered a clue for the equivocal issue of shrub encroachment into grasslands: While the invasion by the shrubs may be irreversible, the dominance of subshrubs, due to their lower resistance and tolerance to moisture stresses, may be put down by appropriate grassland management.

  3. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  4. Is optimality in stomatal conductance an endogenous process or an emergent property arising from interactions with the environment?

    Science.gov (United States)

    Resco de Dios, Victor; Gessler, Arthur; Ferrio, Juan Pedro; Bahn, Michael; Milcu, Alexandru; Tissue, David; Voltas, Jordi; Roy, Jacques

    2016-04-01

    Plants are sessile and poikilothermic organisms that need to respond and adjust promptly to an ever-changing environment. Over a single 24 h period, a plant may experience the same level of variation in radiation as in its entire life-time and, in some climates, the oscillation in day-night temperature and vapor pressure deficit might be of similar magnitude to that experienced across a full year. Plants need to maintain a positive C balance without depleting soil water reserves in the face of such a diverse environment, and feedbacks between assimilation (A) and water losses (E) are thought to have evolved to optimize stomatal conductance (gs). In short, the optimal conductance hypothesis proposes that cross-talks between A and stomatal conductance gs lead to a constant marginal water use (λ) during a day, such that A is maximized and E minimized. The biological mechanism by which biochemical processes would feedback gs remains unknown, but multiple studies have shown empirical support for this hypothesis, leading to its current consideration of theory by many. Here we test whether optimal stomatal conductance is an endogenous property, that is, driven solely by factors internal to the plant, and in the absence of environmental fluctuations. After 5 days of entrainment, where monoculture canopies of bean and of cotton were subjected to the average environmental conditions of an August sunny day in Montpellier (at the CNRS European Ecotron, FR), we kept temperature, relative humidity and photosynthetically active radiation constant for 48 h at the values observed at noon. During this period, we monitored leaf gas exchange continuously every two minutes, and canopy gas exchange every 15 minutes. We observed a periodic oscillation in λ, showing a 24 h period, and consistent with a circadian regulation of water use efficiency. Hourly variations in λ could thus not be explained by the optimal stomatal hypothesis. Moreover, the pattern of variation (of maximal water

  5. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    Science.gov (United States)

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  7. Stomatal characteristics of Eucalyptus grandis clonal hybrids in ...

    African Journals Online (AJOL)

    This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (gs) and stomatal density differ between the clonal hybrids across seasons and in response to water stress.

  8. Stomatal and non-stomatal factors regulated the photosynthesis of soybean seedlings in the present of exogenous bisphenol A.

    Science.gov (United States)

    Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-11-01

    Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (P n ) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the P n by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the P n by promoting stomatal factors while high-dose BPA decreased the P n by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of different soil water potential on leaf transpiration and on stomatal conductance in poinsettia

    Directory of Open Access Journals (Sweden)

    Jacek S. Nowak

    2013-12-01

    Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.

  10. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

    Science.gov (United States)

    J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure

    2009-01-01

    The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...

  11. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  12. Evaluation of Multiple Mechanistic Hypotheses of Leaf Photosynthesis and Stomatal Conductance against Diurnal and Seasonal Data from Two Contrasting Panamanian Tropical Forests

    Science.gov (United States)

    Serbin, S.; Walker, A. P.; Wu, J.; Ely, K.; Rogers, A.; Wolfe, B.

    2017-12-01

    Tropical forests play a key role in regulating the global carbon (C), water, and energy cycles and stores, as well as influence climate through the exchanges of mass and energy with the atmosphere. However, projected changes in temperature and precipitation patterns are expected to impact the tropics and the strength of the tropical C sink, likely resulting in significant climate feedbacks. Moreover, the impact of stronger, longer, and more extensive droughts not well understood. Critical for the accurate modeling of the tropical C and water cycle in Earth System Models (ESMs) is the representation of the coupled photosynthetic and stomatal conductance processes and how these processes are impacted by environmental and other drivers. Moreover, the parameterization and representation of these processes is an important consideration for ESM projections. We use a novel model framework, the Multi-Assumption Architecture and Testbed (MAAT), together with the open-source bioinformatics toolbox, the Predictive Ecosystem Analyzer (PEcAn), to explore the impact of the multiple mechanistic hypotheses of coupled photosynthesis and stomatal conductance as well as the additional uncertainty related to model parameterization. Our goal was to better understand how model choice and parameterization influences diurnal and seasonal modeling of leaf-level photosynthesis and stomatal conductance. We focused on the 2016 ENSO period and starting in February, monthly measurements of diurnal photosynthesis and conductance were made on 7-9 dominant species at the two Smithsonian canopy crane sites. This benchmark dataset was used to test different representations of stomatal conductance and photosynthetic parameterizations with the MAAT model, running within PEcAn. The MAAT model allows for the easy selection of competing hypotheses to test different photosynthetic modeling approaches while PEcAn provides the ability to explore the uncertainties introduced through parameterization. We

  13. Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs.

    Science.gov (United States)

    Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja

    2018-04-21

    It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.

  14. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    Science.gov (United States)

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  15. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  16. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    Science.gov (United States)

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  17. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    Science.gov (United States)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  18. Separating active and passive influences on stomatal control of transpiration.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2014-04-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.

  19. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.

    Science.gov (United States)

    Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J

    2010-06-01

    Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.

  20. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  1. The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2.

    Science.gov (United States)

    He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M

    2018-04-01

    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  3. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  4. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.

    Science.gov (United States)

    Löw, M; Häberle, K-H; Warren, C R; Matyssek, R

    2007-03-01

    Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The

  5. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models; implications for simulated land surface fluxes and variables at various spatiotemporal scales

    Science.gov (United States)

    Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.

    2012-04-01

    Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the

  6. Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN

    Science.gov (United States)

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2014-01-01

    Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969

  7. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand

    International Nuclear Information System (INIS)

    Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.

    2010-01-01

    Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.

  8. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    Science.gov (United States)

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Optimal stomatal behaviour around the world

    Science.gov (United States)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  10. Temporal dynamics of stomatal conductance of plants under water deficit: can homeostasis be improved by more complex dynamics?

    Directory of Open Access Journals (Sweden)

    Gustavo Maia Souza

    2004-07-01

    Full Text Available In this study we hypothesized that chaotic or complex behavior of stomatal conductance could improve plant homeostasis after water deficit. Stomatal conductance of sunflower and sugar beet leaves was measured in plants grown either daily irrigation or under water deficit using an infrared gas analyzer. All measurements were performed under controlled environmental conditions. In order to measure a consistent time series, data were scored with time intervals of 20s during 6h. Lyapunov exponents, fractal dimensions, KS entropy and relative LZ complexity were calculated. Stomatal conductance in both irrigated and non-irrigated plants was chaotic-like. Plants under water deficit showed a trend to a more complex behaviour, mainly in sunflower that showed better homeostasis than in sugar beet. Some biological implications are discussed.Este estudo testou a hipótese de que a condutância estomática de uma população de estômatos em uma folha poderia apresentar um comportamento caótico ou complexo sob diferentes condições hídricas, o que poderia favorecer a capacidade homeostática das plantas. A condutância estomática em folhas de girassol e de beterraba cultivadas com irrigação diária e sob deficiência hídrica foi medida com um analisador de gás por infra-vermelho em condições controladas. Os dados foram registrados a cada 20s durante 6h. As séries temporais obtidas foram analisadas por meio dos coeficientes de Lyapunov, dimensão fractal, entropia KS e complexidade LZ relativa. A condutância estomática nas plantas cultivadas com e sem deficiência hídrica exibiu um comportamento provavelmente caótico. As plantas sob estresse hídrico mostraram uma tendência para um comportamento mais complexo, principalmente as plantas de girassol cuja capacidade homeostática foi superior. Algumas implicações biológicas destes comportamentos são discutidas no texto.

  11. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    Directory of Open Access Journals (Sweden)

    Christopher Hepworth

    Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.

  13. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl Otto

    2015-01-01

    ) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non...

  14. Photosynthetic pigments and stomatal conductance in ecotypes of copoazu (Theobroma grandi orum Willd. Ex. Spreng K. Schum..

    Directory of Open Access Journals (Sweden)

    Juan Carlos Suárez-Salazar

    2016-12-01

    Full Text Available The objective of this work was to evaluate the variability of photosynthetic pigment content and daily stomatal conductance was evaluated in relation to environmental variables in Copoazú (Theobroma grandi orum ecotypes. The ecotypes used were part of the germoplasm bank of the University of the Amazon (Colombia. The study was carried out during the year 2015. Four leaves of the average stratum of four plants were collected for each ecotype, to extract and read at different levels of absorbance and determine the content of photosynthetic pigments. During the hours of 04:00 a.m. to 6:00 p.m., the stomatal conductance (gs was monitored for environmental variables (relative humidity, air temperature, radiation and vapor pressure de cit (VPD. An analysis of variance was made using the Tukey test, correlations and regressions were made between gs and environmental variables. The contents of chlorophyll a, b, total and carotenoids among ecotypes were different (P<0.0001, the ecotype UA-31 presented the highest values, contrasting with the ecotype UA-37. Concerning gs, the interaction ecotype*hour showed signi cant differences (P<0.0001 .The ecotypes that presented the highest values of gs were UA-67 and UA-039, (P<0.0001, radiation (-0.91, P<0.0001 and DPV (-0.94; P<0.0001 0.0001.The results suggest that ecotypes UA-039 and UA-31 were the most suitable in terms of gaseous exchange and content of photosynthetic pigments.

  15. Tuberous Roots Yield, Transpiration Rate, Stomatal Conductance and Water Use Efficiency of Divergent Cassava Clones as Influenced by Climate and Growth Stage

    International Nuclear Information System (INIS)

    Githunguri, C.M; Chewa, J.A; Ekanayake, I.J

    1999-01-01

    Cassava roots provide a cheap source of dietary energy to millions of people in the tropics. Variations in yield, stomatal conductance, transpiration rate and water use efficiency occur due to various factors. This makes selection of clones with wide ecological adaptation and high yield difficult. The influence of crop age and agroecozones (AEZ) in Nigeria on above parametres were studied. The tested AEZs were Sudan savanna (Minjibir), Southern Guinea savanna (Mokwa) and forest-savanna transition (Ibadan) AEZ. The environment plays a significant role in determining root yield with plant age playing a bigger role at the early stages. Results suggest root development was restricted by low moisture stress. Cassava ought to be harvested at eight months after planting (MAP) rather than at 12 MAP in order to obtain maximum yields. Yields at Mokwa were significantly higher than both Minjibir and Ibadan suggesting that cassava is not a crop for either forest or semi arid zones. During both seasons Minjbir had the highest stomatal conductance trend while Ibadan had the lowest. Stomatal conductance at Minjibir becomes critical at 12 MAP. The highest transpiration rate was recorded at Minijibir at 4 and 12 MAP. The lowest transpiration rate ws observed at Ibadan. The lowest transpiration rate was also observed during drought. There was a close positive close relationship between tuberous roots yield and transpiration. The lowest and highest water use efficiency (WUE) was recorded at 4 and 8 MAP during rains. The lowest and the highest WUE was recorded at Ibadan and Mokwa respectively. The two seasons trends were similar. Clone TMS 50395 had the highest WUE. Tere was close positive relationship between WUE and tuberous roots yield

  16. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO(2).

    Science.gov (United States)

    Drake, B; Raschke, K

    1974-06-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO(2) exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO(2) concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO(2) concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO(2) concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO(2) concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO(2); they responded to changes in CO(2) concentration in the range from 100 to 1000 microliters per liter.

  17. Prechilling of Xanthium strumarium L. Reduces Net Photosynthesis and, Independently, Stomatal Conductance, While Sensitizing the Stomata to CO21

    Science.gov (United States)

    Drake, B.; Raschke, K.

    1974-01-01

    Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO2 exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO2 concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO2 concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO2 concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO2 concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO2; they responded to changes in CO2 concentration in the range from 100 to 1000 microliters per liter. PMID:16658795

  18. A rate equation model of stomatal responses to vapour pressure deficit and drought

    Directory of Open Access Journals (Sweden)

    Shanahan ST

    2002-08-01

    Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.

  19. The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance.

    Science.gov (United States)

    Roussel, Magali; Dreyer, Erwin; Montpied, Pierre; Le-Provost, Grégoire; Guehl, Jean-Marc; Brendel, Oliver

    2009-01-01

    (13)C discrimination in organic matter with respect to atmospheric CO(2) (Delta(13)C) is under tight genetic control in many plant species, including the pedunculate oak (Quercus robur L.) full-sib progeny used in this study. Delta(13)C is expected to reflect intrinsic water use efficiency, but this assumption requires confirmation due to potential interferences with mesophyll conductance to CO(2), or post-photosynthetic discrimination. In order to dissect the observed Delta(13)C variability in this progeny, six genotypes that have previously been found to display extreme phenotypic values of Delta(13)C [either very high ('high Delta') or low ('low Delta') phenotype] were selected, and transpiration efficiency (TE; accumulated biomass/transpired water), net CO(2) assimilation rate (A), stomatal conductance for water vapour (g(s)), and intrinsic water use efficiency (W(i)=A/g(s)) were compared with Delta(13)C in bulk leaf matter, wood, and cellulose in wood. As expected, 'high Delta' displayed higher values of Delta(13)C not only in bulk leaf matter, but also in wood and cellulose. This confirmed the stability of the genotypic differences in Delta(13)C recorded earlier. 'High Delta' also displayed lower TE, lower W(i), and higher g(s). A small difference was detected in photosynthetic capacity but none in mesophyll conductance to CO(2). 'High Delta' and 'low Delta' displayed very similar leaf anatomy, except for higher stomatal density in 'high Delta'. Finally, diurnal courses of leaf gas exchange revealed a higher g(s) in 'high Delta' in the morning than in the afternoon when the difference decreased. The gene ERECTA, involved in the control of water use efficiency, leaf differentiation, and stomatal density, displayed higher expression levels in 'low Delta'. In this progeny, the variability of Delta(13)C correlated closely with that of W(i) and TE. Genetic differences of Delta(13)C and W(i) can be ascribed to differences in stomatal conductance and stomatal

  20. Evaluation of the psychometric properties of the Nighttime Symptoms of COPD Instrument.

    Science.gov (United States)

    Mocarski, Michelle; Zaiser, Erica; Trundell, Dylan; Make, Barry J; Hareendran, Asha

    2015-01-01

    Nighttime symptoms can negatively impact the quality of life of patients with chronic obstructive pulmonary disease (COPD). The Nighttime Symptoms of COPD Instrument (NiSCI) was designed to measure the occurrence and severity of nighttime symptoms in patients with COPD, the impact of symptoms on nighttime awakenings, and rescue medication use. The objective of this study was to explore item reduction, inform scoring recommendations, and evaluate the psychometric properties of the NiSCI. COPD patients participating in a Phase III clinical trial completed the NiSCI daily. Item analyses were conducted using weekly mean and single day scores. Descriptive statistics (including percentage of respondents at floor/ceiling and inter-item correlations), factor analyses, and Rasch model analyses were conducted to examine item performance and scoring. Test-retest reliability was assessed for the final instrument using the intraclass correlation coefficient (ICC). Correlations with assessments conducted during study visits were used to evaluate convergent and known-groups validity. Data from 1,663 COPD patients aged 40-93 years were analyzed. Item analyses supported the generation of four scores. A one-factor structure was confirmed with factor analysis and Rasch analysis for the symptom severity score. Test-retest reliability was confirmed for the six-item symptom severity (ICC, 0.85), number of nighttime awakenings (ICC, 0.82), and rescue medication (ICC, 0.68) scores. Convergent validity was supported by significant correlations between the NiSCI, St George's Respiratory Questionnaire, and Exacerbations of Chronic Obstructive Pulmonary Disease Tool-Respiratory Symptoms scores. The results suggest that the NiSCI can be used to determine the severity of nighttime COPD symptoms, the number of nighttime awakenings due to COPD symptoms, and the nighttime use of rescue medication. The NiSCI is a reliable and valid instrument to evaluate these concepts in COPD patients in clinical

  1. Evaluation of the psychometric properties of the Nighttime Symptoms of COPD Instrument

    Directory of Open Access Journals (Sweden)

    Mocarski M

    2015-03-01

    Full Text Available Michelle Mocarski,1 Erica Zaiser,2 Dylan Trundell,2 Barry J Make,3 Asha Hareendran21Forest Research Institute, Inc., an affiliate of Actavis, Inc., Jersey City, NJ, USA; 2Evidera, London, UK; 3National Jewish Health, Denver, CO, USA Background: Nighttime symptoms can negatively impact the quality of life of patients with chronic obstructive pulmonary disease (COPD. The Nighttime Symptoms of COPD Instrument (NiSCI was designed to measure the occurrence and severity of nighttime symptoms in patients with COPD, the impact of symptoms on nighttime awakenings, and rescue medication use. The objective of this study was to explore item reduction, inform scoring recommendations, and evaluate the psychometric properties of the NiSCI.Methods: COPD patients participating in a Phase III clinical trial completed the NiSCI daily. Item analyses were conducted using weekly mean and single day scores. Descriptive statistics (including percentage of respondents at floor/ceiling and inter-item correlations, factor analyses, and Rasch model analyses were conducted to examine item performance and scoring. Test–retest reliability was assessed for the final instrument using the intraclass correlation coefficient (ICC. Correlations with assessments conducted during study visits were used to evaluate convergent and known-groups validity.Results: Data from 1,663 COPD patients aged 40–93 years were analyzed. Item analyses supported the generation of four scores. A one-factor structure was confirmed with factor analysis and Rasch analysis for the symptom severity score. Test–retest reliability was confirmed for the six-item symptom severity (ICC, 0.85, number of nighttime awakenings (ICC, 0.82, and rescue medication (ICC, 0.68 scores. Convergent validity was supported by significant correlations between the NiSCI, St George’s Respiratory Questionnaire, and Exacerbations of Chronic Obstructive Pulmonary Disease Tool-Respiratory Symptoms scores.Conclusion: The

  2. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    Science.gov (United States)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  3. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K; Zeevaart, J A

    1976-08-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.

  4. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    Science.gov (United States)

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  5. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual

    NARCIS (Netherlands)

    Ludwig, F.; Jewitt, R.A.; Donovan, L.A.

    2006-01-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource

  6. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  7. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  8. Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia

    2005-01-01

    Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.

  9. Abscisic Acid Content, Transpiration, and Stomatal Conductance As Related to Leaf Age in Plants of Xanthium strumarium L. 1

    Science.gov (United States)

    Raschke, Klaus; Zeevaart, Jan A. D.

    1976-01-01

    Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640

  10. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    Directory of Open Access Journals (Sweden)

    Hyungmin Rho

    2018-03-01

    Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.

  11. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    Science.gov (United States)

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.

  12. Effects of diffuse light on radiation use efficiency depend on the response of stomatal conductance to dynamic light intensity

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2016-02-01

    Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.

  13. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    Science.gov (United States)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  14. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  15. Condutância estomática em folhas de feijoeiro submetido a diferentes regimes de irrigação Stomatal conductance in leaves of bean plants submitted to different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Auricleia S. Paiva

    2005-04-01

    Full Text Available O controle estomático é importante propriedade fisiológica por meio da qual as plantas limitam a perda de água, ocasionando reduções na condutância estomática e, geralmente, reduzindo as trocas gasosas como forma de resposta das plantas a diversos fatores, incluindo o estresse hídrico. O objetivo deste trabalho foi determinar a condutância estomática em folhas de feijoeiro submetido a diferentes regimes de irrigação. O experimento foi conduzido no Departamento de Engenharia Rural da Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - SP. As irrigações nos tratamentos foram determinadas em função do esgotamento de água no solo: T1 - irrigado quando esse atingiu 40% da capacidade de água disponível (CAD; T2 - quando atingiu 60% da CAD; T3 - quando atingiu 80% da CAD, e T4 - não irrigado (irrigado somente para favorecer a emergência das plântulas. As medições de condutância estomática foram realizadas diariamente no campo, nas duas faces da folha, utilizando-se de um porômetro. Em todos os tratamentos, em diversas medições, foi observada redução da condutância estomática em resposta a baixos valores de potencial mátrico e a altos valores de déficit de pressão de vapor e vice-versa. As folhas das plantas do tratamento T4, que foram submetidas a menor disponibilidade hídrica no solo, apresentaram os menores valores de condutância estomática durante os estádios do florescimento e enchimento de grãos.Stomatal control is an important physiological process for plants to reduce water loss. It causes reduction in stomatal conductance and generally in gas exchanges, as a response of several factors including water stress. The objective of this study was to determine the stomatal conductance of bean leaves submitted to different irrigation regimes. Field experiment was conducted at the São Paulo State University, in Jaboticabal, Brazil. Irrigation of the treatments occurred when available water

  16. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning.

    Science.gov (United States)

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2014-12-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    Science.gov (United States)

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  18. CubeSat Nighttime Earth Observations

    Science.gov (United States)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  19. Stomatal Conductance, Plant Species Distribution, and an Exploration of Rhizosphere Microbes and Mycorrhizae at a Deliberately Leakimg Experimental Carbon Sequestration Field (ZERT)

    Science.gov (United States)

    Sharma, B.; Apple, M. E.; Morales, S.; Zhou, X.; Holben, B.; Olson, J.; Prince, J.; Dobeck, L.; Cunningham, A. B.; Spangler, L.

    2010-12-01

    One measure to reduce atmospheric CO2 is to sequester it in deep geological formations. Rapid surface detection of any CO2 leakage is crucial. CO2 leakage rapidly affects vegetation above sequestration fields. Plant responses to high CO2 are valuable tools in surface detection of leaking CO2. The Zero Emission Research Technology (ZERT) site in Bozeman, MT is an experimental field for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010) from a 100m horizontal injection well, HIW, 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, VI, (6/3-6/24/2010). The vegetation includes Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), and other herbaceous plants. We collected soil and roots 1, 3 and 5 m from the VI to determine the responses of mycorrhizal fungi and rhizosphere microbes to high CO2. Mycorrhizal fungi obtain C from root exudates, increase N and P availability, and reduce desiccation, while prokaryotic rhizosphere microbes fix atmospheric N and will be examined for abundance and expression of carbon and nitrogen cycling genes. We are quantifying mycorrhizal colonization and the proportion of spores, hyphae, and arbuscules in vesicular-arbuscular mycorrhizae (VAM) in cleared and stained roots. Stomatal conductance is an important measure of CO2 uptake and water loss via transpiration. We used a porometer (5-40°C, 0-90% RH, Decagon) to measure stomatal conductivity in dandelion and orchard grass at 1, 3, and 5 m from the VI and along a transect perpendicular to the HIW. Dandelion conductance was highest close to the VI and almost consistently higher close to hot spots (circular regions with maximum CO2 and leaf dieback) at the HIW, with 23.2 mmol/m2/s proximal to the hot spot, and 10.8 mmol/m2/s distally. Average conductance in grass (50.3 mmol/m2/s) was higher than in dandelion, but grass did not have high conductance near hot spots. Stomata generally close at elevated CO2

  20. Stomatal conductance at Duke FACE: Leveraging the lessons from 11 years of scaled sap flux measurements for region-wide analyses

    Science.gov (United States)

    Ward, E. J.; Bell, D.; Clark, J. S.; McCarthy, H. R.; Kim, H.; domec, J.; Noormets, A.; McNulty, D.; Sun, G.; Oren, R.

    2013-12-01

    A network of thermal dissipation probes (TDPs) monitoring sap flux density was used to estimate leaf-specific transpiration (EL) and canopy-averaged stomatal conductance (GS) in Pinus taeda (L.) exposed to +200 ppm atmospheric CO2 levels (eCO2) and nitrogen fertilization as part of the Duke FACE study. Data from scaling half-hourly measurements from hundreds of sensors over 11 years indicated that P. taeda in eCO2 intermittently (49% of monthly values) decreased stomatal conductance relative to the control, with a mean reduction of 13% in both total EL and mean daytime GS. This intermittent response was related to changes in a hydraulic allometry index (AH), defined as sapwood area per unit leaf area per unit canopy height, which was linearly related to GS at reference conditions (GSR) during the growing season across years (R2=0.67). Overall, AH decreased a mean of 15% with eCO2 over the course of the study, due mostly to a mean 19% increase in leaf area. Throughout the southeastern U.S., other P. taeda stands have been monitored with TDPs, such as the US-NC2 Ameriflux site and four fertilizer × throughfall displacement studies recently begun as part of the PINEMAP research network in VA, GA, FL and OK. We will also discuss the challenges and benefits of using a common modeling platform to combine FACE TDP data with that from a diversity of sites and treatments to draw inferences about EL and GS responses to environmental drivers and climate change, as well as their relation to AH, across the range of P. taeda.

  1. Endothelial function in postmenopausal women with nighttime systolic hypertension.

    Science.gov (United States)

    Routledge, Faye S; Hinderliter, Alan L; McFetridge-Durdle, Judith; Blumenthal, James A; Paine, Nicola J; Sherwood, Andrew

    2015-08-01

    Hypertension becomes more prevalent in women during their postmenopausal years. Nighttime systolic blood pressure (SBP) is especially predictive of adverse cardiac events, and the relationship between rising nighttime SBP and cardiovascular risk increases more rapidly in women compared with men. The reasons for the prognostic significance of nighttime SBP are not completely known but may involve vascular endothelial dysfunction. The purposes of this study were to examine the relationship between nighttime SBP and endothelial function, as assessed by brachial artery flow-mediated dilation (FMD), and to determine whether postmenopausal women with nighttime hypertension (SBP ≥120 mm Hg) evidenced greater endothelial dysfunction compared with women with normal nighttime SBP. One hundred postmenopausal women (mean [SD] age, 65.8 [7.5] y; mean [SD] body mass index, 28.3 [4.7] kg/m; hypertension, 47%; coronary artery disease, 51%; mean [SD] clinic SBP, 137 [17] mm Hg; mean [SD] clinic diastolic blood pressure, 67 [11] mm Hg; nighttime hypertension, 34 women) underwent 24-hour ambulatory blood pressure monitoring, actigraphy, and brachial artery FMD assessment. Multivariate regression models showed that higher nighttime SBP and larger baseline artery diameter were inversely related to FMD. Nighttime SBP and baseline artery diameter accounted for 23% of the variance in FMD. After adjustment for baseline artery diameter, women with nighttime hypertension had lower mean (SD) FMD than women with normal nighttime SBP (2.95% [0.65%] vs 5.52% [0.46%], P = 0.002). Nighttime hypertension is associated with reduced endothelial function in postmenopausal women. Research examining the therapeutic benefits of nighttime hypertension treatment on endothelial function and future cardiovascular risk in postmenopausal women is warranted.

  2. Quantifying the non-fungicidal effects of foliar applications of fluxapyroxad (Xemium) on stomatal conductance, water use efficiency and yield in winter wheat.

    Science.gov (United States)

    Smith, J; Grimmer, M; Waterhouse, S; Paveley, N

    2013-01-01

    The active ingredient fluxapyroxad belongs to the chemical group of carboxamides and is a new generation succinate dehydrogenase inhibitor (SDHI) in complex II of the mitochondrial respiratory chain. It has strong efficacy against the key foliar diseases of winter wheat in the UK: Septoria leaf blotch, yellow stripe rust and brown rust. Fluxapyroxad is marketed under the brand name of Xemium, was launched in 2012 and is available in the UK as a solo product (Imtrex) for co-application with triazoles, in co-formulation with epoxiconazole (Adexar), or in a three way formulation with epoxiconazole and pyraclostrobin (Ceriax). The objective of the study was to quantify the direct effects of Xemium on stomatal conductance and yield, mediated through stimulation of host physiology. Three field experiments and two controlled environment (CE) experiments were conducted across three cropping seasons (2010-2012) in Herefordshire and Cambridge, in the UK. Xemium was evaluated against boscalid, pyraclostrobin (F500), epoxiconazole and an untreated control. Across site-seasons, disease severity was significantly reduced when Xemium was applied as a foliar spray. Healthy canopy size and duration was increased by Xemium and canopy greening effects were seen shortly after application. Stomatal conductance was found to be consistently lower in Xemium treated plants but reduced stomatal opening was not found to be detrimental to yield in these experiments. Large, beneficial effects of Xemium on water use efficiency were found at the canopy level and this finding was supported by measurements of instantaneous water use efficiency at the leaf level. Effects on season long water use efficiency were largely driven by improvements in yield for a given amount of water uptake. Foliar applications of Xemium reduced the water required to produce 1.0 t grain per hectare by 82,330 L(82 t) when compared with an untreated crop. Yield was significantly higher in Xemium treatments and this was

  3. Expression of Arabidopsis hexokinase in citrus guard cells controls stomatal aperture and reduces transpiration

    Directory of Open Access Journals (Sweden)

    Nitsan eLugassi

    2015-12-01

    Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  4. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    Science.gov (United States)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  5. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    Science.gov (United States)

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  6. The Ecophysiology Of A Pinus Ponderosa Ecosystem Exposed To High Tropospheric Ozone: Implications For Stomatal And Non-Stomatal Ozone Fluxes

    Science.gov (United States)

    Fares, S.; McKay, M.; Goldstein, A.

    2008-12-01

    Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.

  7. Positive and negative peptide signals control stomatal density.

    Science.gov (United States)

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  8. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Stomatal design principles in synthetic and real leaves

    DEFF Research Database (Denmark)

    Zwieniecki, Maciej A.; Haaning, Katrine S; Boyce, C. Kevin

    2016-01-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between...... for major trends in stomatal patterning are not well understood. Here, we use a combination of biomimetic experiments and theory to rationalize the observed changes in stoma geometry. We show that the observed correlations between stoma size and density are consistent with the hypothesis that plants favour...... efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics....

  10. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L.

    Science.gov (United States)

    Raschke, K

    1975-01-01

    Open stomata of detached leaves of Xanthium strumarium L. closed only when carbon dioxide and abscisic acid (ABA) were presented simultaneously. Three parameters of stomatal closing were determined after additions of ABA to the irrigation water of detached leaves, while the leaves were exposed to various CO2 concentrations ([CO2]s) in the air; a) the delay between addition of ABA and a reduction of stomatal conductance by 5%, b) the velocity of stomatal closing, and c) the new conductance. Changes in all three parameters showed that stomatal responses to ABA were enhanced by CO2; this effect followed saturation kinetics. Half saturation occurred at an estimated [CO2] in the stomatal pore of 200 μl l(-1). With respect to ABA, stomata responded in normal air with half their maximal amplitude at [ABA]s between 10(-6) and 10(-5) M(+-)-ABA. The amounts of ABA taken up by the leaves during the delay increased with a power strumarium.Based on earlier findings and on the results of this investigation it is suggested that stomata close if the cytoplasm of the guard cells contains much malate and H(+). The acid content in turn is determined by the relative rates of production of malic acid (from endogenous as well as exogenous CO2) and its removal (by transport of the anion into the vacuole and exchange of the H(+) for K(+) with the environment of the guard cells). The simultaneous requirement of CO2 and ABA for stomatal closure leads to the inference that ABA inhibits the expulsion of H(+) from guard cells.

  11. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  12. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    Science.gov (United States)

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Nighttime atmospheric chemistry of iodine

    Science.gov (United States)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  14. Variation in photosynthesis and stomatal conductance among red maple (Acer rubrum) urban planted cultivars and wildtype trees in the southeastern United States.

    Science.gov (United States)

    Lahr, Eleanor C; Dunn, Robert R; Frank, Steven D

    2018-01-01

    Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.

  15. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-09-01

    Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO 2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO 2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO 2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO 2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO 2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.

  16. An Overview on Data Mining of Nighttime Light Remote Sensing

    Directory of Open Access Journals (Sweden)

    LI Deren

    2015-06-01

    Full Text Available When observing the Earth from above at night, it is clear that the human settlement and major economic regions emit glorious light. At cloud-free nights, some remote sensing satellites can record visible radiance source, including city light, fishing boat light and fire, and these nighttime cloud-free images are remotely sensed nighttime light images. Different from daytime remote sensing, nighttime light remote sensing provides a unique perspective on human social activities, thus it has been widely used for spatial data mining of socioeconomic domains. Historically, researches on nighttime light remote sensing mostly focus on urban land cover and urban expansion mapping using DMSP/OLS imagery, but the nighttime light images are not the unique remote sensing source to do these works. Through decades of development of nighttime light product, the nighttime light remote sensing application has been extended to numerous interesting and scientific study domains such as econometrics, poverty estimation, light pollution, fishery and armed conflict. Among the application cases, it is surprising to see the Gross Domestic Production (GDP data can be corrected using the nighttime light data, and it is interesting to see mechanism of several diseases can be revealed by nighttime light images, while nighttime light are the unique remote sensing source to do the above works. As the nighttime light remote sensing has numerous applications, it is important to summarize the application of nighttime light remote sensing and its data mining fields. This paper introduced major satellite platform and sensors for observing nighttime light at first. Consequently, the paper summarized the progress of nighttime light remote sensing data mining in socioeconomic parameter estimation, urbanization monitoring, important event evaluation, environmental and healthy effects, fishery dynamic mapping, epidemiological research and natural gas flaring monitoring. Finally, future

  17. Night-Time Light Dynamics during the Iraqi Civil War

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-06-01

    Full Text Available In this study, we analyzed the night-time light dynamics in Iraq over the period 2012–2017 by using Visible Infrared Imaging Radiometer Suite (VIIRS monthly composites. The data quality of VIIRS images was improved by repairing the missing data, and the Night-time Light Ratio Indices (NLRIs, derived from urban extent map and night-time light images, were calculated for different provinces and cities. We found that when the Islamic State of Iraq and Syria (ISIS attacked or occupied a region, the region lost its light rapidly, with the provinces of Al-Anbar, At-Ta’min, Ninawa, and Sala Ad-din losing 63%, 73%, 88%, and 56%, of their night-time light, respectively, between December 2013 and December 2014. Moreover, the light returned after the Iraqi Security Forces (ISF recaptured the region. In addition, we also found that the night-time light in the Kurdish Autonomous Region showed a steady decline after 2014, with the Arbil, Dihok, and As-Sulaymaniyah provinces losing 47%, 18%, and 31% of their night-time light between December 2013 and December 2016 as a result of the economic crisis in the region. The night-time light in Southern Iraq, the region controlled by Iraqi central government, has grown continuously; for example, the night-time light in Al Basrah increased by 75% between December 2013 and December 2017. Regions formerly controlled by ISIS experienced a return of night-time light during 2017 as the ISF retook almost all this territory in 2017. This indicates that as reconstruction began, electricity was re-supplied in these regions. Our analysis shows the night-time light in Iraq is directly linked to the socioeconomic dynamics of Iraq, and demonstrates that the VIIRS monthly night-time light images are an effective data source for tracking humanitarian disasters in that country.

  18. Optimal stomatal behaviour around the world

    DEFF Research Database (Denmark)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.

    2015-01-01

    , a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour diers among...

  19. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-05-01

    Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.

  20. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.

  1. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    International Nuclear Information System (INIS)

    Paoletti, Elena

    2005-01-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening

  2. A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves : Experiments with Arbutus unedo L. during the diurnal course.

    Science.gov (United States)

    Beyschlag, W; Pfanz, H

    1990-01-01

    Pressure infiltration of water into a leaf via the stomatal pores can be used to quickly determine whether all stomata are open, or as recently described for several mesophytic and xerophytic species, whether there is a non-homogeneous distribution of stomatal opening (stomatal patchiness) on the leaf surface. Information about this phenomenon is important since the commonly used algorithms for calculation of leaf conductance from water vapor exchange measurements imply homogeneously open stomata, which in the occurrence of stomatal patchiness will lead to erroneous results. Infiltration experiments in a growth chamber with leaves of the Mediterranean evergreen shrub Arbutus unedo, carried out under simulated Mediterranean summer day conditions, where the species typically exhibits a strong midday stomatal closure, revealed a temporary occurrence of stomatal patchiness during the phase of stomatal closure in the late morning and during the stomatal reopening in the afternoon. Leaves were, however, found to be fully (i.e. homogeneously) infiltratable in the morning and in the evening. At midday during maximum stomatal closure, leaves were almost non-infiltratable. During the day, the infiltrated amount of water was found to be linearly correlated with porometer measurements of leaf conductance of the same leaves, carried out with the attached leaves immediately before infiltration.

  3. Nighttime Fears and Fantasy-Reality Differentiation in Preschool Children

    Science.gov (United States)

    Zisenwine, Tamar; Kaplan, Michal; Kushnir, Jonathan; Sadeh, Avi

    2013-01-01

    Nighttime fears are very common in preschool years. During these years, children's fantasy-reality differentiation undergoes significant development. Our study was aimed at exploring the links between nighttime fears and fantasy-reality differentiation in preschool children. Eighty children (aged: 4-6 years) suffering from severe nighttime fears…

  4. Grapevine acclimation to water deficit: the adjustment of stomatal and hydraulic conductance differs from petiole embolism vulnerability.

    Science.gov (United States)

    Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos

    2017-06-01

    Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.

  5. Transmission and pathogenesis of vesicular stomatitis viruses

    Science.gov (United States)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  6. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations

    International Nuclear Information System (INIS)

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-01-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO 3 SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.

  7. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    Science.gov (United States)

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis?

