WorldWideScience

Sample records for nicuzn ferrite nanoparticles

  1. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  2. Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Ahmad, E-mail: gholizadeh@du.ac.ir; Jafari, Elahe, E-mail: ah_gh1359@yahoo.com

    2017-01-15

    In this work, effects of sintering atmosphere and temperature on structural and magnetic properties of Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles prepared by citrate precursor method have been studied. The structural characterization of the samples by X-ray powder diffraction and FT-IR spectroscopy is evidence for formation of a cubic structure with no presence of impurity phase. Calculated values of crystallite size and unit cell parameter show an increase with sintering temperature under different atmospheres. Variation of saturation magnetization with sintering temperature and atmosphere can be attributed to change of three factors: magnetic core size, inversion parameter and the change of Fe{sup 3+}-ion concentration due to the presence of Fe{sup 4+} and Fe{sup 2+} ions. The saturation magnetization gradually grows with sintering temperature due to increase of magnetic core size and a maximum 63 emu/g was achieved at 600 °C under carbon monoxide-ambient atmosphere. - Highlights: • Different sintering atmosphere and temperature cause substantial differences in Ni{sub 0.3}Cu{sub 0.2}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles. • The saturation magnetization gradually grows. • A maximum 63 emu/g was achieved at 600 °C under a reducing atmosphere.

  3. Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Behzad; Zehani, Karim; LoBue, Martino; Loyau, Vincent; Mazaleyrat, Frederic [SATIE, ENS Cachan, CNRS, UniverSud 61, avenue du President Wilson, F-94230 Cachan (France)

    2012-04-01

    Recently, using spark plasma sintering technique, a family of very fine grained, fully dense NiCuZn ferrites have been produced, which show constant permeability up to several 10 MHz. These ferrites can be used for filtering purposes in high frequency applications where a wide frequency band is required. In this paper, we study the magnetization processes taking place in these nano grained materials, in the frequency interval of 100 kHz to 5 MHz. Using a fluxmetric hysteresis graph, permeability, loss, and BH loops are measured at different temperatures, from -5 deg. C to 110 deg. C. Results are compared to the behavior of micrometric grain size ferrites, which are commonly used for power electronic and high frequency applications.

  4. Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites

    International Nuclear Information System (INIS)

    Ahmadi, Behzad; Zehani, Karim; LoBue, Martino; Loyau, Vincent; Mazaleyrat, Frederic

    2012-01-01

    Recently, using spark plasma sintering technique, a family of very fine grained, fully dense NiCuZn ferrites have been produced, which show constant permeability up to several 10 MHz. These ferrites can be used for filtering purposes in high frequency applications where a wide frequency band is required. In this paper, we study the magnetization processes taking place in these nano grained materials, in the frequency interval of 100 kHz to 5 MHz. Using a fluxmetric hysteresis graph, permeability, loss, and BH loops are measured at different temperatures, from -5 deg. C to 110 deg. C. Results are compared to the behavior of micrometric grain size ferrites, which are commonly used for power electronic and high frequency applications.

  5. Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan; Yan, Shuoqing; Liu, Weihu [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Feng, Zekun, E-mail: fengzekun@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2016-03-01

    The effect of ferrite particle size on the magnetic spectra (1 MHz to 1 GHz) of NiCuZn polycrystalline ferrites doped with Co{sub 2}O{sub 3} and Bi{sub 2}O{sub 3} were systematically investigated. The experiments indicate that the ferrite particle size tailored by grinding time and corresponding sintering temperatures is crucial to achieving high permeability, high Q-factor and low magnetic loss, at 13.56 MHz for electromagnetic shielding applications especially in the near field communication (NFC) field. It is evident that high-performance NiZnCu ferrite materials are strongly tailored by morphology and microstructure. It is conclusive that fine ferrite particles and relatively low sintering temperatures are favorable to lowering magnetic loss and enhancing permeability. This work has built a foundation for improvement of the ferrite slurry used for fabrication of large area tape-casting ferrite sheets. - Highlights: • Fine particles are favorable to lowering magnetic loss and enhancing permeability.

  6. Structure and magnetic properties of iron-based soft magnetic composite with Ni-Cu-Zn ferrite-silicone insulation coating

    Science.gov (United States)

    Li, Wangchang; Wang, Wei; Lv, Junjun; Ying, Yao; Yu, Jing; Zheng, Jingwu; Qiao, Liang; Che, Shenglei

    2018-06-01

    This paper investigates the structure and magnetic properties of Ni-Cu-Zn ferrite-silicone coated iron-based soft magnetic composites (SMCs). Scanning electron microscopy coupled with a energy-dispersive spectroscopy (EDS) analysis revealed that the Ni-Cu-Zn ferrite and silicone resin were uniformly coated on the surface of iron powders. By controlling the composition of the coating layer, low total core loss of 97.7 mW/cm3 (eddy current loss of 48 mW/cm3, hysteresis loss of 49.7 mW/cm3, measured at 100 kHz and 0.02 T) and relatively high effective permeability of 72.5 (measured at 100 kHz) were achieved. In addition, the as-prepared SMCs displayed higher electrical resistivity, good magnetic characteristics over a wide range of frequencies (20-200 kHz) and ideal the D-C bias properties (more than 75% at H = 50 Oe). Furthermore, higher elastic modulus and hardness of SMCs, which means that the coating layer has good mechanical properties and is not easily damaged during the pressing process, were obtained in this paper. The results of this work indicate that the Ni-Cu-Zn ferrite-silicone coated SMCs have desirable properties which would make them suitable for application in the fields of the electric-magnetic switching devices, such as inductance coils, transformer cores, synchronous electric motors and resonant inductors.

  7. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sea-Fue, E-mail: sfwang@ntut.edu.tw; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-15

    In this study, the effects of grain size and the addition of CaCO{sub 3} on the magnetic and mechanical properties of Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO{sub 3} densified the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics at 1075 °C. In the pure Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO{sub 3} content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe{sub 2}CaO{sub 4} was observed, together with the disappearance of the second phase CuO. The grain size of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO{sub 3} content increased from 0 to 5 wt%. Initially rising to 807 after CaCO{sub 3} addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO{sub 3} content increased. The bending strength grew linearly with the CaCO{sub 3} content and reached twice the value for the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic with an addition of 5.0 wt% CaCO{sub 3}. The initial permeability of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic decreased substantially from 402 to 103 as the addition of CaCO{sub 3} in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic was maximized at 95 for 1.0 wt% CaCO{sub 3} addition. - Highlights: • Effects of grain size and CaCO{sub 3} on the properties of NiCuZn ferrite were studied. • Bending strength increased with grain size of the ferrite but not in the hardness. • Bending strength reached a twice value for

  8. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  9. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  10. Mössbauer and XRD studies of NiCuZn ferrites by Sol-Gel auto-combustion

    International Nuclear Information System (INIS)

    Lei Chenglong; Lin Qing; Zhang Hui; He Yun; Huang Haifu

    2013-01-01

    The Ni 0.6 Cu 0.2 Zn 0.2 Ce x Fe 2-x O 4 ferrites (0≤x≤0.85) have been prepared by Sol-Gel auto-combustion method and we have investigated the effect of impurity CeO 2 phase to the microstructure and hyperfine magnetic field in spinel ferrite. The results of XRD patterns confirm the average crystallite size of samples decreases with Ce 3+ substitution increasing and the lattice parameters vary as a function of x content. 57 Fe Mössbauer spectra at room temperature for all samples confirm the [Fe 3+ - O 2- -Fe 3+ ] super exchange interaction decrease due to cerium substitution. For low temperature auto-combustion samples it reveals one normal sextet line and one doublet line x≤0.25, which shows well-resolved ferromagnetic order. Lattice defects are determined and Mössbauer spectrums vary from magnetic sextet to relaxation doublet at x≥0.45 due to a mass of CeO 2 phase. In contrast, the Mössbauer spectra for the samples sintered at 800°C/3h detect the secondary phase α -Fe 2 O 3 where the cation distribution occurs and it collapses to paramagnetic doublet (x≥0.85). Ce 3+ substitution has its maximum limit values of super exchange interaction and high sintering temperature will affect this interaction. (author)

  11. Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites

    Science.gov (United States)

    Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.

    2018-04-01

    Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.

  12. Magnetic nanoparticles of NiCuZn tested in different conditions in catalysis for biodiesel

    International Nuclear Information System (INIS)

    Dantas, J.; Silva, F.N.; Silva, A.S.; Pereira, K.R.O.; Costa, A.C.F.M.

    2014-01-01

    In this work it was used magnetic nanoparticles Ni_0_,_2Cu_0_,_3Zn_0_,_5Fe_2O_4, chemical and thermally stable, under different conditions in catalysis for biodiesel. The magnetic characteristic of such material allows the catalyst recovery after the reactions by applying a permanent magnet. It was proposed to evaluate the performance of the nanomagnetic catalyst Ni_0_,_2Cu_0_,_3Zn_0_,_5Fe_2O_4 in the transesterification, modifying the processing variables (temperature, time, molar ratio of oil:alcohol and catalyst amount). The nanoparticles were synthesized by combustion reaction and characterized by XRD, TG, BET, magnetic measurements and gas chromatography. The results revealed the formation of inverse spinel phase, type B(AB)_2O_4, presenting isotherm profile classified as type V, with hysteresis loop of type 3 (H3). The magnetic hysteresis curve showed a characteristic behavior of soft magnetic material. GC analysis confirmed that nanoparticles were catalytically active, since they were superior to the reaction conducted without the catalyst presence. Besides, the reactions suffered considerable influence due to the changes of the independent variables. (author)

  13. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    prepared material. It was observed that surface modification such as with silica coating on the cobalt ferrite will have significant effect on the structural and magnetic properties. It is also observed that, silica coated nanoparticles could be used in biomedical applications (Hong et al., 2013). In this work we have chosen sol-gel ...

  14. Enhancement of electrical conductivity in gamma irradiated cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Nawpute, Asha A.; Raut, A.V.; Babrekar, M.K.; Kale, C.M.; Jadhav, K.M.; Shinde, A.B.

    2014-01-01

    The cobalt ferrite nanoparticles were synthesized by sol-gel auto- combustion method, in which L-ascorbic acid was used as a fuel. The effect of gamma irradiation on the electrical resistivity of cobalt ferrite nanoparticles has been studied. The ferrite powder annealed at 550℃ was irradiated by gamma source 137 Cs. The synthesized nanoparticles were characterized by X-ray diffraction and DC resistivity. (author)

  15. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  16. Tuning the magnetism of ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Viñas, S. Liébana [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Departamento de Física Aplicada, Universidade de Vigo, Vigo 36310 (Spain); Simeonidis, K. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Li, Z.-A.; Ma, Z. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Myrovali, E.; Makridis, A.; Sakellari, D. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Angelakeris, M., E-mail: agelaker@auth.gr [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Wiedwald, U.; Spasova, M. [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany); Farle, M., E-mail: michael.farle@uni-due.de [Faculty of Physics and CENIDE, University Duisburg-Essen, Duisburg 47048 (Germany)

    2016-10-01

    The importance of magnetic interactions within an individual nanoparticle or between adjacent ones is crucial not only for the macroscopic collective magnetic behavior but for the AC magnetic heating efficiency as well. On this concept, single-(MFe{sub 2}O{sub 4} where M=Fe, Co, Mn) and core–shell ferrite nanoparticles consisting of a magnetically softer (MnFe{sub 2}O{sub 4}) or magnetically harder (CoFe{sub 2}O{sub 4}) core and a magnetite (Fe{sub 3}O{sub 4}) shell with an overall size in the 10 nm range were synthesized and studied for their magnetic particle hyperthermia efficiency. Magnetic measurements indicate that the coating of the hard magnetic phase (CoFe{sub 2}O{sub 4}) by Fe{sub 3}O{sub 4} provides a significant enhancement of hysteresis losses over the corresponding single-phase counterpart response, and thus results in a multiplication of the magnetic hyperthermia efficiency opening a novel pathway for high-performance, magnetic hyperthermia agents. At the same time, the existence of a biocompatible Fe{sub 3}O{sub 4} outer shell, toxicologically renders these systems similar to iron-oxide ones with significantly milder side-effects. - Highlights: • Magnetic hyperthermia is studied for 10 nm single and core/shell ferrite nanoparticles. • Maximum heating rate is observed for Fe{sub 3}O{sub 4}-coated CoFe{sub 2}O{sub 4} nanoparticles. • The increase is attributed to the interaction of phases with different anisotropy. • The presence of biocompatible Fe{sub 3}O{sub 4} shell potentially minimizes toxic side-effects.

  17. The role of cobalt ferrite magnetic nanoparticles in medical science

    International Nuclear Information System (INIS)

    Amiri, S.; Shokrollahi, H.

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: ► Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. ► They have high coercivity and moderate saturation magnetization. ► Cobalt ferrite nanoparticles are synthesized easily. ► They are a good candidate for hyperthermia and magnetic resonance imaging.

  18. A biosensor system using nickel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prachi, E-mail: prachi.singh@st.niituniversity.in; Rathore, Deepshikha, E-mail: deep.nano@gmail.com [NIIT University, Neemrana, NH-8, Alwar, Rajasthan, India, 301705 (India)

    2016-05-06

    NiFe{sub 2}O{sub 4} ferrite nanoparticles were synthesized by chemical co-precipitation method and the structural characteristics were investigated using X-ray diffraction technique, where single cubic phase formation of nanoparticles was confirmed. The average particle size of NiFe{sub 2}O{sub 4} was found to be 4.9 nm. Nanoscale magnetic materials are an important source of labels for biosensing due to their strong magnetic properties which are not found in biological systems. This property of the material was exploited and the fabrication of the NiFe{sub 2}O{sub 4} nanoparticle based biosensor was done in the form of a capacitor system, with NiFe{sub 2}O{sub 4} as the dielectric material. The biosensor system was tested towards different biological materials with the help of electrochemical workstation and the same was analysed through Cole-Cole plot of NiFe{sub 2}O{sub 4}. The performance of the sensor was determined based on its sensitivity, response time and recovery time.

  19. Multifunctional metal ferrite nanoparticles for MR imaging applications

    International Nuclear Information System (INIS)

    Joshi, Hrushikesh M.

    2013-01-01

    Magnetic Resonance Imaging (MRI) is a very powerful non-invasive tool for in vivo imaging and clinical diagnosis. With rapid advancement in nanoscience and nanotechnology, there is rapid growth in nanoparticles-based contrast agents. Progress in synthetic protocols enable synthesis of multifunctional nanoparticles which facilitated efforts toward the development of multimodal contrast agents. In this review, recent developments in metal ferrite-based MR contrast agents have been described. Specifically, effect of size, shape, composition, assembly and surface modification of metal ferrite nanoparticles on their T 2 contrast have been discussed. The review further outlines the effect of leaching on MRI contrast and other various factors which affect the multimodal ability of the (T 1 –T 2 and T 2 -thermal activation) metal ferrite nanoparticles.

  20. Superparamagnetic response of zinc ferrite incrusted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Maldonado, K.L., E-mail: liliana.lopez.maldonado@gmail.com [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Presa, P. de la, E-mail: pmpresa@ucm.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); Betancourt, I., E-mail: israelb@unam.mx [Departamento de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); Farias Mancilla, J.R., E-mail: rurik.farias@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Av. Del Charro 450 norte, 32310 Ciudad Juárez (Mexico); Matutes Aquino, J.A., E-mail: jose.matutes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109 Chihuahua (Mexico); Hernando, A., E-mail: antonio.hernando@externos.adif.es [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), PO Box 155, 28230 Las Rozas (Spain); Dpto. Física de Materiales, Univ. Complutense de Madrid, Madrid (Spain); and others

    2015-07-15

    Highlights: • Incrusted nanoparticles are found at the surface of ZnFe{sub 2}O{sub 4} microparticles. • Magnetic contribution of nano and microparticles are analyzed by different models. • Langevin model is used to calculate the nanoparticles-superparamagnetic diameter. • Susceptibility and Langevin analysis and calculations agree with experimental data. - Abstract: Zinc ferrite is synthesized via mechano-activation, followed by thermal treatment. Spinel ZnFe{sub 2}O{sub 4} single phase is confirmed by X-ray diffraction. SEM micrographs show large particles with average particle size 〈D{sub part}〉 = 1 μm, with particles in intimate contact. However, TEM micrographs show incrusted nanocrystallites at the particles surface, with average nanocrystallite size calculated as 〈D{sub inc}〉 ≈ 5 nm. The blocking temperature at 118 K in the ZFC–FC curves indicates the presence of a superparamagnetic response which is attributable to the incrusted nanocrystallites. Moreover, the hysteresis loops show the coexistence of superpara- and paramagnetic responses. The former is observable at the low field region; meanwhile, the second one is responsible of the lack of saturation at high field region. This last behavior is related to a paramagnetic contribution coming from well-ordered crystalline microdomains. The hysteresis loops are analyzed by means of two different models. The first one is the susceptibility model used to examine separately the para- and superparamagnetic contributions. The fittings with the theoretical model confirm the presence of the above mentioned magnetic contributions. Finally, using the Langevin-based model, the average superparamagnetic diameter 〈D{sub SPM}〉 is calculated. The obtained value 〈D{sub SPM}〉 = 4.7 nm (∼5 nm) is consistent with the average nanocrystallite size observed by TEM.

