WorldWideScience

Sample records for nif chamber dynamics

  1. Final report for NIF chamber dynamics studies

    International Nuclear Information System (INIS)

    Burnham, A; Peterson, P F; Scott, J M

    1998-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5

  2. Mini-chamber, an advanced protection concept for NIF

    International Nuclear Information System (INIS)

    Peterson, P.F.; Scott, J.M.

    1996-01-01

    Inertial confinement fusion (ICF) target debris and ablated near-target materials pose the primary threat to the National Ignition Facility (NIF) final optics debris shields, as well as a major challenge in future inertial fusion energy (IFE) power plants. This work discusses a NIF 'mini-chamber,' designed to mitigate the debris threat. Although the NIF base-line design protects against debris using a frost-protected target positioner and refractory first-wall coatings, the mini-chamber provides important flexibility in three areas: debris-shield protection from beyond-design basis shots (i.e. heavy hohlraums, special diagnostics, shields); fielding of large experiments with significant surface ablation; and studying key ablation and gas-dynamics issues for liquid-wall IFE power plants. Key mini-chamber modeling results are presented, followed by discussion of equipment requirements for fielding a NIF mini-chamber. 7 refs., 3 figs

  3. IFE chamber technology testing program in NIF and chamber development test plan

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1995-01-01

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF

  4. Final report for NIF chamber dynamics studies. Final report (May 1997), Subcontract No. B291847

    International Nuclear Information System (INIS)

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-01-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 Angstrom) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO 2 Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation -6 This report provides a summary of the work completed this year, as well as copies of

  5. Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Morris I. Kaufman, John R. Celeste, Brent C. Frogget, Tony L. Lee, Brian J. GacGowan, Robert M. Malone, Edmund W. Ng, Tom W. Tunnell, Phillip W. Watts

    2006-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The velocity interferometer for any reflector measures shock velocities at a location remote to the NIF target chamber. Our team designed two systems, one for a polar port orientation, and the other to accommodate two equatorial ports. The polar-oriented design requires a 48-m optical relay to move the light from inside the target chamber to a separately housed measurement and laser illumination station. The currently operational equatorial design requires a much shorter relay of 21 m. Both designs posed significant optomechanical challenges due to the long optical path length, large quantity of optical elements, and stringent NIF requirements. System design had to tightly control the use of lubricants and materials, especially those inside the vacuum chamber; tolerate earthquakes and radiation; and consider numerous other tolerance, alignment, and steering adjustment issues. To ensure compliance with NIF performance requirements, we conducted a finite element analysis

  6. Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.

    OpenAIRE

    Lyons, E M; Thiel, T

    1995-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by...

  7. NIF unconverted light and its influence on DANTE measurements.

    Science.gov (United States)

    Girard, Frederic; Suter, Larry; Landen, Otto; Munro, Dave; Regan, Sean; Kline, John

    2009-06-01

    NIF laser facility produces 1053 nm light and a fundamental requirement for NIF is to give up to 1.8 MJ of 351 nm light for target physics experiments. The 351 nm light is provided by frequency tripling the 1053 nm light in nonlinear crystals in the final optics assembly, just before the laser light enters the target chamber. Since this tripling process is not 100% efficient, unconverted light from the conversion process also enters the chamber. This unconverted light does not directly hit the target but it can strike target support structures at average intensities of few TW/cm2 where it can generate unwanted, background soft x-rays that are measured by the soft x-ray diagnostic DANTE installed on the NIF target chamber. This diagnostic quantifies the x-radiation intensity inside the hohlraum by measuring the x-ray flux coming from the target's laser entrance hole. Due to its centimeter wide field of view, it integrates x-ray emission from both the flux exiting a hohlraum laser entrance hole and from the target support structure irradiated by residual 1omega and 2omega unconverted light. This work gives quantitative evaluations of the unconverted light for the first time and the effects on DANTE measurements for the future NIF tuning experiment called "Shock timing." Emission spectra are significantly modified leading to an overestimation of radiative temperature during the foot of the laser pulse since background x-rays are predominant in first two DANTE channel measurements. Mitigations of these effects by coating silicon paddle with plastic, using a smaller collimator to reduce DANTE field of view or eliminating DANTE channels in the analysis have been investigated.

  8. The role of the NIF in the development of inertial fusion energy

    International Nuclear Information System (INIS)

    Logan, B.G.

    1995-01-01

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-microm-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE

  9. Construction of the NIFS campus information network, NIFS-LAN

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Kenzo; Yamamoto, Takashi; Kato, Takeo; Nakamura, Osamu; Watanabe, Kunihiko; Watanabe, Reiko; Tsugawa, Kazuko; Kamimura, Tetsuo

    2000-10-01

    The advanced NIFS campus information network, NIFS-LAN, was designed and constructed as an informational infrastructure in 1996, 1997 and 1998 fiscal year. NIFS-LAN was composed of three autonomous clusters classified from research purpose; Research Information cluster, Large Helical Device Experiment cluster and Large-Scale Computer Simulation Research cluster. Many ATM(Asychronous Transfer Mode) switching systems and switching equipments were used for NIFS-LAN. Here, the outline of NIFS-LAN is described. (author)

  10. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    Science.gov (United States)

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  11. NIF Discovery Science Eagle Nebula

    Science.gov (United States)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2017-10-01

    The University of Maryland and and LLNL are investigating the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. The National Ignition Facility (NIF) Discovery Science program Eagle Nebula has performed NIF shots to study models of pillar formation. The shots feature a new long-duration x-ray source, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 to 15 ns each to create a 30 to 60 ns output x-ray pulse. The source generates deeply nonlinear hydrodynamics in the Eagle science package, a structure of dense plastic and foam mocking up a molecular cloud containing a dense core. Omega EP and NIF shots have validated the source concept, showing that earlier hohlraums do not compromise later ones by preheat or by ejecting ablated plumes that deflect later beams. The NIF shots generated radiographs of shadowing-model pillars, and also showed evidence that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at the millimeter-wave BIMA and CARMA observatories. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Progress on establishing guidelines for National Ignition Facility (NIF) experiments to extend debris shield lifetime

    International Nuclear Information System (INIS)

    Tobin, M.; Eder, D.; Braun, D.; MacGowan, B.

    2002-01-01

    The survivability of the debris shields on the National Ignition Facility (NIF) are a key factor for the affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4-8 J/cm 2 laser fluences indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed suggested guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance suggests a target mass quantity that as particulate on the debris shields (300 mg) may be within current operating budgets. It also suggests the amount of material that should become shrapnel on a shot (10 mg). Finally, it suggests the level of non-volatile residue (NVR) that would threaten the sol-gel coatings on the debris shields (1 μg/cm 2 ). We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of X-ray emissions from a likely NIF target and the associated ablation expected from this X-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community

  13. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  14. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  15. Advances in inertial confinement fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2010-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory-temperatures over 100 million K, densities of 1000 g/cm 3 , and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  16. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  17. National Ignition Facility Target Chamber

    International Nuclear Information System (INIS)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-01-01

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  18. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.; Lindvall, R.; Gostic, J.M.

    2011-01-01

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  19. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    International Nuclear Information System (INIS)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J

    2008-01-01

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets

  20. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov

    2008-05-15

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  1. NIF diagnostic damage and design issues

    International Nuclear Information System (INIS)

    Landen, N.

    1999-01-01

    The NIF target environment is evaluated with respect to target and diagnostic debris and with respect to instrument survivability in the presence of target debris and radiation. Quantitative estimates are arrived at by extrapolating from Nova and Omega experience using simple scaling arguments. Specifically, we evaluate the closest distance of approach of various components of DIM-based diagnostics such as target mounted pinhole arrays, open detectors, filters, x-ray optics, and spectrometers. We also include constraints on achieving adequate signal-to-noise on x-ray diagnostics. Four of the most important conclusions are as follows: (1) The required full NIF stand-off distance for heavily filtered detectors (e.g. multi-keV x-ray and particle detectors) as determined by concerns of diagnostic debris and diagnostic survivability to debris and radiation is no more than 100 cm. (2) Target mounted pinhole arrays and slits mounted a few cm from chamber center at NIF will survive long enough to record data and should be an acceptable source of shrapnel debris. (3) DIM-based instrument stand-off distances are compatible with achieving the same photon statistics (or better with ongoing improvements in detector resolution and noise) than available with current Nova and Omega SIM- or TIM-based instrumentation. Section II reviews target and diagnostic debris with respect to final optics. Section III reviews debris and radiation with respect to all diagnostic components. The following laser scaling between Nova/Omega and NIF is used throughout unless otherwise specified: laser energy E = 100x, drive duration τ = 6x and hence for a given laser intensity or hohlraum temperature, target size r approximately √(E/τ) = 4x. The 100x increase in E accounts for the fact that many Nova shots were performed with only 20 kJ and all LLNL Omega shots were performed with only 15 kJ

  2. Conceptual design of low activation target chamber and components for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schultz, K.R.; Sager, G.T.; Kantner, R.D.

    1996-01-01

    The baseline design for the target chamber and chamber components for the National Ignition Facility (NIF) consists of aluminum alloy structural material. Low activation composite chamber and components have important advantages including enhanced environmental and safety characteristics and improved accessibility due to reduced neutron-induced radioactivity. A low activation chamber can be fabricated from carbon fiber reinforced epoxy using thick wall laminate technology similar to submarine bow dome fabrication for the U.S. Navy. A risk assessment analysis indicates that a composite chamber has a reasonably high probability of success, but that an aluminum alloy chamber represents a lower risk. Use of low activation composite materials for several chamber components such as the final optics assemblies, the target positioner and inserter, the diagnostics manipulator tubes, and the optics beam tubes would offer an opportunity to make significant reductions in post-shot radiation dose rate with smaller, less immediate impact on the NIF design. 7 refs., 3 figs

  3. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes.

    Science.gov (United States)

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-08-27

    Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fifteen nitrogen fixation (nif) genes, including three nifH, one nifD, one nifK, four nifB, two nifE, two nifN, one nifX and one nifV. Of the 15 nif genes, eight nif genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) and two non-nif genes (orf1 and hesA) form a complete nif gene cluster. In addition to the nif genes, there are nitrogenase-like genes, including two nifH-like genes and five pairs of nifDK-like genes. IS elements on the flanking regions of nif and nif-like genes imply that these genes might have been obtained by horizontal gene transfer. Phylogenies of the concatenated 8 nif gene (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) products suggest that P. sabinae T27 is closely related to Frankia. RT-PCR analysis showed that the complete nif gene cluster is organized as an operon. We demonstrated that the complete nif gene cluster under the control of σ70-dependent promoter enabled Escherichia coli JM109 to fix nitrogen. Also, here for the first time we demonstrated that unlike nif genes, the transcriptions of nifHDK-like genes were not regulated by ammonium and oxygen, and nifH-like or nifD-like gene could not restore the nitrogenase activity of Klebsiella pneumonia nifH- and nifD- mutant strains, respectively, suggesting that nifHDK-like genes were not involved in nitrogen fixation. Our data and analysis reveal the contents and distribution of nif and nif-like genes and contribute to the study of evolutionary history of nitrogen fixation in Paenibacillus. For the first time we

  4. Status of NIF mirror technologies for completion of the NIF facility

    International Nuclear Information System (INIS)

    Stolz, C.J.

    2008-01-01

    The 1600 mirrors required for the National Ignition Facility (NIF) are now coated with the last optics currently being installed. The combined surface area of the NIF mirrors is almost 450 square meters, roughly 3.4 times greater than the surface area of the two Keck primary mirrors. Additionally, the power handling specification of NIF mirrors is 19 orders of magnitude greater than that of the Keck mirrors. The NIF laser will be at least 40x greater energy than the previous LLNL fusion laser called NOVA. To manufacture these mirrors, a number of new technologies (electrolytic in-situ dressing, ion figuring, source stabilization) were used that were not available for previous fusion laser optics. Post deposition technologies designed to increase laser resistance (off-line laser conditioning, solarization, air knives) have also been utilized. This paper summarizes the differences in technologies used to manufacture NIF mirrors from those used for previous fusion lasers and examines potential future technologies that would enable higher fluence operations and extend lifetimes

  5. Testing and Quality Assurance of the Control System During NIF Commissioning

    International Nuclear Information System (INIS)

    Casavant, D.; Carey, R.; Cline, B.; Lagin, L.; Ludwigsen, P.; Reddi, U.; Van Arsdall, P.

    2003-01-01

    The strategy used to develop the National Ignition Facility Integrated Computer Control System (NIF ICCS) calls for incremental cycles of construction and formal test to deliver nearly one million lines of code. Software releases that implement specific functionality are approved for deployment when offline tests conducted in the ICCS Integration and Test Facility verify functional, performance and interface requirements using test procedures derived from system requirements. At this stage of the project the controls team has delivered approximately 3/4 of the planned software by performing dozens of development and test cycles within offline test facilities and followed by online tests to confirm integrated operation in the NIF. Test incidents are recorded and tracked from development to successful deployment by the verification team, with hardware and software changes approved by the appropriate change control board. Project metrics are generated by the Software Quality Assurance manager and monitored by ICCS management. Test results are summarized and reported to responsible individuals and Project managers under a work authorization and permit process that assesses risk and evaluates control system upgrade readiness. NIF is well into the first phases of its laser commissioning program to characterize and operate the first four laser beams and target systems. The integrated control system has successfully fired over 100 coordinated shots into beam diagnostics and an initial set of target diagnostics in the 10-m diameter target chamber. Extensive experience has been gained by integrating controls in prototype laboratories and in the NIF. This paper will discuss NIF's software QC and QA processes, capabilities of offline test facilities, and metrics collection

  6. The expression of nifB gene from Herbaspirillum seropedicae is dependent upon the NifA and RpoN proteins.

    Science.gov (United States)

    Rego, Fabiane G M; Pedrosa, Fábio O; Chubatsu, Leda S; Yates, M Geoffrey; Wassem, Roseli; Steffens, Maria B R; Rigo, Liu U; Souza, Emanuel M

    2006-12-01

    The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.

  7. Report on the B-Fields at NIF Workshop Held at LLNL October 12-13, 2015

    International Nuclear Information System (INIS)

    Fournier, K. B.; Moody, J. D.

    2015-01-01

    A national ICF laboratory workshop on requirements for a magnetized target capability on NIF was held by NIF at LLNL on October 12 and 13, attended by experts from LLNL, SNL, LLE, LANL, GA, and NRL. Advocates for indirect drive (LLNL), magnetic (Z) drive (SNL), polar direct drive (LLE), and basic science needing applied B (many institutions) presented and discussed requirements for the magnetized target capabilities they would like to see. 30T capability was most frequently requested. A phased operation increasing the field in steps experimentally can be envisioned. The NIF management will take the inputs from the scientific community represented at the workshop and recommend pulse-powered magnet parameters for NIF that best meet the collective user requests. In parallel, LLNL will continue investigating magnets for future generations that might be powered by compact laser-B-field generators (Moody, Fujioka, Santos, Woolsey, Pollock). The NIF facility engineers will start to analyze compatibility of the recommended pulsed magnet parameters (size, field, rise time, materials) with NIF chamber constraints, diagnostic access, and final optics protection against debris in FY16. The objective of this assessment will be to develop a schedule for achieving an initial Bfield capability. Based on an initial assessment, room temperature magnetized gas capsules will be fielded on NIF first. Magnetized cryo-ice-layered targets will take longer (more compatibility issues). Magnetized wetted foam DT targets (Olson) may have somewhat fewer compatibility issues making them a more likely choice for the first cryo-ice-layered target fielded with applied Bz.

  8. Mutant Forms of the Azotobacter vinelandii Transcriptional Activator NifA Resistant to Inhibition by the NifL Regulatory Protein

    OpenAIRE

    Reyes-Ramirez, Francisca; Little, Richard; Dixon, Ray

    2002-01-01

    The Azotobacter vinelandii σ54-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by σ54-RNA polymerase and may also inhibit the activator-polymeras...

  9. VTVH-MCD study of the Delta nifB Delta nifZ MoFe protein from Azotobacter vinelandii.

    Science.gov (United States)

    Cotton, Marcia S; Rupnik, Kresimir; Broach, Robyn B; Hu, Yilin; Fay, Aaron W; Ribbe, Markus W; Hales, Brian J

    2009-04-08

    NifZ is a member of a series of proteins associated with the maturation of the nitrogenase MoFe protein. An MCD spectroscopic study was undertaken on the Delta nifB Delta nifZ MoFe protein generated in the absence of both NifZ and NifB (deletion of NifB generates an apo-MoFe protein lacking the FeMo cofactor). Results presented here show that, in the absence of NifZ, only one of the two P-clusters of the MoFe protein is matured to the ultimate [8Fe-7S] structure. The other P-cluster site in the protein contains a [4Fe-4S] cluster pair, representing a P-cluster precursor that is electronically identical to the analogous clusters observed in the Delta nifH MoFe protein. These results suggest that the MoFe protein is synthesized in a stepwise fashion where NifZ is specifically required for the formation of the second P-cluster.

  10. Testing and Quality Assurance of the Control System During NIF Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Casavant, D; Carey, R; Cline, B; Lagin, L; Ludwigsen, P; Reddi, U; Van Arsdall, P

    2003-10-13

    The strategy used to develop the National Ignition Facility Integrated Computer Control System (NIF ICCS) calls for incremental cycles of construction and formal test to deliver nearly one million lines of code. Software releases that implement specific functionality are approved for deployment when offline tests conducted in the ICCS Integration and Test Facility verify functional, performance and interface requirements using test procedures derived from system requirements. At this stage of the project the controls team has delivered approximately 3/4 of the planned software by performing dozens of development and test cycles within offline test facilities and followed by online tests to confirm integrated operation in the NIF. Test incidents are recorded and tracked from development to successful deployment by the verification team, with hardware and software changes approved by the appropriate change control board. Project metrics are generated by the Software Quality Assurance manager and monitored by ICCS management. Test results are summarized and reported to responsible individuals and Project managers under a work authorization and permit process that assesses risk and evaluates control system upgrade readiness. NIF is well into the first phases of its laser commissioning program to characterize and operate the first four laser beams and target systems. The integrated control system has successfully fired over 100 coordinated shots into beam diagnostics and an initial set of target diagnostics in the 10-m diameter target chamber. Extensive experience has been gained by integrating controls in prototype laboratories and in the NIF. This paper will discuss NIF's software QC and QA processes, capabilities of offline test facilities, and metrics collection.

  11. NIF Laser Line Replaceable Units (LRUs)

    International Nuclear Information System (INIS)

    Larson, D W

    2003-01-01

    The National Ignition Facility (NIF) is designed with its high value optical systems in cassettes called Line Replaceable Units (LRUs). Virtually all of the NIF's active components are assembled in one of the ∼4000 electrical and optical LRUs that serve between two and eight of NIF's 192 laser beam lines. Many of these LRUs are optomechanical assemblies that are roughly the size of a telephone booth. The primary design challenges for this hardware include meeting stringent mechanical precision, stability and cleanliness requirements. Pre-production units of each LRU type have been fielded on the first bundle of NIF and used to demonstrate that NIF meets its performance objectives. This presentation provides an overview of the NIF LRUs, their design and production plans for building out the remaining NIF bundles

  12. Behavioral Model of High Performance Camera for NIF Optics Inspection

    International Nuclear Information System (INIS)

    Hackel, B M

    2007-01-01

    The purpose of this project was to develop software that will model the behavior of the high performance Spectral Instruments 1000 series Charge-Coupled Device (CCD) camera located in the Final Optics Damage Inspection (FODI) system on the National Ignition Facility. NIF's target chamber will be mounted with 48 Final Optics Assemblies (FOAs) to convert the laser light from infrared to ultraviolet and focus it precisely on the target. Following a NIF shot, the optical components of each FOA must be carefully inspected for damage by the FODI to ensure proper laser performance during subsequent experiments. Rapid image capture and complex image processing (to locate damage sites) will reduce shot turnaround time; thus increasing the total number of experiments NIF can conduct during its 30 year lifetime. Development of these rapid processes necessitates extensive offline software automation -- especially after the device has been deployed in the facility. Without access to the unique real device or an exact behavioral model, offline software testing is difficult. Furthermore, a software-based behavioral model allows for many instances to be running concurrently; this allows multiple developers to test their software at the same time. Thus it is beneficial to construct separate software that will exactly mimic the behavior and response of the real SI-1000 camera

  13. Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Robert M, Malone; John R, Celesteb; Peter M, Celliers; Brent C, Froggeta; Robert L, Guyton; Morris I, Kaufman; Tony L, Lee; Brian J, MacGowan; Edmund W, Ng; Imants P, Reinbachs; Ronald B, Robinson; Lynn G, Seppala; Tom W, Tunnell; Phillip W, Watts

    2005-01-01

    Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 1-5 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber

  14. Orchestrating Shots for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Mathisen, D G; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R W; Casavant, D D; Cline, B D; Demaret, R D; Domyancic, D M; Elko, S D; Fisher, J M; Krammen, J E; Lagin, L J; Ludwigsen, A P; Patterson, R W; Sanchez, R J; Stout, E A

    2005-01-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 Megajoule, 500-Terawatt, ultra-violet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and physics of matter at extreme densities and pressures. The NIF is operated by the Integrated Computer Control System (ICCS), which is a layered architecture of over 700 lower-level front-end processors attached to nearly 60,000 control points and coordinated by higher-level supervisory subsystems in the main control room. A shot automation framework has been developed and deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. The Shot Automation framework is designed to automate 4-8 hour shot sequences, that includes deriving shot goals from an experiment definition, set up of the laser and diagnostics, automatic alignment of laser beams, and a countdown to charge and fire the lasers. These sequences consist of set of preparatory verification shots, leading to amplified system shots followed by post-shot analysis and archiving. The framework provides for a flexible, model-based work-flow execution, driven by scripted automation called macro steps. The shot director software is the orchestrating component of a very flexible automation layer which allows us to define, coordinate and reuse simpler automation sequences. This software provides a restricted set of shot life cycle state transitions to 26 collaboration supervisors that automate 8-laser beams (bundle) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification

  15. NIF ICCS Test Controller for Automated and Manual Testing

    International Nuclear Information System (INIS)

    Zielinski, J S

    2007-01-01

    The National Ignition Facility (NIF) Integrated Computer Control System (ICCS) is a large (1.5 MSLOC), hierarchical, distributed system that controls all aspects of the NIF laser [1]. The ICCS team delivers software updates to the NIF facility throughout the year to support shot operations and commissioning activities. In 2006, there were 48 releases of ICCS: 29 full releases, 19 patches. To ensure the quality of each delivery, thousands of manual and automated tests are performed using the ICCS Test Controller test infrastructure. The TestController system provides test inventory management, test planning, automated test execution and manual test logging, release testing summaries and test results search, all through a web browser interface. Automated tests include command line based frameworks server tests and Graphical User Interface (GUI) based Java tests. Manual tests are presented as a checklist-style web form to be completed by the tester. The results of all tests, automated and manual, are kept in a common repository that provides data to dynamic status reports. As part of the 3-stage ICCS release testing strategy, the TestController system helps plan, evaluate and track the readiness of each release to the NIF facility

  16. Investigation into the MgF2-NiF2, CaF2-NiF2, SrF2-NiF2 systems

    International Nuclear Information System (INIS)

    Ikrami, D.D.; Petrov, S.V.; Fedorov, P.P.; Ol'khovaya, L.A.; Luginina, A.A.; AN SSSR, Moscow. Inst. Fizicheskikh Problem; AN SSSR, Moscow. Inst. Kristallografii)

    1984-01-01

    Using the methods of differential thermal and X-ray phase analyses the systems MgF 2 -NiF 2 , CaF 2 -NiF 2 , SrF 2 -NiF 2 have been studied. In the system SrF 2 -NiF 2 the only orthorhombic compounds SrNiF 4 (a=14.43; b=3.93; c=5.66 (+-0.01 A)) is formed. SrNiF 4 density constitutes: dsub(X-ray)=4.60+-0.01 g/cm 3 , dsub(exp.)=4.60+-0.03 g/cm 3 . Refraction indices are as follows SrNiF 4 :Ng=1.500; Nsub(m)=1.497; Nsub(p)=1.479. SrNiF 4 magnetic ordering temperature Tsub(N) approximately 100 K

  17. Radiation effects on active camera electronics in the target chamber at the National Ignition Facility

    Science.gov (United States)

    Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.

    2017-08-01

    The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.

  18. NIF Operations Management Plan, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, Bruno M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Ignition Facility (NIF)

    2014-01-30

    Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility (NIF) is a key component of the National Nuclear Security Administration’s (NNSA) Stockpile Stewardship Program, whose purpose is to maintain the safety, reliability, and effectiveness of our nation’s nuclear stockpile without underground nuclear testing. The NIF is crucial to the Stockpile Stewardship Program because it is the only facility that can create the conditions of extreme temperature and pressure—conditions that exist only in stars or in exploding nuclear weapons—that are relevant to understanding how our modern nuclear weapons operate. As such, the NIF’s primary mission is to attain fusion ignition in the laboratory. Fusion ignition not only supports Stockpile Stewardship needs, but also provides the basis for future decisions about fusion’s potential as a long-term energy source. Additionally, NIF provides scientists with access to high-energy-density regimes that can yield new insight and understanding in the areas of astrophysics, hydrodynamics, material properties, plasma physics, and radiative properties. The use of the NIF to support the Stockpile Stewardship Program and the advancement of basic high-energy-density science understanding is planned and managed through program-level execution plans and NIF directorate-level management teams. An example of a plan is the National Ignition Campaign Execution Plan. The NIF Operations Management Plan provides an overview of the NIF Operations organization and describes how the NIF is supported by the LLNL infrastructure and how it is safely and responsibly managed and operated. Detailed information on NIF management of the organization is found in a series of supporting plans, policies, and procedures. A list of related acronyms can be found in Appendix A of this document. The purpose of this document is to provide a roadmap of how the NIF Operations organization functions. It provides a guide to understanding the

  19. NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria.

    Science.gov (United States)

    Dedysh, Svetlana N; Ricke, Peter; Liesack, Werner

    2004-05-01

    The ability to utilize dinitrogen as a nitrogen source is an important phenotypic trait in most currently known methanotrophic bacteria (MB). This trait is especially important for acidophilic MB, which inhabit acidic oligotrophic environments, highly depleted in available nitrogen compounds. Phylogenetically, acidophilic MB are most closely related to heterotrophic dinitrogen-fixing bacteria of the genus BEIJERINCKIA: To further explore the phylogenetic linkage between these metabolically different organisms, the sequences of nifH and nifD gene fragments from acidophilic MB of the genera Methylocella and Methylocapsa, and from representatives of Beijerinckia, were determined. For reference, nifH and nifD sequences were also obtained from some type II MB of the alphaproteobacterial Methylosinus/Methylocystis group and from gammaproteobacterial type I MB. The trees constructed for the inferred amino acid sequences of nifH and nifD were highly congruent. The phylogenetic relationships among MB in the NifH and NifD trees also agreed well with the corresponding 16S rRNA-based phylogeny, except for two distinctive features. First, different methods used for phylogenetic analysis grouped the NifH and NifD sequences of strains of the gammaproteobacterial MB Methylococcus capsulatus within a clade mainly characterized by Alphaproteobacteria, including acidophilic MB and type II MB of the Methylosinus/Methylocystis group. From this and other genomic data from Methylococcus capsulatus Bath, it is proposed that an ancient event of lateral gene transfer was responsible for this aberrant branching. Second, the identity values of NifH and NifD sequences between Methylocapsa acidiphila B2 and representatives of Beijerinckia were clearly higher (98.5 and 96.6 %, respectively) than would be expected from their 16S rRNA-based relationships. Possibly, these two bacteria originated from a common acidophilic dinitrogen-fixing ancestor, and were subject to similar evolutionary pressure

  20. First Results from the South Pole Bang Time (SPBT) Diagnostic on the NIF*

    Science.gov (United States)

    Edgell, D. H.; Glebov, V. Yu.; Magoon, J.; Sangster, T. C.; Shoup, M. J., III; Stoeckl, C.; Macphee, A.; Bradley, D. K.; Burns, S.; Celeste, J.; Eckart, M. J.; Jones, O. S.; Kilkenny, J. D.; Kimbrough, J. R.; MacKinnon, A. J.; Parker, J.; Thomas, T.

    2011-10-01

    The south pole bang time (SPBT) x-ray diagnostic has been successfully fielded on the NIF. SPBT consists of chemical-vapor-deposition diamond detectors, with different filtrations, located 3 m directly below target chamber center, viewing the implosion through the hohlraum laser entrance hole. The diamond detectors are sensitive to both x rays and neutrons. HOPG crystal mirror monochromators increase the x-ray signal to background ratio. SPBT is designed to measure the x-ray bang time with an accuracy of a few tens of picoseconds. SPBT x-ray and neutron results from NIF implosions are presented along with timing and error analysis. *This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  1. Concept of operations for channel characterization and simulation of coaxial transmission channels at the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jr., Charles G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) executes experiments for inertial con nement fusion (ICF), world-class high energy density physics (HEDP), and critical national security missions. While the laser systems, target positioners, alignment systems, control systems, etc. enable the execution of such experiments, NIF’s utility would be greatly reduced without its suite of diagnostics. It would be e ectively “blind” to the incredible physics unleashed in its target chamber. Since NIF diagnostics are such an important part of its mission, the quality and reliability of the diagnostics, and of the data recorded from them, is crucial.

  2. National NIF Diagnostic Program Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    The National Ignition Facility (NIF) has the mission of supporting Stockpile Stewardship and Basic Science research in high-energy-density plasmas. To execute those missions, the facility must provide diagnostic instrumentation capable of observing and resolving in time events and radiation emissions characteristic of the plasmas of interest. The diagnostic instrumentation must conform to high standards of operability and reliability within the NIF environment. These exacting standards, together with the facility mission of supporting a diverse user base, has led to the need for a central organization charged with delivering diagnostic capability to the NIF. The National NIF Diagnostics Program (NNDP) has been set up under the aegis of the NIF Director to provide that organization authority and accountability to the wide user community for NIF. The funds necessary to perform the work of developing diagnostics for NIF will be allocated from the National NIF Diagnostics Program to the participating laboratories and organizations. The participating laboratories and organizations will design, build, and commission the diagnostics for NIF. Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize NIF Core Diagnostics Systems and Cryogenic Target Handing Systems, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NIF Core Diagnostics Systems. Preparation of a Program Execution Plan for NIF Core Diagnostics Systems has been initiated and a current draft is provided as Attachment 1 to this document. The National NIF Diagnostics Program Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope

  3. Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer.

    Science.gov (United States)

    Curatti, Leonardo; Rubio, Luis M

    2014-08-01

    Some regions of the developing world suffer low cereal production yields due to low fertilizer inputs, among other factors. Biological N2 fixation, catalyzed by the prokaryotic enzyme nitrogenase, is an alternative to the use of synthetic N fertilizers. The molybdenum nitrogenase is an O2-labile metalloenzyme composed of the NifDK and NifH proteins, which biosyntheses require a number of nif gene products. A challenging strategy to increase cereal crop productivity in a scenario of low N fertilization is the direct transfer of nif genes into cereals. The sensitivity of nitrogenase to O2 and the apparent complexity of nitrogenase biosynthesis are the main barriers identified so far. Expression of active NifH requires the products of nifM, nifH, and possibly nifU and nifS, whereas active NifDK requires the products of nifH, nifD, nifK, nifB, nifE, nifN, and possibly nifU, nifS, nifQ, nifV, nafY, nifW and nifZ. Plastids and mitochondria are potential subcellular locations for nitrogenase. Both could provide the ATP and electrons required for nitrogenase to function but they differ in their internal O2 levels and their ability to incorporate ammonium into amino acids. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae.

    OpenAIRE

    Kong, Q T; Wu, Q L; Ma, Z F; Shen, S C

    1986-01-01

    Oxygen sensitivity of the nifLA promoter of Klebsiella pneumoniae has been demonstrated. Studies on the oxygen regulation of nifB-lacZ and nifH-lacZ fusions in the presence of the nifLA operon, which contains either an intact or a deleted nifL gene, indicate that possibly both the nifL promoter and the nifL product are responsible for nif repression by oxygen.

  5. Development of IFE target systems on the NIF

    International Nuclear Information System (INIS)

    Schultz, K.R.; Fagaly, R.L.; Bernat, T.; Meier, W.; Petzoldt, R.; Foreman, L.

    1995-01-01

    The Target Systems session of the Workshop on NIF Experiments for IFE developed a list of critical issues for inertial fusion energy (IFE) target systems, and considered the potential of the National Ignition Facility (NIF) to help in the resolution of these issues and in the development of IFE target systems. This paper describes the IFE Target System issues, categorized into target fabrication issues and target transport issues, describes potential NIF IFE target systems experiments, considers the impact of these experiments on the NIF and discusses the development required before these experiments could be done. Most target systems issues must be resolved by development in the laboratory, not in the NIF, and some must be resolved before the NIF can be successful. However, experiments done in the NIF could play a valuable role in developing target systems for IFE. These experiments should have modest impact on the basic design of the NIF, but could require several hundred dedicated, high yield shots

  6. Design risk analysis comparison between low-activation composite and aluminum alloy target chamber for the National Ignition Facility

    International Nuclear Information System (INIS)

    Streckert, H.H.; Schleicher, R.W.

    1997-01-01

    The baseline design for the target chamber for the National Ignition Facility (NIF) consists of an aluminum alloy spherical shell. A low-activation composite chamber (e.g., carbon fiber/epoxy) has important advantages such as enhanced environmental and safety characteristics, improved chamber accessibility due to reduced neutron-induced radioactivity, and elimination of the concrete shield. However, it is critical to determine the design and manufacturing risk for the first application. The replacement of such a critical component requires a detailed development risk assessment. A semiquantitative approach to risk assessment has been applied to this problem based on failure modes, effects, and criticality analysis. This analysis consists of a systematic method for organizing the collective judgment of the designers to identify failure modes, estimate probabilities, judge the severity of the consequence, and illustrate risk in a matrix representation. The results of the analyses indicate that the composite chamber has a reasonably high probability of success in the NIF application. The aluminum alloy chamber, however, represents a lower risk, partially based on a more mature technology. 8 refs., 4 figs., 5 tabs

  7. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    Science.gov (United States)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry

  8. Intragenic complementation by the nifJ-coded protein of Klebsiella pneumoniae.

    OpenAIRE

    Stacey, G; Zhu, J; Shah, V K; Shen, S C; Brill, W J

    1982-01-01

    A single mutation, nifC1005 (Jin et al. Sci. Sin. 23:108-118, 1980), located between nifH and nifJ in the nif cluster of Klebsiella pneumoniae, genetically complemented mutations in each of the 17 known nif genes. This suggested that the mutation is located in a new nif gene. We showed by complementation analyses that only 3 of 12 nifJ mutations tested were complemented by nifC1005. Nitrogenase activity in cell extracts of the mutant with nifC1005 as well as NifJ- mutants was stimulated by th...

  9. NIF pointing and centering systems and target alignment using a 351 nm laser source

    International Nuclear Information System (INIS)

    Boege, S.J.; Bliss, E.S.; Chocol, C.J.; Holdener, F.R.; Miller, J.L.; Toeppen, J.S.; Vann, C.S.; Zacharias, R.A.

    1996-10-01

    The operational requirements of the National Ignition Facility (NIF) place tight constraints upon its alignment system. In general, the alignment system must establish and maintain the correct relationships between beam position, beam angle, laser component clear apertures, and the target. At the target, this includes adjustment of beam focus to obtain the correct spot size. This must be accomplished for all beamlines in a time consistent with planned shot rates and yet, in the front end and main laser, beam control functions cannot be initiated until the amplifiers have sufficiently cooled so as to minimize dynamic thermal distortions during and after alignment and wavefront optimization. The scope of the task dictates an automated system that implements parallel processes. We describe reticle choices and other alignment references, insertion of alignment beams, principles of operation of the Chamber Center Reference System 2048 and Target Alignment Sensor, and the anticipated alignment sequence that will occur between shots

  10. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.

    Science.gov (United States)

    Grabbe, Roman; Schmitz, Ruth A

    2003-04-01

    In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.

  11. Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins.

    Science.gov (United States)

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A

    2013-01-09

    Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  12. NIF: IFE applications, waste management and environmental impacts

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Kirchner, F.R.; Miley, G.H.; Petra, M.