    Science.gov (United States)

    Easlon, Hsien Ming; Carlisle, Eli; McKay, John K; Bloom, Arnold J

    2015-03-01

    The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3 (-)) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3 (-) supply as the sole source of N. Although g varied by 32% among NILs at elevated CO2, leaf intercellular CO2 concentration varied by only 4% and genotype had no effect on shoot NO3 (-) concentration in any treatment. Low-g NILs showed the greatest CO2 growth increase under N limitation but had the lowest CO2 growth enhancement under N-sufficient conditions. NILs with the highest and lowest g had similar rates of shoot NO3 (-) assimilation following N deprivation at elevated CO2 concentration. After 5 d of N deprivation, the lowest g NIL had 27% lower maximum carboxylation rate and 23% lower photosynthetic electron transport compared with the highest g NIL. These results suggest that increased growth of low-g NILs under N limitation most likely resulted from more conservative N investment in photosynthetic biochemistry rather than from low g. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain.

    Science.gov (United States)

    Busch, Florian A

    2014-02-01

    Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.

  10. Internal coordination between hydraulics and stomatal control in leaves.

    Science.gov (United States)

    Brodribb, Tim J; Jordan, Gregory J

    2008-11-01

    The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.

  11. Can the Responses of Photosynthesis and Stomatal Conductance to Water and Nitrogen Stress Combinations Be Modeled Using a Single Set of Parameters?

    Science.gov (United States)

    Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou

    2017-01-01

    Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental conditions, simplifying the parameterization procedure is important toward a wide range of model applications. In this study, the biochemical photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model) and the stomatal conductance model of Ball, Woodrow and Berry which was revised by Leuning and Yin (the BWB-Leuning-Yin model) were parameterized for Lilium (L. auratum × speciosum “Sorbonne”) grown under different water and nitrogen conditions. Linear relationships were found between biochemical parameters of the FvCB model and leaf nitrogen content per unit leaf area (Na), and between mesophyll conductance and Na under different water and nitrogen conditions. By incorporating these Na-dependent linear relationships, the FvCB model was able to predict the net photosynthetic rate (An) in response to all water and nitrogen conditions. In contrast, stomatal conductance (gs) can be accurately predicted if parameters in the BWB-Leuning-Yin model were adjusted specifically to water conditions; otherwise gs was underestimated by 9% under well-watered conditions and was overestimated by 13% under water-deficit conditions. However, the 13% overestimation of gs under water-deficit conditions led to only 9% overestimation of An by the coupled FvCB and BWB-Leuning-Yin model whereas the 9% underestimation of gs under well-watered conditions affected little the prediction of An. Our results indicate that to accurately predict An and gs under different water and nitrogen conditions, only a few parameters in the BWB-Leuning-Yin model need to be adjusted according to water conditions whereas all other parameters are either conservative or can be adjusted according to

  12. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L.

    Science.gov (United States)

    Sharkey, T D; Raschke, K

    1981-11-01

    Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO(2) assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves.

  13. Model estimates of leaf area and reference canopy stomatal conductance suggest correlation between phenology and physiology in both trembling aspen and red pine

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Kruger, E. L.

    2006-12-01

    Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.

  14. Ecology of Candida-associated Denture Stomatitis

    OpenAIRE

    Budtz-Jørgensen, Ejvind

    2011-01-01

    Introduction of a prosthesis into the oral cavity results in profound alterations of the environmental conditions as the prosthesis and the underlying mucosa become colonized with oral microorganisms, including Candida spp. This may lead to denture stomatitis, a non-specific inflammatory reaction against microbial antigens, toxins and enzymes produced by the colonizing microorganisms. The role of Candida in the etiology of denture stomatitis is indicated by an increased number of yeasts on th...

  15. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming

    DEFF Research Database (Denmark)

    Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.

    2016-01-01

    chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata......Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.......5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...

  16. Fatal accidents in nighttime vs. daytime highway construction work zones.

    Science.gov (United States)

    Arditi, David; Lee, Dong-Eun; Polat, Gul

    2007-01-01

    Awareness about worker safety in nighttime construction has been a major concern because it is believed that nighttime construction creates hazardous work conditions. However, only a few studies provide valuable comparative information about accident characteristics of nighttime and daytime highway construction activities. This study investigates fatal accidents that occurred in Illinois highway work zones in the period 1996-2001 in order to determine the safety differences between nighttime and daytime highway construction. The lighting and weather conditions were included into the study as control parameters to see their effects on the frequency of fatal accidents occurring in work zones. According to this study, there is evidence that nighttime construction is more hazardous than daytime construction. The inclusion of a weather parameter into the analysis has limited effect on this finding. The study justifies establishing an efficient work zone accident reporting system and taking all necessary measures to enhance safety in nighttime work zones.

  17. Passive Cooling of buildings by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, Heinrich; Heiselberg, Per

    coefficients below about 4 W/m2K. Heat transfer during night-time ventilation in case of mixing and displacement ventilation was investigated in a full scale test room at Aalborg University. In the experiments the temperature efficiency of the ventilation was determined. Based on the previous re-sults a method...... are still hesitant to apply passive cooling techniques. As night-time ventilation is highly dependent on climatic conditions, a method for quantifying the climatic cooling potential was developed and the impact of climate warming was investigated. Although a clear decrease was found, significant potential...... will remain, especially if night-time ventilation is applied in combination with other cooling methods. Building energy simulations showed that the performance of night-time ventilation is also affected by the heat transfer at internal room surfaces, as the cooling effect is very limited for heat transfer...

  18. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. 1

    Science.gov (United States)

    Sharkey, Thomas D.; Raschke, Klaus

    1981-01-01

    Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO2 assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves. PMID:16662069

  19. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest

    Czech Academy of Sciences Publication Activity Database

    Fares, S.; Matteucci, G.; Mugnozza, S.; Morani, A.; Calfapietra, Carlo; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.

    2013-01-01

    Roč. 67, MAR (2013), s. 242-251 ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : Ozone fluxes * Stomatal conductance models * GPP * Mediterranean forest Subject RIV: EH - Ecology, Behaviour Impact factor: 3.062, year: 2013

  20. mechanisms of drought resistance in grain ii:.stomatal regulation

    African Journals Online (AJOL)

    Preferred Customer

    STOMATAL REGULATION AND ROOT GROWTH ... maintenance of high plant water potential in common bean under stress was the function of stomatal regulation and/or root ... disadvantage since it will reduce CO2 fixation and hence may ...

  1. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Stomatal- and growth responses in willow to deficits in water- and nitrogen supply. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stadenberg, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dep. for Production Ecology

    2002-02-01

    The two plants, grown with an [N] of 100 mg per litre and subjected to a decrease in N-supply decreased their leaf relative growth rate from 22% per day to 13% per day within 2 days. Stomatal conductance did not change significantly after the decrease in N-supply. Xylem samples did not show any significant changes in its composition of mineral nutrient elements after decreased N-supply. The three plants, grown with an [N] of 50 mg per litre and subjected to a decrease in N-supply, significantly decreased leaf relative growth rate from 18.5 % to 9 % per day within 2 days. Stomatal conductance did not change significantly after the decrease in N-supply. Xylem sap samples showed a significant decrease in [K] (74 mg/l to 42 mg/l) and [S] (11 mg/l to 3.2 mg/l) within 2 days after decreased N-supply. The four plants subjected to root drying decreased their leaf relative growth rate slightly but not significantly during the drying period. Xylem samples showed a significant decrease in S-concentration (11 mg/l to 1.3 mg/l) and [NO{sub 3}] (8.0 mg/l to 1.0 mg/l), while [Fe] increased significantly (0.065 mg/l to 0.14 mg/l). Stomatal conductance is known to decrease when plants are subjected to drying of part of the root system. This was shown for Salix dasyclados in a recent publication.

  3. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    Science.gov (United States)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  4. Association between Nighttime Sleep and Napping in Older Adults

    Science.gov (United States)

    Goldman, Suzanne E.; Hall, Martica; Boudreau, Robert; Matthews, Karen A.; Cauley, Jane A.; Ancoli-Israel, Sonia; Stone, Katie L.; Rubin, Susan M.; Satterfield, Suzanne; Simonsick, Eleanor M.; Newman, Anne B.

    2008-01-01

    Study Objectives: Napping might indicate deficiencies in nighttime sleep, but the relationship is not well defined. We assessed the association of nighttime sleep duration and fragmentation with subsequent daytime sleep. Design: Cross-sectional study. Participants: 235 individuals (47.5% men, 29.7% black), age 80.1 (2.9) years. Measurements and Results: Nighttime and daytime sleep were measured with wrist actigraphy and sleep diaries for an average of 6.8 (SD 0.7) nights. Sleep parameters included total nighttime sleep (h), movement and fragmentation index (fragmentation), and total daytime sleep (h). The relationship of total nighttime sleep and fragmentation to napping (yes/no) was assessed using logistic regression. In individuals who napped, mixed random effects models were used to determine the association between the previous night sleep duration and fragmentation and nap duration, and nap duration and subsequent night sleep duration. All models were adjusted for age, race, gender, BMI, cognitive status, depression, cardiovascular disease, respiratory symptoms, diabetes, pain, fatigue, and sleep medication use. Naps were recorded in sleep diaries by 178 (75.7%) participants. The odds ratios (95% CI) for napping were higher for individuals with higher levels of nighttime fragmentation (2.1 [0.8, 5.7]), respiratory symptoms (2.4 [1.1, 5.4]), diabetes (6.1 [1.2, 30.7]), and pain (2.2 [1.0, 4.7]). Among nappers, neither sleep duration nor fragmentation the preceding night was associated with nap duration the next day. Conclusion: More sleep fragmentation was associated with higher odds of napping although not with nap duration. Further research is needed to determine the causal association between sleep fragmentation and daytime napping. Citation: Goldman SE; Hall M; Boudreau R; Matthews KA; Cauley JA; Ancoli-Israel S; Stone KL; Rubin SM; Satterfield S; Simonsick EM; Newman AB. Association between nighttime sleep and napping in older adults. SLEEP 2008

  5. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  6. Clinical evaluation of the essential oil of "Satureja Hortensis" for the treatment of denture stomatitis

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Sabzghabaee

    2012-01-01

    Full Text Available Background: The prevalence of denture stomatitis has been shown to vary from 15 to 65% in complete denture wearers. Satureja hortensis L. has been considered to have antinociceptive, anti-inflammatory, antifungal and antimicrobial activities in vitro and exhibits strong inhibitory effect on the growth of periodontal bacteria. The aim of this study was to evaluate the efficacy of a 1% gel formulation of S. hortensis essential oil for the treatment of denture stomatitis. Materials and Methods: A randomized, controlled clinical trial study was conducted on 80 patients (mean age 62.91±7.34 in two parallel groups treated either with S. hortensis essential oil 1% gel or placebo applied two times daily for two weeks. Denture stomatitis was diagnosed by clinical examination and paraclinical confirmation with sampling the palatal mucosa for Candida albicans. Data were analyzed using Chi-squared or Student′s t tests. Results: The erythematous lesions of palatal area were significantly reduced (P<0.0001 in the treatment group who applied 1% topical gel of S. hortensis essential oil and Candida colonies count were reduced significantly (P=0.001. Conclusion: Topical application of the essential oil of S. hortensis could be considered as an effective agent for the treatment of denture stomatitis.

  7. Bovine lactoferrin and piroxicam as an adjunct treatment for lymphocytic-plasmacytic gingivitis stomatitis in cats.

    Science.gov (United States)

    Hung, Yi-Ping; Yang, Yi-Ping; Wang, Hsien-Chi; Liao, Jiunn-Wang; Hsu, Wei-Li; Chang, Chao-Chin; Chang, Shih-Chieh

    2014-10-01

    Feline lymphocytic-plasmacytic gingivitis/stomatitis (LPGS) or caudal stomatitis is an inflammatory disease that causes painfully erosive lesions and proliferations of the oral mucosa. The disease is difficult to cure and can affect cats at an early age, resulting in lifetime therapy. In this study, a new treatment using a combination of bovine lactoferrin (bLf) oral spray and oral piroxicam was investigated using a randomized double-blinded clinical trial in 13 cats with caudal stomatitis. Oral lesion grading and scoring of clinical signs were conducted during and after the trial to assess treatment outcome. Oral mucosal biopsies were used to evaluate histological changes during and after treatment. Clinical signs were significantly improved in 77% of the cats. In a 4-week study, clinical signs were considerably ameliorated by oral piroxicam during the first 2 weeks. In a 12-week study, the combined bLf oral spray and piroxicam, when compared with piroxicam alone, exhibited an enhanced effect that reduced the severity of the oral lesions (P = 0.059), while also significantly improving clinical signs (P piroxicam was safe and might be used to decrease the clinical signs of caudal stomatitis in cats. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    Science.gov (United States)

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  9. Passive cooling of buildings by night-time ventilation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, N.; Manz, H. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heiselberg, P. [Aalborg University, Aalborg (Denmark)

    2008-07-01

    Due to an overall trend towards an increasing cooling energy demand in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising concept. However, because of uncertainties in thermal comfort predictions, architects and engineers are still hesitant to apply passive cooling techniques. As night-time ventilation is highly dependent on climatic conditions, a method for quantifying the climatic cooling potential was developed and the impact of climate warming was investigated. Although a clear temperature decrease was found, significant potential will remain, especially if night-time ventilation is applied in combination with other cooling methods. Building energy simulations showed that the performance of night-time ventilation is also affected by the heat transfer at internal room surfaces, as the cooling effect is very limited due to heat transfer coefficients below about 4 W/m{sup 2}K. Heat transfer during night-time ventilation in case of mixing and displacement ventilation was investigated in a full scale test room at Aalborg University. In the experiments the temperature efficiency of the ventilation was determined. Based on the previous results a method for estimating the potential for cooling by night-time ventilation at an early stage of design was developed. (author)

  10. Stomata open at night in pole-sized and mature ponderosa pine: implications for O{sub 3} exposure metrics

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N. E.; Alonso, R.; Nguyen, T.; Dobrowolski, W. [USDA Forest Service, Pacific Southwest Station, Riverside, CA (United States); Cascio, C. [University of Florence, Firenze (Italy)

    2004-09-01

    Nighttime stomatal behaviour in two tree size stands of ponderosa pine are described. Ponderosa pine is one of the most ozone-sensitive conifers in western North America. The study involved measurement of time required to reach equilibrium in response to small increases in low irradiances at sites differing in environmental stressors. The contribution of nighttime ozone uptake to total daily ozone uptake in early and later summer was also investigated. Nighttime stomata conductance ranged between one tenth and one fifth that of maximum day-time values. Pole-size trees (i.e. less than 40 years old) showed greater ozone conductance than mature trees (i.e. over 250 years old). In June, nighttime ozone uptake accounted for 9, 5, and 3 per cent of the total daily ozone uptake of pole-sized trees. In late summer, ozone uptake at night was less than two percent of daily uptake at all sites. It is suspected that nighttime uptake of oxidants may have harmful physiological effects, such as contributing to the declining health of forest trees, owing to the fact that oxidants absorbed at night are not detoxified as well during the day. 67 refs.,1 tab., 8 figs.

  11. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.

    Science.gov (United States)

    Torii, Keiko U

    2012-12-01

    Stomata are small valves on the plant epidermis balancing gas exchange and water loss. Stomata are formed according to positional cues. In Arabidopsis, two EPIDERMAL PATTERNING FACTOR (EPF) peptides, EPF1 and EPF2, are secreted from stomatal precursors enforcing proper stomatal patterning. Here, I review recent studies revealing the ligand-receptor pairs and revising the previously predicted relations between receptors specifying stomatal patterning: ERECTA-family and TOO MANY MOUTHS (TMM). Furthermore, EPF-LIKE9 (EPFL9/Stomagen) promotes stomatal differentiation from internal tissues. Two EPFL peptides specify inflorescence architecture, a process beyond stomatal development, as ligands for ERECTA. Thus, broadly expressed receptor kinases may regulate multiple developmental processes through perceiving different peptide ligands, each with a specialized expression pattern. TMM in the epidermis may fine-tune multiple EPF/EPFL signals to prevent signal interference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  13. Increasing sensitivity of methane emission measurements in rice through deployment of ‘closed chambers’ at nighttime

    Science.gov (United States)

    Wassmann, Reiner; Alberto, Ma. Carmelita; Tirol-Padre, Agnes; Hoang, Nghia Trong; Romasanta, Ryan; Centeno, Caesar Arloo; Sander, Bjoern Ole

    2018-01-01

    This study comprises field experiments on methane emissions from rice fields conducted with an Eddy-Covariance (EC) system as well as test runs for a modified closed chamber approach based on measurements at nighttime. The EC data set covers 4 cropping seasons with highly resolved emission rates (raw data in 10 Hz frequency have been aggregated to 30-min records). The diel patterns were very pronounced in the two dry seasons with peak emissions at early afternoon and low emissions at nighttime. These diel patterns were observed at all growing stages of the dry seasons. In the two wet seasons, the diel patterns were only visible during the vegetative stages while emission rates during reproductive and ripening stages remained within a fairly steady range and did not show any diel patterns. In totality, however, the data set revealed a very strong linear relationship between nocturnal emissions (12-h periods) and the full 24-h periods resulting in an R2-value of 0.8419 for all data points. In the second experiment, we conducted test runs for chamber measurements at nighttime with much longer deployment times (6 h) as compared to measurements at daylight (typically for 30 min). Conducting chamber measurements at nighttime excluded drastic changes of temperatures and CO2 concentrations. The data also shows that increases in CH4 concentrations remained on linear trajectory over a 6h period at night. While end CH4 concentrations were consistently >3.5 ppm, this long-term enclosure represents a very robust approach to quantify emissions as compared to assessing short-term concentration increases over time near the analytical detection limit. Finally, we have discussed the potential applications of this new approach that would allow emission measurements even when conventional (daytime) measurements will not be suitable. Nighttime chamber measurements offer an alternative to conventional (daytime) measurements if either (i) baseline emissions are at a very low level, (ii

  14. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    Science.gov (United States)

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  15. Chronic gingivitis and aphthous stomatitis relationship hypothesis: A neuroimmunobiological approach

    Directory of Open Access Journals (Sweden)

    Chiquita Prahasanti

    2009-03-01

    Full Text Available Background: Traumatic injuries to the oral mucosa in fixed orthodontic patients are common, especially in the first week of bracket placement, and occasionally lead to the development of aphthous stomatitis or ulcers. Nevertheless, these lesions are selflimiting. Purpose: The objective of this study is to reveal the connection between chronic gingivitis and aphthous stomatitis which is still unclear. Case: A patient with a persistent lesion for more than six months. Case Management: RAS was treated with scaling procedure, the gingival inflammation was healed. However, in this case report, despite the appropriate management procedures had been done, the lesion still worsen and became more painful. Moreover, the symptoms did not heal for more than two weeks. Actually, they had been undergone orthodontic treatment more than six months and rarely suffered from aphthous stomatitis. Coincidentally, at that time they also suffered from chronic gingivitis. It was interesting that after scaling procedures, the ulcer subsides in two days. Conclusion: Recently, the neuroimmunobiological researches which involved neurotransmitters and cytokines on cell-nerve signaling, and heat shock proteins in gingivitis and stomatitis are in progress. Nevertheless, they were done separately, thus do not explain the interrelationship. This proposed new concept which based on an integrated neuroimmunobiological approach could explain the benefit of periodontal treatment, especially scaling procedures, for avoiding prolonged painful episodes and unnecessary medications in aphthous stomatitis. However, for widely acceptance of the chronic gingivitis and aphthous stomatitis relationship, further clinical and laboratory study should be done. Regarding to the relatively fast healing after scaling procedures in this case report; it was concluded that the connection between chronic gingivitis and aphthous stomatitis is possible.

  16. Daytime Napping, Nighttime Sleeping, and Parkinson Disease

    Science.gov (United States)

    Gao, Jianjun; Huang, Xuemei; Park, Yikyung; Hollenbeck, Albert; Blair, Aaron; Schatzkin, Arthur; Chen, Honglei

    2011-01-01

    Preliminary evidence suggests that daytime sleepiness may predate clinical diagnosis of Parkinson disease. The authors examined daytime napping and nighttime sleeping durations, reported in 1996–1997 by 220,934 US NIH-AARP Diet and Health Study participants, in relation to Parkinson disease diagnoses at 3 clinical stages: established (cases diagnosed before 1995, n = 267), recent (1995–1999, n = 396), and prediagnostic (2000 and after, n = 770). Odds ratios and 95% confidence intervals were derived from multivariate logistic regression models. Longer daytime napping was associated with higher odds of Parkinson disease at all 3 clinical stages: the odds ratios comparing long nappers (>1 hour/day) with nonnappers were 3.9 (95% confidence interval: 2.8, 5.6) for established cases, 2.2 (95% confidence interval: 1.7, 3.0) for recent cases, and 1.5 (95% confidence interval: 1.2, 1.9) for prediagnostic cases. Further control for health status or nighttime sleeping duration attenuated the association for established cases but made little difference for recent or prediagnostic cases. In the nighttime sleeping analysis, a clear U-shaped association with Parkinson disease was observed for established cases; however, this association was attenuated markedly for recent cases and disappeared for prediagnostic cases. This study supports the notion that daytime sleepiness, but not nighttime sleeping duration, is one of the early nonmotor symptoms of Parkinson disease. PMID:21402730

  17. Initial experience with the providence nighttime bracing in adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Quisth, Lena; Beuschau, Inge; Simony, A.

    2015-01-01

    Background: Since 2008 the primary non-surgical treatment of adolescent idiopathic scoliosis (AIS) in the southern part of Denmark, went from full-time bracing with Boston brace, to Providence nighttime bracing. Aim: To evaluate the effectiveness of nighttime bracing, with the Providence brace...... with the Providence nighttime brace and an acceptable 18 % failure rate. The nighttime brace is an excellent alternative to standard conservative treatment, and reduces the need for physiotherapy after brace termination. The patients tolerate the nighttime brace treatment well, and compliance within the cohort......, in AIS. Method: Patients diagnosed with AIS. With an apex from TH7 and below and with a cobb angel between 20-45 degrees. The patients were evaluated every 6 months with standing x-rays and the brace treatment was continued until two years post menarche. Cobb angle of the major curve pretreatment, in...

  18. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins.

    Science.gov (United States)

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-07-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Effects of Nighttime Light Radiance on the Sleep of the General Population

    Science.gov (United States)

    Ohayon, Maurice M.; Milesi, Cristina

    2015-01-01

    The objectives of this study is to verify if the exposure to greater nighttime radiance is associated with changes in the sleep/wake schedule and with greater sleep disturbances. Methods: The target population was the adults (18 years and older) living in California, USA. This represents 24 million of inhabitants. A total of 3,104 subjects participated in the survey (participation rate 85.6%). The participants were interviewed by telephone using the Sleep-EVAL system. The interviews covered several topics including sleeping habits, sleep quality, sleep disturbances, physical symptoms related to menopause. Chronic insomnia was defined as difficulty initiating or maintaining sleep for at least 3 months. Global nighttime light emissions have been collected by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) sensors. We extracted the radiance calibrated nighttime lights corresponding to the date of the interviews for a three by three window centered on each coordinate corresponding to an interview address. Results: Dissatisfaction with sleep quantity and/or quality was associated with an increased nighttime radiance (p=0.02). Similarly, excessive sleepiness accompanied with impaired functioning was significantly associated with an increased nighttime radiance (p (is) less than 0.0001). The association remained significant after controlling for age, gender and use of a night lamp in the bedroom. Confusional arousals were also significantly associated with an increased nighttime radiance (p (is) less than 0.0001). Bedtime hour was linearly increasing with the intensity of nighttime radiance: the later the bedtime, the greater the nighttime radiance (p (is) less than 0.0001). Similarly, wakeup time became progressively later as the nighttime radiance increased (p (is) less than 0.0001). Both associations remained significant after controlling for age, gender and use of a night lamp in the bedroom. Circadian Rhythm Disorders were the

  20. Capability of the "Ball-Berry" model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes

    DEFF Research Database (Denmark)

    Liu, Fulai; Andersen, Mathias N.; Jensen, Christian Richardt

    2009-01-01

    was used for model parameterization, where measurements of midday leaf gas exchange of potted potatoes were done during progressive soil drying for 2 weeks at tuber initiation and earlier bulking stages. The measured photosynthetic rate (An) was used as an input for the model. To account for the effects......The capability of the ‘Ball-Berry' model (BB-model) in predicting stomatal conductance (gs) and water use efficiency (WUE) of potato (Solanum tuberosum L.) leaves under different irrigation regimes was tested using data from two independent pot experiments in 2004 and 2007. Data obtained from 2004...... of soil water deficits on gs, a simple equation modifying the slope (m) based on the mean soil water potential (Ψs) in the soil columns was incorporated into the original BB-model. Compared with the original BB-model, the modified BB-model showed better predictability for both gs and WUE of potato leaves...

  1. When Thinking Impairs Sleep: Trait, Daytime and Nighttime Repetitive Thinking in Insomnia.

    Science.gov (United States)

    Lancee, Jaap; Eisma, Maarten C; van Zanten, Kristopher B; Topper, Maurice

    2017-01-01

    We performed two studies in individuals with sleep problems to investigate trait, daytime, and nighttime repetitive thinking as risk factors for insomnia. In Study 1, 139 participants completed questionnaires on worry, rumination, insomnia, anxiety, depression, and a sleep diary. Trait rumination and trait worry were not associated with sleep impairment. In Study 2, 64 participants completed similar measures and a daytime and nighttime sleep-related worry diary. Only nighttime sleep-related worry was consistently associated with sleep impairment. Overall, results indicate that nighttime sleep-related worry is important in the maintenance of insomnia, whereas effects of trait and daytime repetitive thinking are more benign. Treatment for insomnia can potentially be improved by focusing more on nighttime sleep-related worry.

  2. Reconstructing Atmospheric CO2 Through The Paleocene-Eocene Thermal Maximum Using Stomatal Index and Stomatal Density Values From Ginkgo adiantoides

    Science.gov (United States)

    Barclay, R. S.; Wing, S. L.

    2013-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a geologically brief interval of intense global warming 56 million years ago. It is arguably the best geological analog for a worst-case scenario of anthropogenic carbon emissions. The PETM is marked by a ~4-6‰ negative carbon isotope excursion (CIE) and extensive marine carbonate dissolution, which together are powerful evidence for a massive addition of carbon to the oceans and atmosphere. In spite of broad agreement that the PETM reflects a large carbon cycle perturbation, atmospheric concentrations of CO2 (pCO2) during the event are not well constrained. The goal of this study is to produce a high resolution reconstruction of pCO2 using stomatal frequency proxies (both stomatal index and stomatal density) before, during, and after the PETM. These proxies rely upon a genetically controlled mechanism whereby plants decrease the proportion of gas-exchange pores (stomata) in response to increased pCO2. Terrestrial sections in the Bighorn Basin, Wyoming, contain macrofossil plants with cuticle immediately bracketing the PETM, as well as dispersed plant cuticle from within the body of the CIE. These fossils allow for the first stomatal-based reconstruction of pCO2 near the Paleocene-Eocene boundary; we also use them to determine the relative timing of pCO2 change in relation to the CIE that defines the PETM. Preliminary results come from macrofossil specimens of Ginkgo adiantoides, collected from an ~200ka interval prior to the onset of the CIE (~230-30ka before), and just after the 'recovery interval' of the CIE. Stomatal index values decreased by 37% within an ~70ka time interval at least 100ka prior to the onset of the CIE. The decrease in stomatal index is interpreted as a significant increase in pCO2, and has a magnitude equivalent to the entire range of stomatal index adjustment observed in modern Ginkgo biloba during the anthropogenic CO2 rise during the last 150 years. The inferred CO2 increase prior to the

  3. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest

    Directory of Open Access Journals (Sweden)

    Heidi J Renninger

    2015-05-01

    Full Text Available Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE between oaks (Quercus alba, Q. prinus, Q. velutina and pines (Pinus rigida, P. echinata. We also determined environmental drivers (vapor pressure deficit (VPD, soil moisture, solar radiation of canopy stomatal conductance (GS estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

  4. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.

    Science.gov (United States)

    Renninger, Heidi J; Carlo, Nicholas J; Clark, Kenneth L; Schäfer, Karina V R

    2015-01-01

    Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

  5. Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata.

    Science.gov (United States)

    von Caemmerer, Susanne; Griffiths, Howard

    2009-05-01

    To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.

  6. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2.

    Science.gov (United States)

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

  7. Improving stomatal functioning at elevated growth air humidity: A review.

    Science.gov (United States)

    Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto

    2016-12-01

    Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.

    Science.gov (United States)

    Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U

    2010-05-01

    Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.

  9. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming

    2017-08-01

    Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.

    Science.gov (United States)

    Slot, Martijn; Winter, Klaus

    2017-12-01

    Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.

  11. The dilemma of saving water or being cool: What determines the stomatal response under a changing climate?

    Science.gov (United States)

    Haghighi, Erfan; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Stomata play a critical role in terrestrial water and carbon cycles, regulating the trade-off between photosynthetic carbon gain and water loss in leaves. They adjust their aperture in response to a number of physiological and environmental factors, yet the mechanisms driving this response, particularly under climate extremes, remain poorly understood. Partial or complete stomatal closure reduces plant water stress under water-limited or high atmospheric evaporative demand conditions, but at the cost of reduced productivity, elevated heat, leaf shedding, and mortality. A proper account of such complex stomatal behavior is of particular importance for current ecosystem models that poorly capture observed vegetation responses in the context of climate change which is predicted to cause more frequent and intense temperature extremes along with an increase in the frequency of drought in many regions in the future. This study seeks to explore stomatal responses to environmental change accounted for by a varying soil-plant resistance under different atmospheric and soil moisture conditions. To this end, we developed a physically based transpiration model that couples stomatal control of leaf gas exchange to the leaf surface energy balance and the entire plant hydraulic system by considering the interdependence of the guard cell water potential (or turgor pressure) and transpiration rates. Model simulations of diurnal variations in transpiration rates were in good agreement with field observations, and facilitated quantitative prediction of stomatal and xylem flow regulation under a wide range of environmental conditions. Preliminary results demonstrate how soil and plant hydraulic conductances regulating stomatal opening and closure can help mitigate climatic water deficit (e.g., at midday) by boosting evaporative cooling. Our results are expected to advance physical understanding of the water cycle in the soil-plant-atmosphere continuum, and shed light on observed

  12. Improvement of herpetic stomatitis therapy in patients with chronic tonsillitis

    Directory of Open Access Journals (Sweden)

    Lepilin А.V.

    2011-12-01

    Full Text Available The research goal is to determine the clinical and pathogenetic efficacy of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis. Materials and methods: Medical examination and treatment of 60 patients have been carried out. The marker of endogenous intoxication, infectious severity and immunity has been investigated. Results. It has been established that use of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis has allowed to decrease infectious severity in par-odontal recess and evidence of local inflammation, to normalize immunity indices and reduce the level of endogenous intoxication that has been liable for acceleration of recuperation processes and lowering of frequency of stomatitis recurrences. Conclusion. The clinical efficacy of Cycloferon liniment in the therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis conditioned by the decreasing of activity of local inflammatory process according to the reducing of level pro-inflammatory cytokines, infectious burden of the mouth cavity, endogenous intoxication

  13. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub.

    Science.gov (United States)

    Carlson, Jane E; Adams, Christopher A; Holsinger, Kent E

    2016-01-01

    Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by

  14. Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003

    Science.gov (United States)

    Jonard, F.; André, F.; Ponette, Q.; Vincke, C.; Jonard, M.

    2011-10-01

    SummarySap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density ( SFD) data, mean stomatal conductance of individual trees ( G s) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G s and on their sensitivity to environmental variables (vapour pressure deficit ( D), incoming solar radiation ( R G), and relative extractable water ( REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands ( P sapwood-to-leaf area ratio compared to oak. The sensitivity of G s to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G s to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.

  15. The Health Impact of Nighttime Eating: Old and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amber W. Kinsey

    2015-04-01

    Full Text Available Nighttime eating, particularly before bed, has received considerable attention. Limiting and/or avoiding food before nighttime sleep has been proposed as both a weight loss strategy and approach to improve health and body composition. Indeed, negative outcomes have been demonstrated in response to large mixed meals in populations that consume a majority of their daily food intake during the night. However, data is beginning to mount to suggest that negative outcomes may not be consistent when the food choice is small, nutrient-dense, low energy foods and/or single macronutrients rather than large mixed-meals. From this perspective, it appears that a bedtime supply of nutrients can promote positive physiological changes in healthy populations. In addition, when nighttime feeding is combined with exercise training, any adverse effects appear to be eliminated in obese populations. Lastly, in Type I diabetics and those with glycogen storage disease, eating before bed is essential for survival. Nevertheless, nighttime consumption of small (~150 kcals single nutrients or mixed-meals does not appear to be harmful and may be beneficial for muscle protein synthesis and cardiometabolic health. Future research is warranted to elucidate potential applications of nighttime feeding alone and in combination with exercise in various populations of health and disease.

  16. Enhancement system of nighttime infrared video image and visible video image

    Science.gov (United States)

    Wang, Yue; Piao, Yan

    2016-11-01

    Visibility of Nighttime video image has a great significance for military and medicine areas, but nighttime video image has so poor quality that we can't recognize the target and background. Thus we enhance the nighttime video image by fuse infrared video image and visible video image. According to the characteristics of infrared and visible images, we proposed improved sift algorithm andαβ weighted algorithm to fuse heterologous nighttime images. We would deduced a transfer matrix from improved sift algorithm. The transfer matrix would rapid register heterologous nighttime images. And theαβ weighted algorithm can be applied in any scene. In the video image fusion system, we used the transfer matrix to register every frame and then used αβ weighted method to fuse every frame, which reached the time requirement soft video. The fused video image not only retains the clear target information of infrared video image, but also retains the detail and color information of visible video image and the fused video image can fluency play.

  17. Green Grape Detection and Picking-Point Calculation in a Night-Time Natural Environment Using a Charge-Coupled Device (CCD Vision Sensor with Artificial Illumination

    Directory of Open Access Journals (Sweden)

    Juntao Xiong

    2018-03-01

    Full Text Available Night-time fruit-picking technology is important to picking robots. This paper proposes a method of night-time detection and picking-point positioning for green grape-picking robots to solve the difficult problem of green grape detection and picking in night-time conditions with artificial lighting systems. Taking a representative green grape named Centennial Seedless as the research object, daytime and night-time grape images were captured by a custom-designed visual system. Detection was conducted employing the following steps: (1 The RGB (red, green and blue. Color model was determined for night-time green grape detection through analysis of color features of grape images under daytime natural light and night-time artificial lighting. The R component of the RGB color model was rotated and the image resolution was compressed; (2 The improved Chan–Vese (C–V level set model and morphological processing method were used to remove the background of the image, leaving out the grape fruit; (3 Based on the character of grape vertical suspension, combining the principle of the minimum circumscribed rectangle of fruit and the Hough straight line detection method, straight-line fitting for the fruit stem was conducted and the picking point was calculated using the stem with an angle of fitting line and vertical line less than 15°. The visual detection experiment results showed that the accuracy of grape fruit detection was 91.67% and the average running time of the proposed algorithm was 0.46 s. The picking-point calculation experiment results showed that the highest accuracy for the picking-point calculation was 92.5%, while the lowest was 80%. The results demonstrate that the proposed method of night-time green grape detection and picking-point calculation can provide technical support to the grape-picking robots.

  18. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.

    Science.gov (United States)

    Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe

    2013-02-01

    In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.

  19. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model

  20. Night-time warming and the greenhouse effect

    International Nuclear Information System (INIS)

    Kukla, G.; Karl, T.R.

    1993-01-01

    Studies of temperature data collected mainly from rural stations in North America, China, the Commonwealth of Independent States, Australia, Sudan, Japan, Denmark, Northern Finland, several Pacific Islands, Pakistan, South Africa and Europe suggest that the reported warming of the Northern Hemisphere since WWII is principally a result of an increase in night-time temperatures. The average monthly maximum and minimum temperatures, as well as the mean diurnal temperature range (DTR), were calculated for various regions from data supplied by 1000 stations from 1951 to 1990. Average and minimum temperatures generally rose during the analysed interval and the rise in night-time temperatures was more pronounced than the increase in daily maximum temperatures. As a result, the mean DTR decreased almost everywhere. The most probable causes of the rise in night-time temperatures are: an increase in cloudiness owing to natural changes in the circulation patterns of oceans and the atmosphere; increased cloud cover density caused by industrial pollution; urban heat islands, generated by cities, which are strongest during the night; irrigation which keeps the surface warmer at night and cooler by day; and anthropogenic greenhouse gases. 18 refs., 3 figs

  1. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  2. Preventive effects of Ancer 20 injection against radiation stomatitis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Naohiko; Nomura, Yasuya; Takano, Shinya (Showa Univ., Tokyo (Japan). School of Medicine) (and others)

    1993-10-01

    Ancer 20 was injected subcutaneously twice a day into 23 patients during the couse of radiation therapy for head and neck cancer, with the aim of preventing radiation stomatitis. Oral mucosa was assessed both subjectively and objectively, in addition to white blood cell counts. Objective findings of oral mucosa revealed grade I in 71%, grade II in 52%, grade III in 14%, and grade IV in 5%. The dose of irradiation needed to produce grade I in 50% was 22.8 Gy. Subjective findings revealed grade I in 67%, grade II in 33%, and grade III in 10%. Irradiation dose needed to produce grade I in 50% was 23.9 Gy. Mucosous damage was slight when the white blood cell count of 6,000/mm[sup 3] was maintained. According to the rate of leukopenia, this drug was effective in 86.4%. These findings showed that Ancer 20 injection is useful in maintaining white blood cell counts and in preventing radiation stomatitis associated with radiation therapy especially to the field of mucous membrane. There was inverse correlation between white blood cell counts and both the occurrence rate and degree of radiation stomatitis. It seemed necessary to maintain white blood cell counts to prevent radiation stomatitis. (N.K.).