  1. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  2. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  3. The role of cobalt ferrite magnetic nanoparticles in medical science

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, S.; Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. Black-Right-Pointing-Pointer They have high coercivity and moderate saturation magnetization. Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are synthesized easily. Black-Right-Pointing-Pointer They are a good candidate for hyperthermia and magnetic resonance imaging.

  4. Modified ferrite core-shell nanoparticles magneto-structural characterization

    Science.gov (United States)

    Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-06-01

    In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.

  5. Magnetic nanoparticles of NiCuZn tested in different conditions in catalysis for biodiesel; Nanoparticulas magneticas de NiCuZn testadas em diferentes condicoes na catalise para biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, J.; Silva, F.N.; Silva, A.S.; Pereira, K.R.O.; Costa, A.C.F.M., E-mail: joeldadantas@yahoo.com.br [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Laboratorio de Sintese de Materiais Ceramicos

    2014-07-01

    In this work it was used magnetic nanoparticles Ni{sub 0,2}Cu{sub 0,3}Zn{sub 0,5}Fe{sub 2}O{sub 4}, chemical and thermally stable, under different conditions in catalysis for biodiesel. The magnetic characteristic of such material allows the catalyst recovery after the reactions by applying a permanent magnet. It was proposed to evaluate the performance of the nanomagnetic catalyst Ni{sub 0,2}Cu{sub 0,3}Zn{sub 0,5}Fe{sub 2}O{sub 4} in the transesterification, modifying the processing variables (temperature, time, molar ratio of oil:alcohol and catalyst amount). The nanoparticles were synthesized by combustion reaction and characterized by XRD, TG, BET, magnetic measurements and gas chromatography. The results revealed the formation of inverse spinel phase, type B(AB){sub 2}O{sub 4}, presenting isotherm profile classified as type V, with hysteresis loop of type 3 (H3). The magnetic hysteresis curve showed a characteristic behavior of soft magnetic material. GC analysis confirmed that nanoparticles were catalytically active, since they were superior to the reaction conducted without the catalyst presence. Besides, the reactions suffered considerable influence due to the changes of the independent variables. (author)

  6. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  7. Magnetoabsorption and magnetic hysteresis in Ni ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Torres C.

    2013-01-01

    Full Text Available Nickel ferrite nanoparticles were prepared by a modified sol-gel technique employing coconut oil, and then annealed at different temperatures in 400-1200 °C range. This route of preparation has revealed to be one efficient and cheap technique to obtain high quality nickel ferrite nanosized powder. Sample particles sizes obtained with XRD data and Scherrer’s formula lie in 13 nm to 138 nm, with increased size with annealing temperature. Hysteresis loops have been obtained at room temperature with an inductive method. Magnetic field induced microwave absorption in nanoscale ferrites is a recent an active area of research, in order to characterize and explore potential novel applications. In the present work microwave magnetoabsorption data of the annealed nickel ferrite nanoparticles are presented. These data have been obtained with a system based on a network analyzer that operates in the frequency range 0 - 8.5 GHz. At fields up to 400 mT we can observe a peak according to ferromagnetic resonance theory. Sample annealed at higher temperature exhibits different absorption, coercivity and saturation magnetization figures, revealing its multidomain character.

  8. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Msagati, Titus A.M.; Mamba, Bhekie B.

    2017-01-15

    Highlights: • Available synthesis methods of ferrite nanoparticles (FNPs) are briefly reviewed. • Summary of the advantage and limitation of FNPs synthesis techniques are presented. • The existing most common FNPs characterisation techniques are briefly reviewed. • Major application areas of FNPs in electronic materials are reviewed. - Abstract: Ferrite nanoparticles (FNPs) have attracted a great interest due to their wide applications in several areas such as biomedical, wastewater treatment, catalyst and electronic device. This review focuses on the synthesis, characterisation and application of FNPs in electronic device with more emphasis on the recently published works. The most commonly used synthesis techniques along with their advantages and limitations are discussed. The available characterisation techniques and their application in electronic materials such as sensors and biosensors, energy storage, microwave device, electromagnetic interference shielding and high-density recording media are briefly reviewed.

  9. The superspin glass transition in zinc ferrite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kořínková, T.; Jirák, T.; Maryško, Miroslav; Veverka, Miroslav

    2015-01-01

    Roč. 117, č. 17 (2015), "17C706-1"-"17C706-4" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP108/11/0807; GA ČR GAP204/10/0035 Institutional support: RVO:68378271 Keywords : superspin glass * zinc ferrite * doped magnetite * magnetic nanoparticles * thermal decomposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  10. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    Science.gov (United States)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  11. Magnetic properties and morphology of manganese ferrite nanoparticles in glasses

    International Nuclear Information System (INIS)

    Edelman, I; Ivanova, O; Ivantsov, I; Velikanov, D; Petrakovskaja, E; Artemenko, A; Curély, J; Kliava, J; Zaikovskiy, V; Stepanov, S

    2011-01-01

    Static magnetization (SM), magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) studies are reported of borate glasses 22.5 K 2 O-22.5 Al 2 O 3 -55 B 2 O 3 co-doped with iron and manganese oxides. In as-prepared glasses the paramagnetic ions usually are in diluted state; however, if the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles are found already in as-prepared glass. After additional thermal treatment all glasses show magnetic behaviour, MCD and EMR due to the presence of magnetic nanoparticles with characteristics close to those of manganese ferrite. By computer simulating the EMR spectra at variable temperatures, their morphological characteristics are deduced: relatively broad size and shape distribution with average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetocrystalline anisotropy in the nanoparticles. The potassium-alumina-borate glasses containing magnetic nanoparticles represent a novel class of materials: t ransparent magnets . Indeed, they remain transparent in a part of visible and near infrared spectral range while showing magnetic and magneto-optical properties characteristic of magnetically ordered materials.

  12. One-pot production of copper ferrite nanoparticles using a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp; Amagasa, Shota [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Yoshio [The University of Electro-Communications, Department of Engineering Science (Japan); Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2}, CuSO{sub 4} and N{sub 2}H{sub 4} in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  13. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  14. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  15. Attainment of barium hexa ferrite nanoparticles by a Pechini method

    International Nuclear Information System (INIS)

    Galvao, Sheila B.; Timoteo, Flavio Junior J.; Machado, Tercio G.; Souto, Kesia K.O.; Floreoto, Neide T.; Paskocimas, Carlos A.

    2009-01-01

    The barium hexa ferrites (BaFe 12 O 19 ) are used as a compound of materials applied in electronic devices, as medical devices, satellites, dada servers systems, wireless systems and others. The general properties are strongly related to the microstructure and morphology, and the particles size decrease results in advantages to the majority applications, mainly the high-tech thumbnail devices. These magnetic ceramic materials, with perovskite structure, are traditionally prepared my conventional oxide mixture synthesis. In this work was studied the nanoparticle synthesis of BaFe 12 O 19 by the precursors polymeric method (Pechini), using as precursors the barium carbonate and the iron nitrate, under different thermal treatment conditions. The samples were characterized by XRD, Raman spectroscopy, SEM, BET, DTA and TGA. The results presented the attainment of a monophasic powder with particles size around 100 nm. (author)

  16. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  17. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  18. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  19. Dielectric properties of Al-substituted Co ferrite nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    The particle size, D, decreases with increase in Al-content. The lattice parameter, a ... a significant saving in time and energy consumption over the traditional methods. ... electrical, and magnetic properties of spinel ferrites. Cobalt ferrite based ...

  20. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    Science.gov (United States)

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers.

  1. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    International Nuclear Information System (INIS)

    Wang, S.F.; Li, Q.; Zu, X.T.; Xiang, X.; Liu, W.; Li, S.

    2016-01-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M"2"+ ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe_2O_4 magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe_2O_4 of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe_2O_4 nanoparticle synthesis, starting from EDTA-chelated M"2"+ (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  2. Phase controlled synthesis of (Mg, Ca, Ba)-ferrite magnetic nanoparticles with high uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.F., E-mail: wangshifa2006@yeah.net [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Science and technology on vacuum technology and physics laboratory, Lanzhou Institute of Physics, Lanzhou 730000, Gansu (China); Li, Q. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Zu, X.T., E-mail: xtzu@uestc.edu.cn [Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Xiang, X.; Liu, W. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan (China); Li, S., E-mail: sean.li@unsw.edu.au [School of Material Science and Engineering, University of New South Wales, Sydney 2052 (Australia)

    2016-12-01

    (Mg, Ca, Ba)-ferrite magnetic nanoparticles were successfully synthesized through modifying the atomic ratio of polysaccharide and chelating agent at an optimal sintering temperature. In the process, the polysaccharide plays an important role in drastically shrinking the precursor during the gel drying process. In the metal-complex structure, M{sup 2+} ion active sites were coordinated by −OH of the water molecules except for EDTA anions. The MFe{sub 2}O{sub 4} magnetic nanoparticles exhibited enhanced magnetic properties when compared with nano-MFe{sub 2}O{sub 4} of similar particle size synthesized by other synthesis route reported in the literature. In particular, the sintering temperature improves the crystallinity and increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles significantly. - Graphical abstract: Schematic representation of the proposed model for MFe{sub 2}O{sub 4} nanoparticle synthesis, starting from EDTA-chelated M{sup 2+} (M=Mg, Ca, or Ba) cations (left). High dispersion (Mg, Ca, Ba)-ferrite magnetic nanoparticles were prepared by a modified polyacrylamide gel route. Optimized utilization of polysaccharide, chelating agent, and sintering temperature allowed the formation of (Mg, Ca, Ba)-ferrite nanoparticles with a narrow diameter distribution. - Highlights: • We report a modified polyacrylamide gel route to synthesize (Mg, Ca, Ba)-ferrite magnetic nanoparticles. • Chelate mechanism of metal ions (Mg, Ca, Ba) and EDTA has been discussed. • Phase transformation process of (Mg, Ca, Ba)-ferrites has been discussed. • The preparation method increases the hysteresis loop squareness ratio of (Mg, Ca, Ba)-ferrite nanoparticles.

  3. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ahmad, Tanveer; Bae, Hongsub; Iqbal, Yousaf; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun; Sohn, Derac

    2015-01-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe 2 O 4 ) nanoparticles as both T 1 and T 2 contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T 1 and T 2 relaxivities were 0.858±0.04 and 1.71±0.03 mM −1 s −1 , respectively. In animal experimentation, both a 25% signal enhancement in the T 1 -weighted mage and a 71% signal loss in the T 2 -weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T 1 and T 2 contrast agents in MRI. We note that the applicability of our nanoparticles as both T 1 and T 2 contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe 2 O 4 ) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T 1 and T 2 contrast agents for MRI by measuring T 1 and T 2 relaxation times as a function of iron concentration. • Both T 1 and T 2 effects were also observed in animal experimentation

  4. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  5. Magnetic behavior of nickel ferrite nanoparticles prepared by co-precipitation route

    International Nuclear Information System (INIS)

    Maaz, K.; Mashiatullah, A.; Javed, T.; Ali, G.; Karim, S.

    2008-01-01

    Magnetic nanoparticles of nickel ferrite (NiFe/sub 2/O/sub 4/) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses confirmed the formation of single phase nickel ferrite nanoparticles in the range 8-28 nm. The size of the particles was observed to be increasing linearly with increasing annealing temperature of the sample. Typical blocking effects were observed below -225 K for all the prepared samples. The superparamagnetic blocking temperature was found to be continuously increasing with increasing particle sizes that has been attributed to the increased effective anisotropy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins of these nanoparticles. (author)

  6. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  7. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  8. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, A., E-mail: debnathanimesh@gmail.com [Department of Civil Engineering, National Institute of Technology Agartala, Jirania, West Tripura, 799046 India (India); Bera, A.; Saha, B. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl{sub 3}) and Calcium chloride dihydrate (CaCl{sub 2}.2H{sub 2}O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  9. Studies on magnetic properties of chemically synthesized crystalline calcium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Debnath, A.; Bera, A.; Saha, B.; Chattopadhyay, K. K.

    2016-01-01

    Spinel-type ferrites have taken a very important role for modern electronic industry. Most of these ferrites exhibit low-loss dielectric properties, high resistivity, low eddy current and also high temperature ferromagnetism. Calcium ferrite is one such important metal oxide which is environmentally safe, chemically stable, low cost and greatly abundant. This outstanding material of calcium ferrite is synthesized by a simple chemical precipitation method using NaOH as the precipitating agent. Ferric chloride anhydrous (FeCl_3) and Calcium chloride dihydrate (CaCl_2.2H_2O) were used as iron and calcium sources respectively. The samples were heated at 200°C for 8h to obtain homogeneous powder of Calcium ferrite. The powders were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission electrical microscopy (TEM), and Fourier transform infrared spectroscopic (FTIR) measurements. The polycrystalline nature of the sample was confirmed by X-ray diffraction study. The magnetic properties of the sample were investigated by vibrating sample magnetometer (VSM) measurements. Magnetization curve of the prepared sample depicts that as synthesized calcium ferrite nanoparticles have saturation magnetic moment of 1.74 emu/g and the coercivity of 35.08 Oe with superparamagnetic behavior. The synthesized calcium ferrite nanoparticles with such magnetic properties will be a candidate material for different applications in electronics and exploring its functionality in the field of recently developing semiconductor device physics and spintronics.

  10. Preparation and characterization of complex ferrite nanoparticles by a polymer-pyrolysis route

    International Nuclear Information System (INIS)

    Liu Xianming; Fu Shaoyun; Xiao Hongmei; Zhu Luping

    2007-01-01

    The polymer-pyrolysis route used in this work was to synthesize the copolymeric precursor of the mixed metallic ions and then to pyrolyze the precursor into complex spinel ferrite nanoparticles. Thermogravimetric analysis (TGA) showed that the complex ferrite nanoparticles could be obtained by calcination of their precursors at 500 deg. C. The structures, elemental analyses and particle morphology of the as-calcined products were characterized by powder X-ray diffraction (XRD), ICP-AES, transmission electron microscope (TEM) and electron diffraction (ED) pattern. The results revealed that the as-calcined powders were complex spinel ferrites and the size of those nanoparticles ranged from 10 to 20 nm. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). The saturation magnetization of the Mn-Zn ferrites was related to the molar ratio of Mn to Zn and increased with the increase of Mn. The complex Co-Mn-Zn ferrite nanoparticles showed a high magnetization of 58 emu/g at the applied field of 10 kOe and a low coercivity of 30 Oe, which indicated that this materials exhibited characteristics of soft ferromagnetism

  11. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Mamba, Bhekie B.; Msagati, Titus A.M.

    2017-07-05

    Highlights: • Presence of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} in AMD resulted in formation of crystalline ferrite. • Increasing settling time improved removal of Mg, Ca, Mn and Na from AMD. • Mixtures of ferrite nanoparticles were produced from AMD. • Formations of crystalline ferrite were more favored in the presence of heat. - Abstract: In this study, magnetite and cobalt ferrite nanoparticles were used as seeds for acid mine drainage (AMD) treatment at pH of 7.05 ± 0.35. Duplicate samples of AMD, one without heating and another with heating at 60 °C was treated under continuous stirring for 1 h. The filtrate analysis results from ICP-OES have shown complete removal of Al, Mg, and Mn, while for Fe, Ni and Zn over 90% removals were recorded. Particularly, settling time has significant effect on the removal of Mg, Ca and Na. The results from SQUID have shown superparamagnetic properties of the synthesised magnetic nanoparticles and ferrite sludge. The recovered nanoparticles from AMD are economically important and reduce the cost of waste disposal.

  12. Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties

    Science.gov (United States)

    Zhang, Kaichuang; Gao, Xinbao; Zhang, Qian; Chen, Hao; Chen, Xuefang

    2018-04-01

    Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites were synthesized using a co-precipitation method and a calcination process. As one kind absorbing material, we researched the electromagnetic absorption properties of the composites that were mixed with a filler loading of 80 wt% paraffin. In addition, we studied the influence of the magnetic nanoparticle content on the absorbing properties. The results showed that the frequency corresponding to the maximum absorptions shifted to lower frequency when the magnetic nanoparticles content increased. The Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites with approximately 60% Fe3O4 nanoparticles showed the best electromagnetic absorption properties. The maximum reflection loss was -52.47 dB with a thickness of 2.0 mm at 10.4 GHz.