    1996-01-01

    Although many energy sources have been suggested for the future, inertial confinement fusion (ICF) has been demonstrated as scientifically feasible and deserves support for continued development. The National Ignition Facility (NIF), proposed by US DOE, is a next step in that direction. NIF would use ICF technology to achieve ignition and energy gain that would allow the development and continued support of national security and other civilian applications including inertial fusion energy power plants. NIF would also guarantee US leadership in dense plasma research. Four sites are being considered for NIF: LLNL, Los Alamos, Sandia, and two NTS sites. An environmental evaluation was performed which considered all impacts. This paper provides the results of the waste management analyses conducted on the proposed NIF sites. Overall, the proposed construction and operation of NIF should qualify it as a low-hazard, non-nuclear radiological facility with minor onsite and negligible offsite environmental impacts

  13. Structural and Phylogenetic Analysis of Rhodobacter capsulatus NifF: Uncovering General Features of Nitrogen-fixation (nif-Flavodoxins

    Directory of Open Access Journals (Sweden)

    Inmaculada Pérez-Dorado

    2013-01-01

    Full Text Available Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50’s loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as “short-chain” with the firmicutes flavodoxins and the “long-chain” with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  14. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    Science.gov (United States)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  15. FANTM, the First Article NIF Test Module

    International Nuclear Information System (INIS)

    HAMMON, JUD; HARJES, HENRY C.; MOORE, WILLIAM B.S.; SMITH, DAVID L.; WILSON, J. MICHAEL

    1999-01-01

    Designing and developing the 1.7 to 2.1-MJ Power Conditioning System (PCS), that will power the flashlamps of the main and power amplifiers for the National Ignition Facility (NIF) lasers, is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. Maxwell Physics International has been a partner in this process. The NIF is currently being constructed at Lawrence Livermore National Labs (LLNL). The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM, for the First Article NIF Test Module. It was built at SNL and operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final full NIF system will require at least 192 of them in four capacitor bays. This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20 %/cm with 24 capacitors

  16. The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis

    Science.gov (United States)

    Kessler, Peter S.; Blank, Carrine; Leigh, John A.

    1998-01-01

    Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920

  17. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Dymoke-Bradshaw, A. K. L.; Hares, J. D. [Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD (United Kingdom); Hassett, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Meadowcroft, A. L. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  18. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  19. Diversity and Functional Analysis of the FeMo-Cofactor Maturase NifB

    Directory of Open Access Journals (Sweden)

    Simon Arragain

    2017-11-01

    Full Text Available One of the main hurdles to engineer nitrogenase in a non-diazotrophic host is achieving NifB activity. NifB is an extremely unstable and oxygen sensitive protein that catalyzes a low-potential SAM-radical dependent reaction. The product of NifB activity is called NifB-co, a complex [8Fe-9S-C] cluster that serves as obligate intermediate in the biosyntheses of the active-site cofactors of all known nitrogenases. Here we study the diversity and phylogeny of naturally occurring NifB proteins, their protein architecture and the functions of the distinct NifB domains in order to understand what defines a catalytically active NifB. Focus is on NifB from the thermophile Chlorobium tepidum (two-domain architecture, the hyperthermophile Methanocaldococcus infernus (single-domain architecture and the mesophile Klebsiella oxytoca (two-domain architecture, showing in silico characterization of their nitrogen fixation (nif gene clusters, conserved NifB motifs, and functionality. C. tepidum and M. infernus NifB were able to complement an Azotobacter vinelandii (ΔnifB mutant restoring the Nif+ phenotype and thus demonstrating their functionality in vivo. In addition, purified C. tepidum NifB exhibited activity in the in vitro NifB-dependent nitrogenase reconstitution assay. Intriguingly, changing the two-domain K. oxytoca NifB to single-domain by removal of the C-terminal NifX-like extension resulted in higher in vivo nitrogenase activity, demonstrating that this domain is not required for nitrogen fixation in mesophiles.

  20. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes

    OpenAIRE

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-01-01

    Background Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. Results We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fiftee...

  1. Expression of the nifA gene of Herbaspirillum seropedicae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element.

    Science.gov (United States)

    Souza, E M; Pedrosa, F O; Rigo, L U; Machado, H B; Yates, M G

    2000-06-01

    The nifA promoter of Herbaspirillum seropedicae contains potential NtrC, NifA and IHF binding sites together with a -12/-24 sigma(N)-dependent promoter. This region has now been investigated by deletion mutagenesis for the effect of NtrC and NifA on the expression of a nifA::lacZ fusion. A 5' end to the RNA was identified at position 641, 12 bp downstream from the -12/-24 promoter. Footprinting experiments showed that the G residues at positions -26 and -9 are hypermethylated, and that the region from -10 to +10 is partially melted under nitrogen-fixing conditions, confirming that this is the active nifA promoter. In H. seropedicae nifA expression from the sigma(N)-dependent promoter is repressed by fixed nitrogen but not by oxygen and is probably activated by the NtrC protein. NifA protein is apparently not essential for nifA expression but it can still bind the NifA upstream activating sequence.

  2. Fault tolerance of the NIF power conditioning system

    International Nuclear Information System (INIS)

    Larson, D.W.; Anderson, R.; Boyes, J.

    1995-01-01

    The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test-bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation

  3. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Oliveira, Marco A S; Baura, Valter A; Aquino, Bruno; Huergo, Luciano F; Kadowaki, Marco A S; Chubatsu, Leda S; Souza, Emanuel M; Dixon, Ray; Pedrosa, Fábio O; Wassem, Roseli; Monteiro, Rose A

    2009-01-01

    Herbaspirillum seropedicae is an endophytic diazotrophic bacterium that associates with economically important crops. NifA protein, the transcriptional activator of nif genes in H. seropedicae, binds to nif promoters and, together with RNA polymerase-sigma(54) holoenzyme, catalyzes the formation of open complexes to allow transcription initiation. The activity of H. seropedicae NifA is controlled by ammonium and oxygen levels, but the mechanisms of such control are unknown. Oxygen sensitivity is attributed to a conserved motif of cysteine residues in NifA that spans the central AAA+ domain and the interdomain linker that connects the AAA+ domain to the C-terminal DNA binding domain. Here we mutagenized this conserved motif of cysteines and assayed the activity of mutant proteins in vivo. We also purified the mutant variants of NifA and tested their capacity to bind to the nifB promoter region. Chimeric proteins between H. seropedicae NifA, an oxygen-sensitive protein, and Azotobacter vinelandii NifA, an oxygen-tolerant protein, were constructed and showed that the oxygen response is conferred by the central AAA+ and C-terminal DNA binding domains of H. seropedicae NifA. We conclude that the conserved cysteine motif is essential for NifA activity, although single cysteine-to-serine mutants are still competent at binding DNA.

  4. The National Ignition Facility (NIF) as a User Facility

    Science.gov (United States)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. NIFS symposium: toward the research of fusion burning plasmas

    International Nuclear Information System (INIS)

    Itoh, Sanae

    1993-07-01

    NIFS symposium, entitled 'Toward the research of Fusion Burning Plasmas - Present status and Future Strategy' was held at NIFS on July 15th 1992. This NIFS symposium covers various topics related to burning plasma, e.g., JET DT experiment, Plan for DT experiment on TFTR as well as the future trends among researchers. To study the critical issues and trends of future research, a questionnaire was sent to about 100 researchers. This report presents such activities in the NIFS symposium. (author)

  6. NIF total neutron yield diagnostic

    International Nuclear Information System (INIS)

    Cooper, Gary W.; Ruiz, Carlos L.

    2001-01-01

    We have designed a total neutron yield diagnostic for the National Ignition Facility (NIF) which is based on the activation of In and Cu samples. The particular approach that we have chosen is one in which we calibrate the entire counting system and which we call the ''F factor'' method. In this method, In and/or Cu samples are exposed to known sources of DD and DT neutrons. The activated samples are then counted with an appropriate system: a high purity Ge detector for In and a NaI coincidence system for Cu. We can then calculate a calibration factor, which relates measured activity to total neutron yield. The advantage of this approach is that specific knowledge of such quantities as cross sections and detector efficiencies is not needed. Unless the actual scattering environment of the NIF can be mocked up in the calibration experiment, the F factor will have to be modified using the results of a numerical simulation of the NIF scattering environment. In this article, the calibration factor methodology will be discussed and experimental results for the calibration factors will be presented. Total NIF neutron yields of 10 9 --10 19 can be measured with this method assuming a 50 cm stand-off distance can be employed for the lower yields

  7. Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants.

    Science.gov (United States)

    Roncato-Maccari, Lauren D B; Ramos, Humberto J O; Pedrosa, Fabio O; Alquini, Yedo; Chubatsu, Leda S; Yates, Marshall G; Rigo, Liu U; Steffens, Maria Berenice R; Souza, Emanuel M

    2003-07-01

    Abstract The interactions between maize, sorghum, wheat and rice plants and Herbaspirillum seropedicae were examined microscopically following inoculation with the H. seropedicae LR15 strain, a Nif(+) (Pnif::gusA) mutant obtained by the insertion of a gusA-kanamycin cassette into the nifH gene of the H. seropedicae wild-type strain. The expression of the Pnif::gusA fusion was followed during the association of the diazotroph with the gramineous species. Histochemical analysis of seedlings of maize, sorghum, wheat and rice grown in vermiculite showed that strain LR15 colonized root surfaces and inner tissues. In early steps of the endophytic association, H. seropedicae colonized root exudation sites, such as axils of secondary roots and intercellular spaces of the root cortex; it then occupied the vascular tissue and there expressed nif genes. The expression of nif genes occurred in roots, stems and leaves as detected by the GUS reporter system. The expression of nif genes was also observed in bacterial colonies located in the external mucilaginous root material, 8 days after inoculation. Moreover, the colonization of plant tissue by H. seropedicae did not depend on the nitrogen-fixing ability, since similar numbers of cells were isolated from roots or shoots of the plants inoculated with Nif(+) or Nif(-) strains.

  8. Optimization of the NIF ignition point design hohlraum

    International Nuclear Information System (INIS)

    Callahan, D A; Hinkel, D E; Berger, R L; Divol, L; Dixit, S N; Edwards, M J; Haan, S W; Jones, O S; Lindl, J D; Meezan, N B; Michel, P A; Pollaine, S M; Suter, L J; Town, R P J; Bradley, P A

    2008-01-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt

  9. Optimization of the NIF ignition point design hohlraum

    Science.gov (United States)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  10. NIF Maintenance Plan March 2011

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, Bruno M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-30

    Ensuring the reliability of the NIF, including its support systems and utilities, is essential to ensuring the availability of the NIF in its support of laser operations. This document identifies the policies and procedures necessary to perform and support the maintenance of the NIF’s systems. These systems are all encompassing and include the facility, beampath, Line Replaceable Units (LRUs), Safety Interlock System (SIS), and diagnostics and utilities that create the environments within the beampath consisting of vacuum, argon, or clean dry air.

  11. Partial characterization of nif genes from the bacterium Azospirillum amazonense

    Directory of Open Access Journals (Sweden)

    D.P. Potrich

    2001-09-01

    Full Text Available Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.

  12. NIF ICCS network design and loading analysis

    International Nuclear Information System (INIS)

    Tietbohl, G; Bryant, R

    1998-01-01

    The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738)

  13. Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Gostic, J.M.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.

    2011-01-01

    The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10 15 atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten

  14. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  15. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    International Nuclear Information System (INIS)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location (∼1.7 m from the target) would be ∼1.4e9/cm 2 . Previous measurements suggest the onset of significant background at a neutron fluence of ∼ 1e8/cm 2 . The radiation damage and operational upsets which starts at ∼1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor ∼50

  16. Tests and calibration of NIF neutron time of flight detectors.

    Science.gov (United States)

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  17. The presence of five nifH-like sequences in Clostridium pasteurianum: sequence divergence and transcription properties.

    OpenAIRE

    Wang, S Z; Chen, J S; Johnson, J L

    1988-01-01

    The nifH gene encodes the iron protein (component II) of the nitrogenase complex. We have previously shown the presence in Clostridium pasteurianum of two nifH-like sequences in addition to the nifH1 gene which codes for a protein identical to the isolated iron protein. In the present study, we report that there are at least five nifH-like sequences in C. pasteurianum. DNA sequencing data indicate that the six nifH (nifH1) and nifH-like (nifH2, nifH3, nifH4, nifH5 and nifH6) sequences are not...

  18. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  19. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    International Nuclear Information System (INIS)

    Fishler, B.

    2011-01-01

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  20. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia; Radecker, Nils; Cardenas, Anny; Gä rdes, Astrid; Wild, Christian; Voolstra, Christian R.

    2017-01-01

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  1. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

    KAUST Repository

    Pogoreutz, Claudia

    2017-06-28

    Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy (i.e., nifH gene abundance and expression as well as nitrogen fixation rates) in two coral families with contrasting trophic strategies: highly heterotrophic, free-living members of the family Fungiidae (Pleuractis granulosa, Ctenactis echinata), and mostly autotrophic coral holobionts with low heterotrophic capacity (Pocilloporidae: Pocillopora verrucosa, Stylophora pistillata). The Fungiidae exhibited low diazotroph abundance (based on nifH gene copy numbers) and activity (based on nifH gene expression and the absence of detectable nitrogen fixation rates). In contrast, the mostly autotrophic Pocilloporidae exhibited nifH gene copy numbers and gene expression two orders of magnitude higher than in the Fungiidae, which coincided with detectable nitrogen fixation activity. Based on these data, we suggest that nitrogen fixation compensates for the low heterotrophic nitrogen uptake in autotrophic corals. Consequently, the ecological importance of diazotrophy in coral holobionts may be determined by the trophic functional group of the host.

  2. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    Science.gov (United States)

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  3. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    Science.gov (United States)

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  4. Purification and binding analysis of the nitrogen fixation regulatory NifA protein from Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    L.M.P. Passaglia

    1998-11-01

    Full Text Available NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

  5. Sequencing and functional analysis of the nifENXorf1orf2 gene cluster of Herbaspirillum seropedicae.

    Science.gov (United States)

    Klassen, G; Pedrosa, F O; Souza, E M; Yates, M G; Rigo, L U

    1999-12-01

    A 5.1-kb DNA fragment from the nifHDK region of H. seropedicae was isolated and sequenced. Sequence analysis showed the presence of nifENXorf1orf2 but nifTY were not present. No nif or consensus promoter was identified. Furthermore, orf1 expression occurred only under nitrogen-fixing conditions and no promoter activity was detected between nifK and nifE, suggesting that these genes are expressed from the upstream nifH promoter and are parts of a unique nif operon. Mutagenesis studies indicate that nifN was essential for nitrogenase activity whereas nifXorf1orf2 were not. High homology between the C-terminal region of the NifX and NifB proteins from H. seropedicae was observed. Since the NifX and NifY proteins are important for FeMo cofactor (FeMoco) synthesis, we propose that alternative proteins with similar activities exist in H. seropedicae.

  6. Configuring NIF for direct drive experiments

    International Nuclear Information System (INIS)

    Eimerl, D.; Rothenberg, J.; Key, M.

    1995-01-01

    The National Ignition Facility (NIF) is a proposed 1.8 MJ laser facility for carrying out experiments in inertial confinement fusion, currently designed for indirect drive experiments. The direct drive approach is being pursued at the 30 kJ Omega facility at the University of Rochester. In this paper we discuss the modifications to the NIF laser that would be required for both indirect and direct drive experiments. A primary concern is the additional cost of adding direct drive capability to the facility

  7. NIF optical specifications - the importance of the RMS gradient specification

    International Nuclear Information System (INIS)

    Auerbach, J. M.; Cotton, C. T.; English, R. E.; Henesian, M. A.; Hunt, J. T.; Kelly, J. H.; Lawson, J. K.; Sacks, J. B.; Shoup, M. J.; Trenholme, W. H.

    1998-01-01

    The performance of the National Ignition Facility (NIF), especially in terms of laser focusability, will be determined by several key factors. One of these key factors is the optical specification for the thousands of large aperture optics that will comprise the 192 beamlines. We have previously reported on the importance of the specification of the power spectral density (PSD) on NIF performance. Recently, we have been studying the importance of long spatial wavelength (>33 mm) phase errors on focusability. We have concluded that the preferred metric for determining the impact of these long spatial wavelength phase errors is the rms phase gradient. In this paper, we outline the overall approach to NIF optical specifications, detail the impact of the rms phase gradient on NIF focusability, discuss its trade-off with the PSD in determining the spot size and review measurements of optics similar to those to be manufactured for NIF

  8. National NIF Diagnostic Program Fiscal Year 2002 Second Quarter Report

    International Nuclear Information System (INIS)

    MacGowan, B

    2002-01-01

    Since October 2001 the development of the facility diagnostics for NIF has been funded by the NIF Director through the National NIF Diagnostic Program (NNDP). The current emphasis of the NNDP is on diagnostics for the early NIF quad scheduled to be available for experiment commissioning in FY03. During the past six months the NNDP has set in place processes for funding diagnostics, developing requirements for diagnostics, design reviews and monthly status reporting. Those processes are described in an interim management plan for diagnostics (National NIF Diagnostic Program Interim Plan, NIF-008 13 15, April 2002) and a draft Program Execution Plan (Program Execution Plan for the National NlF Diagnostic Program, NIF-0072083, October 2001) and documents cited therein. Work has been funded at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Naval Research Laboratory (NRL), Sandia National Laboratories (SNL), Bechtel Nevada at Los Alamos and Santa Barbara. There are no major technical risks with the early diagnostics. The main concerns relate to integration of the diagnostics into the facility, all such issues are being worked. This report is organized to show the schedule and budget status and a summary of Change Control Board actions for the past six months. The following sections then provide short descriptions of the status of each diagnostic. Where design reviews or requirements documents are cited, the documents are available on the Diagnostics file server or on request

  9. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1

    Directory of Open Access Journals (Sweden)

    Claudia Ehlers

    2002-01-01

    Full Text Available The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2 as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2 located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon.

  10. Summary of the evidence file demonstrating completion of the NIF Project Completion Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-04

    This document summarizes the results of performance verification tests on NIF that demonstrate it has met its performance-related Project Completion Criteria (PCC). It includes measurements made on NIF with the NIF diagnostics, the calibration of these diagnostics and the supporting analyses that verify the NIF performance criteria have been met.

  11. NIF conventional facilities construction health and safety plan

    International Nuclear Information System (INIS)

    Benjamin, D W

    1998-01-01

    The purpose of this Plan is to outline the minimum health and safety requirements to which all participating Lawrence Livermore National Laboratory (LLNL) and non-LLNL employees (excluding National Ignition Facility [NIF] specific contractors and subcontractors covered under the construction subcontract packages (e.g., CSP-9)-see Construction Safety Program for the National Ignition Facility [CSP] Section I.B. ''NIF Construction Contractors and Subcontractors'' for specifics) shall adhere to for preventing job-related injuries and illnesses during Conventional Facilities construction activities at the NIF Project. For the purpose of this Plan, the term ''LLNL and non-LLNL employees'' includes LLNL employees, LLNL Plant Operations staff and their contractors, supplemental labor, contract labor, labor-only contractors, vendors, DOE representatives, personnel matrixed/assigned from other National Laboratories, participating guests, and others such as visitors, students, consultants etc., performing on-site work or services in support of the NIF Project. Based upon an activity level determination explained in Section 1.2.18, in this document, these organizations or individuals may be required by site management to prepare their own NIF site-specific safety plan. LLNL employees will normally not be expected to prepare a site-specific safety plan. This Plan also outlines job-specific exposures and construction site safety activities with which LLNL and non-LLNL employees shall comply

  12. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    International Nuclear Information System (INIS)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.

    2015-01-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain

  13. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Directory of Open Access Journals (Sweden)

    B. Aquino

    2015-08-01

    Full Text Available NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  14. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  15. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2015-07-10

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  16. Dynamic consideration of smog chamber experiments

    Science.gov (United States)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  17. Comparison of the Three NIF Ablators

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Clark, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yi, S. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zylstra, A. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed since NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to

  18. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Malone, Robert M.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Guyton, Robert L.; Reinbachs, Imants P.; Watts, Phillip W.

    2007-01-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot

  19. Progress towards polar-drive ignition for the NIF

    Science.gov (United States)

    McCrory, R. L.; Betti, R.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Frenje, J. A.; Froula, D. H.; Gatu-Johnson, M.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Kessler, T. J.; Knauer, J. P.; Li, C. K.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nilson, P. M.; Padalino, S. J.; Petrasso, R. D.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Short, R. W.; Shvydky, A.; Skupsky, S.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Zuegel, J. D.

    2013-11-01

    The University of Rochester's Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. LLE's Omega Laser Facility is used to study direct-drive ICF ignition concepts, developing an understanding of the underlying physics that feeds into the design of ignition targets for the National Ignition Facility (NIF). The baseline symmetric-illumination, direct-drive-ignition target design consists of a 1.5 MJ multiple-picket laser pulse that generates four shock waves (similar to the NIF baseline indirect-drive design) and is predicted to produce a one-dimensional (1D) gain of 48. LLE has developed the polar-drive (PD) illumination concept (for NIF beams in the x-ray-drive configuration) to allow the pursuit of direct-drive ignition without significant reconfiguration of the beam paths on the NIF. Some less-invasive changes in the NIF infrastructure will be required, including new phase plates, polarization rotators, and a PD-specific beam-smoothing front end. A suite of PD ignition designs with implosion velocities from 3.5 to 4.3 × 107 cm s-1 are predicted to have significant 2D gains (Collins et al 2012 Bull. Am. Phys. Soc. 57 155). Verification of the physics basis of these simulations is a major thrust of direct-drive implosion experiments on both OMEGA and the NIF. Many physics issues are being examined with symmetric beam irradiation on OMEGA, varying the implosion parameters over a wide region of design space. Cryogenic deuterium-tritium target experiments with symmetric irradiation have produced areal densities of ˜0.3 g cm-2, ion temperatures over 3 keV, and neutron yields in excess of 20% of the ‘clean’ 1D predicted value. The inferred Lawson criterion figure of merit (Betti R. et al 2010 Phys. Plasmas 17 058102) has increased from 1.7 atm s (IAEA 2010) to 2.6 atm s.

  20. Tests and Calibration of the NIF Neutron Time of Flight Detectors

    International Nuclear Information System (INIS)

    Ali, Z.A.; Glebov, V.Yu.; Cruz, M.; Duffy, T.; Stoeckl, C.; Roberts, S.; Sangster, T.C.; Tommasini, R.; Throop, A; Moran, M.; Dauffy, L.; Horsefield, C.

    2008-01-01

    The National Ignition Facility (NIF) Neutron Time of Flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD (D = deuterium, T = tritium, H = hydrogen) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 10 9 to 2 x 10 19 . The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 m and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory (LLNL). Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detectors tests and calibration will be presented

  1. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    International Nuclear Information System (INIS)

    1995-01-01

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States

  2. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  3. Inter-domain cross-talk controls the NifA protein activity of Herbaspirillum seropedicae.

    Science.gov (United States)

    Monteiro, R A; de Souza, E M; Wassem, R; Yates, M G; Pedrosa, F O; Chubatsu, L S

    2001-11-09

    Herbaspirillum seropedicae is an endophytic diazotroph, which colonizes sugar cane, wheat, rice and maize. The activity of NifA, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through a mechanism involving its N-terminal domain. Here we show that this domain interacts specifically in vitro with the N-truncated NifA protein, as revealed by protection against proteolysis, and this interaction caused an inhibitory effect on both the ATPase and DNA-binding activities of the N-truncated NifA protein. We suggest that the N-terminal domain inhibits NifA-dependent transcriptional activation by an inter-domain cross-talk between the catalytic domain of the NifA protein and its regulatory N-terminal domain in response to fixed nitrogen.

  4. National Ignition Facility (NIF) FY2015 Facility Use Plan

    Energy Technology Data Exchange (ETDEWEB)

    Folta, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wisoff, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-18

    Major features of the FY2015 NIF Use Plan include: • Performing a record number of layered DT experiments with 28 planned compared with 15 in FY2014. Executing the first plutonium experiments on the NIF in support of the Science Campaigns. • Over 300 targets shots, a 57% increase compared to FY14. This is a stretch goal defined in the 120-Day Study document, and relies upon the success of many shot-rate improvement actions, as well as on the distribution of shot type selected by the users. While the Plan is consistent with this goal, the increased proportion of layered DT experiments described above reduces the margin against this goal. • Commissioning of initial ARC capability, which will support both SSP-HED and SSPICF programs. • Increase in days allocated to Discovery Science to a level that supports an ongoing program for academic use of NIF and an annual solicitation for new proposals. • Six Facility Maintenance and Reconfiguration (FM&R) periods totaling 30 days dedicated to major facility maintenance and modifications. • Utilization of the NIF Facility Advisory Schedule Committee (FASC) to provide stakeholder review and feedback on the NIF schedule. The Use Plan assumes a total FY2015 LLNL NIF Operations funding in MTE 10.7 of $229.465M and in MTE 10.3 of 47.0M. This Use Plan will be revised in the event of significant changes to the FY2015 funding or if NNSA provides FY2016 budget guidance significantly reduced compared to FY2015.

  5. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    Science.gov (United States)

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.

  6. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF

    International Nuclear Information System (INIS)

    Herrmann, Hans W.; Mack, Joseph M.; Young, Carlton S.; Malone, Robert M.; Stoeffl, Wolfgang; Horsfield, Colin J.

    2008-01-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from γ rays to relativistic electrons to UV/visible Cherenkov radiation.

  7. National Ignition Facility (NIF) Control Network Design and Analysis

    International Nuclear Information System (INIS)

    Bryant, R M; Carey, R W; Claybourn, R V; Pavel, G; Schaefer, W J

    2001-01-01

    The control network for the National Ignition Facility (NIF) is designed to meet the needs for common object request broker architecture (CORBA) inter-process communication, multicast video transport, device triggering, and general TCP/IP communication within the NIF facility. The network will interconnect approximately 650 systems, including the embedded controllers, front-end processors (FEPs), supervisory systems, and centralized servers involved in operation of the NIF. All systems are networked with Ethernet to serve the majority of communication needs, and asynchronous transfer mode (ATM) is used to transport multicast video and synchronization triggers. CORBA software infra-structure provides location-independent communication services over TCP/IP between the application processes in the 15 supervisory and 300 FEP systems. Video images sampled from 500 video cameras at a 10-Hz frame rate will be multicast using direct ATM Application Programming Interface (API) communication from video FEPs to any selected operator console. The Ethernet and ATM control networks are used to broadcast two types of device triggers for last-second functions in a large number of FEPs, thus eliminating the need for a separate infrastructure for these functions. Analysis, design, modeling, and testing of the NIF network has been performed to provide confidence that the network design will meet NIF control requirements

  8. Dynamic consideration of smog chamber experiments

    Directory of Open Access Journals (Sweden)

    W. K. Chuang

    2017-08-01

    Full Text Available Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU. We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  9. Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.

    Science.gov (United States)

    Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M

    2002-07-02

    Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.

  10. Target diagnostic system for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests

  11. Inkludering av ungdom med minoritetsbakgrunn i NIF-organisert idrett

    Directory of Open Access Journals (Sweden)

    Mari Kristin Sisjord

    2014-10-01

    Full Text Available Norges Idrettsforbund og Olympiske og Paralympiske Komité (NIF har en uttalt målsetting om en åpen og inkluderende idrett. Hvordan kommer dette til uttrykk i den praktiske virksomheten? Denne artikkelen, som bygger på data fra en undersøkelse om likestilling og mangfold i den organiserte idretten (NIF, retter søkelyset mot arbeid med inklusjon av ungdom med minoritetsbakgrunn på ulike organisasjonsnivå i NIF: særforbund, idrettskretser og idrettslag. Datamaterialet er kvalitative intervju med representanter fra ulike organisasjonsnivå. Resultatene viser at NIFs overordnede politikk i varierende grad nedfelles i særforbundenes virksomhet, i idrettskretsene og i idrettslagene. Av særforbundene skiller Fotballforbundet og Klatreforbundet seg ut som aktive pådrivere i arbeidet med inkludering. Mange idrettslag oppfattet slike spørsmål som lite aktuelle i sitt rekrutteringsområde. Representanter for lag som hadde erfaring med inkludering og rekruttering av minoritetsungdom, tilkjennega varierte erfaringer og synspunkter.

  12. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    Science.gov (United States)

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  13. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  14. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii.

    OpenAIRE

    Jacobson, M R; Brigle, K E; Bennett, L T; Setterquist, R A; Wilson, M S; Cash, V L; Beynon, J; Newton, W E; Dean, D R

    1989-01-01

    Determination of a 28,793-base-pair DNA sequence of a region from the Azotobacter vinelandii genome that includes and flanks the nitrogenase structural gene region was completed. This information was used to revise the previously proposed organization of the major nif cluster. The major nif cluster from A. vinelandii encodes 15 nif-specific genes whose products bear significant structural identity to the corresponding nif-specific gene products from Klebsiella pneumoniae. These genes include ...

  15. Progress towards polar-drive ignition for the NIF

    International Nuclear Information System (INIS)

    McCrory, R.L.; Betti, R.; Boehly, T.R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Froula, D.H.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Hohenberger, M.; Hu, S.X.; Igumenshchev, I.V.; Kessler, T.J.; Knauer, J.P.; Casey, D.T.; Frenje, J.A.; Gatu-Johnson, M.

    2013-01-01

    The University of Rochester's Laboratory for Laser Energetics (LLE) performs direct-drive inertial confinement fusion (ICF) research. LLE's Omega Laser Facility is used to study direct-drive ICF ignition concepts, developing an understanding of the underlying physics that feeds into the design of ignition targets for the National Ignition Facility (NIF). The baseline symmetric-illumination, direct-drive–ignition target design consists of a 1.5 MJ multiple-picket laser pulse that generates four shock waves (similar to the NIF baseline indirect-drive design) and is predicted to produce a one-dimensional (1D) gain of 48. LLE has developed the polar-drive (PD) illumination concept (for NIF beams in the x-ray–drive configuration) to allow the pursuit of direct-drive ignition without significant reconfiguration of the beam paths on the NIF. Some less-invasive changes in the NIF infrastructure will be required, including new phase plates, polarization rotators, and a PD-specific beam-smoothing front end. A suite of PD ignition designs with implosion velocities from 3.5 to 4.3 × 10 7 cm s −1 are predicted to have significant 2D gains (Collins et al 2012 Bull. Am. Phys. Soc. 57 155). Verification of the physics basis of these simulations is a major thrust of direct-drive implosion experiments on both OMEGA and the NIF. Many physics issues are being examined with symmetric beam irradiation on OMEGA, varying the implosion parameters over a wide region of design space. Cryogenic deuterium–tritium target experiments with symmetric irradiation have produced areal densities of ∼0.3 g cm −2 , ion temperatures over 3 keV, and neutron yields in excess of 20% of the ‘clean’ 1D predicted value. The inferred Lawson criterion figure of merit (Betti R. et al 2010 Phys. Plasmas 17 058102) has increased from 1.7 atm s (IAEA 2010) to 2.6 atm s. (paper)

  16. NifH- Harboring Bacterial Community Composition Across an Alaskan Permafrost Thaw Gradient

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2016-11-01

    Full Text Available Since nitrogen (N is often limiting in permafrost soils, we investigated the N2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes. NifH sequences most closely related to group I nifH-harboring Alpha- and Beta Proteobacteria were in higher abundance above water table depth while those related to group III nifH-harboring Delta and Gamma Proteobacteria were more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.

  17. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    International Nuclear Information System (INIS)

    Fisher, R.K.; Zaveryaev, V.S.; Trusillo, S.V.

    1996-07-01

    We propose a new open-quotes thresholdclose quotes bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and ρR measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed

  18. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    Science.gov (United States)

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  19. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    Science.gov (United States)

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  20. User Interface Framework for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Fisher, J M; Bowers, G A; Carey, R W; Daveler, S A; Herndon Ford, K B; Ho, J C; Lagin, L J; Lambert, C J; Mauvais, J; Stout, E A; West, S L

    2007-01-01

    A user interface (UI) framework supports the development of user interfaces to operate the National Ignition Facility (NIF) using the Integrated Computer Control System (ICCS). [1] This framework simplifies UI development and ensures consistency for NIF operators. A comprehensive, layered collection of UIs in ICCS provides interaction with system-level processes, shot automation, and subsystem-specific devices. All user interfaces are written in Java, employing CORBA to interact with other ICCS components. ICCS developers use these frameworks to compose two major types of user interfaces: broadviews and control panels. Broadviews provide a visual representation of the NIF beamlines through interactive schematic drawings. Control panels provide status and control at a device level. The UI framework includes a suite of display components to standardize user interaction through data entry behaviors, common connection and threading mechanisms, and a common appearance. With these components, ICCS developers can more efficiently address usability issues in the facility when needed. The ICCS UI framework helps developers create consistent and easy-to-understand user interfaces for NIF operators

  1. National Ignition Facility system design requirements NIF integrated computer controls SDR004

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This System Design Requirement document establishes the performance, design, development, and test requirements for the NIF Integrated Computer Control System. The Integrated Computer Control System (ICCS) is covered in NIF WBS element 1.5. This document responds directly to the requirements detailed in the NIF Functional Requirements/Primary Criteria, and is supported by subsystem design requirements documents for each major ICCS Subsystem

  2. Iron depletion affects nitrogenase activity and expression of nifH and nifA genes in Herbaspirillum seropedicae.

    Science.gov (United States)

    Rosconi, Federico; Souza, Emanuel M; Pedrosa, Fabio O; Platero, Raúl A; González, Cecilia; González, Marcela; Batista, Silvia; Gill, Paul R; Fabiano, Elena R

    2006-05-01

    Herbaspirillum seropedicae Z67 is a nitrogen-fixing bacterium able to colonize the rhizosphere and the interior of several plants. As iron is a key element for nitrogen fixation, we examined the response of this microorganism to iron deficiency under nitrogen fixing conditions. We identified a H. seropedicae exbD gene that was induced in response to iron limitation and is involved in iron homeostasis. We found that an exbD mutant grown in iron-chelated medium is unable to fix nitrogen. Moreover, we provide evidence that expression of the nifH and nifA genes is iron dependent in a H. seropedicae genetic background.

  3. Applied superconductivity and cryogenic research activities in NIFS

    International Nuclear Information System (INIS)

    Mito, T.; Sagara, A.; Imagawa, S.; Yamada, S.; Takahata, K.; Yanagi, N.; Chikaraishi, H.; Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Sato, M.; Noda, N.; Yamauchi, K.; Komori, A.; Motojima, O.

    2006-01-01

    Since the foundation of National Institute for Fusion Science (NIFS) in 1989, the primary mission of the applied superconductivity and cryogenic researches has been focused on the development of the large helical device (LHD): the largest fusion experimental apparatus exclusively utilizing superconducting technologies. The applied superconductivity and cryogenics group in NIFS was organized to be responsible for this activity. As a result of extensive research activities, the construction of LHD was completed in 1997. Since then, the LHD superconducting system has been demonstrating high availability of more than 97% during eight years operation and it keeps proving high reliability of large-scale superconducting systems. This paper describes the extensive activities of the applied superconductivity and cryogenic researches in NIFS during and after the development of LHD and the fundamental researches that aim at realizing a helical-type fusion reactor

  4. Target Diagnostics Supports NIF's Path to Ignition

    International Nuclear Information System (INIS)

    Shelton, R.

    2011-01-01

    The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by

  5. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria.

    Science.gov (United States)

    Gaby, John Christian; Buckley, Daniel H

    2014-01-01

    We describe a nitrogenase gene sequence database that facilitates analysis of the evolution and ecology of nitrogen-fixing organisms. The database contains 32 954 aligned nitrogenase nifH sequences linked to phylogenetic trees and associated sequence metadata. The database includes 185 linked multigene entries including full-length nifH, nifD, nifK and 16S ribosomal RNA (rRNA) gene sequences. Evolutionary analyses enabled by the multigene entries support an ancient horizontal transfer of nitrogenase genes between Archaea and Bacteria and provide evidence that nifH has a different history of horizontal gene transfer from the nifDK enzyme core. Further analyses show that lineages in nitrogenase cluster I and cluster III have different rates of substitution within nifD, suggesting that nifD is under different selection pressure in these two lineages. Finally, we find that that the genetic divergence of nifH and 16S rRNA genes does not correlate well at sequence dissimilarity values used commonly to define microbial species, as stains having <3% sequence dissimilarity in their 16S rRNA genes can have up to 23% dissimilarity in nifH. The nifH database has a number of uses including phylogenetic and evolutionary analyses, the design and assessment of primers/probes and the evaluation of nitrogenase sequence diversity. Database URL: http://www.css.cornell.edu/faculty/buckley/nifh.htm.