  3. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Science.gov (United States)

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  4. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    Directory of Open Access Journals (Sweden)

    Jinpei Ou

    Full Text Available Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP Operational Linescan System (OLS have been useful for mapping global fossil fuel carbon dioxide (CO2 emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS sensor on the Suomi National Polar-orbiting Partnership (NPP Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions. Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  5. Impaired Malate and Fumarate Accumulation Due to the Mutation of the Tonoplast Dicarboxylate Transporter Has Little Effects on Stomatal Behavior.

    Science.gov (United States)

    Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L

    2017-11-01

    Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  7. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  8. Leveraging CubeSat Technology to Address Nighttime Imagery Requirements over the Arctic

    Science.gov (United States)

    Pereira, J. J.; Mamula, D.; Caulfield, M.; Gallagher, F. W., III; Spencer, D.; Petrescu, E. M.; Ostroy, J.; Pack, D. W.; LaRosa, A.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) has begun planning for the future operational environmental satellite system by conducting the NOAA Satellite Observing System Architecture (NSOSA) study. In support of the NSOSA study, NOAA is exploring how CubeSat technology funded by NASA can be used to demonstrate the ability to measure three-dimensional profiles of global temperature and water vapor. These measurements are critical for the National Weather Service's (NWS) weather prediction mission. NOAA is conducting design studies on Earth Observing Nanosatellites (EON) for microwave (EON-MW) and infrared (EON-IR) soundings, with MIT Lincoln Laboratory and NASA JPL, respectively. The next step is to explore the technology required for a CubeSat mission to address NWS nighttime imagery requirements over the Arctic. The concept is called EON-Day/Night Band (DNB). The DNB is a 0.5-0.9 micron channel currently on the operational Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is part of the Suomi-National Polar-orbiting Partnership and Joint Polar Satellite System satellites. NWS has found DNB very useful during the long periods of darkness that occur during the Alaskan cold season. The DNB enables nighttime imagery products of fog, clouds, and sea ice. EON-DNB will leverage experiments carried out by The Aerospace Corporation's CUbesat MULtispectral Observation System (CUMULOS) sensor and other related work. CUMULOS is a DoD-funded demonstration of COTS camera technology integrated as a secondary mission on the JPL Integrated Solar Array and Reflectarray Antenna mission. CUMULOS is demonstrating a staring visible Si CMOS camera. The EON-DNB project will leverage proven, advanced compact visible lens and focal plane camera technologies to meet NWS user needs for nighttime visible imagery. Expanding this technology to an operational demonstration carries several areas of risk that need to be addressed prior to an operational mission

  9. [Pathological nighttime fears in children: Clinical specificities and effective therapeutics].

    Science.gov (United States)

    Ducasse, D; Denis, H

    2015-09-01

    Pathological nighttime fears in children have been little studied. However, this disorder is commonly encountered in medical consultations and is discomforting and dysfunctional for both the child and the family. Most nighttime fears are part and parcel of normal development, and emanate from increasingly sophisticated cognitive development in the growing child. Thus, most children report a variety of coping strategies generally helpful in reducing their anxiety, which resolves spontaneously in the growing child. Nevertheless, in about 10% of children, nighttime fears are related to one or more anxiety disorders according to Diagnostic and Statistical Manual of Mental Disorders criteria. Then, it is estimated that severe nighttime fears and sleep problems occur in 20-30% of children. This problem is not transient and has to be treated. This study aims to review clinical features of nighttime fears and possible treatments for these patients and their families. This systematic review follows the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement guidelines. Two databases (Medline and Web of Science) were searched combining the search terms: nighttime fears AND children. English and French languages were imposed. There were no publication date or publication status limitations. Pathological nighttime fears are responsible for emotional (crying, panic, tantrums at bedtime, loss of confidence, self-disparaging negative statements, and feeling of social embarrassment) and behavioral (wandering alone in the house at night, calls for parental or sibling comfort, bed sharing with parents or siblings, light source at night, refusal to go to the toilet alone at night) disturbances. This leads to a poor quality of sleep interfering with school learning, and also affects social development and family functioning. A full assessment has to be made to eliminate organic causes, have a baseline functioning, and search for comorbid anxiety diseases

  10. Prevalence and correlates of drink driving within patrons of Australian night-time entertainment precincts.

    Science.gov (United States)

    Curtis, Ashlee; Coomber, Kerri; Hyder, Shannon; Droste, Nic; Pennay, Amy; Jenkinson, Rebecca; Mayshak, Richelle; Miller, Peter G

    2016-10-01

    Drink driving is a significant public health concern, and contributes to many road fatalities worldwide. The current study is the first to examine the prevalence and correlates of drink driving behavior in a sample of night-time entertainment precinct attendees in Australia. Interviews were conducted with 4214 night-time entertainment precinct attendees in two metropolitan and three regional cities in Australia. Seven correlates of self-reported drink driving were examined: gender, age, occupation, blood alcohol concentration (BAC), alcohol consumed prior to attending a licensed venue, energy drink consumption, and other drug consumption. Fourteen percent of night-time entertainment precinct attendees reported drink driving in the past three months. Bivariate logistic regression models indicated that males were significantly more likely than females to report drink driving in the past three months. Blue-collar workers and sales/clerical/administrative workers were significantly more likely to report drink driving behavior in the past three months than white-collar workers. The likelihood of reporting drink driving during the three months prior to interview significantly increased as BAC on the current night out increased, and when patrons reported engaging in pre-drinking or other drug use. The multivariate model presented a similar pattern of results, however BAC and pre-drinking on the night of the interview were no longer independent significant predictors. Males, blue collar/sales/clerical/administrative workers, and illicit drug consumers were more likely to report engaging in drink driving behavior than their counterparts. Interventions should focus on addressing the considerable proportion night-time entertainment precinct attendees who report engaging in drink driving behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Relationships between brightness of nighttime lights and population density

    Science.gov (United States)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly

  12. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    Science.gov (United States)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  13. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    Science.gov (United States)

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  14. Stomatal conductance of maize under water and nitrogen deficits Condutância estomática em milho em condições de deficiência de água e nitrogênio

    Directory of Open Access Journals (Sweden)

    Leonardo Oliveira Medici

    2007-04-01

    Full Text Available The objective of this work was to evaluate the effect of drought and nitrogen (N stresses on stomatal conductance of three maize cultivars grown in the field. The stomatal conductance of Sol da Manhã variety (BRS 4157 and Pioneer 6875 hybrid, under drought and high N, was lower than under drought and low N, which indicates drought tolerance, since these cultivars did not exhibit reduction in grain yield by drought, as observed for Amarelão variety, which flowered under more severe drought. 'Sol da Manhã' exhibited shorter anthesis-silking interval under high N than under low N, an additional indication of tolerance.O objetivo deste trabalho foi avaliar o efeito do deficit hídrico e de nitrogênio (N sobre a condutância estomática, em três cultivares de milho cultivadas em campo. A condutância estomática da variedade Sol da Manhã (BRS 4157 e do híbrido Pioneer 6875, em condições de seca e alto teor de N, foi menor que com seca e baixo teor N, o que indica tolerância à seca, pois estas cultivares não tiveram a produção de grãos reduzida com a seca, como ocorreu com a variedade Amarelão, que floresceu sob condições de seca mais severa. 'Sol da Manhã' exibiu maior sincronia entre pendoamento e espigamento com alto teor de N do que com baixo N, o que é evidência adicional de tolerância.

  15. Organ-specific effects of brassinosteroids on stomatal production coordinate with the action of Too Many Mouths.

    Science.gov (United States)

    Wang, Ming; Yang, Kezhen; Le, Jie

    2015-03-01

    In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.

  16. Nighttime parenting strategies and sleep-related risks to infants.

    Science.gov (United States)

    Volpe, Lane E; Ball, Helen L; McKenna, James J

    2013-02-01

    A large social science and public health literature addresses infant sleep safety, with implications for infant mortality in the context of accidental deaths and Sudden Infant Death Syndrome (SIDS). As part of risk reduction campaigns in the USA, parents are encouraged to place infants supine and to alter infant bedding and elements of the sleep environment, and are discouraged from allowing infants to sleep unsupervised, from bed-sharing either at all or under specific circumstances, or from sofa-sharing. These recommendations are based on findings from large-scale epidemiological studies that generate odds ratios or relative risk statistics for various practices; however, detailed behavioural data on nighttime parenting and infant sleep environments are limited. To address this issue, this paper presents and discusses the implications of four case studies based on overnight observations conducted with first-time mothers and their four-month old infants. These case studies were collected at the Mother-Baby Behavioral Sleep Lab at the University of Notre Dame USA between September 2002 and June 2004. Each case study provides a detailed description based on video analysis of sleep-related risks observed while mother-infant dyads spent the night in a sleep lab. The case studies provide examples of mothers engaged in the strategic management of nighttime parenting for whom sleep-related risks to infants arose as a result of these strategies. Although risk reduction guidelines focus on eliminating potentially risky infant sleep practices as if the probability of death from each were equal, the majority of instances in which these occur are unlikely to result in infant mortality. Therefore, we hypothesise that mothers assess potential costs and benefits within margins of risk which are not acknowledged by risk-reduction campaigns. Exploring why mothers might choose to manage sleep and nighttime parenting in ways that appear to increase potential risks to infants may

  17. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  18. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum.

    Science.gov (United States)

    Soares, Ana Sofia; Driscoll, Simon P; Olmos, Enrique; Harbinson, Jeremy; Arrabaça, Maria Celeste; Foyer, Christine H

    2008-01-01

    Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 microl l(-1) CO(2). Plant biomass was doubled as a result of growth at high CO(2) and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO(2)-grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf.

  19. Model Validation for Estimating the Leaf Stomatal Conductance in cv. Cabernet Sauvignon Grapevines Validación de un modelo para estimar la conductancia estomática de hojas en vides cv. Cabernet Sauvignon.

    Directory of Open Access Journals (Sweden)

    Francisco Jara-Rojas

    2009-03-01

    Full Text Available The coupled model of assimilation and stomatal conductance (A-g s was evaluated to estimate leaf stomatal conductance of a drip-irrigated vineyard (Vitis vinifera L. cv. Cabernet Sauvignon located in the Pencahue Valley (35º22’ S, 71°47’ W, 150 m.a.s.l., Maule Region, Chile, during the 2003-2004 and the 2004-2005 growing seasons. Additionally, a calibration of the three parameters mesophyll conductance (g m, maximum specific humidity (Dmax and coupled factor (f0 was applied on vines growing in 35 L pots. An infrared gas analyzer was used to calibrate and evaluate the A-g s which allowed simultaneous measuring of the leaf net CO2 assimilation (A and stomatal conductance (g s in 2 to 3 h intervals of time. The calibration indicated that the g m,, Dmax and f0 values were 1.15 mm s-1, 52.31 g kg-1 and 0.90, respectively. The validation in the drip-irrigated vineyard indicated that the A-g s model was able to estimate the leaf stomatal conductance with a root mean square error (RMSE of 0.05 mol m-2 s-1, model efficiency of 61% and agreement index of 90%. The sensitivity analysis indicated that the A-g s model is affected considerably by the g m, Dmax and f0 parameterization.Validación de un modelo para estimar la conductancia estomática de hojas en vides cv. Cabernet Sauvignon. El modelo acoplado de asimilación neta y conductancia estomática (A-g s fue evaluado para estimar la conductancia estomática de hojas (g s de un viñedo regado por goteo (Vitis vinifera L. cv. Cabernet Sauvignon ubicado en el Valle de Pencahue (35º22’ S; 71º47’ O; 150 m.s.n.m., Región del Maule, Chile, durante las temporadas 2003-2004 y 2004-2005. Además, se realizó una calibración de la conductancia del mesófilo (g m, valor máximo de humedad específica a saturación (Dmax y el factor acoplado (f0 en vides creciendo en maceteros de 35 L. Para calibrar y evaluar el modelo A-g s se utilizó un analizador infrarrojo de gases, el cual permitió medir simult

  20. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  1. Improving the effectiveness of nighttime temporary traffic control warning devices, volume 2 : evaluation of nighttime mobile warning lights.

    Science.gov (United States)

    2013-11-01

    Vehicle-mounted warning lights for nighttime mobile highway operations provide critical protection to workers and the driving : public. Alerting the traveling public of the approaching work activity and providing guidance is vital to maintaining safe...

  2. Daytime Sleep Aids and Nighttime Cognitive Performance

    National Research Council Canada - National Science Library

    Eddy, Douglas; Barton, Emily; Cardenas, Rebecca; French, Jonathan; Gibbons, John; Hickey, Patrick; Miller, James; Ramsey, Carol; Storm, William

    2005-01-01

    .... This study compared two doses of the hypnotic zolpidem, two doses of melatonin and placebo for their effects on daytime sleep, on nighttime cognitive performance and on mood in an operationally...

  3. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    Science.gov (United States)

    Hodgson, J G; Sharafi, M; Jalili, A; Díaz, S; Montserrat-Martí, G; Palmer, C; Cerabolini, B; Pierce, S; Hamzehee, B; Asri, Y; Jamzad, Z; Wilson, P; Raven, J A; Band, S R; Basconcelo, S; Bogard, A; Carter, G; Charles, M; Castro-Díez, P; Cornelissen, J H C; Funes, G; Jones, G; Khoshnevis, M; Pérez-Harguindeguy, N; Pérez-Rontomé, M C; Shirvany, F A; Vendramini, F; Yazdani, S; Abbas-Azimi, R; Boustani, S; Dehghan, M; Guerrero-Campo, J; Hynd, A; Kowsary, E; Kazemi-Saeed, F; Siavash, B; Villar-Salvador, P; Craigie, R; Naqinezhad, A; Romo-Díez, A; de Torres Espuny, L; Simmons, E

    2010-04-01

    Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.

  4. Vesicular stomatitis forecasting based on Google Trends.

    Science.gov (United States)

    Wang, JianYing; Zhang, Tong; Lu, Yi; Zhou, GuangYa; Chen, Qin; Niu, Bing

    2018-01-01

    Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  5. Vesicular stomatitis forecasting based on Google Trends

    Science.gov (United States)

    Lu, Yi; Zhou, GuangYa; Chen, Qin

    2018-01-01

    Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198

  6. Vesicular stomatitis forecasting based on Google Trends.

    Directory of Open Access Journals (Sweden)

    JianYing Wang

    Full Text Available Vesicular stomatitis (VS is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends.American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression.For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity, SP (specificity and ACC (prediction accuracy values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively.This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.

  7. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  8. Trocas gasosas e condutância estomática em três espécies de gramíneas Gas exchanges and stomatal conductance on three gramineous species

    Directory of Open Access Journals (Sweden)

    Eduardo Caruso Machado

    1994-01-01

    Full Text Available Avaliou-se, sob condições naturais e sem deficiência hídrica, o comportamento diário das taxas de assimilação de CO2 (A e de transpiração (E, a condutância estomática (g e a eficiência fotossintética do uso de água (E/A em milho (C4, arroz (C3 e trigo (C3. Nas três espécies, a curva de resposta de A em função da irradiância (I, apresentou a forma de uma hipérbole retangular, porém em milho não houve saturação lumínica. A resposta de g em relação a I apresentou a mesma forma, respondendo E linearmente, nas três espécies. Em relação à variação de g, a curva de resposta de A também mostrou a forma de hipérbole retangular, enquanto E respondeu linearmente. Devido à resposta diferencial de A e de E, tanto em função de I como de g, a razão E/A aumentou com o aumento de I. As espécies C3 (arroz e trigo revelaram valores maiores de E/A que a C4 (milho, em todos os níveis de I e valores de g, indicando melhor adaptabilidade da C4 na limitação de abertura estomática.Under natural condition and without water deficit, assimilation of CO2 (A and transpiration (E rates, stomatal conductance (g and photosyntetic efficiency of water use (E/A, were monitored daily on maize (C4, rice (C3 and wheat (C3. In all species, the shape of response curves of A in function of irradiance (I, was a retangular hyperbole. However, luminic saturation was not observed in maize. Stomatal conductance response curve in function of I was also a retangular hyperbole, while E was linear in all species. Due to differential response of A and E, as a function of I as well as g, the ratio E/A was increased with the increase of I. The C3 species (rice and wheat showed higher values of E/A than the C4 specie (maize, in all levels of I and g, showing the better C4 adaptation when stomatal limitation aperture occurs.

  9. Nighttime exposure to electromagnetic fields and childhood leukemia: an extended pooled analysis

    DEFF Research Database (Denmark)

    Schüz, Joachim; Svendsen, Anne Louise; Linet, Martha S

    2007-01-01

    analysis of case-control studies on ELF EMF exposure and risk of childhood leukemia to examine nighttime residential exposures. Data from four countries (Canada, Germany, the United Kingdom, and the United States) were included in the analysis, comprising 1,842 children diagnosed with leukemia and 3......,099 controls (diagnosis dates ranged from 1988 to 1996). The odds ratios for nighttime ELF EMF exposure for categories of 0.1-or=0.4 microT as compared with ... that nighttime measures are more appropriate; hence, the observed association between ELF EMF and childhood leukemia still lacks a plausible explanation....

  10. A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS

    Directory of Open Access Journals (Sweden)

    Qingxu Huang

    2016-05-01

    Full Text Available The urban population (UP measure is one of the most direct indicators that reflect the urbanization process and the impacts of human activities. The dynamics of UP is of great importance to studying urban economic, social development, and resource utilization. Currently, China lacks long time series UP data with consistent standards and comparability over time. The nighttime light images from the Defense Meteorological Satellite Program’s (DMSP Operational Linescan System (OLS allow the acquisition of continuous and highly comparable long time series UP information. However, existing studies mainly focus on simulating the total population or population density level based on the nighttime light data. Few studies have focused on simulating the UP in China. Based on three regression models (i.e., linear, power function, and exponential, the present study discusses the relationship between DMSP/OLS nighttime light data and the UP and establishes optimal regression models for simulating the UPs of 339 major cities in China from 1990 to 2010. In addition, the present study evaluated the accuracy of UP and non-agricultural population (NAP simulations conducted using the same method. The simulation results show that, at the national level, the power function model is the optimal regression model between DMSP/OLS nighttime light data and UP data for 1990–2010. At the provincial scale, the optimal regression model varies among different provinces. The linear regression model is the optimal regression model for more than 60% of the provinces. In addition, the comparison results show that at the national, provincial, and city levels, the fitting results of the UP based on DMSP/OLS nighttime light data are better than those of the NAP. Therefore, DMSP/OLS nighttime light data can be used to effectively retrieve the UP of a large-scale region. In the context of frequent population flows between urban and rural areas in China and difficulty in obtaining

  11. RNAi-directed downregulation of vacuolar H(+ -ATPase subunit a results in enhanced stomatal aperture and density in rice.

    Directory of Open Access Journals (Sweden)

    Huiying Zhang

    Full Text Available Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L. vacuolar H(+-ATPase subunit A (OsVHA-A gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+-ATPase activity and an enhancement of plasma membrane H(+-ATPase activity, thereby increasing the concentrations of extracellular H(+ and intracellular K(+ and Na(+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+-ATPase 3 and downregulation of CAM1 (calmodulin 1, CAM3 (calmodulin 3 and YDA1 (YODA, a MAPKK gene. Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.

  12. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment

    Science.gov (United States)

    Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth

    2010-01-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...

  13. Les caractéristiques des stomates des feuilles de Ficus benjamina L ...

    African Journals Online (AJOL)

    Objective: The main objective of this study is to assess the potential of Ficus benjamina stomata to be used as indicators of local air pollution. Methodology: Stomatal prints were taken from the species of study in the vicinity of roads, in residential and industrial areas and parks. Density, pore surface and stomatal resistance ...

  14. Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica Photosynthesis, stomatal conductance and transpiration in peach palm under water stress

    Directory of Open Access Journals (Sweden)

    Maria Aparecida José de Oliveira

    2002-03-01

    Full Text Available Resultados de pesquisa envolvendo aspectos fisiológicos da pupunheira (Bactris gasipaes Kunth, fruteira nativa da América Tropical, são escassos. Procurando completar essa lacuna, um experimento sob deficiência hídrica foi conduzido em casa de vegetação, durante um período de 13 dias, utilizando plantas de 12 meses de idade. O objetivo principal foi avaliar as respostas da pupunheira à deficiência hídrica. As variáveis observadas foram: taxa de assimilação de CO2, transpiração, condutância estomática e potencial de água das folhas. As coletas dos dados foram realizadas diariamente em laboratório e sob fluxo de 1200 mim-2 s-1. Os resultados foram submetidos à análise de variância e de regressão. Verificou-se decréscimo no potencial de água da folha e nas trocas gasosas quando a irrigação foi interrompida por mais de seis dias. Valores mínimos foram obtidos no décimo dia, com redução de 92% da fotossíntese líquida, 87% da condutância estomática e 70% da transpiração. O menor potencial de água nas folhas (-1,9 MPa foi também observado nesse período. Houve recuperação total de todas as variáveis dois dias após reirrigação, com exceção da condutância estomática. A diminuição da condutância estomática e a queda mais rápida da taxa de transpiração que a queda na fotossíntese, indicam a existência de mecanismos de aclimatação em pupunheira, no sentido de diminuir as perdas de água, quando sob condição de estresse hídrico moderado.Research results on physiological aspects of peach palm (Bactris gasipaes Kunth, a native fruit tree from tropical America, are scarce. Trying to fill this gap, a water deficit experiment was performed under nursery conditions during 13 days, utilizing 12 months old plants. The main objective was to evaluate peach palm responses to water deficit. The measured variables were: CO2 assimilation rate, transpiration rate, stomatal conductance and leaf water potential

  15. Functional Analysis of Cellulose and Xyloglucan in the Walls of Stomatal Guard Cells of Arabidopsis1[OPEN

    Science.gov (United States)

    Rui, Yue; Anderson, Charles T.

    2016-01-01

    Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799

  16. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity

    International Nuclear Information System (INIS)

    Elagoez, Vahram; Han, Susan S.; Manning, William J.

    2006-01-01

    Bush bean (Phaseolus vulgaris L.) lines 'S156' (O 3 -sensitive)/'R123' (O 3 -tolerant) and cultivars 'BBL 290' (O 3 -sensitive)/'BBL 274' (O 3 -tolerant) were used to study the effects of O 3 on stomatal conductance (g s ), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O 3 and plasticity of stomatal properties in response to O 3 . Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O 3 sensitivity and g s : while 'S156' had higher g s rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G s rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O 3 -tolerant counterparts. Exposure to O 3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O 3 -sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O 3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O 3 concentrations (30 ppb). Exposure to O 3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O 3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O 3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O 3 -sensitive cultivars. - O 3 has the potential to affect stomatal development and the presence of different control mechanisms on each leaf surface is confirmed

  17. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives

    Directory of Open Access Journals (Sweden)

    Rachana Singh

    2017-04-01

    Full Text Available Reactive oxygen species (ROS, a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca2+ level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.

  18. Factors associated with night-time calf muscle cramps: a case-control study.

    Science.gov (United States)

    Hawke, Fiona; Chuter, Vivienne; Burns, Joshua

    2013-03-01

    Although highly prevalent and painful, night-time calf muscle cramping is poorly understood, and no treatment has shown consistent efficacy or safety. One hundred sixty adults were recruited from New South Wales, Australia, including 80 who had night-time calf cramping at least once per week and 80 age- and gender-matched adults who did not. Participants were assessed using reliable tests of lower limb strength, flexibility, morphometrics, circulation, and sensation, and were questioned about health and lifestyle factors, diet, medications, exercise, symptomatology, sleeping habits, and footwear. Conditional logistic regression identified 3 factors independently associated with night-time calf muscle cramps: muscle twitching (OR 4.6, 95% CI 1.6-15.5, P = 0.01); lower limb tingling (OR 4.1, 95% CI 1.6-10.3, P = 0.003); and foot dorsiflexion weakness (OR 1.02, 95% CI 1.01-1.03, P = 0.002), which represented other measures of lower limb weakness in the model. Night-time calf muscle cramps were associated with markers of neurological dysfunction and potential musculoskeletal therapeutic targets. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  19. Nitric oxide in guard cells as an important secondary messenger during stomatal closure

    Directory of Open Access Journals (Sweden)

    Gunja eGayatri

    2013-10-01

    Full Text Available he modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g. chitosan induces production of NO as well as reactive oxygen species (ROS. The role of NO in stomatal closure has been confirmed by using NO donors (e.g. SNP and NO scavengers (like cPTIO and inhibitors of NOS (L-NAME or NR (tungstate. Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS-like enzyme and a tungstate-sensitive nitrate reductase (NR, can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca2+ and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca2+ and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signalling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca2+ are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.

  20. Determination of vehicle density from traffic images at day and nighttime

    Science.gov (United States)

    Mehrübeoğlu, Mehrübe; McLauchlan, Lifford

    2007-02-01

    In this paper we extend our previous work to address vehicle differentiation in traffic density computations1. The main goal of this work is to create vehicle density history for given roads under different weather or light conditions and at different times of the day. Vehicle differentiation is important to account for connected or otherwise long vehicles, such as trucks or tankers, which lead to over-counting with the original algorithm. Average vehicle size in pixels, given the magnification within the field of view for a particular camera, is used to separate regular cars and long vehicles. A separate algorithm and procedure have been developed to determine traffic density after dark when the vehicle headlights are turned on. Nighttime vehicle recognition utilizes blob analysis based on head/taillight images. The high intensity of vehicle lights are identified in binary images for nighttime vehicle detection. The stationary traffic image frames are downloaded from the internet as they are updated. The procedures are implemented in MATLAB. The results of both nighttime traffic density and daytime long vehicle identification algorithms are described in this paper. The determination of nighttime traffic density, and identification of long vehicles at daytime are improvements over the original work1.

  1. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure

    Science.gov (United States)

    Merlot, Sylvain; Leonhardt, Nathalie; Fenzi, Francesca; Valon, Christiane; Costa, Miguel; Piette, Laurie; Vavasseur, Alain; Genty, Bernard; Boivin, Karine; Müller, Axel; Giraudat, Jérôme; Leung, Jeffrey

    2007-01-01

    Light activates proton (H+)-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO2 to photosynthetic tissues. Light to darkness transition, high CO2 levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H+-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO2 and darkness. The OST2 gene encodes the major plasma membrane H+-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H+-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure. PMID:17557075

  2. Night-time road construction operations synthesis of practice.

    Science.gov (United States)

    2008-05-01

    report synthesizes existing literature on nighttime construction operations, identifies gaps in the current state of knowledge, and summarizes research in progress studies that are planned or underway. The literature review and synthesis found the fo...

  3. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  4. Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.

    Science.gov (United States)

    Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally

    2013-10-01

    The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.

  5. Nighttime Insomnia Symptoms and Perceived Health in the America Insomnia Survey (AIS)

    Science.gov (United States)

    Walsh, James K.; Coulouvrat, Catherine; Hajak, Goeran; Lakoma, Matthew D.; Petukhova, Maria; Roth, Thomas; Sampson, Nancy A.; Shahly, Victoria; Shillington, Alicia; Stephenson, Judith J.; Kessler, Ronald C.

    2011-01-01

    Study Objectives: To explore the distribution of the 4 cardinal nighttime symptoms of insomnia—difficulty initiating sleep (DIS), difficulty maintaining sleep (DMS), early morning awakening (EMA), and nonrestorative sleep (NRS)—in a national sample of health plan members and the associations of these nighttime symptoms with sociodemographics, comorbidity, and perceived health. Design/Setting/Participants: Cross-sectional telephone survey of 6,791 adult respondents. Intervention: None. Measurements/Results: Current insomnia was assessed using the Brief Insomnia Questionnaire (BIQ)—a fully structured validated scale generating diagnoses of insomnia using DSM-IV-TR, ICD-10, and RDC/ICSD-2 inclusion criteria. DMS (61.0%) and EMA (52.2%) were more prevalent than DIS (37.7%) and NRS (25.2%) among respondents with insomnia. Sociodemographic correlates varied significantly across the 4 symptoms. All 4 nighttime symptoms were significantly related to a wide range of comorbid physical and mental conditions. All 4 also significantly predicted decrements in perceived health both in the total sample and among respondents with insomnia after adjusting for comorbid physical and mental conditions. Joint associations of the 4 symptoms predicting perceived health were additive and related to daytime distress/impairment. Individual-level associations were strongest for NRS. At the societal level, though, where both prevalence and strength of individual-level associations were taken into consideration, DMS had the strongest associations. Conclusions: The extent to which nighttime insomnia symptoms are stable over time requires future long-term longitudinal study. Within the context of this limitation, the results suggest that core nighttime symptoms are associated with different patterns of risk and perceived health and that symptom-based subtyping might have value. Citation: Walsh JK; Coulouvrat C; Hajak G; Lakoma MD; Petukhova M; Roth T; Sampson NA; Shahly V; Shillington A

  6. Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): Roles of biochemical changes and decreased stomatal conductance in enhancement of growth

    International Nuclear Information System (INIS)

    Paoletti, Elena; Contran, Nicla; Manning, William J.; Castagna, Antonella; Ranieri, Annamaria; Tagliaferro, Francesco

    2008-01-01

    Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450 ppm by gravitational trunk infusion in May-September 2005 (32.5 ppm h AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O 3 effects on leaf growth and visible injury is controversial. - Both biochemical and biophysical processes may regulate EDU action

  7. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  8. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    Science.gov (United States)

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  10. Description of nighttime cough epochs in patients with stable COPD GOLD II-IV.

    Science.gov (United States)

    Fischer, Patrick; Gross, Volker; Kroenig, Johannes; Weissflog, Andreas; Hildebrandt, Olaf; Sohrabi, Keywan; Koehler, Ulrich

    Chronic cough is one of the main symptoms of COPD. Ambulatory objective monitoring provides novel insights into the determinants and characteristics of nighttime cough in COPD. Nighttime cough was monitored objectively by LEOSound lung sound monitor in patients with stable COPD II-IV. In 30 patients, with 10 patients in each stage group, nighttime cough was analyzed for epoch frequency, epoch severity (epoch length and coughs per epoch), and pattern (productive or nonproductive). Cough was found in all patients ranging from 1 to 294 events over the recording period. In 29 patients, cough epochs were monitored, ranging from 1 to 75 epochs. The highest amount of cough epochs was found in patients with COPD stage III. Active smokers had significantly more productive cough epochs (61%) than nonsmokers (24%). We found a high rate of nighttime cough epochs in patients with COPD, especially in those in stage III. Productive cough was predominantly found in patients with persistent smoking. LEOSound lung sound monitor offers a practical and valuable opportunity to evaluate cough objectively.

  11. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Han, Susan S. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-04-15

    Bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive)/'R123' (O{sub 3}-tolerant) and cultivars 'BBL 290' (O{sub 3}-sensitive)/'BBL 274' (O{sub 3}-tolerant) were used to study the effects of O{sub 3} on stomatal conductance (g {sub s}), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O{sub 3} and plasticity of stomatal properties in response to O{sub 3}. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O{sub 3} sensitivity and g {sub s}: while 'S156' had higher g {sub s} rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G {sub s} rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O{sub 3}-tolerant counterparts. Exposure to O{sub 3} in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O{sub 3}-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O{sub 3} concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O{sub 3} concentrations (30 ppb). Exposure to O{sub 3} eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O{sub 3} and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O{sub 3} has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This

  12. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.

  13. The Value of Darkness: A Moral Framework for Urban Nighttime Lighting.

    Science.gov (United States)

    Stone, Taylor

    2018-04-01

    The adverse effects of artificial nighttime lighting, known as light pollution, are emerging as an important environmental issue. To address these effects, current scientific research focuses mainly on identifying what is bad or undesirable about certain types and uses of lighting at night. This paper adopts a value-sensitive approach, focusing instead on what is good about darkness at night. In doing so, it offers a first comprehensive analysis of the environmental value of darkness at night from within applied ethics. A design for values orientation is utilized to conceptualize, define, and categorize the ways in which value is derived from darkness. Nine values are identified and categorized via their type of good, temporal outlook, and spatial characteristics. Furthermore, these nine values are translated into prima facie moral obligations that should be incorporated into future design choices, policy-making, and innovations to nighttime lighting. Thus, the value of darkness is analyzed with the practical goal of informing future decision-making about urban nighttime lighting.

  14. Ulcerative Uremic Stomatitis - Review of the Literature and A Rare Case Report

    Directory of Open Access Journals (Sweden)

    Shantala Arunkumar

    2015-01-01

    Full Text Available Uremic Stomatitis (US represents a comparatively uncommon intraoral complication seen, mostly, in cases of end-stage renal disease or undiagnosed or untreated chronic renal failure. Its frequency has diminished due to the advent of renal dialysis. Clinically uremic stomatitis is characterized by the presence of painful plaques and crusts that are usually distributed on the buccal and labial mucosa, dorsal or ventral surface of the tongue, gingiva, and floor of the mouth. Ultimate treatment consists of improvement of blood urea concentration and underlying renal failure is supported by enhancement of oral hygiene with antiseptic mouthwashes and antimicrobial/antifungal agents, if necessary. Here we report a rare case of ulcerative type of uremic stomatitis occurring in a patient of chronic renal failure due to sudden relapse of uremia and reviewed the possible pathophysiology of oral symptoms of chronic renal failure.

  15. Assessing Spatiotemporal Characteristics of Urbanization Dynamics in Southeast Asia Using Time Series of DMSP/OLS Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2018-01-01

    Full Text Available Intraregional spatial variations of satellite-derived anthropogenic nighttime light signals are gradually applied to identify different lighting areas with various socioeconomic activity and urbanization levels when characterizing urbanization dynamics. However, most previous partitioning approaches are carried out at local scales, easily leading to multi-standards of the extracted results from local areas, and this inevitably hinders the comparative analysis on the urbanization dynamics of the large region. Therefore, a partitioning approach considering the characteristics of nighttime light signals at both local and regional scales is necessary for studying spatiotemporal characteristics of urbanization dynamics across the large region using nighttime light imagery. Based on the quadratic relationships between the pixel-level nighttime light brightness and the corresponding spatial gradient for individual cities, we here proposed an improved partitioning approach to quickly identify different types of nighttime lighting areas for the entire region of Southeast Asia. Using the calibrated Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS data with greater comparability, continuity, and intra-urban variability, the annual nighttime light imagery spanning years 1992–2013 were divided into four types of nighttime lighting areas: low, medium, high, and extremely high, associated with different intensity of anthropogenic activity. The results suggest that Southeast Asia has experienced a rapid and diverse urbanization process from 1992 to 2013. Areas with moderate or low anthropogenic activity show a faster growth rate for the spatial expansion than the developed areas with intense anthropogenic activity. Transitions between different nighttime lighting types potentially depict the trajectory of urban development, the darker areas are gradually transitioning to areas with higher lighting, indicating conspicuous trends

  16. Social crowding in the night-time reduces an anxiety-like behavior and increases social interaction in adolescent mice.

    Science.gov (United States)

    Ago, Yukio; Tanaka, Tatsunori; Ota, Yuki; Kitamoto, Mari; Imoto, Emina; Takuma, Kazuhiro; Matsuda, Toshio

    2014-08-15

    Rearing in crowded conditions is a psychosocial stressor that affects biological functions. The effects of continuous crowding for many days have been studied, but those of crowding over a limited time have not. In this study, we examined the effects of night-time or daytime crowding over 2 weeks on behavior in adolescent and adult mice. Crowding (20 mice/cage) in either the night-time or daytime did not affect locomotor activity in the open field test or cognitive function in the fear conditioning test. In contrast, night-time crowding, but not daytime crowding, had an anxiolytic effect in the elevated plus-maze test and increased social interaction in adolescent mice, but not in adult mice. The first night-time, but not daytime, crowding increased plasma corticosterone levels in adolescent mice, although night-time crowding over 2 weeks did not affect the corticosterone levels. Furthermore, no significant effects of the first crowding were observed in adult mice. In a second crowding condition (six mice/small cage), the anxiolytic-like effects of night-time crowding and the change in plasma corticosterone levels were not observed, suggesting that the density of mice is not important for the behavioral consequences of crowding. Night-time crowding did not affect neurotrophic/growth factor levels and hippocampal neurogenesis in adolescent mice. These findings suggest that night-time crowding leads to anxiolytic-like behaviors in adolescent mice, and imply that night-time crowding stress in adolescence may be beneficial to brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Black fly involvement in the epidemic transmission of vesicular stomatitis New Jersey virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E

    2004-01-01

    The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.