  13. Characterization and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Swatsitang, Ekaphan [Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 (Thailand); Phokha, Sumalin, E-mail: sumalinphokha@gmail.com [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Hunpratub, Sitchai; Usher, Brian [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Bootchanont, Atipong [Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathumthani 12110 (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand (Thailand); Chindaprasirt, Prinya [Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002 (Thailand)

    2016-04-15

    Inverse spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were synthesized by a polymer pyrolysis method and calcined at various temperatures from 800 to 1000 °C. The structure, morphology, valence states and magnetic properties of the calcined samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) and vibrating sample magnetometer (VSM). All calcined samples had the cubic spinel type structure with average crystallite sizes increasing from 80 ± 2 to 100 ± 3 nm with increasing calcination temperature. The XANES spectra allowed the valence states of the Fe{sup 3+} and Co{sup 2+} ions in the samples to be established and simulation of the XANES spectra suggested that the site occupancy of Fe{sup 3+} and Co{sup 2+} ions was mixed, with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. All samples exhibited ferromagnetic behavior at room temperature with a maximum saturation magnetization (M{sub S}) of 3.42 μ{sub B} and a coercivity (H{sub C}) of 1100 Oe for crystallite sizes of 100 nm. The origin of the ferromagnetism is discussed in relation to the distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes. - Graphical abstract: In Figure shows ferromagnetism (FM) at room temperature (RT), simulation of the XANES spectra of (a) Fe and (b) Co edges (inset in the right) and TEM image (inset in the left) of CoFe{sub 2}O{sub 4} nanoparticles prepared by polymer pyrolysis method. The bright field TEM image showed the aggregated particles. The simulation showed a cation combination with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. The distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes is discussed on

  14. Chitosan-coated nickel-ferrite nanoparticles as contrast agents in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tanveer [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, Abdul Wali Khan University, Mardan (Pakistan); Bae, Hongsub; Iqbal, Yousaf [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Rhee, Ilsu, E-mail: ilrhee@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hong, Sungwook [Division of Science Education, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Chang, Yongmin; Lee, Jaejun [Department of Diagnostic Radiology, College of Medicine, Kyungpook National University and Hospital, Daegu 700-721 (Korea, Republic of); Sohn, Derac [Department of Physics, Hannam University, Daejon (Korea, Republic of)

    2015-05-01

    We report evidence for the possible application of chitosan-coated nickel-ferrite (NiFe{sub 2}O{sub 4}) nanoparticles as both T{sub 1} and T{sub 2} contrast agents in magnetic resonance imaging (MRI). The coating of nickel-ferrite nanoparticles with chitosan was performed simultaneously with the synthesis of the nickel-ferrite nanoparticles by a chemical co-precipitation method. The coated nanoparticles were cylindrical in shape with an average length of 17 nm and an average width of 4.4 nm. The bonding of chitosan onto the ferrite nanoparticles was confirmed by Fourier transform infrared spectroscopy. The T{sub 1} and T{sub 2} relaxivities were 0.858±0.04 and 1.71±0.03 mM{sup −1} s{sup −1}, respectively. In animal experimentation, both a 25% signal enhancement in the T{sub 1}-weighted mage and a 71% signal loss in the T{sub 2}-weighted image were observed. This demonstrated that chitosan-coated nickel-ferrite nanoparticles are suitable as both T{sub 1} and T{sub 2} contrast agents in MRI. We note that the applicability of our nanoparticles as both T{sub 1} and T{sub 2} contrast agents is due to their cylindrical shape, which gives rise to both inner and outer sphere processes of nanoparticles. - Highlights: • Chitosan-coated nickel-ferrite (Ni-Fe{sub 2}O{sub 4}) nanoparticles were synthesized in an aqueous system by chemical co-precipitation. • The characterization of bare and chitosan-coated nanoparticles were performed using various analytical tools, such as TEM, FTIR, XRD, and VMS. • We evaluated the coated particles as potential T{sub 1} and T{sub 2} contrast agents for MRI by measuring T{sub 1} and T{sub 2} relaxation times as a function of iron concentration. • Both T{sub 1} and T{sub 2} effects were also observed in animal experimentation.

  15. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  16. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  17. Structural characterization of ferrite nanoparticles and composite materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Albuquerque, A.S.; Macedo, W.A.A.; Plivelic, T.; Torriani, I.L.; Jimenez, J.A.L.; Saitovich, E.B.

    2001-01-01

    During the last decade nanocrystalline magnetic materials have been widely studied due to the multiple technological applications. Amongst the magnetic materials of major technological interest are the soft magnetic ferrites and the granular solids formed by ferrites dispersed in non-magnetic matrices. It is a well known fact that the magnetic properties of these materials, such as coercivity, magnetic saturation and magnetization, depend on the shape, size and size distribution of the nanoparticles. For this reason, the general purpose of this work was to obtain structural information on ferrite nanoparticles (NiFe 2 O 4 and NiZnFe 2 O 4 ) and granular solids obtained by dispersion of these particles in non magnetic matrices, like SiO 2 and SnO 2 . The ferrite samples were prepared by co-precipitation and heat treated between 300 and 600 deg. C at the Applied Physics Laboratory of tile CDTN. The granular solids, with 30% in volume concentration of ferrite, were obtained by mechanical alloying with milling times (t m ) varying between 1.25 and 10 h, at the CBPF

  18. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  19. Synthesis of ferrite nanoparticle by milling process for preparation of single domain magnet

    International Nuclear Information System (INIS)

    Suryadi; Hasbiyallah; Agus S W; Nurul TR; Budhy Kurniawan

    2009-01-01

    Study of ferrite nanoparticle synthesis for preparation of single domain magnet by milling of scrap magnet material have been done. Sample preparation were done using disk mill continued with high energy milling (HEM). Some powder were taken after 5, 10 dan 20 hours milling using HEM-E3D. The powder were then characterized using X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). XRF characterization result, confirmed by XRD analysis result, showed that the sample are of Strontium ferrite phase. Microstructure analysis result showed the occurrence of grain refining process of ferrite particle with increasing of milling time. Particle having size of nanometers successfully obtained, although in unhomogeneous distribution. Magnetic properties characterization result showed the increasing of hysteresis curve area of sample for longer milling time and sintering process. (author)

  20. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  1. Synthesis, electrical and magnetic properties of sodium borosilicate glasses containing Co-ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Othman, H.A. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt); Eltabey, M.M. [Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shibin El-Kom, Menoufia (Egypt); Department of Physics, Faculty of Science, Jazan University (Saudi Arabia); Ibrahim, Samia E.; El-Deen, L.M. Sharaf; Elkholy, M.M. [Department of Physics, Faculty of Science, Menoufia University, Shibin El-Kom 32511, Menoufia (Egypt)

    2017-02-01

    Co-ferrites nanoparticles that have been prepared by the co-precipitation method were added to sodium borosilicate (Na{sub 2}O–B{sub 2}O{sub 3}–SiO{sub 2}) glass matrix by the solid solution method and they were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and magnetization measurements. (XRD) revealed the formation of the Co-ferrite magnetic crystalline phase embedded in an amorphous matrix in all the samples. The investigated samples by (TEM) showed the formation of the cobalt ferrite nanoparticles with a spherical shape and highly monodispersed with an average size about 13 nm. IR data revealed that the BO{sub 3} and BO{sub 4} are the main structural units of these samples network. IR spectra of the investigated samples showed the characteristic vibration bands of Co-ferrite. Composition and frequency dependent dielectric properties of the prepared samples were measured at room temperature in the frequency range 100–100 kHz. The conductivity was found to increase with increasing cobalt ferrite content. The variations of conductivity and dielectric properties with frequency and composition were discussed. Magnetic hysteresis loops were traced at room temperature using VSM and values of saturation magnetization M{sub S} and coercive field H{sub C} were determined. The obtained results revealed that a ferrimagnetic behavior were observed and as Co-ferrite concentration increases the values of M{sub S} and H{sub C} increase from 2.84 to 8.79 (emu/g) and from 88.4 to 736.3 Oe, respectively.

  2. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route

    Science.gov (United States)

    Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J. L.

    2009-06-01

    Magnetic nanoparticles of nickel ferrite (NiFe 2O 4) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray diffraction (XRD) and transmission electron microscope (TEM) analyses confirmed the formation of single-phase nickel ferrite nanoparticles in the range 8-28 nm depending upon the annealing temperature of the samples during the synthesis. The size of the particles ( d) was observed to be increasing linearly with annealing temperature of the sample while the coercivity with particle size goes through a maximum, peaking at ˜11 nm and then decreases for larger particles. Typical blocking effects were observed below ˜225 K for all the prepared samples. The superparamagnetic blocking temperature ( T B) was found to be increasing with increasing particle size that has been attributed to the increased effective anisotropy energy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins or dead/inert layer in these nanoparticles.

  3. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    Science.gov (United States)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  4. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  5. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  6. Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co Precipitation Method

    Science.gov (United States)

    Anjana, V.; John, Sara; Prakash, Pooja; Nair, Amritha M.; Nair, Aravind R.; Sambhudevan, Sreedha; Shankar, Balakrishnan

    2018-02-01

    Nickel ferrite nanoparticles with copper atoms as dopant have been prepared using co-precipitation method with general formula Ni1-xCuxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) and are sintered at quite ambient temperature. Structural and magnetic properties were examined using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction method (XRD) and Vibrating Sample Magnetometer (VSM) to study the influence of copper doping in nickel ferrite magnetic nanoparticles. X-ray studies proves that the particles are possessing single phase spinel structure with an average particle size calculated using Debye Scherer formula. Magnetic measurements reveal that saturation magnetization value (Ms) decreases while magnetic coercivity (Hc) increases upon doping.

  7. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    Science.gov (United States)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  8. Mn-Zn ferrite nanoparticles with silica and titania coatings: synthesis, transverse relaxivity and cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Herynek, V.; Havelek, R.; Královec, K.; Kubániová, D.; Kohout, J.; Dvořák, P.; Jirák, Zdeněk

    2017-01-01

    Roč. 53, č. 11 (2017), s. 1-8, č. článku 5300908. ISSN 0018-9464 R&D Projects: GA ČR GA16-04340S Institutional support: RVO:68378271 Keywords : amorphous titania * silica * magnetic nanoparticles * Mn-Zn ferrite * transverse relaxivity * cytotoxicity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.243, year: 2016

  9. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  10. Moessbauer studies of superparamagnetic ferrite nanoparticles for functional application

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, K., E-mail: kestas@ar.fi.lt; Jagminas, A.; Kurtinaitiene, M. [SSRI Center for Physical Sciences and Technology (Lithuania)

    2013-04-15

    Nanoparticles of CoFe{sub 2}O{sub 4} and MnFe{sub 2}O{sub 4} prepared for functional applications in nanomedicine were studied using Moessbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Moessbauer spectra.

  11. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  12. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Gyergyek, Saso; Makovec, Darko; Kodre, Alojz; Arcon, Iztok; Jagodic, Marko; Drofenik, Miha

    2010-01-01

    The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 o C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 o C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (∼CoFe 2 O 4 ) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (∼Co 0.6 Fe 2.4 O 4 ). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe 2 O 4 , the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles' composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic

  13. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  15. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J., E-mail: javierlo21@gmail.com [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Gonzalez-Bahamon, L.F. [Analytical Chemistry Laboratory, Universidad del Valle, A.A. 25360, Cali (Colombia); Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Prieto, P. [Center of Excellence for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-02-15

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles. X-ray diffraction patterns of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe{sub 2}O{sub 4}. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5{+-}0.3) nm to (5.4{+-}0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} magnetic

  16. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    International Nuclear Information System (INIS)

    Lopez, J.; Gonzalez-Bahamon, L.F.; Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E.; Esteve, J.; Prieto, P.

    2012-01-01

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co (1-x) Zn x Fe 2 O 4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co (1-x) Zn x Fe 2 O 4 nanoparticles. X-ray diffraction patterns of Co (1-x) Zn x Fe 2 O 4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe 2 O 4 . Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co (1-x) Zn x Fe 2 O 4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM

  17. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  18. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  19. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    Science.gov (United States)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  20. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandekar, Kamlesh V., E-mail: chandekar.kamlex@gmail.com; Kant, K. Mohan [Dept. of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, - 440010 (India)

    2016-05-06

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  1. Synthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents

    Directory of Open Access Journals (Sweden)

    M. Zahraei

    2015-04-01

    Full Text Available Manganese zinc ferrite nanoparticles (MZF NPs were synthesized by using a direct, efficient and environmental friendly hydrothermal method. To improve the colloidal stability of MZF NPs for biomedical applications, NPs were coated with chitosan by ionic gelation technique using sodium tripolyphosphate (TPP as crosslinker. The synthesized NPs were characterized by X ray diffraction (XRD analysis, inductively coupled plasma optical emission spectrometry (ICP-OES, fourier transform infrared (FTIR spectroscopy, transmission electron microscopy (TEM, vibrating sample magnetometer (VSM and the dynamic light scattering (DLS methods. The results confirmed the spinel ferrite phase formation without any calcination process after synthesis. Mean particle size of bare NPs was around 14 nm. Moreover, certain molar ratio of chitosan to TPP was required for encapsulation of NPs in chitosan. Coated NPs showed hydrodynamic size of 300 nm and polydispersity index about 0.3.

  2. Comparative studies on structural properties and antimicrobial potential of spinel ferrite nanoparticles synthesized using various methods

    Science.gov (United States)

    Baraliya, Jagdish D.; Rakhashiya, Purvi M.; Patel, Pooja P.; Thaker, Vrinda S.; Joshi, Hiren H.

    2017-05-01

    In this study, novel multifunctional magnetic iron-based nanoparticles (CoFe2O4) coated with silica, silica-DEG (diethylene glycol), PEG (polyethylene glycol) were synthesized using Auto Combustion Method (ACM), Co-precipitation Method (COPM), Citrate Precursor Method (CPM), Flash Combustion Method (FCM). These spinel ferrite nanoparticles also contain very high antibacterial properties to fulfill the requirements of a drug delivery system so that the antibiotic concentration could be minimized. A potential delivery system could be based on a ferromagnetic fluid. The effects of various preparation methods on the physical properties of the nanoparticles were examined. The nanoparticles were also tested against four human pathogenic bacteria (Gram negative E.coli, P. aeruginosa, Gram positive S. aureus, S. pyogenus) and two fungi (C. albicans, A.niger). It was revealed that a nanoparticle has strong antibacterial activity as compared to antifungal. Further, Gram positive bacteria are more affected than Gram negative bacteria. It was also clear that different methods of coating have great influence on the antimicrobial properties. It was observed that these nanoparticles have significantly different but potentially very high antimicrobial activities against the tested organisms than found elsewhere by other nanoparticles on the same organisms.

  3. Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field

    International Nuclear Information System (INIS)

    Lima, E Jr; De Biasi, E; Mansilla, M Vasquez; Saleta, M E; Granada, M; Troiani, H E; Zysler, R D; Effenberger, F B; Rossi, L M; Rechenberg, H R

    2013-01-01

    The role of agglomeration and magnetic interparticle interactions in heat generation of magnetic ferrofluids in an ac magnetic field is still unclear, with apparent discrepancy between the results presented in the literature. In this work, we measured the heat generating capability of agglomerated ferrite nanoparticles in a non-invasive ac magnetic field with f = 100 kHz and H 0 = 13 kA m -1 . The nanoparticles were morphologically and magnetically characterized, and the specific absorption rate (SAR) for our ac magnetic field presents a clear dependence on the diameter of the nanoparticles, with a maximum SAR = 48 W g -1 for 15 nm. Our agglomerated nanoparticles have large hydrodynamic diameters, thus the mechanical relaxation can be neglected as a heat generation mechanism. Therefore, we present a model that simulates the SAR dependence of the agglomerated samples on the diameter of the nanoparticles based on the hysteresis losses that is valid for the non-linear region (with H 0 comparable to the anisotropy field). Our model takes into account the magnetic interactions among the nanoparticles in the agglomerate. For comparison, we also measured the SAR of non-agglomerated nanoparticles in a similar diameter range, in which Néel and Brown relaxations dominate the heat generation.

  4. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  5. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  6. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  7. Investigations on structural, optical and magnetic properties of Dy-doped zinc ferrite nanoparticles

    Science.gov (United States)

    Vinosha, P. Annie; Deepapriya, S.; Rodney, John. D.; Das, S. Jerome

    2018-04-01

    A persuasive and thriftily feasible homogeneous co-precipitation route was adopted to fabricate dysprosium (Dy) doped zinc ferrite (Zn1-xDyxFe2O4)nanoparticles in order to examine their structural, optical and magnetic properties. Theas-synthesized Zn1-xDyxFe2O4 was studied for its momentous applications in photo-degradation of organic Methylene Blue (MB) dye. The paper marksthe connotation of zinc ferrite nanocatalyst in Photo-Fenton degradation. The chemical composition of dysprosium has a decisive feature of this research work. From X-ray diffraction analysis (XRD), spinel phase formation of theas-synthesized Zn1-xDyxFe2O4 nanoparticles was observedand the crystallite size was foundto increase as the doping concentration increased. Theabsorption bands peaked between 600-400 cm-l waspragmatic by Fourier Transform Infrared spectral analysis (FTIR). Transmission Electron Microscopy (TEM) micrograph elucidated the morphology and the speck size of as-synthesized nanoparticles. Surface area and pore size were determined by Brunauer-Emmett-Teller (BET) technique.