  6. Federated access to heterogeneous information resources in the Neuroscience Information Framework (NIF).

    Science.gov (United States)

    Gupta, Amarnath; Bug, William; Marenco, Luis; Qian, Xufei; Condit, Christopher; Rangarajan, Arun; Müller, Hans Michael; Miller, Perry L; Sanders, Brian; Grethe, Jeffrey S; Astakhov, Vadim; Shepherd, Gordon; Sternberg, Paul W; Martone, Maryann E

    2008-09-01

    The overarching goal of the NIF (Neuroscience Information Framework) project is to be a one-stop-shop for Neuroscience. This paper provides a technical overview of how the system is designed. The technical goal of the first version of the NIF system was to develop an information system that a neuroscientist can use to locate relevant information from a wide variety of information sources by simple keyword queries. Although the user would provide only keywords to retrieve information, the NIF system is designed to treat them as concepts whose meanings are interpreted by the system. Thus, a search for term should find a record containing synonyms of the term. The system is targeted to find information from web pages, publications, databases, web sites built upon databases, XML documents and any other modality in which such information may be published. We have designed a system to achieve this functionality. A central element in the system is an ontology called NIFSTD (for NIF Standard) constructed by amalgamating a number of known and newly developed ontologies. NIFSTD is used by our ontology management module, called OntoQuest to perform ontology-based search over data sources. The NIF architecture currently provides three different mechanisms for searching heterogeneous data sources including relational databases, web sites, XML documents and full text of publications. Version 1.0 of the NIF system is currently in beta test and may be accessed through http://nif.nih.gov.

  7. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi.

    Science.gov (United States)

    Nývltová, Eva; Šuták, Robert; Harant, Karel; Šedinová, Miroslava; Hrdy, Ivan; Paces, Jan; Vlček, Čestmír; Tachezy, Jan

    2013-04-30

    In most eukaryotes, the mitochondrion is the main organelle for the formation of iron-sulfur (FeS) clusters. This function is mediated through the iron-sulfur cluster assembly machinery, which was inherited from the α-proteobacterial ancestor of mitochondria. In Archamoebae, including pathogenic Entamoeba histolytica and free-living Mastigamoeba balamuthi, the complex iron-sulfur cluster machinery has been replaced by an ε-proteobacterial nitrogen fixation (NIF) system consisting of two components: NifS (cysteine desulfurase) and NifU (scaffold protein). However, the cellular localization of the NIF system and the involvement of mitochondria in archamoebal FeS assembly are controversial. Here, we show that the genes for both NIF components are duplicated within the M. balamuthi genome. One paralog of each protein contains an amino-terminal extension that targets proteins to mitochondria (NifS-M and NifU-M), and the second paralog lacks a targeting signal, thereby reflecting the cytosolic form of the NIF machinery (NifS-C and NifU-C). The dual localization of the NIF system corresponds to the presence of FeS proteins in both cellular compartments, including detectable hydrogenase activity in Mastigamoeba cytosol and mitochondria. In contrast, E. histolytica possesses only single genes encoding NifS and NifU, respectively, and there is no evidence for the presence of the NIF machinery in its reduced mitochondria. Thus, M. balamuthi is unique among eukaryotes in that its FeS cluster formation is mediated through two most likely independent NIF machineries present in two cellular compartments.

  8. FY17 NIF Performance Quad Campaign: laser performance results and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Di Nicola, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mennerat, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Widmayer, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-09

    The FY17 NIF Performance Quad Campaign exercised a single quad of NIF (Q45T) at elevated energy to assess the impact of recent improvements to the infrared (1ω) and ultraviolet (3ω) section of the laser on integrated performance.

  9. Sequencing and promoter analysis of the nifENXorf3orf5fdxAnifQ operon from Azospirillum brasilense Sp7

    Directory of Open Access Journals (Sweden)

    Potrich D.P.

    2001-01-01

    Full Text Available A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the ß-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.

  10. Interaction of an IHF-like protein with the Rhizobium etli nifA promoter.

    Science.gov (United States)

    Benhassine, Traki; Fauvart, Maarten; Vanderleyden, Jos; Michiels, Jan

    2007-06-01

    The nifA gene fulfills an essential role in the regulation of nitrogen fixation genes in Rhizobium etli. Transcription analysis of the nifA gene, assessed using promoter deletions, indicated an oxygen-independent expression, threefold higher during symbiosis as compared with free-living conditions. Electrophoretic mobility shift assays using those nifA promoter deletion fragments, which were actively transcribed, demonstrated the specific interaction with R. etli cellular protein(s) resulting in the formation of two DNA-protein complexes. An interacting protein was purified by liquid chromatography on Heparin Sepharose and Mono S columns. The purified 12 kDa R. etli protein cross-reacted with antibodies directed against Escherichia coli integration host factor (IHF). Furthermore, purified E. coli IHF was able to specifically bind to the R. etli nifA promoter region. These results point to an as yet undisclosed function of IHF in the regulation of R. etli nifA expression.

  11. Mutations in nif genes that cause Klebsiella pneumoniae to be derepressed for nitrogenase synthesis in the presence of ammonium.

    OpenAIRE

    MacNeil, D; Brill, W J

    1980-01-01

    Four Nif+ revertants from strains with polar insertions in nifL, were insensitive to ammonium and amino acid repression of nitrogenase synthesis. These strains have mutations located in or near the nifL region. The derepressed phenotype was dominant in a merodiploid containing a nif+ plasmid. These nif regulatory mutations also suppressed the Nif- phenotype of Gln- strains. Thus, regulation by fixed nitrogen (possible via glutamine synthetase) occurs on the nifLA operon but not on the other s...

  12. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  13. Automated optics inspection analysis for NIF

    International Nuclear Information System (INIS)

    Kegelmeyer, Laura M.; Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K.

    2012-01-01

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  14. Automated optics inspection analysis for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Laura M., E-mail: kegelmeyer1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  15. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  16. Low fuel convergence path to ignition on the NIF

    Science.gov (United States)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  17. NIF: Impacts of chemical accidents and comparison of chemical/radiological accident approaches

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Rhodes, M.

    1996-01-01

    The US Department of Energy (DOE) proposes to construct and operate the National Ignition Facility (NIF). The goals of the NIF are to (1) achieve fusion ignition in the laboratory for the first time by using inertial confinement fusion (ICF) technology based on an advanced-design neodymium glass solid-state laser, and (2) conduct high-energy-density experiments in support of national security and civilian applications. The primary focus of this paper is worker-public health and safety issues associated with postulated chemical accidents during the operation of NIF. The key findings from the accident analysis will be presented. Although NIF chemical accidents will be emphasized, the important differences between chemical and radiological accident analysis approaches and the metrics for reporting results will be highlighted. These differences are common EIS facility and transportation accident assessments

  18. Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra).

    Science.gov (United States)

    Izumi, Hironari; Anderson, Ian C; Alexander, Ian J; Killham, Ken; Moore, Edward R B

    2006-12-01

    The diversity of bacterial nitrogenase genes (nifH) and their mRNA transcription in ectomycorrhizas of Corsican pine (Pinus nigra) were examined. DNA and RNA were extracted from surface-sterilized and non-sterilized Corsican pine roots colonized by the ectomycorrhizal (ECM) fungi, Suillus variegatus and Tomentellopsis submollis. DNA-derived nifH polymerase chain reaction (PCR) products were obtained from all samples, but only a few reverse transcription PCRs for nifH mRNA were successful, suggesting that nitrogenase genes were not always transcribed. Several different nifH sequences were detected and the bacteria actively transcribing nifH were different from those whose genes were detected through DNA-based PCR. Putative nitrogenase amino acid sequences revealed that more than half of the nifH products were derived from methylotrophic bacteria, such as Methylocella spp. The next most frequent sequence types were similar to those from Burkholderia.

  19. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  20. Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH₄⁺-regulation.

    Science.gov (United States)

    Oliveira, Marco A S; Aquino, Bruno; Bonatto, Ana Claudia; Huergo, Luciano F; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2012-04-01

    Nitrogen fixation in Herbaspirillum seropedicae is transcriptionally regulated by NifA, a σ(54) transcriptional activator with three structural domains: an N-terminal GAF domain, a catalytic AAA+ domain and a C-terminal DNA-binding domain. NifA is only active in H. seropedicae when cultures are grown in the absence of fixed nitrogen and at low oxygen tensions. There is evidence that the inactivation of NifA in response to fixed nitrogen is mediated by the regulatory GAF domain. However, the mechanism of NifA repression by the GAF domain, as well as the transduction of nitrogen status to NifA, is not understood. In order to study the regulation of NifA activity by fixed nitrogen independently of oxygen regulation, we constructed a chimeric protein containing the GAF domain of H. seropedicae NifA fused to the AAA+ and C-terminal domains of Azotobacter vinelandii NifA. This chimeric protein (NifAQ1) lacks the cysteine motif found in oxygen sensitive NifA proteins and is not oxygen responsive in vivo. Our results demonstrate that NifAQ1 responds to fixed nitrogen and requires GlnK protein for activity, a behavior similar to H. seropedicae NifA. In addition, protein footprinting analysis indicates that this response probably involves a protein-protein contact between the GAF domain and the GlnK protein. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators.

    Science.gov (United States)

    Lie, Thomas J; Wood, Gwendolyn E; Leigh, John A

    2005-02-18

    The methanogenic archaean Methanococcus maripaludis can use ammonia, alanine, or dinitrogen as a nitrogen source for growth. The euryarchaeal nitrogen repressor NrpR controls the expression of the nif (nitrogen fixation) operon, resulting in full repression with ammonia, intermediate repression with alanine, and derepression with dinitrogen. NrpR binds to two tandem operators in the nif promoter region, nifOR(1) and nifOR(2). Here we have undertaken both in vivo and in vitro approaches to study the way in which NrpR, nifOR(1), nifOR(2), and the effector 2-oxoglutarate (2OG) combine to regulate nif expression, leading to a comprehensive understanding of this archaeal regulatory system. We show that NrpR binds as a dimer to nifOR(1) and cooperatively as two dimers to both operators. Cooperative binding occurs only with both operators present. nifOR(1) has stronger binding and by itself can mediate the repression of nif transcription during growth on ammonia, unlike the weakly binding nifOR(2). However, nifOR(2) in combination with nifOR(1) is critical for intermediate repression during growth on alanine. Accordingly, NrpR binds to both operators together with higher affinity than to nifOR(1) alone. NrpR responds directly to 2OG, which weakens its binding to the operators. Hence, 2OG is an intracellular indicator of nitrogen deficiency and acts as an inducer of nif transcription via NrpR. This model is upheld by the recent finding (J. A. Dodsworth and J. A. Leigh, submitted for publication) in our laboratory that 2OG levels in M. maripaludis vary with growth on different nitrogen sources.

  2. Advances in target design and fabrication for experiments on NIF

    Directory of Open Access Journals (Sweden)

    Obrey K.

    2013-11-01

    Full Text Available The ability to build target platforms for National Ignition Facility (NIF is a key feature in LANL's (Los Alamos National Laboratory Target Fabrication Program. We recently built and manufactured the first LANL targets to be fielded on NIF in March 2011. Experiments on NIF require precision component manufacturing and accurate knowledge of the materials used in the targets. The characterization of foams and aerogels, the Be ignition capsule, and machining unique components are of main material focus. One important characterization metric the physics' have determined is that the knowledge of density gradients in foams is important. We are making strides in not only locating these density gradients in aerogels and foams as a result of how they are manufactured and machined but also quantifying the density within the foam using 3D confocal micro x-ray fluorescence (μXRF imaging and 3D x-ray computed tomography (CT imaging. In addition, collaborative efforts between General Atomics (GA and LANL in the characterization of the NIF Ignition beryllium capsule have shown that the copper in the capsule migrates radially from the capsule center.

  3. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  4. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J

    2007-01-01

    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  5. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    C.Y. Nishikawa

    2012-02-01

    Full Text Available Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL. A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  6. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, C.Y.; Araújo, L.M.; Kadowaki, M.A.S.; Monteiro, R.A.; Steffens, M.B.R.; Pedrosa, F.O.; Souza, E.M.; Chubatsu, L.S. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-01-27

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ{sup 54} factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH{sub 4}Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  7. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense.

    Science.gov (United States)

    Nishikawa, C Y; Araújo, L M; Kadowaki, M A S; Monteiro, R A; Steffens, M B R; Pedrosa, F O; Souza, E M; Chubatsu, L S

    2012-02-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ(54) co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH(4)Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  8. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    International Nuclear Information System (INIS)

    Nishikawa, C.Y.; Araújo, L.M.; Kadowaki, M.A.S.; Monteiro, R.A.; Steffens, M.B.R.; Pedrosa, F.O.; Souza, E.M.; Chubatsu, L.S.

    2012-01-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ 54 factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH 4 Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription

  9. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    International Nuclear Information System (INIS)

    Hackel, L; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LSandT activities during 2002 focused on seven major areas: (1) NIF Project-LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LSandT continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LSandT continued development of a 100 kw-class solid-state heat-capacity laser

  10. Contributions of the National Ignition Facility to the development of Inertial Fusion Energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Diaz De La Rubia, T.; Schrock, V.; Schultz, K.; Tokheim, R.; Abdou, M.; Bangerter, R.

    1994-06-01

    The Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program to achieve ignition and modest gain in the laboratory early in the next century. The NIF will use a ≥ 1.8-MJ, 0.35-mm laser with 192 independent beams, a fifty-fold increase over the energy of the Nova laser. System performance analyses suggest yields as great as 20 MJ may be achievable. The benefits of a micro-fusion capability in the laboratory include: essential contributions to defense programs, resolution of important Inertial Fusion Energy issues, and unparalleled conditions of energy density for basic science and technology research. We have begun to consider the role the National Ignition Facility will fill in the development of Inertial Fusion Energy. While the achievement of ignition and gain speaks for itself in terms of its impact on developing IFE, we believe there are areas of IFE development such as fusion power technology, IFE target design and fabrication, and understanding chamber dynamics, that would significantly benefit from NIF experiments. In the area of IFE target physics, ion targets will be designed using the NIF laser, and feasibility of high gain targets will be confirmed. Target chamber dynamics experiments will benefit from x-ray and debris energies that mimic in-IFE-chamber conditions. Fusion power technology will benefit from using single-shot neutron yields to measure spatial distribution of neutron heating, activation, and tritium breeding in relevant materials. IFE target systems will benefit from evaluating low-cost target fabrication techniques by testing such targets on NIF. Additionally, we believe it is feasible to inject up to four targets and engage them with the NIF laser by triggering the beams in groups of ∼50 separated in time by ∼0.1 s. Sub-ignition neutron yields would allow an indication of symmetry achieved in such proof-of-principle rep-rate experiments

  11. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  12. The National Ignition Facility (NIF) Diagnostic Set at the Completion of the National Ignition Campaign (NIC) September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Kilkenny, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bell, P. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bleuel, D. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hsing, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kalantar, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kauffman, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schneider, M. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaughnessy, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shelton, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yeamans, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Batha, S. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grim, G. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herrmann, H. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Leeper, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangster, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edgell, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glebov, V. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regan, S. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gatu-Johnson, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petrasso, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rindernecht, H. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zylstra, A. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cooper, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ruiz, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-05

    At the completion of the National Ignition Campaign NIF had about 36 different types of diagnostics. These were based on several decades of development on Nova and OMEGA and involved the whole US ICF community. A plan for a limited of NIF Diagnostics was documented by the Joint Central Diagnostic Team in the NIF Conceptual Design Report in 1994. These diagnostics and many more were installed diagnostics by two decades later. We give a short description of each of the 36 different types of NIC diagnostics grouped by the function of the diagnostics, namely target drive, target response and target assembly, stagnation and burn. A comparison of NIF diagnostics with the Nova diagnostics shows that the NIF diagnostic capability is broadly equivalent to that of Nova’s in 1999. NIF diagnostics have a much greater degree of automation and rigor than Nova’s and the NIF diagnostic suite incorporates some scientific innovation compared to Nova and OMEGA namely one much higher speed x-ray imager. Directions for future NIF diagnostics are discussed.

  13. Nitrogenase activity of Herbaspirillum seropedicae grown under low iron levels requires the products of nifXorf1 genes.

    Science.gov (United States)

    Klassen, Giseli; de Oliveira Pedrosa, Fábio; de Souza, Emanuel M; Yates, M Geoffrey; Rigo, Liu Un

    2003-07-29

    Herbaspirillum seropedicae strains mutated in the nifX or orf1 genes showed 90% or 50% reduction in nitrogenase activity under low levels of iron or molybdenum respectively. Mutations in nifX or orf1 genes did not affect nif gene expression since a nifH::lacZ fusion was fully active in both mutants. nifX and the contiguous gene orf1 are essential for maximum nitrogen fixation under iron limitation and are probably involved in synthesis of nitrogenase iron or iron-molybdenum clusters.

  14. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea

    Science.gov (United States)

    Yang, Jinying; Li, Jing; Luan, Xiwu; Zhang, Yunbo; Gu, Guizhou; Xue, Rongrong; Zong, Mingyue; Klotz, Martin G.

    2013-01-01

    The South China Sea (SCS), the largest marginal sea in the Western Pacific Ocean, is a huge oligotrophic water body with very limited influx of nitrogenous nutrients. This suggests that sediment microbial N2 fixation plays an important role in the production of bioavailable nitrogen. To test the molecular underpinning of this hypothesis, the diversity, abundance, biogeographical distribution, and community structure of the sediment diazotrophic microbiota were investigated at 12 sampling sites, including estuarine, coastal, offshore, deep-sea, and methane hydrate reservoirs or their prospective areas by targeting nifH and some other functional biomarker genes. Diverse and novel nifH sequences were obtained, significantly extending the evolutionary complexity of extant nifH genes. Statistical analyses indicate that sediment in situ temperature is the most significant environmental factor influencing the abundance, community structure, and spatial distribution of the sediment nifH-harboring microbial assemblages in the northern SCS (nSCS). The significantly positive correlation of the sediment pore water NH4+ concentration with the nifH gene abundance suggests that the nSCS sediment nifH-harboring microbiota is active in N2 fixation and NH4+ production. Several other environmental factors, including sediment pore water PO43− concentration, sediment organic carbon, nitrogen and phosphorus levels, etc., are also important in influencing the community structure, spatial distribution, or abundance of the nifH-harboring microbial assemblages. We also confirmed that the nifH genes encoded by archaeal diazotrophs in the ANME-2c subgroup occur exclusively in the deep-sea methane seep areas, providing for the possibility to develop ANME-2c nifH genes as a diagnostic tool for deep-sea methane hydrate reservoir discovery. PMID:23064334

  15. Exploring the universe through Discovery Science on NIF

    Science.gov (United States)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  16. Studies on the roles of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control.

    NARCIS (Netherlands)

    Arcondeguy, T.; van Heeswijk, W.C.; Merrick, M.

    1999-01-01

    In Klebsiella pneumoniae, nitrogen fixation (nif) genes are regulated in response to fixed nitrogen and oxygen. The activity of the nif-specific transcriptional activator NifA is modulated by NifL, which mediates both oxygen and nitrogen control. The signal transduction protein GlnK is required to

  17. Capsule physics comparison of different ablators for NIF implosion designs

    Science.gov (United States)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. The NIF: An international high energy density science and inertial fusion user facility

    Directory of Open Access Journals (Sweden)

    Moses E.I.

    2013-11-01

    Full Text Available The National Ignition Facility (NIF, a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF and high-energy-density science (HEDS, is operational at Lawrence Livermore National Laboratory (LLNL. A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC, an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE. This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  19. The NIF: An international high energy density science and inertial fusion user facility

    Science.gov (United States)

    Moses, E. I.; Storm, E.

    2013-11-01

    The National Ignition Facility (NIF), a 1.8-MJ/500-TW Nd:Glass laser facility designed to study inertial confinement fusion (ICF) and high-energy-density science (HEDS), is operational at Lawrence Livermore National Laboratory (LLNL). A primary goal of NIF is to create the conditions necessary to demonstrate laboratory-scale thermonuclear ignition and burn. NIF experiments in support of indirect-drive ignition began late in FY2009 as part of the National Ignition Campaign (NIC), an international effort to achieve fusion ignition in the laboratory. To date, all of the capabilities to conduct implosion experiments are in place with the goal of demonstrating ignition and developing a predictable fusion experimental platform in 2012. The results from experiments completed are encouraging for the near-term achievement of ignition. Capsule implosion experiments at energies up to 1.6 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 15%. Important national security and basic science experiments have also been conducted on NIF. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of laser-driven Inertial Fusion Energy (IFE). This paper will describe the results achieved so far on the path toward ignition, the beginning of fundamental science experiments and the plans to transition NIF to an international user facility providing access to HEDS and fusion energy researchers around the world.

  20. National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services

  1. Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The ability of Azotobacter vinelandii(Nif)IscA to bind Fe has been investigated to assess the role of Fe-bound forms in NIF-specific Fe-S cluster biogenesis. (Nif)IscA is shown to bind one Fe(III) or one Fe(II) per homodimer and the spectroscopic and redox properties of both the Fe(III)- and Fe(II)-bound forms have been characterized using the UV-visible absorption, circular dichroism, and variable-temperature magnetic circular dichroism, electron paramagnetic resonance, Mössbauer and resonance Raman spectroscopies. The results reveal a rhombic intermediate-spin (S = 3/2) Fe(III) center (E/D = 0.33, D = 3.5 ± 1.5 cm(-1)) that is most likely 5-coordinate with two or three cysteinate ligands and a rhombic high spin (S = 2) Fe(II) center (E/D = 0.28, D = 7.6 cm(-1)) with properties similar to reduced rubredoxins or rubredoxin variants with three cysteinate and one or two oxygenic ligands. Iron-bound (Nif)IscA undergoes reversible redox cycling between the Fe(III)/Fe(II) forms with a midpoint potential of +36 ± 15 mV at pH 7.8 (versus NHE). l-Cysteine is effective in mediating release of free Fe(II) from both the Fe(II)- and Fe(III)-bound forms of (Nif)IscA. Fe(III)-bound (Nif)IscA was also shown to be a competent iron source for in vitro NifS-mediated [2Fe-2S] cluster assembly on the N-terminal domain of NifU, but the reaction occurs via cysteine-mediated release of free Fe(II) rather than direct iron transfer. The proposed roles of A-type proteins in storing Fe under aerobic growth conditions and serving as iron donors for cluster assembly on U-type scaffold proteins or maturation of biological [4Fe-4S] centers are discussed in light of these results.

  2. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    Science.gov (United States)

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  3. Molybdenum x-ray absorption studies of the mutant Kp nifV of nitrogenase MO-FE protein

    International Nuclear Information System (INIS)

    Eidsness, M.K.; Smith, B.E.; Flood, A.C.; Garner, C.D.; Cramer, S.P.

    1985-01-01

    The nifV mutant nitrogenase enzyme of Klebsiella pheumoniae exhibits altered substrate reducing activity. This nitrogenase mutant cannot fix N 2 in vivo but can reduce C 2 H 2 to C 2 H 4 . The nifV mutant enzyme differs further from the wild-type enzyme by CO inhibition of its H 2 evolution activity, up to 80%. The NifV - phenotype (NifV - Kp1) has been shown to be associated with the iron-molybdenum cofactor (FeMoco) in the Mo Fe protein which is generally accepted as the site for substrate reduction. An X-Ray absorption study of the Mo site in this mutant may reveal a difference in its FeMoco structure. The authors report here a comparison of Mo X-Ray absorption data from the nitrogenase enzymes of the wild-type and NifV - strains in three different forms: (1) as isolated, (2) dye-oxidized, and (3) fixing enzyme systems. Mo edge structure of NifV - Kp1 and wild-type enzymes are nearly identical. Small shifts to higher energies are observed in the oxidized and fixing states. Mo EXAFS of NifV - Kp1 and wild-type in the ''as isolated'' state appear indistinguishable. Curve fitting results best describe the molybdenum in FeMoco as bound by 4-5 S atoms at 2.36 A ,3 Fe atoms at 2.69 A, and 0-2 O(N) atoms at 2.19 A. The spectral similarity of these results concerning the nifV mutant FeMoco structure is discussed

  4. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  5. FANTM: The First Article NIF Test Module for the Laser Power Conditioning System

    International Nuclear Information System (INIS)

    Hammon, Jud; Harjes, Henry C.; Moore, William B.S.; Smith, David L.; Wilson, J. Michael

    1999-01-01

    Designing and developing the 1.7 to 2. 1-MJ Power Conditioning System (PCS) that powers the flashlamps for the National Ignition Facility (NIF), currently being constructed at Lawrence Livermore National Labs (LLNL), is one of several responsibilities assumed by Sandia National Labs (SNL) in support of the NIF Project. The test facility that has evolved over the last three years to satisfy the project requirements is called FANTM. It was built at SNL and has operated for about 17,000 shots to demonstrate component performance expectations over the lifetime of NIF. A few modules similar to the one shown in Fig. 1 will be used initially in the amplifier test phase of the project. The final till NIF system will require 192 of them (48 in each of four capacitor bays). This paper briefly summarizes the final design of the FANTM facility and compares its performance with the predictions of circuit simulations for both normal operation and fault-mode response. Applying both the measured and modeled power pulse waveforms as input to a physics-based, semi-empirical amplifier gain code indicates that the 20-capacitor PCS can satisfy the NIF requirement for an average gain coefficient of 5.00 %/cm and can exceed 5.20%/cm with 24 capacitors

  6. Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, Tomasz [Florida State Univ., Tallahassee, FL (United States)

    2016-10-25

    The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproduced by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).

  7. Dynamic analysis of the Nova Target Chamber to assess alignment errors due to ambient noise

    International Nuclear Information System (INIS)

    McCallen, D.B.; Murray, R.C.

    1984-01-01

    We performed a study to determine the dynamic behavior of the Nova Target Chamber. We conducted a free vibration analysis to determine the natural frequencies of vibration and the corresponding modeshapes of the target chamber. Utilizing the free vibration results, we performed forced vibration analysis to predict the displacements of the chamber due to ambient vibration. The input support motion for the forced vibration analysis was defined by a white noise acceleration spectrum which was based on previous measurements of ground noise near the Nova site. A special purpose computer program was prepared to process the results of the forced vibration analysis. The program yields distances by which the lines of sight of the various laser beams miss the target as a result of ambient vibrations. We also performed additional estimates of miss distance to provide bounds on the results. A description of the finite element model of the chamber, the input spectrum, and the results of the analyses are included

  8. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    Science.gov (United States)

    2013-06-21

    The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL Presentation to: IEEE Pulsed Power and Plasma Science...Conference C. J. Keane Director, NIF User Office June 21, 2013 1491978-1-4673-5168-3/13/$31.00 ©2013 IEEE Report Documentation Page Form ApprovedOMB No...4. TITLE AND SUBTITLE The National Ignition Facility ( NIF ) and High Energy Density Science Research at LLNL 5a. CONTRACT NUMBER 5b. GRANT

  9. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    Science.gov (United States)

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  10. Producing KDP and DKDP crystals for the NIF laser

    International Nuclear Information System (INIS)

    Atherton, L. J.; Burnham, A. K.; Combs, R. C.; Couture, S. A.; De Yoreo, J. J.; Hawley-Fedder, R. A.; Montesant, R. C.; Robey, H. F.; Runkel, M.; Staggs, M.; Wegner, P. J.; Yan, M.; Zaitseva, N. P.

    1999-01-01

    The cost and physics requirements of the NIF have established two important roles for potassium dihydrogen phosphate (KDP) crystals. 1. To extract more laser energy per unit of flashlamp light and laser glass, the NIF has adopted a multipass architecture as shown in Figure 1. Light is injected in the transport spatial filter, first traverses the power amplifiers, and then is directed to main amplifiers, where it makes four passes before being redirected through the power amplifiers towards the target. To enable the multipass of the main amplifiers, a KDP-containing Pockels cell rotates the polarization of the beam to make it either transmit through or reflect off a polarizer held at Brewster's angle within the main laser cavity. If transmitted, the light reflects off a mirror and makes another pass through the cavity. If reflected, it proceeds through the power amplifier to the target. the original seed crystal as the pyramid faces grow. Unfortunately, this pyramidal growth is very slow, and it takes about two years to grow a crystal to NIF size. To provide more programmatic flexibility and reduce costs in the long run, we have developed an alternative technology commonly called rapid growth. Through a combination of higher temperatures and higher supersaturation of the growth solution, a NIF-size boule can be grown in 1 to 2 months from a small ''point'' seed. However, growing boules of adequate size is not sufficient. Care must be taken to prevent inclusions of growth solution and incorporation of atomically substituted 2. Implosions for ICF work far better at shorter wavelengths due to less generation of hot electrons, which preheat the fuel and make it harder to compress. Compromising between optic lifetime and implosion efficiency, both Nova and the NIF operate at a tripled frequency of the 1053-nm fundamental frequency of a neodymium glass laser. This tripling is accomplished by two crystals, one made of KDP and one made of deuterated KDP (DKDP). The first

  11. Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA.

    Science.gov (United States)

    Mapolelo, Daphne T; Zhang, Bo; Naik, Sunil G; Huynh, Boi Hanh; Johnson, Michael K

    2012-10-16

    The mechanism of [4Fe-4S] cluster assembly on A-type Fe-S cluster assembly proteins, in general, and the specific role of (Nif)IscA in the maturation of nitrogen fixation proteins are currently unknown. To address these questions, in vitro spectroscopic studies (UV-visible absorption/CD, resonance Raman and Mössbauer) have been used to investigate the mechanism of [4Fe-4S] cluster assembly on Azotobacter vinelandii(Nif)IscA, and the ability of (Nif)IscA to accept clusters from NifU and to donate clusters to the apo form of the nitrogenase Fe-protein. The results show that (Nif)IscA can rapidly and reversibly cycle between forms containing one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per homodimer via DTT-induced two-electron reductive coupling of two [2Fe-2S](2+) clusters and O(2)-induced [4Fe-4S](2+) oxidative cleavage. This unique type of cluster interconversion in response to cellular redox status and oxygen levels is likely to be important for the specific role of A-type proteins in the maturation of [4Fe-4S] cluster-containing proteins under aerobic growth or oxidative stress conditions. Only the [4Fe-4S](2+)-(Nif)IscA was competent for rapid activation of apo-nitrogenase Fe protein under anaerobic conditions. Apo-(Nif)IscA was shown to accept clusters from [4Fe-4S] cluster-bound NifU via rapid intact cluster transfer, indicating a potential role as a cluster carrier for delivery of clusters assembled on NifU. Overall the results support the proposal that A-type proteins can function as carrier proteins for clusters assembled on U-type proteins and suggest that they are likely to supply [2Fe-2S] clusters rather than [4Fe-4S] for the maturation of [4Fe-4S] cluster-containing proteins under aerobic or oxidative stress growth conditions.

  12. Organization of nif gene cluster in Frankia sp. EuIK1 strain, a symbiont of Elaeagnus umbellata.

    Science.gov (United States)

    Oh, Chang Jae; Kim, Ho Bang; Kim, Jitae; Kim, Won Jin; Lee, Hyoungseok; An, Chung Sun

    2012-01-01

    The nucleotide sequence of a 20.5-kb genomic region harboring nif genes was determined and analyzed. The fragment was obtained from Frankia sp. EuIK1 strain, an indigenous symbiont of Elaeagnus umbellata. A total of 20 ORFs including 12 nif genes were identified and subjected to comparative analysis with the genome sequences of 3 Frankia strains representing diverse host plant specificities. The nucleotide and deduced amino acid sequences showed highest levels of identity with orthologous genes from an Elaeagnus-infecting strain. The gene organization patterns around the nif gene clusters were well conserved among all 4 Frankia strains. However, characteristic features appeared in the location of the nifV gene for each Frankia strain, depending on the type of host plant. Sequence analysis was performed to determine the transcription units and suggested that there could be an independent operon starting from the nifW gene in the EuIK strain. Considering the organization patterns and their total extensions on the genome, we propose that the nif gene clusters remained stable despite genetic variations occurring in the Frankia genomes.

  13. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  14. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  15. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier

  16. High vacuum test of the dynamic components of the cyclotron dee chamber at the 224 cm variable energy cyclotron

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Bandopadhyay, D.K.; Ghosh, D.K.; Gowariker, S.R.

    1979-01-01

    The 224 cm Variable Energy Cyclotron constructed and commissioned at Calcutta comprises a number of dynamic components in the high vacuum Dee Chamber. The static and dynamic conditions of these components have to be tested for high vacuum worthiness prior to their installation in the Dee Tank. A special set up was fabricated and used for simulating the Dee Chamber conditions and testing the components. A high vacuum of the order of 1 x 10 -5 torr was achieved under both dynamic and static conditions with and without coolant hydraulic pressures. The details of the set up, methods employed for the various tests carried out and the results obtained are described. (auth.)

  17. AN UPDATE ON THE STATUS OF THE NIF POWER CONDITIONING SYSTEM

    International Nuclear Information System (INIS)

    Arnold, P A; Hulsey, S; Ullery, G T; Petersen, D E; Pendleton, D L; Ollis, C W; Newton, M A; Harwell, T; Cordoza, D; Hadovski, L

    2007-01-01

    The National Ignition Facility (NIF) Power Conditioning System provides the pulsed excitation required to drive flashlamps in the laser's optical amplifiers. Modular in design, each of the 192 Main Energy Storage Modules (MESMs) stores up to 2.2 MJ of electrical energy in its capacitor bank before delivering the energy to 20 pairs of flashlamps in a 400 (micro)s pulse (10% power points). The peak current of each MESM discharge is 0.5 MA. Production, installation, commissioning and operation of the NIF Power Conditioning continue to progress rapidly, with the goals of completing accelerated production and commissioning by early 2008, while maintaining an aggressive operation schedule. To date, more than 97% of the required modules have been assembled, shipped and installed in the facility, representing more that 380 MJ of stored energy available for driving NIF flashlamps. The MESMs have displayed outstanding reliability during daily, multiple-shift operations

  18. Control of Herbaspirillum seropedicae NifA Activity by Ammonium Ions and Oxygen

    Science.gov (United States)

    Souza, E. M.; Pedrosa, F. O.; Drummond, M.; Rigo, L. U.; Yates, M. G.

    1999-01-01

    The activity of a truncated form of Herbaspirillum seropedicae NifA in different genetic backgrounds showed that its regulatory domain is involved in nitrogen control but not in O2 sensitivity or Fe dependence. The model for nitrogen control involving PII could thus apply to the proteobacteria at large. NifA may have a role in controlling ADP-ribosylation of nitrogenase in Azospirillum brasilense. PMID:9882688

  19. Antagonism of CD11b with neutrophil inhibitory factor (NIF inhibits vascular lesions in diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Alexander A Veenstra

    Full Text Available Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1, a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF, a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2 by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  20. Functional participation of a nifH-arsA2 chimeric fusion gene in arsenic reduction by Escherichia coli

    International Nuclear Information System (INIS)

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara

    2008-01-01

    The NifH (dimer) and ArsA proteins are structural homologs and share common motifs like nucleotide-binding domains, signal transduction domains and also possible similar metal center ligands. Given the similarity between two proteins, we investigated if the NifH protein from Azotobacter vinelandii could functionally substitute for the ArsA1 half of the ArsA protein of Escherichia coli. The chimeric NifH-ArsA2 protein was expressed and detected in the E. coli strain by Western blotting. Growth comparisons of E. coli strains containing plasmids encoding for complete ArsA, partial ArsA (ArsA2) or chimeric ArsA (NifH-ArsA2) in media with increasing sodium arsenite concentrations (0-5 mM) showed that the chimeric NifH-ArsA2 could substitute for the ArsA. This functional complementation demonstrated the strong conservation of essential domains that have been maintained in NifH and ArsA even after their divergence to perform varied functions

  1. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Science.gov (United States)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  2. 3(omega) Power Balance Procedure on the NIF

    International Nuclear Information System (INIS)

    Glenzer, S; Jones, O; Speck, D R; Munro, D; Lerche, R; Salmon, T; Bliss, E; Gates, A; Boyd, B; Auerbach, J; Williams, W; Saroyan, A; Kalantar, D; MacGowan, B; Zacharias, R; Hayman, C; Sacks, R

    2001-01-01

    This document defines the detailed NIF full system shot procedure to obtain 8% power balance as specified by the SDR002 3.2.1.04. Because the 48 quads of the NIF will be set up over a period of five years, obtaining power balance will naturally be accomplished in two steps. First, as each quad is brought online, the four laser beams within each quad will be tuned by setting the PABTS splitter ratios so that each beam will give the same laser power on target during low energy square pulse shots. During the quad activation period all of the technical tools and procedures will be developed that are needed for attaining full laser power balance. After the initial settings of the 48 PABTS, if no other tuning is done the overall NIF power balance is expected to be about <15%. In the second step, an iteration procedure with approximately 18 full laser system shots will be needed to obtain 8% power balance by tuning out the remaining systematic differences among the quads to an acceptable small difference of 2% rms (at 3ω). This rms difference is smaller than the expected variation of the injection energy or the amplifier gain, and is also of the same order as the laser energy diagnostic accuracy. Therefore, 8% power balance will require a number of precision measurements that will need accurate calibrations combined with a laser performance model that accounts and corrects for variations of the injection energy and the amplifier gain. This document is intended to specify the procedure and the flow-down of requirements from the system design requirement of 8% power balance. It is further intended to help guide the laser shot planning, the laser controls, and the laser performance operations model groups. It should provide input relevant to power balance tuning for the development of an operations model that includes post-shot analysis (as described in NIF-0046491), shot planning (as described in this memo), and pre-shot analysis

  3. Alternative irradiation schemes for NIF and LMJ hohlraums

    Science.gov (United States)

    Bourgade, Jean-Luc; Bowen, Christopher; Gauthier, Pascal; Landen, Otto

    2018-02-01

    We explore two alternative irradiation schemes for the large (‘outer’) and small (‘inner’) angle beams that currently illuminate National Ignition Facility (NIF) and Laser Mégajoule cavities. In the first, while the outer laser beams enter through the usual end laser entrance holes (LEH), the inner beams enter through slots along the cavity axis wall, illuminating the back wall of the cavity. This avoids the current interaction of the inner laser beams with the gold wall bubbles generated by the outer beams, which leads to large time-dependent changes in drive symmetry. Another scheme potentially useful for NIF uses only the outer beams. The radiative losses through the slots or from the use of outer beams only are compensated by using a smaller cavity and LEH.