  18. Nighttime BP in Elderly Individuals with Prediabetes/Diabetes with and without CKD: The HEIJO-KYO Study.

    Science.gov (United States)

    Obayashi, Kenji; Saeki, Keigo; Kurumatani, Norio

    2016-05-06

    and objectives Although previous studies suggested that nighttime BP is elevated in diabetes mellitus, the association between prediabetes and nighttime BP remains unclear. In addition, the relationship between diabetic status, renal function, and nighttime BP has not been evaluated in large populations. In this cross-sectional study, we assessed diabetic status, renal function, and ambulatory BP parameters among 1081 community-dwelling elderly individuals (mean age, 71.8±7.0 years). Participants were classified into six categories based on diabetic status (normoglycemia, prediabetes, or diabetes mellitus) and renal function (normal function or CKD). BP was measured at 30-minute intervals for 48 hours using a validated ambulatory recorder. The mean nighttime systolic BP (SBP) was 115.7±16.1 mmHg. The multivariable analysis, adjusted for age, sex, smoking status, and daytime SBP, revealed that, compared with participants with normoglycemia but without CKD (n=378), mean nighttime SBP was significantly higher in participants with both prediabetes and CKD (n=93) by 2.9 mmHg (95% confidence interval [95% CI], 0.2 to 5.6; P=0.03) and in patients with both diabetes mellitus and CKD (n=30) by 7.8 mmHg (95% CI, 3.5 to 12.2; Pprediabetes without CKD (n=374), or patients with diabetes mellitus without CKD (n=131). Notably, the multivariable analysis indicated that the interaction terms of diabetic status and renal function were significantly associated with nighttime SBP (P=0.03). Nighttime SBP was significantly higher in participants with prediabetes and CKD but not in participants with prediabetes without CKD, compared with participants with normoglycemia and without CKD. In addition, a significant interaction effect of diabetic status and renal function on nighttime SBP was detected in a general elderly population. Copyright © 2016 by the American Society of Nephrology.

  19. Daily light integral and day light quality: Potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew.

    Science.gov (United States)

    Suthaparan, Aruppillai; Solhaug, Knut Asbjørn; Stensvand, Arne; Gislerød, Hans Ragnar

    2017-10-01

    Nighttime ultraviolet (UV) radiation, if applied properly, has a significant potential for management of powdery mildews in many crop species. In this study, the role of growth light duration, irradiance, a combination of both (daily light integral) and light spectral quality (blue or red) on the efficacy of UV treatments against powdery mildew caused by Podosphaera xanthii and the growth performance of cucumber plants was studied in growth chambers. Increasing daily light integral provided by high-pressure sodium lamps (HPS) decreased efficacy of nighttime UV treatments against P. xanthii, but it increased plant growth. Furthermore, the efficacy of nighttime UV decreased when day length was increased from 16 to 20h at a constant daily light integral. The efficacy of nighttime UV increased if red light was applied after UV treatment, showing the possibility of day length extension without reducing the effect of UV. Increasing the dose of blue light during daytime reduced the efficacy of nighttime UV in controlling the disease, whereas blue deficient growth light (light after nighttime UV reduced its disease control efficacy. This showed the importance of maintaining a minimum of blue light in the growth light before nighttime UV treatment. Findings from this study showed that optimization of nighttime UV for management of powdery mildew is dependent on the spectral composition of the photosynthetically active radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dissociations among daytime sleepiness, nighttime sleep, and cognitive status in Parkinson's disease.

    Science.gov (United States)

    Goldman, Jennifer G; Ghode, Reena A; Ouyang, Bichun; Bernard, Bryan; Goetz, Christopher G; Stebbins, Glenn T

    2013-09-01

    Daytime and nighttime sleep disturbances and cognitive impairment occur frequently in Parkinson's disease (PD), but little is known about the interdependence of these non-motor complications. Thus, we examined the relationships among excessive daytime sleepiness, nighttime sleep quality and cognitive impairment in PD, including severity and specific cognitive deficits. Ninety-three PD patients underwent clinical and neuropsychological evaluations including the Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI). Patients were classified as having normal cognition (PD-NC), mild cognitive impairment (PD-MCI), or dementia (PDD) using recently proposed Movement Disorder Society PD-MCI and PDD criteria. Relationships between the sleep and cognitive measures and PD cognitive groups were examined. The PD cohort included PD-NC (n = 28), PD-MCI (n = 40), and PDD (n = 25) patients. ESS scores, as a measure of daytime sleepiness, were significantly worse (p = 0.005) in cognitively impaired PD patients, particularly PDD patients. ESS scores correlated significantly with Mini-Mental State Examination scores and also with cognitive domain scores for attention/working memory, executive function, memory, and visuospatial function. In contrast, PSQI scores, as a measure of nighttime sleep quality, neither differed among cognitive groups nor correlated with any cognitive measures. Daytime sleepiness in PD, but not nighttime sleep problems, is associated with cognitive impairment in PD, especially in the setting of dementia, and attention/working memory, executive function, memory, and visuospatial deficits. The presence of nighttime sleep problems is pervasive across the PD cognitive spectrum, from normal cognition to dementia, and is not independently associated with cognitive impairment or deficits in cognitive domains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Unintended environmental impacts of nighttime freight logistics activities

    Science.gov (United States)

    2010-10-01

    In recent years, the reduction of freight vehicle trips during peak hours has been a common : policy goal. To this end, policies have been implemented to shift logistics operations to : nighttime hours. The purpose of such policies has generally been...

  2. Ozone exposure and stomatal sluggishness in different plant physiognomic classes

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.i [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Grulke, Nancy E. [US Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2010-08-15

    Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O{sub 3} (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., 'sluggish' responses) to variable light was found to be both an effect of O{sub 3} exposure and a reason for increased O{sub 3} sensitivity in snap bean cultivars, as it implied higher O{sub 3} uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO{sub 2} uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O{sub 3}-induced stomatal sluggishness is a common trait among different plant physiognomic classes. - Sluggish stomatal responses are suggested to be both an effect of O{sub 3} exposure and a reason of increased O{sub 3} sensitivity in plants.

  3. Daya Hambat Infusum Daun Sirih Terhadap Pertumbuhan Staphylococcus aureus Yang Diisolasi Dari Denture Stomatitis ; Penelitian In Vitro.

    OpenAIRE

    bin Abdullah, Muhammad Naim

    2011-01-01

    Denture Stomatitis merupakan lesi mukosa oral berwarna merah, sakit, dan bengkak, kondisi ini karena kebiasaan jelek pada pemakai gigitiruan yang tidak mumbuka protesa pada malam hari dan jarang dibersihkan. Faktor sistemik yang mendukung terjadinya Denture Stomatitis dapat disebabkan oleh beberapa bakteri, salah satunya Staphylococcus aureus. Pencegahan Denture Stomatitis dapat dilakukan dengan sering membersihkan gigitiruan dan pemakaian obat kumur. Tujuan penelitian ini adalah untuk menguj...

  4. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells

    KAUST Repository

    Hu, Honghong

    2009-12-13

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  5. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Weiqing Zeng

    2011-10-01

    Full Text Available Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata, multiplication in the intercellular space (apoplast of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA, and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to

  6. CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

    Science.gov (United States)

    Kar, Jayanta; Vaughan, Mark A.; Lee, Kam-Pui; Tackett, Jason L.; Avery, Melody A.; Garnier, Anne; Getzewich, Brian J.; Hunt, William H.; Josset, Damien; Liu, Zhaoyan; Lucker, Patricia L.; Magill, Brian; Omar, Ali H.; Pelon, Jacques; Rogers, Raymond R.; Toth, Travis D.; Trepte, Charles R.; Vernier, Jean-Paul; Winker, David M.; Young, Stuart A.

    2018-03-01

    Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures - i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime - depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to the upper possible signal acquisition range of 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of

  7. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  8. Comparison of daytime and night-time populations adjacent to interstate highways in metropolitan areas

    International Nuclear Information System (INIS)

    Mills, G.S.; Neuhauser, K.S.

    1999-01-01

    Daytime and night-time population densities bordering Interstate highway routes in metropolitan areas are compared at the traffic analysis zone level. In three of the metropolitan areas studied, histograms of daytime to night-time population density ratios are peaked at 1.0. In a smaller metropolitan area, the peak of the histogram moves to values greater than 1.0 but less than 2.0. In view of the typical uncertainties in calculating radiological transport effects (∼2), this study indicates that a distinction between daytime and night-time transport is not warranted, especially since a typical route includes extensive transport outside metropolitan areas. (author)

  9. Climatic potential for passive cooling of buildings by night-time ventilation in Europe

    International Nuclear Information System (INIS)

    Artmann, N.; Manz, H.; Heiselberg, P.

    2007-01-01

    Due to an overall trend towards less heating and more cooling demands in buildings in many European countries over the last few decades, passive cooling by night-time ventilation is seen as a promising technique, particularly for commercial buildings in the moderate or cold climates of Central, Eastern and Northern Europe. The basic concept involves cooling the building structure overnight in order to provide a heat sink that is available during the occupancy period. In this study, the potential for passive cooling of buildings by night-time ventilation was evaluated by analysing climatic data, without considering any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data of 259 stations all over Europe. The results show a high potential for night-time ventilative cooling over the whole of Northern Europe and still significant potential in Central, Eastern and even some regions of Southern Europe. However, due to the inherent stochastic properties of weather patterns, a series of warmer nights can occur at some locations, where passive cooling by night-time ventilation alone might not be sufficient to guarantee thermal comfort

  10. Testing a hydraulic trait based model of stomatal control: results from a controlled drought experiment on aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas)

    Science.gov (United States)

    Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.

    2017-12-01

    Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.

  11. Sleep Habits and Nighttime Texting among Adolescents

    Science.gov (United States)

    Garmy, Pernilla; Ward, Teresa M.

    2018-01-01

    The aim of this study was to examine sleep habits (i.e., bedtimes and rising times) and their association with nighttime text messaging in 15- to 17-year-old adolescents. This cross-sectional study analyzed data from a web-based survey of adolescent students attending secondary schools in southern Sweden (N = 278, 50% female). Less than 8 hr of…

  12. Impact of nighttime paving operations on asphalt roughness behavior.

    Science.gov (United States)

    2013-05-01

    The relationship between nighttime construction scheduling and future road quality in terms of roughness was investigated. Research was three-phased: interviews with local leaders in paving, on-site observations, and historical data analyses. Intervi...

  13. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine

    2012-12-31

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5

  14. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    Science.gov (United States)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  15. Napping, nighttime sleep, and cardiovascular risk factors in mid-life adults.

    Science.gov (United States)

    Owens, Jane F; Buysse, Daniel J; Hall, Martica; Kamarck, Thomas W; Lee, Laisze; Strollo, Patrick J; Reis, Steven E; Matthews, Karen A

    2010-08-15

    To evaluate the relations between sleep characteristics and cardiovascular risk factors and napping behavior, and to assess whether daytime napping leads to subsequent better or worse sleep. The sample consisted of 224 (African American, Caucasian, and Asian) middle-aged men and women. Sleep measures included nine nights of actigraphy and sleep diaries, sleep questionnaires, and one night of polysomnography to measure sleep disordered breathing. More frequent napping was associated with shorter nighttime sleep duration averaged across the nine nights of actigraphy (especially among African Americans), more daytime sleepiness, more pain and fatigue by diary, and increased body mass index and waist circumference. Shorter nighttime sleep duration was associated with taking a nap during the next day and taking a nap was associated with less efficient sleep the next night. Napping in middle-aged men and women is associated with overall less nighttime sleep in African Americans and lower sleep efficiency as measured by actigraphy, and increased BMI and central adiposity. These findings point to the importance of measuring of napping in understanding associations of sleep with cardiovascular risk.

  16. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    Science.gov (United States)

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  17. A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data

    Science.gov (United States)

    Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela

    2017-06-01

    To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another

  18. The ecological impacts of nighttime light pollution: a mechanistic appraisal.

    Science.gov (United States)

    Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John

    2013-11-01

    The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  19. Fast natural color mapping for night-time imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2010-01-01

    We present a new method to render multi-band night-time imagery (images from sensors whose sensitive range does not necessarily coincide with the visual part of the electromagnetic spectrum, e.g. image intensifiers, thermal camera's) in natural daytime colors. The color mapping is derived from the

  20. Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis

    DEFF Research Database (Denmark)

    Larsen, Kristine Roen; Johansen, Jeanne Duus; Reibel, Jesper

    2017-01-01

    BACKGROUND: To examine if patients with oral lichen planus, oral lichenoid lesions and generalised stomatitis and concomitant contact allergy have more frequent and severe xerostomia, lower unstimulated and chewing-stimulated saliva and citric-acid-stimulated parotid saliva flow rates, and higher...... of xerostomia, clinical examination, sialometry, mucosal biopsy and contact allergy testing. RESULTS: Nineteen patients had oral lichen planus, 19 patients had oral lichenoid lesions and 11 patients had generalised stomatitis. 38.8% had contact allergy. Xerostomia was significantly more common and severe...... in the chewing stimulated saliva samples from patients when compared to healthy controls. The differences were not significant and they were irrespective of the presence of contact allergy. CONCLUSION: Xerostomia is prevalent in patients with oral lichen planus, lichenoid lesions and generalised stomatitis...

  1. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  2. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors.

    Science.gov (United States)

    Kim, Jong Hyun; Hong, Hyung Gil; Park, Kang Ryoung

    2017-05-08

    Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR) illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1) and two open databases (Korea advanced institute of science and technology (KAIST) and computer vision center (CVC) databases), as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  4. Convolutional Neural Network-Based Human Detection in Nighttime Images Using Visible Light Camera Sensors

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2017-05-01

    Full Text Available Because intelligent surveillance systems have recently undergone rapid growth, research on accurately detecting humans in videos captured at a long distance is growing in importance. The existing research using visible light cameras has mainly focused on methods of human detection for daytime hours when there is outside light, but human detection during nighttime hours when there is no outside light is difficult. Thus, methods that employ additional near-infrared (NIR illuminators and NIR cameras or thermal cameras have been used. However, in the case of NIR illuminators, there are limitations in terms of the illumination angle and distance. There are also difficulties because the illuminator power must be adaptively adjusted depending on whether the object is close or far away. In the case of thermal cameras, their cost is still high, which makes it difficult to install and use them in a variety of places. Because of this, research has been conducted on nighttime human detection using visible light cameras, but this has focused on objects at a short distance in an indoor environment or the use of video-based methods to capture multiple images and process them, which causes problems related to the increase in the processing time. To resolve these problems, this paper presents a method that uses a single image captured at night on a visible light camera to detect humans in a variety of environments based on a convolutional neural network. Experimental results using a self-constructed Dongguk night-time human detection database (DNHD-DB1 and two open databases (Korea advanced institute of science and technology (KAIST and computer vision center (CVC databases, as well as high-accuracy human detection in a variety of environments, show that the method has excellent performance compared to existing methods.

  5. Infection of guinea pigs with vesicular stomatitis New Jersey virus Transmitted by Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J

    2006-05-01

    Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.

  6. Growth, leaf and stomatal traits of crabwood (Carapa guianensis Aubl. in central Amazonia

    Directory of Open Access Journals (Sweden)

    Miguel Angelo Branco Camargo

    2012-02-01

    Full Text Available Crabwood (Carapa guianensis Aubl. is a fast growing tree species with many uses among Amazonian local communities. The main objective of this study was to assess the effect of seasonal rainfall pattern on growth rates, and seasonal and diurnal changes in leaf gas exchange and leaf water potential (ΨL in crabwood. To assess the effect of rainfall seasonality on growth and physiological leaf traits an experiment was conducted in Manaus, AM (03º 05' 30" S, 59º 59' 35" S. In this experiment, six 6-m tall plants were used to assess photosynthetic traits and ΨL. In a second experiment the effect of growth irradiance on stomatal density (S D, size (S S and leaf thickness was assessed in 0.8-m tall saplings. Stomatal conductance (g s and light-saturated photosynthesis (Amax were higher in the wet season, and between 09:00 and 15:00 h. However, no effect of rainfall seasonality was found on ΨL and potential photosynthesis (CO2-saturated. ΨL declined from -0.3 MPa early in the morning to -0.75 MPa after midday. It increased in the afternoon but did not reach full recovery at sunset. Growth rates of crabwood were high, and similar in both seasons (2 mm month-1. Leaf thickness and S D were 19% and 47% higher in sun than in shade plants, whereas the opposite was true for S S. We conclude that ΨL greatly affects carbon assimilation of crabwood by reducing g s at noon, although this effect is not reflected on growth rates indicating that other factors offset the effect of g s on Amax.

  7. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    International Nuclear Information System (INIS)

    Baker, D J; Thurgood, B K; Harrison, W K; Mlynczak, M G; Russell, J M

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O 3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings

  8. Differences between water permeability of astomatous and stomatous cuticular membranes: effects of air humidity in two species of contrasting drought-resistance strategy

    Czech Academy of Sciences Publication Activity Database

    Karbulková, J.; Schreiber, L.; Macek, Petr; Šantrůček, Jiří

    2008-01-01

    Roč. 59, č. 14 (2008), s. 3987-3995 ISSN 0022-0957 R&D Projects: GA AV ČR(CZ) IAA601410505 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60050516 Keywords : Hedera helix * stomatal conductance * Zamioculcas zamiifolia Subject RIV: EF - Botanics Impact factor: 4.001, year: 2008

  9. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.

    Directory of Open Access Journals (Sweden)

    Marie Desclos-Theveniau

    2012-02-01

    Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.

  10. Experimental Investigation of the Influence of Obstacle in the Room on Passive Night-Time Cooling using Displacement Ventilation

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Khalegi, Farzad; Domarks, Giedrius

    2011-01-01

    Night-time ventilation is a promising approach for reducing the energy needed for cooling buildings without reducing thermal comfort. The objective of this paper is to determine how an internal obstacle, such as a table, will influence the heat transfer in the room and the efficiency of night......-time ventilation which uses displacement ventilation. Experimental work was conducted on the basis of the work in a similar previous study, performed by (Artmann 2010), and this is an extension of that work. Experimental results obtained for a case with a table were compared with the results obtained by Artmann et...... al. for a room with displacement ventilation, but without table. The results obtained in the experiment with the table indicated that the mean heat flux was slightly lower but very similar compared to the case without the table. The heat flux at the ceiling was measured to be the same for both setups...

  11. Serum cytokine profile and clinicopathological findings in oral lichen planus, oral lichenoid lesions and stomatitis

    DEFF Research Database (Denmark)

    Larsen, Kristine Røn; Johansen, Jeanne Duus; Reibel, Jesper

    2017-01-01

    The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty-nine pat......The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty...... analyzed and compared between groups. Nineteen patients had OLP, primarily with ulcerative lesions on the buccal mucosa, 19 patients had OLL, and 11 patients had generalized stomatitis. All patients had oral symptoms, mainly stinging and burning. Nineteen patients and 10 healthy subjects had contact...... higher levels of IL-6 than the healthy subjects. Interferon-γ, IL-12p40, and IL-12p70 were below detection limit. Our findings indicate that OLP, OLL, and generalized stomatitis cannot be discriminated by means of the selected serum cytokines, and that the presence of concomitant contact allergy does...

  12. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.

    Science.gov (United States)

    Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori

    2014-01-07

    Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.

  13. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  14. Reconstitution of the fusogenic activity of vesicular stomatitis virus

    NARCIS (Netherlands)

    Metsikkö, K.; van Meer, G.; Simons, K.

    1986-01-01

    Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell

  15. Oral hygiene habits, denture plaque, presence of yeasts and stomatitis in institutionalised elderly in Lothian, Scotland

    DEFF Research Database (Denmark)

    Schou, L; Wight, C; Cumming, C

    1987-01-01

    The purpose of the present study was to examine the relation between oral hygiene habits, denture plaque, presence of yeasts and stomatitis in institutionalised elderly. A sample of 201 residents, 48-99 yr of age (mean age 82 yr), was selected from four different institutions in Lothian, Scotland....... Clinical recordings were carried out under standardised circumstances using well recognised indices. Information about oral hygiene habits was obtained through structured interviews conducted immediately before the clinical examination. A multivariate analysis, principal component, was carried out...

  16. Linking stomatal sensitivity and whole-tree hydraulic architecture

    Science.gov (United States)

    Katherine A. McCulloh; David R. Woodruff

    2012-01-01

    Despite the complexity of the relationship between stomatal sensitivity, water loss and vulnerability to embolism, the goal of teasing apart the subtleties is a necessary one. As Litvak et al. (2012) mention, determining transpiration patterns based on vulnerability to embolism would be much easier than the lengthy and potentially expensive processes involved in sap...

  17. Stomatal development in barley as a bioassay for cell differentation: its use with X-rays and gibberellic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E; Rafalowsky, J [Chile Univ., Santiago. Departamento de Biologia y Genetica

    1976-01-01

    A bioassay for cell differentiation during stomatal development in barley (Hordeum vulgare L.) has been defined. It uses cell kinetics analysis to follow the temporal course of cell divisions in the developmental sequence. The rate of displacement of the divisions along the stomatal rows provides a measure of differentiation. Physical factors affecting differentiation may be tested with intact seedlings. The bioassay showed that X-ray irradiation inhibited the divisions leading to stomatal formation. The inhibition kinetics was similar to the one observed in root meristems. Chemical substances are tested by culturing excised shoots in a synthetic medium. Detached leaves responded to sucrose and light with increasing rates of stomatal divisions. Gibberellic acid (GA/sub 3/) was assayed for its effects on the growth of the leaf and the differentiation of stomata. GA/sub 3/ increased the overall length of the leaves without affecting the rates of cell division. The treated cells responded with increased elongation rates and a precocious initiation and completion of cell enlargement. GA/sub 3/ had no specific effect on stomatal differentiation.

  18. Modelling stomatal ozone flux and deposition to grassland communities across Europe

    International Nuclear Information System (INIS)

    Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.

    2007-01-01

    Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status

  19. Effect of nitrogen supply on transpiration and stomatal behaviour of beans (Phaseolus vulgaris L. )

    Energy Technology Data Exchange (ETDEWEB)

    Shimshi, D

    1970-01-01

    The effect of nitrogen supply on the transpiration rate and stomatal opening of potted bean plants was studied in a series of experiments. The transpiration rates of N-supplied plants were higher than those of N-deficient plants when soil moisture was relatively high; as soil moisture approached the wilting range, the transpiration rates of N-supplied plants dropped to below those of N-deficient plants. In spite of the marked differences in transpiration rates, as influenced by soil moisture and nitrogen supply, the stomata appeared closed. By coating the upper or lower surfaces of the leaves with a vapor-impervious compound it was shown that stomatal apertures below the limit of microscopic resolution control the rate of transpiration. Under conditions that encourage stomatal opening (covering the plants with transparent plastic bags), the stomata of the N-deficient plants opened to a lesser degree than those of N-supplied plants. There was some evidence that when stomata were visibly open, transpiration rates were regulated by the degree of plant hydration rather than by the degree of stomatal opening. It is concluded that N-deficient plants fail to open their stomata as widely and to close them as tightly as N-supplied plants. 8 references, 2 tables.

  20. Is nighttime laparoscopic general surgery under general anesthesia safe?

    Science.gov (United States)

    Koltka, Ahmet Kemalettin; İlhan, Mehmet; Ali, Achmet; Gök, Ali Fuat Kaan; Sivrikoz, Nükhet; Yanar, Teoman Hakan; Günay, Mustafa Kayıhan; Ertekin, Cemalettin

    2018-01-01

    Fatigue and sleep deprivation can affect rational decision-making and motor skills, which can decrease medical performance and quality of patient care. The aim of the present study was to investigate the association between times of the day when laparoscopic general surgery under general anesthesia was performed and their adverse outcomes. All laparoscopic cholecystectomies and appendectomies performed at the emergency surgery department of a tertiary university hospital from 01. 01. 2016 to 12. 31. 2016 were included. Operation times were divided into three groups: 08.01-17.00 (G1: daytime), 17.01-23.00 (G2: early after-hours), and 23.01-08.00 (G3: nighttime). The files of the included patients were evaluated for intraoperative and postoperative surgery and anesthesia-related complications. We used multiple regression analyses of variance with the occurrence of intraoperative complications as a dependent variable and comorbidities, age, gender, body mass index (BMI), ASA score, and operation time group as independent variables. This revealed that nighttime operation (p<0.001; OR, 6.7; CI, 2.6-16.9) and older age (p=0.004; OR, 1.04; CI, 1.01-1.08) were the risk factor for intraoperative complications. The same analysis was performed for determining a risk factor for postoperative complications, and none of the dependent variables were found to be associated with the occurrence of postoperative complications. Nighttime surgery and older patient age increased the risk of intraoperative complications without serious morbidity or mortality, but no association was observed between the independent variables and the occurrence of postoperative complications.

  1. Examination of the current practice of lighting in Virginia : nighttime work zones and improving safety through the development of nighttime lighting specifications : final report.

    Science.gov (United States)

    2017-09-01

    This project evaluated current nighttime work zone lighting practices for limited-access highways and primary routes in Virginia through (1) an on-site evaluation of lighting levels in work zones; (2) an illuminance characterization of various commer...

  2. Examination of the current practice of lighting in Virginia : nighttime work zones and improving safety through the development of nighttime lighting specifications : summary report.

    Science.gov (United States)

    2017-09-01

    This project evaluated current nighttime work zone lighting practices for limited-access highways and primary routes in Virginia through (1) an on-site evaluation of lighting levels in work zones; (2) an illuminance characterization of various commer...

  3. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms.

    Directory of Open Access Journals (Sweden)

    Madeline R Carins Murphy

    Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas

  4. Experience with TL-102M for the treatment of radiation stomatitis

    International Nuclear Information System (INIS)

    Nishio, Juntaro; Matsuya, Tokuzo; Inoue, Kazuo; Miyazaki, Tadashi; Maeda, Noriaki.

    1984-01-01

    TL-102M was administered to 14 patients who had radiation stomatitis following radiation therapy for malignant tumors in the oral cavity. Regarding the degree of overall improvement, one of the 14 patients was evaluated as ''extremely improved'', eight as ''improved'', four as ''slightly improved'', and one as ''unchanged''. None of the patients had side effects. Adherent, powdered TL-102M was easy to take for patients. Most of the patients desired to continue to take this drug because of having neither painfulness nor adhesive feeling. The usage of TL-102M could be helpful in promoting the treatment for cancer, thus suggesting that it is useful in treating radiation stomatitis. (Namekawa, K.)

  5. Providence nighttime bracing, in treatment of adolescent idiopathic scoliosis

    DEFF Research Database (Denmark)

    Simony, A.; Beuschau, Inge; Quisth, Lena

    2015-01-01

    Introduction: Since 2008 the non-surgical treatment of adolescent idiopathic scoliosis (AIS) in the southern part of Denmark, went from full-time bracing with Boston brace, to Providence night-time bracing. Methods: Since 2008, skeletally immature patients diagnosed with AIS and a primary curve w...

  6. The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels

    Directory of Open Access Journals (Sweden)

    Zhaoxin Dai

    2017-02-01

    Full Text Available Nighttime light data offer a unique view of the Earth’s surface and can be used to estimate the spatial distribution of gross domestic product (GDP. Historically, using a simple regression function, the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS has been used to correlate regional and global GDP values. In early 2013, the first global Suomi National Polar-orbiting Partnership (NPP visible infrared imaging radiometer suite (VIIRS nighttime light data were released. Compared with DMSP/OLS, they have a higher spatial resolution and a wider radiometric detection range. This paper aims to study the suitability of the two nighttime light data sources for estimating the GDP relationship between the provincial and city levels in Mainland China, as well as of different regression functions. First, NPP/VIIRS nighttime light data for 2014 are corrected with DMSP/OLS data for 2013 to reduce the background noise in the original data. Subsequently, three regression functions are used to estimate the relationship between nighttime light data and GDP statistical data at the provincial and city levels in Mainland China. Then, through the comparison of the relative residual error (RE and the relative root mean square error (RRMSE parameters, a systematical assessment of the suitability of the GDP estimation is provided. The results show that the NPP/VIIRS nighttime light data are better than the DMSP/OLS data for GDP estimation, whether at the provincial or city level, and that the power function and polynomial models are better for GDP estimation than the linear regression model. This study reveals that the accuracy of GDP estimation based on nighttime light data is affected by the resolution of the data and the spatial scale of the study area, as well as by the land cover types and industrial structures of the study area.

  7. Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways

    KAUST Repository

    Felemban, Abrar

    2016-01-01

    -activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal

  8. Differential effects of elevated air humidity on stomatal closing ability of Kalanchoë blossfeldiana between the C

    NARCIS (Netherlands)

    Fanourakis, Dimitrios; Hyldgaard, Benita; Gebraegziabher, Habtamu; Bouranis, Dimitris; Körner, Oliver; Nielsen, Kai Lønne; Ottosen, Carl-Otto

    2017-01-01

    High relative air humidity (RH ≥ 85%) impairs stomatal functionality, attenuating plant capacity to cope with abiotic stress. Previous studies were limited to C3 species, so the RH effect on stomatal physiology of CAM plants remains unexplored. We addressed the topic through

  9. The effect of denture stability, occlusion, oral hygiene and smoking on denture-induced stomatitis

    International Nuclear Information System (INIS)

    Nimri, Gadeer Mukatash

    2008-01-01

    This longitudinal clinical investigation was undertaken to find out the effect of denture wearing habit (day versus day and night), denture hygiene and cigarette smoking habit on the frequency of denture induced stomatitis. Comparisons were made between 240 complete denture wearers, half of whom were asked to wear their dentures at the daytime only and the other half to wear the denture day and night. All these participants were male patients with a mean age of 57.6 years who had received maxillary complete acrylic dentures for the first time. Fifty percent of the samples were smokers. A standard method for examination of the mouth and denture construction, insertion and follow up were employed. Putative risk factors (denture wearing habits, denture hygiene and smoking) were investigated. Subjects were recalled 12 months after insertion to examine the quality of the denture and the condition of the maxillary mucosa. No significant correlation was found between deterioration of stability or occlusion and type of habitual use of the dentures (P > 0.05). Fourteen percent of the cases reported with inflamed maxillary mucosa. Deterioration of retention or occlusion separately showed no correlation with the condition of the mucosa. However, associated deterioration of both stability and occlusion proved to be significantly correlated with the occurrence of denture stomatitis (P < 0.05). Denture stomatitis was significantly more frequently with subjects wearing their dentures overnight compared with those who removed them (P < 0.05). A significant correlation was also found between cigarette smoking, poor oral hygiene and the presence of denture induced stomatitis (P < 0.05). Nocturnal denture wearing habit, deficient oral and denture hygiene, and cigarette smoking are all important predisposing factors to denture-induced stomatitis, however, none of these factors was the sole cause of mucosal inflammation. (author)

  10. Quantitative trait loci mapping for stomatal traits in interspecific ...

    Indian Academy of Sciences (India)

    Dr.YASODHA

    seedling raising, field planting and maintenance of the mapping population. ... tereticornis and production of interspecific hybrids displaying hybrid vigour in terms of .... A total of 114, 115 and 129 SSR, ISSR and SRAP markers were generated .... stomatal traits with yield and adaptability would help to improve productivity of ...

  11. Clinical trial: esomeprazole for moderate-to-severe nighttime heartburn and gastro-oesophageal reflux disease-related sleep disturbances.

    Science.gov (United States)

    Johnson, D; Crawley, J A; Hwang, C; Brown, K

    2010-07-01

    Nighttime heartburn, common among patients with gastro-oesophageal reflux disease (GERD), is associated with substantial clinical effects. GERD-related sleep disturbances are underappreciated and undertreated. To evaluate the efficacy of esomeprazole on GERD-related nighttime heartburn and associated sleep disturbances. In this multicentre, randomized, double-blind, placebo-controlled study, patients with moderate-to-severe nighttime heartburn and GERD-related sleep disturbances (endoscopies not required) received esomeprazole 20 mg or placebo each morning for 4 weeks. Heartburn symptoms and GERD-related sleep disturbances were evaluated using the validated Pittsburgh Sleep Quality Index and validated Work Productivity and Activity Impairment Questionnaire. The analysis included 262 patients (esomeprazole, n = 137; placebo, n = 125). Significantly more patients receiving esomeprazole achieved nighttime heartburn relief (primary end point) than those receiving placebo (34.3% vs. 10.4%; P heartburn and GERD-related sleep disturbances, improving heartburn symptoms, sleep quality, work productivity and functionality.

  12. Cuff inflations do not affect night-time blood pressure

    DEFF Research Database (Denmark)

    Petersen, Emilie H; Theilade, Simone; Hansen, Tine W

    2015-01-01

    Discomfort related to cuff inflation may bias 24 h ambulatory blood pressure (BP) measurements, especially during night-time. We accessed the impact of cuff inflations by comparing 24 h BP recorded with a cuff-less tonometric wrist device and an upper-arm oscillometric cuff device. Fifty...

  13. Variabilidade sazonal da condutância estomática em um ecossistema de manguezal amazônico e suas relações com variáveis meteorológicas Seasonal variability of the stomatal conductance in Amazonian mangrove ecosystem and their relationships with meteorological variables

    Directory of Open Access Journals (Sweden)

    Hernani José Brazão Rodrigues

    2011-06-01

    Full Text Available No presente trabalho foram estudadas as variações da condutância estomática (g s para o período chuvoso (março e seco (agosto do ano de 2003, e suas relações de dependência com algumas variáveis meteorológicas medidas em um ecossistema de manguezal amazônico. As informações utilizadas foram do projeto ECOBIOMA, parte integrante do Experimento de Grande Escala da Biosfera-Atmosfera da Amazônia (LBA. A g s acompanha a tendência de variação do balanço de radiação, atingindo valores máximos durante o dia e mínimos durante a noite. A condutância apresentou maiores flutuações no período chuvoso, com valor médio de g s = 0,015 m s-¹, porém com magnitudes inferiores as do período seco. Durante a época seca apresentou um valor médio de g s = 0,027 m s-¹, com menor amplitude, variando de 0,010 This work investigated the variations of stomatal conductance (g s in the rainy and dry seasons and its dependence relations with meteorological variables measured in an Amazonian mangrove ecosystem. Data were originated from the ECOBIOMA project, part of the Large Scale Biosphere-Atmosphere Experiment in Amazon (LBA. Stomatal conductance followed the tendency of the radiation balance variation, reaching maximum values during the day and minimum values at night. The conductance showed greater fluctuations in the rainy season, with mean value of g s = 0.015 m s-¹, however smaller in magnitude than in the dry season. During the dry season, the mean value was g s = 0.027 m s-¹, with lower range, varying between 0.010 and 0.042 m s-¹. The meteorological variables used for establishing the dependence relations with the daily variability of stomatal conductance were the following; specific moisture deficit (δq, vapor pressure deficit (PVD, net radiation (Rn and wind velocity (Vv. The PVD showed the best correlation with g s, with R² = 0.99 for both periods. In spite of the importance of Vv in the gaseous changes between the

  14. Sport Transition of JPSS VIIRS Imagery for Night-time Applications

    Science.gov (United States)

    Fuell, Kevin; LeRoy, Anita; Smith, Matt; Miller, Steve; Kann, Diedre; Bernhardt, David; Reydell, Nezette; Cox, Robert

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program and NOAA/Cooperative Institute for Research in the Atmosphere (CIRA) work within the NOAA/Joint Polar Satellite System (JPSS) Proving Ground to demonstrate the unique capabilities of the VIIRS instrument. Very similar to MODIS, the VIIRS instrument provides many high-resolution visible and infrared channels in a broad spectrum. In addition, VIIRS is equipped with a low-light sensor that is able to detect light emissions from the land and atmosphere as well as reflected sunlight by the lunar surface. This band is referred to as the Day-Night Band due to the sunlight being used at night to see cloud and topographic features just as one would typically see in day-time visible imagery. NWS forecast offices that collaborate with SPoRT and CIRA have utilized MODIS imagery in operations, but have longed for more frequent passes of polar-orbiting data. The VIIRS instrument enhances SPoRT collaborations with WFOs by providing another day and night-time pass, and at times two additional passes due to its large swath width. This means that multi-spectral, RGB imagery composites are more readily available to prepare users for their use in GOES-R era and high-resolution imagery for use in high-latitudes is more frequently able to supplement standard GOES imagery within the SPoRT Hybrid GEO-LEO product. The transition of VIIRS also introduces the new Day-Night Band capability to forecast operations. An Intensive Evaluation Period (IEP) was conducted in Summer 2013 with a group of "Front Range" NWS offices related to VIIRS night-time imagery. VIIRS single-channel imagery is able to better analyze the specific location of fire hotspots and other land features, as well as provide a more true measurement of various cloud and aerosol properties than geostationary measurements, especially at night. Viewed within the SPoRT Hybrid imagery, the VIIRS data allows forecasters to better interpret the more frequent, but

  15. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.

    Science.gov (United States)

    Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien

    2012-05-01

    We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation

  16. Compound stress response in stomatal closure: a mathematical model of ABA and ethylene interaction in guard cells

    Directory of Open Access Journals (Sweden)

    Beguerisse-Dıaz Mariano

    2012-11-01

    Full Text Available Abstract Background Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. Results Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. Conclusions Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.

  17. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.

    Science.gov (United States)

    Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi

    2007-02-01

    Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.

  18. Lane Departure System Design using with IR Camera for Night-time Road Conditions

    Directory of Open Access Journals (Sweden)

    Osman Onur Akırmak

    2015-02-01

    Full Text Available Today, one of the largest areas of research and development in the automobile industry is road safety. Many deaths and injuries occur every year on public roads from accidents caused by sleepy drivers, that technology could have been used to prevent. Lane detection at night-time is an important issue in driving assistance systems. This paper deals with vision-based lane detection and tracking at night-time. This project consists of a research and development of an algorithm for automotive systems to detect the departure of vehicle from out of lane. Once the situation is detected, a warning is issued to the driver with sound and visual message through “Head Up Display” (HUD system. The lane departure is detected through the images obtained from a single IR camera, which identifies the departure at a satisfactory accuracy via improved quality of video stream. Our experimental results and accuracy evaluation show that our algorithm has good precision and our detecting method is suitable for night-time road conditions.