  8. Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2015-04-01

    Full Text Available A comparison of structural and magnetic properties of as-prepared and annealed (900 °C Mg doped Zn ferrite nanoparticles (Zn1−xMgxFe2O4, with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 is presented. X-ray diffraction (XRD studies confirmed the cubic spinel structure for both the as-prepared and annealed nanoparticles. The average crystallite size and lattice parameter were increased by annealing. Scanning electron microscopy (SEM images also showed that the average particle size increased after annealing. Fourier transform infrared spectroscopy (FTIR also confirmed the spinel structure for both series of nanoparticles. For both annealed and as-prepared nanoparticles, the O–Mtet.–O vibrational band shifts towards higher wave numbers with increased Mg concentration due to cationic rearrangement on the lattice sites. Magnetization studies revealed an anomalous decreasing magnetization for the annealed nanoparticles which is also ascribed to cationic rearrangement on the lattice sites after annealing. The measurement of coercivity showed a decreasing trend by annealing due to the increased nanoparticle size and better crystallinity.

  9. HRTEM Study of the Role of Nanoparticles in ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Tumey, S; Fluss, M; Serruys, Y; Willaime, F

    2011-08-30

    Structures of nanoparticles and their role in dual-ion irradiated Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y{sub 2}O{sub 3} (K3) ODS ferritic steel produced by mechanical alloying (MA) were studied using high-resolution transmission electron microscopy (HRTEM) techniques. The observation of Y{sub 4}Al{sub 2}O{sub 9} complex-oxide nanoparticles in the ODS steel imply that decomposition of Y{sub 2}O{sub 3} in association with internal oxidation of Al occurred during mechanical alloying. HRTEM observations of crystalline and partially crystalline nanoparticles larger than {approx}2 nm and amorphous cluster-domains smaller than {approx}2 nm provide an insight into the formation mechanism of nanoparticles/clusters in MA/ODS steels, which we believe involves solid-state amorphization and re-crystallization. The role of nanoparticles/clusters in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in (Fe + He) dual-ion irradiated K3-ODS steel. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoparticle/clusters in dual-ion irradiated K3-ODS are presented.

  10. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  11. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    Science.gov (United States)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  12. Ferromagnetic resonance parameters of ball-milled Ni-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Rao, B. Parvatheeswara; Caltun, Ovidiu; Dumitru, Ioan; Spinu, Leonard

    2006-01-01

    Ferrite nanoparticles of the size about 6 nm have been made by using high-energy ball mill on the sintered pellets of the system Ni 0.65 Zn 0.375 In x Ti 0.025 Fe 1.95- x O 4 . XRD, VSM and FMR techniques were used for structural and magnetic characterizations of the samples. The magnetic characteristics of indium-doped samples are compared with those for bulk samples. The differences are discussed in terms of the particle size and small-particle magnetism

  13. Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Dědourková, T.; Koktan, Jakub; Kuličková, Jarmila; Maryško, Miroslav; Veverka, Pavel; Havelek, R.; Královec, K.; Turnovcová, Karolína; Jendelová, Pavla; Schröfel, A.; Svoboda, L.

    2016-01-01

    Roč. 18, č. 4 (2016), 1-18, č. článku 100. ISSN 1388-0764 R&D Projects: GA ČR GA15-10088S Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * manganite * ferrite * in vitro toxicity * stem cells Subject RIV: BM - Solid Matter Physics ; Magnetism; EB - Genetics ; Molecular Biology (UEM-P) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Acoustics (UEM-P) Impact factor: 2.020, year: 2016

  14. Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release

    Directory of Open Access Journals (Sweden)

    Al-Qubaisi MS

    2013-10-01

    Full Text Available Mothanna Sadiq Al-Qubaisi,1 Abdullah Rasedee,1,2 Moayad Husein Flaifel,3 Sahrim Hj Ahmad,3 Samer Hussein-Al-Ali,1 Mohd Zobir Hussein,4 Zulkarnain Zainal,4 Fatah H Alhassan,4 Yun H Taufiq-Yap,4 Eltayeb EM Eid,5 Ismail Adam Arbab,1 Bandar A Al-Asbahi,3 Thomas J Webster,6,7 Mohamed Ezzat El Zowalaty1,8,9 1Institute of Bioscience, 2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Pharmacy, Qassim University, Buraidah, Saudi Arabia; 6Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 8Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 9Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia Abstract: The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated

  15. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  16. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  17. Zinc ferrite nanoparticles as perspective functional materials for applications in casting technologies

    Directory of Open Access Journals (Sweden)

    A. Kmita

    2017-01-01

    Full Text Available In this article it discuss on possible application of magnetic oxide nanoparticles, namely non-stoichiometric zinc ferrite nanoparticles as a functionalizing agent in foundry processes. Thermal analysis showed a weight loss of the sample at 1 273 K in an amount of 7,7 %, which is a result of the following processes taking place in different temperature ranges. Upon its thermal treatment Zn0,4Fe2,6O4 decomposes to zinc oxide and iron (III oxide (first stage and next to iron (II,III oxide and oxygen (second stage. The degree of decomposition was expressed as Fe2+ / Fetotal. Mössbauer spectroscopy showed that the over 30 % of Fe3+ present in starting material was reduced to Fe2+.

  18. Electromagnetic properties of NiZn ferrite nanoparticles and their polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Duncan, K. [U.S. Army, Communications-Electronics Research, Development and Engineering Center, Space and Terrestrial Communications Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Giri, A. K. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States); Bowhead Science and Technology, LLC, Belcamp, Maryland 21017 (United States); Xiao, J. Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Karna, S. P., E-mail: shashi.p.karna.civ@mail.mil [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-05-07

    The magnetic properties of polycrystalline NiZn ferrite nanoparticles synthesized using a polyol-reduction and coprecipitation reaction methods have been investigated. The effects on magnetization of synthesis approach, chemical composition, processing conditions, and on the size of nanoparticles on magnetization have been investigated. The measured room-temperature magnetization for the as-prepared magnetic nanoparticles (MNP) synthesized via polyol-reduction and coprecipitation is 69 Am{sup 2} kg{sup −1} and 14 Am{sup 2} kg{sup −1}, respectively. X-ray diffraction measurements confirm spinel structure of the particles with an estimated grain size of ∼80 nm obtained from the polyol-reduction and 28 nm obtained from these coprecipitation techniques. Upon calcination under atmospheric conditions at different temperatures between 800 °C and 1000 °C, the magnetization, M, of the coprecipitated MNP increases to 76 Am{sup 2} kg{sup −1} with an estimated grain size of 90 nm. The MNP-polymer nanocomposites made from the synthesized MNP in various loading fraction and high density polyethylene exhibit interesting electromagnetic properties. The measured permeability and permittivity of the magnetic nanoparticle-polymer nanocomposites increases with the loading fractions of the magnetic nanoparticles, suggesting control for impedance matching for antenna applications.

  19. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Science.gov (United States)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P. B.; Kumar, Manoj; Barman, Dipto; Katyal, S. C.; Sharma, Pankaj

    2017-06-01

    Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn0.5Zn0.5GdxFe2-xO4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  20. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles

    International Nuclear Information System (INIS)

    Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T.

    2015-01-01

    The critical role of Mn partitioning in the formation of ordered NiAl nanoparticles in ferritic steels has been examined through a combination of atom probe tomography (APT) and thermodynamic and first-principles calculations. Our APT study reveals that Mn partitions to the NiAl nanoparticles, and dramatically increases the particle number density by more than an order of magnitude, leading to a threefold enhancement in strengthening. Atomistic structural analyses reveal that Mn is energetically favored to partition to the NiAl nanoparticles by preferentially occupying the Al sublattice, which not only increases the driving force, but also reduces the strain energy for nucleation, thereby significantly decreasing the critical energy for formation of the NiAl nanoparticles in ferritic steels. In addition, the effects of Mn on the precipitation strengthening mechanisms were quantitatively evaluated in terms of chemical strengthening, coherency strengthening, modulus strengthening and order strengthening

  1. Synthesis, characterization and adsorption capability for Congo red of CoFe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zui [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Wei, E-mail: wangwei@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Yajun [Institute of Plastics Machinery and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2015-08-15

    Highlights: • CoFe{sub 2}O{sub 4} ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method. • Suitable amount of ethanol can reduce the particle size and increase BET surface area. • The introduction of ethanol leads to the cation redistribution. • Using ethanol/water mixed solution greatly enhances their adsorption capacity for CR dyes. - Abstract: CoFe{sub 2}O{sub 4} ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method, where the ethanol is mixed with water as the solution. In this synthesis, a rapid mixing of reducible metal cations with reducing agent and a simultaneous reduction process take place in a colloid mill. Synthesized ferrite samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD patterns reveal the formation of CoFe{sub 2}O{sub 4} ferrites with single spinel phase. SEM and TEM images show that the as-synthesized samples are with narrow size distribution. Raman spectroscopy studies clearly indicate the cation distribution in nanosized particles. Here, it is worthy to note that, with increasing ethanol content in ethanol–water mixed solution, an obvious superparamagnetic behavior of as-synthesized nanoparticles at room temperature is observed. The adsorption capability of the as-synthesized ferrite nanoparticles for Congo Red (CR) is examined. Enhancement of adsorption capability for CR with adding ethanol as the mixing solution is shown. The adsorption mechanism is discussed. This investigation reveals that the composition of ethanol/water mixed solution has great effects on the microstructure and magnetic properties as well as adsorption capacity of Congo Red (CR) dye of the as-synthesized CoFe{sub 2}O{sub 4} ferrite samples.

  2. Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles

    International Nuclear Information System (INIS)

    Ding, Zui; Wang, Wei; Zhang, Yajun; Li, Feng; Liu, J. Ping

    2015-01-01

    Highlights: • CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method. • Suitable amount of ethanol can reduce the particle size and increase BET surface area. • The introduction of ethanol leads to the cation redistribution. • Using ethanol/water mixed solution greatly enhances their adsorption capacity for CR dyes. - Abstract: CoFe 2 O 4 ferrite nanoparticles are synthesized by an ethanol-assisted hydrothermal method, where the ethanol is mixed with water as the solution. In this synthesis, a rapid mixing of reducible metal cations with reducing agent and a simultaneous reduction process take place in a colloid mill. Synthesized ferrite samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD patterns reveal the formation of CoFe 2 O 4 ferrites with single spinel phase. SEM and TEM images show that the as-synthesized samples are with narrow size distribution. Raman spectroscopy studies clearly indicate the cation distribution in nanosized particles. Here, it is worthy to note that, with increasing ethanol content in ethanol–water mixed solution, an obvious superparamagnetic behavior of as-synthesized nanoparticles at room temperature is observed. The adsorption capability of the as-synthesized ferrite nanoparticles for Congo Red (CR) is examined. Enhancement of adsorption capability for CR with adding ethanol as the mixing solution is shown. The adsorption mechanism is discussed. This investigation reveals that the composition of ethanol/water mixed solution has great effects on the microstructure and magnetic properties as well as adsorption capacity of Congo Red (CR) dye of the as-synthesized CoFe 2 O 4 ferrite samples

  3. Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method

    International Nuclear Information System (INIS)

    Hou, Wei-xiao; Wang, Zhi

    2015-01-01

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T a ) from 500 to 800 °C. The saturation magnetization (M s ) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T a = 600 °C has the highest initial permeability (μ i ), lowest coercivity (H c ), largest saturation magnetization (M s ) and satisfactory thermal stability of μ i . The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T a has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite

  4. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: magnetic properties and transverse relaxivity

    Czech Academy of Sciences Publication Activity Database

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, T.; Knížek, Karel; Jirák, Zdeněk

    2017-01-01

    Roč. 427, Apr (2017), s. 251-257 ISSN 0304-8853 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : magnetic nanoparticles * Mn-Zn ferrite * hydrothermal synthesis * magnetic resonance imaging * transverse relaxivity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  5. Magnetic nickel ferrite nanoparticles as highly durable catalysts for catalytic transfer hydrogenation of bio-based aldehydes

    DEFF Research Database (Denmark)

    He, Jian; Yang, Song; Riisager, Anders

    2018-01-01

    Magnetic nickel ferrite (NiFe2O4) nanoparticles were exploited as stable and easily separable heterogeneous catalysts for catalytic transfer hydrogenation (CTH) of furfural to furfuryl alcohol with 2-propanol as both the hydrogen source and the solvent providing 94% product yield at 180 degrees C...

  6. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  7. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core

  8. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    International Nuclear Information System (INIS)

    Petchsang, N.; Pon-On, W.; Hodak, J.H.; Tang, I.M.

    2009-01-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3x Fe 2x Co x (PO 4 ) 6 (OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 o C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2 O 4 . Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+ /Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+ ) in the Moessbauer spectrum for all the doped samples clearly indicates that the CoFe 2 O 4 .cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Moessbauer spectrums for the heavier-doped (x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2 O 3 impurity phase seen in the XRD patterns.

  9. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  10. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan); Hussain Gul, Iftikhar, E-mail: iftikhar.gul@scme.nust.edu.pk [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Zarrar, Muhammad [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Anwar, Humaira [Islamabad Model College for Girls G-10/2, Islamabad (Pakistan); Khan Niazi, Muhammad Bilal [Department of Chemicals Engineering, SCME, NUST, H-12 Campus, Islamabad (Pakistan); Khan, Azim [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan)

    2016-05-01

    Cadmium substituted cobalt ferrites with formula Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd{sup 2+}concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd{sup 2+} substituted Co-ferrites increases.

  11. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    International Nuclear Information System (INIS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; Khan Niazi, Muhammad Bilal; Khan, Azim

    2016-01-01

    Cadmium substituted cobalt ferrites with formula Cd x Co 1−x Fe 2 O 4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd 2+ concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd x Co 1−x Fe 2 O 4 the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd 2+ substituted Co-ferrites increases.

  12. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  13. Gd3+ doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    International Nuclear Information System (INIS)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B.; Kumar, Manoj; Barman, Dipto; Katyal, S.C.; Sharma, Pankaj

    2017-01-01

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn 0.5 Zn 0.5 Gd x Fe 2-x O 4 (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd 3+ nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  14. Gd{sup 3+} doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Prashant; Sharma, Rohit; Sharma, Vineet; Barman, P.B. [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India); Kumar, Manoj [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Barman, Dipto [Gwangju Institute of Science & Technology, Gwangju (Korea, Republic of); Department of Computer Science & Engineering, Jaypee University of Information Technology, Waknaghat, Solan, Himachap Pradesh 173234 (India); Katyal, S.C. [Department of Physics & Materials Science, Jaypee Institute of Information Technology, Noida 201307 (India); Sharma, Pankaj, E-mail: pankaj.sharma@juit.ac.in [Department of Physics & Materials Science, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234 (India)

    2017-06-15

    Highlights: • Superparamagnetic nanoparticles of Gd doped Mn-Zn spinel ferrites synthesized by co-precipitation. • XRD and FTIR studies justify the formation of cubical spinel structure. • Maximum saturation magnetization and magnetic moment at x = 0.025. • PL spectra shows blue shift for x = 0.025, 0.075 and may be attributed to quantum confinement. - Abstract: Superparamagnetic nanoparticles are very important in biomedicine due to their various applications like drug delivery, gene delivery in the body and also used for hyperthermia. In the present work, superparamagnetic nanoparticles of Mn{sub 0.5}Zn{sub 0.5}Gd{sub x}Fe{sub 2-x}O{sub 4} (x = 0, 0.025, 0.050, 0.075, 0.1) ferrites have been prepared by co-precipitation method. Thorough characterizations (XRD, FTIR, FE-SEM, EDS, VSM and fluorescence spectroscopy) have proved the formation of cubical spinel superparamagnetic nanoparticles of soft ferrites. A cation distribution has been proposed for the determination of various important theoretical parameters for these samples. With the addition of Gd{sup 3+} nanoparticles have shown the superparamagnetism at room temperature confirmed by VSM analysis. Photoluminescence (PL) spectra shows a blue shift (for x = 0.025, 0.075) which may be due to quantum confinement.

  15. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  16. Manganese ferrite-based nanoparticles induce ex vivo, but not in vivo, cardiovascular effects

    Directory of Open Access Journals (Sweden)

    Nunes ADC

    2014-07-01

    Full Text Available Allancer DC Nunes,1 Laylla S Ramalho,2 Álvaro PS Souza,1 Elizabeth P Mendes,1,3 Diego B Colugnati,1 Nícholas Zufelato,2 Marcelo H Sousa,4 Andris F Bakuzis,2 Carlos H Castro1,3 1Department of Physiological Sciences, 2Physics Institute, Federal University of Goiás, Goiânia, Brazil; 3National Institute of Science and Technology in Nanobiopharmaceutics, Belo Horizonte, Brazil; 4Faculty of Ceilândia, University of Brasília, Brasília-DF, Brazil Abstract: Magnetic nanoparticles (MNPs have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs; tripolyphosphate-coated (PhMNPs; and bare magnetic nanoparticles (BaMNPs. The samples were characterized by vibrating sample magnetometer, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. The direct effects of the MNPs on cardiac contractility were evaluated in isolated perfused rat hearts. The CiMNPs, but not PhMNPs and BaMNPs, induced a transient decrease in the left ventricular end-systolic pressure. The PhMNPs and BaMNPs, but not CiMNPs, induced an increase in left ventricular end-diastolic pressure, which resulted in a decrease in a left ventricular end developed pressure. Indeed, PhMNPs and BaMNPs also caused a decrease in the maximal rate of left ventricular pressure rise (+dP/dt and maximal rate of left ventricular pressure decline (–dP/dt. The three MNPs studied induced an increase in the perfusion pressure of isolated hearts. BaMNPs, but not PhMNPs or CiMNPs, induced a slight vasorelaxant effect in the isolated aortic rings. None of the MNPs were able to change heart

  17. Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles

    International Nuclear Information System (INIS)

    Arana, Mercedes; Bercoff, Paula G.; Jacobo, Silvia E.