  4. Normalized impact factor (NIF): an adjusted method for calculating the citation rate of biomedical journals.

    Science.gov (United States)

    Owlia, P; Vasei, M; Goliaei, B; Nassiri, I

    2011-04-01

    The interests in journal impact factor (JIF) in scientific communities have grown over the last decades. The JIFs are used to evaluate journals quality and the papers published therein. JIF is a discipline specific measure and the comparison between the JIF dedicated to different disciplines is inadequate, unless a normalization process is performed. In this study, normalized impact factor (NIF) was introduced as a relatively simple method enabling the JIFs to be used when evaluating the quality of journals and research works in different disciplines. The NIF index was established based on the multiplication of JIF by a constant factor. The constants were calculated for all 54 disciplines of biomedical field during 2005, 2006, 2007, 2008 and 2009 years. Also, ranking of 393 journals in different biomedical disciplines according to the NIF and JIF were compared to illustrate how the NIF index can be used for the evaluation of publications in different disciplines. The findings prove that the use of the NIF enhances the equality in assessing the quality of research works produced by researchers who work in different disciplines. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES

    International Nuclear Information System (INIS)

    NIKROO, A.; PONTELANDOLFO, J.M.; CASTILLO, E.R.

    2002-01-01

    OAK A271 COATING AND MANDREL EFFECTS ON FABRICATION OF GLOW DISCHARGE POLYMER NIF SCALE INDIRECT DRIVE CAPSULES. Targets for the National Ignition Facility (NIF) need to be about 200 (micro)m thick and 2 mm in diameter. These dimensions are well beyond those currently fabricated on a routine basis. They have investigated fabrication of near NIF scale targets using the depolymerizable mandrel technique. Poly-alpha-methylstyrene (PAMS) mandrels, about 2 mm in diameter, of varying qualities were coated with as much as 125 (micro)m of glow discharge polymer (GDP). The surface finish of the final shells was examined using a variety of techniques. A clear dependence of the modal spectrum of final GDP shell on the quality of the initial PAMS mandrels was observed. isolated features were found to be the greatest cause for a shell not meeting the NIF standard

  6. Analysis of phylogeny and codon usage bias and relationship of GC content, amino acid composition with expression of the structural nif genes.

    Science.gov (United States)

    Mondal, Sunil Kanti; Kundu, Sudip; Das, Rabindranath; Roy, Sujit

    2016-08-01

    Bacteria and archaea have evolved with the ability to fix atmospheric dinitrogen in the form of ammonia, catalyzed by the nitrogenase enzyme complex which comprises three structural genes nifK, nifD and nifH. The nifK and nifD encodes for the beta and alpha subunits, respectively, of component 1, while nifH encodes for component 2 of nitrogenase. Phylogeny based on nifDHK have indicated that Cyanobacteria is closer to Proteobacteria alpha and gamma but not supported by the tree based on 16SrRNA. The evolutionary ancestor for the different trees was also different. The GC1 and GC2% analysis showed more consistency than GC3% which appeared to below for Firmicutes, Cyanobacteria and Euarchaeota while highest in Proteobacteria beta and clearly showed the proportional effect on the codon usage with a few exceptions. Few genes from Firmicutes, Euryarchaeota, Proteobacteria alpha and delta were found under mutational pressure. These nif genes with low and high GC3% from different classes of organisms showed similar expected number of codons. Distribution of the genes and codons, based on codon usage demonstrated opposite pattern for different orientation of mirror plane when compared with each other. Overall our results provide a comprehensive analysis on the evolutionary relationship of the three structural nif genes, nifK, nifD and nifH, respectively, in the context of codon usage bias, GC content relationship and amino acid composition of the encoded proteins and exploration of crucial statistical method for the analysis of positive data with non-constant variance to identify the shape factors of codon adaptation index.

  7. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    Science.gov (United States)

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  8. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  9. Pulsed fusion space propulsion: Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    Science.gov (United States)

    Romanelli, Gherardo; Mignone, Andrea; Cervone, Angelo

    2017-10-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the operation of the magnetic nozzle, the device meant to exploit the fusion energy and generate thrust. One of the last pulsed fusion magnetic nozzle design is the so called multi-coil parabolic reaction chamber: the reaction is thereby ignited at the focus of an open parabolic chamber, enclosed by a series of coaxial superconducting coils that apply a magnetic field. The field, beside confining the reaction and preventing any contact between hot fusion plasma and chamber structure, is also meant to reflect the explosion and push plasma out of the rocket. Reflection is attained thanks to electric currents induced in conductive skin layers that cover each of the coils, the change of plasma axial momentum generates thrust in reaction. This working principle has yet to be extensively verified and computational Magneto-Hydro Dynamics (MHD) is a viable option to achieve that. This work is one of the first detailed ideal-MHD analysis of a multi-coil parabolic reaction chamber of this kind and has been completed employing PLUTO, a freely distributed computational code developed at the Physics Department of the University of Turin. The results are thus a preliminary verification of the chamber's performance. Nonetheless, plasma leakage through the chamber structure has been highlighted. Therefore, further investigations are required to validate the chamber design. Implementing a more accurate physical model (e.g. Hall-MHD or relativistic-MHD) is thus mandatory, and PLUTO shows the capabilities to achieve that.

  10. Gain measurements on a prototype NIF/LMJ amplifier pump cavity

    International Nuclear Information System (INIS)

    Rotter, M.D.; McCracken, R.; Erlandson, A.; Guenet, M.

    1996-12-01

    We are currently developing large-aperture amplifiers for the National Ignition Facility (NIF) and Laser Megajoules (LMJ) lasers. These multisegment amplifiers are of the flashlamp-pumped, Nd:Glass qW and are designed to propagate a nominally 36 cm square beam. The apertures within a particular amplifier bundle are arranged in a four-high by two-wide configuration and utilize two side lamp arrays and a central flashlamp array for pumping. The configuration is very similar to that used in the Beamlet laser, a single-beam prototype for the NIF/LMJ lasers, which has four apertures arranged in a two- high by two-wide configuration

  11. Fnr is involved in oxygen control of Herbaspirillum seropedicae N-truncated NifA protein activity in Escherichia coli.

    Science.gov (United States)

    Monteiro, Rose A; de Souza, Emanuel M; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S

    2003-03-01

    Herbaspirillum seropedicae is an endophytic diazotroph belonging to the beta-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein.

  12. Molecular characterization of Azotobacter spp. nifH gene Isolated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Available online at http://www.academicjournals.org/AJB. ISSN 1684–5315 ... Molecular characterization of Azotobacter spp. nifH .... MATERIALS AND METHODS ..... rapidly expanding and is currently composed of over.

  13. Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry

    International Nuclear Information System (INIS)

    Frenje, J.A.; Casey, D.T.; Johnson, M. Gatu; Bionta, R.; Bond, E.J.; Caggiano, J.A.; Cerjan, C.; Edwards, J.; Eckart, M.; Fittinghoff, D.N.; Friedrich, S.; Glenzer, S.; Haan, S.; Hatarik, R.; Hatchett, S.; Jones, O.S.; Glebov, V.Yu.; Knauer, J.P.; Grim, G.; Kilkenny, J.D.

    2013-01-01

    The neutron spectrum from a cryogenically layered deuterium–tritium (dt) implosion at the National Ignition Facility (NIF) provides essential information about the implosion performance. From the measured primary-neutron spectrum (13–15 MeV), yield (Y n ) and hot-spot ion temperature (T i ) are determined. From the scattered neutron yield (10–12 MeV) relative to Y n , the down-scatter ratio, and the fuel areal density (ρR) are determined. These implosion parameters have been diagnosed to an unprecedented accuracy with a suite of neutron-time-of-flight spectrometers and a magnetic recoil spectrometer implemented in various locations around the NIF target chamber. This provides good implosion coverage and excellent measurement complementarity required for reliable measurements of Y n , T i and ρR, in addition to ρR asymmetries. The data indicate that the implosion performance, characterized by the experimental ignition threshold factor, has improved almost two orders of magnitude since the first shot taken in September 2010. ρR values greater than 1 g cm −2 are readily achieved. Three-dimensional semi-analytical modelling and numerical simulations of the neutron-spectrometry data, as well as other data for the hot spot and main fuel, indicate that a maximum hot-spot pressure of ∼150 Gbar has been obtained, which is almost a factor of two from the conditions required for ignition according to simulations. Observed Y n are also 3–10 times lower than predicted. The conjecture is that the observed pressure and Y n deficits are partly explained by substantial low-mode ρR asymmetries, which may cause inefficient conversion of shell kinetic energy to hot-spot thermal energy at stagnation. (paper)

  14. D2 and DT Liquid-Layer Target Shots on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Curtis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alger, Ethan [General Atomics, San Diego, CA (United States); Bhandarkar, Suhas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boehm, Kurt [General Atomics, San Diego, CA (United States); Braun, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Espinosaloza, Francisco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haid, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heredia, Ricardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kozioziemski, Bernard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kroll, Jeremy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malone, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Opsahl, Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sater, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zylstra, Alex [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-22

    Experiments at the National Ignition Facility (NIF) using targets containing a Deuterium-Tritium (DT) fuel layer have, until recently, required that a high-quality layer of solid deuterium-tritium (herein referred to as an "ice-layer") be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of icelayers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam lined capsule, but also changes to the capsule filling process and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes, and the target's performance during four target shots on NIF will be discussed.

  15. Simulated Field Trials Using an Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  16. Simulated Field Trials Using An Indoor Aerosol Test Chamber

    National Research Council Canada - National Science Library

    Semler, D. D; Roth, A. P; Semler, K. A; Nolan, P. M

    2004-01-01

    .... In this method, the aerosol chamber control software manipulates circulation fan speeds, chamber vacuum and agent spray times to produce a simulated dynamic cloud within the aerosol test chamber...

  17. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    International Nuclear Information System (INIS)

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new, higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t 0 -1 system

  18. Laser coupling to reduced-scale targets at Nif Early Light

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, D.E.; Schneider, M.B.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bonanno, G.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, K.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.K.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moses, S.E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; VanWonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Baldis, H.A. [California at Davis Univ., CA (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility (NIF) under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light. (authors)

  19. NIF small optics laser damage test specifications

    International Nuclear Information System (INIS)

    Sheehan, L

    1999-01-01

    The Laser Damage Group is currently conducting tests on small optics samples supplied for initial evaluation of potential NIF suppliers. This document is meant to define the specification of laser-induced damage for small optics and the test methods used to collect the data. A rating system which will be applied for vendor selection is presented

  20. The NIF LinkOut broker: a web resource to facilitate federated data integration using NCBI identifiers.

    Science.gov (United States)

    Marenco, Luis; Ascoli, Giorgio A; Martone, Maryann E; Shepherd, Gordon M; Miller, Perry L

    2008-09-01

    This paper describes the NIF LinkOut Broker (NLB) that has been built as part of the Neuroscience Information Framework (NIF) project. The NLB is designed to coordinate the assembly of links to neuroscience information items (e.g., experimental data, knowledge bases, and software tools) that are (1) accessible via the Web, and (2) related to entries in the National Center for Biotechnology Information's (NCBI's) Entrez system. The NLB collects these links from each resource and passes them to the NCBI which incorporates them into its Entrez LinkOut service. In this way, an Entrez user looking at a specific Entrez entry can LinkOut directly to related neuroscience information. The information stored in the NLB can also be utilized in other ways. A second approach, which is operational on a pilot basis, is for the NLB Web server to create dynamically its own Web page of LinkOut links for each NCBI identifier in the NLB database. This approach can allow other resources (in addition to the NCBI Entrez) to LinkOut to related neuroscience information. The paper describes the current NLB system and discusses certain design issues that arose during its implementation.

  1. Extending the Dynamic Range of a Time Projection Chamber

    Science.gov (United States)

    Estee, Justin; S πRIT Collaboration

    2017-09-01

    The use of Time Projection Chambers (TPCs) in intermediate heavy ion reactions faces some challenges in addressing the energy losses that range from the small energy loss of relativistic pions to the large energy loss of slow moving heavy ions. A typical trade-off can be to set the smallest desired signals to be well within the lower limits of the dynamic range of the electronics while allowing for some larger signals to saturate the electronics. With wire plane anodes, signals from readout pads further away from the track remain unsaturated and allow signals from tracks with saturated pads to be accurately recovered. We illustrate this technique using data from the SAMURAI Pion-Reconstruction and Ion-Tracker (S πRIT) TPC , which recently measured pions and light charged particles in collisions of Sn+Sn isotopes. Our method exploits knowledge of how the induced charge distribution depends on the distance from the track to smoothly extend dynamic range even when some of the pads in the track are saturated. To accommodate the analysis of slow moving heavy ions, we have extended the Bichsel energy loss distributions to handle slower moving ions as well. In this talk, I will discuss a combined approach which successfully extends the dynamic range of the TPC electronics. This work is supported by the U.S. DOE under Grant Nos. DE-SC0014530, DE-NA0002923, US NSF Grant No. PHY-1565546 and the Japan MEXT KAKENHI Grant No. 24105004.

  2. NIFS contributions to 19th IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    NIFS has presented 21 papers at the 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002). The contributed papers are collected in this report. The 21 papers are indexed individually. (J.P.N.)

  3. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  4. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  5. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    Science.gov (United States)

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. In silico characterization and transcriptomic analysis of nif family genes from Anabaena sp. PCC7120.

    Science.gov (United States)

    Singh, Shilpi; Shrivastava, Alok Kumar

    2017-10-01

    In silico approaches in conjunction with morphology, nitrogenase activity, and qRT-PCR explore the impact of selected abiotic stressor such as arsenic, salt, cadmium, copper, and butachlor on nitrogen fixing (nif family) genes of diazotrophic cyanobacterium Anabaena sp. PCC7120. A total of 19 nif genes are present within the Anabaena genome that is involved in the process of nitrogen fixation. Docking studies revealed the interaction between these nif gene-encoded proteins and the selected abiotic stressors which were further validated through decreased heterocyst frequency, fragmentation of filaments, and downregulation of nitrogenase activity under these stresses indicating towards their toxic impact on nitrogen fixation potential of filamentous cyanobacterium Anabaena sp. PCC7120. Another appealing finding of this study is even though having similar binding energy and similar interacting residues between arsenic/salt and copper/cadmium to nif-encoded proteins, arsenic and cadmium are more toxic than salt and copper for nitrogenase activity of Anabaena which is crucial for growth and yield of rice paddy and soil reclamation.

  7. The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel LacI/GalR-family regulator.

    Directory of Open Access Journals (Sweden)

    John T Sullivan

    Full Text Available Mesorhizobium loti is the microsymbiont of Lotus species, including the model legume L. japonicus. M. loti differs from other rhizobia in that it contains two copies of the key nitrogen fixation regulatory gene nifA, nifA1 and nifA2, both of which are located on the symbiosis island ICEMlSym(R7A. M. loti R7A also contains two rpoN genes, rpoN1 located on the chromosome outside of ICEMlSym(R7A and rpoN2 that is located on ICEMlSym(R7A. The aims of the current work were to establish how nifA expression was activated in M. loti and to characterise the NifA-RpoN regulon. The nifA2 and rpoN2 genes were essential for nitrogen fixation whereas nifA1 and rpoN1 were dispensable. Expression of nifA2 was activated, possibly in response to an inositol derivative, by a novel regulator of the LacI/GalR family encoded by the fixV gene located upstream of nifA2. Other than the well-characterized nif/fix genes, most NifA2-regulated genes were not required for nitrogen fixation although they were strongly expressed in nodules. The NifA-regulated nifZ and fixU genes, along with nifQ which was not NifA-regulated, were required in M. loti for a fully effective symbiosis although they are not present in some other rhizobia. The NifA-regulated gene msi158 that encodes a porin was also required for a fully effective symbiosis. Several metabolic genes that lacked NifA-regulated promoters were strongly expressed in nodules in a NifA2-dependent manner but again mutants did not have an overt symbiotic phenotype. In summary, many genes encoded on ICEMlSym(R7A were strongly expressed in nodules but not free-living rhizobia, but were not essential for symbiotic nitrogen fixation. It seems likely that some of these genes have functional homologues elsewhere in the genome and that bacteroid metabolism may be sufficiently plastic to adapt to loss of certain enzymatic functions.

  8. Current progress in NIF target concepts

    International Nuclear Information System (INIS)

    Gobby, P.L.; Foreman, L.R.; Thoma, D.J.; Jacobson, L.A.; Hollis, R.V.; Barrera, J.; Mitchell, M.A.; Salazar, M.A.; Salzer, L.J.

    1996-01-01

    Target concepts for the National Ignition Facility (NIF) require progress in the art and science of target fabrication. Three distinct issues are addressed: beryllium fuel capsules, foam-buffered direct drive, and high-density gas-filled hohlraums. In all cases experiments on the existing Nova laser at LLNL are either in progress or planned for the near future to test the various concepts. Consequently, target fabrication must be able to deliver targets appropriate for each

  9. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    Science.gov (United States)

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  10. Proceedings of joint meeting of the 6th simulation science symposium and the NIFS collaboration research 'large scale computer simulation'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Joint meeting of the 6th Simulation Science Symposium and the NIFS Collaboration Research 'Large Scale Computer Simulation' was held on December 12-13, 2002 at National Institute for Fusion Science, with the aim of promoting interdisciplinary collaborations in various fields of computer simulations. The present meeting attended by more than 40 people consists of the 11 invited and 22 contributed papers, of which topics were extended not only to fusion science but also to related fields such as astrophysics, earth science, fluid dynamics, molecular dynamics, computer science etc. (author)

  11. Near Field Intensity Trends of Main Laser Alignment Images in the National Ignition Facility (NIF)

    Energy Technology Data Exchange (ETDEWEB)

    Leach, R R; Beltsar, I; Burkhart, S; Lowe-Webb, R; Kamm, V M; Salmon, T; Wilhelmsen, K

    2015-01-22

    The National Ignition Facility (NIF) utilizes 192 high-energy laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to potentially initiate a fusion reaction. NIF has been operational for six years; during that time, thousands of successful laser firings or shots have been executed. Critical instrument measurements and camera images are carefully recorded for each shot. The result is a massive and complex database or ‘big data’ archive that can be used to investigate the state of the laser system at any point in its history or to locate and track trends in the laser operation over time. In this study, the optical light throughput for more than 1600 NIF shots for each of the 192 main laser beams and 48 quads was measured over a three year period from January 2009 to October 2012. The purpose was to verify that the variation in the transmission of light through the optics over time performed within design expectations during this time period. Differences between average or integrated intensity from images recorded by the input sensor package (ISP) and by the output sensor package (OSP) in the NIF beam-line were examined. A metric is described for quantifying changes in the integrated intensity measurements and was used to view potential trends. Results are presented for the NIF input and output sensor package trends and changes over the three year time-frame.

  12. Plasma Electrode Pockels Cells for the Beamlet and NIF lasers

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Woods, B.; DeYoreo, J.; Atherton, J.

    1994-05-01

    We describe Plasma Electrode Pockels Cells (PEPC) for the Beamlet laser and the proposed National Ignition Facility (NIF) laser. These PEPCs, together with passive polarizers, function as large aperture (> 35 x 35 cm 2 ) optical switches enabling the design of high-energy (> 5 kJ), multipass laser amplifiers. In a PEPC, plasma discharges form on both sides of a thin (1 cm) electro-optic crystal (KDP). These plasma discharges produce highly conductive and transparent electrodes that facilitate rapid (< 100 ns) and uniform charging of the KDP up to the half-wave voltage (17 kV) and back to zero volts. We discuss the operating principles, design, and optical performance of the Beamlet PEPC and briefly discuss our plans to extend PEPC technology for the NIF

  13. Functional NifD-K fusion protein in Azotobacter vinelandii is a homodimeric complex equivalent to the native heterotetrameric MoFe protein

    International Nuclear Information System (INIS)

    Lahiri, Surobhi; Pulakat, Lakshmi; Gavini, Nara

    2005-01-01

    The MoFe protein of the complex metalloenzyme nitrogenase folds as a heterotetramer containing two copies each of the homologous α and β subunits, encoded by the nifD and the nifK genes respectively. Recently, the functional expression of a fusion NifD-K protein of nitrogenase was demonstrated in Azotobacter vinelandii, strongly implying that the MoFe protein is flexible as it could accommodate major structural changes, yet remain functional [M.H. Suh, L. Pulakat, N. Gavini, J. Biol. Chem. 278 (2003) 5353-5360]. This finding led us to further explore the type of interaction between the fused MoFe protein units. We aimed to determine whether an interaction exists between the two fusion MoFe proteins to form a homodimer that is equivalent to native heterotetrameric MoFe protein. Using the Bacteriomatch Two-Hybrid System, translationally fused constructs of NifD-K (fusion) with the full-length λCI of the pBT bait vector and also NifD-K (fusion) with the N-terminal α-RNAP of the pTRG target vector were made. To compare the extent of interaction between the fused NifD-K proteins to that of the β-β interactions in the native MoFe protein, we proceeded to generate translationally fused constructs of NifK with the α-RNAP of the pTRG vector and λCI protein of the pBT vector. The strength of the interaction between the proteins in study was determined by measuring the β-galactosidase activity and extent of ampicillin resistance of the colonies expressing these proteins. This analysis demonstrated that direct protein-protein interaction exists between NifD-K fusion proteins, suggesting that they exist as homodimers. As the interaction takes place at the β-interfaces of the NifD-K fusion proteins, we propose that these homodimers of NifD-K fusion protein may function in a similar manner as that of the heterotetrameric native MoFe protein. The observation that the extent of protein-protein interaction between the β-subunits of the native MoFe protein in Bacterio

  14. The neutron imaging diagnostic at NIF (invited).

    Science.gov (United States)

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  15. The neutron imaging diagnostic at NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E.; Clark, D. D.; Danly, C. R.; Drury, O. B.; Fatherley, V. E.; Gallegos, R.; Grim, G. P.; Guler, N.; Loomis, E. N.; Martinson, D. D.; Mares, D.; Morley, D. J.; Morgan, G. L.; Oertel, J. A.; Tregillis, I. L.; Volegov, P. L.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Bower, D.; Dzenitis, J. M. [Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  16. ORGANIZATION OF THE nif GENES OF THE NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS101.

    Science.gov (United States)

    Dominic, Benny; Zani, Sabino; Chen, Yi-Bu; Mellon, Mark T; Zehr, Jonathan P

    2000-08-26

    An approximately 16-kb fragment of the Trichodesmium sp. IMS101 (a nonheterocystous filamentous cyanobacterium) "conventional"nif gene cluster was cloned and sequenced. The gene organization of the Trichodesmium and Anabaena variabilis vegetative (nif 2) nitrogenase gene clusters spanning the region from nif B to nif W are similar except for the absence of two open reading frames (ORF3 and ORF1) in Trichodesmium. The Trichodesmium nif EN genes encode a fused Nif EN polypeptide that does not appear to be processed into individual Nif E and Nif N polypeptides. Fused nif EN genes were previously found in the A. variabilis nif 2 genes, but we have found that fused nif EN genes are widespread in the nonheterocystous cyanobacteria. Although the gene organization of the nonheterocystous filamentous Trichodesmium nif gene cluster is very similar to that of the A. variabilis vegetative nif 2 gene cluster, phylogenetic analysis of nif sequences do not support close relatedness of Trichodesmium and A. variabilis vegetative (nif 2) nitrogenase genes.

  17. Managing NIF safety equipment in a high neutron and gamma radiation environment.

    Science.gov (United States)

    Datte, Philip; Eckart, Mark; Jackson, Mark; Khater, Hesham; Manuel, Stacie; Newton, Mark

    2013-06-01

    The National Ignition Facility (NIF) is a 192 laser beam facility that supports the Inertial Confinement Fusion program. During the ignition experimental campaign, the NIF is expected to perform shots with varying fusion yield producing 14 MeV neutrons up to 20 MJ or 7.1 × 10(18) neutrons per shot and a maximum annual yield of 1,200 MJ. Several infrastructure support systems will be exposed to varying high yield shots over the facility's 30-y life span. In response to this potential exposure, analysis and testing of several facility safety systems have been conducted. A detailed MCNP (Monte Carlo N-Particle Transport Code) model has been developed for the NIF facility, and it includes most of the major structures inside the Target Bay. The model has been used in the simulation of expected neutron and gamma fluences throughout the Target Bay. Radiation susceptible components were identified and tested to fluences greater than 10(13) (n cm(-2)) for 14 MeV neutrons and γ-ray equivalent. The testing includes component irradiation using a 60Co gamma source and accelerator-based irradiation using 4- and 14- MeV neutron sources. The subsystem implementation in the facility is based on the fluence estimates after shielding and survivability guidelines derived from the dose maps and component tests results. This paper reports on the evaluation and implementation of mitigations for several infrastructure safety support systems, including video, oxygen monitoring, pressure monitors, water sensing systems, and access control interfaces found at the NIF.

  18. NIF capsule performance modeling

    Directory of Open Access Journals (Sweden)

    Weber S.

    2013-11-01

    Full Text Available Post-shot modeling of NIF capsule implosions was performed in order to validate our physical and numerical models. Cryogenic layered target implosions and experiments with surrogate targets produce an abundance of capsule performance data including implosion velocity, remaining ablator mass, times of peak x-ray and neutron emission, core image size, core symmetry, neutron yield, and x-ray spectra. We have attempted to match the integrated data set with capsule-only simulations by adjusting the drive and other physics parameters within expected uncertainties. The simulations include interface roughness, time-dependent symmetry, and a model of mix. We were able to match many of the measured performance parameters for a selection of shots.

  19. Crystallization and preliminary crystallographic data of the PAS domain of the NifL protein from Azotobacter vinelandii.

    NARCIS (Netherlands)

    Hefti, M.H.; Hendle, J.; Enroth, C.; Vervoort, J.J.M.; Tucker, P.A.

    2001-01-01

    The Azotobacter vinelandii NifL protein is a redox-sensing flavoprotein which inhibits the activity of the nitrogen-specific transcriptional activator NifA. The N-terminal PAS domain has been overexpressed in Escherichia coli and crystallized by the hanging-drop vapour-diffusion method. The crystal

  20. Magnetic Fields on the National Ignition Facility (MagNIF)

    International Nuclear Information System (INIS)

    Mason, D.; Folta, J.

    2016-01-01

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders' needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentally relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs - full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.

  1. Magnetic Fields on the National Ignition Facility (MagNIF)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Folta, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-12

    A magnetized target capability on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been investigated. Stakeholders’ needs and project feasibility analysis were considered in order to down-select from a wide variety of different potential magnetic field magnitudes and volumes. From the large range of different target platforms, laser configurations, and diagnostics configurations of interest to the stakeholders, the gas-pipe platform has been selected for the first round of magnetized target experiments. Gas pipe targets are routinely shot on the NIF and provide unique value for external collaborators. High-level project goals have been established including an experimentally relevant 20Tesla magnetic field magnitude. The field will be achieved using pulsed power-driven coils. A system architecture has been proposed. The pulsed power drive system will be located in the NIF target bay. This decision provides improved maintainability and mitigates equipment safety risks associated with explosive failure of the drive capacitor. High-level and first-level subsystem requirements have been established. Requirements have been included for two distinct coil designs – full solenoid and quasi-Helmholtz. A Failure Modes and Effects Analysis (FMEA) has been performed and documented. Additional requirements have been derived from the mitigations included in the FMEA document. A project plan is proposed. The plan includes a first phase of electromagnetic simulations to assess whether the design will meet performance requirements, then a second phase of risk mitigation projects to address the areas of highest technical risk. The duration from project kickoff to the first magnetized target shot is approximately 29 months.

  2. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    Science.gov (United States)

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  3. Algorithm for study on the stressed-strained state of thermonuclear device vacuum chambers under dynamic loads

    International Nuclear Information System (INIS)

    Zhuravleva, A.M.; Litvinov, V.B.

    1982-01-01

    The problem of dynamic analysis of stressed-strained state of vacuum chambers is vital for large thermonuclear devices during the stall of the plasma-filament apd other tpansitional operation regimes when loading for a chamber are nonstationary. To plot a mathematical model the design of the vacuum chamber is discreted on the basis of the method of final elements. To approximate vacuum shell, a plate triangular element with 3 joint points and 5 parameters in the joint is used. It is obtained due to the unity of the bemded element and the element for the flat problem. To investigate nonstationary oscillations of vacuum chambers discreted on the basis of the method of final elements, it is suggested to use the numeric conversion of the Japlace transformation. On the basis of the algorithm suggested a program of numerical function conversion is developed. Test calculations have shown a good stability of the algorithm when selecting the values of transformation parameter in the range of lower intrinsic system frequencies. The advantage of the above method is in the fact that the time-structure shift function is found instantly in the form of the series for the whole time interval and does not require temporary steps, which bring about large expenses of counting time and error accumulation

  4. Design calculations for NIF convergent ablator experiments

    Directory of Open Access Journals (Sweden)

    Olson R.E.

    2013-11-01

    Full Text Available The NIF convergent ablation tuning effort is underway. In the early experiments, we have discovered that the design code simulations over-predict the capsule implosion velocity and shock flash ρr, but under-predict the hohlraum x-ray flux measurements. The apparent inconsistency between the x-ray flux and radiography data implies that there are important unexplained aspects of the hohlraum and/or capsule behavior.

  5. Structural stability analysis considerations in fusion reactor plasma chamber design

    International Nuclear Information System (INIS)

    Delaney, M.J.; Cramer, B.A.

    1978-01-01

    This paper presents an approach to analyzing a toroidal plasma chamber for the prevention of both static and dynamic buckling. Results of stability analyses performed for the doublet shaped plasma chamber of the General Atomic 3.8 meter radius TNS ignition test reactor are presented. Load conditions are the static external atmospheric pressure load and the dynamic plasma disruption pulse load. Methods for analysis of plasma chamber structures are presented for both types of load. Analysis for static buckling is based on idealizing the plasma chamber into standard structural shapes and applying classical cylinder and circular torus buckling equations. Results are verified using the Buckling of Shells of Revolution (BOSOR4) finite difference computer code. Analysis for the dynamic loading is based on a pulse buckling analysis method for circular cylinders

  6. An exploration of Lasnex designs to support the MShock campaign at NIF

    Energy Technology Data Exchange (ETDEWEB)

    DeVolder, Barbara Gloria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-11

    In support of planned MShock experiments at NIF, Lasnex is being used to explore possible laser sources and halfraum designs that launch two shocks into an ablator - shock tube configuration. Two design features were investigated: (1) launching a two-component laser source consisting of an early pre-pulse separated in time from a later main pulse, to create two shocks, and (2) adding a liner on the inner surface of the gold wall of the halfraum, to delay or prevent gold stagnation on-axis and to preserve the effectiveness of the second laser pulse. The clearest indication of two shocks propagating in the shock tube occurred when the pre-pulse mimicked a direct drive, achieved by re-pointing the inner beam cones, and when a liner was used to ensure that the free-electron number density was below the critical density for NIF. Additional simulations (presented in the Appendix) that used the two-component laser source but focused on specific choices in laser-pulse design space, as proposed by Kirk Flippo for use in the first MShock experiments at NIF, also demonstrated the presence of two shocks.

  7. Potentials and challenges associated with automated closed dynamic chamber measurements of soil CO2 fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart

    2015-04-01

    Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with

  8. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  9. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat

    DEFF Research Database (Denmark)

    Steunou, Anne-Soisig; Jensen, Sheila I; Brecht, Eric

    2008-01-01

    Nitrogen fixation, a prokaryotic, O(2)-inhibited process that reduces N(2) gas to biomass, is of paramount importance in biogeochemical cycling of nitrogen. We analyzed the levels of nif transcripts of Synechococcus ecotypes, NifH subunit and nitrogenase activity over the diel cycle...... in the microbial mat of an alkaline hot spring in Yellowstone National Park. The results showed a rise in nif transcripts in the evening, with a subsequent decline over the course of the night. In contrast, immunological data demonstrated that the level of the NifH polypeptide remained stable during the night...

  10. Temporal multiplexing for economical measurement of power versus time on NIF

    International Nuclear Information System (INIS)

    Thomas, S.; Boyd, B.; Davis, D.T.; Hall, B.

    1996-10-01

    The researchers have designed an economical device to measure the power time history in the National Ignition Facility's (NIF) 192 beam laser. The heart of the system is a commercial, high-speed, four-channel digitizer with a 15,000 point record length. Samples of several beams are taken with fiberoptic pickoffs, separated in time with appropriate fiberoptic delays and presented to high-speed vacuum photodiodes, which convert the samples to electrical signals for the digitizer. Amplitude and time multiplexing are used to cover the required dynamic range and to record 12 samples on the digitizer, making the cost per sample competitive with alternative approaches. Forty-eight digitizers can record the required three samples from each of the 192 beams. An additional similar but lower bandwidth system is used to record the backreflected light from the main laser amplifiers and elsewhere. The recording electronics are discussed in detail

  11. Temporal multiplexing for economical measurement of power versus time on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.; Boyd, B.; Davis, D.T.; Hall, B.

    1996-10-01

    The researchers have designed an economical device to measure the power time history in the National Ignition Facility`s (NIF) 192 beam laser. The heart of the system is a commercial, high-speed, four-channel digitizer with a 15,000 point record length. Samples of several beams are taken with fiberoptic pickoffs, separated in time with appropriate fiberoptic delays and presented to high-speed vacuum photodiodes, which convert the samples to electrical signals for the digitizer. Amplitude and time multiplexing are used to cover the required dynamic range and to record 12 samples on the digitizer, making the cost per sample competitive with alternative approaches. Forty-eight digitizers can record the required three samples from each of the 192 beams. An additional similar but lower bandwidth system is used to record the backreflected light from the main laser amplifiers and elsewhere. The recording electronics are discussed in detail.

  12. Extending the NIF DISCO framework to automate complex workflow: coordinating the harvest and integration of data from diverse neuroscience information resources.

    Science.gov (United States)

    Marenco, Luis N; Wang, Rixin; Bandrowski, Anita E; Grethe, Jeffrey S; Shepherd, Gordon M; Miller, Perry L

    2014-01-01

    This paper describes how DISCO, the data aggregator that supports the Neuroscience Information Framework (NIF), has been extended to play a central role in automating the complex workflow required to support and coordinate the NIF's data integration capabilities. The NIF is an NIH Neuroscience Blueprint initiative designed to help researchers access the wealth of data related to the neurosciences available via the Internet. A central component is the NIF Federation, a searchable database that currently contains data from 231 data and information resources regularly harvested, updated, and warehoused in the DISCO system. In the past several years, DISCO has greatly extended its functionality and has evolved to play a central role in automating the complex, ongoing process of harvesting, validating, integrating, and displaying neuroscience data from a growing set of participating resources. This paper provides an overview of DISCO's current capabilities and discusses a number of the challenges and future directions related to the process of coordinating the integration of neuroscience data within the NIF Federation.