  19. Sleeping position and reported night-time asthma symptoms and ...

    African Journals Online (AJOL)

    A 49 years old man, known case of bronchial asthma for 43 years, with history of frequent asthmatic attacks, usually responding to double dose of intravenous Aminophylline and double dose of Hydrocortisone was received at medical emergency care unit at midnight with night-time asthma attack. The attack did not settle ...

  20. Nighttime ionospheric D region: Equatorial and nonequatorial

    Science.gov (United States)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  1. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  2. Napping in college students and its relationship with nighttime sleep.

    Science.gov (United States)

    Ye, Lichuan; Hutton Johnson, Stacy; Keane, Kathleen; Manasia, Michael; Gregas, Matt

    2015-01-01

    Abstract. To examine the habit of napping and its relationship with nighttime sleep in college students. Four hundred and forty undergraduate students who responded to an anonymous online survey in April 2010. Three questions were asked to determine the frequency, length, and timing of napping during the past month. Sleep quality was measured by the Pittsburgh Sleep Quality Index (PSQI). The PSQI score significantly differed among self-reported nap-frequency (p=.047) and nap-length (p=.017) groups, with those who napped more than 3 times per week and those who napped more than 2 hours having the poorest sleep quality. Students who napped between 6 and 9 pm had shorter sleep on school nights compared with students in other nap-timing groups (p=.002). College students who are self-reported frequent, long, and late nappers may have a higher risk of poor nighttime sleep quality and more severe sleep deprivation.

  3. Evidence That Drought-Induced Stomatal Closure Is Not an Important Constraint on White Spruce Performance Near the Arctic Treeline in Alaska

    Science.gov (United States)

    Sullivan, P.; Brownlee, A.; Ellison, S.; Sveinbjornsson, B.

    2014-12-01

    Tree cores collected from trees growing at high latitudes have long been used to reconstruct past climates, because of close positive correlations between temperature and tree growth. However, in recent decades and at many sites, these relationships have deteriorated and have even become negative in some instances. The observation of declining tree growth in response to rising temperature has prompted many investigators to suggest that high latitude trees may be increasingly exhibiting drought-induced stomatal closure. In the Brooks Range of northern Alaska, the observation of low and declining growth of white spruce is more prevalent in the central and eastern parts of the range, where precipitation is lower, providing superficial support for the drought stress hypothesis. In this study, we investigated the occurrence of white spruce drought-induced stomatal closure in four watersheds along a west to east gradient near the Arctic treeline in the Brooks Range. We obtained a historical perspective on tree growth and water relations by collecting increment cores for analysis of ring widths and carbon isotopes in tree-ring alpha-cellulose. Meanwhile, we made detailed assessments of contemporary water relations at the scales of the whole canopy and the needle. All of our data indicate that drought-induced stomatal closure is probably not responsible for low and declining growth in the central and eastern Brooks Range. Carbon isotope discrimination has generally increased over the past century and our calculations indicate that needle inter-cellular CO2 concentration is much greater now than it was in the early 1900's. Measurements of needle gas exchange are consistent with the tree core record, in the sense that instances of low photosynthesis at our sites are not coincident with similarly low stomatal conductance and low inter-cellular CO2 concentration. Finally, hourly measurements of xylem sap flow indicate that trees at our study sites are able to maintain near

  4. Development of a model performance-based sign sheeting specification based on the evaluation of nighttime traffic signs using legibility and eye-tracker data.

    Science.gov (United States)

    2010-09-01

    This project focused on the evaluation of traffic sign sheeting performance in terms of meeting the nighttime : driver needs. The goal was to develop a nighttime driver needs specification for traffic signs. The : researchers used nighttime sign legi...

  5. Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video

    Directory of Open Access Journals (Sweden)

    Gil-beom Lee

    2017-03-01

    Full Text Available Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos.

  6. Association between light exposure at night and nighttime blood pressure in the elderly independent of nocturnal urinary melatonin excretion.

    Science.gov (United States)

    Obayashi, Kenji; Saeki, Keigo; Iwamoto, Junko; Ikada, Yoshito; Kurumatani, Norio

    2014-07-01

    Circadian misalignment between internal and environmental rhythms dysregulates blood pressure (BP) variability because of disruption of the biological clock, resulting in increased nighttime BP. Although exposure to light-at-night is associated with the circadian misalignment, it remains unclear whether exposure to light-at-night in home settings is associated with nighttime BP. In this cross-sectional analysis of 528 elderly individuals (mean age: 72.8 years), we measured bedroom light intensity at 1-min intervals on two consecutive nights along with ambulatory BP, overnight urinary melatonin excretion and actigraphy. With regard to adjusted mean comparisons using analysis of covariance, the light-at-night group (average: ≥5 lux; n = 109) showed significantly higher nighttime systolic BP (SBP; adjusted mean: 120.8 vs. 116.5 mmHg, p = 0.01) and diastolic BP (70.1 vs. 67.1 mmHg, p light-at-night and nighttime BP in different cutoff values for light-at-night intensity (i.e. 3 and 10 lux). In conclusion, exposure to light-at-night in home settings is significantly associated with increased nighttime BP in elderly individuals independently of overnight urinary melatonin excretion. A 4.3 mmHg increase in nighttime SBP is associated with a 6.1% increase in total mortality, which corresponds to approximately 10 000 annual excess deaths in Japanese elderly population.

  7. Low-Income Mothers' Nighttime and Weekend Work: Daily Associations with Child Behavior, Mother-Child Interactions, and Mood

    Science.gov (United States)

    Gassman-Pines, Anna

    2011-01-01

    This study investigated low-income mothers' daily nighttime and weekend work and family outcomes. Sixty-one mothers of preschool-aged children reported daily on work hours, mood, mother-child interaction, and child behavior for two weeks (N = 724 person-days). Although nighttime and weekend work are both nonstandard schedules, results showed…

  8. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  9. Oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis in allogeneic hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Aisa, Yoshinobu; Mori, Takehiko; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Yokoyama, Akihiro; Ikeda, Yasuo; Okamoto, Shinichiro

    2005-04-01

    The purpose of this study was to evaluate the efficacy of oral cryotherapy to prevent high-dose melphalan-induced stomatitis. Eighteen consecutive recipients of allogeneic hematopoietic stem cell transplant conditioned with high-dose melphalan (140 mg/m2) in combination with fludarabine alone or with fludarabine and additional chemotherapy or radiation were enrolled. The severity of stomatitis was graded according to the National Cancer Institute Common Toxicity Criteria. Patients were kept on oral cryotherapy using ice chips and ice-cold water shortly before, during, and for additional 90 min after completion of melphalan administration. Only two of 18 patients (11.1%) developed grade 2 or 3 stomatitis while six of seven patients in the historical control developed it (85.7%; P=0.001). These results suggested that oral cryotherapy could effectively prevent stomatitis caused by high-dose melphalan, and we recommend that it should be incorporated into the conditioning regimen with high-dose melphalan.

  10. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease.

    Science.gov (United States)

    Ishigaki, Sayaka; Ohashi, Naro; Isobe, Shinsuke; Tsuji, Naoko; Iwakura, Takamasa; Ono, Masafumi; Sakao, Yukitoshi; Tsuji, Takayuki; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-12-01

    Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. The circadian rhythm of intrarenal RAS activation leads to renal damage and hypertension, which are associated with diurnal blood pressure (BP) variation. The activation of intrarenal RAS following reactive oxygen species (ROS) activation, sympathetic hyperactivity and nitric oxide (NO) inhibition leads to the development of renal damage. Melatonin is a hormone regulating the circadian rhythm, and has multiple functions such as anti-oxidant and anti-adrenergic effects and enhancement of NO bioavailability. Nocturnal melatonin concentrations are lower in CKD patients. However, it is not known if impaired endogenous melatonin secretion is related to BP, intrarenal RAS, or renal damage in CKD patients. We recruited 53 CKD patients and conducted 24-h ambulatory BP monitoring. urine was collected during the daytime and nighttime. We investigated the relationship among the melatonin metabolite urinary 6-sulphatoxymelatonin (U-aMT6s), BP, renal function, urinary angiotensinogen (U-AGT), and urinary albumin (U-Alb). Patients' U-aMT6s levels were significantly and negatively correlated with clinical parameters such as renal function, systolic BP, U-AGT, and U-Alb, during both day and night. Multiple regression analyses for U-aMT6s levels were performed using age, gender, renal function, and each parameter (BPs, U-AGT or U-Alb), at daytime and nighttime. U-aMT6s levels were significantly associated with U-AGT (β = -0.31, p = 0.044) and U-Alb (β = -0.25, p = 0.025) only at night. Impaired nighttime melatonin secretion may be associated with nighttime intrarenal RAS activation and renal damage in CKD patients.

  11. Parameter study on performance of building cooling by night-time ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, H.; Heiselberg, Per

    2008-01-01

    of different parameters such as building construction, heat gains, air change rates, heat transfer coefficients and climatic conditions including annual variations on the number of overheating degree hours (operative room temperature >26 °C) was evaluated. Climatic conditions and air flow rate during night......Especially for commercial buildings in moderate climates, night-time ventilation seems to be a simple and energy-efficient approach to improve thermal comfort in summer. However, due to uncertainties in the prediction of thermal comfort in buildings with night-time ventilation, architects...... and engineers are still hesitant to apply this technique. In order to reduce the uncertainties, the most important parameters affecting night ventilation performance need to be identified. A typical office room was therefore modelled using a building energy simulation programme (HELIOS), and the effect...

  12. Impact of Air Distribution on Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Artmann, Nikolai; Jensen, Rasmus Lund

    2009-01-01

    Passive cooling by night-time ventilation is seen as a promising approach for energy efficient cooling of buildings. However, uncertainties in prediction of cooling potential and consequenses for thermal comfort restrain architects and engineers from applying this technique. Heat transfer...... at internal room surfaces determines the performance of night-time ventilation. In order to improve predictability, heat transfer mechanism in case of either mixing or displacement ventilation has been investigated in a full scale test room with an exposed ceiling as the dominating thermal mass. The influence...... of air distribution principle, air flow rate and inlet air temperature were investigated. Results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher airflow rates the air jet flowing along the ceiling has a significant effect, and mixing...

  13. Detection of Nighttime Melatonin Level in Chinese Original Quiet Sitting

    Directory of Open Access Journals (Sweden)

    Chien-Hui Liou

    2010-10-01

    Conclusion: Our results support the hypothesis that meditation might elevate the nighttime salivary melatonin levels. It suggests that COQS can be used as a psychophysiological stimulus to increase endogenous secretion of melatonin, which in turn, might contribute to an improved sense of well-being.

  14. Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Fanourakis, D.

    2013-01-01

    Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response...... characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth...... conditions were also assessed. High growth RH resulted in thinner (11%) leaves with larger area. A strong positive genetic correlation of daytime and nighttime transpiration at either RH was observed. Stomatal size determined pore area (r = 0.7) and varied by a factor of two, as a result of proportional...

  15. Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis Photosynthesis, stomatal conductance and leaf water potential in crabwood (Carapa guianensis

    Directory of Open Access Journals (Sweden)

    Gracilene Fernandes da Costa

    2007-06-01

    Full Text Available O potencial hídrico da folha é um dos fatores mais importantes que afetam o funcionamento dos estômatos. O objetivo deste trabalho foi avaliar o efeito da variação diurna na irradiância e déficit de pressão de vapor (DPV na fotossíntese (A, condutância estomática (g s e potencial hídrico da folha (psi em Carapa guianensis (Aubl.. Os dados foram coletados de 07:00 às 17:00 h. A taxa fotossintética atingiu um valor máximo (2,5 µmol m-2 s-1 às 10:00 h, depois declinou até atingir um mínimo de 1 µmolm-2 s-1 às 16:00 h. A condutância estomática oscilou durante o dia, de 0,04 molm-2s-1 (ao meio dia para 0,02 molm-2s- 1 no final da tarde. O potencial hídrico da folha foi máximo nas primeiras horas do dia (-0,3 MPa e mínimo (-0,75 MPa no meio da tarde (14:30 a 15:00 h. Após ter alcançado um mínimo, o psi aumentou até -0,64 MPa no fim da tarde. A taxa fotossintética aumentou linearmente em função do g s (P Leaf water potential is one of the most important factors affecting stomatal functioning. The aim of this study was to assess the effect of variation in diurnal irradiance and vapour pressure deficit on photosynthesis (A, stomatal conductance (g s and leaf water potential (psi in Carapa guianensis (Aubl.. Data were collected from 07:00 to 17:00 h. Photosynthetic rates reached a maximum (2.5 µmol m-2 s-1 at 10:00 h, thereafter declined to a minimum of 1 µmol m-2 s-1 at 16:00 h. Stomatal conductance oscillated during the day, from 0.04 mol m-2 s-1 (at midday to 0.02.mol.m-2.s-1 at the end of the afternoon. Leaf water potential was higher early in the morning (-0.3 MPa and lower (-0.75 MPa at mid-afternoon (14:30 -15:00 h. After reaching a minimum, psi increased up to -0.64 MPa at sunset. Photosynthetic rates increased linearly as a function of g s (P < 0.01. Also there was a positive relationship between psi and g s (P< 0.01. Photosynthetic rates declined during the day after reaching a peak early in the morning, which

  16. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.

    Science.gov (United States)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva

    2015-02-01

    The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.

  17. CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

    Directory of Open Access Journals (Sweden)

    J. Kar

    2018-03-01

    Full Text Available Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO were recently updated following the implementation of new (version 4 calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30–34 km to the upper possible signal acquisition range of 36–39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2, model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2–3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and

  18. Study on preventive effects of i.v. administration of flavin adenine dinucleotide (FAD) before irradiation on radiation stomatitis

    International Nuclear Information System (INIS)

    Nagai, Masao; Houzawa, Jiro; Hakamada, Masaru

    1984-01-01

    In order to compare the preventive effect on radiation stomatitis, flavin adenine dinucleotide (FAD) or vitamin C was administered intravenously until the blood level reached the maximum at the time of irradiation. Thirtyfive patients with cranial or cervical tumors were allocated into the group with FAD (15), the group with vitamin C (10), and the group with irradiation alone (10). The incidence of stomititis was significantly lower and the number of patients in whom the drug was withdrawn due to stomatitis was extremely smaller in the group with FAD than in the other groups. FAD administered before irradiation was considered very useful in preventing radiation stomatitis. (Namekawa, K.)

  19. Plester sariawan efektif dalam mempercepat penyembuhan stomatitis aftosa rekuren dan ulkus traumatikus

    Directory of Open Access Journals (Sweden)

    Rahmi Amtha

    2017-12-01

    Full Text Available Mouth ulcer plaster is effective in accelerating the healing of recurrent aphthous stomatitis and traumatic ulcers. Recurrent aphthous stomatitis (RAS is one of the most commonly occurring oral diseases. The prevalence of oral ulceration worldwide is 4%, with RAS having the largest proportion (25%. Recurrent aphthous stomatitis is oral ulceration which has a self-limiting disease, but the specific medication to reduce pain caused by lesion is still less varied nowadays. This study aimed to examine the differences in the effectiveness between topical application of hyaluronic acid (HA, mouth ulcer plaster (MUP and 0.1% triamcinolone acetonide (TA as a positive control in the healing of RAS and traumatic ulcers (TU. This was a quasi-experimental study by measuring the lesion diameter as well as visual analogue scale (VAS pre- and post-administration of three types of medication. Kruskal-walis test results show that there are differences in effectiveness (p=0.000 of the three types of medication to cure RAS and TU. There are signicant differences in the reduction of RAS and TU lesion diameter (p = 0.015 and VAS (p = 0.038 with the use of HA and MUP on the 4th day. There is no signicant difference in effectiveness (diameter and VAS of MUP and TA medication on the fourth day (p = 0.880 and p = 1.000 respectively. There is no signicant difference among HA, MUP and TA on the healing of the lesions on the seventh day (p>0.05. It can be concluded that the effectiveness of MUP is similar to that of topical medications containing corticosteroids in the healing of RAS and traumatic ulcers. ABSTRAK Stomatitis aftosa rekuren (SAR merupakan salah satu penyakit mulut yang paling umum terjadi. Prevalensi ulserasi mulut di seluruh dunia adalah 4%, dengan SAR menempati urutan terbesar yaitu 25%. Stomatitis aftosa rekuren merupakan ulserasi mulut yang memiliki self-limiting disease, namun sediaan obat yang spesifik untuk mengurangi rasa sakit yang

  20. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  1. ROOT HYDRAULIC CONDUCTIVITY AND PHOTOSYNTHETIC CAPACITY OF EUCALYPT CLONAL CUTTINGS WITH ROOT MALFORMATION INDUCTIONS

    Directory of Open Access Journals (Sweden)

    Fábio Afonso Mazzei Moura de Assis Figueiredo

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.

  2. Predictive role of the nighttime blood pressure

    DEFF Research Database (Denmark)

    Hansen, Tine W; Li, Yan; Boggia, José

    2011-01-01

    Numerous studies addressed the predictive value of the nighttime blood pressure (BP) as captured by ambulatory monitoring. However, arbitrary cutoff limits in dichotomized analyses of continuous variables, data dredging across selected subgroups, extrapolation of cross-sectional studies...... of conclusive evidence proving that nondipping is a reversible risk factor, the option whether or not to restore the diurnal blood pressure profile to a normal pattern should be left to the clinical judgment of doctors and should be individualized for each patient. Current guidelines on the interpretation...

  3. Quantification of ozone exposure- and stomatal uptake-yield response relationships for soybean in Northeast China.

    Science.gov (United States)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Liu, Xiaobing; Hu, Enzhu

    2017-12-01

    High ground-level O 3 is a new threat to agricultural production in Northeast China with the increasing ambient O 3 concentration. Little is known about its impacts on soybean production in this key agricultural region. Accumulated O 3 exposure-response and stomatal O 3 flux-response relationships were developed during two continuous growing seasons to evaluate O 3 -induced yield reduction of four typical soybean cultivars in Northeast China. Results showed that critical levels of AOT40 (accumulated hourly O 3 concentrations over a threshold of 40nmol·mol -1 ), SUM06 (sum of all hourly average O 3 concentrations over 0.06μmol·mol -1 ) and W126 (sum of O 3 concentrations weighted by a sigmoidal function) in relation to 5% reduction in relative seed yield were 4.2, 7.6 and 6.8μmol·mol -1 ·h, respectively. The effect of O 3 on plants was influenced by leaf position in canopy. An improved Jarvis stomatal conductance model including leaf (node) position fitted well with field measurements. The best linear relationship between stomatal O 3 flux and relative soybean yield was obtained when phytotoxic ozone dose was integrated over a threshold of 9.6nmol·m -2 ·s -1 (POD 9.6 ) to represent the detoxification capacity of soybean. POD 9.6 and the commonly used POD 6 in relation to 5% reduction in relative seed yield of soybean were 0.9mmol·m -2 and 1.8mmol·m -2 , respectively. O 3 concentrations above ~38nmol·mol -1 contributed to POD 9.6 and caused seed yield loss in soybean. Current annual yield loss of soybean at ambient O 3 was estimated to range between 23.4% and 30.2%. The O 3 dose-response relationships and corresponding thresholds obtained here will benefit regional O 3 risk assessment on soybean production in Northeast China. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  5. Propagation of a whistler wave incident from above on the lower nighttime ionosphere

    Directory of Open Access Journals (Sweden)

    P. Bespalov

    2017-05-01

    Full Text Available The problems of reflection and transmission of a whistler wave incident in the nighttime ionosphere from above are considered. Numerical solution of the wave equations for a typical condition of the lower ionosphere is found. The solution area comprises both the region of strong wave refraction and a sharp boundary of the nighttime ionosphere (∼ 100 km. The energy reflection coefficient and horizontal wave magnetic field on the ground surface are calculated. The results obtained are important for analysis of the extremely low-frequency and very low-frequency (ELF–VLF emission phenomena observed from both the satellites and the ground-based observatories.

  6. Maternal Caffeine Consumption and Infant Nighttime Waking: Prospective Cohort Study

    Science.gov (United States)

    Santos, Iná S.; Matijasevich, Alicia

    2012-01-01

    OBJECTIVE: Coffee and other caffeinated beverages are commonly consumed in pregnancy. In adults, caffeine may interfere with sleep onset and have a dose-response effect similar to those seen during insomnia. In infancy, nighttime waking is a common event. With this study, we aimed to investigate if maternal caffeine consumption during pregnancy and lactation leads to frequent nocturnal awakening among infants at 3 months of age. METHODS: All children born in the city of Pelotas, Brazil, during 2004 were enrolled on a cohort study. Mothers were interviewed at delivery and after 3 months to obtain information on caffeine drinking consumption, sociodemographic, reproductive, and behavioral characteristics. Infant sleeping pattern in the previous 15 days was obtained from a subsample. Night waking was defined as an episode of infant arousal that woke the parents during nighttime. Multivariable analysis was performed by using Poisson regression. RESULTS: The subsample included 885 of the 4231 infants born in 2004. All but 1 mother consumed caffeine in pregnancy. Nearly 20% were heavy consumers (≥300 mg/day) during pregnancy and 14.3% at 3 months postpartum. Prevalence of frequent nighttime awakeners (>3 episodes per night) was 13.8% (95% confidence interval: 11.5%–16.0%). The highest prevalence ratio was observed among breastfed infants from mothers consuming ≥300 mg/day during the whole pregnancy and in the postpartum period (1.65; 95% confidence interval: 0.86–3.17) but at a nonsignificant level. CONCLUSIONS: Caffeine consumption during pregnancy and by nursing mothers seems not to have consequences on sleep of infants at the age of 3 months. PMID:22473365

  7. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.

    Science.gov (United States)

    Haworth, Matthew; Heath, James; McElwain, Jennifer C

    2010-03-01

    The inverse relationship between stomatal density (SD: number of stomata per mm(2) leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI-[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2]. Methods Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2). T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI-[CO2] relationship is not apparent across the genus Callitris. Conclusions The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.

  8. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: Current status of knowledge and potential modelling approaches

    International Nuclear Information System (INIS)

    Massad, Raia Silvia; Loubet, Benjamin; Tuzet, Andree; Cellier, Pierre

    2008-01-01

    The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH 4 + ] apo ) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH 4 + ] apo . This [NH 4 + ] apo has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH 4 + ] apo . - A model for ammonia stomatal compensation point at the leaf level scale was developed

  9. Cognitive-behavioral versus non-directive therapy for preschoolers with severe nighttime fears and sleep-related problems.

    Science.gov (United States)

    Kahn, Michal; Ronen, Alon; Apter, Alan; Sadeh, Avi

    2017-04-01

    To compare the efficacy of a developmentally appropriate cognitive-behavioral therapy protocol for preschoolers with severe nighttime fears and sleep-related problems, with an active control treatment. Ninety children aged four to six years (63% boys) with severe nighttime fears and their parents were randomized to either cognitive-behavioral therapy including parent involved play (CBT-PIP) or to a structurally equivalent non-directive treatment (TEPT; triadic expressive play therapy). Treatment conditions were also equivalent in parent- and child-rated credibility and expectancy, and in therapist-rated compliance. Children and parents were assessed at baseline, during the first intervention week and four weeks after treatment. Measures included actigraphy, daily sleep logs, structured diagnostic interviews and parent questionnaires. Significant reductions were observed in nighttime fears and objectively and subjectively measured sleep disruptions in both intervention groups following treatment. Parent reports indicated more advantageous outcomes for CBT-PIP compared to TEPT, with greater reductions in sleep problems and co-sleeping as well as higher customer satisfaction in the former group. While CBT-PIP showed no significant advantage compared to the active control in reducing fears or in improving objectively measured sleep, it was significantly more beneficial in reducing the adverse behavioral features of nighttime fears. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    International Nuclear Information System (INIS)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future

  11. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status

    Science.gov (United States)

    Frederick C. Meinzer; Duncan D. Smith; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman

    2017-01-01

    Species’ differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this...

  12. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis.

    Science.gov (United States)

    Li, Chao; Wei, Zhiwei; Liang, Dong; Zhou, Shasha; Li, Yonghong; Liu, Changhai; Ma, Fengwang

    2013-09-01

    High salinity is a major abiotic factor that limits crop production. The dwarfing apple rootstock M.26 is sensitive to such stress. To obtain an apple that is adaptable to saline soils, we transformed this rootstock with a vacuolar Na(+)/H(+) antiporter, MdNHX1. Differences in salt tolerance between transgenic and wild-type (WT) rootstocks were examined under field conditions. We also compared differences when 'Naganofuji No. 2' apple was grafted onto these transgenic or WT rootstocks. Plants on the transgenic rootstocks grew well during 60 d of mild stress (100 mM NaCl) while the WT exhibited chlorosis, inhibited growth and even death. Compared with the untreated control, the stomatal density was greater in both non-grafted and grafted WT plants exposed to 200 mM NaCl. In contrast, that density was significantly decreased in leaves from grafted transgenic plants. At 200 mM NaCl, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and chlorophyll contents were markedly reduced in the WT, whereas the declines in those values were only minor in similarly stressed transgenic plants. Therefore, we conclude that overexpressing plants utilize a better protective mechanism for retaining higher photosynthetic capacity. Furthermore, this contrast in tolerance and adaptability to stress is linked to differences in stomatal behavior and photosynthetic rates. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    Science.gov (United States)

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  14. A novel SNP associated with nighttime pulse pressure in young-onset hypertension patients could be a genetic prognostic factor for cardiovascular events in a general cohort in Taiwan.

    Directory of Open Access Journals (Sweden)

    Hsin-Bang Leu

    Full Text Available BACKGROUND: Pulse pressure (PP is a risk factor for cardiovascular disease. It has been reported that ambulatory blood pressure (BP and nighttime BP parameters are heritable traits. However, the genetic association of pulse pressure and its clinical impact remain undetermined. METHOD AND RESULTS: We conducted a genome-wide association study of PP using ambulatory BP monitoring in young-onset hypertensive patients and found a significant association between nighttime PP and SNP rs897876 (p = 0.009 at chromosome 2p14, which contains the predicted gene FLJ16124. Young-onset hypertension patients carrying TT genotypes at rs897876 had higher nighttime PP than those with CT and CC genotypes (TT, 41.6 ± 7.3 mm Hg; CT, 39.1 ± 6.0 mm Hg; CC, 38.9 ± 6.3 mm Hg; p<0.05,. The T risk allele resulted in a cumulative increase in nighttime PP (β = 1.036 mm Hg, se. = 0.298, p<0.001 per T allele. An independent community-based cohort containing 3325 Taiwanese individuals (mean age, 50.2 years was studied to investigate the genetic impact of rs897876 polymorphisms in determining future cardiovascular events. After an average 7.79 ± 0.28 years of follow-up, the TT genotype of rs897876 was independently associated with an increased risk (in a recessive model of coronary artery disease (HR, 2.20; 95% CI, 1.20-4.03; p = 0.01 and total cardiovascular events (HR, 1.99; 95% CI, 1.29-3.06; p = 0.002, suggesting that the TT genotype of rs897876C, which is associated with nighttime pulse pressure in young-onset hypertension patients, could be a genetic prognostic factor of cardiovascular events in the general cohort. CONCLUSION: The TT genotype of rs897876C at 2p14 identified in young-onset hypertensive had higher nighttime PP and could be a genetic prognostic factor of cardiovascular events in the general cohort in Taiwan.

  15. Stomatal distribution, stomatal density and daily leaf movement in Acacia aroma (Leguminosae Distribución y densidad estomática y movimiento diario de la hoja en Acacia aroma (Leguminosae

    Directory of Open Access Journals (Sweden)

    Marcelo P. Hernández

    2010-12-01

    Full Text Available Acacia aroma Gillies ex Hook. & Arn. grows in the Chacoan and Yungas Biogeographic Provinces, Argentina. It has numerous medicinal applications, sweet and edible fruits, and it may be used as forage. The objective of the present contribution was to analyse the stomatal distribution and stomatal density on the secondary leaflet surfaces, in different parts of the leaf, and at different tree crown levels, establishing the leaf movement and environmental condition relationships. The work was performed with fresh material and herbarium specimens, using conventional anatomical techniques. Stomatal distribution on the secondary leaflet surfaces was established, and differences in stomatal density among basal, medium and apical leaflets were found. A decrease in stomatal density from the lower level to the upper level of the tree crown would be connected with that. The stomatal distribution and density appear related to the secondary leaflet shape and its position on the secondary rachis, interacting with the daily secondary leaflets and leaf movement, and the weather conditions. It is interesting that the medium value of stomata density were found in the middle part of the leaf and at the middle level of the tree crown. Original illustrations are given.Acacia aroma crece en las Provincias Biogeográficas Chaqueña y de las Yungas, Argentina. Este árbol posee numerosas aplicaciones en medicina popular, sus frutos son comestibles y puede ser usada como forraje. Los objetivos de la presente contribución fueron: establecer la distribución y densidad de los estomas en el folíolo secundario, en distintos folíolos secundarios de la misma hoja y en los folíolos secundarios de las hojas de la parte basal, media y superior de la copa del árbol, estableciendo relaciones con el movimiento diario de las hojas y condiciones ambientales. Para el estudio se utilizó material fresco y ejemplares de herbario empleando técnicas de anatomía convencionales. Se

  16. Gender differences in nighttime sleep and daytime napping as predictors of mortality in older adults: the Rancho Bernardo study.

    Science.gov (United States)

    Jung, Kyu-In; Song, Chan-Hee; Ancoli-Israel, Sonia; Barrett-Connor, Elizabeth

    2013-01-01

    Many studies suggest optimal sleep duration for survival is 7-8h/night. We report the gender-specific independent association of all-cause mortality with nighttime sleep and daytime nap duration in older adults who were followed for up to 19years. Between 1984 and 1987, 2001 community-dwelling, mostly retired, adults (1112 women), age 60-96years, answered questions about health, mood, medications, life-style, daytime napping, and nighttime sleep duration. Vital status was confirmed for 96% through July 2001. At baseline, men reported significantly longer nighttime sleep and daytime napping than women. In both men and women, nighttime sleep Napping ⩾30min was associated with prevalent depressed mood, coronary heart disease, and cancer. Of the group, 61% died over the next 19years, at an average age of 85.6years. Mortality risk was lowest among those sleeping 7-7.9h/night in both men and women. Multiple-adjusted analyses showed that increased mortality was associated with nighttime sleep ⩾9h in women (HR 1.51: 95% CI=1.05-2.18), and with daytime napping ⩾30min in men (HR 1.28: 95% CI, 1.00-1.64). Mechanisms for these differences are unknown. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Napping in College Students and Its Relationship with Nighttime Sleep

    Science.gov (United States)

    Ye, Lichuan; Hutton Johnson, Stacy; Keane, Kathleen; Manasia, Michael; Gregas, Matt

    2015-01-01

    Objective: To examine the habit of napping and its relationship with nighttime sleep in college students. Participants: Four hundred and forty undergraduate students who responded to an anonymous online survey in April 2010. Methods: Three questions were asked to determine the frequency, length, and timing of napping during the past month. Sleep…

  18. JST Thesaurus Headwords and Synonyms: vesicular stomatitis virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term vesicular stomatitis virus 名詞 一般 ...* * * * 水疱性口内炎ウイルス スイホウセイコウナイエンウイルス スイホーセイコーナイエンウイルス Thesaurus2015 200906056003651861 C LS07 UNKNOWN_2 vesicular stomatitis virus

  19. Decision Support Tool for Nighttime Construction and Air Quality - User’s Guide

    Science.gov (United States)

    2017-11-01

    The Texas Department of Transportation (TxDOT) Research Project 0-6864 Investigate the Air Quality Benefits of Nighttime Construction in Non-attainment Counties investigated the potential air quality benefits of shifting construction/maintenance acti...

  20. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  1. Homicides with direct and indirect links to the night-time economy.

    Science.gov (United States)

    Tomsen, Stephen

    2018-06-11

    Alcohol use and homicide are a wide community concern with particular interest in understanding and preventing attacks (e.g. 'one punch' male on male attacks) in commercial nightlife settings with high levels of collective drinking. There is insufficient knowledge of the long-term patterns in this violence or the relationship between public drinking and flow on violence in other social settings. Alcohol-related homicides were those in which alcohol consumption was a contributing factor. Those also linked to purchase or consumption in locations where alcohol is sold after dark were classified as night-time economy related. The study comprised a first-hand analysis of files in the archive of the Australian National Homicide Monitoring Program in 2 years with a decade gap (1998/1999-2007/2008), and it classified 73 of all 238 alcohol-related incidents by direct or indirect relation to public nightlife settings. Related homicides in these years were not highly concentrated in developed night-time economies, but more spread outside major nightlife zones. Indirectly related killings were even more dispersed and included more women victims killed in domestic settings. There is a consistent though dispersed relationship between heavy public drinking at night and homicide. Concerns about homicide and night-time drinking leisure with mostly male victims attacked in well-known areas of busy city nightlife, must also consider the broader gendered patterns of 'flow on' nightlife-related incidents, including fatal semi-private and domestic violence that is indirectly but importantly related to drinking and alcohol purchase in public commercial nightlife. © 2018 Australasian Professional Society on Alcohol and other Drugs.

  2. Temperature Inversions and Nighttime Convection in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Spiga, A.; Lewis, S.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Häusler, B.

    2013-12-01

    We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The sharp temperature minimum at the base of the midlevel inversion suggests the presence of a thin water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected

  3. Delineating Spatial Patterns in Human Settlements Using VIIRS Nighttime Light Data: A Watershed-Based Partition Approach

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2018-03-01

    Full Text Available As an informative proxy measure for a range of urbanization and socioeconomic variables, satellite-derived nighttime light data have been widely used to investigate diverse anthropogenic activities in human settlements over time and space from the regional to the national scale. With a higher spatial resolution and fewer over-glow and saturation effects, nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS instrument with day/night band (DNB, which is on the Suomi National Polar-Orbiting Partnership satellite (Suomi-NPP, may further improve our understanding of spatiotemporal dynamics and socioeconomic activities, particularly at the local scale. Capturing and identifying spatial patterns in human settlements from VIIRS images, however, is still challenging due to the lack of spatially explicit texture characteristics, which are usually crucial for general image classification methods. In this study, we propose a watershed-based partition approach by combining a second order exponential decay model for the spatial delineation of human settlements with VIIRS-derived nighttime light images. Our method spatially partitions the human settlement into five different types of sub-regions: high, medium-high, medium, medium-low and low lighting areas with different degrees of human activity. This is primarily based on the local coverage of locally maximum radiance signals (watershed-based and the rank and magnitude of the nocturnal radiance signal across the whole region, as well as remotely sensed building density data and social media-derived human activity information. The comparison results for the relationship between sub-regions with various density nighttime brightness levels and human activities, as well as the densities of different types of interest points (POIs, show that our method can distinctly identify various degrees of human activity based on artificial nighttime radiance and ancillary data. Furthermore

  4. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens

    Science.gov (United States)

    Chater, Caspar C.; Kamisugi, Yasuko

    2016-01-01

    The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102

  5. The Value of Darkness : A Moral Framework for Urban Nighttime Lighting

    NARCIS (Netherlands)

    Stone, T.W.

    2017-01-01

    The adverse effects of artificial nighttime lighting, known as light pollution, are emerging as an important environmental issue. To address these effects, current scientific research focuses mainly on identifying what is bad or undesirable about certain types and uses of lighting at night. This

  6. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: Current status of knowledge and potential modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Massad, Raia Silvia [Institut National de la Recherche Agronomique (INRA), Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)], E-mail: massad@grignon.inra.fr; Loubet, Benjamin; Tuzet, Andree; Cellier, Pierre [Institut National de la Recherche Agronomique (INRA), Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)

    2008-08-15

    The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH{sub 4}{sup +}]{sub apo}) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH{sub 4}{sup +}]{sub apo}. This [NH{sub 4}{sup +}]{sub apo} has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH{sub 4}{sup +}]{sub apo}. - A model for ammonia stomatal compensation point at the leaf level scale was developed.

  7. Environmental controls on ozone fluxes in a poplar plantation in Western Europe

    DEFF Research Database (Denmark)

    Zona, D.; Gioli, B.; Fares, S.

    2014-01-01

    development. Largest O-3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O-3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O...

  8. Dry eye signs and symptoms in night-time workers

    OpenAIRE

    Ali Makateb; Hamed Torabifard

    2017-01-01

    Purpose: To determine the effect of night-time working on dry eye signs and symptoms. Methods: A total of 50 healthy subjects completed a dry eye questionnaire and underwent clinical examinations including basic Schirmer's test and tear breakup time (TBUT) test on two consecutive days, before and after the night shift (12-hrs night-shift). Results: All dry eye symptoms were aggravated significantly after the night shift (P 

  9. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  10. Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orentation and growth with CO2 enrichment in the C4 species Paspalum dilatatum

    NARCIS (Netherlands)

    Soares, A.S.; Discoll, S.P.; Olmos, E.; Harbinson, J.; Arrabaca, M.C.