    2017-01-01

    Highlights: • Kerosene-based ferrofluids of Ni-ferrite NPs from high energy ball milling. • Thermomagnetic characterization of organic-based ferrofluids. • Measured thermal variables enhancements of ferrofluid vs. magnetic field. • Curves successfully fitted by a gas-compression model of nanoaggregates. - Abstract: In this work, a thermomagnetic characterization of kerosene-based ferrofluids (FFs) prepared with Ni-ferrite nanoparticles (NPs) is performed by measuring their thermal conductivity and diffusivity coefficient enhancements. The particles were synthesized by high-energy ball milling, as an alternative to the most commonly chosen NPs synthesis methods for FFs. The action of an applied magnetic field on the FF increases the thermal conductivity and diffusivity due to cooperation between the NPs, as it agglomerates them favoring chain-like and clusters formations. It was found that the heat capacity of the studied FFs decreases under the application of a magnetic field. The obtained results for thermal conductivity of FFs under magnetic fields were fitted by a gas-compression model that considers NPs agglomerates in the fluid.

  18. Thermomagnetic characterization of organic-based ferrofluids prepared with Ni ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arana, Mercedes, E-mail: mercedes.arana@labh2.coppe.ufrj.br [Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba, IFEG, CONICET, Medina Allende s/n, Ciudad Universitaria, Córdoba (Argentina); Bercoff, Paula G. [Facultad de Matemática, Astronomía, Física y Computación (FaMAF), Universidad Nacional de Córdoba, IFEG, CONICET, Medina Allende s/n, Ciudad Universitaria, Córdoba (Argentina); Jacobo, Silvia E. [DiQuiMMAI, Facultad de Ingeniería, Universidad de Buenos Aires, INTECIN, CONICET, Av. Paseo Colón 850, Buenos Aires (Argentina)

    2017-01-15

    Highlights: • Kerosene-based ferrofluids of Ni-ferrite NPs from high energy ball milling. • Thermomagnetic characterization of organic-based ferrofluids. • Measured thermal variables enhancements of ferrofluid vs. magnetic field. • Curves successfully fitted by a gas-compression model of nanoaggregates. - Abstract: In this work, a thermomagnetic characterization of kerosene-based ferrofluids (FFs) prepared with Ni-ferrite nanoparticles (NPs) is performed by measuring their thermal conductivity and diffusivity coefficient enhancements. The particles were synthesized by high-energy ball milling, as an alternative to the most commonly chosen NPs synthesis methods for FFs. The action of an applied magnetic field on the FF increases the thermal conductivity and diffusivity due to cooperation between the NPs, as it agglomerates them favoring chain-like and clusters formations. It was found that the heat capacity of the studied FFs decreases under the application of a magnetic field. The obtained results for thermal conductivity of FFs under magnetic fields were fitted by a gas-compression model that considers NPs agglomerates in the fluid.

  19. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    International Nuclear Information System (INIS)

    Raut, Anil V.; Kurmude, D.V.; Shengule, D.R.; Jadhav, K.M.

    2015-01-01

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n B were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co 1−x Zn x Fe 2 O 4 (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co 60 γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co 1−x Zn x Fe 2 O 4 spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n B ) etc. magnetic parameters were increased after irradiation

  20. Effect of gamma irradiation on the structural and magnetic properties of Co–Zn spinel ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Raut, Anil V., E-mail: nano9993@gmail.com [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Kurmude, D.V. [Milind College of Science, Aurangabad 431004, (M.S.) India (India); Shengule, D.R. [Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431004, (M.S.) India (India); Jadhav, K.M. [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, (M.S.) India (India)

    2015-03-15

    Highlights: • Co–Zn ferrite nanoparticles were examined before and after γ-irradiation. • Single phase cubic spinel structure of Co–Zn was confirmed by XRD data. • The grain size was reported in the range of 52–62 nm after γ-irradiation. • Ms, Hc, n{sub B} were reported to be increased after gamma irradiation. - Abstract: In this work, the structural and magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) ferrite nanoparticles were studied before and after gamma irradiation. The as-synthesized samples of Co–Zn ferrite nanoparticles prepared by sol–gel auto-combustion technique were analysed by XRD which suggested the single phase; cubic spinel structure of the material. Crystal defects produced in the spinel lattice were studied before and after Co{sup 60} γ-irradiation in a gamma cell with a dose rate of 0.1 Mrad/h in order to report the changes in structural and magnetic properties of the Co–Zn ferrite nanoparticles. The average crystallite size (t), lattice parameter (α) and other structural parameters of gamma-irradiated and un-irradiated Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite system was calculated from XRD data. The morphological characterizations were performed using scanning electron microscopy (SEM). The magnetic properties were measured using pulse field hysteresis loop tracer by applying magnetic field of 1000 Oe, and the analysis of data obtained revealed that the magnetic property such as saturation magnetization (Ms), coecivity (Hc), magneton number (n{sub B}) etc. magnetic parameters were increased after irradiation.

  1. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  2. Functionalized bismuth ferrite harmonic nanoparticles for cancer cells labeling and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Passemard, Solène; Staedler, Davide; Sonego, Giona [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (Switzerland); Magouroux, Thibaud [Université de Genève, GAP-Biophotonics (Switzerland); Schneiter, Guillaume Stéphane [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (Switzerland); Juillerat-Jeanneret, Lucienne [University Institute of Pathology, CHUV-UNIL (Switzerland); Bonacina, Luigi [Université de Genève, GAP-Biophotonics (Switzerland); Gerber-Lemaire, Sandrine, E-mail: Sandrine.Gerber@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering (Switzerland)

    2015-10-15

    Bismuth ferrite (BFO) harmonic nanoparticles (NPs) display high nonlinear optical efficiency and excellent biocompatibility profile which make them attractive for the development of diagnostic applications as contrast agents. In this study, we present a general method for the functionalization of this material with chemical ligands targeting cancer molecular biomarkers. In particular, a conjugation protocol based on click reaction between alkynyl-containing targeting ligands and poly(ethylene glycol)-coated BFO NPs (67.7 nm) displaying surface reactive azido groups was developed. Copper-free click reaction allowed fast and efficient conjugation of a covalent inhibitor of prolyl-specific endopeptidases to coated BFO NPs. The ability of these functionalized nanomaterials (134.2 nm) to act as imaging probes for cancer cells was demonstrated by the selective labeling of human lung cancer cells.

  3. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chaitali, E-mail: chaitalidey29@gmail.com [Centre for Research in Nanoscience & Nanotechnology, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Baishya, Kaushik [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Arup [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Ajay [Dept. of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Mandal, Kalyan [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  4. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier.

    Science.gov (United States)

    Kamaraj, Sriram; Palanisamy, Uma Maheswari; Kadhar Mohamed, Meera Sheriffa Begum; Gangasalam, Arthanareeswaran; Maria, Gover Antoniraj; Kandasamy, Ruckmani

    2018-04-30

    The aim of the present investigation is the development, optimization and characterization of curcumin-loaded hybrid nanoparticles of vanillin-chitosan coated with super paramagnetic calcium ferrite. The functionally modified vanillin-chitosan was prepared by the Schiff base reaction to enhance the hydrophobic drug encapsulation efficiency. Calcium ferrite (CFNP) nano particles were added to the vanillin modified chitosan to improve the biocompatibility. The vanillin-chitosan-CFNP, hybrid nanoparticle carrier was obtained by ionic gelation method. Characterizations of the hybrid materials were performed by XRD, FTIR, 1 H NMR, TGA, AFM and SEM techniques to ensure the modifications on the chitosan material. Taguchi method was applied to optimize the drug (curcumin) encapsulation efficiency by varying the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP (sodium tripolyphospate) to chitosan-vanillin ratios. The maximum encapsulation efficiency was obtained as 98.3% under the conditions of 0.1, 0.75 and 1.0 for the drug to chitosan-vanillin, CFNP to chitosan-vanillin and TPP to chitosan-vanillin ratios, respectively. The curcumin release was performed at various pH, initial drug loading concentrations and magnetic fields. The drug release mechanism was predicted by fitting the experimental kinetic data with various drug release models. The drug release profiles showed the best fit with Higuchi model under the most of conditions. The drug release mechanism followed both non-Fickian diffusion and case II transport mechanism for chitosan, however the non-Fickian diffusion mechanism was followed for the vanillin modified chitosan. The biocompatibility of the hybrid material was tested using L929 fibroblast cells. The cytotoxicity test was performed against MCF-7 breast cancer cell line to check the anticancer property of the hybrid nano carrier with the curcumin drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Influence of synthesis approach on structural and magnetic properties of lithium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Dar, M. Abdullah; Shah, Jyoti; Siddiqui, W.A.; Kotnala, R.K.

    2012-01-01

    Highlights: ► Nanocrystalline Li 0.5 Fe 2.5 O 4 ferrites were synthesized with an average crystallite size of 12.3 nm and 5.7 nm by chemical co-precipitation and reverse microemulsion technique respectively. ► The non-saturated M–H loops, absence of hysteresis, remanence and coercivity at room temperature is indicative of the presence of superparamagnetic and single-domain particles for both the materials. ► The blocking temperature T B shifts to lower temperature with the increase of applied field, which is attributed to the reduction of magnetocrystalline anisotropy constant. ► At high temperature, microemulsion synthesized nanoparticles are observed to show a maxima immediately below the Curie temperature which is attributed to the cumulative effect of the anisotropy variation of temperature and particle size growth during the measurement. - Abstract: Nanocrystalline Li 0.5 Fe 2.5 O 4 ferrite particles were synthesized with an average crystallite size of 12.3 nm and 5.7 nm by chemical coprecipitation and reverse microemulsion technique respectively. Zero-field cooled (ZFC) and field cooled (FC) magnetization measurements at different magnetic fields and magnetic hysteresis loops at different temperatures have been measured. The non-saturation of M–H loops with a very low coercivity and remenance at room temperature confirms the presence of superparamagnetic (SPM) nature and single-domain ferrite particles. The blocking temperature (T B ) has been found to shift towards the lower temperature region with the increase in applied magnetic field. It has been attributed to the reduction of magnetocrystalline anisotropy constant and blocking temperature dereases from 145 K to 110 K with increase in field from 50 Oe to 1000 Oe in the samples synthesized by microemulsion method. At high temperature, microemulsion synthesized nanoparticles show a maximum in magnetization versus temperature plot just below the Curie temperature (T C ) which has been attributed

  6. Structural, electrical and magnetic properties of Sc{sup 3+} doped Mn-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Angadi, V. Jagdeesha [Department of Physics, Bangalore University, Bangalore 560056 (India); Choudhury, Leema [Department of Physics, K.G. Reddy College of Engineering & Technology, Moinabad, 501504 Ranga Reddy, Telangana (India); Sadhana, K. [Department of Physics, University College of Science, Osmania University, Saifabad, Hyderabad 500004 (India); Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Sandhya, R. [Department of Physics, University College of Science, Osmania University, Hyderabad 500007 (India); Matteppanavar, Shidaling; Rudraswamy, B.; Pattar, Vinayak; Anavekar, R.V. [Department of Physics, Bangalore University, Bangalore 560056 (India); Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2017-02-15

    Sc{sup 3+} doped Mn{sub 0.5}Zn{sub 0.5}Sc{sub y}Fe{sub 2−y}O{sub 4} (y=0.00, 0.01, 0.03 and 0.05) nanoparticles were synthesized by solution combustion method using mixture of fuels were reported for the first time. The mixture of fuels plays an important role in obtaining nano crystalline, single phase present without any heat treatment. X-ray diffraction (XRD) results confirm the formation of the single-phase ferrites which crystallize in cubic spinel structure. The Fourier transform infrared spectra (FTIR) exhibit two prominent bands around 360 cm{sup −1} and 540 cm{sup −1} which are characteristic feature of spinel ferrite. The transmission electron microscope (TEM) micrographs revealed the nanoparticles to be nearly spherical in shape and of fairly uniform size. The room temperature impedance spectra (IS) and vibrating sample magnetometry (VSM) measurements were carried out in order to study the effect of doping (Sc{sup 3+}) on the characteristic properties of Mn-Zn ferrites. Further, the frequency dependent dielectric constant and dielectric loss were found to decrease with increasing multiple Sc{sup 3+} concentration. Nyquist plot in the complex impedance spectra suggest the existence of multiple electrical responses. Magnetic measurements reveals that saturation magnetization (M{sub s}), remnant magnetization (M{sub r}), magnetic moment (η{sub B}) and magnetic particle size (D{sub m}) increase with Sc{sup 3+} ion concentration up to x=0.03 and then decrease. The values of spin canting angle (α{sub Y-K}) and the magnetic particle size (D{sub m}) are found to be in the range of 68–75° and 10–19 nm respectively with Sc{sup 3+} concentration. The room temperature Mössbauer spectra were fitted with two sextets corresponding to ions at tetrahedral (A-) and octahedral (B-) sites confirms the spinel lattice. The ferromagnetic resonance (FMR) spectra's has shown that high concentration of scandium doping leads to an increase in dipolar interaction

  7. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  8. Synthesis of Ni-Zn ferrite nanoparticles in radiofrequency thermal plasma reactor and their use for purification of histidine-tagged proteins

    International Nuclear Information System (INIS)

    Feczko, Tivadar; Muskotal, Adel; Gal, Lorand; Szepvoelgyi, Janos; Sebestyen, Anett; Vonderviszt, Ferenc

    2008-01-01

    Superparamagnetic Ni-Zn ferrite nanoparticles were synthesized in radiofrequency thermal plasma reactor from aqueous solutions of Ni- and Zn-nitrates. The nanoparticles were studied for protein purification performance in both quantitative and qualitative terms. For comparison, experiments were also performed by Ni-charged affinity chromatography. It was proved that the Ni-Zn ferrite nanoparticles effectively purified histidine-tagged proteins with a maximum protein binding capacity of about 7% (w/w). Gel electrophoresis demonstrated better purification characteristics for magnetic nanoparticles than for affinity chromatography.

  9. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  10. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, P. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Silva, F. G. da [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Gomide, G.; Paula, F. L. O. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Campos, A. F. C. [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Perzynski, R. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX (France); Kern, C. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Depeyrot, J. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Aquino, R., E-mail: reaquino@unb.br [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil)

    2016-05-15

    We synthesize Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M{sub R}/M{sub S}) and the coercivity (H{sub C}) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.Graphical Abstract.

  11. Structural and magnetic properties of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite prepared by NaOH-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-xiao; Wang, Zhi, E-mail: zhiwang@tju.edu.cn

    2015-09-15

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T{sub a}) from 500 to 800 °C. The saturation magnetization (M{sub s}) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T{sub a} = 600 °C has the highest initial permeability (μ{sub i}), lowest coercivity (H{sub c}), largest saturation magnetization (M{sub s}) and satisfactory thermal stability of μ{sub i}. The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T{sub a} has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite.

  12. Influence of the magnetic dead layer thickness of Mg-Zn ferrites nanoparticle on their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, H.M. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ali, I.A.; Azzam, A. [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Sattar, A.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2017-02-15

    Nanoparticle ferrite with chemical formula Mg{sub (1−x)}Zn{sub x}Fe{sub 2}O{sub 4} (where x=0.0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by sol-gel technique. Single phase structure of these ferrites was confirmed using X-ray diffraction (XRD). Transmission Electron Microscope (TEM) showed that the particle size of the samples in the range of (5.7–10.6 nm). The hysteresis studies showed superparamagnetic behaviour at room temperature. The magnetization behaviour with Zn-content is expressed in the light of Yafet-Kittel angles. The dead layer thickness (t) was calculated and its effect on the magnetization and magnetic losses was debated. The Specific Absorption Rate (SAR) in an alternating magnetic field with frequency 198 kHz for these ferrites has been studied. It is found that, the thickness of magnetic dead layer of the surface of the materials has greatly affected the SAR value of the samples. - Highlights: • Synthesis of Mg-Zn nanoparticle ferrite by sol-gel technique. • Methods of dead layer thickness calculation. • Magnetic behaviour explanation. • Relation between the Specific Absorption Rate, dead layer thickness and particle size.

  13. Evidence of exchange-coupled behavior in chromium-cobalt ferrite nanoparticles

    Science.gov (United States)

    Tanbir, Kamar; Sharma, Lalit Kumar; Aakash; Singh, Rakesh Kumar; Choubey, Ravi Kant; Mukherjee, Samrat

    2018-06-01

    Cr doped cobalt ferrite nanoparticles were synthesized with the generic formula Co1-xCrxFe2O4 (x = 0, 0.05, 0.15, 0.25) through standard chemical co-precipitation method. XRD studies confirmed the pure spinel cubic structure belonging to Fd 3 bar m space group. From the Williamson-Hall plots, crystallite sizes were found to lie within the range (42 ± 1) nm for the different doped samples. The lattice parameter was found to decrease linearly with increase in the concentration of Cr3+ ion. The magnetic behavior of the samples was determined by M-H studies at 300 K, field cooled (5 T) at 5 K and temperature dependent studies. The M-H at 300 K show soft magnetic behavior whereas the M-H plots at 5 K predict the existence of in-homogeneity of the exchange interactions due to strong exchange coupling between the spins at the core and the surface of the nanoparticles.