  13. Association of Right Ventricular Pressure and Volume Overload with Non-Ischemic Septal Fibrosis on Cardiac Magnetic Resonance.

    Directory of Open Access Journals (Sweden)

    Jiwon Kim

    Full Text Available Non-ischemic fibrosis (NIF on cardiac magnetic resonance (CMR has been linked to poor prognosis, but its association with adverse right ventricular (RV remodeling is unknown. This study examined a broad cohort of patients with RV dysfunction, so as to identify relationships between NIF and RV remodeling indices, including RV pressure load, volume and wall stress.The population comprised patients with RV dysfunction (EF 6-fold more common in the highest, vs. the lowest, common tertile of PASP and RV size (p<0.001.Among wall stress components, NIF was independently associated with RV chamber dilation and afterload, supporting the concept that NIF is linked to adverse RV chamber remodeling.

  14. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  15. Improvement of Swirl Chamber Structure of Swirl-Chamber Diesel Engine Based on Flow Field Characteristics

    Directory of Open Access Journals (Sweden)

    Wenhua Yuan

    2014-10-01

    Full Text Available In order to improve combustion characteristic of swirl chamber diesel engine, a simulation model about a traditional cylindrical flat-bottom swirl chamber turbulent combustion diesel engine was established within the timeframe of the piston motion from the bottom dead centre (BDC to the top dead centre (TDC with the fluent dynamic mesh technique and flow field vector of gas in swirl chamber and cylinder; the pressure variation and temperature variation were obtained and a new type of swirl chamber structure was proposed. The results reveal that the piston will move from BDC; air in the cylinder is compressed into the swirl chamber by the piston to develop a swirl inside the chamber, with the ongoing of compression; the pressure and temperature are also rising gradually. Under this condition, the demand of diesel oil mixing and combusting will be better satisfied. Moreover, the new structure will no longer forma small fluid retention zone at the lower end outside the chamber and will be more beneficial to the mixing of fuel oil and air, which has presented a new idea and theoretical foundation for the design and optimization of swirl chamber structure and is thus of good significance of guiding in this regard.

  16. Breakthrough at NIF 'unlikely' in 2010

    Science.gov (United States)

    Harris, Margaret

    2010-05-01

    Hopes of reaching a milestone in fusion research by the end of 2010 have dimmed following a US government report that plays down the chances of an early breakthrough and sharply criticizes management of the 4bn National Ignition Facility (NIF). In the report, officials from the Government Accountability Office (GAO) state that ignition - fusion's "break-even" point - is "unlikely" to occur at the laser-fusion lab this year and that "significant scientific and technical challenges" could delay or even prevent the facility from achieving ignition by 2012.

  17. Transcriptional profiling of nitrogen fixation and the role of NifA in the diazotrophic endophyte Azoarcus sp. strain BH72.

    Directory of Open Access Journals (Sweden)

    Abhijit Sarkar

    Full Text Available BACKGROUND: The model endophyte Azoarcus sp. strain BH72 is known to contribute fixed nitrogen to its host Kallar grass and also expresses nitrogenase genes endophytically in rice seedlings. Availability of nitrogen is a signal regulating the transcription of nitrogenase genes. Therefore, we analysed global transcription in response to differences in the nitrogen source. METHODOLOGY/PRINCIPAL FINDINGS: A DNA microarray, comprising 70-mer oligonucleotides representing 3989 open reading frames of the genome of strain BH72, was used for transcriptome studies. Transcription profiles of cells grown microaerobically on N2 versus ammonium were compared. Expression of 7.2% of the genes was significantly up-regulated, and 5.8% down-regulated upon N2 fixation, respectively. A parallel genome-wide prediction of σ(54-type promoter elements mapped to the upstream region of 38 sequences of which 36 were modulated under the N2 response. In addition to modulation of genes related to N2 fixation, the expressions of gene clusters that might be related to plant-microbe interaction and of several transcription factors were significantly enhanced. While comparing under N2-fixation conditions the transcriptome of wild type with a nifLA(- insertion mutant, NifA being the essential transcriptional activator for nif genes, 24.5% of the genome was found to be affected in expression. A genome-wide prediction of 29 NifA binding sequences matched to 25 of the target genes whose expression was differential during microarray analysis, some of which were putatively negatively regulated by NifA. For selected genes, differential expression was corroborated by real time RT-PCR studies. CONCLUSION/SIGNIFICANCE: Our data suggest that life under conditions of nitrogen fixation is an important part of the lifestyle of strain BH72 in roots, as a wide range of genes far beyond the nif regulon is modulated. Moreover, the NifA regulon in strain BH72 appears to encompass a wider range of

  18. NIF Rugby High Foot Campaign from the design side

    Science.gov (United States)

    Leidinger, J.-P.; Callahan, D. A.; Berzak-Hopkins, L. F.; Ralph, J. E.; Amendt, P.; Hinkel, D. E.; Michel, P.; Moody, J. D.; Ross, J. S.; Rygg, J. R.; Celliers, P.; Clouët, J.-F.; Dewald, E. L.; Kaiser, P.; Khan, S.; Kritcher, A. L.; Liberatore, S.; Marion, D.; Masson-Laborde, P.-E.; Milovich, J. L.; Morice, O.; Pak, A. E.; Poujade, O.; Strozzi, D.; Hurricane, O. A.

    2016-05-01

    The NIF Rugby High Foot campaign results, with 8 shots to date, are compared with the 2D FCI2 design simulations. A special emphasis is placed on the predictive features and on those areas where some work is still required to achieve the best possible modelling of these MJ-class experiments.

  19. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  20. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    International Nuclear Information System (INIS)

    Pellinen, Don; Griffin, Michael

    2009-01-01

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG and G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the 'risetime' for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured response time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps

  1. Dilation x-ray imager a new/faster gated x-ray imager for the NIF [DIXI (Dilation x-ray imager) a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hilsabeck, T. J.; Bell, P. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ayers, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, R. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Collins, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Chung, T. [General Atomics, San Diego, CA (United States); Piston, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Raman, K. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sammuli, B. [General Atomics, San Diego, CA (United States); Hares, J. D. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom); Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire (United Kingdom)

    2012-07-19

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ~7 1018 neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for DIXI, which utilizes pulse-dilation technology [1] to achieve x-ray imaging with temporal gate times below 10 ps. Lastly, the measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  2. The NIF DISCO Framework: facilitating automated integration of neuroscience content on the web.

    Science.gov (United States)

    Marenco, Luis; Wang, Rixin; Shepherd, Gordon M; Miller, Perry L

    2010-06-01

    This paper describes the capabilities of DISCO, an extensible approach that supports integrative Web-based information dissemination. DISCO is a component of the Neuroscience Information Framework (NIF), an NIH Neuroscience Blueprint initiative that facilitates integrated access to diverse neuroscience resources via the Internet. DISCO facilitates the automated maintenance of several distinct capabilities using a collection of files 1) that are maintained locally by the developers of participating neuroscience resources and 2) that are "harvested" on a regular basis by a central DISCO server. This approach allows central NIF capabilities to be updated as each resource's content changes over time. DISCO currently supports the following capabilities: 1) resource descriptions, 2) "LinkOut" to a resource's data items from NCBI Entrez resources such as PubMed, 3) Web-based interoperation with a resource, 4) sharing a resource's lexicon and ontology, 5) sharing a resource's database schema, and 6) participation by the resource in neuroscience-related RSS news dissemination. The developers of a resource are free to choose which DISCO capabilities their resource will participate in. Although DISCO is used by NIF to facilitate neuroscience data integration, its capabilities have general applicability to other areas of research.

  3. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    Science.gov (United States)

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  4. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  5. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.

    2013-01-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  6. Perspectives: Using Historical Documents To Think about NIF Issues.

    Science.gov (United States)

    National Archives and Records Service (GSA), Washington, DC.

    The purpose of using historical documents in the classroom is to generate and enhance discussion by providing a historical perspective for issues. Five documents are included in this packet and are to be used as a supplemental material for the National Issues Forum (NIF) topics. Issues raised include (1) an analysis of the documents and (2)…

  7. Analysis of NIF experiments with the minimal energy implosion model

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B., E-mail: bcheng@lanl.gov; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cerjan, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.

  8. Analysis of NIF experiments with the minimal energy implosion model

    International Nuclear Information System (INIS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H.; Cerjan, C. J.

    2015-01-01

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments

  9. February 2017 - NIF Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-13

    February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICF program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.

  10. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  11. Analysis of hohlraum energetics of the SG series and the NIF experiments with energy balance model

    Directory of Open Access Journals (Sweden)

    Guoli Ren

    2017-01-01

    Full Text Available The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang (SG series laser facilities and the National Ignition Facility (NIF experiments published in the past few years. The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20% deviation. The 20% deviation might be caused by the diversity in hohlraum parameters, such as material, laser pulse, gas filling density, etc. In addition, the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model. This work confirms the value of the energy balance model for ignition target design and experimental data assessment, and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created, meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.

  12. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  13. Polarimetry of uncoupled light on the NIF.

    Science.gov (United States)

    Turnbull, D; Moody, J D; Michel, P; Ralph, J E; Divol, L

    2014-11-01

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  14. Polarimetry of uncoupled light on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, D., E-mail: turnbull2@llnl.gov; Moody, J. D.; Michel, P.; Ralph, J. E.; Divol, L. [National Ignition Facility and Photon Science, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15

    Polarimetry has been added to the full aperture backscatter diagnostic on the NIF. Wollaston prisms are used to sample a small region of a beam's backscatter, effectively separating it into two linear polarizations, one of which is parallel to the incident beam. A time-averaged measurement of each polarization is obtained by imaging the separated spots off of a scatter plate. Results have improved understanding of crossed beam energy transfer, glint, and sidescatter, and motivated plans to upgrade to a time-resolved polarimeter measuring the full Stokes vector.

  15. Noise analysis based validation of the dynamics of in-core flux detectors and ion chambers used in SDS and RRS systems

    International Nuclear Information System (INIS)

    Gloeckler, O.; Cooke, D.; Tulett, M.V.

    1996-01-01

    The paper concentrates on some of the recent applications of reactor noise analysis in Ontario Hydro's CANDU stations, related to the dynamics of in-core flux detectors (ICFDs) and ion chambers. These applications include (1) detecting anomalies in the dynamics of ICFDs and ion chambers, (2) estimating the effective prompt fractions of ICFDs in power rundown tests and in noise measurement, (3) detecting the mechanical vibration of ICFD instrument tubes induced by moderator flow, (4) detecting the mechanical vibration of fuel channels induced by coolant flow, (5) identifying the cause of excessive signal fluctuations in certain flux detectors, (6) validating the dynamic coupling between liquid zone control signals. Some of these applications are performed on a regular basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the AECB with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology (author)

  16. HYLIFE-II reactor chamber design refinements

    International Nuclear Information System (INIS)

    House, P.A.

    1994-06-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (>12 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GWe and 2 GWe reactor chamber are presented

  17. Nitrogenase (nifH gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments

    Directory of Open Access Journals (Sweden)

    Kendra A Turk-Kubo

    2012-11-01

    Full Text Available The Tropical North Atlantic (TNAtl plays a critical role in the marine nitrogen cycle, as it supports high rates of biological nitrogen (N2 fixation, yet it is unclear whether this process is limited by the availability of iron (Fe, phosphate (P or is co-limited by both. In order to investigate the impact of nutrient limitation on the N2-fixing microorganisms (diazotrophs in the TNAtl, trace metal clean nutrient amendment experiments were conducted, and the expression of nitrogenase (nifH in cyanobacterial diazotrophs in response to the addition of Fe, P, or Fe+P was measured using quantitative PCR. To provide context, N2 fixation rates associated with the <10 μm community and diel nifH expression in natural cyanobacterial populations were measured. In the western TNAtl, nifH expression in Crocosphaera, Trichodesmium, and Richelia was stimulated by Fe and Fe+P additions, but not by P, implying that diazotrophs may be Fe-limited in this region. In the eastern TNAtl, nifH expression in unicellular cyanobacteria UCYN-A and Crocosphaera was stimulated by P, implying P-limitation. In equatorial waters, nifH expression in Trichodesmium was highest in Fe+P treatments, implying co-limitation in this region. Nutrient additions did not measurably stimulate N2 fixation rates in the <10 μm fraction in most of the experiments, even when upregulation of nifH expression was evident. These results demonstrate the utility of using gene expression to investigate the physiological state of natural populations of microorganisms, while underscoring the complexity of nutrient limitation on diazotrophy, and providing evidence that diazotroph populations are slow to respond to the addition of limiting nutrients and may be limited by different nutrients on basin-wide spatial scales. This has important implications for our current understanding of controls on N2 fixation in the TNAtl and may partially explain why it appears to be intermittently limited by Fe, P, or

  18. OMEGA ICF experiments and preparations for direct drive on NIF

    International Nuclear Information System (INIS)

    McCrory, R.L.; Bahr, R.E.; Betti, R.

    2001-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, the Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼3.4-mm diameter, 1 to 2 μm of CH wall thickness, and an ∼340-μm DT-ice layer near the triple point of DT (∼19 K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The cryogenic targets to be used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell fuel mixing, laser plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (author)

  19. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  20. Data Analysis of the Gated-LEH X-Ray Imaging Diagnostic at the NIF

    Science.gov (United States)

    Thibodeau, Matthew; Chen, Hui

    2017-10-01

    The Gated Laser Entrance Hole (G-LEH) x-ray imaging diagnostic in use at the NIF offers a desirable combination of spatial and temporal resolution. By looking inside of NIF hohlraums with time resolution, G-LEH measures target features including LEH size and capsule size. A framework is presented for automated and systematic analysis of G-LEH images that measures several physical parameters of interest and their evolution over time. The results from these analyses enable comparisons with hohlraum models and allow model validation of LEH closure velocity and the extent of capsule blow-off. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Components of the CCR4-NOT complex function as nuclear hormone receptor coactivators via association with the NRC-interacting Factor NIF-1.

    Science.gov (United States)

    Garapaty, Shivani; Mahajan, Muktar A; Samuels, Herbert H

    2008-03-14

    CCR4-NOT is an evolutionarily conserved, multicomponent complex known to be involved in transcription as well as mRNA degradation. Various subunits (e.g. CNOT1 and CNOT7/CAF1) have been reported to be involved in influencing nuclear hormone receptor activities. Here, we show that CCR4/CNOT6 and RCD1/CNOT9, members of the CCR4-NOT complex, potentiate nuclear receptor activity. RCD1 interacts in vivo and in vitro with NIF-1 (NRC-interacting factor), a previously characterized nuclear receptor cotransducer that activates nuclear receptors via its interaction with NRC. As with NIF-1, RCD1 and CCR4 do not directly associate with nuclear receptors; however, they enhance ligand-dependent transcriptional activation by nuclear hormone receptors. CCR4 mediates its effect through the ligand binding domain of nuclear receptors and small interference RNA-mediated silencing of endogenous CCR4 results in a marked decrease in nuclear receptor activation. Furthermore, knockdown of CCR4 results in an attenuated stimulation of RARalpha target genes (e.g. Sox9 and HoxA1) as shown by quantitative PCR assays. The silencing of endogenous NIF-1 also resulted in a comparable decrease in the RAR-mediated induction of both Sox9 and HoxA1. Furthermore, CCR4 associates in vivo with NIF-1. In addition, the CCR4-enhanced transcriptional activation by nuclear receptors is dependent on NIF-1. The small interference RNA-mediated knockdown of NIF-1 blocks the ligand-dependent potentiating effect of CCR4. Our results suggest that CCR4 plays a role in the regulation of certain endogenous RARalpha target genes and that RCD1 and CCR4 might mediate their function through their interaction with NIF-1.

  2. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    Science.gov (United States)

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  3. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    International Nuclear Information System (INIS)

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M.

    2012-01-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate

  4. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense.

    Science.gov (United States)

    Sotomaior, P; Araújo, L M; Nishikawa, C Y; Huergo, L F; Monteiro, R A; Pedrosa, F O; Chubatsu, L S; Souza, E M

    2012-12-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

  5. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    Energy Technology Data Exchange (ETDEWEB)

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2012-09-21

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

  6. Use of commercial radon monitors for low level radon measurements in dynamically operated VOC emission test chambers

    International Nuclear Information System (INIS)

    Hofmann, M.; Richter, M.; Jann, O.

    2017-01-01

    Compared to the intended EU reference level of 300 Bq m -3 for indoor radon concentrations, the contribution of building materials appears to be low. Considering the recommended limit of 100 Bq m -3 by WHO, their contribution is supposed to be relevant, especially at low air exchange rates. This study as part of a two-part research project investigated the suitability of direct low level 222 Rn measurement under simulated indoor conditions with commercial radon monitors and dynamically operated emission test chambers. Active measuring devices based on ionisation or scintillation chambers with 1-σ uncertainties below 8.6% at 20 Bq m -3 were found to be best suitable for a practical test procedure for the determination of radon exhalation rates of building materials. For the measurement of such low concentrations, the knowledge of the accurate device background level is essential. (authors)

  7. NIF special equipment construction health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, R.H.

    1997-07-28

    The purpose of this plan is to identify how the construction and deployment activities of the National Ignition Facility (NIF) Special Equipment (SE) will be safely executed. This plan includes an identification of (1) the safety-related responsibilities of the SE people and their interaction with other organizations involved; (2) safety related requirements, policies, and documentation; (3) a list of the potential hazards unique to SE systems and the mechanisms that will be implemented to control them to acceptable levels; (4) a summary of Environmental Safety and Health (ES&H) training requirements; and (5) requirements of contractor safety plans that will be developed and used by all SE contractors participating in site activities. This plan is a subsidiary document to the NIF Construction Safety Program (CSP) and is intended to compliment the requirements stated therein with additional details specific to the safety needs of the SE construction-related activities. If a conflict arises between these two documents, the CSP will supersede. It is important to note that this plan does not list all of the potential hazards and their controls because the design and safety analysis process is still ongoing. Additional safety issues win be addressed in the Final Safety Analysis Report, Operational Safety Procedures (OSPs), and other plans and procedures as described in Section 3.0 of this plan.

  8. NIF special equipment construction health and safety plan

    International Nuclear Information System (INIS)

    Sawicki, R.H.

    1997-01-01

    The purpose of this plan is to identify how the construction and deployment activities of the National Ignition Facility (NIF) Special Equipment (SE) will be safely executed. This plan includes an identification of (1) the safety-related responsibilities of the SE people and their interaction with other organizations involved; (2) safety related requirements, policies, and documentation; (3) a list of the potential hazards unique to SE systems and the mechanisms that will be implemented to control them to acceptable levels; (4) a summary of Environmental Safety and Health (ES ampersand H) training requirements; and (5) requirements of contractor safety plans that will be developed and used by all SE contractors participating in site activities. This plan is a subsidiary document to the NIF Construction Safety Program (CSP) and is intended to compliment the requirements stated therein with additional details specific to the safety needs of the SE construction-related activities. If a conflict arises between these two documents, the CSP will supersede. It is important to note that this plan does not list all of the potential hazards and their controls because the design and safety analysis process is still ongoing. Additional safety issues win be addressed in the Final Safety Analysis Report, Operational Safety Procedures (OSPs), and other plans and procedures as described in Section 3.0 of this plan

  9. Neutron peak velocity measurements at the National Ignition Facility (NIF) using novel quartz detectors

    Science.gov (United States)

    Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory

    2017-10-01

    In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.

  10. Comparison of plastic, high-density carbon, and beryllium as NIF ablators

    Science.gov (United States)

    Kritcher, Andrea

    2017-10-01

    An effort is underway to compare the three principal ablators for National Ignition Facility (NIF) implosions: plastic (CH), High Density Carbon (HDC), and beryllium (Be). This presentation will summarize the comparison and discuss in more detail the issues pertaining to hohlraum performance and symmetry. Several aspects of the hohlraum design are affected by the ablator properties, as the ablator constrains the first shock and determines the overall pulse length. HDC targets can utilize shorter pulse lengths due to the thinner, higher density shell, and should be less susceptible to late time wall motion. However, HDC requires a larger picket energy to ensure adequate melt, leading to increased late time wall movement. Be is intermediate to CH and HDC in both these regards, and has more ablated material in the hohlraum. These tradeoffs as well as other design choices for currently fielded campaigns are assessed in this work. To assess consistently the radiation drive and symmetry, integrated postshot simulations of the hohlraum and capsule were done for each design using the same methodology. The simulation results are compared to experimental data. Using this post-shot model, we make a projection of the relative plausible performance that can be achieved, while maintaining adequate symmetry, using the full NIF laser, i.e. 1.8 MJ/500 TW Full NIF Equivalent (FNE). The hydrodynamic stability of the different ablators is also an important consideration and will be presented for the current platforms and projection to FNE. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  12. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  13. Performance of the NIF prototype beamlet

    International Nuclear Information System (INIS)

    Van Wonterghem, B.M.; Murray, J.R.; Speck, D.R.; Campbell, J.H.

    1994-01-01

    Beamlet is a full scale single beam prototype laser system, built to demonstrate the laser technology and performance of the 192 beam National Ignition Facility (NIF) fusion laser driver. Both laser systems apply multipass amplifier architectures. By passing the beam four times through the large aperture amplifier sections, the small signal gain during the first few passes is used efficiently to reduce expensive staged amplifier chains. The beamlet prototype laser integrates results of development programs for large aperture components: large aperture optical switch, polarizers, 2 x 2 multisegment amplifiers and new pulse generation and pre-amplification techniques. The authors report on performance test results of the recently completed 1 ω-laser section of Beamlet

  14. Backscatter measurements for NIF ignition targets (invited).

    Science.gov (United States)

    Moody, J D; Datte, P; Krauter, K; Bond, E; Michel, P A; Glenzer, S H; Divol, L; Niemann, C; Suter, L; Meezan, N; MacGowan, B J; Hibbard, R; London, R; Kilkenny, J; Wallace, R; Kline, J L; Knittel, K; Frieders, G; Golick, B; Ross, G; Widmann, K; Jackson, J; Vernon, S; Clancy, T

    2010-10-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  15. Backscatter measurements for NIF ignition targets (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D.; Datte, P.; Krauter, K.; Bond, E.; Michel, P. A.; Glenzer, S. H.; Divol, L.; Suter, L.; Meezan, N.; MacGowan, B. J.; Hibbard, R.; London, R.; Kilkenny, J.; Wallace, R.; Knittel, K.; Frieders, G.; Golick, B.; Ross, G.; Widmann, K.; Jackson, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2010-10-15

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of {approx}15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  16. Backscatter measurements for NIF ignition targets (invited)

    International Nuclear Information System (INIS)

    Moody, J. D.; Datte, P.; Krauter, K.; Bond, E.; Michel, P. A.; Glenzer, S. H.; Divol, L.; Suter, L.; Meezan, N.; MacGowan, B. J.; Hibbard, R.; London, R.; Kilkenny, J.; Wallace, R.; Knittel, K.; Frieders, G.; Golick, B.; Ross, G.; Widmann, K.; Jackson, J.

    2010-01-01

    Backscattered light via laser-plasma instabilities has been measured in early NIF hohlraum experiments on two beam quads using a suite of detectors. A full aperture backscatter system and near backscatter imager (NBI) instrument separately measure the stimulated Brillouin and stimulated Raman scattered light. Both instruments work in conjunction to determine the total backscattered power to an accuracy of ∼15%. In order to achieve the power accuracy we have added time-resolution to the NBI for the first time. This capability provides a temporally resolved spatial image of the backscatter which can be viewed as a movie.

  17. Stability analysis of directly driven Nif capsules

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V.N.; Skupsky, S.; McKenty, P.W.; Delettrez, J.A.; Town, R.P.J. [Rochester Univ., NY (United States). Lab. for Laser Energetics; Cherfils-Clerouin, C. [CEA/DAM-Ile de France, DIF, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    An analytical model is presented to study perturbation evolution at the ablation and inner surfaces of the imploding shell. The model describes the ablative Rayleigh-Taylor and Bell-Plesset instabilities. The initial conditions for the model are determined by using existing theories of laser imprint, ablative Richtmyer-Meshkov instability, 'feed-out' and by performing a series of 2-D ORCHID simulations. The model and simulations show that the direct-drive cryogenic {alpha} = 3 NIF capsules remain intact during the implosion if laser nonuniformities are smoothed by 2-D SSD used in the current direct-drive target designs. (authors)

  18. DIM and diagnostic placement for NIF experiments

    International Nuclear Information System (INIS)

    Kalantar, D.

    1999-01-01

    The input that has been provided on the NIF experiment setup sheets has allowed us to review the diagnostic and DIM placement as well as the baseline unconverted light management plan. We have done an iteration to identify common diagnostic lines of sight, and with additional requirements defined by specific experiments, we propose (1) a baseline plan for DIM placement requiring only five DIMs that may be moved between up to seven DIM ports, and (2) a modified baseline unconverted light management plan. We request additional input to identify primary vs. secondary diagnostics for each experiment definition

  19. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    International Nuclear Information System (INIS)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E.; Baldis, H.A.; Constantin, C.G.; Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C.; Pellinen, D.; Watts, P.

    2006-01-01

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  20. X-ray flux and X-ray burn through experiments on reduced-scale targets at the Nif and OMEGA lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Hinkel, D.E.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glebov, V.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, D.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moon, S.J.; Moses, E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Piston, K.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Sorce, C.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; Van Wonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Lab., Livermore, CA (United States); Baldis, H.A.; Constantin, C.G. [California at Davis Univ., CA (United States); Bahr, R.; Roberts, S.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, Rochester, NY (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    An experimental campaign to maximize radiation drive in small-scale hohlraums has been carried out at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (Livermore, USA) and at the OMEGA laser at the Laboratory for Laser Energetics (Rochester, USA). The small-scale hohlraums, laser energy, laser pulse, and diagnostics were similar at both facilities but the geometries were very different. The NIF experiments used on-axis laser beams whereas the OMEGA experiments used 19 beams in three beam cones. In the cases when the lasers coupled well and produced similar radiation drive, images of X-ray burn-through and laser deposition indicate the pattern of plasma filling is very different. The OMEGA targets fill faster than the NIF targets, which helps explain the time behavior of the X-ray fluences. (authors)

  1. Oman Drilling Project GT3 site survey: dynamics at the roof of an oceanic magma chamber

    Science.gov (United States)

    France, L.; Nicollet, C.; Debret, B.; Lombard, M.; Berthod, C.; Ildefonse, B.; Koepke, J.

    2017-12-01

    Oman Drilling Project (OmanDP) aims at bringing new constraints on oceanic crust accretion and evolution by drilling Holes in the whole ophiolite section (mantle and crust). Among those, operations at GT3 in the Sumail massif drilled 400 m to sample the dike - gabbro transition that corresponds to the top (gabbros) and roof (dikes) of the axial magma chamber, an interface where hydrothermal and magmatic system interacts. Previous studies based on oceanic crust formed at present day fast-spreading ridges and preserved in ophiolites have highlighted that this interface is a dynamic horizon where the axial melt lens that top the main magma chamber can intrude, reheat, and partially assimilate previously hydrothermally altered roof rocks. Here we present the preliminary results obtained in GT3 area that have allowed the community to choose the drilling site. We provide a geological and structural map of the area, together with new petrographic and chemical constraints on the dynamics of the dike - gabbro transition. Our new results allow us to quantify the dynamic processes, and to propose that 1/ the intrusive contact of the varitextured gabbro within the dikes highlights the intrusion of the melt lens top in the dike rooting zone, 2/ both dikes and previously crystallized gabbros are reheated, and recrystallized by underlying melt lens dynamics (up to 1050°C, largely above the hydrous solidus temperature of altered dikes and gabbros), 3/ the reheating range can be > 200°C, 4/ the melt lens depth variations for a given ridge position is > 200m, 5/ the reheating stage and associated recrystallization within the dikes occurred under hydrous conditions, 6/ the reheating stage is recorded at the root zone of the sheeted dike complex by one of the highest stable conductive thermal gradient ever recorded on Earth ( 3°C/m), 7/ local chemical variations in recrystallized dikes and gabbros are highlighted and used to quantify crystallization and anatectic processes, and the

  2. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  3. HYLIFE-II reactor chamber mechanical design: Update

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-II inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams (Li 2 BeF 4 ) are used for shielding and blast protection of the chamber walls. The system is designed for a 6 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (17 m/s) salt streams and also recover up to half of the dynamic head. Cost estimates for a 1 GW e and 2 GW e reactor chamber are presented

  4. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  5. Measurement of radon concentration in air employing Lucas chamber

    International Nuclear Information System (INIS)

    Machaj, B.

    1997-01-01

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author)

  6. The involvement of the nif-associated ferredoxin-like genes fdxA and fdxN of Herbaspirillum seropedicae in nitrogen fixation.

    Science.gov (United States)

    Souza, André L F; Invitti, Adriana L; Rego, Fabiane G M; Monteiro, Rose A; Klassen, Giseli; Souza, Emanuel M; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U

    2010-02-01

    The pathway of electron transport to nitrogenase in the endophytic beta-Proteobacterium Herbaspirillum seropedicae has not been characterized. We have generated mutants in two nif-associated genes encoding putative ferredoxins, fdxA and fdxN. The fdxA gene is part of the operon nifHDKENXorf1orf2fdxAnifQmodABC and is transcribed from the nifH promoter, as revealed by lacZ gene fusion. The fdxN gene is probably cotranscribed with the nifB gene. Mutational analysis suggests that the FdxA protein is essential for maximum nitrogenase activity, since the nitrogenase activity of the fdxA mutant strain was reduced to about 30% of that of the wild-type strain. In addition, the fdxA mutation had no effect on the nitrogenase switch-off in response to ammonium. Nitrogenase activity of a mutant strain lacking the fdxN gene was completely abolished. This phenotype was reverted by complementation with fdxN expressed under lacZ promoter control. The results suggest that the products of both the fdxA and fdxN genes are probably involved in electron transfer during nitrogen fixation.

  7. Progress Toward Modeling Spectroscopic Signatures of Mix on Omega and NIF

    Science.gov (United States)

    Tregillis, I. L.; Schmitt, M. J.; Hsu, S. C.; Wysocki, F. J.; Cobble, J. A.; Murphy, T. J.

    2011-10-01

    Defect-induced mix processes may degrade the performance of ICF and ICF-like targets at Omega and NIF. An improved understanding of the relevant physics requires an experimental program built on a foundation of radiation-hydrodynamic simulations plus reliable synthetic diagnostic outputs. To that end, the Applications of Ignition (AoI) and Defect Implosion Experiment (DIME) efforts at LANL have focused on directly driven plastic capsules containing high-Z dopants and manufactured with an equatorial ``trench'' defect. One of the key diagnostic techniques for detecting and diagnosing the migration of dopant material into the hot core is Multi-Monochromatic X-ray Imaging (MMI). This talk will focus on recent efforts to model spectroscopic signatures of mix processes in AoI/DIME capsules via simulated MMI-type diagnostic instruments. It will also include data from recent Omega shots and calculations in support of Tier 1 experiments at NIF in FY2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  8. Precision Cleaning and Protection of Coated Optical Components for NIF Small Optics

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Jim [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The purpose of this procedure shall be to define the precision cleaning of finished, coated, small optical components for NIF at Lawrence Livermore National Laboratories. The term “small optical components” includes coated optics that are set into simple mounts, as well as coated, un-mounted optics.

  9. Status Update: Modeling Energy Balance in NIF Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    We have developed a standardized methodology to model hohlraum drive in NIF experiments. We compare simulation results to experiments by 1) comparing hohlraum xray fluxes and 2) comparing capsule metrics, such as bang times. Long-pulse, high gas-fill hohlraums require a 20-28% reduction in simulated drive and inclusion of ~15% backscatter to match experiment through (1) and (2). Short-pulse, low fill or near-vacuum hohlraums require a 10% reduction in simulated drive to match experiment through (2); no reduction through (1). Ongoing work focuses on physical model modifications to improve these matches.

  10. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  11. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  12. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  13. Dilation x-ray imager a new/faster gated x-ray imager for the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R.; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Barrios, M. A.; Felker, B.; Smith, R. F.; Collins, G. W.; Jones, O. S.; Piston, K.; Raman, K. S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2012-10-15

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for {approx}7 Multiplication-Sign 10{sup 18} neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  14. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences

    Czech Academy of Sciences Publication Activity Database

    Singh, P.; Singh, S. S.; Elster, Josef; Mishra, A. K.

    2013-01-01

    Roč. 250, č. 3 (2013), s. 751-764 ISSN 0033-183X Institutional support: RVO:67985939 Keywords : evolution * heterocystous cyanobacteria * nifH gene Subject RIV: EH - Ecology, Behaviour Impact factor: 3.171, year: 2013

  15. NEG coating of the non-standard LSS vacuum chambers

    CERN Document Server

    Costa-Pinto, P

    2005-01-01

    The vacuum chambers of nearly all the warm magnets of the LHC (MBXW, MQW, MSI, MSD, etc…) will be coated with a Ti-Zr-V thin film by magnetron sputtering. The NEG coating is necessary to provide uniform pumping speed along the chambers and to suppress electron cloud instabilities and dynamic outgassing. The about 300 chambers will be coated using the existing facility, developed for the production of the standard LSS chambers, after minor modifications mainly due to the different cross sections. In order to cope with the present installation schedule, the production planning will allow processing of different families of chambers in parallel by using two or three coating systems simultaneously. After a brief introduction to the Ti-Zr-V characteristics and performances, the coating facility and strategy will be illustrated as well as the possible conflicts due to uncertainties in the planning of the experimental beam pipes and the standard LSS chambers.

  16. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H F; Munro, D H; Spears, B K; Marinak, M M; Jones, O S; Patel, M V; Haan, S W; Salmonson, J D; Landen, O L [Lawrence Livermore National Laboratory, Livermore, CA (United States); Boehly, T R [Laboratory for Laser Energetics, Rochester, NY (United States); Nikroo, A [General Atomics, San Diego, CA (United States)], E-mail: robey1@llnl.gov

    2008-05-15

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of {<=} +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  17. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    International Nuclear Information System (INIS)

    Robey, H F; Munro, D H; Spears, B K; Marinak, M M; Jones, O S; Patel, M V; Haan, S W; Salmonson, J D; Landen, O L; Boehly, T R; Nikroo, A

    2008-01-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of ≤ +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum

  18. On the design of the NIF Continuum Spectrometer

    Science.gov (United States)

    Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.

    2017-08-01

    In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.

  19. Science of NIF scale capsule development (activities for FY97)

    International Nuclear Information System (INIS)

    Hamilton, K.E.; Buckley, S.R.; Cook, R.R.

    1997-01-01

    The focus of this work is the production of 2-mm PαMS mandrels by microencapsulation for use as National Ignition Facility (NIF) laser targets. It is our findings thus far that the processing techniques used previously for the 0.5-mm and 1.0-mm targets are no longer useful for preparation of the larger targets for a few fundamental reasons. The driving force for sphericity (from the minimization of interracial energy) decreases as the radius of curvature increases. Simultaneously, the mechanical robustness /stability of the water-oil-water emulsion droplets decreases as the droplet size increases. The impact of these physical conditions and the possibilities of circumventing these limitations have been examined while attempting to meet the NIF shell power spectrum criteria. Identifying the key parameters in the transition (solidification) from a w-o-w droplet to a solid polymer shell has been understood implicitly to be the paramount goal. It is believed through the knowledge gained that it will be possible to minimize the deleterious forces and maximize shell sphericity. At this point it is believed that properties intrinsic to the polymer (i.e., PαMS) such as its solution behavior and evolution of film stresses control the overall shell sphericity

  20. Long-duration planar direct-drive hydrodynamics experiments on the NIF

    Science.gov (United States)

    Casner, A.; Mailliet, C.; Khan, S. F.; Martinez, D.; Izumi, N.; Kalantar, D.; Di Nicola, P.; Di Nicola, J. M.; Le Bel, E.; Igumenshchev, I.; Tikhonchuk, V. T.; Remington, B. A.; Masse, L.; Smalyuk, V. A.