    2008-01-01

    Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 µl l¿1 CO2. Plant biomass was

  11. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to lowe VPD as a tool to recognize the mechanism of disturbed stomatal functioning

    NARCIS (Netherlands)

    Ali Niaei Fard, S.; Meeteren, van U.

    2014-01-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling

  12. Playing it safe: Patron safety strategies and experience of violence in night-time entertainment districts.

    Science.gov (United States)

    Zhou, Jin; Droste, Nicolas; Curtis, Ashlee; Zinkiewicz, Lucy; Miller, Peter

    2018-03-01

    Incidences of violence are elevated in night-time entertainment districts. Research suggests that safety-related behavioural strategies adopted while drinking can reduce negative alcohol-related outcomes. The current study investigates the use of safety strategies and its association with experiences of violence among patrons from the general population. Patron interviews (N = 3949) were conducted in and around licenced venues in Newcastle (New South Wales) and Geelong (Victoria) during peak trading hours (Friday and Saturday, 21:00-01:00 h). Participants (mean age = 24.3, SD = 5.8; male 54.4%) were asked to report what measures, if any, they used to keep safe when drinking and whether they had been involved in a violent incident in the last 12 months. After controlling for patron demographics and location, the use of multiple (more than one) safety strategies was significantly associated with reduced odds of involvement in a violent incident (odds ratio = 0.64, 95% confidence interval 0.49-0.85, P = 0.002). Significant gender differences were observed in the number and type of safety strategies reported. Increasing the number of safety-related behaviours during drinking occasions is associated with a small but significant reduction in experiencing alcohol-related harms, such as violence. [Zhou J, Droste N, Curtis A, Zinkiewicz L, Miller P. Playing it safe: Patron safety strategies and experience of violence in night-time entertainment districts. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  13. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    Science.gov (United States)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  14. Universal time dependence of nighttime F region densities at high latitudes

    International Nuclear Information System (INIS)

    Beaujardiere, O.D.L.; Wickwar, V.B.; Caudal, G.

    1985-01-01

    Coordinated EISCAT, Chatanika, and Millstone Hill incoherent scatter radar observations have revealed that in the auroral zone, the nighttime F region densities vary substantially with the longitude of the observing site: EISCAT's densities are the largest and Millstone Hill's are the lowest. The nighttime F region densities measured by the individual radars are not uniform: the regions where the densities are maximum are the so-called ''blobs'' or ''patches'' that have been reported previously. The observations are consistent with the hypothesis that the nighttime densities are produced in significant amounts not by particle precipitation, but by solar EUV radiation, and that they have been transported across the polar cap. The observed differences can be explained by the offset of the geographic and geomagnetic poles. A larger portion of the magnetospheric convection pattern is sunlit when EISCAT is in the midnight sector than when Chatanika is. In winter, when Millstone Hill is in the midnight sector, almost all the auroral oval is in darkness. This universal time effect, which was observed on all coordinated three-radar experiments (September 1981 to February 1982), is illustrated using two periods of coincident radar and satellite observations: November 18--19, and December 15--16, 1981. These two periods were selected because they corresponded to relatively steady conditions. Dynamics Explorer (DE) measurements are used to aid in interpreting the radar observations. De 1 auroral images show what portion of the oval was sunlit. DE 2 data are used to measure the ion drift across the polar cap. Because the altitude of the ionization peak was high, the decay time of the F region density was substantially longer than the transit time across the polar cap

  15. The relationship between reference canopy conductance and simplified hydraulic architecture

    Science.gov (United States)

    Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel

    2009-06-01

    Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.

  16. Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves

    International Nuclear Information System (INIS)

    Suarez Moya, J.; Fernandez Gonzalez, J.

    1984-01-01

    The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs

  17. When thinking impairs sleep : Trait, daytime and nighttime repetitive thinking in insomnia

    NARCIS (Netherlands)

    Lancee, J.; Eisma, M.C.; van Zanten, K.B.; Topper, M.

    2017-01-01

    We performed two studies in individuals with sleep problems to investigate trait, daytime, and nighttime repetitive thinking as risk factors for insomnia. In Study 1, 139 participants completed questionnaires on worry, rumination, insomnia, anxiety, depression, and a sleep diary. Trait rumination

  18. Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants.

    Science.gov (United States)

    Takahashi, Misa; Konaka, Daisuke; Sakamoto, Atsushi; Morikawa, Hiromichi

    2005-01-01

    In order to investigate nocturnal uptake and assimilation of NO2 by C3 and crassulacean acid metabolism (CAM) plants, they were fumigated with 4 microl l(-1) 15N-labeled nitrogen dioxide (NO2) for 8 h. The amount of NO2 and assimilation of NO2 by plants were determined by mass spectrometry and Kjeldahl-nitrogen based mass spectrometry, respectively. C3 plants such as kenaf (Hibiscus cannabinus), tobacco (Nicotiana tabacum) and ground cherry (Physalis alkekengi) showed a high uptake and assimilation during daytime as high as 1100 to 2700 ng N mg(-1) dry weight. While tobacco and ground cherry strongly reduced uptake and assimilation of NO2 during nighttime, kenaf kept high nocturnal uptake and assimilation of NO2 as high as about 1500 ng N mg(-1) dry weight. Stomatal conductance measurements indicated that there were no significant differences to account for the differences in the uptake of NO2 by tobacco and kenaf during nighttime. CAM plants such as Sedum sp., Kalanchoe blossfeldiana (kalanchoe) and Aloe arborescens exhibited nocturnal uptake and assimilation of NO2. However, the values of uptake and assimilation of NO2 both during daytime and nighttime was very low (at most about 500 ng N mg(-1) dry weight) as compared with those of above mentioned C3 plants. The present findings indicate that kenaf is an efficient phytoremediator of NO2 both during daytime and nighttime.

  19. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory

    Science.gov (United States)

    Kimberly A. Novick; Chelcy F. Miniat; James M. Vose

    2016-01-01

    We merge concepts from stomatal optimization theory and cohesion–tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning; (2) ‘hydraulic limitation’ of water movement from the roots to the leaves...

  20. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K and 3-Kinase (PI3K Inhibitors on Stomatal Responses to Environmental Signals

    Directory of Open Access Journals (Sweden)

    Koh Iba

    2017-05-01

    Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

  1. Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter

    Science.gov (United States)

    Li, Siwei; Joseph, Everette; Min, Qilong; Yin, Bangsheng; Sakai, Ricardo; Payne, Megan K.

    2017-06-01

    Monitoring PM2.5 (particulate matter with aerodynamic diameter d ≤ 2.5 µm) mass concentration has become of more importance recently because of the negative impacts of fine particles on human health. However, monitoring PM2.5 during cloudy and nighttime periods is difficult since nearly all the passive instruments used for aerosol remote sensing are not able to measure aerosol optical depth (AOD) under either cloudy or nighttime conditions. In this study, an empirical model based on the regression between PM2.5 and the near-surface backscatter measured by ceilometers was developed and tested using 6 years of data (2006 to 2011) from the Howard University Beltsville Campus (HUBC) site. The empirical model can explain ˜ 56, ˜ 34 and ˜ 42 % of the variability in the hourly average PM2.5 during daytime clear, daytime cloudy and nighttime periods, respectively. Meteorological conditions and seasons were found to influence the relationship between PM2.5 mass concentration and the surface backscatter. Overall the model can explain ˜ 48 % of the variability in the hourly average PM2.5 at the HUBC site when considering the seasonal variation. The model also was tested using 4 years of data (2012 to 2015) from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site, which was geographically and climatologically different from the HUBC site. The results show that the empirical model can explain ˜ 66 and ˜ 82 % of the variability in the daily average PM2.5 at the ARM SGP site and HUBC site, respectively. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring under cloudy and nighttime conditions. Since ceilometers are used broadly over the world, they may provide an important supplemental source of information of aerosols to determine surface PM2.5 concentrations.

  2. Identifying the tundra-forest border in the stomate record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, B.C.S. [Minnesota Univ., Minneapolis, MN (United States). Limnological Research Center; MacDonald, G.M. [California Univ., Los Angeles, CA (United States). Dept. of Botanical Sciences; Moser, K.A. [McMaster Univ., Hamilton, ON (Canada)

    1996-05-01

    The relationship between conifer stomata and existing vegetation across tundra, forest-tundra, and closed zones in the Yellowknife area of the Northwest Territories was studied. Conifer stomata were identified in surface samples from lakes in the treeline zone, but were absent in samples from tundra lakes. Stomate analysis was recorded and the results were presented in a concentration diagram plotting stomate concentrations according to vegetation zone. Conifer stomate analysis was not able to resolve differences between forest-tundra and closed forest. Nevertheless, it was suggested that stomate analysis will become an important technique supplementing pollen analysis for reconstructing past tree-line changes since the presence of stomata in lakes make it possible to separate the tundra from forest-tundra and closed forest. The limited dispersal of conifer stomata permitted a better resolution of tree-line boundaries than did pollen. 13 refs., 3 figs.

  3. Unknotting night-time muscle cramp: a survey of patient experience, help-seeking behaviour and perceived treatment effectiveness

    Directory of Open Access Journals (Sweden)

    Blyton Fiona

    2012-03-01

    Full Text Available Abstract Background Night-time calf cramping affects approximately 1 in 3 adults. The aim of this study was to explore the experience of night-time calf cramp; if and where people seek treatment advice; and perceived treatment effectiveness. Methods 80 adults who experienced night-time calf cramp at least once per week were recruited from the Hunter region, NSW, Australia through newspaper, radio and television advertisements. All participants completed a pilot-tested survey about muscle cramp. Quantitative data were analysed with independent-sample t-tests, Chi square tests and Fisher's tests. Qualitative data were transcribed and sorted into categories to identify themes. Results Median recalled age of first night-time calf cramp was 50 years. Most participants recalled being awoken from sleep by cramping, and experiencing cramping of either calf muscle, calf-muscle soreness in the days following cramp and cramping during day-time. Despite current therapies, mean usual pain intensity was 66 mm on a 100 mm visual analogue scale. Participants described their cramps as being 'unbearable', 'unmanageable' and 'cruel'. One participant stated that 'sometimes I just wish I could cut my legs open' and another reported 'getting about 2 h sleep a night due to cramps'. Most participants had sought advice about their night-time calf cramps from a health professional. Participants identified 49 different interventions used to prevent night-time calf cramp. Of all treatment ratings, 68% described the intervention used to prevent cramp as being 'useless' or of 'a little help'. Of 14 participants who provided additional information regarding their use of quinine, eight had a current prescription of quinine for muscle cramp at the time of the survey. None had been asked by their prescribing doctor to stop using quinine. Conclusion Night time calf cramps typically woke sufferers from sleep, affected either leg and caused ongoing pain. Most participants

  4. Sensitivity analysis of a parameterization of the stomatal component of the DO3SE model for Quercus ilex to estimate ozone fluxes

    International Nuclear Information System (INIS)

    Alonso, Rocio; Elvira, Susana; Sanz, Maria J.; Gerosa, Giacomo; Emberson, Lisa D.; Bermejo, Victoria; Gimeno, Benjamin S.

    2008-01-01

    A sensitivity analysis of a proposed parameterization of the stomatal conductance (g s ) module of the European ozone deposition model (DO 3 SE) for Quercus ilex was performed. The performance of the model was tested against measured g s in the field at three sites in Spain. The best fit of the model was found for those sites, or during those periods, facing no or mild stress conditions, but a worse performance was found under severe drought or temperature stress, mostly occurring at continental sites. The best performance was obtained when both f phen and f SWP were included. A local parameterization accounting for the lower temperatures recorded in winter and the higher water shortage at the continental sites resulted in a better performance of the model. The overall results indicate that two different parameterizations of the model are needed, one for marine-influenced sites and another one for continental sites. - No redundancy between phenological and water-related modifying functions was found when estimating stomatal behavior of Holm oak

  5. Investigation of the effect of the rebamipide mouthwash on the crisis of the stomatitis induced by the cancer chemotherapy and/or radiotherapy

    International Nuclear Information System (INIS)

    Kawata, Keishi; Hanawa, Takehisa; Hanawa, Kazumi

    2001-01-01

    Stomatitis is well-known as one of the undesirable side effects induced by high and/or multiple dosing of cytotoxic drugs such as 5-fluorouracil (5-FU). Stomatitis causes pain in the oral cavity, impaired swallowing or loss of appetite, and finally, lowering of the quality of life (QOL) of patients. In this study, we attempted to apply a new mouthwash containing rebamipide (REB) which is known as the anti-activated oxygen agent. Rebamipide mouthwash (REB-M) showed the effectiveness to the crisis of the stomatitis during the cancer chemotherapy and/or radiotherapy. (author)

  6. Nitric Oxide (NO) Measurements in Stomatal Guard Cells.

    Science.gov (United States)

    Agurla, Srinivas; Gayatri, Gunja; Raghavendra, Agepati S

    2016-01-01

    The quantitative measurement of nitric oxide (NO) in plant cells acquired great importance, in view of the multifaceted function and involvement of NO as a signal in various plant processes. Monitoring of NO in guard cells is quite simple because of the large size of guard cells and ease of observing the detached epidermis under microscope. Stomatal guard cells therefore provide an excellent model system to study the components of signal transduction. The levels and functions of NO in relation to stomatal closure can be monitored, with the help of an inverted fluorescence or confocal microscope. We can measure the NO in guard cells by using flouroprobes like 4,5-diamino fluorescein diacetate (DAF-2DA). This fluorescent dye, DAF-2DA, is cell permeable and after entry into the cell, the diacetate group is removed by the cellular esterases. The resulting DAF-2 form is membrane impermeable and reacts with NO to generate the highly fluorescent triazole (DAF-2T), with excitation and emission wavelengths of 488 and 530 nm, respectively. If time-course measurements are needed, the epidermis can be adhered to a cover-glass or glass slide and left in a small petri dishes. Fluorescence can then be monitored at required time intervals; with a precaution that excitation is done minimally, only when a fluorescent image is acquired. The present method description is for the epidermis of Arabidopsis thaliana and Pisum sativum and should work with most of the other dicotyledonous plants.

  7. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  8. Safety, surveillance and policing in the night-time economy: a visitor perspective

    NARCIS (Netherlands)

    Brands, J.

    2014-01-01

    The current doctoral thesis takes particular interest in the city-centre night-time economy (NTE), against a background of literatures that link economic vitality of city-centres, consumption and safety to greater need for surveillance and policing. Increasingly, nightlife is being problematized in

  9. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  10. Sleeping position and reported night-time asthma symptoms and medication.

    Science.gov (United States)

    Kalolella, Admirabilis Beno

    2016-01-01

    A 49 years old man, known case of bronchial asthma for 43 years, with history of frequent asthmatic attacks, usually responding to double dose of intravenous Aminophylline and double dose of Hydrocortisone was received at medical emergency care unit at midnight with night-time asthma attack. The attack did not settle with Aminophylline single Intravenous injection. He was then admitted and put in supine sleep position for re-evaluation while his asthma symptoms were monitored while waiting for the medical officer's evaluation of his asthma status. After 3 hours of observation, asthma symptoms were relieved, and patient was discharged home and advised to sleep in supine position throughout every night to prevent asthma symptoms. The patient was followed up through nighttime sleep diary for one month. After one month period of monitoring, the patient had significance reduction in asthma symptoms and reduced night time medication, reduced episodes of night awakening due to asthma symptoms, and improved capability for normal works. This case report describes a novel approach of management and prophylaxis of asthmatic episodes through sleeping position that reduces and control asthma symptoms resulting in reduced drug consumption.

  11. Stomatal and pavement cell density linked to leaf internal CO2 concentration

    Czech Academy of Sciences Publication Activity Database

    Šantrůček, Jiří; Vráblová, M.; Šimková, Marie; Hronková, Marie; Drtinová, M.; Květoň, J.; Vrábl, D.; Kubásek, J.; Macková, J.; Wiesnerová, Dana; Neuwithová, J.; Schreiber, L.

    2014-01-01

    Roč. 114, č. 2 (2014), s. 191-202 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP501/12/1261 Institutional support: RVO:60077344 Keywords : Stomatal density * Stomata development * Pavement cells Subject RIV: CE - Biochemistry Impact factor: 3.654, year: 2014

  12. Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices

    Science.gov (United States)

    Royer, D. L.; Wing, S. L.; Beerling, D. J.

    2001-05-01

    Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.

  13. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 2 HvSLAC1 with grain yield for increasing salinity tolerance in barley

    Directory of Open Access Journals (Sweden)

    Xiaohui eLiu

    2014-11-01

    Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.

  14. Recalibrating the Ginkgo Stomatal Index Proxy for Past CO2 with Herbarium Specimens

    Science.gov (United States)

    Conde, G. D.; Retallack, G.

    2015-12-01

    The stomatal index of plant cuticles is inversely related to atmospheric CO2 concentrations, as calibrated from greenhouse experiments and herbarium specimens. Such calibration data for Ginkgo biloba are available for the ongoing rise in atmospheric CO2 and for high levels of CO2 anticipated in the future, but lacking for low CO2 levels of preindustrial and glacial ages. The oldest modern specimen that we have been able to obtain consists of leaf fragments collected in 1829 and provided by Arne Anderberg from the Swedish Natural History Museum. The specimen was labeled "Argentina", but also "Hortus Botanicus Augustinus", a garden founded in 1638 in Amsterdam, Netherlands. Ginkgo has a very thin cuticle that is difficult to prepare, but images very similar to cuticular preparation can be obtained by backscatter SEM imagery. We also obtained secondary SEM images of the same areas and counted 13 images with 6,184 cells from five leaf fragments. Our analyses yield a stomatal index of 10.9 ± 0.9 % for an atmospheric CO2 of 286 ppm, as determined by ice core data from Ciais and Sabine for IPCC-2013. This value is lower than from previous calibration curves for this level of CO2 and changes their curvature. With additional late nineteenth, twentieth and twenty-first century leaves, we can improve both the precision and lower limits of the transfer function for atmospheric CO2 from Ginkgo stomatal index last revised in 2009.

  15. Satellite instrument provides nighttime sensing capability

    Science.gov (United States)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  16. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    Directory of Open Access Journals (Sweden)

    Jianqiang Wang

    2013-12-01

    Full Text Available The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS. This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  17. Nighttime Fire/Smoke Detection System Based on a Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2013-01-01

    Full Text Available Currently, video surveillance-based early fire smoke detection is crucial to the prevention of large fires and the protection of life and goods. To overcome the nighttime limitations of video smoke detection methods, a laser light can be projected into the monitored field of view, and the returning projected light section image can be analyzed to detect fire and/or smoke. If smoke appears within the monitoring zone created from the diffusion or scattering of light in the projected path, the camera sensor receives a corresponding signal. The successive processing steps of the proposed real-time algorithm use the spectral, diffusing, and scattering characteristics of the smoke-filled regions in the image sequences to register the position of possible smoke in a video. Characterization of smoke is carried out by a nonlinear classification method using a support vector machine, and this is applied to identify the potential fire/smoke location. Experimental results in a variety of nighttime conditions demonstrate that the proposed fire/smoke detection method can successfully and reliably detect fires by identifying the location of smoke.

  18. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand

    2018-01-01

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  19. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala Abdulaziz Hussien

    2018-05-31

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  20. New stomatal flux-based critical levels for ozone effects on vegetation

    Science.gov (United States)

    Mills, Gina; Pleijel, Håkan; Braun, Sabine; Büker, Patrick; Bermejo, Victoria; Calvo, Esperanza; Danielsson, Helena; Emberson, Lisa; Fernández, Ignacio González; Grünhage, Ludger; Harmens, Harry; Hayes, Felicity; Karlsson, Per-Erik; Simpson, David

    2011-09-01

    The critical levels for ozone effects on vegetation have been reviewed and revised by the LRTAP Convention. Eight new or revised critical levels based on the accumulated stomatal flux of ozone (POD Y, the Phytotoxic Ozone Dose above a threshold flux of Y nmol m -2 PLA s -1, where PLA is the projected leaf area) have been agreed. For each receptor, data were combined from experiments conducted under naturally fluctuating environmental conditions in 2-4 countries, resulting in linear dose-response relationships with response variables specific to each receptor ( r2 = 0.49-0.87, p Norway spruce. For (semi-)natural vegetation, the critical level for effects on productive and high conservation value perennial grasslands was based on effects on important component species of the genus Trifolium (clover species). These critical levels can be used to assess protection against the damaging effects of ozone on food security, important ecosystem services provided by forest trees (roundwood production, C sequestration, soil stability and flood prevention) and the vitality of pasture.

  1. Sensitivity analysis of a parameterization of the stomatal component of the DO{sub 3}SE model for Quercus ilex to estimate ozone fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Rocio [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: rocio.alonso@ciemat.es; Elvira, Susana [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: susana.elvira@ciemat.es; Sanz, Maria J. [Fundacion CEAM, Charles Darwin 14, 46980 Paterna, Valencia (Spain)], E-mail: mjose@ceam.es; Gerosa, Giacomo [Department of Mathematics and Physics, Universita Cattolica del Sacro Cuore, via Musei 41, 25121 Brescia (Italy)], E-mail: giacomo.gerosa@unicatt.it; Emberson, Lisa D. [Stockholm Environment Institute, University of York, York YO 10 5DD (United Kingdom)], E-mail: lde1@york.ac.uk; Bermejo, Victoria [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: victoria.bermejo@ciemat.es; Gimeno, Benjamin S. [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: benjamin.gimeno@ciemat.es

    2008-10-15

    A sensitivity analysis of a proposed parameterization of the stomatal conductance (g{sub s}) module of the European ozone deposition model (DO{sub 3}SE) for Quercus ilex was performed. The performance of the model was tested against measured g{sub s} in the field at three sites in Spain. The best fit of the model was found for those sites, or during those periods, facing no or mild stress conditions, but a worse performance was found under severe drought or temperature stress, mostly occurring at continental sites. The best performance was obtained when both f{sub phen} and f{sub SWP} were included. A local parameterization accounting for the lower temperatures recorded in winter and the higher water shortage at the continental sites resulted in a better performance of the model. The overall results indicate that two different parameterizations of the model are needed, one for marine-influenced sites and another one for continental sites. - No redundancy between phenological and water-related modifying functions was found when estimating stomatal behavior of Holm oak.

  2. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model

    Science.gov (United States)

    Zheng, Qiming; Jiang, Ruowei; Wang, Ke; Huang, Lingyan; Ye, Ziran; Gan, Muye; Ji, Biyong

    2018-03-01

    Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.

  3. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  4. Quantitative Evaluation of Stomatal Cytoskeletal Patterns during the Activation of Immune Signaling in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Masaki Shimono

    Full Text Available Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of

  5. Modern pollen and stomate deposition in lake surface sediments from across the treeline on the Kola Peninsula, Russia.

    Science.gov (United States)

    Gervais, B R.; MacDonald, G M.

    2001-04-01

    We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.

  6. The impact of time of delivery on gestations complicated by preterm premature rupture of membranes: daytime versus nighttime.

    Science.gov (United States)

    Moussa, Hind; Hosseini Nasab, Susan; Fournie, David; Ontiveros, Alejandra; Alkawas, Rim; Chauhan, Suneet; Blackwell, Sean; Sibai, Baha

    2018-04-09

    Perinatal death, in particular intrapartum stillbirth and short-term neonatal death, as well as neonatal short term and long term morbidity have been associated with the time of day that the birth occurs. Indeed, evening and nighttime deliveries were associated with an increased risk of an adverse perinatal outcome when compared to similar daytime deliveries. Impact of shift change, as well as time of day delivery have been extensively studied in the context of maternal and neonatal complications of cesarean delivery, however, no studies were previously performed on timing of delivery and its effect on the outcome of pregnancies complicated by preterm premature rupture of membranes. Our objective was to compare obstetric, neonatal as well as long-term outcomes between women delivered in the daytime versus nighttime, in singleton gestations whose pregnancies were complicated by preterm premature rupture of membranes. This was a secondary analysis of a trial of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network "A Randomized Clinical Trial of the Beneficial Effects of Antenatal Magnesium Sulfate for the Prevention of Cerebral Palsy". For this analysis, the time of delivery was divided into the daytime, from 07:01 to 19:00, and the nighttime, from 19:01 to 07:00. Epidemiological, obstetric characteristics as well as neonatal and long-term outcomes were compared between deliveries occurring during the daytime versus the nighttime periods. Inclusion criteria consisted of singleton gestations diagnosed with preterm premature rupture of membranes (PPROM). Multifetal gestations and pregnancies with preterm labor without preterm premature rupture of membranes were excluded. A total of 1752 patients met inclusion criteria, 881 delivering during the daytime, while 871 during the nighttime. There were no differences in demographic maternal variables. There were no differences in the number of patients

  7. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  8. Assessing Light Pollution in China Based on Nighttime Light Imagery

    OpenAIRE

    Wei Jiang; Guojin He; Tengfei Long; Chen Wang; Yuan Ni; Ruiqi Ma

    2017-01-01

    Rapid urbanization and economic development inevitably lead to light pollution, which has become a universal environmental issue. In order to reveal the spatiotemporal patterns and evolvement rules of light pollution in China, images from 1992 to 2012 were selected from the Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) and systematically corrected to ensure consistency. Furthermore, we employed a linear regression trend method and nighttime light index method...

  9. Age differences in workplace intervention effects on employees' nighttime and daytime sleep.

    Science.gov (United States)

    Lee, Soomi; Almeida, David M; Berkman, Lisa; Olson, Ryan; Moen, Phyllis; Buxton, Orfeu M

    2016-12-01

    To examine the effects of a workplace flexibility/support intervention on employees' sleep quantity and quality during nights and days and whether the effects differ by employee age. Cluster-randomized controlled trial. Information technology industry workplaces. US employees ( M age = 46.9 years) at an information technology firm who provided actigraphy at baseline and a 12-month follow-up (N = 396; n = 195 intervention, n = 201 control). The Work, Family, and Health Study intervention aimed to increase workplace flexibility and support. The intervention consisted of facilitated discussions to help employees increase control over when and where they work as well as manager-specific training sessions to increase manager support for employees' work-family issues. Nighttime sleep duration, wake after sleep onset (WASO), and nap duration were measured with wrist actigraphy. Day-to-day variability in these variables (min 2 ) was also estimated. Intervention employees increased nighttime sleep duration at 12 months, by 9 minutes per day, relative to control employees. There were interaction effects between the intervention and age on daytime nap duration and day-to-day variability in WASO. Older employees (56-70 years) in the intervention condition decreased nap duration at 12 months relative to older employees in the control condition. Older employees in the intervention condition also exhibited a greater decrease in day-to-day variability of WASO at 12 months compared with their baseline. The workplace flexibility/support intervention was effective in enhancing employees' sleep health by increasing nighttime sleep duration. Furthermore, the intervention was particularly effective for older employees in decreasing their daytime nap duration and day-to-day variability in WASO.

  10. Tracking Dynamic Changes and Monitoring Socioeconomic Parameters in Algeria Between 1993 and 2012, Using Nighttime Light Remote Sensing

    Science.gov (United States)

    Faouzi, B.; Washaya, P.

    2017-09-01

    This paper is based on using DMSP-OLS data from satellites nighttime light observations to detect both sources of light emissions in Algeria from human settlement areas and gas flaring from oil-extraction and natural gas production. We used the time series of data from DMSP-OLS images to examine the spatial and temporal characteristics of urban development in 48 Algerian provinces from 1993 to 2012. A systematic nighttime light calibration method was used to improve the consistency and comparability of the DSMPOSL images and then a separation is made between light detected from human settlements and light detected from gas flaring in order to allow us to study human settlements without other light emissions and then assess the suitability of using DMSP data in southern Algeria and its ability to monitor gas flaring. Linear regression methods were developed to identify the dynamic change of nighttime light and estimated its growth directions at pixel level. This work is the first to use nighttime light observations to detect and monitor the growth of human settlements in North Africa. In this study, we made use of DMSP-OLS data as a return ticket to the years of crises and we found the most affected provinces during that period. The DMSP-OLS data proved to be an index of growth in the economy during the period of stability in Algeria expressed by positive dynamic changes in the lighted area in all Algerian provinces. We used NTL data as an alternative to annual growth indexes for each province, which are unavailable, and its help as a monitoring system for socioeconomic parameters to fill the gap of data availability. We also proposed nighttime light remote sensing data as a useful tool to control and reduce CO2 emissions in Algeria's petroleum sector.

  11. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  12. Remote sensing of PM2.5 during cloudy and nighttime periods using ceilometer backscatter

    Directory of Open Access Journals (Sweden)

    S. Li

    2017-06-01

    Full Text Available Monitoring PM2.5 (particulate matter with aerodynamic diameter d ≤  2.5 µm mass concentration has become of more importance recently because of the negative impacts of fine particles on human health. However, monitoring PM2.5 during cloudy and nighttime periods is difficult since nearly all the passive instruments used for aerosol remote sensing are not able to measure aerosol optical depth (AOD under either cloudy or nighttime conditions. In this study, an empirical model based on the regression between PM2.5 and the near-surface backscatter measured by ceilometers was developed and tested using 6 years of data (2006 to 2011 from the Howard University Beltsville Campus (HUBC site. The empirical model can explain  ∼  56,  ∼  34 and  ∼  42 % of the variability in the hourly average PM2.5 during daytime clear, daytime cloudy and nighttime periods, respectively. Meteorological conditions and seasons were found to influence the relationship between PM2.5 mass concentration and the surface backscatter. Overall the model can explain  ∼  48 % of the variability in the hourly average PM2.5 at the HUBC site when considering the seasonal variation. The model also was tested using 4 years of data (2012 to 2015 from the Atmospheric Radiation Measurement (ARM Southern Great Plains (SGP site, which was geographically and climatologically different from the HUBC site. The results show that the empirical model can explain  ∼  66 and  ∼  82 % of the variability in the daily average PM2.5 at the ARM SGP site and HUBC site, respectively. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring under cloudy and nighttime conditions. Since ceilometers are used broadly over the world, they may provide an important supplemental source of information of aerosols to determine surface PM2.5 concentrations.

  13. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  14. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  15. Detecting and Characterizing Nighttime Lighting Using Multispectral and Hyperspectral Imaging

    Science.gov (United States)

    2012-12-01

    are a wide variety of statistically based methods for analysis of MSI data, but they can also be analyzed to some degree using MSI spectral signatures...the received signal for the detection of clouds at night using moonlight . The implementation of the PMT system allowed for an unintentional ability...been known since the 1970s, the early night-time mapping products were derived from analog data ( film ). Elvidge et al. (1997) presented the first

  16. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    Science.gov (United States)

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Nighttime vision-based car detection and tracking for smart road lighting system

    NARCIS (Netherlands)

    Matsiki, D.; Shrestha, P.; With, de P.H.N.

    2011-01-01

    The objective of this paper is to detect cars in nighttime videos for controlling the illumination of level of road lights, thereby saving power consumption. We present an e??ective method to detect and track cars based on the presence of head lights or rear lights. We detect the headlights and rear

  18. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  19. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    Science.gov (United States)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  20. Night-time heart rate cut-off point definition by resting office tachycardia in untreated hypertensive patients: data of the Spanish ABPM registry.

    Science.gov (United States)

    Vinyoles, Ernest; de la Sierra, Alejandro; Roso, Albert; de la Cruz, Juan J; Gorostidi, Manuel; Segura, Julián; Banegas, José R; Martell-Claros, Nieves; Ruilope, Luís M

    2014-05-01

    Epidemiological studies have shown that an elevated resting heart rate (HR) is a risk factor for both total and cardiovascular mortality. Our aim was to estimate the night-time HR cut-off point that best predicts cardiovascular risk office tachycardia in hypertensive patients. Untreated hypertensive patients without concomitant cardiovascular diseases were included. Office and ambulatory HRs were measured. Cardiovascular risk office tachycardia was defined by office HR at least 85 beats per minute (bpm). Different night-time HR cut-offs were estimated by receiver operating characteristic curve analyses to predict cardiovascular risk office tachycardia. The best cut-off was selected on the basis of its combined sensitivity and specificity. A total of 32 569 hypertensive patients were included: 46.5% women, mean age (SD) 52 (14) years, office blood pressure 146 (16)/89 (11) mmHg, diabetes 10.3%, smoking 19.2%, BMI 29 (6.8) kg/m, office HR 77 (11.2) bpm, and night-time HR 64.9 (9.3) bpm. A total of 7070 (21.7%) patients were found to have cardiovascular risk office tachycardia. The night-time HR value that better predicted cardiovascular risk office tachycardia was more than 66 bpm. In comparison with patients with night HR below this value, those with night-time tachycardia were predominantly women, younger, with higher ambulatory blood pressure, greater BMI, and higher prevalence of diabetes and smoking. All comparisons were statistically significant (P less than 0.001). A mean night-time HR more than 66 bpm is a good predictor of cardiovascular risk office tachycardia in untreated hypertensive patients and could be considered a variable associated with an increased cardiovascular risk.

  1. Judgement of Breath Alcohol Concentration Levels Among Pedestrians in the Night-Time Economy-A Street-Intercept Field Study.

    Science.gov (United States)

    Cameron, M P; Roskruge, M J; Droste, N; Miller, P G

    2018-05-01

    To evaluate how well people in the night-time economy can assess their own breath alcohol concentration (BrAC), in the context of a change in breath alcohol limits for driving. We conducted a field study of 242 participants over 5 nights in the central business district of a university town in New Zealand. Participants completed a short survey, which included questions on their self-reported level of intoxication and the self-estimated BrAC. At the conclusion of the interview each participant was breath-tested. We compared actual and self-estimated BrAC using a scatter plot and multiple regression methods. The average BrAC error was 61.7 μg/l, meaning that on average participants overestimate their BrAC. Participants with a BrAC below 487 μg/l tended to overestimate their BrAC on average, and those with a BrAC above 487 μg/l tended to underestimate their BrAC on average. Regression results supported this observation, but also found that men who are not 'out on a typical night' overestimate their BrAC by more. Drinkers in this naturalistic setting have little idea of their level of intoxication, as measured by BrAC. However, this uncertainty may be advantageous to public health outcomes, since if drinkers are uncertain about their level of intoxication relative to the legal limit, this may lead them to avoid drunk driving. A field study of drinkers in the night-time economy of a New Zealand university town was conducted to evaluate how well drinkers can assess their breath alcohol concentration (BrAC). Drinkers in this setting inaccurately estimate their intoxication, and those with higher BrAC tended to underestimate their BrAC on average.

  2. Modifying effect of age on the association between ambient ozone and nighttime primary care visits due to asthma attack.

    Science.gov (United States)

    Yamazaki, Shin; Shima, Masayuki; Ando, Michiko; Nitta, Hiroshi

    2009-01-01

    We examined the association between short-term exposure to outdoor air pollution and nighttime primary care visits due to asthma attack. We also investigated the modifying effects of age on this association. A case-crossover study was conducted at a primary care clinic in metropolitan Tokyo. The subjects were 308 children aged 0-14 years and 95 adolescents and adults aged 15-64 years. All subjects made visits to the clinic for an asthma attack at between 7 PM and 12 AM. Data on hourly concentrations of particulate matter with a 50% cut-off aerodynamic diameter asthma attack in warmer months; the association was greater among preschool children.

  3. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    NARCIS (Netherlands)

    Hodgson, J.G.; Sharafi, M.; Jalili, A.; Diaz, S.; Montserrat-Marti, G.; Palmer, C.; Cerabolini, B.; Pierce, S.; Hamzehee, B.; Asri, Y.; Jamzad, Z.; Wilson, P.; Zarrinkamar, F.; Raven, J.; Band, S.R.; Basconcelo, S.; Bogard, A.; Carter, G.; Charles, M.; Castro-Diez, P.; Cornelissen, J.H.C.; Funes, G.; Jones, M.; Khoshnevis, M.; Perez-Harguindeguy, N.; Perez-Rontome, M.C.; Shirvany, F.A.; Vendramini, F.; Yazdani, S.; Abbas-Azimi, R.; Boustani, S.; Dehghan, M.; Hynd, F.A.; Kowsary, E.; Kazemi-Saeed, F.; Siavash, B.; Villar-Salvador, P.; Cragie, R.; Naqinezhad, A.; Romo-Diez, A.; De Torres Espuny, L.; Simmons, E.

    2010-01-01

    Background and Aims Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the

  4. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.

    Science.gov (United States)

    Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C

    2017-10-01

    Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Wave Characteristics of Temperature Inversion Process of Nighttime Radiation,

    Science.gov (United States)

    1983-12-09

    CHARACTERISTICS OF TEMPERATURE INVERSION PROCESS OF NIGHTTIME RADIATION By: Zhou Mingyu and Zhang ¥i English pages: 8 Source: Kexue Tongbao, 1982, pp. 156...lJournal of Meteorology], 39 (1981), 1:70-81. 3. Drazin, P. G., J. Fluid. Mech., 4 (1958), 214-224. 4. Zhou Mingyu et al., QIXIANG XUEBAO, 38 (1980), 3: 250...258. 5. Emnanuel, C. B., B-L. Meteor., 5(1973), N(1/2)8 19-27. 6. Zhou Mingyu et al., J. Acoust. Soc., A. m., 68 (1980), 1: 303-308. 8 I iI

  6. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery

    Science.gov (United States)

    Zhao, M.