  14. Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles

    Science.gov (United States)

    Pattnaik, Sambhu Prasad; Behera, Arjun; Martha, Satyabadi; Acharya, Rashmi; Parida, Kulamani

    2018-01-01

    Bismuth ferrite (BFO) nanoparticles prepared by solid state reaction route were characterized by various characterization techniques such as XRD, FESEM, HRTEM, UV-Vis DRS, PL etc., and their photocatalytic activities were evaluated by decolorization of aqueous solution of Congo red (CR) under solar light. The photocatalytic activity of BFO was increased by increasing the preparation temperature from 350 to 500 °C and then decreased with rise in temperature. The results of electrochemical measurements such as linear sweep voltammetry (LSV), electrochemical impedence (EIS), and Mott-Schottky analysis of BFO nanoparticles corroborated the findings of their photocatalytic activity. The enhanced photocatalytic response of the sample prepared at 500 °C is attributed to its smallest band gap, minimum crystallite size (30 nm), efficient separation, and lowest possible recombination of photo-generated charge carriers. The effects of amount of nano-BFO, irradiation time, initial CR concentration, and BFO calcination temperature on the decolorization of CR were examined. It was observed that 1 g/L nano-BFO calcined at 500 °C can decolorize up to 77% a 10-ppm CR dye solution under solar irradiation for 60 min. The studies included scavenger tests for identification of reactive species and a possible mechanism of dye decolorization.

  15. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  16. Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu

    2018-05-01

    Highly stable silica-coated manganese ferrite nanoparticles were fabricated for application as magnetic resonance imagining (MRI) contrast agents. The manganese ferrite nanoparticles were synthesized using a hydrothermal technique and coated with silica. The particle size was investigated using transmission electron microscopy and was found to be 40-60 nm. The presence of the silica coating on the particle surface was confirmed by Fourier transform infrared spectroscopy. The crystalline structure was investigated by X-ray diffraction, and the particles were revealed to have an inverse spinel structure. Superparamagnetism was confirmed by the magnetic hysteresis curves obtained using a vibrating sample magnetometer. The efficiency of the MRI contrast agents was investigated by using aqueous solutions of the particles in a 4.7 T MRI scanner. The T1 and T2 relaxivities of the particles were 1.42 and 60.65 s-1 mM-1, respectively, in water. The ratio r2/r1 was 48.91, confirming that the silica-coated manganese ferrite nanoparticles were suitable high-efficacy T2 contrast agents.

  17. Effect of PVP as a capping agent in single reaction synthesis of nanocomposite soft/hard ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H.A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saiden, N.M., E-mail: nlaily@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Saion, E.; Azis, R.S.; Mamat, M.S. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia); Hashim, M. [Advanced Material and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor (Malaysia)

    2017-04-15

    Nanocomposite magnets consist of soft and hard ferrite phases are known as an exchange spring magnet when they are sufficiently spin exchange coupled. Hard and soft ferrites offer high value of coercivity, H{sub c} and saturation magnetization, M{sub s} respectively. In order to obtain a better permanent magnet, both soft and hard ferrite phases need to be “exchange coupled”. The nanoparticles were prepared by a simple one-pot technique of 80% soft phase and 20% hard phase. This technique involves a single reaction mixture of metal nitrates and aqueous solution of varied amounts of polyvinylpyrrolidone (PVP). The heat treatment applied was at 800 °C for 3 h. The synthesized composites were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infra-red (FT-IR), Energy Dispersive X-Ray (EDX), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM). The coexistence of two phases, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and SrFe{sub 12}O{sub 19} were observed by XRD patterns. It also verified by the EDX that no impurities detected. The magnetic properties of nanocomposite ferrites for 0.06 g/ml PVP gives a better properties of H{sub c} 932 G and M{sub s} 39.0 emu/g with average particle size obtained from FESEM was 49.2 nm. The concentration of PVP used gives effect on the magnetic properties of the samples. - Highlights: • Amount of PVP play important roles in controlling the particle size distribution and magnetic properties. • This is a novel technique to produce nanocomposite ferrites effectively. • This study contributes better understanding on magnetic properties in nanoparticle composite magnets.

  18. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    Science.gov (United States)

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Cobalt doped lithium ferrite nanoparticles were synthesized at different pH by sol-gel method. The effect of pH on the physical properties of cobalt doped lithium ferrite nanoparticles has been investigated. The nanoparticles synthesized at different pH were characterized through X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and vibrating sample magnetometer (VSM). The XRD patterns were analyzed to determine the crystal phase of cobalt doped lithium ferrites nanoparticles synthesized at different pH. The XRD results show the formation of impurity free cobalt doped lithium ferrites having ordered phase spinel structure. A similar kind of conclusion was also drawn through the analysis of Raman spectra of the nanoparticles synthesized at different pH. SEM micrographs show that the structural morphology of the nanoparticles is highly sensitive to the pH during the synthesis process. The magnetic properties such as; saturation magnetization (Ms), remnant magnetization (Mr) and coercivety (Hc) have been also investigated and found to be different for the nanoparticles synthesized at different pH, which may be attributed to the different size and surface morphology of the nanoparticles.

  20. Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. M. Eltabey

    2014-01-01

    Full Text Available Magnesium substituted nickel cadmium ferrite nanoparticles MgxNi0.6−xCd0.4Fe2O4 (from x = 0 to 0.6 with step 0.1 have been synthesized by the chemical coprecipitation route. X-ray diffraction (XRD and infrared spectroscopy (FTIR revealed that the obtained powders have a single phase of cubic spinel structure. The crystallite sizes calculated from XRD data have been confirmed using transmission electron microscopy (TEM showing that the powders are consisting of nanosized grains with an average size range 5–1.5 nm. Magnetic hysteresis loops were traced at 6.5 K as well as at room temperature using VSM. It was found that, due to the Mg2+-ions substitution, the values of saturation magnetization Ms for the investigated samples were decreased, whereas the coercive field Hc increased. Both zero field cooling (ZFC and field cooling (FC curves are measured in the temperature range (6.5–350 K and the values of blocking temperature TB were determined. No considerable variation in the values of TB was observed with increasing Mg-content, whereas the values of the effective anisotropy constant Keff were increased.

  1. Seeded Growth of Ferrite Nanoparticles from Mn oxides : Observation of Anomalies in Magnetic Transitions

    KAUST Repository

    Song, Hyon-Min

    2015-06-17

    A series of magnetically active ferrite nanoparticles (NPs) are prepared by using Mn oxide NPs as seeds. Verwey transition is identified in Fe3O4 NPs with an average diameter of 14.5 nm at 96 K, where a sharp drop of magnetic susceptibility occurs. In MnFe2O4 NPs, spin glass-like state is observed with the decrease of magnetization below the blocking temperature due to the disordered spins during the freezing process. From these MnFe2O4 NPs, MnFe2O4@MnxFe1-xO core-shell NPs are prepared by seeded growth. The structure of core is cubic spinels (Fd-3m), and shell is composed of iron-manganese oxide (MnxFe1-xO) with a rock salt structure (Fm-3m). Moiré fringes appear perpendicular to <110> directions on the cubic shape NPs through the plane-matched epitaxial growth. These fringes are due to the difference in their lattice spacings between MnFe2O4 and MnxFe1-xO. Exchange bias is observed in these MnFe2O4@MnxFe1-xO core-shell NPs with an enhanced coercivity as well as the shift of hysteresis along the field direction.

  2. Assessment of Immunotoxicity of Dextran Coated Ferrite Nanoparticles in Albino Mice

    Science.gov (United States)

    Syama, Santhakumar; Gayathri, Viswanathan; Mohanan, Parayanthala Valappil

    2015-01-01

    In this study, dextran coated ferrite nanoparticles (DFNPs) of size immunotoxicity, and oxidative stress by in vitro and in vivo methods. Cytotoxicity was performed in vitro using splenocytes with different concentrations of DFNPs. Gene expression of selected cytokines (IL-1, IL-10, and TNF β) secretion by splenocytes was evaluated. Also, 100 mg of DFNPs was injected intraperitoneally to 18 albino mice for immunological stimulations. Six animals each were sacrificed at the end of 7, 14, and 21 days. Spleen was subjected to immunotoxic response and liver was analyzed for antioxidant parameters (lipid peroxidation, reduced glutathione, glutathione peroxidase, superoxide dismutase, and glutathione reductase). The results indicated that DFNPs failed to induce any immunological reactions and no significant alternation in antioxidant defense mechanism. Also, mRNA expression of the cytokines revealed an increase in IL-10 expression and subsequent decreased expression of IL-1 and TNF β. Eventually, DNA sequencing of liver actin gene revealed base alteration in nonconserved regions (10–20 bases) of all the treated groups when compared to control samples. Hence, it can be concluded that the DFNPs were nontoxic at the cellular level and nonimmunotoxic when exposed intraperitoneally to mice. PMID:26576301

  3. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    Energy Technology Data Exchange (ETDEWEB)

    Ateia, Ebtesam E.; Mohamed, Amira T., E-mail: atawfik@sci.cu.edu.eg

    2017-03-15

    The spinel ferrite Mg{sub 0.7}Cr{sub 0.3}Fe{sub 2}O{sub 4}, and Mg{sub 0.7}Al{sub 0.3}Fe{sub 2}O{sub 4} were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al{sup 3+} and Mg{sup 2+} respectively. The substitution of Cr{sup 3+}/Al{sup 3+} in place of Mg{sup 2+} ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg{sup 2+}, which creates strain inside the crystal volume. According to VSM results, by adding Al{sup 3+} or Cr{sup 3+} ions at the expense of Mg{sup 2+}, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5–1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al{sup 3+}, and Cr{sup 3+} ions enhanced the optical, magnetic and structure properties of the samples. Mg{sub 0.7} Cr{sub 0.3}Fe{sub 2}O{sub 4} sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications. - Highlights: • Nanoparticles of (Mg{sub 0.7} Al{sub 0.3} Fe{sub 2}O{sub 4}) ferrite are the potential candidates for various

  4. Radiation induced structural and magnetic transformations in nanoparticle MnxZn(1−x)Fe2O4 ferrites

    International Nuclear Information System (INIS)

    Naik, P.P.; Tangsali, R.B.; Sonaye, B.; Sugur, S.

    2015-01-01

    Nanoparticle magnetic materials are suitable for multiple modern high end medical applications like targeted drug delivery, gene therapy, hyperthermia and MR thermometry imaging. Majority of these applications are confined to use of Mn–Zn ferrite nanoparticles. These nanoparticles are normally left in the body after their requisite application. Preparing these nanoparticles is usually a much involved job. However with the development of the simple technique Mn x Zn 1−x Fe 2 O 4 nanoparticles could be prepared with much ease. The nanoparticles of Mn x Zn 1−x Fe 2 O 4 with (x=1.0, 0.7, 0.5, 0.3, 0.0) were prepared and irradiated with gamma radiation of various intensities ranging between 500 R to 10,000 R, after appropriate structural and magnetic characterization. Irradiated samples were investigated for structural and magnetic properties, as well as for structural stability and cation distribution. The irradiated nanoparticles exhibited structural stability with varied cation distribution and magnetic properties, dependent on gamma radiation dose. Surprisingly samples also exhibited quenching of lattice parameter and particle size. The changes introduced in the cation distribution, lattice constant, particle size and magnetic properties were found to be irreversible with time lapse and were of permanent nature exhibiting good stability even after several months. Thus the useful properties of nanoparticles could be enhanced on modifying the cation distribution inside the nanoparticles by application of gamma radiation. - Highlights: • Mn x Zn 1−x Fe 2 O 4 nanoparticles were synthesized using auto combustion method. • The irradiated samples showed a change in cation distribution. • Lattice shrinkage observed due to radiation induced change in cation distribution. • Reduction in particle size was also observed due to gamma exposure. • An enhancement in saturation magnetization was observed in irradiated samples

  5. Impact of Nd{sup 3+} in CoFe{sub 2}O{sub 4} spinel ferrite nanoparticles on cation distribution, structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir; Masilko, Jiri; Kalina, Lukas; Wasserbauer, Jaromir; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Kuřitka, Ivo; Kožáková, Zuzana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín (Czech Republic)

    2016-02-01

    Nd{sup 3+} doped cobalt ferrite nanoparticles have been synthesized by starch-assisted sol–gel auto-combustion method. The significant role played by Nd{sup 3+} added to cobalt ferrite in changing cation distribution and further in influencing structural and magnetic properties, was explored and reported. The crystal structure formation and crystallite size were studied from X-ray diffraction studies. The microstructural features were investigated by field emission scanning electron microscopy and transmission electron microscopy that demonstrates the nanocrystalline grain formation with spherical morphology. An infrared spectroscopy study shows the presence of two absorption bands related to tetrahedral and octahedral group complexes within the spinel ferrite lattice system. The change in Raman modes in synthesized ferrite system were observed with Nd{sup 3+} substitution, particle size and cation redistribution. The impact of Nd{sup 3+} on cation distribution of Co{sup 2+} and Fe{sup 3+} at octahedral and tetrahedral sites in spinel ferrite cobalt ferrite nanoparticles was investigated by X-ray photoelectron spectroscopy. Room temperature magnetization measurements showed that the saturation magnetization and coercivity increase with addition of Nd{sup 3+} substitution in cobalt ferrite. - Highlights: • Nd{sup 3+} doped CoFe{sub 2}O{sub 4} nanoparticles by starch-assisted sol–gel auto-combustion method. • The change in Raman modes with Nd{sup 3+} substitution. • Presence of absorption infrared bands related to octahedral and tetrahedral site. • The impact of Nd{sup 3+} on cation distribution at octahedral and tetrahedral sites. • Influence of Nd{sup 3+} substitution in cobalt ferrite on magnetic properties.

  6. Effect of Cr{sup 3+} substitution on electric and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panda, R.K., E-mail: physics.panda@gmail.com [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Muduli, R. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Jayarao, G. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769 008 (India); Sanyal, D. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Behera, D. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India)

    2016-06-05

    This work describes the effect of incorporation of Cr{sup 3+} into CoFe{sub 2}O{sub 4} nanoparticles on its magnetic and electric properties, prepared by auto combustion method. The samples of CoFe{sub 2-x}Cr{sub x}O4 (x = 0, 0.15, 0.3) series were characterized by x-ray diffraction and field emission scanning electron microscopy to find out the average particle size. The substitution of Cr{sup 3+} caused a significant reduction in particle size of the modified systems. Room temperature Moessbauer spectroscopy and magnetic characterization were performed. Analysis of extracted parameters concluded that Cr{sup 3+} replaced the Fe{sup 3+} at B-site (octahedral). The decrease in magnetization at B-site was found responsible for the observed reduced saturation magnetization and coercivity. Impedance spectroscopic analysis has revealed the suppression of electrode-sample surface conduction effect and enhancement of material resistivity. The latter was confirmed by dc resistivity measurement. All these results were explained on the basis of occupancy of Cr{sup 3+} at B-site, surface anisotropy potential and reduced particle size. - Highlights: • Cr substitution reduced the particle size in nano-cobalt ferrite. • Mossbauer study revealed that the Cr{sup 3+} replaced the Fe{sup 3+} at B-site. • Decrease in saturation magnetization and coercivity with the addition of Cr{sup 3+}. • Reduction of surface conduction and rise in resistance observed in modified systems.

  7. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  8. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-01-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe_2O_4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe_2O_4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe_2O_4/Al) has been investigated at three different frequencies of the AC applied voltage (V_r_m_s ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  9. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  10. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  11. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    Energy Technology Data Exchange (ETDEWEB)

    Kaman, Ondřej, E-mail: kamano@seznam.cz [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Kuličková, Jarmila [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Herynek, Vít [Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4 (Czech Republic); Koktan, Jakub [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha 6 (Czech Republic); Maryško, Miroslav [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); Dědourková, Tereza [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic); University of Pardubice, Doubravice 41, 532 10 Pardubice (Czech Republic); Knížek, Karel; Jirák, Zdeněk [Institute of Physics, AS CR, Cukrovarnická 10, 162 00 Praha 6 (Czech Republic)

    2017-04-01

    Hydrothermal synthesis of Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2–0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B{sub 0}=0.5 T, reveal high transverse relaxivity (r{sub 2}(20 °C)=450 s{sup −1} mmol(Me{sub 3}O{sub 4}){sup −1} L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime. - Highlights: • Mn-Zn ferrite particles with size of ≈10 nm are synthesized by hydrothermal method. • Their structure and magnetic properties are analysed in dependence on composition. • Silica-coated clusters with the size ≈26 nm are prepared as contrast agent for MRI. • Their transverse relaxivity shows strong temperature dependence.