    2018-01-01

    The advent of high-power lasers facilities such as the National Ignition Facility (NIF) and the laser megajoule provide unique platforms to study the physics of turbulent mixing flows in high energy density plasmas. We report here on the commissioning of a novel planar direct-drive platform on the NIF, which allows the acceleration of targets during 30 ns. Planar plastic samples were directly irradiated by 300-450 kJ of UV laser light (351 nm) and a very good planarity of the laser drive is demonstrated. No detrimental effect of imprint is observed in the case of these thick plastic targets (300 μm), which is beneficial for future academic experiments requesting similar irradiation conditions. The long-duration direct-drive (DD) platform is thereafter harnessed to study the ablative Rayleigh-Taylor instability (RTI) in DD. The growth of two-dimensional pre-imposed perturbations is quantified through time-resolved face-on x-ray radiography and used as a benchmark for radiative hydrocode simulations. The ablative RTI is then quantified in its highly nonlinear stage starting from intentionally large 3D imprinted broadband modulations. Two generations of bubble mergers is observed for the first time in DD, as a result of the unprecedented long laser acceleration.

  1. Quality Control, Testing, and Deployment Results in the NIF ICCS

    International Nuclear Information System (INIS)

    Woodruff, J P; Casavant, D; Cline, B D; Gorvad, M R

    2001-01-01

    The strategy used to develop the NIF Integrated Computer Control System (ICCS) calls for incremental cycles of construction and formal test to deliver a total of 1 million lines of code. Each incremental release takes four to six months to implement specific functionality and culminates when offline tests conducted in the ICCS Integration and Test Facility verify functional, performance, and interface requirements. Tests are then repeated on line to confirm integrated operation in dedicated laser laboratories or ultimately in the NIF. Test incidents along with other change requests are recorded and tracked to closure by the software change control board (SCCB). Annual independent audits advise management on software process improvements. Extensive experience has been gained by integrating controls in the prototype laser preamplifier laboratory. The control system installed in the preamplifier lab contains five of the ten planned supervisory subsystems and seven of sixteen planned front-end processors (FEPs). Beam alignment, timing, diagnosis and laser pulse amplification up to 20 joules was tested through an automated series of shots. Other laboratories have provided integrated testing of six additional FEPs. Process measurements including earned-value, product size, and defect densities provide software project controls and generate confidence that the control system will be successfully deployed

  2. Science of NIF scale capsule development (activities for FY97)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, K.E.; Buckley, S.R.; Cook, R.R.

    1997-11-12

    The focus of this work is the production of 2-mm P{alpha}MS mandrels by microencapsulation for use as National Ignition Facility (NIF) laser targets. It is our findings thus far that the processing techniques used previously for the 0.5-mm and 1.0-mm targets are no longer useful for preparation of the larger targets for a few fundamental reasons. The driving force for sphericity (from the minimization of interracial energy) decreases as the radius of curvature increases. Simultaneously, the mechanical robustness /stability of the water-oil-water emulsion droplets decreases as the droplet size increases. The impact of these physical conditions and the possibilities of circumventing these limitations have been examined while attempting to meet the NIF shell power spectrum criteria. Identifying the key parameters in the transition (solidification) from a w-o-w droplet to a solid polymer shell has been understood implicitly to be the paramount goal. It is believed through the knowledge gained that it will be possible to minimize the deleterious forces and maximize shell sphericity. At this point it is believed that properties intrinsic to the polymer (i.e., P{alpha}MS) such as its solution behavior and evolution of film stresses control the overall shell sphericity.

  3. Characterization of a 65 kDa NIF in the nuclear matrix of the monocot Allium cepa that interacts with nuclear spectrin-like proteins.

    Science.gov (United States)

    Pérez-Munive, Clara; Blumenthal, Sonal S D; de la Espina, Susana Moreno Díaz

    2012-01-01

    Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins. Polyclonal antisera against the pea 65 kDa NIF were used in 1D and 2D Western blots, ICM (imunofluorescence confocal microscopy) and IEM (immunoelectron microscopy). Their presence in the nuclear matrix was analysed by differential extraction of nuclei, and their association with structural spectrin-like proteins by co-immunoprecipitation and co-localization in ICM. NIF is a conserved structural component of the nucleus and its matrix in monocots with Mr and pI values similar to those of pea 65 kDa NIF, which localized to the nuclear envelope, perichromatin domains and foci, and to the nuclear matrix, interacting directly with structural nuclear spectrin-like proteins. Its similarities with some of the proteins described as onion lamin-like proteins suggest that they are highly related or perhaps the same proteins.

  4. FABRICATION OF WINDOW SADDLES FOR NIF CRYOGENIC HOHLRAUMS

    International Nuclear Information System (INIS)

    GIRALDEZ, E; KAAE, J.L

    2003-09-01

    OAK-B135 A planar diagnostic viewing port attached to the cylindrical wall of the NIF cryogenic hohlraum requires a saddle-like transition piece. While the basic design of this window saddle is straightforward, its fabrication is not, given the scale and precision of the component. They solved the problem through the use of a two segment copper mandrel to electroform the gold window saddle. The segments were micro-machined using a combination of single-point diamond turning and single point diamond milling. These processes as well as the electroplating conditions, final machining and mandrel removal are described in this paper

  5. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    Science.gov (United States)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12hot spot and the low adiabat cold fuel during the stagnation process and can allow for a fundamentally different (and potentially more robust) process of hot spot formation. This new experimental platform is currently being used in a series of experiments to discover a range of CR's at which DT layered implosions will have understandable performance - providing a sound basis from which to determine the requirements for ICF ignition. This work was performed under the auspices of the U. S. DOE by LANL under contract DE-AC52-06NA25396.

  6. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    Science.gov (United States)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  7. Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J

    2005-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs

  8. Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.

    2006-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)

  9. Money and Politics: Who Owns Democracy? NIF Report on the Issues, 2001.

    Science.gov (United States)

    National Issues Forums, Dayton, OH.

    National Issues Forums (NIF) bring together citizens to deliberate and make choices about challenging social and political issues of the day. These forums have addressed issues such as the economy, education, health care, foreign affairs, and crime. This report is an analysis of what happened in a forum on "Money and Politics" that took…

  10. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    Science.gov (United States)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  11. The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2011-09-01

    Full Text Available The implantation of biomaterials into the human body has become an indispensable part of almost all fields of modern medicine. Accordingly, there is an increasing need for appropriate approaches, which can be used to evaluate the suitability of different biomaterials for distinct clinical indications. The dorsal skinfold chamber is a sophisticated experimental model, which has been proven to be extremely valuable for the systematic in vivo analysis of the dynamic interaction of small biomaterial implants with the surrounding host tissue in rats, hamsters and mice. By means of intravital fluorescence microscopy, this chronic model allows for repeated analyses of various cellular, molecular and microvascular mechanisms, which are involved in the early inflammatory and angiogenic host tissue response to biomaterials during the initial 2-3 weeks after implantation. Therefore, the dorsal skinfold chamber has been broadly used during the last two decades to assess the in vivo performance of prosthetic vascular grafts, metallic implants, surgical meshes, bone substitutes, scaffolds for tissue engineering, as well as for locally or systemically applied drug delivery systems. These studies have contributed to identify basic material properties determining the biocompatibility of the implants and vascular ingrowth into their surface or internal structures. Thus, the dorsal skinfold chamber model does not only provide deep insights into the complex interactions of biomaterials with the surrounding soft tissues of the host but also represents an important tool for the future development of novel biomaterials aiming at an optimisation of their biofunctionality in clinical practice.

  12. Omega experiments and preparation for moderate-gain direct-drive experiments on Nif

    International Nuclear Information System (INIS)

    Mr Crory, R.L.; Bahr, R.E.; Boehly, T.R.

    2000-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼ 3.5 mm diameter, 1 to 2 μm if CH wall thickness, and a ∼ 350 μm DT-ice layer near the triple point of DT (μ19K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The future cryogenic targets used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address all of the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell-fuel mixing, laser-plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (authors)

  13. Formation of a homocitrate-free iron-molybdenum cluster on NifEN: implications for the role of homocitrate in nitrogenase assembly.

    Science.gov (United States)

    Fay, Aaron Wolfe; Blank, Michael Aaron; Yoshizawa, Janice Mariko; Lee, Chi Chung; Wiig, Jared Andrew; Hu, Yilin; Hodgson, Keith Owen; Hedman, Britt; Ribbe, Markus Walter

    2010-03-28

    Molybdenum (Mo)-dependent nitrogenase is a complex metalloprotein that catalyzes the biological reduction of dinitrogen (N(2)) to ammonia (NH(3)) at the molybdenum-iron cofactor (FeMoco) site of its molybdenum-iron (MoFe) protein component. Here we report the formation of a homocitrate-free, iron-molybdenum ("FeMo") cluster on the biosynthetic scaffold of FeMoco, NifEN. Such a NifEN-associated "FeMo" cluster exhibits EPR features similar to those of the NifEN-associated, fully-complemented "FeMoco", which originate from the presence of Mo in both cluster species; however, "FeMo" cluster and "FeMoco" display different temperature-dependent changes in the line shape and the signal intensity of their respective EPR features, which reflect the impact of homocitrate on the redox properties of these clusters. XAS/EXAFS analysis reveals that the Mo centers in both "FeMo" cluster and "FeMoco" are present in a similar coordination environment, although Mo in "FeMo" cluster is more loosely coordinated as compared to that in "FeMoco" with respect to the Mo-O distances in the cluster, likely due to the absence of homocitrate that normally serves as an additional ligand for the Mo in the cluster. Subsequent biochemical investigation of the "FeMo" cluster not only facilitates the determination of the sequence of events in the mobilization of Mo and homocitrate during FeMoco maturation, but also permits the examination of the role of homocitrate in the transfer of FeMoco between NifEN and MoFe protein. Combined outcome of these studies establishes a platform for future structural analysis of the interactions between NifEN and MoFe protein, which will provide useful insights into the mechanism of cluster transfer between the two proteins.

  14. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF.

    Science.gov (United States)

    Sinenian, N; Manuel, M J-E; Zylstra, A B; Rosenberg, M; Waugh, C J; Rinderknecht, H G; Casey, D T; Sio, H; Ruszczynski, J K; Zhou, L; Gatu Johnson, M; Frenje, J A; Séguin, F H; Li, C K; Petrasso, R D; Ruiz, C L; Leeper, R J

    2012-04-01

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D(3)He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10(7) s(-1) and 10(6) s(-1) for DD and D(3)He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility. © 2012 American Institute of Physics

  15. Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser

    International Nuclear Information System (INIS)

    Remington, B.A.; Park, H.; Prisbrey, S.T.; Pollaine, S.M.; Cavallo, R.M.; Rudd, R.E.; Lorenz, K.T.; Becker, R.; Bernier, J.; Barton, N.; Arsenlis, T.; Glendinning, S.G.; Hamza, A.; Swift, D.; Jankowski, A.; Meyers, M.A.

    2009-01-01

    Solid state dynamics experiments at extreme pressures, P > 1000 GPa (10 Mbar), and ultrahigh strain rates (1.e6-1.e8 1/s) are being developed for the National Ignition Facility (NIF) laser. These experiments will open up exploration of new regimes of materials science at an order of magnitude higher pressures than have been possible to date. Such extreme, solid state conditions can be accessed with a ramped pressure drive. The experimental, computational, and theoretical techniques are being developed and tested on the Omega laser. Velocity interferometer measurements (VISAR) establish the high pressure conditions generated by the ramped drive. Constitutive models for solid state strength under these conditions are tested by comparing simulations with experiments measuring perturbation growth from the Rayleigh-Taylor instability in solid state samples of vanadium. Radiography techniques using synchronized bursts of x-rays have been developed to diagnose this perturbation growth. Experiments on Omega demonstrating these techniques at peak pressures of ∼1 Mbar will be discussed. The time resolved observation of foil cracking and void formation show the need for tamped samples and a planar drive

  16. Transport Simulations for Fast Ignition on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Strozzi, D J; Tabak, M; Grote, D P; Cohen, B I; Shay, H D; Town, R J; Kemp, A J; Key, M

    2009-10-26

    We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x as T{sub hot} rises to 4 MeV.

  17. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America.

    Science.gov (United States)

    Haukka, K; Lindström, K; Young, J P

    1998-02-01

    The diversity and phylogeny of nodA and nifH genes were studied by using 52 rhizobial isolates from Acacia senegal, Prosopis chilensis, and related leguminous trees growing in Africa and Latin America. All of the strains had similar host ranges and belonged to the genera Sinorhizobium and Mesorhizobium, as previously determined by 16S rRNA gene sequence analysis. The restriction patterns and a sequence analysis of the nodA and nifH genes divided the strains into the following three distinct groups: sinorhizobia from Africa, sinorhizobia from Latin America, and mesorhizobia from both regions. In a phylogenetic tree also containing previously published sequences, the nodA genes of our rhizobia formed a branch of their own, but within the branch no correlation between symbiotic genes and host trees was apparent. Within the large group of African sinorhizobia, similar symbiotic gene types were found in different chromosomal backgrounds, suggesting that transfer of symbiotic genes has occurred across species boundaries. Most strains had plasmids, and the presence of plasmid-borne nifH was demonstrated by hybridization for some examples. The nodA and nifH genes of Sinorhizobium teranga ORS1009T grouped with the nodA and nifH genes of the other African sinorhizobia, but Sinorhizobium saheli ORS609T had a totally different nodA sequence, although it was closely related based on the 16S rRNA gene and nifH data. This might be because this S. saheli strain was originally isolated from Sesbania sp., which belongs to a different cross-nodulation group than Acacia and Prosopis spp. The factors that appear to have influenced the evolution of rhizobial symbiotic genes vary in importance at different taxonomic levels.

  18. Phakic iris-fixated intraocular lens placement in the anterior chamber: effects on aqueous flow.

    Science.gov (United States)

    Repetto, Rodolfo; Pralits, Jan O; Siggers, Jennifer H; Soleri, Paolo

    2015-05-01

    Phakic intraocular lenses (pIOLs) are used for correcting vision; in this paper we investigate the fluid dynamical effects of an iris-fixated lens in the anterior chamber. In particular, we focus on changes in the wall shear stress (WSS) on the cornea and iris, which could be responsible for endothelial and pigment cell loss, respectively, and also on the possible increase of the intraocular pressure, which is known to correlate with the incidence of secondary glaucoma. We use a mathematical model to study fluid flow in the anterior chamber in the presence of a pIOL. The governing equations are solved numerically using the open source software OpenFOAM. We use an idealized standard geometry for the anterior chamber and a realistic geometric description of the pIOL. We consider separately the main mechanisms that produce fluid flow in the anterior chamber. The numerical simulations allow us to obtain a detailed description of the velocity and pressure distribution in the anterior chamber, and indicated that implantation of the pIOL significantly modifies the fluid dynamics in the anterior chamber. However, lens implantation has negligible influence on the intraocular pressure and does not produce a significant increase of the shear stress on the cornea, while the shear stress on the iris, although increased, is not enough to cause detachment of cells. We conclude that alterations in the fluid dynamics in the anterior chamber as a result of lens implantation are unlikely to be the cause of medical complications associated with its use.

  19. HYLIFE-II reactor chamber mechanical design

    International Nuclear Information System (INIS)

    House, P.A.

    1992-01-01

    Mechanical design features of the reactor chamber for the HYLIFE-11 inertial confinement fusion power plant are presented. A combination of oscillating and steady, molten salt streams are used for shielding and blast protection. The system is designed for an 8 Hz repetition rate. Beam path clearing, between shots, is accomplished with the oscillating flow. The mechanism for generating the oscillating streams is described. A design configuration of the vessel wall allows adequate cooling and provides extra shielding to reduce thermal stresses to tolerable levels. The bottom portion of the reactor chamber is designed to minimize splash back of the high velocity (20 m/s) salt streams and also recover up to half of the dynamic head

  20. A plasma amplifier to combine multiple beams at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.

    2018-05-01

    Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].

  1. Explosion-induced combustion of hydrocarbon clouds in a chamber

    International Nuclear Information System (INIS)

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2001-01-01

    The interaction of the detonation of a solid HE-charge with a non-premixed cloud of hydro-carbon fuel in a chamber was studied in laboratory experiments. Soap bubbles filled with a flammable gas were subjected to the blast wave created by the detonation of PETN-charges (0.2 g < mass < 0.5 g). The dynamics of the combustion system were investigated by means of high-speed photography and measurement of the quasi-static chamber pressure

  2. NIF optics phase gradient specfication

    International Nuclear Information System (INIS)

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-01-01

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of ∼80 angstrom/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS ampersand T personnel

  3. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael [Univ. of Dallas, Irving, TX (United States)

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  4. Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradiënt gel electrophoresis of PCR-amplified gene fragments

    NARCIS (Netherlands)

    Rosado, A.S.; Duarte, G.F.; Seldin, L.; Elsas, van J.D.

    1998-01-01

    The diversity of dinitrogenase reductase gene (nifH) fragments in Paenibacillus azotofixans strains was investigated by using molecular methods. The partial nifH gene sequences of eight P. azotofixans strains, as well as one strain each of the close relatives Paenibacillus durum, Paenibacillus

  5. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    Science.gov (United States)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  6. Science on high-energy lasers: From today to the NIF

    International Nuclear Information System (INIS)

    Lee, R.W.; Petrasso, R.; Falcone, R.W.

    1995-01-01

    This document presents both a concise definition of the current capabilities of high energy lasers and a description of capabilities of the NIF (National Ignition Facility). Five scientific areas are discussed (Astrophysics, Hydrodynamics, Material Properties, Plasma Physics, Radiation Sources, and Radiative Properties). In these five areas we project a picture of the future based on investigations that are being carried on today. Even with this very conservative approach we find that the development of new higher energy lasers will make many extremely exciting areas accessible to us

  7. Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber

    CERN Document Server

    Voigtländer, J; Rondo, L; Kürten, A; Stratmann, F

    2012-01-01

    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of fe...

  8. Observations Of The LCROSS Impact With NIFS On The Gemini North Telescope

    Science.gov (United States)

    Roth, Katherine; Stephens, A. W.; Trujillo, C. A.; McDermid, R. M.; Woodward, C. E.; Walls, B. D.; Coulson, D. M.; Matulonis, A. C.; Ball, J. G.; Wooden, D. H.

    2010-01-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) Centaur rocket impacted a permanently shadowed crater near the south pole of the Moon at 11:31 UTC 2009 October 09. Gemini, one of several telescopes in a coordinated network observing the impact, conducted observations using NIFS to obtain 3D K-band imaging spectroscopy to detect water ice in the ejected plume of material. The spectral slope of the NIFS data can constrain the grain size and height distribution as the plume evolves, measuring the total mass and the water ice concentration in the plume. These observations provided an engineering challenge for Gemini, including the need to track non-sidereal with constantly changing track rates and guide on small bright moon craters, in order to keep the impact site within the NIFS field-of-view. High quality images taken by GMOS-N, NIRI and the acquisition camera during engineering periods at specific lunar libration and illumination were also used by the LCROSS ground based observing team to supplement slit positioning and offset plans for other ground based observatories. LCROSS mission support and engineering has resulted in improved telescope functionality for non-sidereal targets, including the ability to upload and import target ephemerides directly into the TCS, starting in semester 2010B. In this poster we present the engineering results and observing improvements which will facilitate enhanced user capabilities of the Gemini telescopes arising from the intensive LCROSS support challenge. Gemini Observatory is operated by AURA, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the STFC (United Kingdom), the NRC (Canada), CONICYT (Chile), the ARC (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). In part this research was supported by NASA through contracts to SWRI and NSF grant AST-0706980 to the U

  9. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  10. Gas dynamic laser device

    International Nuclear Information System (INIS)

    Born, G.

    1975-01-01

    The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber

  11. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  12. Design of ITER neutron monitor using micro fission chambers

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Ebisawa, Katsuyuki; Ando, Toshiro; Kasai, Satoshi; Johnson, L.C.; Walker, C.

    1998-08-01

    We are designing micro fission chambers, which are pencil size gas counters with fissile material inside, to be installed in the vacuum vessel as neutron flux monitors for ITER. We found that the 238 U micro fission chambers are not suitable because the detection efficiency will increase up to 50% in the ITER life time by breading 239 Pu. We propose to install 235 U micro fission chambers on the front side of the back plate in the gap between adjacent blanket modules and behind the blankets at 10 poloidal locations. One chamber will be installed in the divertor cassette just under the dome. Employing both pulse counting mode and Campbelling mode in the electronics, we can accomplish the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution, and eliminate the effect of gamma-rays. We demonstrate by neutron Monte Carlo calculation with three-dimensional modeling that we avoid those detection efficiency changes by installing micro fission chambers at several poloidal locations inside the vacuum vessel. (author)

  13. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer.

    Science.gov (United States)

    Coelho, Marcia Reed Rodrigues; de Vos, Marjon; Carneiro, Newton Portilho; Marriel, Ivanildo Evódio; Paiva, Edilson; Seldin, Lucy

    2008-02-01

    The diversity of nitrogen-fixing bacteria was assessed in the rhizospheres of two cultivars of sorghum (IS 5322-C and IPA 1011) sown in Cerrado soil amended with two levels of nitrogen fertilizer (12 and 120 kg ha(-1)). The nifH gene was amplified directly from DNA extracted from the rhizospheres, and the PCR products cloned and sequenced. Four clone libraries were generated from the nifH fragments and 245 sequences were obtained. Most of the clones (57%) were closely related to nifH genes of uncultured bacteria. NifH clones affiliated with Azohydromonas spp., Ideonella sp., Rhizobium etli and Bradyrhizobium sp. were found in all libraries. Sequences affiliated with Delftia tsuruhatensis were found in the rhizosphere of both cultivars sown with high levels of nitrogen, while clones affiliated with Methylocystis sp. were detected only in plants sown under low levels of nitrogen. Moreover, clones affiliated with Paenibacillus durus could be found in libraries from the cultivar IS 5322-C sown either in high or low amounts of fertilizer. This study showed that the amount of nitrogen used for fertilization is the overriding determinative factor that influenced the nitrogen-fixing community structures in sorghum rhizospheres cultivated in Cerrado soil.

  14. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  15. Ultra-stable, diode-pumped Nd-doped glass regenerative amplifier for the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Crane, J.K.; Martinez, M.; Beach, R.J.; Mitchell, S.; Pratt, G.; Christensen, J.J.

    1995-12-01

    We describe a diode laser-pumped Nd:glass regenerative amplifier that amplifies temporally shaped pulses with low distortion, high pulse-to- pulse stability, and high gain. This laser amplifier is a prototype subsystem for the National Ignition Facility (NIF) laser system. 2 refs., 1 fig

  16. NIF-Scale Hohlraum Asymmetry Studies Using Point-Projection Radiograph of Thin Shells

    International Nuclear Information System (INIS)

    Pollaine, S.; Bradley, D.; Landen, O.; Wallace, R.; Jones, O.

    2000-01-01

    Our current OMEGA experimental campaign is developing the thin shell diagnostic for use on NIF with the needed accuracy. The thin shell diagnostic has the advantage of linearity over alternative measurement techniques, so that low-order modes will not corrupt the measurement of high-order modes. Although our random measurement errors are adequate, we need to monitor beam balance and ensure that the thin shells have a uniform thickness

  17. Shape and dimensions of cardiac chambers: Importance of CT section thickness and orientation

    International Nuclear Information System (INIS)

    Hoffman, E.A.; Ritman, E.L.

    1985-01-01

    Three-dimensional (3D) computed tomography (CT) scan data were used to quantitate the geometry of all heart chambers. The Dynamic Spatial Reconstructor (DSR) was used to scan dogs with in situ casts of the cardiac chambers. Chamber volumes estimated from DSR images were accurate within 5% of water displacement volume measurements of the actual casts for chambers greater than 11 ml and within 10% of water displacement volumes for chambers less than 11 ml. Anatomic features of the actual cast correlated closely with anatomy visible in computer-generated surface images of the 3D DSR image data. The important effect of reconstructed section thickness and orientation on the fidelity of 3D cardiac geometry is demonstrated

  18. Glove box chamber

    International Nuclear Information System (INIS)

    Cox, M.E.; Cox, M.E.

    1975-01-01

    An environmental chamber is described which enables an operator's hands to have direct access within the chamber without compromising a special atmosphere within such chamber. A pair of sleeves of a flexible material are sealed to the chamber around associated access apertures and project outwardly from such chamber. Each aperture is closed by a door which is openable from within the sleeve associated therewith so that upon an operator inserting his hand and arm through the sleeve, the operator can open the door to have access to the interior of the chamber. A container which is selectively separable from the remainder of the chamber is also provided to allow objects to be transferred from the chamber without such objects having to pass through the ambient atmosphere. An antechamber permitting objects to be passed directly into the chamber from the ambient atmosphere is included. (auth)

  19. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments

    NARCIS (Netherlands)

    Franco Dias, Armando Cavalcante; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini Andreote, Francisco; Soares, Fabio Lino; Salles, Joana Falcao; Azevedo, Joao Lucio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along

  20. ICF gamma-ray reaction history diagnostics

    International Nuclear Information System (INIS)

    Herrmann, H W; Young, C S; Mack, J M; Kim, Y H; McEvoy, A; Evans, S; Sedillo, T; Batha, S; Schmitt, M; Wilson, D C; Langenbrunner, J R; Malone, R; Kaufman, M I; Cox, B C; Frogget, B; Tunnell, T W; Miller, E K; Ali, Z A; Stoeffl, W; Horsfield, C J

    2010-01-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ∼6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10 13 -10 17 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10 16 -10 20 yield range expected during the DT ignition campaign, providing higher temporal resolution

  1. ICF gamma-ray reaction history diagnostics

    Science.gov (United States)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  2. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  3. Automation and instrument control applied to an experimental study of electron transport dynamics in an avalanche mode resistive plater chamber

    International Nuclear Information System (INIS)

    Ridenti, Marco A.; Pascholati, Paulo R.

    2009-01-01

    In this work it is presented a computer based instrumentation system which was developed to perform data acquisition and integrate the control of different devices in an experimental study of electron transport dynamics in an avalanche mode resistive plate chamber detector in the Radiation Technology Center (CTR) at IPEN/CNEN-SP. System control and data acquisition was performed by a computer program called RPCLabOperator written in MatLab environment running on a LeCroy WavePro 7000 digital oscilloscope. (author)

  4. Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF

    Science.gov (United States)

    Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden

    2007-11-01

    Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)

  5. Evaulation of B4C as an ablator material for NIF capsules. Revision 1

    International Nuclear Information System (INIS)

    Burnham, A.K.; Alford, C.S.; Makowiecki, D.M.; Dittrich, T.R.; Wallace, R.J.; Honea, E.C.; King, C.M.; Steinman, D.

    1997-01-01

    Boron carbide (B 4 C) is examined as a potential fuel container and ablator for implosion capsules on the National Ignition Facility (NIF). A capsule of pure B 4 C encasing a layer of solid DT implodes stably and ignites with anticipated NIF x-ray drives, producing 18 MJ of energy. Thin films of B 4 C were found to be resistant to oxidation and modestly transmitting in the infrared (IR), possibly enabling IR fuel characterization and enhancement for thin permeation barriers but not for full-thickness capsules. Polystyrene mandrels 0.5 mm in diameter were successfully coated with 0.15-2.0 micrometers of B 4 C. Thickness estimated from optical density agreed well with those measured by scanning electron microscopy (SEM). The B 4 C microstructure was columnar but finer than for Be made at the same conditions. B 4 C is a very strong material, with a fiber tensile strength capable of holding NIF fill pressures at room temperature, but it is also very brittle, and microscopic flaws or grain structure may limit the noncryogenic fill pressure. Argon (Ar) permeation rates were measured for a few capsules that had been further coated with 5 micrometers of plasma polymer. The B 4 C coatings tended to crack under tensile load. Some shells filled more slowly than they leaked, suggesting that the cracks open and close under opposite pressure loading. As observed earlier for Ti coatings, 0.15-micrometer layers of B 4 C had better gas retention properties than 2-micrometer layers, possibly because of fewer cracks. Permeation and fill strength issues for capsules with a full ablator thickness of B 4 C are unresolved. 21 refs., 6 figs

  6. Simulated impact of self-generated magnetic fields in the hot-spot of NIF implosions

    Science.gov (United States)

    Partha, M. A.; Haan, S. W.; Koning, J.; Marinak, M. M.; Weber, C. R.; Clark, D. S.

    2016-10-01

    Deviations from sphericity in an imploded hot-spot result in magnetic fields generated by the Biermann battery effect. The magnetic field can reduce thermal conductivity, affect α transport, change instability growth, and cause magnetic pressure. Previous estimates of these effects have indicated that they are not of great consequence, but have suggested that they could plausibly affect NIF observables such as yield and ion temperature by 5-25%. Using the MHD capability in the Hydra code, we evaluated the impact of these processes in a post-shot model for a typical NIF implosion. Various implosion asymmetries were implemented, with the goal of surveying plausible implosion configurations to find the geometry in which the MHD effects were the most significant. Magnetic fields are estimated to approach 104 Tesla, and to affect conductivity locally by more than 50%, but global impact on observables is small in most cases. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  8. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat.

    Science.gov (United States)

    Steunou, Anne-Soisig; Jensen, Sheila I; Brecht, Eric; Becraft, Eric D; Bateson, Mary M; Kilian, Oliver; Bhaya, Devaki; Ward, David M; Peters, John W; Grossman, Arthur R; Kühl, Michael

    2008-04-01

    Nitrogen fixation, a prokaryotic, O2-inhibited process that reduces N2 gas to biomass, is of paramount importance in biogeochemical cycling of nitrogen. We analyzed the levels of nif transcripts of Synechococcus ecotypes, NifH subunit and nitrogenase activity over the diel cycle in the microbial mat of an alkaline hot spring in Yellowstone National Park. The results showed a rise in nif transcripts in the evening, with a subsequent decline over the course of the night. In contrast, immunological data demonstrated that the level of the NifH polypeptide remained stable during the night, and only declined when the mat became oxic in the morning. Nitrogenase activity was low throughout the night; however, it exhibited two peaks, a small one in the evening and a large one in the early morning, when light began to stimulate cyanobacterial photosynthetic activity, but O2 consumption by respiration still exceeded the rate of O2 evolution. Once the irradiance increased to the point at which the mat became oxic, the nitrogenase activity was strongly inhibited. Transcripts for proteins associated with energy-producing metabolisms in the cell also followed diel patterns, with fermentation-related transcripts accumulating at night, photosynthesis- and respiration-related transcripts accumulating during the day and late afternoon, respectively. These results are discussed with respect to the energetics and regulation of N2 fixation in hot spring mats and factors that can markedly influence the extent of N2 fixation over the diel cycle.

  9. Dynamic Breast Magnetic Resonance Imaging without Complications in a Patient with Dual-Chamber Demand Pacemaker

    International Nuclear Information System (INIS)

    Sardanelli, F.; Lupo, P.; Esseridou, A.; Fausto, A.; Quarenghi, M.

    2006-01-01

    Mammography and ultrasound indicated a cancer of the right breast in a 77-year-old woman with a dual-chamber demand pacemaker. The patient was not pacemaker-dependent. She underwent breast 1.5T magnetic resonance imaging (MRI) (dynamic gradient echo sequence with Gd-DOTA 0.1 mmol/kg). Before the patient entered the MR room, the configuration of the device was changed (the response to magnet was switched from asynchronous to off and the rate-responsive algorithm was disabled). No relevant modifications of heart rhythm or rate were observed during the MR examination. No symptom was reported. Immediately after the examination, the pacemaker interrogation showed neither program changes nor alert warnings. MRI detected a bifocal cancer in the right breast which allowed tailored breast-conserving treatment to be initiated. Histopathology confirmed a bifocal invasive ductal carcinoma

  10. Dynamic Breast Magnetic Resonance Imaging without Complications in a Patient with Dual-Chamber Demand Pacemaker

    Energy Technology Data Exchange (ETDEWEB)

    Sardanelli, F.; Lupo, P.; Esseridou, A.; Fausto, A.; Quarenghi, M. [Policlinico San Donato, San Donato Milanese, Milan (Italy). Depts. of Radiology, Arrhythmia and Electrophysiology Center

    2006-02-15

    Mammography and ultrasound indicated a cancer of the right breast in a 77-year-old woman with a dual-chamber demand pacemaker. The patient was not pacemaker-dependent. She underwent breast 1.5T magnetic resonance imaging (MRI) (dynamic gradient echo sequence with Gd-DOTA 0.1 mmol/kg). Before the patient entered the MR room, the configuration of the device was changed (the response to magnet was switched from asynchronous to off and the rate-responsive algorithm was disabled). No relevant modifications of heart rhythm or rate were observed during the MR examination. No symptom was reported. Immediately after the examination, the pacemaker interrogation showed neither program changes nor alert warnings. MRI detected a bifocal cancer in the right breast which allowed tailored breast-conserving treatment to be initiated. Histopathology confirmed a bifocal invasive ductal carcinoma.

  11. Study on the Temperature Separation Phenomenon in a Vortex Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ye, A Ran; Guang, Zhang; Kim, Heuy Dong [Andong National University, Andong (Korea, Republic of)

    2014-09-15

    A vortex chamber is a simple device that separates compressed gas into a high-temperature stream and a low-temperature stream. It is increasing in popularity as a next-generation heat exchanger, but the flow physics associated with it is not yet well understood. In the present study, both experimental and numerical analyses were performed to investigate the temperature separation phenomenon inside the vortex chamber. Static pressures and temperatures were measured using high-sensitivity pressure transducers and thermocouples, respectively. Computational fluid dynamics was applied to simulate 3D unsteady compressible flows. The simulation results showed that the temperature separation is strongly dependent on the diameter of the vortex chamber and the supply pressure at the inlet ports, where the latter is closely related to the viscous work. The previous concept of a pressure gradient wave may not be a reasoning for temperature separation phenomenon inside the vortex chamber.

  12. Use of the National Ignition Facility for the development of inertial fusion energy

    International Nuclear Information System (INIS)

    Tobin, M.; Logan, G.; Anderson, A.; De LaRubia Diaz, T.

    1994-06-01

    The primary purpose of the workshop was to gather input from the inertial confinement fusion (ICF) laboratories, private industry, and universities on the potential use of the NIF to conduct experiments in support of the development of IFE. To accomplish this, we asked the over 60 workshop participants to identify key credibility and development issues for IFE in four areas Target Physics --Issues related to the design and performance of targets for IFE; Chamber Dynamics -- Issues in IFE chambers resulting from the deposition of x-rays and debris; Inertial Fusion Power Technology -- Issues for energy conversion, tritium breeding and processing, and radiation shielding; interactions of neutrons with materials; and chamber design; Target System -- Issues related to automated, high-production-rate manufacture of low-cost targets for IFE, target handling and transport, target injection, tracking, and beam pointing. These topics are discussed in this report

  13. Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array

    International Nuclear Information System (INIS)

    Kenny, M.B.; Todd, S.P.

    1996-01-01

    Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)

  14. Advances in NIF Shock Timing Experiments

    Science.gov (United States)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  15. The Mobile Chamber

    Science.gov (United States)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  16. Simulation of the heat transfer around the ATLAS muon chambers

    CERN Multimedia

    2005-01-01

    This 2D simulation recently carried out on the ATLAS muon chambers by a small team of CERN engineers specialises in the numerical computation of fluid dynamics, in other words the flow of fluids and heat.

  17. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    Science.gov (United States)

    Robey, H. F.; Munro, D. H.; Spears, B. K.; Marinak, M. M.; Jones, O. S.; Patel, M. V.; Haan, S. W.; Salmonson, J. D.; Landen, O. L.; Boehly, T. R.; Nikroo, A.

    2008-05-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  18. Non-financial Results of Performance Indicators of Trade and Industry Chambers in Ukraine

    Directory of Open Access Journals (Sweden)

    Bogdana V. Aleksandrova

    2014-03-01

    Full Text Available The article deals with non-financial results review of Trade and Industry Chamber, the assessment of competitiveness in the Ukrainian market. To achieve the desired goal we should do the following: 1.\tIdentify categories of research 2.\tSystemize available statistics. 3.\tTo evaluate dynamics of main categories 4.\tConduct an assessment of non-financial indicators of Trade and Industry Chamber 5.\tIdentify the level of competitiveness of Trade and Industry Chamber of Ukraine on domestic market. Methods used by author to address these issues: index-linked, method of correlation analysis, method of expert assessment. As a result of the study, non-financial indicators of organization’s activities have been analyzed, the dynamics of membership base and the scope of delivered services have been identified as well as the level of organization’s competitiveness. The most promising services have been highlighted.