    2017-12-01

    Accurate data on gross domestic product (GDP) at pixel level are needed to understand the dynamics of regional economies. GDP spatialization is the basis of quantitative analysis on economic diversities of different administrative divisions and areas with different natural or humanistic attributes. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-orbiting Partnership (NPP) satellite, are capable of estimating GDP, but few studies have been conducted for mapping GDP at pixel level and further pattern analysis of economic differences in different regions using the VIIRS data. This paper produced a pixel-level (500 m × 500 m) GDP map for South China in 2014 and quantitatively analyzed economic differences among diverse geomorphological types. Based on a regression analysis, the total nighttime light (TNL) of corrected VIIRS data were found to exhibit R2 values of 0.8935 and 0.9243 for prefecture GDP and county GDP, respectively. This demonstrated that TNL showed a more significant capability in reflecting economic status (R2 > 0.88) than other nighttime light indices (R2 simple linear correlations at both prefecture and county levels. The corrected NPP-VIIRS data showed a better fit than the original data, and the estimation at the county level was better than at the prefecture level. The pixel-level GDP map indicated that: (a) economic development in coastal areas was higher than that in inland areas; (b) low altitude plains were the most developed areas, followed by low altitude platforms and low altitude hills; and (c) economic development in middle altitude areas, and low altitude hills and mountains remained to be strengthened.

  7. Zeaxanthin concentrations co-segregate with the magnitude of the blue light response of adaxial guard cells and leaf stomatal conductances in an F2 population of pima cotton

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, M.A.; Lu Zhenmin; Zeiger, E. (Univ. of California, Los Angeles (United States))

    1993-05-01

    A blue light (BL) response of adaxial (AD) guard cells was investigated in two cotton lines with contrasting rates of stomatal conductances (g). This response is expressed as an enhancement of the red light-induced chlorophyll a fluorescence quenching by BL, and has an action spectrum indicative of a carotenoid photoreceptor. Ad guard cell from the high g, advanced line Pima S-6 have a higher carotenoid content and a larger BL response than those from the low g, primitive cotton, B368. In a growth chamber-grown F2 population of a cross between the two lines (n=30), g of individual plants segregated over a range exceeding the average g of the parental populations. Carotenoid content and the BL response of ad guard cell also segregated. There was a positive, strong correlation (r=0.71) between leaf g and the magnitude of the BL response of ad guard cells, indicating that both parameters are under genetic control, and that the BL response of guard cells contributes to the modulation of g. The concentration of all xanthopylls and [beta]-carotene in the ad guard cells correlated poorly with the BL response, except for zeaxanthin (r=0.71). In all green systems, xanthophylls are located inside the chloroplast which suggests that zeaxanthin functions in these organelle as a blue light photoreceptor for cotton guard cells.

  8. Determinants of day-night difference in blood pressure, a comparison with determinants of daytime and night-time blood pressure.

    Science.gov (United States)

    Musameh, M D; Nelson, C P; Gracey, J; Tobin, M; Tomaszewski, M; Samani, N J

    2017-01-01

    Blunted day-night difference in blood pressure (BP) is an independent cardiovascular risk factor, although there is limited information on determinants of diurnal variation in BP. We investigated determinants of day-night difference in systolic (SBP) and diastolic (DBP) BP and how these compared with determinants of daytime and night-time SBP and DBP. We analysed the association of mean daytime, mean night-time and mean day-night difference (defined as (mean daytime-mean night-time)/mean daytime) in SBP and DBP with clinical, lifestyle and biochemical parameters from 1562 adult individuals (mean age 38.6) from 509 nuclear families recruited in the GRAPHIC Study. We estimated the heritability of the various BP phenotypes. In multivariate analysis, there were significant associations of age, sex, markers of adiposity (body mass index and waist-hip ratio), plasma lipids (total and low-density lipoprotein cholesterol and triglycerides), serum uric acid, alcohol intake and current smoking status on daytime or night-time SBP and/or DBP. Of these, only age (P=4.7 × 10 -5 ), total cholesterol (P=0.002), plasma triglycerides (P=0.006) and current smoking (P=3.8 × 10 -9 ) associated with day-night difference in SBP, and age (P=0.001), plasma triglyceride (P=2.2 × 10 -5 ) and current smoking (3.8 × 10 -4 ) associated with day-night difference in DBP. 24-h, daytime and night-time SBP and DBP showed substantial heritability (ranging from 18-43%). In contrast day-night difference in SBP showed a lower heritability (13%) while heritability of day-night difference in DBP was not significant. These data suggest that specific clinical, lifestyle and biochemical factors contribute to inter-individual variation in daytime, night-time and day-night differences in SBP and DBP. Variation in day-night differences in BP is largely non-genetic.

  9. Determinants of day–night difference in blood pressure, a comparison with determinants of daytime and night-time blood pressure

    Science.gov (United States)

    Musameh, M D; Nelson, C P; Gracey, J; Tobin, M; Tomaszewski, M; Samani, N J

    2017-01-01

    Blunted day–night difference in blood pressure (BP) is an independent cardiovascular risk factor, although there is limited information on determinants of diurnal variation in BP. We investigated determinants of day–night difference in systolic (SBP) and diastolic (DBP) BP and how these compared with determinants of daytime and night-time SBP and DBP. We analysed the association of mean daytime, mean night-time and mean day–night difference (defined as (mean daytime−mean night-time)/mean daytime) in SBP and DBP with clinical, lifestyle and biochemical parameters from 1562 adult individuals (mean age 38.6) from 509 nuclear families recruited in the GRAPHIC Study. We estimated the heritability of the various BP phenotypes. In multivariate analysis, there were significant associations of age, sex, markers of adiposity (body mass index and waist–hip ratio), plasma lipids (total and low-density lipoprotein cholesterol and triglycerides), serum uric acid, alcohol intake and current smoking status on daytime or night-time SBP and/or DBP. Of these, only age (P=4.7 × 10−5), total cholesterol (P=0.002), plasma triglycerides (P=0.006) and current smoking (P=3.8 × 10−9) associated with day–night difference in SBP, and age (P=0.001), plasma triglyceride (P=2.2 × 10−5) and current smoking (3.8 × 10−4) associated with day–night difference in DBP. 24-h, daytime and night-time SBP and DBP showed substantial heritability (ranging from 18–43%). In contrast day–night difference in SBP showed a lower heritability (13%) while heritability of day–night difference in DBP was not significant. These data suggest that specific clinical, lifestyle and biochemical factors contribute to inter-individual variation in daytime, night-time and day–night differences in SBP and DBP. Variation in day–night differences in BP is largely non-genetic. PMID:26984683

  10. Compromised Photosynthetic Electron Flow And H2O2 Generation Correlate with Genotype-Specific Stomatal Dysfunctions During Resistance Against Powdery Mildew In Oats.

    Directory of Open Access Journals (Sweden)

    Javier Sánchez-Martín

    2016-11-01

    Full Text Available Stomatal dysfunction known as locking has been linked to the elicitation of a hypersensitive response (HR following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa and the possible involvement of hydrogen peroxide (H2O2 in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e. penetration resistance, early and late HR to powdery mildew (Blumeria graminis f. sp. avenae, Bga were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm of photosystem II were compromised in most Bga–oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defence induced photosynthetic disruption.

  11. Antimicrobial photodynamic therapy for infectious stomatitis in snakes: Clinical views and microbiological findings.

    Science.gov (United States)

    Grego, Kathleen Fernandes; Carvalho, Marcelo Pires Nogueira de; Cunha, Marcos Paulo Vieira; Knöbl, Terezinha; Pogliani, Fabio Celidonio; Catão-Dias, José Luiz; Sant'Anna, Sávio Stefanini; Ribeiro, Martha Simões; Sellera, Fábio Parra

    2017-12-01

    Antimicrobial photodynamic therapy (APDT) has been broadly investigated as an alternative to treat localized infections, without leading to the selection of resistant microorganisms. Infectious stomatitis is a multifactorial disease frequently reported in captive snakes characterized by infection of the oral mucosa and surrounding tissues. In this study, we investigated methylene blue (MB)-mediated APDT to treat infectious stomatitis in snakes and verified the resistance phenotype and genotype before and after APDT. Three Boid snakes presented petechiae, edema and caseous material in their oral cavities. MB (0.01%) was applied on the lesions and after 5min they were irradiated using a red laser (λ=660nm), fluence of 280J/cm 2 , 8J and 80s per point, 100mW, spot size 0.028cm 2 and fluence rate of 3.5W/cm 2 . APDT was repeated once a week during 3 months. Samples of the lesions were collected to identify bacteria and antibiotic resistance profiles. To analyze the clonality of bacterial isolates before and after APDT, isolates were subjected to ERIC PCR analysis. Snakes presented clinical improvement such as reduction of inflammatory signs and caseous material. Pseudomonas aeruginosa and Escherichia coli were present in all snakes; Klebsiella pneumoniae and Morganella morganii were also identified in some animals. We also observed that the oral microbiota was completely replaced following APDT. However, K. pneumoniae isolates before and after APDT were a single clone with 100% of genetic similarity that lost resistance phenotype for seven antibiotics of four classes. These results show that APDT can be used to treat infectious stomatitis in snakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Utilization of Dexaltin ointment to radiation stomatitis in patients with cancer of the oral cavity

    International Nuclear Information System (INIS)

    Ohhashi, Yasushi; Abe, Masaki; Ueda, Noboru

    1981-01-01

    Dexaltin ointment (sodium polyactylic acid, containing 0.1% dexamethasone) was used to the patients with stomatitis induced by radiotherapy. Fifteen patients with cancer of the oral cavity, aged from 44 to 77, were exposed to 60 Co γ-rays or electron beams, with the irradiation dose of 2400 to 9000 rad. About 60 g of the ointment was pasted for mean period of 6.6 weeks after meals, before sleep, and whenever the patients wanted. Therapeutic effect was observed in every case and in 87% of the case the pain at meals was decreased. The ointment adhered mostly for 1 - 2 hrs and in some cases, more than 3 hrs. No adverse reaction was observed. Therefore it was suggested that Dexaltin was a promising ointment to the radiation stomatitis. (Nakanishi, T.)

  13. Fast and true-to-life application of daytime colours to night-time imagery

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2007-01-01

    We developed a fast and efficient method to derive and apply a natural colour mapping for night-time imagery from multi-band sensors. The colour mapping is derived from the combination of a multi-band image and a corresponding natural colour reference image. The mapping optimizes the match between

  14. Clinical trial: lansoprazole 15 or 30 mg once daily vs. placebo for treatment of frequent nighttime heartburn in self-treating subjects.

    Science.gov (United States)

    Peura, D A; Riff, D S; Snoddy, A M; Fennerty, M B

    2009-09-01

    Frequent nighttime heartburn is common. Lansoprazole 15 mg is indicated for treatment of heartburn and other gastro-oesophageal reflux disease-related symptoms. To evaluate the efficacy and safety of lansoprazole in self-treating subjects with frequent nocturnal heartburn. A total of 864 subjects with heartburn on >or=2 days/week over the past month were randomized to double-blind treatment with lansoprazole 15 or 30 mg or placebo each morning. Endpoints were percentage of night times without heartburn (primary), percentage of 24-h days without heartburn and percentage of subjects without heartburn on day 1. Mean percentage of night times without heartburn was significantly greater with lansoprazole 15 mg (61.3%) or lansoprazole 30 mg (61.7%) vs. placebo (47.8%) over 14 days (P heartburn and percentage of subjects without heartburn on day 1 were significantly greater with lansoprazole 15 or 30 mg vs. placebo. Both lansoprazole 15 and 30 mg were highly effective and well tolerated in reducing symptoms in subjects with frequent nighttime heartburn. The benefit of therapy on 24-h heartburn and nighttime heartburn on day 1 of treatment was also evident. Lansoprazole 15 mg is a suitable choice for management of frequent nighttime heartburn.

  15. Poverty assessment using DMSP/OLS night-time light satellite imagery at a provincial scale in China

    Science.gov (United States)

    Wang, Wen; Cheng, Hui; Zhang, Li

    2012-04-01

    All countries around the world and many international bodies, including the United Nations Development Program (UNDP), United Nations Food and Agricultural Organization (FAO), the International Fund for Agricultural Development (IFAD) and the International Labor Organization (ILO), have to eliminate rural poverty. Estimation of regional poverty level is a key issue for making strategies to eradicate poverty. Most of previous studies on regional poverty evaluations are based on statistics collected typically in administrative units. This paper has discussed the deficiencies of traditional studies, and attempted to research regional poverty evaluation issues using 3-year DMSP/OLS night-time light satellite imagery. In this study, we adopted 17 socio-economic indexes to establish an integrated poverty index (IPI) using principal component analysis (PCA), which was proven to provide a good descriptor of poverty levels in 31 regions at a provincial scale in China. We also explored the relationship between DMSP/OLS night-time average light index and the poverty index using regression analysis in SPSS and a good positive linear correlation was modelled, with R2 equal to 0.854. We then looked at provincial poverty problems in China based on this correlation. The research results indicated that the DMSP/OLS night-time light data can assist analysing provincial poverty evaluation issues.

  16. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    Science.gov (United States)

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  17. New Model of the night-time CO2 4.3 µm emissions in the mesosphere/lower thermosphere

    Science.gov (United States)

    Panka, P.; Kutepov, A. A.; Kalogerakis, K. S.; Janches, D.; Russell, J. M., III; Rezac, L.; Feofilov, A.; Mlynczak, M. G.; Yiğit, E.

    2016-12-01

    We present a new non-LTE model of the night-time CO2 4.3 µm emissions in the MLT which accounts for various mechanisms of the non-thermal excitation of CO2 molecules. We pay specific attention to the transfer of vibrational energy of OH(v), produced in the chemical reaction H + O3, to the CO2(v3) vibrational mode. Two energy transfer channels are studied: 1) the "direct" mechanism, OH(v)→N2(v)→CO2(v3)→4.3 µm, suggested by Kumer et al, [1978], and 2) the new "indirect" mechanism, OH(v)→O(1D)→N2(v)→CO2(ν3)→4.3 µm, recently suggested by Sharma et al. [2015]. We show that for various seasonal scenarios above 75 km, the "direct" mechanism alone under-predicts the observed radiance between 30-70%, from 60°S-80°N. However, considering both the "direct" and "indirect" mechanism brings differences between simulated and measured nighttime SABER 4.3 µm limb radiances down to ±10% from 75-85 km and ±20% from 85-110km for the same region. These results suggest that the important mechanism of the nighttime 4.3 µm emission generation, which was missing in previous models [Lopez-Puertas and Taylor, 2001, Lopez-Puertas et al, 2004], has finally been found. This is an important step towards developing the algorithm suitable for retrieving CO2 densities in the MLT from nighttime limb radiances obtained by SABER, which has been taking continuous measurements for the past 15 years.

  18. Association of shift-work, daytime napping, and nighttime sleep with cancer incidence and cancer-caused mortality in Dongfeng-tongji cohort study.

    Science.gov (United States)

    Bai, Yansen; Li, Xiaoliang; Wang, Ke; Chen, Shi; Wang, Suhan; Chen, Zhuowang; Wu, Xiulong; Fu, Wenshan; Wei, Sheng; Yuan, Jing; Yao, Ping; Miao, Xiaoping; Zhang, Xiaomin; He, Meian; Yang, Handong; Wu, Tangchun; Guo, Huan

    2016-12-01

    Few studies investigated the combined effects of night-shift work, daytime napping, and nighttime sleep on cancer incidence and mortality. A total of 25,377 participants were included in this study. Information on sleep habits, cancer incidences, and mortalities were collected. Cox proportional hazards models were used to calculate the adjusted hazard ratios and 95% confidence intervals (HRs, 95%CIs). Male subjects experienced ≥20 years of night-shift work, or without daytime napping had an increased risk of cancer, when compared with males who did not have night-shift work or napped for 1-30 min [HR (95%CI) = 1.27 (1.01-1.59) and 2.03 (1.01-4.13), respectively]. Nighttime sleep for ≥10 h was associated with a separate 40% and 59% increased risk of cancer [HR (95%CI) = 1.40 (1.04-1.88)] and cancer-caused mortality [HR (95%CI) = 1.59 (1.01-2.49)] than sleep for 7-8 h/night. Combined effects of three sleep habits were further identified. Male participants with at least two above risk sleep habits had a 43% increased risk of cancer [HR (95%CI) = 1.43 (1.07-2.01)] and a 2.07-fold increased cancer-caused mortality [HR (95%CI) = 2.07 (1.25-3.29)] than those who did not have any above risk sleep habits. However, no significant associations were observed among women. Long night-shift work history, without daytime napping, and long nighttime sleep duration were independently and jointly associated with higher cancer incidence among males. KEY MESSAGES Night-shift work of ≥20 years, without napping, and nighttime sleep of ≥10 h were associated with increased cancer incidence. Nighttime sleep ≥10 h was associated with a 2.07-fold increased cancer-caused mortality among males. Combined effects of night-shift work ≥20 years, without napping, and nighttime sleep ≥10 h on increasing cancer incidence were existed among males.

  19. Differences in night-time and daytime ambulatory blood pressure when diurnal periods are defined by self-report, fixed-times, and actigraphy: Improving the Detection of Hypertension study.

    Science.gov (United States)

    Booth, John N; Muntner, Paul; Abdalla, Marwah; Diaz, Keith M; Viera, Anthony J; Reynolds, Kristi; Schwartz, Joseph E; Shimbo, Daichi

    2016-02-01

    To determine whether defining diurnal periods by self-report, fixed-time, or actigraphy produce different estimates of night-time and daytime ambulatory blood pressure (ABP). Over a median of 28 days, 330 participants completed two 24-h ABP and actigraphy monitoring periods with sleep diaries. Fixed night-time and daytime periods were defined as 0000-0600 h and 1000-2000 h, respectively. Using the first ABP period, within-individual differences for mean night-time and daytime ABP and kappa statistics for night-time and daytime hypertension (systolic/diastolic ABP≥120/70 mmHg and ≥135/85 mmHg, respectively) were estimated comparing self-report, fixed-time, or actigraphy for defining diurnal periods. Reproducibility of ABP was also estimated. Within-individual mean differences in night-time systolic ABP were small, suggesting little bias, when comparing the three approaches used to define diurnal periods. The distribution of differences, represented by 95% confidence intervals (CI), in night-time systolic and diastolic ABP and daytime systolic and diastolic ABP was narrowest for self-report versus actigraphy. For example, mean differences (95% CI) in night-time systolic ABP for self-report versus fixed-time was -0.53 (-6.61, +5.56) mmHg, self-report versus actigraphy was 0.91 (-3.61, +5.43) mmHg, and fixed-time versus actigraphy was 1.43 (-5.59, +8.46) mmHg. Agreement for night-time and daytime hypertension was highest for self-report versus actigraphy: kappa statistic (95% CI) = 0.91 (0.86,0.96) and 1.00 (0.98,1.00), respectively. The reproducibility of mean ABP and hypertension categories was similar using each approach. Given the high agreement with actigraphy, these data support using self-report to define diurnal periods on ABP monitoring. Further, the use of fixed-time periods may be a reasonable alternative approach.

  20. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  1. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content.

    Science.gov (United States)

    Negi, Sanjana; Tak, Himanshu; Ganapathi, T R

    2018-03-01

    MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.

  2. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    Science.gov (United States)

    J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy

    2010-01-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.

  3. Snow precipitation on Mars driven by cloud-induced night-time convection

    Science.gov (United States)

    Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck

    2017-09-01

    Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

  4. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  5. Daytime space cooling with phase change material ceiling panels discharged using rooftop photovoltaic/thermal panels and night-time ventilation

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Pean, Thibault Quentin; Gennari, Luca

    2016-01-01

    The possibility of using photovoltaic/thermal panels for producing cold water through the process of night-time radiative cooling was experimentally examined. The cold water was used to discharge phase change material in ceiling panels in a climatic chamber. Both night-time radiative cooling...... the photovoltaic/thermal varied from 56% to 122%. The phase change material ceiling panels were thus, capable of providing an acceptable thermal environment and the photovoltaic/thermal panels were able to provide most of the required electricity and cold water needed for cooling....

  6. The relation between residential property and its surroundings and day- and night-time residential burglary

    NARCIS (Netherlands)

    Montoya, Lorena; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  7. The Relation Between Residential Property and its Surroundings and Day- and Night-Time Residential Burglary

    NARCIS (Netherlands)

    Montoya, L.; Junger, Marianne; Ongena, Yfke

    This article examines how residential property and its surroundings influence day- and night-time residential burglary. Crime Prevention Through Environmental Design (CPTED) principles of territoriality, surveillance, access control, target hardening, image maintenance, and activity support underpin

  8. Serum cytokine profile and clinicopathological findings in oral lichen planus, oral lichenoid lesions and stomatitis

    Science.gov (United States)

    Johansen, Jeanne Duus; Reibel, Jesper; Zachariae, Claus; Pedersen, Anne Marie Lynge

    2017-01-01

    Abstract The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty‐nine patients and 29 healthy age‐ and gender‐matched subjects were included. Demographic and clinical data immunohistochemical findings in mucosal specimens, results of contact allergy testing, and serum levels of tumor necrosis factor‐α, interferon‐γ, interleukin (IL)‐6, IL‐10, IL‐12p40, and IL‐12p70 were analyzed and compared between groups. Nineteen patients had OLP, primarily with ulcerative lesions on the buccal mucosa, 19 patients had OLL, and 11 patients had generalized stomatitis. All patients had oral symptoms, mainly stinging and burning. Nineteen patients and 10 healthy subjects had contact allergies, primarily to fragrance ingredients. Patient groups did not differ with regard to oral symptoms, clinical pattern of the lesions, or contact allergy. Serum cytokine levels did not differ between the different patient groups and were not related to histopathological findings. The patients had higher levels of IL‐6 than the healthy subjects. Interferon‐γ, IL‐12p40, and IL‐12p70 were below detection limit. Our findings indicate that OLP, OLL, and generalized stomatitis cannot be discriminated by means of the selected serum cytokines, and that the presence of concomitant contact allergy does not influence the cytokine expression. PMID:29744205

  9. Efficacy of night-time compression for breast cancer related lymphedema (LYNC): protocol for a multi-centre, randomized controlled efficacy trial

    International Nuclear Information System (INIS)

    McNeely, Margaret L.; Campbell, Kristin L.; Webster, Marc; Kuusk, Urve; Tracey, Karen; Mackey, John

    2016-01-01

    Lymphedema is a prevalent long-term effect of breast cancer treatment that is associated with reduced quality of life. More recent observational data suggest that the addition of night-time compression to day-time use of a compression garment results in better long-term control of arm lymphedema. The primary objectives of the randomized controlled phase of the trial are to determine the efficacy of night-time compression on arm lymphedema volume maintenance and quality of life in breast cancer survivors who have completed intensive reduction treatment for their lymphedema. The study will be a parallel 3-arm, multi-centre randomized fast-track trial. A total of 120 women with breast cancer related lymphedema will be recruited from 3 centres in Canada and randomized to group 1: Day-time compression garment alone or Group 2: Day-time compression garment + night-time compression bandaging or Group 3: Day-time compression garment + use of a night-time compression system garment. The duration of the primary intervention period will be 12 weeks. The follow-up period after the intervention (weeks 13 to 24) will follow a longitudinal observational design. The primary outcome variables: differences from baseline to week 12 in arm volume and quality of life (Lymphoedema Functioning, Disability and Health Questionnaire: Lymph-ICF). Secondary outcomes include bioimpedance analysis, sleep disturbance and self-efficacy. All measurements are standardized and will be performed prior to randomization, and at weeks 6, 12, 18 and 24. The use of night-time compression as a self-management strategy for chronic breast cancer related lymphedema is seen as an innovative approach to improve long-term control over the condition. This trial aims to advance the knowledge on self-management strategies for lymphedema

  10. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica1

    Science.gov (United States)

    Acevedo, Edmundo; Badilla, Ignacio; Nobel, Park S.

    1983-01-01

    Physiological responses of the Crassulacean acid metabolism (CAM) plant Opuntia ficus-indica (Cactaceae) were studied on a commercial plantation in central Chile. Young cladodes (flattened stems) and flower buds exhibited daytime stomatal opening, whereas mature cladodes and fruit exhibited the nocturnal stomatal opening characteristic of CAM plants. Severe water stress suppressed the nocturnal stomatal opening by mature cladodes, but their high water vapor conductance occurring near dawn was not affected. Nocturnal acidity increases were not as sensitive to water stress as was the nocturnal stomatal opening. The magnitude of the nocturnal acidity increases depended on the total daily photosynthetically active radiation (PAR), being 90% PAR-saturated at 27 moles per square meter per day for a mean nighttime air temperature of 5°C and at 20 moles per square meter per day for 18°C. Inasmuch as the PAR received on unshaded vertical surfaces averaged about 21 moles per square meter per day, nocturnal acidity increases by the cladodes were on the verge of being PAR-limited in the field. The net assimilation rate, which was positive throughout the year, annually averaged 3.4 grams per square meter per day for 1.0- and 2.0-year-old plants. Plants that were 5.4 years old had 7.2 square meters of cladode surface area (both sides) and an annual dry weight productivity of 13 megagrams (metric tons) per hectare per year when their ground cover was 32%. This substantial productivity for a CAM plant was accompanied by the highest nocturnal acidity increase so far observed in the field, 0.78 mole H+ per square meter. PMID:16663084

  11. Enhanced Statistical Estimation of Air Temperature Incorporating Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Yunhao Chen

    2016-08-01

    Full Text Available Near surface air temperature (Ta is one of the most critical variables in climatology, hydrology, epidemiology, and environmental health. In situ measurements are not efficient for characterizing spatially heterogeneous Ta, while remote sensing is a powerful tool to break this limitation. This study proposes a mapping framework for daily mean Ta using an enhanced empirical regression method based on remote sensing data. It differs from previous studies in three aspects. First, nighttime light data is introduced as a predictor (besides land surface temperature, normalized difference vegetation index, impervious surface area, black sky albedo, normalized difference water index, elevation, and duration of daylight considering the urbanization-induced Ta increase over a large area. Second, independent components are extracted using principal component analysis considering the correlations among the above predictors. Third, a composite sinusoidal coefficient regression is developed considering the dynamic Ta-predictor relationship. This method was performed at 333 weather stations in China during 2001–2012. Evaluation shows overall mean error of −0.01 K, root mean square error (RMSE of 2.53 K, correlation coefficient (R2 of 0.96, and average uncertainty of 0.21 K. Model inter-comparison shows that this method outperforms six additional empirical regressions that have not incorporated nighttime light data or considered predictor independence or coefficient dynamics (by 0.18–2.60 K in RMSE and 0.00–0.15 in R2.

  12. Brief oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis in allogeneic hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Mori, Takehiko; Yamazaki, Rie; Aisa, Yoshinobu; Nakazato, Tomonori; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Ikeda, Yasuo; Okamoto, Shinichiro

    2006-04-01

    We previously reported the efficacy of oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis. The purpose of this study was to evaluate whether the further shortening of the duration of oral cryotherapy could minimize its side effects while sparing its efficacy. Seventeen consecutive recipients of allogeneic hematopoieic stem cell transplant conditioned with high-dose melphalan in combination with fludarabine alone or with fludarabine and additional radiation were enrolled in the study. The severity of stomatitis was graded according to the National Cancer Institute-Common Toxicity Criteria. Patients were kept on oral cryotherapy shortly before, during, and for additional 30 min after the completion of melphalan administration (60-min oral cryotherapy). Patients who were also enrolled in our previous study received the same type of oral cryotherapy but for additional 90 min after the completion of melphalan administration (120-min oral cryotherapy), and they served as controls. Only 2 (11.8%) of 17 patients receiving 60-min oral cryotherapy and 2 (11.1%) of 18 patients receiving 120-min oral cryotherapy developed grade 2 or 3 stomatitis, respectively. The difference between groups was not statistically significant (P = 0.677). The incidence of unpleasant symptoms such as chills and nausea during oral cryotherapy decreased significantly with 60-min oral cryotherapy, as compared with that associated with 120-min oral cryotherapy (P cryotherapy is as effective as 120-min oral cryotherapy at preventing high-dose melphalan-induced stomatitis, and shorter treatment might have contributed to relieve patient discomfort during oral cryotherapy.

  13. Quantitative Estimation of Yeast on Maxillary Denture in Patients with Denture Stomatitis and the Effect of Chlorhexidine Gluconate in Reduction of Yeast

    Directory of Open Access Journals (Sweden)

    Jaykumar R Gade

    2011-01-01

    Full Text Available Denture stomatitis is a condition associated with wearing of a denture. The predisposing factor leading to denture stomatitis could be poor oral hygiene, ill-fitting denture and relief areas. Around 30 patients with denture stomatitis were advised to rinse with chlorhexidine gluconate mouthwash for 14 days and were directed to immerse the upper denture in the chlorhexidine solution for 8 hours. The samples were collected by scraping maxillary denture in saline at three intervals, prior to, at the end of 24 hours and after 14 days of treatment, then were inoculated and quantitative estimation of the yeast growth on Sabouraud′s dextrose agar plate was done. It was observed that after a period of 14 days, there was a reduction in the growth of yeast and also improvement in the clinical picture of the oral mucosa

  14. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe

    2009-01-01

    Abstract Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4- mediated immune signal transduction, we...... purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines...... exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its...

  15. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent.

    Science.gov (United States)

    Fonken, Laura K; Kitsmiller, Emily; Smale, Laura; Nelson, Randy J

    2012-08-01

    Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.

  16. Photosynthesis Decrease and Stomatal Control of Gas Exchange in Abies alba Mill. in Response to Vapor Pressure Difference.

    Science.gov (United States)

    Guehl, J M; Aussenac, G

    1987-02-01

    The responses of steady state CO(2) assimilation rate (A), transpiration rate (E), and stomatal conductance (g(s)) to changes in leaf-to-air vapor pressure difference (DeltaW) were examined on different dates in shoots from Abies alba trees growing outside. In Ecouves, a provenance representative of wet oceanic conditions in Northern France, both A and g(s) decreased when DeltaW was increased from 4.6 to 14.5 Pa KPa(-1). In Nebias, which represented the dry end of the natural range of A. alba in southern France, A and g(s) decreased only after reaching peak levels at 9.0 and 7.0 Pa KPa(-1), respectively. The representation of the data in assimilation rate (A) versus intercellular CO(2) partial pressure (C(i)) graphs allowed us to determine how stomata and mesophyll photosynthesis interacted when DeltaW was increased. Changes in A were primarily due to alterations in mesophyll photosynthesis. At high DeltaW, and especially in Ecouves when soil water deficit prevailed, A declined, while C(i) remained approximately constant, which may be interpreted as an adjustment of g(s) to changes in mesophyll photosynthesis. Such a stomatal control of gas exchange appeared as an alternative to the classical feedforward interpretation of E versus DeltaW responses with a peak rate of E. The gas exchange response to DeltaW was also characterized by considerable deviations from the optimization theory of IR Cowan and GD Farquhar (1977 Symp Soc Exp Biol 31: 471-505).

  17. a Cross-Sectional Study on Insomnia among Japanese Adult Women in Relation to Night-Time Road Traffic Noise

    Science.gov (United States)

    Kageyama, T.; Kabuto, M.; Nitta, N.; Kurokawa, Y.; Taira, K.; Suzuki, S.; Takemoto, T.

    1997-08-01

    In an effort to determine the contribution of night-time road traffic noise to insomnia in the general population, 3600 adult Japanese women living in urban residential areas were surveyed. Living near a road with a heavy traffic volume is one of the risk factors for insomnia. The risk for insomnia in the zones 0-20 m from the main roads increased linearly with the night-time traffic volume. This suggests that road traffic noise raises the sound level in bedrooms in such zones, and consequently the prevalence rate of insomnia among the residents, and that noise-induced insomnia is an important public health problem, at least in highly urbanized areas.

  18. Recurrent aphthous stomatitis (RAS and exfoliative cheilitis in elderly psoriasis sufferer

    Directory of Open Access Journals (Sweden)

    Siti Hardiyanti Nurhasanah

    2016-04-01

    Full Text Available Recurrent Aphthous Stomatitis (RAS is a disorder in the oral cavity, with a characterized symptom as ulceration, recurrent and very painfull. The etiology is idiopathic, with multifactorial predisposition. Exfoliative cheilitis is a persistent lesion on the lip, with a characterized cracking and desquamative, with crustae and inflammation. An elderly male (72 yrs suffered with ulcer on his oral cavity, cracking lips and pain on both of his cheeks, skin, since 5 years ago. The pain is recurrent. On the clinical examination, there were some desquamation, both on the skin and vermilion border, whether on the inner lips (labial fold mucosa, there were ulcers with diameter about 1 cm. The laboratory test was within normal limits, except the LED was 40 mm/hour (n:<15. The diagnosis was Recurrent Aphthous Stomatitis (RAS for the ulcer and Exfoliative cheilitis for the cracking lips. The treatment he received was a gargle liquid, topical corticosteroid and supplement. The skin’s disorder was revered to the skin and genital disease department, for further management. As a dental general practioner, had to be very careful and familiar for every changes that may be occur both in the outer or inner oral cavity. Other disorder that need refferal, had to be done with team work, to the colleague from the right connection.

  19. Nighttime road-traffic noise and arterial hypertension in an urban population.

    Science.gov (United States)

    Belojević, Goran A; Jakovljević, Branko D; Stojanov, Vesna J; Slepcević, Vesna Z; Paunović, Katarina Z

    2008-04-01

    Commonly used daytime measurements in previous investigations on community noise and arterial hypertension (AH) may be a source of exposure bias, as urban residents spend most of their daytime hours out of the home on workdays. For this reason, we focused on the relation of nighttime noise and AH. A cross-sectional study was performed on a sample of 2,503 (995 men and 1,508 women) adult residents of a downtown Belgrade municipality. The inclusion criteria were a period of residence longer than 10 years and a bedroom oriented toward the street. The exclusion criteria were a high level of noise annoyance at work and diseases related to AH. Noise measurements were performed in all 70 streets of the municipality. The streets were grouped into noisy areas (equivalent noise level [Leq]>45 dB(A)) and quiet areas (Leqquiet areas were 23.6% and 17.5%, respectively. The adjusted odds ratio (OR) for AH was 1.58; the 95% confidence interval (CI) ranged from 1.03-2.42; and the probability value was 0.038, when men living in quiet streets were taken as a reference category. This relation was statistically insignificant for women: adjusted OR: 0.90; 95% CI: 0.59-1.38; p: 0.644. This cross-sectional study showed that nighttime urban road-traffic noise might be related to occurrence of AH in men.

  20. Novel approaches to study climate change effects on terrestrial ecosystems: drought and passive nighttime warming

    NARCIS (Netherlands)

    Beier, J.C.; Emmett, B.; Gundersen, P.; Tietema, A.; Peñuelas, J.; Estiarte, M.; Gordon, C.; Gorissen, A.; Llorens, L.; Roda, F.; Williams, D.G.

    2004-01-01

    This article describes new approaches for manipulation of temperature and water input in the field. Nighttime warming was created by reflection of infrared radiation. Automatically operated reflective curtains covered the vegetation at night to reduce heat loss to the atmosphere. This approach

  1. Vesicular Stomatitis Virus Infection Promotes Immune Evasion by Preventing NKG2D-Ligand Surface Expression

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Nielsen, Jens

    2011-01-01

    Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection ...

  2. From OLS to VIIRS, an overview of nighttime satellite aerosol retrievals using artificial light sources

    Science.gov (United States)

    Zhang, J.; Miller, S. D.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.

    2015-12-01

    Compared to abundant daytime satellite-based observations of atmospheric aerosol, observations at night are relatively scarce. In particular, conventional satellite passive imaging radiometers, which offer expansive swaths of spatial coverage compared to non-scanning lidar systems, lack sensitivity to most aerosol types via the available thermal infrared bands available at night. In this talk, we make the fundamental case for the importance of nighttime aerosol information in forecast models, and the need to mitigate the existing nocturnal gap. We review early attempts at estimating nighttime aerosol optical properties using the modulation of stable artificial surface lights. Initial algorithm development using DMSP Operational Linescan System (OLS) has graduated to refined techniques based on the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB). We present examples of these retrievals for selected cases and compare the results to available surface-based point-source validation data.

  3. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    Science.gov (United States)

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  4. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Ran

    Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.

  5. Transmission of vesicular stomatitis New Jersey virus to cattle by the biting midge Culicoides sonorensis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Perez de Leon, Adalberto A; Tabachnick, Walter J

    2006-03-01

    Laboratory-reared Culicoides sonorensis Wirth & Jones were infected with vesicular stomatitis virus serotype New Jersey (family Rhabdoviridae, genus Vesiculovirus, VSNJV) through intrathoracic inoculation. After 10-d incubation at 25 degrees C, these insects were allowed to blood feed on four steers. Two other steers were exposed to VSNJV through intralingual inoculation with 10(8) tissue culture infective dose50 VSNJV. All six steers became seropositive for VSNJV. The results demonstrate the ability of C. sonorensis to transmit VSNJV to livestock. Only the animals intralingually inoculated with VSNJV showed clinical signs in the form of vesicles at the site of inoculation. Uninfected C. sonorensis allowed to feed on the exposed animals did not become infected with VSNJV. Animals infected by C. sonorensis showed a slower antibody response compared with intralingually inoculated animals. This is probably because of different amounts of virus received via insect transmission and syringe inoculation. A significant difference was found in the serum acute-phase protein alpha-1-acid glycoprotein in animals that received VSNJV through C. sonorensis transmission. These animals had previously been exposed to insect attack in the field compared with intralingually inoculated animals and C. sonorensis-infected animals that had been protected from insect attack. The failure to observe clinical signs of vesicular stomatitis through transmission of VSNJV by C. sonorensis may explain widespread subclinical infections during vesicular stomatitis epidemics.