  12. A Novel Research on Behavior of Zinc Ferrite Nanoparticles in Different Concentration of Poly(vinyl pyrrolidone (PVP

    Directory of Open Access Journals (Sweden)

    Halimah Mohamed Kamari

    2014-04-01

    Full Text Available Zinc ferrite nanocrystals were prepared from an aqueous solution containing metal nitrates and various of concentrations of poly(vinyl pyrrolidone (PVP, i.e., 0, 15, 40, and 55 g/L, as a capping agent. To stabilize the particles, they were thermally treated at 873 K, as an optimum calcination temperature. The behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry (TG and derivative thermo-gravimetry analyses (DTG. The presence of the crystalline phase in each sample was confirmed by X-ray diffraction (XRD analysis. The average particle size and the morphology of the nanoparticles were determined by transmission electron microscopy (TEM, and these parameters were found to differ at various concentrations of PVP. Fourier transform infrared spectroscopy (FT-IR confirmed the presence of metal oxide bands for all the PVP concentrations and confirmed the absence of organic bands for PVP concentrations less than 55 g/L. Measurements of the magnetization value of the zinc ferrite nanoparticles were obtained at room temperature by using a vibrating sample magnetometer (VSM, which showed that, in the absence of PVP, the sample exhibited a paramagnetic behavior while, in the presence of PVP, samples have a super-paramagnetic behavior.

  13. Ferrites nanoparticles MFe2O4 (M = Ni and Zn: hydrothermal synthesis and magnetic properties

    Directory of Open Access Journals (Sweden)

    Pérez Mazariego, J. L.

    2008-06-01

    Full Text Available MFe2O4 (M = Ni and Zn nanoparticles were prepared by the hydrothermal method. The obtained samples were characterized by X-ray and electron diffraction, Scanning and Transmission Electron Microscopy and Mössbauer spectroscopy. The transmission images show homogeneous shape and particle size ranging from 10 to 40 nm, depending on the nature of the M cation. Mössbauer spectroscopy yields to a ratio of occupancy between the A and B sites of 0.7 in the case of NiFe2O4 oxide. DC magnetization (2-300 K measurements reveal a superparamagnetic behaviour for the ZnFe2O4 sample with a blocking temperature of 20 K. By contrast, in the case of the NiFe2O4 ferrite the blocking temperature appears to be above 300 K and at lower temperature, it shows a ferrimagnetic behaviour arising from the superexchange interactions that take place in this inverse spinel. Mössbauer spectroscopy results confirm the bulk magnetic measurements.Se han preparado mediante el método hidrotermal nanopartículas de ferritas MFe2O4 (M = Ni, Zn. Las muestras obtenidas fueron caracterizadas mediante difracción de rayos X y electrones, microscopía electrónica de transmisión y barrido y espectroscopia Mössbauer. Las imágenes de transmisión muestran partículas de forma y tamaño homogéneo de 10 a 40 nm según la naturaleza del catión M. La espectroscopia Mössbauer revela una relación de ocupación entre los sitios A y B por los átomos de hierro de 0.7 en el caso del óxido NiFe2O4. Las medidas de magnetización DC (2 – 300 K muestran un comportamiento superparamagnético para la muestra ZnFe2O4 con una temperatura de bloqueo de 20 K. En el caso de las nanopartículas de NiFe2O4 la temperatura de bloqueo parece estar por encima de los 300 K mostrando por debajo de la misma, comportamiento ferrimagnético provocado por las interacciones de superintercambio que tienen lugar en esta espinela inversa. Los resultados de espectroscopia Mössbauer confirman los datos de las

  14. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  15. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  16. Effect of Synthesis Parameters on the Structure and Magnetic Properties of Magnetic Manganese Ferrite/Silver Composite Nanoparticles Synthesized by Wet Chemistry Method

    DEFF Research Database (Denmark)

    Huy, L.T.; Tam, L.T.; Phan, V.N.

    2016-01-01

    In the present work, magnetic manganese ferrite/silver (MnFe2O4-Ag) composite nanoparticles were synthesized by wet chemistry method. This synthesis process consists of two steps: first, the seed of manganese ferrite nanoparticles (MnFe2O4 NPs) was prepared by a coprecipitationmethod; second......, growth of silver nanoparticles (AgNPs) on the MnFe2O4 seed by modified photochemical reaction. We have conducted systematically the effects of synthesis parameters such as pH value, synthesis time, precursor salts concentration, mass ratio and stabilizing agents on the structure and magnetic properties......-prepared MnFe2O4-Ag magnetic nanocomposites display excellent properties of high crystallinity, long-term aggregation stability in aqueous medium, large saturation magnetization in the range of 15-20 emu/g, and small sizes of Ag-NPs similar to 20 nm. These exhibited properties made the MnFe2O4-Ag...

  17. Magnetic Properties of (Nia-ZnbX Cu1-X Ferrite Nanoparticle Fabricated by Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Yang S.

    2017-06-01

    Full Text Available In future, more mobile devices with different frequencies will be used at the same time. Therefore, it is expected that the trouble caused by wave interference between devices will be further intensified. In order to prevent this trouble, investigation of selective frequency transmission or absorption material is required. In this paper, magnetic properties of nickel-zinc-copper ferrite nano powder was researched as wave absorber. (Nia-ZnbxCu1-xFe2O4(NZCF nanoparticles were fabricated by the sol-gel method. The influence of copper substitution on lattice parameter change was analyzed by X-ray diffraction (XRD, particle size was analyzed by scanning electron microscopy (SEM, and Magnetic properties analyzed by vibrating sample magnetometer (VSM. The NZCF and Nickel-zinc ferrite (NZF lattice parameter difference was 0.028 Å and particle size was calculated as 30 nm with the XRD peak. The VSM results of (Ni0.3-Zn0.30.6Cu1-0.6Fe2O4 annealed sample at 700°C for 3hous were 58.5 emu/g (Ms, 22.8 Oe (Hc. It was the most suitable magnetic properties for wave absorber in this investigation.

  18. Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles

    Science.gov (United States)

    Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz

    2018-06-01

    In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.

  19. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Science.gov (United States)

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  20. Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Chkoundali, S [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Ammar, S [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Jouini, N [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Fievet, F [ITODYS, UMR-CNRS 7086, Universite Paris 7, 2 Place Jussieu (case 7090), 75251 Paris (France); Molinie, P [Institut Jean Rouxel des Materiaux, 2 Chemin de la Houssiniere, 44072 Nantes (France); Danot, M [Institut Jean Rouxel des Materiaux, 2 Chemin de la Houssiniere, 44072 Nantes (France); Villain, F [LI2M, UMR-CNRS 7071, Universite Paris 6, 4 Place Jussieu (case 42), 75252 Paris (France); Greneche, J-M [LPEC, UMR-CNRS 6087, Universite du Maine, Avenue O Messiaen, 72085 Le Mans (France)

    2004-06-23

    Ultrafine magnetic nickel ferrite NiFe{sub 2}O{sub 4} particles of high crystallinity were directly prepared by forced hydrolysis of ionic iron (III) and nickel (II) solutions in 2-hydroxyethyl ether at about 478 K under atmospheric pressure. The resulting nickel ferrite particles exhibit very interesting magnetic properties: they are superparamagnetic at room temperature and have a saturation magnetization close to that of the bulk at low temperature. An in-field Moessbauer study shows clearly that this surprising behaviour is mainly due to: (i) a departure of the cation distribution from the classical distribution encountered in the bulk material and (ii) the absence of spin canting for both tetrahedral and octahedral cations.

  1. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    Science.gov (United States)

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  2. Coprecipitation synthesis of zinc ferrit (FE 2 O 3 /ZNO) nanoparticles ...

    African Journals Online (AJOL)

    Zinc ferrite (Fe2O3/ZnO) nanocomposites were successfully synthesized by simple co-precipitation method via iron (III) nitrate 9-hydrate (Fe(NO3)3.9H2O) and zinc nitrate hexahydrate (Zn(NO3)2.6H2O) as precursor in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by ...

  3. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângelo M. L. Denadai

    2012-11-01

    Full Text Available Organic–inorganic magnetic hybrid materials (MHMs combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn were used as an adsorbent system for Cr3+ and Cr2O72− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions from aqueous solutions compared to that of Fe-Ni/Zn.

  4. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  5. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  6. Mössbauer studies of superparamagnetic ferrite nanoparticles for functional application

    International Nuclear Information System (INIS)

    Mažeika, K.; Jagminas, A.; Kurtinaitienė, M.

    2013-01-01

    Nanoparticles of CoFe 2 O 4 and MnFe 2 O 4 prepared for functional applications in nanomedicine were studied using Mössbauer spectrometry. Superparamagnetic properties of nanoparticles of different size and composition were compared applying collective excitations and multilevel models for the description of the Mössbauer spectra.

  7. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ali, M., E-mail: m.benali06@gmail.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Maalam, K. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco); El Moussaoui, H.; Mounkachi, O. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Hamedoun, M., E-mail: m.hamedoun@mascir.com [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [MAScIR Foundation, Institute of Nanomaterials and Nanotechnologies, Materials & Nanomaterials Center, B.P., 10100 Rabat (Morocco); Laboratory of Magnetism and the Physics of the high Energies, URAC 12, Department of Physics, B.P. 1014, Faculty of Science, Mohammed V University, Rabat (Morocco)

    2016-01-15

    Synthesization of zinc-substituted cobalt ferrites nano-particles Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0–0.3) has been achieved by the sol/gel method. The characterization of the synthesized nano-particles has been done by X-ray diffractometry (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FITR). The relation between the composition and magnetic properties has been investigated by Magnetic Properties Measurement System (MPMS). The results revealed that the nanoparticles size is in the range of 11–28 nm. It was found that the zinc substitution in cobalt ferrite increases saturation magnetization from 60.92 emu/g (x=0) to 74.67 emu/g (x=0.3). Nevertheless, zinc concentrations cause a significant decrease in coercivity.▪ - Highlights: • The nanocrystals size of synthesized of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} is of 11–28 nm. • The zinc substitution in cobalt ferrite increase saturation magnetization. • The increase of zinc concentration causes a significant decrease in coercivity.

  8. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite

    Science.gov (United States)

    Wu, C. P.; Tung, M. J.; Ko, W. S.; Wang, Y. P.; Tong, S. Y.; Yang, M. D.

    2015-11-01

    Nd3+ ions substituted Ni0.37Cu0.14Zn0.52Fe2O4 (Nd3+ ions content=0, 0.01, 0.04, 0.6, 1.5 wt%) were prepared by the usual standard ceramic method at 1030 °C sintering temperature, and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that it is no obvious impurities up to Nd3+ ions content wt%=0.04. For higher Nd3+ ions content samples (0.6 and 1.5 wt%), there are two kind of impurities Cu-rich and Nd-rich iron oxide phase. The saturation magnetization of the 0.01 wt% Nd3+ions content sample is higher as result of that the A-B sites distance and YK-angles are shorter and smaller. The saturation magnetization of 0.04-1.5 wt% Nd3+ ion content sample are reduced, since the total magnetic moments of the AB site are decreased. For the 0.6 wt% sample, the Curie temperature increasing is as result of the Cu-rich iron oxide separating out. The maximum enhancements of permeability μ‧ are improved to 11.2% (0.04 wt%) and 29.2% (0.6 wt%) at the 6.7 and 13.8 MHz, respectively. However, it is notice that small amount substitutions of Nd3+ increase the high frequency electromagnetic characteristics, can be applied to NFC technology and WPT technologies.

  9. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.P., E-mail: itria20161@itri.org.tw; Tung, M.J.; Ko, W.S.; Wang, Y.P.; Tong, S.Y.; Yang, M.D.

    2015-11-01

    Nd{sup 3+} ions substituted Ni{sub 0.37}Cu{sub 0.14}Zn{sub 0.52}Fe{sub 2}O{sub 4} (Nd{sup 3+} ions content=0, 0.01, 0.04, 0.6, 1.5 wt%) were prepared by the usual standard ceramic method at 1030 °C sintering temperature, and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that it is no obvious impurities up to Nd{sup 3+} ions content wt%=0.04. For higher Nd{sup 3+} ions content samples (0.6 and 1.5 wt%), there are two kind of impurities Cu-rich and Nd-rich iron oxide phase. The saturation magnetization of the 0.01 wt% Nd{sup 3+}ions content sample is higher as result of that the A–B sites distance and YK-angles are shorter and smaller. The saturation magnetization of 0.04–1.5 wt% Nd{sup 3+} ion content sample are reduced, since the total magnetic moments of the AB site are decreased. For the 0.6 wt% sample, the Curie temperature increasing is as result of the Cu-rich iron oxide separating out. The maximum enhancements of permeability μ′ are improved to 11.2% (0.04 wt%) and 29.2% (0.6 wt%) at the 6.7 and 13.8 MHz, respectively. However, it is notice that small amount substitutions of Nd{sup 3+} increase the high frequency electromagnetic characteristics, can be applied to NFC technology and WPT technologies.

  10. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parish, C.M., E-mail: parishcm@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Unocic, K.A.; Tan, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zinkle, S.J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States); Kondo, S. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011 (Japan); Snead, L.L. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Hoelzer, D.T.; Katoh, Y. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2017-01-15

    We irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ∼50 dpa, ∼15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ∼8 nm, ∼10{sup 21} m{sup −3} (CNA), and of ∼3 nm, 10{sup 23} m{sup −3} (NFAs). STEM combined with multivariate statistical analysis data mining suggests that the precipitate-matrix interfaces in all alloys survived ∼50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.

  11. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  12. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  13. Investigation of structural, magnetic and dielectric properties of Cr3+ substituted Cu0.75Co0.25Fe2-xO4 ferrite nanoparticles

    Science.gov (United States)

    Reddi, M. Sushma; Ramesh, M.; Sreenivasu, T.; Rao, G. S. N.; Samatha, K.

    2018-05-01

    Chromium doped Copper-Cobalt ferrite Nanoparticles were obtained by sol-gel auto-combustion method using citric acid as a fuel. The metal nitrates to citric acid ratio was taken as 1:1. The prepared powder of Cr3+ doped copper-cobalt ferrite nanoparticles is annealed at 600°C for 5 hrs and the same powder was used for characterization and investigations of structural properties. The phase composition, micro-structural, micro morphological and elemental analysis studies were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM) technique and energy dispersive spectroscopy (EDS). The FTIR spectra of these samples are recorded to ensure the presence of the metallic compounds. The average crystallite size obtained by Scherrer's formula is of the order of 19.28 nm to 32.92 nm. The dielectric properties are investigated as a function of frequency at room temperature using LCR-Q meter. The saturation magnetization (Ms) of the Cr3+ substituted Cu-Co ferrite sintered at 1100°C lies in the range of 5.4136-28.9943 emu/g, the coercivity (Hc) dropped desperately from about 2091.3-778.53Oe as Cr3+ composition increases from 0.0 to 0.25.

  14. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    Science.gov (United States)

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  16. Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Dabagh, Shadab; Chaudhary, Kashif; Haider, Zuhaib; Ali, Jalil

    2018-03-01

    Substitution of cobalt (Co2+) ions in cobalt ferrite (CoFe2O4) with copper (Cu2+) and aluminum (Al3+) ions allows variations in their electric and magnetic properties which can be optimized for specific applications. In this article, synthesis of inverse-spinel Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nanoparticles by substituting Cu2+ and Al3+ ions in CoFe2O4 via co-precipitation method is reported. By controlling copper and aluminum (Cu-Al) substituent ratio, the magnetic moment and coercivity of synthesized cobalt ferrite nanoparticles is optimized. The role of substituents on the structure, particle size, morphology, and magnetic properties of nano-crystalline ferrite is investigated. The Co1-xCuxFe2-xAlxO4 (0.0 ≤ x≤ 0.8) nanoparticles with crystallite size in the range of 23.1-26.5 nm are observed, 26.5 nm for x = 0.0-23.1 nm for x = 0.8. The inverse-spinel structure of synthesized Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) nano-particles is confirmed by characteristic vibrational bands at tetrahedral and octahedral sites using Fourier transform infrared spectroscopy. A decreases in coercive field and magnetic moment is observed as Cu-Al contents are increased (x = 0.0-0.8). The positive anisotropy of synthesized particles Co1-xCuxFe2-xAlxO4 (0.0 ≤ x ≤ 0.8) is obtained in the range 1.96 × 105 J/m3 for x = 0.0 to 0.29 × 105 J/m3 for x = 0.8.

  17. Effect of Yb substitution on room temperature magnetic and dielectric properties of bismuth ferrite nanoparticles

    Science.gov (United States)

    Remya, K. P.; Amirthapandian, S.; Manivel Raja, M.; Viswanathan, C.; Ponpandian, N.

    2016-10-01

    Effect of the Yb dopant on the structural, magnetic, and electrical properties of the multiferroic BiFeO3 have been studied. The structural properties of sol-gel derived Bi1-xYbxFeO3 (x = 0.0, 0.1, and 0.2) nanoparticles reveal the formation of a rhombohedrally distorted perovskite in XRD and a reduction in the average grain size have been observed with an increase in the Yb concentration. Microstructural studies exhibited the formation of sphere like morphology with decreasing particle size with increase in the dopant concentration. The effective doping also resulted in larger magnetization as well as coercivity with the maximum of 257 Oe and 1.76 emu/g in the Bi0.8Yb0.2FeO3 nanoparticles. Ferroelectric as well as dielectric properties of the nanoparticles were also improved on doping. The best results were obtained for the BiFeO3 nanoparticles having Yb concentration x = 0.2.