  19. Drift chamber

    International Nuclear Information System (INIS)

    Inagaki, Yosuke

    1977-01-01

    Drift chamber is becoming an important detector in high energy physics as a precision and fast position detector because of its high spatial resolution and count-rate. The basic principle is that it utilizes the drift at constant speed of electrons ionized along the tracks of charged particles towards the anode wire in the nearly uniform electric field. The method of measuring drift time includes the analog and digital ones. This report describes about the construction of and the application of electric field to the drift chamber, mathematical analysis on the electric field and equipotential curve, derivation of spatial resolution and the factor for its determination, and selection of gas to be used. The performance test of the chamber was carried out using a small test chamber, the collimated β source of Sr-90, and 500 MeV/C electron beam from the 1.3 GeV electron synchrotron in the Institute of Nuclear Study, University of Tokyo. Most chambers to date adopted one dimensional read-out, but it is very advantageous if the two dimensional read-out is feasible with one chamber when the resolution in that direction is low. The typical methods of delay line and charge division for two dimensional read-out are described. The development of digital read-out system is underway, which can process the signal of a large scale drift chamber at high speed. (Wakatsuki, Y.)

  20. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A multi-chambered ionisation detector enables the amount of radiation entering each chamber from a single radioactive, eg β, source to be varied by altering the proportion of the source protruding into each chamber. Electrodes define chambers and an extended radioactive source is movable to alter the source length in each chamber. Alternatively, the source is fixed relative to outer electrodes but the central electrode may be adjusted by an attached support altering the chamber dimensions and hence the length of source in each. Also disclosed are a centrally mounted source tiltable towards one or other chamber and a central electrode tiltable to alter chamber dimensions. (U.K.)

  1. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J. [LLNL, Livermore, California 94550 (United States)

    2013-05-15

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.

  2. Doriot Climatic Chambers

    Data.gov (United States)

    Federal Laboratory Consortium — The Doriot Climatic Chambers are two, 60-feet long, 11-feet high, 15-feet wide chambers that are owned and operated by NSRDEC. The Doriot Climatic Chambers are among...

  3. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  4. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber.

    Science.gov (United States)

    Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L

    2018-05-15

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.

  5. Introduction to the National Ignition Facility

    International Nuclear Information System (INIS)

    Moses, E I

    2004-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion and matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear bum, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures approaching 10 8 K and 10 11 bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF has completed the first phases of its laser commissioning program. The first four beams of NIF have generated 106 kilojoules of infrared light and over 16 kJ at the third harmonic (351 nm). NIF's target experimental systems are being commissioned and experiments have begun. This paper provides a detailed look the NIF laser systems, laser and optical performance and results from recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF

  6. Metagenomic of Actinomycetes Based on 16S rRNA and nifH Genes in Soil and Roots of Four Indonesian Rice Cultivars Using PCR-DGGE

    Directory of Open Access Journals (Sweden)

    Mahyarudin

    2015-07-01

    Full Text Available The research was conducted to study the metagenomic of actinomycetes based on 16S ribosomal RNA (rRNA and bacterial nifH genes in soil and roots of four rice cultivars. The denaturing gradient gel electrophoresis profile based on 16S rRNA gene showed that the diversity of actinomycetes in roots was higher than soil samples. The profile also showed that the diversity of actinomycetes was similar in four varieties of rice plant and three types of agroecosystem. The profile was partially sequenced and compared to GenBank database indicating their identity with closely related microbes. The blast results showed that 17 bands were closely related ranging from 93% to 100% of maximum identity with five genera of actinomycetes, which is Geodermatophilus, Actinokineospora, Actinoplanes, Streptomyces and Kocuria. Our study found that Streptomyces species in soil and roots of rice plants were more varied than other genera, with a dominance of Streptomyces alboniger and Streptomyces acidiscabies in almost all the samples. Bacterial community analyses based on nifH gene denaturing gradient gel electrophoresis showed that diversity of bacteria in soils which have nifH gene was higher than that in rice plant roots. The profile also showed that the diversity of those bacteria was similar in four varieties of rice plant and three types of agroecosystem. Five bands were closely related with nifH gene from uncultured bacterium clone J50, uncultured bacterium clone clod-38, and uncultured bacterium clone BG2.37 with maximum identity 99%, 98%, and 92%, respectively. The diversity analysis based on 16S rRNA gene differed from nifH gene and may not correlate with each other. The findings indicated the diversity of actinomycetes and several bacterial genomes analyzed here have an ability to fix nitrogen in soil and roots of rice plant.

  7. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  8. Integrated modeling of cryogenic layered highfoot experiments at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.; Hurricane, O. A.; Clark, D.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Haan, S.; Berzak Hopkins, L. F.; Jones, O.; Landen, O.; Ma, T.; Meezan, N.; Milovich, J. L.; Pak, A. E.; Park, H.-S.; Patel, P. K. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2016-05-15

    Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10–12)/(13–15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1–2.5× for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. These calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several.

  9. Management of unconverted light for the National Ignition Facility target chamber

    International Nuclear Information System (INIS)

    Anderson, A. T.; Bletzer, K.; Burnham, A. K.; Dixit, S.; Genin, F. Y.; Hibbard, W.; Norton, J.; Scott, J. M.; Whitman, P. K.

    1998-01-01

    The NIF target chamber beam dumps must survive high x-ray, laser, ion, and shrapnel exposures without excessive generation of vapors or particulate that will contaminate the final optics debris shields, thereby making the debris shields susceptible to subsequent laser damage. The beam dumps also must be compatible with attaining and maintaining the required target chamber vacuum and must not activate significantly under high neutron fluxes. Finally, they must be developed, fabricated, and maintained for a reasonable cost. The primary challenge for the beam dump is to survive up to 20 J/cm 2 of lpm light and 1 - 2 J/cm 2 of nominally 200 - 350 eV blackbody temperature x rays. Additional threats include target shrapnel, and other contamination issues. Designs which have been evaluated include louvered hot-pressed boron carbide (B 4 C) or stainless steel (SS) panels, in some cases covered with transparent Teflon film, and various combinations of inexpensive low thermal expansion glasses backed by inexpensive absorbing glass. Louvered designs can recondense a significant amount of ablated material that would otherwise escape into the target chamber. Transparent Teflon was evaluated as an alternative way to capture ablated material. The thin Teflon sheet would need to be replaced after each shot since it exhibits both laser damage and considerable x- ray ablation with each shot. Uncontaminated B 4 C, SS, and low thermal expansion glasses have reasonably small x-ray and laser ablation rates, although the glasses begin to fail catastrophically after 100 high fluence shots. Commercially available absorbing glasses require a pre-shield of either Teflon or low thermal expansion glass to prevent serious degradation by the x-ray fluence. Advantages of the hot-pressed B 4 C and SS over glass are their performance against microshrapnel, their relative indifference to contamination, and their ability to be refurbished by aggressive cleaning using CO 2 pellets, glass beads, high

  10. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  11. Recent results from the first polar direct drive plastic capsule implosions on NIF

    Science.gov (United States)

    Schmitt, Mark J.

    2012-10-01

    Polar direct drive (PDD) offers a simplified platform for conducting strongly driven implosions on NIF to investigate mix, hydro-burn and ignition-relevant physics. Its successful use necessitates a firm understanding and predictive capability of its implosion characteristics including hydro performance, symmetry and yield. To assess this capability, the first two PDD implosions of deuterium filled CH capsules were recently conducted at NIF. The P2 Legendre mode symmetry seen in these implosions agreed with pre-shot predictions even though the 700kJ drive energy produced intensities that far exceeded thresholds for both Raman and Brillouin stimulated scattering. These shots were also the first to employ image backlighting driven by two laser quads. Preliminary results indicate that the yield from the uncoated 2.25 mm diameter, 42 μm thick, CH shells was reduced by about a factor of two owing to as-shot laser drive asymmetries. Similarly, a small (sim50 μm) centroid offset between the upper and lower shell hemispheres seen in the first shot appears to be indicative of the laser quad energies. Overall, the implosion trajectories agreed with pre-shot predictions of bangtime. The second shot incorporated an 80 ?m wide,10 ?m deep depression encircling the equator of the capsule. This engineered feature was imposed to test our capability to predict the effect of high-mode features on yield and mix. A predicted yield reduction factor of 3 was not observed.[4pt] In collaboration with P. A. Bradley, J. A. Cobble, P. Hakel, S. C. Hsu, N. S. Krasheninnikova, G. A. Kyrala, G. R. Magelssen, T. J. Murphy, K. A. Obrey, R. C. Shah, I. L. Tregillis and F. J. Wysocki of Los Alamos National Laboratory; M. Marinak, R. Wallace, T. Parham, M. Cowan, S. Glenn, R. Benedetti and the NIF Operations Team of Lawrence Livermore National Laboratory; R. S. Craxton and P. W. McKenty of the Univ. Rochester; P. Fitzsimmons and A. Nikroo of General Atomics; H. Rinderknecht, M. Rosenberg, and M. G

  12. Research on insulating material affecting the property of gas ionization chamber

    International Nuclear Information System (INIS)

    Wang Liqiang; Wang Zhentao; Zheng Jian

    2014-01-01

    The insulating material in ionization chamber affects the internal gas pressure and ionic pulse shape in the research process of the ion drift velocity in high pressure gas ionization chamber. It will affect the ion drift velocity measurement. It is required to isolate by insulating material between electrode to electrode and between electrodes to the shell of gas ionization chamber. Insulating material in gas ionization chamber is indispensable. Therefore it needs to carefully study the insulating material affecting the performance of gas ionization chamber. First of all, it is found that Teflon can slowly adsorb the working gas in ionization chamber, and the gas pressure in it is reduced when we measure the sensitivity of gas ionization chamber over time. It is verified by experiment that insulating materials absorbing and releasing gas is dynamically reversible process. Then the adsorbing gas property of 95% aluminium oxide ceramic and Teflon is studied through experimental comparision. Gas adsorption equilibrium time of ceramic material is faster, generally it is about a few hours, and the gas adsorption capacity is relatively less. Gas adsorption equilibrium time of Teflon is slower, it is about a few days, and the gas adsorption capacity is relatively more. It is found that Teflon will release part of the gas at higher temperature through experimental research on the influence of Teflon adsorbing gas. Finally it is studied that the distribution of insulation in ionization chamber affects the time response speed of ionization chamber by measuring the signal pulse shape of ionization chamber under the pulse X-ray. Through these experimental research, it is presented that it need to pay attention to select insulation material and to design the internal structure and arrangement of insulating material when we design gas ionization chamber. (authors)

  13. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-01-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors

  14. Intragroup Processes and Teamwork within a Successful Chamber Choir

    Science.gov (United States)

    Kirrane, Melrona; O'Connor, Cliodhna; Dunne, Ann-Marie; Moriarty, Patricia

    2017-01-01

    Despite the ubiquity of choirs across time and cultures, relatively little is known about the internal dynamics of these social systems. This article examines the group processes involved in a small European chamber choir. The research adopted a mixed-methods qualitative approach that combined individual interviews (n = 13) with ethnographic…

  15. Peltier-based cloud chamber

    Science.gov (United States)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  16. Chamber wall response to target implosion in inertial fusion reactors : new and critical assessments

    International Nuclear Information System (INIS)

    Hassanein, A.; Morozov, V.

    2002-01-01

    The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include use of solid bare walls, gas-filled cavities, and liquid walls/jets. Detailed models have been developed for reflected laser light, emitted photons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The hydrodynamic response of gas filled cavities and photon radiation transport of the deposited energy has been calculated by means of new and advanced numerical techniques. Fragmentation models of liquid jets as a result of the deposited energy have also been developed, and the impact on chamber clearing dynamics has been evaluated. Th focus of this study is to critically assess the reliability and the dynamic response of chamber walls in various proposed protection methods for IFE systems. Of particular concern is the effect on wall erosion lifetime of various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls

  17. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    Science.gov (United States)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  18. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  19. Comparisons of NIF convergent ablation simulations with radiograph data.

    Science.gov (United States)

    Olson, R E; Hicks, D G; Meezan, N B; Koch, J A; Landen, O L

    2012-10-01

    A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF.

  20. RaPToRS Sample Delivery System

    Science.gov (United States)

    Henchen, Robert; Shibata, Kye; Krieger, Michael; Pogozelski, Edward; Padalino, Stephen; Glebov, Vladimir; Sangster, Craig

    2010-11-01

    At various labs (NIF, LLE, NRL), activated material samples are used to measure reaction properties. The Rapid Pneumatic Transport of Radioactive Samples (RaPToRS) system quickly and safely moves these radioactive samples through a closed PVC tube via airflow. The carrier travels from the reaction chamber to the control and analysis station, pneumatically braking at the outlet. A reversible multiplexer routes samples from various locations near the shot chamber to the analysis station. Also, the multiplexer allows users to remotely load unactivated samples without manually approaching the reaction chamber. All elements of the system (pneumatic drivers, flow control valves, optical position sensors, multiplexers, Geiger counters, and release gates at the analysis station) can be controlled manually or automatically using a custom LabVIEW interface. A prototype is currently operating at NRL in Washington DC. Prospective facilities for Raptors systems include LLE and NIF.

  1. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    Science.gov (United States)

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  2. NIF target fill, transport and insertion cryostat

    International Nuclear Information System (INIS)

    Warren, R.

    1994-01-01

    A cryostat to support the fielding of a cryogenic target within the NIF is described. The present design is predicated upon fuel layer symmetry being achieved with the β layering process and modifications needed for other fuel symmetrization processes are discussed. These include the vertically differentially heated capsule with a uniform liquid layer stabilized by a surface tension gradient, foam supported liquid layers and solid D 2 or HD layers symmetrized by bulk irradiation from a laser source. The cold sinks to be incorporated in these techniques could, in principal, be cooled with the high pressure helium envisioned for the heat sink rings of the present design. Supplementary laser access would be provided for differential heating of the capsule for surface tension gradient stabilization of a liquid layer or bulk heating of a solid layer. The cryostat in each of these cases would look substantially the same as in the present case with the only significant differences being in the details of the design in the immediate vicinity of the target

  3. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Beam control and diagnostic functions in the NIF transport spatial filter

    International Nuclear Information System (INIS)

    Holdener, F.R.; Ables, E.; Bliss, E.S.

    1996-10-01

    Beam control and diagnostic systems are required to align the National Ignition Facility (NIF) laser prior to a shot as well as to provide diagnostics on 192 beam lines at shot time. A design that allows each beam's large spatial filter lenses to also serve as objective lenses for beam control and diagnostic sensor packages helps to accomplish the task at a reasonable cost. However, this approach also causes a high concentration of small optics near the pinhole plane of the transport spatial filter (TSF) at the output of each beam. This paper describes the optomechanical design in and near the central vacuum vessel of the TSF

  6. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cousseau, P.; Engelstad, R.; Henderson, D.L. [and others

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing.

  7. The development and application of advanced analytical methods to commercial ICF reactor chambers. Final report

    International Nuclear Information System (INIS)

    Cousseau, P.; Engelstad, R.; Henderson, D.L.

    1997-10-01

    Progress is summarized in this report for each of the following tasks: (1) multi-dimensional radiation hydrodynamics computer code development; (2) 2D radiation-hydrodynamic code development; (3) ALARA: analytic and Laplacian adaptive radioactivity analysis -- a complete package for analysis of induced activation; (4) structural dynamics modeling of ICF reactor chambers; and (5) analysis of self-consistent target chamber clearing

  8. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  9. Gas microstrip chambers

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Barasch, E.F.; Bowcock, T.J.V.; Demroff, H.P.; Elliott, S.M.; Howe, M.R.; Lee, B.; Mazumdar, T.K.; Pang, Y.; Smith, D.D.; Wahl, J.; Wu, Y.; Yue, W.K.; Gaedke, R.M.; Vanstraelen, G.

    1992-01-01

    The gas microstrip chamber has been developed from concept to experimental system during the past three years. A pattern of anode and grid lines are microfabricated onto a dielectric substrate and configured as a high-resolution MWPC. Four recent developments are described: Suitable plastic substrates and lithography techniques for large-area chambers; non-planar silicon-based chambers for 20 μm resolution; integrated on-board synchronous front-end electronics and data buffering; and a porous silicon active cathode for enhanced efficiency and time response. The microstrip chamber appears to be a promising technology for applications in microvertex, tracking spectrometer, muon spectrometer, and transition radiation detection. (orig.)

  10. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Atomic and Molecular Data Activities at NIFS in 2009 - 2011

    International Nuclear Information System (INIS)

    Murakami, I.

    2011-01-01

    We open and maintain the NIFS atomic and molecular numerical databases. Numbers of data records increase to 476,048 in total (as of Aug. 23, 2011) and mainly new data are added for AMDIS (electron impact ionization, excitation, and recombination cross sections and rate coefficients) and CHART (charge transfer of atom - ion collisions cross sections) during last two years. A collaboration group has started for research on atomic and molecular processes in plasma using the Large Helical Device and we measure visible and extreme ultraviolet spectra of W and rare earth elements. We also organize a collaboration group with atomic physicists from Japanese universities for research on W to study atomic data, spectra and collisional-radiative models for W ions. (author)

  12. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    Science.gov (United States)

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  13. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2012-10-15

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  14. Double chamber ion source

    International Nuclear Information System (INIS)

    Uman, M.F.; Winnard, J.R.; Winters, H.F.

    1978-01-01

    The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)

  15. Ussing Chamber

    NARCIS (Netherlands)

    Westerhout, J.; Wortelboer, H.; Verhoeckx, K.

    2015-01-01

    The Ussing chamber system is named after the Danish zoologist Hans Ussing, who invented the device in the 1950s to measure the short-circuit current as an indicator of net ion transport taking place across frog skin (Ussing and Zerahn, Acta Physiol Scand 23:110-127, 1951). Ussing chambers are

  16. Design of In-vessel neutron monitor using micro fission chambers for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Kasai, Satoshi

    2001-10-01

    A neutron monitor using micro fission chambers to be installed inside the vacuum vessel has been designed for compact ITER (ITER-FEAT). We investigated the responses of the micro fission chambers to find the suitable position of micro fission chambers by a neutron Monte Carlo calculation using MCNP version 4b code. It was found that the averaged output of the micro fission chambers behind blankets at upper outboard and lower outboard is insensitive to the changes in the plasma position and the neutron source profile. A set of 235 U micro fission chamber and ''blank'' detector which is a fissile material free detector to identify noise issues such as from γ-rays are installed behind blankets. Employing both pulse counting mode and Campbelling mode in the electronics, the ITER requirement of 10 7 dynamic range with 1 ms temporal resolution can be accomplished. The in-situ calibration has been simulated by MCNP calculation, where a point source of 14 MeV neutrons is moving on the plasma axis. It was found that the direct calibration is possible by using a neutron generator with an intensity of 10 11 n/s. The micro fission chamber system can meet the required 10% accuracy for a fusion power monitor. (author)

  17. DELPHI Barrel Muon Chamber Module

    CERN Multimedia

    1989-01-01

    The module was used as part of the muon identification system on the barrel of the DELPHI detector at LEP, and was in active use from 1989 to 2000. The module consists of 7 individual muons chambers arranged in 2 layers. Chambers in the upper layer are staggered by half a chamber width with respect to the lower layer. Each individual chamber is a drift chamber consisting of an anode wire, 47 microns in diameter, and a wrapped copper delay line. Each chamber provided 3 signal for each muon passing through the chamber, from which a 3D space-point could be reconstructed.

  18. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  19. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators

    Science.gov (United States)

    Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.

    2018-05-01

    Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.

  20. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  1. IGNITOR, ITER and NIF in the Context of the World Effort on Fusion Burning Plasmas

    Science.gov (United States)

    Azizov, E.; Coppi, B.; Velikhov, E.

    2012-03-01

    As of last summer, the ITER program has been recognized as being directed at providing an ``International Platform for Fusion Technology.'' Then, the two experimental programs that have the explicit goal to approach ignition conditions with D-T plasmas are NIF and IGNITOR. NIF, the National Ignition Facility, is based on the inertial confinement principle using a laser system capable of delivering 1.6 MJ and is being operated in Livermore. IGNITOR will be operated by the Kurchatov Institute within the research center of Troitzk presently owned by Rosatom and involves a high level collaboration between Italy and Russia. For this, Ignitor has been defined as a Flagship Project by Italy and the construction of its core has been funded. The Ignitor design is based on the experimental results obtained by the high field line of experiments carried out at MIT, within the Alcator Program, and in Italy within the Frascati Torus Program. A wide set of experiments in Japan, on high density plasmas, in the US, Russia and Europe have produced plasma physics results and technology developments that have guided the evolution of the Ignitor design. The main theoretical plasma physics issues to be dealt with in connection with this program are discussed.

  2. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  3. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    Science.gov (United States)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  4. Measurement of radon concentration in air employing Lucas chamber; Pomiar koncentracji radonu za pomoca komory Lucasa

    Energy Technology Data Exchange (ETDEWEB)

    Machaj, B.

    1997-12-31

    The results of investigations aimed to determine the main features of radon concentration gauge in air, employing 0.17 L Lucas chamber, and air sample forced by an air pump are presented. For two hour sampling and measuring cycle time the dynamic error in the worst case (first read out) equals 5 % relative to the step jump of radon concentration. This is due to the increase of activity of the decay products in the chamber. It was observed that the short lived radon decay products (Po-218, Pb-214, Bi-214) are depositing on the walls of the chamber and they are not removed by flushing the chamber with air. (author). 4 refs, 19 figs, 2 tabs.

  5. Quantum dynamics of a particle in a tracking chamber

    International Nuclear Information System (INIS)

    Figari, Rodolfo; INFN, Napoli; Teta, Alessandro

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  6. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  7. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  8. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  9. Upgrade and benchmarking of the NIFS physics-engineering-cost code

    International Nuclear Information System (INIS)

    Dolan, T.J.; Yamazaki, K.

    2004-07-01

    The NIFS Physics-Engineering-Cost (PEC) code for helical and tokamak fusion reactors is upgraded by adding data from three blanket-shield designs, a new cost section based on the ARIES cost schedule, more recent unit costs, and improved algorithms for various computations. The PEC code is also benchmarked by modeling the ARIES-AT (advanced technology) tokamak and the ARIES-SPPS (stellarator power plant system). The PEC code succeeds in predicting many of the pertinent plasma parameters and reactor component masses within about 10%. There are cost differences greater than 10% for some fusion power core components, which may be attributed to differences of unit costs used by the codes. The COEs estimated by the PEC code differ from the COEs of the ARIES-AT and ARIES-SPPS studies by 5%. (author)

  10. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  11. Dorsal skinfold chamber models in mice

    Directory of Open Access Journals (Sweden)

    Schreiter, Jeannine

    2017-07-01

    Full Text Available Background/purpose: The use of dorsal skinfold chamber models has substantially improved the understanding of micro-vascularisation in pathophysiology over the last eight decades. It allows pathophysiological studies of vascularisation over a continuous period of time. The dorsal skinfold chamber is an attractive technique for monitoring the vascularisation of autologous or allogenic transplants, wound healing, tumorigenesis and compatibility of biomaterial implants. To further reduce the animals’ discomfort while carrying the dorsal skinfold chamber, we developed a smaller chamber (the Leipzig Dorsal Skinfold Chamber and summarized the commercial available chamber models. In addition we compared our model to the common chamber. Methods: The Leipzig Dorsal Skinfold Chamber was applied to female mice with a mean weight of 22 g. Angiogenesis within the dorsal skinfold chamber was evaluated after injection of fluorescein isothiocyanate dextran with an Axio Scope microscope. The mean vessel density within the dorsal skinfold chamber was assessed over a period of 21 days at five different time points. The gained data were compared to previous results using a bigger and heavier dorsal skinfold model in mice. A PubMed and a patent search were performed and all papers related to “dorsal skinfold chamber” from 1 of January 2006 to 31 of December 2015 were evaluated regarding the dorsal skinfold chamber models and their technical improvements. The main models are described and compared to our titanium Leipzig Dorsal Skinfold Chamber model.Results: The Leipzig Dorsal Skinfold Chamber fulfils all requirements of continuous models known from previous chamber models while reducing irritation to the mice. Five different chamber models have been identified showing substantial regional diversity. The newly elaborated titanium dorsal skinfold chamber may replace the pre-existing titanium chamber model used in Germany so far, as it is smaller and lighter

  12. A combination drift chamber/pad chamber for very high readout rates

    International Nuclear Information System (INIS)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W.; Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J.; Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P.; Arenton, M.; Conetti, S.; Cox, B.; Dukes, E.; Golovatyuk, V.; Hanlet, P.; McManus, A.; Nelson, K.; Recagni, M.; Segal, J.; Sun, J.; Ballagh, C.; Bingham, H.; Kaeding, T.; Lys, J.; Misawa, S.; Blankman, A.; Borodin, S.; Kononenko, W.; Newcomer, M.; Selove, W.; Trojak, T.; VanBerg, R.; Zhang, S.N.; Block, M.; Corti, G.; LeCompte, T.; Rosen, J.; Yao, T.; Boden, A.; Cline, D.; Ramachandran, S.; Rhoades, J.; Tokar, S.; Budagov, J.; Tsyganov, E.; Cao, Z.L.; He, M.; Wang, C.; Wei, C.; Zhang, N.; Chen, T.Y.; Yao, N.; Clark, K.; Jenkins, M.; Cooper, M.; Creti, P.; Gorini, E.; Grancagnolo, F.; Panareo, M.; Fortney, L.; Kowald, W.; Haire, M.; Judd, D.; Turnbull, L.; Wagoner, D.; Lau, K.; Mo, G.; Trischuk, J.

    1991-11-01

    Six medium-sized (∼1 x 2 m 2 ) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers

  13. A combination drift chamber/pad chamber for very high readout rates

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.; Cataldi, G.; Elia, V.; Mazur, P.; Murphy, C.T.; Smith, R.P.; Yang, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Alexopoulos, T.; Durandet, C.; Erwin, A.; Jennings, J. (Wisconsin Univ., Madison, WI (United States)); Antoniazzi, L.; Introzzi, G.; Lanza, A.; Liguori, G.; Torre, P. (Pavia Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Rome (Italy)); Arenton, M.; Conetti, S.

    1991-11-01

    Six medium-sized ({approx}1 {times} 2 m{sup 2}) drift chambers with pad and stripe readout have been constructed for and are presently operating in Fermi National Accelerator Laboratory experiment E-771. Each chamber module actually represents a pair of identical planes: two sets of anode wires, two sets of stripes, and two sets of pads. The wire planes are read out separately and represent X measurements in the coordinate system of the experiment. The twin stripe and pad planes are internally paired within the chamber modules; stripe signals represent Y measurements and pad signals combination X and Y measurements. Signals which develop on the stripes and pads are mirror (but inverted) images of what is seen on the wires. In addition to being used in the off-line pattern recognition, pad signals are also used as inputs to an on-line high transverse momentum (pt) trigger processor. While the techniques involved in the design and construction of the chambers are not novel, they may be of interest to experiments contemplating very large area, high rate chambers for future spectrometers.

  14. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  15. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    Science.gov (United States)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  16. Developments in numerical simulation of IFE target and chamber physics

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Alonso, E.; Gil, J.M.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Munoz, R.; Ogando, F.; Perlado, J.M.; Piera, M.; Reyes, S.; Rubiano, J.G.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2000-01-01

    The work presented outlines the global frame given at the Institute of Nuclear Fusion (DENIM) for having an integral perspective of the different research areas with the development of Inertial Fusion for energy generation. The coupling of a new radiation transport (RT) solver with an existing multi-material fluid dynamics code using Adaptive Mesh Refinement (ARM) is presented in Section 2, including improvements and additional information about the solver precision. In Section 3, new developments in the atomic physics codes under target conditions, to determine populations, opacity data and emissivities have been performed. Exotic and innovative ideas about Inertial Fusion Energy (IFE), as catalytic fuels and Z-pinches have been explored, and they are explained in Section 4. Numerical simulations demonstrate important reductions in the tritium inventory. Section 5 is devoted to safety and environment of the IFE. Uncertainties analysis in activation calculations have been included in the ACAB activation code, and also calculations on pulse activation in IFE reactors and on the activation of target debris in NIF are presented. A comparison of the accidental releases of tritium from some IFE reactors computed using MACCS2 code is explained. Finally, Section 6 contains the research on the basic mechanisms of neutron damage in SiC (low-activation material) and FeCu alloy using the DENIM/LLNL molecular dynamics code MDCASK. (authors)

  17. Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2

    International Nuclear Information System (INIS)

    Atherton, J.

    1999-01-01

    sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material

  18. A new type of resistive plate chamber: The multigap RPC

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Lamas Valverde, J.; Neupane, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    This Letter describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap). (orig.)

  19. A new type of resistive plate chamber the multigap RPC

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    This paper describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap).

  20. Change of Pressing Chamber Conicalness at Briquetting Process in Briquetting Machine Pressing Chamber

    Directory of Open Access Journals (Sweden)

    Peter Križan

    2012-01-01

    Full Text Available In this paper, we will present the impact of the conical shape of a pressing chamber, an important structural parameter. Besides the known impact of the technological parameters of pressing chambers, it is also very important to pay attention to their structural parameters. In the introduction, we present a theoretical analysis of pressing chamber conicalness. An experiment aimed at detecting this impact was performed at our institute, and it showed that increasing the conicalness of a pressing chamber improves the quality of the final briquettes. The conicalness of the pressing chamber has a significanteffect on the final briquette quality and on the construction of briquetting machines. The experimental findings presented here show the importance of this parameter in the briquetting process.

  1. Quantum dynamics of a particle in a tracking chamber

    CERN Document Server

    Figari, Rodolfo

    2014-01-01

    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum particle is revealed in a tracking chamber as a trajectory obeying the laws of classical mechanics. The authors provide here a purely quantum-mechanical description of this behavior, thus helping to illuminate the nature of the border between the quantum and the classical.

  2. Preliminary report: NIF laser bundle review

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    As requested in the guidance memo 1 , this committe determined whether there are compelling reasons to recommend a change from the NIF CDR baseline laser. The baseline bundle design based on a tradeoff between cost and technical risk, which is replicated four times to create the required 192 beams. The baseline amplifier design uses bottom loading 1x4 slab and flashlamp cassettes for amplifier maintenance and large vacuum enclosures (2.5m high x 7m wide in cross-section for each of the two spatial filters in each of the four bundles. The laser beams are arranged in two laser bays configured in a u-shape around the target area. The entire bundle review effort was performed in a very short time (six weeks) and with limited resources (15 personnel part-time). This should be compared to the effort that produced the CDR design (12 months, 50 to 100 personnel). This committee considered three alternate bundle configurations (2x2, 4x2, and 4x4 bundles), and evaluated each bundle against the baseline design using the seven requested issues in the guidance memo: Cost; schedule; performance risk; maintainability/operability; hardware failure cost exposure; activation; and design flexibility. The issues were reviewed to identify differences between each alternate bundle configuration and the baseline

  3. Sleeve reaction chamber system

    Science.gov (United States)

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  4. Dual-chamber inflatable oil boom

    International Nuclear Information System (INIS)

    Blair, R.M.; Tedeschi, E.T.

    1993-01-01

    An elongated floating material containment boom section is described having a normally vertical ballasted skirt depending from flotation means, and convertible from a flattened collapsed condition to a deployable condition wherein buoyancy chamber means extending along the upper edge of said skirt are inflated to expanded buoyant configuration, including: a gas-impervious sleeve extending along the upper edge of said normally vertical skirt forming a first outer collapsible and inflatable flotation chamber, a first inflation valve connecting the interior of said sleeve with the ambient atmosphere, through which gas under pressure may be introduced into said sleeve to inflate said first buoyant outer flotation chamber, elongated gas-impervious tube means positioned inside said outer flotation chamber and forming second collapsible and inflatable internal flotation bladder chamber means, second inflation valve means connecting the interior of said bladder means through said outer flotation chamber to the ambient atmosphere through which gas under pressure may be introduced into said bladder means to inflate it forming said second flotation chamber means inside said outer flotation chamber

  5. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  6. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    Science.gov (United States)

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  7. Ultrasonic Testing of NIF Amplifier FAU Top Plates

    International Nuclear Information System (INIS)

    Chinn, D.J.; Huber, R.D.; Haskins, J.J.; Rodriguez, J.A.; Souza, P.R.; Le, T.V.

    2002-01-01

    A key component in the National Ignition Facility (NIF) laser optic system is the amplifier frame assembly unit (FAU). The cast aluminum top plate that supports the FAU is required to withstand loads that would occur during an earthquake with a recurrence period of 1000 years. The stringent seismic requirements placed on the FAU top plate induced a study of the cast aluminum material used in the top plate. Ultrasonic testing was used to aid in characterizing the aluminum material used in the plates. This report documents the work performed using contact ultrasonic testing to characterize the FAU top plate material. The ultrasonic work reported here had 3 objectives: (1) inspect the plate material before cyclic testing conducted at the Pacific Earthquake Engineering Research Center (PEER); (2) determine the overall quality of individual plates; and (3) detect large defects in critical areas of individual plates. Section III, ''Pre-cyclic test inspection'', describes work performed in support of Objective 1. Section IV, ''Ultrasonic field measurements'', describes work performed in support of Objectives 2 and 3

  8. Ultra High Mode Mix in NIF NIC Implosions

    Science.gov (United States)

    Scott, Robbie; Garbett, Warren

    2017-10-01

    This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.

  9. BEBC bubble chamber

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    Looking up into the interior of BEBC bubble chamber from the expansion cylinder. At the top of the chamber two fish-eye lenses are installed and three other fish-eye ports are blanked off. In the centre is a heat exchanger.

  10. Climatic chamber ergometer

    CSIR Research Space (South Africa)

    Atkins, AR

    1968-01-01

    Full Text Available The design and calibration of an ergometer for exercising subjects during calorimetric studies in the climate chamber, are described. The ergometer is built into the climatic chamber and forms an integral part of the whole instrumentation system foe...

  11. Chamber and Wall Response to Target Implosion in Inertial and Z-Pinch Fusion and Lithography Devices

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.; Morozov, V.; Sizyuk, V.

    2006-01-01

    The chamber walls, both solid and liquid, in inertial fusion energy (IFE) and Z-pinch reactors and Lithography devices are exposed to harsh conditions following each target implosion or pinching of plasma. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to target implosion. Detailed models have been developed for reflected laser light, emitted photons, neutrons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The hydrodynamic response of chamber walls in bare or in gas-filled cavities and the photon transport of the deposited energy has been calculated by means of new and advanced numerical techniques for accurate shock treatment and propagation. These models include detail media hydrodynamics, non-LTE multi-group for both continuum and line radiation transport, and dynamics of eroded debris resulting from the intense energy deposition. The focus of this study is to critically assess the reliability and the dynamic response of chamber walls in various proposed protection methods for IFE systems. Key requirements are that: (i) the chamber wall accommodates the cyclic energy deposition while providing the required lifetime due to various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls, and (ii) after each shot the chamber is cleared and returned to a quiescent state in preparation for the target injection and the firing of the driver for the subsequent shot. This paper investigates in details these two important issues and found that the required operating frequency of the IFE reactors for power production may be severely limited due to these two requirements. (author)

  12. Problems and Concerns Regarding Access Control System Construction in Radiation Facilities Based on the NIFS Experience

    International Nuclear Information System (INIS)

    Kawano, T.; Inoue, N.; Sakuma, Y.; Motojima, O.

    2001-01-01

    Full text: In 1998, access control system for the large helical device (LHD) experimental hall was constructed and put into operation at the National Institute for Fusion Science (NIFS) in Toki, Japan. Since then, the system has been continuously improved. It now controls access into the LHD controlled area through four entrances. The system has five turnstile gates and enables control of access at the four entrances. The system is always checking whether the shielding doors are open or closed at eight positions. The details pertaining to the construction of the system were reported at IRPA-10 held in Hiroshima, Japan, in 2000. Based on our construction experience of the NIFS access control system, we will discuss problems related to software and operational design of the system. We will also discuss some concerns regarding the use of the system in radiation facilities. The problems we will present concern, among other thing, individual registration, time control, turnstile control, interlock signal control, data aggregation and transactions, automatic and manual control, and emergency procedures. For example, in relation to the time control and turnstile control functions, we will discuss the gate-opening time interval for an access event, the timing of access data recording, date changing, turn bar control, double access, and access error handling. (author)

  13. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Science.gov (United States)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  14. Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF

    International Nuclear Information System (INIS)

    Ma, T.