  6. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  7. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-01-01

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  8. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong

    2014-01-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato...... potentially enhance water-use efficiency as exemplified by the lowered leaf δ13C under fluctuating soil moisture conditions....... leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg-1 soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were...... unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination...

  9. Recurrent aphthous stomatitis: a case report

    Directory of Open Access Journals (Sweden)

    Xiomara Serpa-Romero

    2016-07-01

    Full Text Available Recurrent aphthosus stomatitis is an alteration of the oral mucosa in some cases associated with depression of the immune system that affects the tissue response at the level of the epithelium, triggering repetitive clinical picture of small and medium ulcers (3-5 mm which necrotic presented erythematous background and lasting no more than 15 days. The picture becomes recurrent, symptomatic, compromising the health of the patient who consults again with the same characteristics in oral cavity. The literature associates the process with hormonal changes, trauma, prolonged intake of medications, and stress. A case of female patient 53, who attends the service of dentistry to present multiple oral thrush that hard to swallow, drooling and feverish marked presents in Santa Marta, at the Center for Implantology and Oral Rehabilitation. According to the interrogation and clinical examination it is associated with a reactive inflammatory process caused by the intake of drugs to treat infectious or viral process, which is given the presumptive diagnosis of erythema drug. Any medication intake was suspended and additional tests are ordered antinuclear antibodies

  10. Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective.

    Science.gov (United States)

    Way, Danielle A; Katul, Gabriel G; Manzoni, Stefano; Vico, Giulia

    2014-07-01

    C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3-C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3-C4 intermediate stages, but both traits significantly increased between early C3-C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  12. Characterization of Nighttime Light Variability Over the Southeastern United States

    Science.gov (United States)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.

    2016-01-01

    City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.

  13. Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon

    Science.gov (United States)

    Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle

    2013-07-01

    Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.

  14. Photodynamic antimicrobial therapy in the treatment of denture stomatitis

    International Nuclear Information System (INIS)

    Senna, Andre Machado de

    2012-01-01

    Denture stomatitis (DS), also called chronic atrophic candidiasis, is the most common oral fungal infection in denture wearers. It has a multifactorial etiology, but the presence of Candida spp. biofilm on the denture is considered the most important factor for the establishment of the DS. This study aimed to evaluate the treatment of DS through the use of photodynamic antimicrobial therapy (PAT), mediated by methylene blue. For this purpose, preclinical studies and clinical trials were performed. Simulators prototypes dentures were made of methyl methacrylate polymer to serve as a basis for biofilm growth of the following species of Candida: C. albicans, C. glabrata, C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis and C. guilliermondii. Methylene blue solution at a concentration of 450 μg/mL was used as a photosensitizer. The prototypes and biofilms were irradiated with a laser of wavelength of 660 nm, potency of 100 mW, for 80 seconds. For the clinical study, subjects were divided into two groups. The first group received conventional treatment based on the use of antifungal Miconazole. The second group received the treatment by PAT. The preclinical results showed that all species of the genus Candida were susceptible to PAT, with a reduction in colonies that ranged from 2.48 to 3.93 log 10 . Clinical outcomes were evaluated for the reduction of colonies of Candida spp. located in the mucosa and in the prosthesis and relative to the improvement of the clinical aspect of the affected mucosa. Both the conventional therapy and PAT were effective in treating DS. There was no significant statistical difference between PAT and conventional treatment for any of the factors evaluated. Thus, it was concluded that PAT is effective in the treatment of denture stomatitis. (author)

  15. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes

    NARCIS (Netherlands)

    Shi, Wanju; Yin, Xinyou; Struik, Paul C.; Solis, Celymar; Xie, Fangming; Schmidt, Ralf C.; Huang, Min; Zou, Yingbin; Ye, Changrong; Jagadish, S.V.K.

    2017-01-01

    Rice grain yield and quality are predicted to be highly vulnerable to global warming. Five genotypes including heat-tolerant and susceptible checks, a heat-tolerant near-isogenic line and two hybrids were exposed to control (31 °C/23 °C, day/night), high night-time temperature (HNT; 31 °C/30 °C),

  16. Results of the Study of Helminths-Carrying as a Comorbidity in Children with Herpetic Stomatitis

    Directory of Open Access Journals (Sweden)

    E.S. Suerkulov

    2016-09-01

    Full Text Available The paper analyzes the helminths-carrying in children with herpetic stomatitis according to the data of the department of maxillofacial surgery of the National center of mother and child welfare, and determines the relationship of oral diseases with disorders of various parts of the gastrointestinal tract.

  17. A Lunchtime Walk in Nature Enhances Restoration of Autonomic Control during Night-Time Sleep: Results from a Preliminary Study.

    Science.gov (United States)

    Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike

    2016-03-03

    Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.

  18. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.

    Science.gov (United States)

    Zhang, Yanqun; Oren, Ram; Kang, Shaozhong

    2012-03-01

    Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.

  19. Stomatal behavior in fruits and leaves of the purple passion fruit (Passiflora edulis Sims and fruits and cladodes of the yellow pitaya [Hylocereus megalanthus (K. Schum. ex Vaupel Ralf Bauer

    Directory of Open Access Journals (Sweden)

    Camilo Sánchez

    2013-04-01

    Full Text Available Plants as C3 and CAM react photosynthetically different but both can grow in the same agroecological zone in the tropics. Therefore we studied the behavior of stomatal opening in fruits and leaves of the purple passion fruit and fruits and cladodes of the yellow pitaya was studied under natural growing conditions in Granada and Fusagasuga, Cundinamarca (Colombia. Imprints were made on the surface of leaves, fruits and cladodes using cosmetic enamel impressions. Three cycles were carried out, each cycle took 72 hours, obtaining three different samples every 3 hours; then the impressions were observed by microscope and the opened and closed stomata were counted in each species. In each sampling, data of solar radiation, temperature and relative humidity (RH were measured. The purple passion fruit had the typical behavior of a C3 plant in the leaves as well as the fruits, and a positive correlation between the stomatal aperture and radiation and temperature was found, along with a negative correlation between stomatal aperture and RH. The pitaya showed the typical behavior of a CAM plant with a negative correlation between the stomatal opening and radiation and temperature, as well as a positive correlation between stomatal opening and RH. Radiation, temperature and RH affected the stomatal opening in the fruits and cladodes. Stomatal densities differed greatly between the species and plant organs. In the purple passion fruit, 106.53 stomata per mm² leaf surface were found, but only 12.64 stomata per mm² fruit surface; whereas in the pitaya, 11.28 and 1.43 stomata per mm² were found on the cladodes and fruits, respectively

  20. Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea).

    Science.gov (United States)

    Bronson, Dustin R; English, Nathan B; Dettman, David L; Williams, David G

    2011-11-01

    Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO(2) assimilation (A(net)), stomatal conductance (g(s)), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUE(day)) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO(2) uptake responding to shifts in nighttime air temperature and humidity. The lowest WUE(day) occurred during time periods with extreme high and low air vapor pressure deficit (D(a)). The diurnal with the highest D(a) had low WUE(day) due to minimal net carbon gain across the 24 h period. Low WUE(day) was also observed under conditions of low D(a); however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D(a) confirmed the relationship between D(a) and g(s). Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments.

  1. An Estimate of the Pixel-Level Connection between Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB Nighttime Lights and Land Features across China

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2018-05-01

    Full Text Available Satellite-derived nighttime light images are increasingly used for various studies in relation to demographic, socioeconomic and urbanization dynamics because of the salient relationships between anthropogenic lighting signals at night and statistical variables at multiple scales. Owing to a higher spatial resolution and fewer over-glow and saturation effects, the new generation of nighttime light data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS day/night band (DNB, which is located on board the Suomi National Polar-Orbiting Partnership (Suomi-NPP satellite, is expected to facilitate the performance of nocturnal luminosity-based investigations of human activity in a spatially explicit manner. In spite of the importance of the spatial connection between the VIIRS DNB nighttime light radiance (NTL and the land surface type at a fine scale, the crucial role of NTL-based investigations of human settlements is not well understood. In this study, we investigated the pixel-level relationship between the VIIRS DNB-derived NTL, a Landsat-derived land-use/land-cover dataset, and the map of point of interest (POI density over China, especially with respect to the identification of artificial surfaces in urban land. Our estimates suggest that notable differences in the NTL between urban (man-made surfaces and other types of land surfaces likely allow us to spatially identify most of the urban pixels with relatively high radiance values in VIIRS DNB images. Our results also suggest that current nighttime light data have a limited capability for detecting rural residential areas and explaining pixel-level variations in the POI density at a large scale. Moreover, the impact of non-man-made surfaces on the partitioned results appears inevitable because of the spatial heterogeneity of human settlements and the nature of remotely sensed nighttime light data. Using receiver operating characteristic (ROC curve-based analysis, we obtained

  2. Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles

    Directory of Open Access Journals (Sweden)

    R. Bauske

    1997-03-01

    Full Text Available During magnetic storms an anomalous increase in the ionization density of the nighttime E region is observed at low and middle latitudes. It has been suggested that this effect is caused by the precipitation of neutralized ring current particles. Here a coupled ring current decay-ionosphere model is used to confirm the validity of this explanation.

  3. Reducing the ecological consequences of night-time light pollution: options and developments.

    Science.gov (United States)

    Gaston, Kevin J; Davies, Thomas W; Bennie, Jonathan; Hopkins, John

    2012-12-01

    1. Much concern has been expressed about the ecological consequences of night-time light pollution. This concern is most often focused on the encroachment of artificial light into previously unlit areas of the night-time environment, but changes in the spectral composition, duration and spatial pattern of light are also recognized as having ecological effects.2. Here, we examine the potential consequences for organisms of five management options to reduce night-time light pollution. These are to (i) prevent areas from being artificially lit; (ii) limit the duration of lighting; (iii) reduce the 'trespass' of lighting into areas that are not intended to be lit (including the night sky); (iv) change the intensity of lighting; and (v) change the spectral composition of lighting.3. Maintaining and increasing natural unlit areas is likely to be the most effective option for reducing the ecological effects of lighting. However, this will often conflict with other social and economic objectives. Decreasing the duration of lighting will reduce energy costs and carbon emissions, but is unlikely to alleviate many impacts on nocturnal and crepuscular animals, as peak times of demand for lighting frequently coincide with those in the activities of these species. Reducing the trespass of lighting will maintain heterogeneity even in otherwise well-lit areas, providing dark refuges that mobile animals can exploit. Decreasing the intensity of lighting will reduce energy consumption and limit both skyglow and the area impacted by high-intensity direct light. Shifts towards 'whiter' light are likely to increase the potential range of environmental impacts as light is emitted across a broader range of wavelengths.4.Synthesis and applications. The artificial lightscape will change considerably over coming decades with the drive for more cost-effective low-carbon street lighting solutions and growth in the artificially lit area. Developing lighting strategies that minimize adverse

  4. Variable conductivity and embolism in roots, trunks and branches of tree species growing under future atmospheric CO2 concentration (DUKE FACE site): impacts on whole-plant hydraulic performance and carbon assimilation

    Science.gov (United States)

    domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.

    2013-12-01

    Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.

  5. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    Science.gov (United States)

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  6. Different Relevance of Peripheral, Central or Nighttime Blood Pressure Measurements in the Prediction of Chronic Kidney Disease Progression in Patients with Mild or No-Proteinuria.

    Science.gov (United States)

    Kuczera, Piotr; Kwiecień, Katarzyna; Adamczak, Marcin; Bączkowska, Teresa; Gozdowska, Jolanta; Madziarska, Katarzyna; Augustyniak-Bartosik, Hanna; Klinger, Marian; Durlik, Magdalena; Ritz, Eberhard; Wiecek, Andrzej

    2018-05-10

    Arterial hypertension is one of the leading factors aggravating the course of chronic kidney disease (CKD). It seems that the novel parameters used in the assessment of the blood pressure (BP) load (i.e. central blood pressure, nighttime blood pressure) may be more precise in predicting the cardiovascular risk and the progression of CKD in comparison with the traditional peripheral blood pressure measurements in the office conditions. The aim of the study was to assess the impact of the central, or nighttime blood pressure on the progression of CKD in patients with mild or no-proteinuria (autosomal, dominant polycystic kidney disease or IgA nephropathy). In each of the enrolled 46 patients with CKD stage 3 or 4, serum creatinine concentration was assessed, eGFR (MDRD) was calculated, also central blood pressure and pulse wave velocity (PWV) was assessed and the 24-hour ambulatory blood pressure monitoring (ABPM) was conducted at the beginning of the study and then repeated after one-year observation period. During the observation period mean eGFR decreased from 44.1 (33.2-50.6) mL/min to 36.7 (29.7-46.3) mL/min. No significant differences were observed in the peripheral blood pressure or central blood pressure parameters. After one-year observation period the values of diastolic blood pressure dipping during the night significantly decreased from 16 (13-19) mmHg to 12 (10-15) mmHg; pblood pressure did not change significantly during a one-year observation period despite the significant decline of eGFR and seems not to participate in the CKD progression. 2. Reduced magnitude of the diastolic dipping, which reflects the increase of diastolic blood pressure load during the nighttime, may play an important role in the pathogenesis of deterioration of kidney function in these patients. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    Science.gov (United States)

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  8. An estimation model of population in China using time series DMSP night-time satellite imagery from 2002-2010

    Science.gov (United States)

    Zhang, Xiaoyong; Zhang, Zhijie; Chang, Yuguang; Chen, Zhengchao

    2015-12-01

    Accurate data on the spatial distribution and potential growth estimation of human population are playing pivotal role in addressing and mitigating heavy lose caused by earthquake. Traditional demographic data is limited in its spatial resolution and is extremely hard to update. With the accessibility of massive DMSP/OLS night time imagery, it is possible to model population distribution at the county level across China. In order to compare and improve the continuity and consistency of time-series DMSP night-time satellite imagery obtained by different satellites in same year or different years by the same satellite from 2002-2010, normalized method was deployed for the inter-correction among imageries. And we referred to the reference F162007 Jixi city, whose social-economic has been relatively stable. Through binomial model, with average R2 0.90, then derived the correction factor of each year. The normalization obviously improved consistency comparing to previous data, which enhanced the correspondent accuracy of model. Then conducted the model of population density between average night-time light intensity in eight-economic districts. According to the two parameters variation law of consecutive years, established the prediction model of next following years with R2of slope and constant typically 0.85 to 0.95 in different regions. To validate the model, taking the year of 2005 as example, retrieved quantitatively population distribution in per square kilometer based on the model, then compared the results to the statistical data based on census, the difference of the result is acceptable. In summary, the estimation model facilitates the quick estimation and prediction in relieving the damage to people, which is significant in decision-making.

  9. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes.

  10. Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions.

    Science.gov (United States)

    Miner, Grace L; Bauerle, William L

    2017-09-01

    The Ball-Berry (BB) model of stomatal conductance (g s ) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and 'residual' g s (g 0 ) parameters of the BB model influence transpiration estimates, but the time-intensive nature of measurement limits species-specific data on seasonal and stress responses. We measured m and g 0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter-plant variability was low, but had substantial impact with larger inter-plant variability. Values for maize (m = 4.53 ± 0.65; g 0  = 0.017 ± 0.016 mol m -2 s -1 ) were 40% higher than other published values. In maize, we found no seasonal changes in m or g 0 , supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter-plant variability of m and g 0 was large (m = 8.84 ± 3.77; g 0  = 0.354 ± 0.226 mol m -2 s -1 ), presenting a challenge to clear interpretation of seasonal and water stress responses - m values were stable seasonally, even as g 0 values trended downward, and m values trended downward with water stress while g 0 values declined substantially. © 2017 John Wiley & Sons Ltd.

  11. Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects

    Science.gov (United States)

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...

  12. Conditional expression of the vesicular stomatitis virus glycoprotein gene in Escherichia coli.

    OpenAIRE

    Rose, J K; Shafferman, A

    1981-01-01

    Bacterial plasmids that directed expression of the vesicular stomatitis virus glycoprotein (G-protein) gene under control of the tryptophan operon regulatory region were constructed. A plasmid directing the synthesis of a G-protein-like protein (containing the NH2-terminal segment of seven amino acids encoded by the trpE gene fused to the complete G-protein sequence lacking only its NH2-terminal methionine) could be transformed into trpR+ (repressed) but not into trpR- (derepressed) cells. Th...

  13. Growth performance and stomatal behavior in relation to ecotypic adaptations in cynodon dactylon (L.) pers

    International Nuclear Information System (INIS)

    Tufail, A.; Ahmad, F.; Hameed, M.; Ahmad, R.

    2017-01-01

    Evolution has great ecological significance in terms of plant morphological and stomatal characteristics that must have been genetically fixed during the long evolutionary period. Impact of environmental conditions on growth and stomatal features of twelve ecotypes of Cynodon dactylon that were collected from ecologically different habitats in the Punjab, Pakistan were evaluated. The collected ecotypes Derawar Fort-saline desert (DF-SD), Muzaffar garh-River bank (M-RB), Khabbeki Lake-hyper saline (KL-HS), Ucchali Lake-hyper saline (UL-HS), Kalar Kahar Lake-saline (KKL-S), Treemu-saline wetland (T-SW), Sahianwala-saline wetland (S-SW), Sahianwala-hyper saline (S-HS), Pakka Anna-hyper saline (PA-HS), Pakka Anna-reclaimed field (PA-RF), Botanic Garden-non saline (BG-NS) and Gatwala-saline semiarid (G-SSA) were grown in controlled environments at University of Agriculture, Faisalabad till their acclimatization to evaluate genetically fixed characteristics. After 6-month growth in soil, the plants were transferred to half-strength Hoagland's nutrient medium. There was a huge variation in all morphological characteristics recorded during the investigation, which were due to environmental heterogeniety to which these ecotypes were originally adapted. An exclusive feature of the DF-SD ecotypes is the long and numerous roots, and tillering capacity that surpassed all other ecotypes. Leaves per plant were also exceptionally high that may improve the photosymthetic efficiency of the plant. It showed a good potential of overall growth and biomass production. The robust growth was also recorded in the KKL-S ecotypes, and this can be related to the complete dominance of these two ecotypes in their respective habitats. Small stomata were recorded in the three ecotypes (DF-SD, KL-HS and PA-HS), which are of great ecological significance. Stomatal shape, however, is different in different ecotypes, but its contribution towards stress tolerance is still to be investigated. (author)

  14. Potential for passive cooling of buildings by night-time ventilation in present and future climates in Europe

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Manz, Heinrich; Heiselberg, Per

    2006-01-01

    Given the general shift in recent decades towards a lower heating and higher cooling demand for buildings in many European countries, passive cooling by night-time ventilation has come to be seen as a promising option, particularly in the moderate or cold climates of Central, Eastern and Northern...... Europe. The basic concept involves cooling the building structure overnight in order to provide a heat sink that is available during the occupancy period. In this study, the potential for the passive cooling of buildings by night-time ventilation is evaluated by analysing climatic data, irrespective...... of any building-specific parameters. An approach for calculating degree-hours based on a variable building temperature - within a standardized range of thermal comfort - is presented and applied to climatic data from 259 stations throughout Europe. The results show a very high potential for night...

  15. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  16. Seawater spray injury to Quercus acutissima leaves: crystal deposition, stomatal clogging, and chloroplast degeneration.

    Science.gov (United States)

    Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi

    2011-05-01

    Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.

  17. Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves

    International Nuclear Information System (INIS)

    Srivastava, A.; Zeiger, E.

    1995-01-01

    Zeaxanthin, antheraxanthin and violaxanthin concentrations in guard cells from sonicated abaxial epidermal peels of Vicia faba were measured from dawn to dusk, and compared with concentrations in mesophyll tissue of the same leaves. Measured changes in guard cell zeaxanthin and violaxanthin concentrations indicate that guard cells operate the xanthophyll cycle throughout the day. Mesophyll tissue had no detectable zeaxanthin at dawn, whereas guard cells had 30–50 mmol mol −1 chlorophyll a+b. On a chlorophyll basis, maximal zeaxanthin levels were 3–4 fold higher in guard cells than in mesophyll cells. Zeaxanthin concentrations tracked levels of photosynthetically active radiation (PAR) in both mesophyll and guard cells. In the mesophyll, most of the zeaxanthin changes occurred in mid-morning and mid-afternoon. In guard cells, zeaxanthin concentrations changed nearly linearly with PAR in the early morning and late afternoon, and closely tracked PAR levels throughout the day. Guard cell zeaxanthin concentrations were also closely correlated with stomatal apertures. The close relationship between zeaxanthin concentrations and PAR levels in guard cells indicates that zeaxanthin is well suited to function as a molecular photosensor in stomatal movements. (author)

  18. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.

    Science.gov (United States)

    Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu

    2018-01-01

    Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Modeling the night-time CO2 4.3 μm emissions in the mesosphere/lower thermosphere

    Science.gov (United States)

    Panka, Peter; Kutepov, Alexander; Feofilov, Artem; Rezac, Ladislav; Janches, Diego

    2016-04-01

    We present a detailed non-LTE model of the night-time CO2 4.3 μm emissions in the MLT. The model accounts for various mechanisms of the non-thermal excitation of CO2 molecules and both for inter- and intra-molecular vibrational-vibrational (VV) and vibrational-translational (VT) energy exchanges. In this model, we pay a specific attention to the transfer of vibrational energy of OH(ν), produced in the chemical reaction H + O3, to the CO2(ν3) vibrational mode. With the help of this model, we simulated a set of non-LTE 4.3 μm MLT limb emissions for typical atmospheric scenarios and compared the vertical profiles of integrated radiances with the corresponding SABER/TIMED observations. The implications, which follow from this comparison, for selecting non-LTE model parameters (rate coefficients), as well as for the night-time CO2 density retrieval in the MLT are discussed.

  20. Obese children and adolescents have elevated nighttime blood pressure independent of insulin resistance and arterial stiffness

    DEFF Research Database (Denmark)

    Hvidt, Kristian N; Olsen, Michael H; Holm, Jens-Christian

    2014-01-01

    BACKGROUND: Insulin resistance has been related to elevated blood pressure (BP) in obese children and may adversely affect the vasculature by arterial stiffening. The objective was to investigate whether daytime and nighttime BP were elevated and related to insulin resistance and arterial stiffness...... in obese children and adolescents. METHODS: Ninety-two obese patients aged 10-18 years were compared with 49 healthy control individuals. Insulin resistance was measured as the homeostatic assessment model (HOMA), and arterial stiffness was measured as carotid-femoral pulse wave velocity (cfPWV). RESULTS......: Mean ± SD daytime systolic BP (SBP) (obese: 125±8.3mm Hg; control: 121±10.1mm Hg; P = 0.03) and nighttime SBP (obese: 108±10.7mm Hg; control: 102±8.2mm Hg; P = 0.0001) were higher in the obese group when compared with the control group. No difference was found in daytime diastolic BP (DBP), whereas...

  1. Experimental Investigation of the Heat Transfer in a Room using Night-Time Coling by Mixing Ventilation

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Nørgaard, Jesper; Daniels, Ole

    2011-01-01

    of full-scale measurements. The efficiency of night-time ventilation depends on the outdoor temperature and the heat transfer between the room air and the building constructions. In a full-scale test room the heat transfer was investigated during 12 hour of discharging by night-time ventilation. Three...... areas and the convective heat transfer coefficient ranged between 5 and 30 W/m2. The ratio of convective to total heat flow from the ceiling depends on the air change rate, ranging from approximately 40% at the low air change rates to approximately 70% at the high air change rate. Even though radiation......For many years focus has been on reducing the energy need for heating in buildings. This has lead to buildings with low energy demands for heating but often at the expense of the need for cooling of the building. In order to design buildings with low or zero energy need energy efficient strategies...

  2. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  3. Nighttime Foreground Pedestrian Detection Based on Three-Dimensional Voxel Surface Model.

    Science.gov (United States)

    Li, Jing; Zhang, Fangbing; Wei, Lisong; Yang, Tao; Lu, Zhaoyang

    2017-10-16

    Pedestrian detection is among the most frequently-used preprocessing tasks in many surveillance application fields, from low-level people counting to high-level scene understanding. Even though many approaches perform well in the daytime with sufficient illumination, pedestrian detection at night is still a critical and challenging problem for video surveillance systems. To respond to this need, in this paper, we provide an affordable solution with a near-infrared stereo network camera, as well as a novel three-dimensional foreground pedestrian detection model. Specifically, instead of using an expensive thermal camera, we build a near-infrared stereo vision system with two calibrated network cameras and near-infrared lamps. The core of the system is a novel voxel surface model, which is able to estimate the dynamic changes of three-dimensional geometric information of the surveillance scene and to segment and locate foreground pedestrians in real time. A free update policy for unknown points is designed for model updating, and the extracted shadow of the pedestrian is adopted to remove foreground false alarms. To evaluate the performance of the proposed model, the system is deployed in several nighttime surveillance scenes. Experimental results demonstrate that our method is capable of nighttime pedestrian segmentation and detection in real time under heavy occlusion. In addition, the qualitative and quantitative comparison results show that our work outperforms classical background subtraction approaches and a recent RGB-D method, as well as achieving comparable performance with the state-of-the-art deep learning pedestrian detection method even with a much lower hardware cost.

  4. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  5. Eclipse effects on field crops and marine zooplankton: the 29 March 2006 total solar eclipse

    Science.gov (United States)

    Economou, G.; Christou, E. D.; Giannakourou, A.; Gerasopoulos, E.; Georgopoulos, D.; Kotoulas, V.; Lyra, D.; Tsakalis, N.; Tzortziou, M.; Vahamidis, P.; Papathanassiou, E.; Karamanos, A.

    2008-08-01

    Some effects in the biosphere from the Total Solar Eclipse of 29 March 2006 were investigated in field crops and marine zooplankton. Taking into account the decisive role of light on plant life and productivity, measurements of photosynthesis and stomatal behaviour were conducted on seven important field-grown cereal and leguminous crops. A drop in photosynthetic rates, by more than a factor of 5 in some cases, was observed, and the minimum values of photosynthetic rates ranged between 3.13 and 10.13 μmol CO2 m-2 s-1. The drop in solar irradiance and the increase in mesophyll CO2-concentration during the eclipse did not induce stomatal closure thus not blocking CO2 uptake by plants. Light effects on the photochemical phase of photosynthesis may be responsible for the observed depression in photosynthetic rates. Field studies addressing the migratory responses of marine zooplankton (micro-zooplankton (ciliates), and meso-zooplankton) due to the rapid changes in underwater light intensity were also performed. The light intensity attenuation was simulated with the use of accurate underwater radiative transfer modeling techniques. Ciliates, responded to the rapid decrease in light intensity during the eclipse adopting night-time behaviour. From the meso-zooplankton assemblage, various vertical migratory behaviours were adopted by different species.

  6. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    Science.gov (United States)

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. © 2014 John Wiley & Sons Ltd.

  7. Global Night-Time Lights for Observing Human Activity

    Science.gov (United States)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  8. Availability and night-time use of electronic entertainment and communication devices are associated with short sleep duration and obesity among Canadian children.

    Science.gov (United States)

    Chahal, H; Fung, C; Kuhle, S; Veugelers, P J

    2013-02-01

    What is already known about this subject Short sleep duration is a risk factor for obesity. Television (TV) in the bedroom has been shown to be associated with excess body weight in children. Children increasingly use other electronic entertainment and communication devices (EECDs) such as video games, computers, and smart phones. What this study adds Access to and night-time use of EECDs are associated with shortened sleep duration, excess body weight, poorer diet quality, and lower physical activity levels. Our findings reinforce existing recommendations pertaining to TV and Internet access by the American Academy of Pediatrics and suggest to have these expanded to restricted availability of video games and smart phones in children's bedrooms. While the prevalence of childhood obesity and access to and use of electronic entertainment and communication devices (EECDs) have increased in the past decades, no earlier study has examined their interrelationship. To examine whether night-time access to and use of EECDs are associated with sleep duration, body weights, diet quality, and physical activity of Canadian children. A representative sample of 3398 grade 5 children in Alberta, Canada, was surveyed. The survey included questions on children's lifestyles and health behaviours, the Harvard Youth/Adolescent Food Frequency questionnaire, a validated questionnaire on physical activity, and measurements of heights and weights. Random effect models were used to assess the associations of night-time access to and use of EECDs with sleep, diet quality, physical activity, and body weights. Sixty-four percent of parents reported that their child had access to one or more EECDs in their bedroom. Access to and night-time use of EECDs were associated with shortened sleep duration, excess body weight, poorer diet quality, and lower physical activity levels in a statistically significant manner. Limiting the availability of EECDs in children's bedrooms and discouraging their

  9. Simulation of Stomatal Conductance and Water Use Efficiency of Tomato Leaves Exposed to Different Irrigation Regimes and Air CO2 Concentrations by a Modified "Ball-Berry" Model.

    Science.gov (United States)

    Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai

    2018-01-01

    Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.

  10. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  11. Cooling of the Building Structure by Night-time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai

    In modern, extensively glazed office buildings, due to high solar and internal loads and increased comfort expectations, air conditioning is increasingly applied even in moderate and cold climates, like in Central and Northern Europe. Particularly in these cases, night-time ventilation is often......, without considering any building-specific parameters. A method for quantifying the climatic cooling potential (CCP) was developed based on degree-hours of the difference between building and external air temperature. Applying this method to climatic data of 259 stations shows very high night cooling...... potential over the whole of Northern Europe and still significant potential in Central, Eastern and even some regions of Southern Europe. However, due to the inherent stochastic properties of weather patterns, series of warmer nights can occur at some locations, where passive cooling by night...

  12. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2013-08-01

    Full Text Available We analyzed the nighttime horizontal neutral winds in the middle atmosphere (~ 87 and ~ 98 km and thermosphere (~ 250 km derived from a Fabry–Perot interferometer (FPI, which was installed at Xinglong station (40.2° N, 117.4° E in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ~ 87 km, ~ 98 km and ~ 250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07. Our results show the following: (1 at ~ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2 At ~ 98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3 There are large discrepancies between the observed and HWM07 winds at ~ 250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ~ 87 and ~ 98 km than that at ~ 250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1 the seasonally averaged zonal winds at ~ 87 and ~ 98 km typically have small variations throughout the night. (2 The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ~ 87 km and ~ 98 km. (3 At ~ 250 km, model zonal wind compares well with the observation in the winter. For spring and

  13. Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0)

    Science.gov (United States)

    Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.

    2018-04-01

    Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.

  14. PFAPA (Periodic fever, aphtous stomatitis, pharingitis, cervical adenitis) or Marshall’s syndrome in children

    OpenAIRE

    N N Kuzmina; G R Movsisyan

    2005-01-01

    PFAPA (periodic fever, aphtous stomatitis, pharingitis, cervical adenitis) or Marshall’s syndrome is one of the rare periodic fever conditions appearing in children. Its cause is unknown. This syndrome may continue for several years. During interictal period the child is quite well, grows and develops normally. The disease should be differentiated from Behcet’s disease, cyclic neutropenia, familial Mediterranean fever, familial Ireland fever, hyperimmunoglobulinemia D syndrome, systemic juven...

  15. Transpiração e condutância foliar à difusão de vapor de feijoeiro irrigado em função da temperatura da folhagem e variáveis ambientais = Transpiration and stomatal conductance of irrigated bean in relation to foliage temperature and environmental variables

    Directory of Open Access Journals (Sweden)

    Paulo Augusto Manfron

    2007-01-01

    Full Text Available Áreas com cultivo irrigado têm o déficit de saturação de vapor (DPV etemperatura do ar modificados. Sendo a resposta estomática influenciada por essas variáveis e outras como temperatura do dossel, a cultura do feijão irrigado tende a apresentar condutância estomática à difusão de vapor (Gva e transpiração, diferenciados com relação ao cultivo de sequeiro. Avaliando-se Gva e transpiração com porômetros de equilíbrio dinâmico, verificou-se que a taxa de transpiração apresentou melhor correlação em relação à temperatura da folhagem em condições de folhas ao sol, do que em relação a folhassombreadas. Relações de Gva com temperatura do ar, DPV e radiação fotossinteticamente ativa (PAR reforçam a interação dos fatores ambientais com a resposta estomática. Valores de Gva apresentaram correlação exponencial negativa tanto com temperatura do ar e DPV,para valores entre 20 e 35°C, de 0,5 à 3 KPa, respectivamente e aumento exponencial quando relacionada a PAR, mesmo com valores superiores a 2000 mmol m-2 s-1.Irrigated areas present environmental variables such as vapor pressure deficit (DPV and modified air temperature. The stomatal response is not only affected by these modified environmental conditions, but also by others such as canopy temperature. Thus, an irrigated bean crop tend to present modifications in stomatal conductance (Gva and transpiration in relation to a non irrigatedcommon bean crop. Gva and transpiration were measured with steady-state null-balance porometers. Results showed that transpiration rate correlated better with canopy temperature in conditions of sunny leaves than of shaded leaves. The relation between Gva and air temperature, and between DPV and photosynthetic active radiation (PAR reinforce the interaction of the environmental variables with stomatal response. Gva values presented negative exponential correlation with air temperature and DPV, for values between 20 and 35°C, and 0

  16. Enhanced Gene Transfer with Fusogenic Liposomes Containing Vesicular Stomatitis Virus G Glycoprotein

    Science.gov (United States)

    Abe, Akihiro; Miyanohara, Atsushi; Friedmann, Theodore

    1998-01-01

    Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo. PMID:9621082

  17. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.

    2006-01-01

    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  18. Effect of a nighttime magnetic field exposure on sleep patterns in young women.

    Science.gov (United States)

    Tworoger, Shelley S; Davis, Scott; Emerson, Scott S; Mirick, Dana K; Lentz, Martha J; McTiernan, Anne

    2004-08-01

    Since poor sleep quality is associated with multiple health problems, it is important to understand factors that may affect sleep patterns. The purpose of this study was to determine the effect of a continuous, 60-Hz, nighttime magnetic field exposure on sleep outcomes in young women sleeping at home. The study was a randomized crossover trial, comparing intervention (0.5-1.0 micro T above ambient levels) with ambient magnetic field levels, during two 5-night measurement periods. Subjects lived in the Seattle, Washington, area and were 20-40 years of age, had regular menstrual cycles, were not taking oral contraceptives, and had not breastfed or been pregnant during the previous year. The study was conducted between March and September of 2001. Sleep outcomes were measured via actigraphy. The range of magnetic field exposure was 0.001-0.50 micro T during the ambient period and 0.41-1.21 micro T during the intervention period. Sleep outcomes were not significantly different between the intervention and the ambient measurement periods. The intervention magnetic field had no effect on sleep patterns, suggesting that this exposure may not be an important factor in predicting sleep of young women who sleep at home.

  19. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought.

    Science.gov (United States)

    Théroux Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve

    2015-02-01

    Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): a single-arm, phase 2 trial.

    Science.gov (United States)

    Rugo, Hope S; Seneviratne, Lasika; Beck, J Thaddeus; Glaspy, John A; Peguero, Julio A; Pluard, Timothy J; Dhillon, Navneet; Hwang, Leon Christopher; Nangia, Chaitali; Mayer, Ingrid A; Meiller, Timothy F; Chambers, Mark S; Sweetman, Robert W; Sabo, J Randy; Litton, Jennifer K

    2017-05-01

    Stomatitis is a class effect associated with the inhibition of mTOR and is associated with everolimus therapy for breast cancer. Topical steroids might reduce stomatitis incidence and severity, and the need for dose reductions and interruptions of everolimus. Anecdotal use of topical steroid oral prophylaxis has been reported in patients with breast cancer. We aimed to assess dexamethasone-based mouthwash for prevention of stomatitis in patients with breast cancer. This US-based, multicentre, single-arm, phase 2 prevention study enrolled women aged 18 years and older with postmenopausal status who had histologically or cytologically confirmed metastatic hormone receptor-positive, HER2-negative breast cancer. Beginning on day 1 of cycle 1, patients received everolimus 10 mg plus exemestane 25 mg daily, with 10 mL of alcohol-free dexamethasone 0·5 mg per 5 mL oral solution (swish for 2 min and spit, four times daily for 8 weeks). After 8 weeks, dexamethasone mouthwash could be continued for up to eight additional weeks at the discretion of the clinician and patient. The primary endpoint was incidence of grade 2 or worse stomatitis by 8 weeks assessed in the full analysis set (patients who received at least one dose of everolimus and exemestane and at least one confirmed dose of dexamethasone mouthwash) versus historical controls from the BOLERO-2 trial (everolimus and exemestane treatment in patients with hormone receptor-positive advanced breast cancer who were not given dexamethasone mouthwash for prevention of stomatitis). This trial is registered at ClinicalTrials.gov, number NCT02069093. Between May 28, 2014, and Oct 8, 2015, we enrolled 92 women; 85 were evaluable for efficacy. By 8 weeks, the incidence of grade 2 or worse stomatitis was two (2%) of 85 patients (95% CI 0·29-8·24), versus 159 (33%) of 482 patients (95% CI 28·8-37·4) for the duration of the BOLERO-2 study. Overall, 83 (90%) of 92 patients had at least one adverse event. The most frequently