    2012-01-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide spectrally resolved time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered targets. Using bremsstrahlung assumptions, the measured absolute x-ray brightness allows for the inference of electron temperature, electron density, hot spot mass, mix mass, and pressure. Current inertial confinement fusion (ICF) experiments conducted on the National Ignition Facility (NIF) seek to indirectly drive a spherical implosion, compressing and igniting a deuterium-tritium fuel. This DT fuel capsule is cryogenically prepared as a solid ice layer surrounded by a low-Z ablator material. Ignition will occur when the hot spot approaches sufficient temperature (∼3-4 keV) and ρR (∼0.3 g/cm 2 ) such that alpha deposition can further heat the hot spot and generate a self-sustaining burn wave. During the implosion, the fuel mass becomes hot enough to emit large amounts of x-ray radiation, the spectra and spatial variation of which contains key information that can be used to evaluate the implosion performance. The Ross filter diagnostic employs differential filtering to provide spectrally resolved, time-integrated, absolute x-ray self-emission images of the imploded core of cryogenic layered targets.

  15. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  16. Reference ionization chamber

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    The paper presents the design of ionization chamber devoted for the determination of the absolute value of the absorbed dose in tissue-equivalent material. The special attention was paid to ensure that the volume of the active gas cavity was constant and well known. A specific property of the chamber design is that the voltage insulators are 'invisible' from any point of the active volume. Such configuration ensures a very good time stability of the electrical field and defines the active volume. The active volume of the chamber was determined with accuracy of 0.3%. This resulted in accuracy of 0.8% in determination of the absorbed dose in the layer of material adherent to the gas cavity. The chamber was applied for calibration purposes at radiotherapy facility in Joint Institute for Nuclear Research in Dubna (Russia) and in the calibration laboratory of the Institute of Atomic Energy in Swierk. (author)

  17. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    Science.gov (United States)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  18. Propagation of a premixed flame in a divided-chamber combustor

    Science.gov (United States)

    Cattolica, R. J.; Barr, P. K.; Mansour, N. N.

    1989-01-01

    Experimental observations on the propagation of lean premixed ethylene-air flames in a divided-chamber combustion vessel have been compared with the results of numerical simulations based on a flame sheet-vortex dynamics model in axisymmetric coordinates. Flame speeds were found to increase from 10-24 cm/s as the equivalence ratio was varied from 0.5-0.65 in the experiments. Using the associated increase in gas velocity with equivalence ratio, the estimated Reynolds number in the experiment was changed from 1870 to 8090. Good agreement between experimental and theoretical results was obtained for the prechamber flame propagation rates and for the spatial and temporal development of the flame in the main combustion chamber at the lowest Reynolds number.

  19. Fission chamber simulator for data acquisition performance tests

    International Nuclear Information System (INIS)

    Batyunin, A.V.; Vorobev, V.A.; Obudovsky, S.Yu.; Kaschuck, Yu.A.; Shvikin, S.A.

    2013-06-01

    Divertor neutron flux monitor (DNFM) is a diagnostic system to be used for measurement of the total neutron yield and fusion power in the experimental fusion tokamak-reactor ITER. The diagnostic consists of the 18 fission chambers (FC), front-end electronics and data acquisition system to process, collect and archive data. The system should provide neutron flux measurements in dynamic range 7 orders of magnitude with a time resolution 1 ms and an error less 10%. (authors)

  20. Plastic flashtube chambers

    International Nuclear Information System (INIS)

    Frisken, W.R.

    1977-01-01

    A brief discussion is given of the use and operation of plastic flashtube chambers. Gas leaks, electric pulsing, the glow discharge, and readout methods are considered. Three distinct problems with high rate applications deal with resolving time, dead time, and polarization/neutralization of the chamber

  1. Laser coupling to reduced-scale targets at NIF Early Light

    International Nuclear Information System (INIS)

    Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A; Bonanno, G; Bower, D E; Bruns, H C; Campbell, K M; Celeste, J R; Compton, S; Costa, R L; Dewald, E L; Dixit, S N; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A D; Emig, J A; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Henesian, M A; Holtmeier, G; James, D L; Jancaitis, K S; Kalantar, D H; Kamperschroer, J H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Landen, O L; Landon, M; Lee, F D; MacGowan, B J; Mackinnon, A J; Manes, K R; Marshall, C; May, M J; McDonald, J W; Menapace, J; Moses, S I; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Power, G D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P; Still, C H; Suter, L J; Tietbohl, G L; Turner, R E; VanWonterghem, B M; Wallace, R J; Warrick, A; Watts, P; Weber, F; Wegner, P J; Williams, E A; Young, P E

    2005-01-01

    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light

  2. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D.C.; Song, P.M.; Latkowski, J.F.; Reyes, S.; O' Brien, D.W.; Lee, F.D.; Young, B.K.; Koch, J.A.; Moran, M.J.; Watts, P.W.; Kimbrough, J.R.; Ng, E.W.; Landen, O.L.; MacGowan, B.J. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2006-06-15

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3-dimensional Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (about 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields. (authors)

  3. Impact of neutron and gamma radiation on the design of NIF diagnostics and target-bay systems

    Science.gov (United States)

    Eder, D. C.; Song, P. M.; Latkowski, J. F.; Reyes, S.; O'Brien, D. W.; Lee, F. D.; Young, B. K.; Koch, J. A.; Moran, M. J.; Watts, P. W.; Kimbrough, J. R.; Ng, E. W.; Landen, O. L.; MacGowan, B. J.

    2006-06-01

    The design of a wide range of components in and near the target bay of the National Ignition Facility (NIF) must allow for significant radiation from neutrons and gammas. Detailed 3D Monte Carlo simulations are critical to determine neutron and gamma fluxes for all target-bay components to allow optimization of location and auxiliary shielding. Demonstration of ignition poses unique challenges because of the large range (˜ 3 orders of magnitude) in the yield for any given attempt at ignition. Some diagnostics will provide data independent of yield, while others will provide data for lower yields and only survive high yields with little or no damage. In addition, for a given yield there is a more than 10 orders of magnitude range in neutron and gamma fluxes depending on location in the facility. For example, sensitive components in the diagnostic mezzanines and switchyards require auxiliary shielding for high-yield shots even though they are greater than 17 meters from target chamber center (TCC) and shielded by the 2 m-thick target-bay wall. In contrast, there are components 0.2 to 2 m from TCC with little or no shielding. For these components, particular attention is being made to use low-activation material because of the extremely high neutron loading levels. Many of the components closest to target center are designed to be single use to reduce worker dose from having to refurbish highly activated components. The cryogenic target positioner is an example where activation and ease of component replacement is an important part of the design. We are developing a design process for all target-bay systems that will assure reliable operation for the full range of planned yields.

  4. Flow Characteristics of Multi-circular Jet Plate in Premix Chamber of Air-Assist Atomizer for Burner System

    Directory of Open Access Journals (Sweden)

    Amirnordin Shahrin Hisham

    2016-01-01

    Full Text Available The flow characteristics of multi-circular jet (MCJ plate in the premix chamber of an atomizer were investigated using Computational Fluid Dynamics. Multiphase volume of fluid behavior inside the chamber was determined via steady simulations. The Eulerian–Eulerian two-fluid approach was used for execution mixing of diesel fuel and air. Spray simulation using the discrete phase with injection was generated from the nozzle hole into the ambient atmosphere. The behavior of three MCJ plates in the premix chamber was studied numerically. Results illustrated that plate open area, Ae, influenced the turbulence inside the chamber. MCJ 3, which had the lowest open area, generated the highest flow velocity and turbulence kinetic energy compared with MCJ 1 and 2. The MCJ plates could increase the turbulence in the premix chamber and contribute to the combustion efficiency.

  5. Nucleation in bubble chambers

    International Nuclear Information System (INIS)

    Harigel, G.G.

    1988-01-01

    Various sources and mechanisms for bubble formation in superheated liquids are discussed. Bubble chambers can be filled with a great variety of liquids, such as e.g. the cryogenic liquids hydrogen, deuterium, neon, neon/hydrogen mixtures, argon, nitrogen, argon/nitrogen mixtures, or the warm liquids propane and various Freon like Freon-13B1. The superheated state is normally achieved by a rapid movement of an expansion piston or membrane, but can also be produced by standing ultrasonic waves, shock waves, or putting liquids under tension. Bubble formation can be initiated by ionizing particles, by intense (laser) light, or on rough surfaces. The creation of embryonic bubbles is not completely understood, but the macroscopic growth and condensation can be calculated, allowing to estimate the dynamic heat load [fr

  6. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  7. Prototype multiwire proportional chamber

    CERN Multimedia

    1975-01-01

    Chambers of this type were initially developed within the Alpha project (finally not approved). They were designed such to minimize the radiation length with a view to a mass spectrometer of high resolution meant to replace the Omega detector. The chambers were clearly forerunners for the (drift) chambers later built for R606 with the novel technique of crimping the wires. See also photo 7510039X.

  8. Microbiological and biochemical aspects of Camembert-type cheeses depend on atmospheric composition in the ripening chamber.

    Science.gov (United States)

    Leclercq-Perlat, M-N; Picque, D; Riahi, H; Corrieu, G

    2006-08-01

    Camembert-type cheeses were prepared from pasteurized milk seeded with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum. Microorganism growth and biochemical dynamics were studied in relation to ripening chamber CO(2) atmospheric composition using 31 descriptors based on kinetic data. The chamber ripening was carried out under 5 different controlled atmospheres: continuously renewed atmosphere, periodically renewed atmosphere, no renewed atmosphere, and 2 for which CO(2) was either 2% or 6%. All microorganism dynamics depended on CO(2) level. Kluyveromyces lactis was not sensitive to CO(2) during its growth phases, but its death did depend on it. An increase of CO(2) led to a significant improvement in G. candidum. Penicillium camemberti mycelium development was enhanced by 2% CO(2). The equilibrium between P. camemberti and G. candidum populations was disrupted in favor of the yeast when CO(2) was higher than 4%. Growth of B. aurantiacum depended more on O(2) than on CO(2). Two ripening progressions were observed in relation to the presence of CO(2) at the beginning of ripening: in the presence of CO(2), the ripening was fast-slow, and in the absence of CO(2), it was slow-fast. The underrind was too runny if CO(2) was equal to or higher than 6%. The nitrogen substrate progressions were slightly related to ripening chamber CO(2) and O(2) levels. During chamber ripening, the best atmospheric condition to produce an optimum between microorganism growth, biochemical dynamics, and cheese appearance was a constant CO(2) level close to 2%.

  9. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  10. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  11. Safety overview of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.J.; McLouth, L.; Odell, B.; Singh, M.; Tobin, M.; Trent, M.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed US Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium- tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF. It provides an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  12. The national ignition facility performance status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C.; Auerbach, J.; Bowers, M.; Di-Nicola, J.M.; Dixit, S.; Erbert, G.; Heestand, G.; Henesian, M.; Jancaitis, K.; Manes, K.; Marshall, C.; Mehta, N.; Nostrand, M.; Orth, C.; Sacks, R.; Shaw, M.; Sutton, S.; Wegner, P.; Williams, W.; Widmayer, C.; White, R.; Yang, S.; Van Wonterghem, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2006-06-15

    The National Ignition Facility (NIF) laser has been designed to support high energy density science, including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single 'quad' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the precision diagnostic system (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements. (authors)

  13. The National Ignition Facility Performance Status

    Energy Technology Data Exchange (ETDEWEB)

    Haynam, C; Auerbach, J; Nicola, J D; Dixit, S; Heestand, G; Henesian, M; Jancaitis, K; Manes, K; Marshall, C; Mehta, N; Nostrand, M; Orth, C; Sacks, R; Shaw, M; Sutton, S; Wegner, P; Williams, W; Widmayer, C; White, R; Yang, S; Van Wonterghem, B

    2005-08-30

    The National Ignition Facility (NIF) laser has been designed to support high energy density science (HEDS), including the demonstration of fusion ignition through Inertial Confinement. NIF operated a single ''quad'' of 4 beams from December 2002 through October 2004 in order to gain laser operations experience, support target experiments, and demonstrate laser performance consistent with NIF's design requirement. During this two-year period, over 400 Main Laser shots were delivered at 1{omega} to calorimeters for diagnostic calibration purposes, at 3{omega} to the Target Chamber, and at 1{omega}, 2{omega}, and 3{omega} to the Precision Diagnostics System (PDS). The PDS includes its own independent single beam transport system, NIF design frequency conversion hardware and optics, and laser sampling optics that deliver light to a broad range of laser diagnostics. Highlights of NIF laser performance will be discussed including the results of high energy 2{omega} and 3{omega} experiments, the use of multiple focal spot beam conditioning techniques, the reproducibility of laser performance on multiple shots, the generation on a single beam of a 3{omega} temporally shaped ignition pulse at full energy and power, and recent results on full bundle (8 beamline) performance. NIF's first quad laser performance meets or exceeds NIF's design requirements.

  14. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  15. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  16. Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 900 Off-axis Parabolic Mirrors

    International Nuclear Information System (INIS)

    H.W. Herrmann; R.M. Malone; W. Stoeffl; J.M. Mack; C.S. Young

    2008-01-01

    Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a ten-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90 o Off-Axis Parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range as well as different gamma energy threshold sensitivities

  17. Directed Energy Anechoic Chamber

    Data.gov (United States)

    Federal Laboratory Consortium — The Directed Energy Anechoic Chamber comprises a power anechoic chamber and one transverse electromagnetic cell for characterizing radiofrequency (RF) responses of...

  18. Contributions to 30th European Physical Society conference on controlled fusion and plasma physics (St. Petersburg, Russia, 7-11 July 2003) from NIFS

    International Nuclear Information System (INIS)

    2003-08-01

    25 contributed papers to the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics (St. Petersburg, Russia, 7-11 July 2003) from the activity of NIFS are collected in this report. (author)

  19. Streamer chamber: pion decay

    CERN Multimedia

    1992-01-01

    The real particles produced in the decay of a positive pion can be seen in this image from a streamer chamber. Streamer chambers consist of a gas chamber through which a strong pulsed electric field is passed, creating sparks as a charged particle passes through it. A magnetic field is added to cause the decay products to follow curved paths so that their charge and momentum can be measured.

  20. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. The Time Projection Chamber of the HARP Experiment

    CERN Document Server

    Lundborg, A

    2002-01-01

    The hadron production experiment HARP aims to measure hadron collision cross sections with a 2-15 GeV particle beam and several targets. This energy regime is in a borderline zone between the low energy region dominated by resonance formation and the high energy domain where perturbative Quantum Chromo Dynamics is applicable. The emphasis of this master thesis is put on the HARP central tracker, the Time Projection Chamber (TPC). In the thesis work, Finite Element Method computations of the electric field in critical regions of the TPC have been performed to provide design input concerning the electrostatic configuration of the field cages and of the wire chamber. A first step in the chain of reconstruction of the information produced by the detector is the equalisation and monitoring of about 4000 analogue signals. An algorithm that processes the raw digitised signals, filters out electronics noise and extracts the pad gain from signal distributions has been produced and analysed for this purpose. The algori...

  2. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  3. Directional muon jet chamber for a muon collider (Groovy Chamber)

    International Nuclear Information System (INIS)

    Atac, M.

    1996-10-01

    A directional jet drift chamber with PAD readout is proposed here which can select vertex originated muons within a given time window and eliminate those muons which primarily originate upstream, using only a PAD readout. Drift time provides the Z-coordinate, and the center of gravity of charge distribution provides the r-ψ coordinates. Directionality at the trigger level is obtained by the timing measurement from the PAD hits within a given time window. Because of the long drift time between the bunch crossings, a muon collider enables one to choose a drift distance in the drift chamber as long as 50 cm. This is an important factor in reducing cost of drift chambers which have to cover relatively large areas

  4. Pencil-shaped radiation detection ionization chamber

    International Nuclear Information System (INIS)

    Suzuki, A.

    1979-01-01

    A radiation detection ionization chamber is described. It consists of an elongated cylindrical pencil-shaped tubing forming an outer wall of the chamber and a center electrode disposed along the major axis of the tubing. The length of the chamber is substantially greater than the diameter. A cable connecting portion at one end of the chamber is provided for connecting the chamber to a triaxial cable. An end support portion is connected at the other end of the chamber for supporting and tensioning the center electrode. 17 claims

  5. Power conditioning development for the National Ignition Facility

    International Nuclear Information System (INIS)

    Newton, M.A.; Larson, D.W.; Wilson, J.M.; Harjes, H.C.; Savage, M.E.; Anderson, R.L.

    1996-10-01

    The National Ignition Facility (NIF) is a high energy glass laser system and target chamber that will be used for research in inertial confinement fusion. The 192 beams of the NIF laser system are pumped by over 8600 Xenon flashlamps. The power conditioning system for NIF must deliver nearly 300 MJ of energy to the flashlamps in a cost effective and reliable manner. The present system design has over 200 capacitive energy storage modules that store approximately 1.7 MJ each and deliver that energy through a single switch assembly to 20 parallel sets of two series flashlamps. Although there are many possible system designs, few will meet the aggressive cost goals necessary to make the system affordable. Sandia National Laboratory (SNL) and Lawrence Livermore National Laboratory (LLNL) are developing the system and component technologies that will be required to build the power conditioning system for the National Ignition Facility. This paper will describe the ongoing development activities for the NIF power conditioning system

  6. The National Ignition Facility

    International Nuclear Information System (INIS)

    Hogan, W.J.; Moses, E.; Warner, B.; Sorem, M.; Soures, J.M.

    2001-01-01

    The National Ignition Facility (NIF) is the largest construction project ever undertaken at Lawrence Livermore National Laboratory (LLNL). NIF consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. NIF is being designed and built by an LLNL-led team from Los Alamos National Laboratory, Sandia National Laboratories, the University of Rochester, and LLNL. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This paper will discuss the status of the NIF project and the plans for completion. (author)

  7. National Ignition Facility environmental protection systems

    International Nuclear Information System (INIS)

    Mintz, J.M.; Reitz, T.C.; Tobin, M.T.

    1994-06-01

    The conceptual design of Environmental Protection Systems (EPS) for the National Ignition Facility (NIF) is described. These systems encompass tritium and activated debris handling, chamber, debris shield and general decontamination, neutron and gamma monitoring, and radioactive, hazardous and mixed waste handling. Key performance specifications met by EPS designs include limiting the tritium inventory to 300 Ci and total tritium release from NIF facilities to less than 10 Ci/yr. Total radiation doses attributable to NIF shall remain below 10 mrem/yr for any member of the general public and 500 mrem/yr for NIF staff. ALARA-based design features and operational procedures will, in most cases, result in much lower measured exposures. Waste minimization, improved cycle time and reduced exposures all result from the proposed CO2 robotic arm cleaning and decontamination system, while effective tritium control is achieved through a modern system design based on double containment and the proven detritiation technology

  8. Blast from pressurized carbon dioxide released into a vented atmospheric chamber

    Science.gov (United States)

    Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.

    2018-03-01

    This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.

  9. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    Science.gov (United States)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  10. NIF laser bundle review. Final report

    International Nuclear Information System (INIS)

    Tietbohl, G.L.; Larson, D.W.; Erlandson, A.C.

    1995-01-01

    We performed additional bundle review effort subsequent to the completion of the preliminary report and are revising our original recommendations. We now recommend that the NIF baseline laser bundle size be changed to the 4x2 bundle configuration. There are several 4x2 bundle configurations that could be constructed at a cost similar to that of the baseline 4x12 (from $11M more to about $11M less than the baseline; unescalated, no contingency) and provide significant system improvements. We recommend that the building cost estimates (particularly for the in-line building options) be verified by an architect/engineer (A/E) firm knowledgeable about building design. If our cost estimates of the in-line building are accurate and therefore result in a change from the baseline U-shaped building layout, the acceptability of the in-line configuration must be reviewed from an operations viewpoint. We recommend that installation, operation, and maintenance of all laser components be reviewed to better determine the necessity of aisles, which add to the building cost significantly. The need for beam expansion must also be determined since it affects the type of bundle packing that can be used and increases the minimum laser bay width. The U-turn laser architecture (if proven viable) offers a reduction in building costs since this laser design is shorter than the baseline switched design and requires a shorter laser bay

  11. NIFS joint research meeting on plasma facing components, PSI, and heat/particle control

    International Nuclear Information System (INIS)

    Yamashina, T.

    1997-10-01

    The LHD collaboration has been started in 1996. Particle and heat control is one of the categories for the collaboration, and a few programs have been nominated in these two years. A joint research meeting on PFC, PSI, heat and particle meeting was held at NIFS on June 27, 1997, in which present status of these programs were reported. This is a collection of the notes and view graphs presented in this meeting. Brief reviews and research plan of each program are included in relation to divertor erosion and sputtering, impurity generation, hydrogen recycling, edge plasma structure, edge transport and its control, heat removal, particle exhaust, wall conditioning etc. (author)

  12. Establishment of a radon test chamber

    International Nuclear Information System (INIS)

    Chen Chingjiang; Liu Chichang; Lin Yuming

    1993-01-01

    A walk-in type radon test chamber of 23 m 3 has been built for testing and calibration of radon measurement instruments. The environmental conditions of the test chamber can be varied within a wide range of values. The design objectives specification, monitoring instruments and testing results of this chamber are discussed. This test chamber is available for domestic radon researchers and its accuracy can be traced to the international standard. A routine intercomparison study will be held annually by using this chamber. Other tests like radon progeny and thoron standard may also be performed in this chamber. (1 fig.)

  13. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  14. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    Science.gov (United States)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  15. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  16. Cloud Chamber

    DEFF Research Database (Denmark)

    Gfader, Verina

    Cloud Chamber takes its roots in a performance project, titled The Guests 做东, devised by Verina Gfader for the 11th Shanghai Biennale, ‘Why Not Ask Again: Arguments, Counter-arguments, and Stories’. Departing from the inclusion of the biennale audience to write a future folk tale, Cloud Chamber......: fiction and translation and translation through time; post literacy; world picturing-world typing; and cartographic entanglements and expressions of subjectivity; through the lens a social imaginary of worlding or cosmological quest. Art at its core? Contributions by Nikos Papastergiadis, Rebecca Carson...

  17. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  18. Analysis of BigFoot HDC SymCap experiment N161205 on NIF

    Science.gov (United States)

    Dittrich, T. R.; Baker, K. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Harte, J. A.; Zimmerman, G. B.; Woods, D. T.; Kritcher, A. L.; Ho, D. D.; Weber, C. R.; Kyrala, G.

    2017-10-01

    Analysis of NIF implosion experiment N161205 provides insight into both hohlraum and capsule performance. This experiment used an undoped High Density Carbon (HDC) ablator driven by a BigFoot x-ray profile in a Au hohlraum. Observations from this experiment include DT fusion yield, bang time, DSR, Tion and time-resolved x-ray emission images around bang time. These observations are all consistent with an x-ray spectrum having significantly reduced Au m-band emission that is present in a standard hohlraum simulation. Attempts to justify the observations using several other simulation modifications will be presented. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Canopy Chamber: a useful tool to monitor the CO2 exchange dynamics of shrubland

    Czech Academy of Sciences Publication Activity Database

    Guidolotti, G.; De Dato, G.; Liberati, D.; De Angelis, Paolo

    2017-01-01

    Roč. 10, JUN (2017), s. 597-604 ISSN 1971-7458 Institutional support: RVO:67179843 Keywords : Canopy chamber * Cistus monspeliensis * CO2 fluxes * Mediterranean garrigue * Semiarid ecosystems * Shrubland Subject RIV: GK - Forestry OBOR OECD: Forestry Impact factor: 1.623, year: 2016

  20. Assessment of condensation of water vapor in the mixing chamber by CFD method

    Directory of Open Access Journals (Sweden)

    Vojkůvková Petra

    2015-01-01

    Full Text Available The analyzed topic belongs to the field of design and operation of HVAC systems, focusing mainly on mixing chambers. The paper deals with problems of condensation and freezing of water vapour on walls of mixing chambers in a special case, when the partial pressure of the final resulting state of the mixture of warm moist air and colder air is located above the saturation limit. Experimental in situ methods and computer computational fluid dynamics (CFD modelling method were used for processing. The main contribution of this work is the finding that partial condensation and freezing of water vapour may occur in local parts of the mixing chamber. It causes problems in terms of hygienic safety and service life of these devices. In particular it has been found that condensation and freezing of water vapour may occur even if relative humidity of the resulting mixture is about 70 %.

  1. 3D studies of the NIF symmetry tuning targets

    Science.gov (United States)

    Milovich, J.; Jones, O.; Edwards, M.; Weber, S.; Dewald, E.; Landen, O.; Marinak, M.

    2009-11-01

    Minimizing radiation drive asymmetries is necessary for a successful ignition campaign. Since the ignition capsule symmetry is most sensitive to the foot (first 2 ns) and the peak of the laser pulse, two different targets will be fielded on the NIF: re-emit and symmetry capsules (Sym-Caps). The first measures the incoming flux asymmetries during the foot by observing the re-radiated flux of a high-Z ball in place of the ignition capsule. The Sym-Caps resemble the ignition target with the frozen DT layer replaced by an equivalent mass of ablator material, thus preserving the hydrodynamic implosion properties. By measuring the x-ray self-emission near peak compression the ignition capsule core shape can be tuned. Simulations with 2D radiation-hydrodynamic simulations codes omit 3D effects in the hohlraum such as diagnostic holes, capsule roughness, shot-to-shot variations caused by laser beam power imbalances and pointing errors. We study these effects by performing 3D simulations using HYDRA and found that tuning the laser pulse using a finite number of shots is not substantially compromised.

  2. The Ignition Physics Campaign on NIF: Status and Progress

    International Nuclear Information System (INIS)

    Edwards, M. J.

    2016-01-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x10 15 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities. (paper)

  3. Progress towards monochromatic imaging of mix at the NIF

    Science.gov (United States)

    Kyrala, G. A.; Murphy, T. J.; Bradley, P. A.; Krashenninnikova, N. S.; Tregillis, I. L.; Obrey, K.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Schmitt, M. J.; Kanzleiter, R. J.; Regan, S. P.; Barrios, M. A.

    2013-10-01

    Mix of non-hydrogenic (Z >1) material into the hydrogenic (D and T) ICF capsule fuel degrades implosion performance. The amount of degradation depends on the degree and the spatial distribution of mix. Experiments are underway at NIF to quantify the mix of shell material into fuel using directly driven capsules. CH or CD shells with various dopants, implanted at different depths in the shell are being used to change the amount of dopant mix. Spatially and spectrally resolved emission from the ionized dopants will be used to generate spatially and temporally dependent density and temperature maps of the ionized dopants that are mixed and heated in the core plasma. This information will be used to validate different mix models. This talk will describe the search for the appropriate dopant that gave a radiation spectrum that could be used to record images with the MMI diagnostic. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  4. NIF target area design support. Final summary report

    International Nuclear Information System (INIS)

    Tokheim, R.E.; Seaman, L.; Curran, D.R.

    1996-02-01

    SRI International continued support work for the National Ignition Facility, Chamber Dynamics Group at Lawrence Livermore National Laboratory (LLNL). The work entailed computational modeling of shrapnel and debris generation from copper shine shields, hohlraum, and stainless steel cryogenic support tubes for 1.8 MJ and 1.0 MJ no-yield and 20 MJ yield shots. Also, the authors addressed the effects of shrapnel at the first wall. Computations for 1.8 MJ showed an ionized gold hohlraum, but about half solid and half ionized copper shine shields, when material cell phase boundaries were maintained. This debris generation represents a potential threat to the first wall and debris shields. Further work is required to translate these results into particle size distributions based on computed strain rates. The authors used simple algorithms for x-ray loading of frost layers protecting the target support to compute peak stress attenuation. They developed algorithmic formulas for predicting damage in candidate first wall materials and they found damage algorithms for fused-silica debris shield material. They obtained very preliminary computational results at 20 MJ for predicting shrapnel mass and particle density at the first wall in spherical polar coordinate space with the hohlraum axis as the polar direction

  5. Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments

    International Nuclear Information System (INIS)

    Hassanein, A.; Morozov, V.

    2002-01-01

    The chamber walls in inertial fusion energy (IFE) reactors are exposed to harsh conditions following each target implosion. Key issues of the cyclic IFE operation include intense photon and ion deposition, wall thermal and hydrodynamic evolution, wall erosion and fatigue lifetime, and chamber clearing and evacuation to ensure desirable conditions prior to next target implosion. Several methods for wall protection have been proposed in the past, each having its own advantages and disadvantages. These methods include use of solid bare walls, gas-filled cavities, and liquid walls/jets. Detailed models have been developed for reflected laser light, emitted photons, and target debris deposition and interaction with chamber components and have been implemented in the comprehensive HEIGHTS software package. The focus of this study is to critically assess the reliability and the dynamic response of chamber walls in IFE systems. Of particular concern is the effect on wall erosion lifetime due to various erosion mechanisms, such as vaporization, chemical and physical sputtering, melt/liquid splashing and explosive erosion, and fragmentation of liquid walls

  6. Using deep neural networks to augment NIF post-shot analysis

    Science.gov (United States)

    Humbird, Kelli; Peterson, Luc; McClarren, Ryan; Field, John; Gaffney, Jim; Kruse, Michael; Nora, Ryan; Spears, Brian

    2017-10-01

    Post-shot analysis of National Ignition Facility (NIF) experiments is the process of determining which simulation inputs yield results consistent with experimental observations. This analysis is typically accomplished by running suites of manually adjusted simulations, or Monte Carlo sampling surrogate models that approximate the response surfaces of the physics code. These approaches are expensive and often find simulations that match only a small subset of observables simultaneously. We demonstrate an alternative method for performing post-shot analysis using inverse models, which map directly from experimental observables to simulation inputs with quantified uncertainties. The models are created using a novel machine learning algorithm which automates the construction and initialization of deep neural networks to optimize predictive accuracy. We show how these neural networks, trained on large databases of post-shot simulations, can rigorously quantify the agreement between simulation and experiment. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Modeling of Uneven Flow and Electromagnetic Field Parameters in the Combustion Chamber of Liquid Rocket Engine with a Near-wall Layer Available

    Directory of Open Access Journals (Sweden)

    A. V. Rudinskii

    2015-01-01

    Full Text Available The paper concerns modeling of an uneven flow and electromagnetic field parameters in the combustion chamber of the liquid rocket engine with a near-wall layer available.The research objective was to evaluate quantitatively influence of changing model chamber mode of the liquid rocket engine on the electro-physical characteristics of the hydrocarbon fuel combustion by-products.The main method of research was based on development of a final element model of the flowing path of the rocket engine chamber and its adaptation to the boundary conditions.The paper presents a developed two-dimensional non-stationary mathematical model of electro-physical processes in the liquid rocket engine chamber using hydrocarbon fuel. The model takes into consideration the features of a gas-dynamic contour of the engine chamber and property of thermo-gas-dynamic characteristics of the ionized products of combustion of hydrocarbonic fuel. Distributions of magnetic field intensity and electric conductivity received and analyzed taking into account a low-temperature near-wall layer. Special attention is paid to comparison of obtained calculation values of the electric current, which is taken out from intrachamber space of the engine with earlier published data of other authors.

  8. Safety analysis and risk assessment of the National Ignition Facility

    International Nuclear Information System (INIS)

    Brereton, S.; McLouth, L.; Odell, B.

    1996-01-01

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF mission is to achieve inertial confinement fusion (ICF) ignition, access physical conditions in matter of interest to nuclear weapons physics, provide an above ground simulation capability for nuclear weapons effects testing, and contribute to the development of inertial fusion for electrical power production. The NIF has been classified as a radiological, low hazard facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A draft Preliminary Safety Analysis Report (PSAR) has been written, and this will be finalized later in 1996. This paper summarizes the safety issues associated with the operation of the NIF and the methodology used to study them. It provides a summary of the methodology, an overview of the hazards, estimates maximum routine and accidental exposures for the preferred site of LLNL, and concludes that the risks from NIF operations are low

  9. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  10. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)

    International Nuclear Information System (INIS)

    Kim, Yong Ho; Evans, Scott C.; Herrmann, Hans W.; Mack, Joseph M.; Young, Carl S.; Malone, Robert M.; Cox, Brian C.; Frogget, Brent C.; Kaufman, Morris I.; Tunnell, Thomas W.; Tibbitts, Aric; Palagi, Martin J.; Stoeffl, Wolfgang

    2010-01-01

    The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

  13. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    Science.gov (United States)

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  14. Auxins upregulate nif and fix genes.

    Science.gov (United States)

    Bianco, Carmen; Defez, Roberto

    2010-10-01

    In a recent publication we analyzed the global effects triggered by IAA overproduction in S. meliloti RD64 under free-living conditions by comparing the gene expression pattern of wild type 1021 with that of RD64 and 1021 treated with IAA and other four chemically or functionally related molecules. Among the genes differentially expressed in RD64 and IAA-treated 1021 cells we found two genes of pho operon, phoT and phoC. Based on this finding we examined the mechanisms for mineral P solubilization in RD64 and the potential ability of this strain to improve Medicago growth under P-starved conditions. Here, we further analyze the expression profiles obtained in microarray analysis and evaluate the specificity and the extent of overlap between all treatments. Venn diagrams indicated that IAA- and 2,4-D-regulated genes were closely related. Furthermore, most differentially expressed genes from pSymA were induced in 1021 cells treated with 2,4-D, ICA, IND and Trp as compared to the untreated 1021 cells. RT-PCR analysis was employed to analyze the differential expression patterns of nitrogen fixation genes under free-living and symbiotic conditions. Under symbiotic condition, the relative expression levels of nif and fix genes were significantly induced in Mt- RD64 plants and in Mt-1021 plants treated with IAA and 2,4-D whereas they were unchanged or repressed in Mt-1021 plants treated with the other selected compounds when compared to the untreated Mt-1021 plants. © 2010 Landes Bioscience

  15. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF

    International Nuclear Information System (INIS)

    Casey, D. T.; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Rosenberg, M. J.; Rinderknecht, H.; Manuel, M. J.-E.; Gatu Johnson, M.; Schaeffer, J. C.; Frankel, R.; Sinenian, N.; Childs, R. A.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Burke, M.; Roberts, S.

    2011-01-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  16. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    Science.gov (United States)

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  17. Criteria for controlled atmosphere chambers

    International Nuclear Information System (INIS)

    Robinson, J.N.

    1980-03-01

    The criteria for design, construction, and operation of controlled atmosphere chambers intended for service at ORNL are presented. Classification of chambers, materials for construction, design criteria, design, controlled atmosphere chamber systems, and operating procedures are presented. ORNL Safety Manual Procedure 2.1; ORNL Health Physics Procedure Manual Appendix A-7; and Design of Viewing Windows are included in 3 appendices

  18. Low noise amplifier for ZnS(Ag) scintillation chamber

    International Nuclear Information System (INIS)

    Do Hoang Cuong

    1998-01-01

    A new pulse amplifier that can be used with standard photomultiplier tubes coupled with Zn(Ag) scintillation chamber is presented. The amplifier based on an IC operational amplifier LF 356N consists of a low-noise charge sensitive preamplifier and pulse shaping circuits for optimization of signal to noise ratio. Temperature instability is ≤ 0.05%/ o C. Dynamic range for linear output signals is equal +7 V. The presented amplifier is used in a measuring head for 0.17 L Lucas chambers developed in Department of Nuclear Instruments and Methods of the INCT in laboratory investigations aimed to develop methods and instruments for measurement of radon concentration in the air. The amplifier can also be employed for measurement of ionizing radiation by means of other scintillators coupled to PM tube. The amplifier is followed by a pulse discriminator with adjustable discrimination level. The amplifier output signal and discriminator output pulses are fed to external devices. (author)

  19. Proceedings of workshop on streamer chamber

    International Nuclear Information System (INIS)

    Itoh, Hidihiko; Takahashi, Kaoru; Hirose, Tachishige; Masaike, Akira

    1978-08-01

    For high accuracy observation of multiple-body reactions, a vertex detector of high efficiency is essential. A bubble chamber, though excellent for tracks detection, is problematic in statistics accuracy. The vertex detector with a wire chamber, while better in this respect, difficult in multiple-particle detection etc. The workshop has had several meetings on a streamer chamber as a detector combining features of both bubble chamber and counter, with emphasis on tracks observation in avalanche mode and recordings not using films. Contents are on streamer chamber gas, analytical photography, data processing, simulation program, etc. (Mori, K.)

  20. Gridded Ionization Chamber

    International Nuclear Information System (INIS)

    Manero Amoros, F.

    1962-01-01

    In the present paper the working principles of a gridded ionization chamber are given, and all the different factors that determine its resolution power are analyzed in detail. One of these devices, built in the Physics Division of the JEN and designed specially for use in measurements of alpha spectroscopy, is described. finally the main applications, in which the chamber can be used, are shown. (Author) 17 refs