  18. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    International Nuclear Information System (INIS)

    Jamalian, Majid; Ghasemi, Ali; Paimozd, Ebrahim

    2014-01-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe 9.5 (Mn 1.25 Sn 0.625 Ti 0.625 ) O 19 nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  19. Influence of multiwalled carbon nanotube addition on the magnetic and reflection-loss characteristics of Mn–Sn–Ti substituted strontium ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jamalian, Majid, E-mail: mjscience@yahoo.com; Ghasemi, Ali; Paimozd, Ebrahim

    2014-08-01

    Highlights: • Structural properties of nanocomposites were investigated. • The microwave absorbing characteristics were studied. • The synthesized materials are proper candidates for electromagnetic wave absorber. - Abstract: In this work, Mn–Sn–Ti substituted strontium ferrite (Sr-ferrite:SrM) nanoparticles were attached on the outer surface of varied multi-walled carbon nanotubes volume fraction with the amount of 10, 15, 20, 25 and 30, by employing of the sol–gel method. The phase identification and morphologies of the nanocomposites were characterized by X-ray diffraction and field emission scanning microscopy respectively. The obtained results showed that the single phase SrFe{sub 9.5} (Mn{sub 1.25}Sn{sub 0.625}Ti{sub 0.625}) O{sub 19} nanoparticles were decorated on MWCNTs can be obtained at 900 °C. Fourier transform infrared revealed that both the stretching and the bending modes are formed in the citrate complex in the ferrite and hydroxyl and carboxyl groups on the external surface of MWCNTs. The Magnetic properties were measured by a vibrating sample magnetometer. It was found that saturation magnetization, remanent magnetization and coercivity decrease by an increase in the MWCNTs content from 10 to 30 vol%. The reflection loss measurement of the prepared absorber which contain the ratio of 70–30 mass% for the nanocomposite to the polyvinyl chloride, done by the vector network analyzer, proved that the prepared nanocomposites have the maximum reflection loss of −28 dB at the frequency of 8.8 GHz for Mn–Ti–Sn substituted strontium ferrite −30 vol% MWCNT nanocomposite with a bandwidth of 4 GHz (RL > −10 dB)

  20. Inter-atomic bonding and dielectric polarization in Gd"3"+ incorporated Co-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Pawar, R.A.; Desai, S.S.; Patange, S.M.; Jadhav, S.S.; Jadhav, K.M.

    2017-01-01

    A series of ferrite with a chemical composition Co_0_._7Zn_0_._3Gd_xFe_2_−_xO_4 (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd"3"+ substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd"3"+ substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd"3"+ substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd"3"+ substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  1. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  2. NiCrxFe2− xO4 ferrite nanoparticles and their composites with ...

    Indian Academy of Sciences (India)

    Half of the samples have been sintered at 620°C and the other at 1175°C. Then polypyrrole (PPy)–NiCrFe2-O4 composites have been synthesized by polymerization of pyrrole monomer in the presence of NiCrFe2-O4 nanoparticles. The structure, morphology and magnetic properties of the samples have been ...

  3. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  4. Enhanced magnetodielectric and multiferroic properties of Er-doped bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.; Banerjee, M. [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Basu, S., E-mail: soumen.basu@phy.nitdgp.ac.in [Department of Physics, National Institute of Technology, Durgapur 713209 (India); Mukadam, M.D.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pal, M. [CSIR-Central Glass & Ceramic Research Institute, Kolkata 700032 (India)

    2015-07-15

    An enhancement in multiferroic properties has been achieved for chemically prepared BFO nanoparticles by doping with erbium (Er). XRD along with electron microscopy study reveals the phase purity and nanocrystalline nature of BFO. Enhancement of both the magnetic moment and resistivity is observed by virtue of Er doping. The observed enhanced magnetic moment is considered to be associated with smaller crystallite whereas increase of resistivity may be attributed to a decrease of oxygen vacancies. Doping also display an improvement of leakage behaviour and dielectric constant in nanocrystalline BFO, reflected in well-developed P-E loop. In addition, large enhancement in magnetodielectric coefficient is observed because of Er doping. Therefore, the results provide interesting approaches to improve the multiferroic properties of BFO, which has great implication towards its applications. - Highlights: • Synthesis of pure Er-doped BFO nanoparticles by chemical route. • Large increase in magnetic moment and resistivity due to Er doping. • Er doping produce well developed P-E loop and enhance polarization. • Drastic increase in dielectric constant as well as magnetodielectric coefficient observes because of Er doping.

  5. Magnetoelectric behavior of carbonyl iron mixed Mn oxide-coated ferrite nanoparticles

    Science.gov (United States)

    Ahad, Faris B. Abdul; Lee, Shang-Fan; Hung, Dung-Shing; Yao, Yeong-Der; Yang, Ruey-Bin; Lin, Chung-Kwei; Tsay, Chien-Yie

    2010-05-01

    The dielectric and magnetic properties of manganese oxide-coated Fe3O4 nanoparticles (NPs) were measured by the cavity perturbation method at x-band microwave frequencies ranging from 7-12.5 GHz with controlled external magnetic field up to 2.2 kOe at room temperature. Different ratios (5%, 10%, and 20% by weight) of coated NPs were prepared by sol-gel method then mixed with carbonyl iron powder in epoxy matrix. The saturation magnetization is inversely proportional to the NPs ratio in the mixture between 150 and 180 emu/g. The real part of the permittivity decreased with increasing NPs concentration, but the permittivity change by magnetic field increased. The tunability behavior is explained by insulator-ferromagnetic interface magnetoelectricity and the large surface volume ratio for the NPs.

  6. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  7. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  8. Investigation of structure and magnetic properties of cobalt-nickel and manganese ferrites nanoparticles synthesized in direct micelles of sodium dodecyl sulphate system

    International Nuclear Information System (INIS)

    Fedosyuk, V.M.; Mirgorod, Yu.A.

    2016-01-01

    Results of investigation of the crystal structure and magnetic properties of the nanoparticles of transition metals ferrites (cobalt, nickel, manganese) synthesized by unified methods using direct sodium dodecyl sulfate micelles are presented. Crystal structure of the samples was investigated by X-ray diffraction on DRON-3M (in the CuKa-radiation). Particle size was investigated by transmission electron microscopy on microscope JEOL JEM-1011 (accelerating voltage 100 kV). All powders contain nanoparticles of the same size in the range 2-6 nm. Magnetic properties of the samples were estimated from temperature and field dependences of the magnetization. All samples exhibit properties of superparamagnets with different blocking temperatures below 45 K. (authors).

  9. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    Science.gov (United States)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  10. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4 magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Directory of Open Access Journals (Sweden)

    Abul Kalam

    2018-03-01

    Full Text Available Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4 photocatalysts were synthesized by modified Solvothermal (MST process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermo gravimetric analysis (TGA, Fourier transform infrared (FT-IR, UV–visible (UV–vis spectroscopy and N2 adsorption–desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590–619 cm−1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0–76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst. Keywords: Cobalt ferrite, Photocatalysis, Kinetics, Optical properties, Surface area studies

  11. A ferrite nano-particles based fully printed process for tunable microwave components

    KAUST Repository

    Ghaffar, Farhan A.

    2016-08-15

    With the advent of nano-particles based metallic inks, inkjet printing emerged as an attractive medium for fast prototyping as well as for low cost and flexible electronics. However, at present, it is limited to printing of metallic inks on conventional microwave substrates. For fully printed designs, ideally, the substrate must also be printed. In this work, we demonstrate a fully printed process utilizing a custom Fe2O3 based magnetic ink for functional substrate printing and a custom silver-organo-complex (SOC) ink for metal traces printing. Due to the magnetic nature of the ink, this process is highly suitable for tunable microwave components. The printed magnetic substrate is characterized for the magnetostatic as well as microwave properties. The measured B(H) curve shows a saturation magnetization and remanence of 1560 and 350 Gauss respectively. As a proof of concept, a patch antenna is implemented in the proposed stack up which shows a tuning range of 4 % around the center frequency. © 2016 IEEE.

  12. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Science.gov (United States)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  13. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  14. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  15. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  16. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  17. Magnetic and electrical properties of the La doped Mn-Zn ferrite nanoparticles synthesized by the co-precipitation method

    International Nuclear Information System (INIS)

    Chandel, Vipin; Vijeta; Thakur, Atul; Thakur, Preeti

    2013-01-01

    In the present study, nano crystalline Mn-Zn-La ferrite with chemical formula Mn 0.4 Zn 0.6 La 0.3 Fe 1.7 O 4 was successfully synthesized by a co-precipitation method. The prepared powders were presintered at 700℃. The pallets formed were finally sintered at 700℃, 800℃ and 900℃ for 3h reach. The structural and morphological behavior was investigated by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD confirms the formation of the expected spinel structure. Scanning Electron Microscopy (SEM) was used to characterize the microstructure of the ferrite samples i.e. grain morphology, grain size, grain size distribution and shape. Fourier transform infrared spectroscopy (FTIR) confirms the peaks of different molecules in the given sample. Electrical and magnetic properties were studied by using dc resistivity set up and vibrating sample magnetometer (VSM). (author)

  18. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Directory of Open Access Journals (Sweden)

    Lopez-Abarrategui C

    2016-08-01

    studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli or Gram-positive bacteria (Staphylococcus aureus. Finally, an antifungal peptide (Cm-p5 from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. Keywords: nanoparticles, conjugation, antifungal, Cm-p5 peptide

  19. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  20. Synthesis of nanoparticles of manganese MnFe2O4 by co-precipitation micellar ferrite: structural and magnetic properties

    International Nuclear Information System (INIS)

    Alvarez-Paneque, A.; Diaz, S.; Diaz, C.; Santiago-Jacinto, E.; Reguera, E.

    2008-01-01

    Full text: The microemulsion method was used in reverse, shaped micelles by dodecyl of sodium (NaDBS) in toluene/water system, for MnFe2O4 manganese ferrite magnetic nanoparticles. Were also variants of heat treatments to improve the crystallinity of the material obtained. These were, treatments to reflux to 100 ° C or treatments in an inert atmosphere at temperatures that were varied between 350 and 600 ° C. The retrieved material was characterized by x-ray diffraction (XRD), transmission electron microscopy of high and low resolution (HR-TEM and TEM, respectively), Mössbauer Spectroscopy and vibrational magnetometry. Powder XRD patterns revealed the formation of phase MnFe2O4, cubic type Spinel, of space group Fd3m, accompanied by the minority phase Hematite (a-Fe203) group spatial R-3 c. The size of the nanoparticles was estimated from the profile setting from the pattern of powder by the method of Le Bail, obtaining sizes mean that varied between 5 and 25 mn depending on the heat treatment to which they were subjected. This result was corroborated from TEM micrographs. The vibrational magnetometer showed that the smaller MnFe2O4 nanoparticles, prepared following this route of synthesis They presented a superparamagnetic behavior at room temperature (coercive field and) remanence approximately zeros), which was also confirmed by the study of Mössbauer Spectroscopy. Was also the magnetically inactive layer thickness, of around 0.9 nm, responsible for the decrease in the values of saturation magnetization (as) to decrease the size of nanoparticles. Was obtained a set of nanoparticles with superparamagnetic behavior based in the MnFe2O4 around 5.9 NM in diameter and a-Fe203 around 6.6 NM, as phase secondary. They managed to get this material and the desired magnetic properties optimum crystallinity, applying heat treatment variant proposed in this work, and that It consists of making a reflux at 100 ° C, before the treatment on solid phase under flow N2

  1. MEMS based fabrication of high-frequency integrated inductors on Ni–Cu–Zn ferrite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Ricky, E-mail: ricky.anthony@tyndall.ie; Wang, Ningning, E-mail: ning.wang@tyndall.ie; Casey, Declan P.; Ó Mathúna, Cian; Rohan, James F.

    2016-05-15

    A surface micro-machining process is described to realize planar inductors on ferrite (Ni{sub 0.49}Zn{sub 0.33}Cu{sub 0.18} Fe{sub 2}O{sub 4}) for high-frequency applications (<30 MHz). The highly resistive nature (~10{sup 8} Ω m) of the Ni–Cu–Zn substrate allows direct conductor patterning by electroplating of Cu windings through a photoresist mold on a sputtered seed layer and eliminates the need for a dielectric layer to isolate the windings from the bottom magnetic core. Measured inductances~367 nH (DC resistance~1.16 Ω and Q-value>14 at 30 MHz) and ~244 nH (DC resistance~0.86 Ω and Q-value~18 at 30 MHz) at 1 MHz for elongated racetrack (10.75 nH/mm{sup 2}) and racetrack inductors (12.5 nH/mm{sup 2}), respectively show good agreement with simulated finite element method analysis. This device can be integrated with power management ICs PMICs for cost-effective, high-performance realization of power-supply in package (PSiP) or on-chip (PSoC). This simple process lays the foundation for fabricating closed core ferrite nano-crystalline core micro-inductors. - Graphical abstract: Material Characterization of Ni–Cu–Zn ferrite substrate and process developed for on-ferrite integrated micro-inductor fabrication. - Highlights: • High-frequency microinductors have been fabricated on Ni-Cu-Zn substrates. • High-resistive ferrite substrates assist direct conductor patterning on the surface. • Uniform inductances ~365 nH over 30 MHz frequency have been achieved. • High Q-values (>18 at 30 MHz) attained are applicable for high-frequency DC–DC conversion applications. • The described process lays the foundation for fabricating closed core ferrite nano-crystalline core.

  2. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  3. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  4. Composition and hydrophilicity control of Mn-doped ferrite (MnxFe3-xO4) nanoparticles induced by polyol differentiation.

    Science.gov (United States)

    Vamvakidis, Kosmas; Katsikini, Maria; Vourlias, George; Angelakeris, Mavroeidis; Paloura, Eleni C; Dendrinou-Samara, Catherine

    2015-03-28

    Manganese doped ferrite (MnxFe3-xO4) nanoparticles with x = 0.29-0.77 were prepared under solvothermal conditions in the presence solely of a polyol using the trivalent manganese and iron acetylacetonates as precursors. In this facile approach, a variety of polyols such as polyethylene glycol (PEG 8000), tetraethylene glycol (TEG), propylene glycol (PG) and a mixture of TEG and PG (1 : 1) were utilized in a triple role as a solvent, a reducing agent and a surface-functionalizing agent. The composition of the fine cubic-spinel structures was found to be related to the reductive ability of each polyol, while determination of structural characteristics plus the inversion parameter (i = 0.18-0.38) were provided by X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy at both the Fe and Mn K-edges. The saturation magnetization increased up to 80 emu g(-1) when x = 0.35 and i = 0.22. In addition, the as-prepared nanocrystals coated with PEG, PG and PG&TEG showed excellent colloidal stability in water, while the TEG-coated particles were not water dispersible and converted to hydrophilic when were extra PEGylated. Measurements of the (1)H NMR relaxation in water were carried out and the nanoprobes were evaluated as potential contrast agents.

  5. Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles

    Science.gov (United States)

    Ramakrishna, A.; Murali, N.; Mammo, Tulu Wegayehu; Samatha, K.; Veeraiah, V.

    2018-04-01

    Inverse spinel structured nanoparticles of cobalt ferrite partially substituted by divalent cations of Ni, Zn, and Mg have been synthesized through sol-gel auto combustion route. Structural parameters are studied by powder X-ray diffraction at the diffraction angle range of 10-80°; and FT-IR spectroscopy in the wavenumber range of 1600-400 cm-1. Lattice parameters were calculated from the (hkl) values of the diffraction planes and interplanar spacing and found to be in the range of 8.3659-8.4197 Å. The surface morphology and crystalline nature are studied using scanning electron microscopy and also using HRTEM. The magnetic properties are analyzed through vibrating sample magnetometer. High saturation magnetization of 90.12 emu/g has been achieved from Co-Zn sample whereas high coercive force of 883.45 Oe is achieved in Co-Ni sample. A two-probe DC resistivity was measured in temperature ranges of 300-450 K.

  6. Removal of Cr(VI Ions from Aqueous Solutions Using Nickel Ferrite Nanoparticles: Kinetic and Equilibrium Study

    Directory of Open Access Journals (Sweden)

    Raziyeh Zandi Pak

    2017-01-01

    Full Text Available Background & Aims of the Study: Heavy metals are the most important and main pollutants because of their accumulation and high toxicity even at very low dose and cause serious hazards to ecological system as well as human health. Thus, their removal has been challenged from drinking water and industrial waters with different technologies. The purpose of this work is to investigate the removal of Cr(VI from aqueous solutions. Materials & Methods: NiFe2O4 nanoparticles was prepared by the co-precipitation method and then applied for adsorption of Cr(VI ions from water. Characterization of nanoparticles was carried out via TEM, EDX, XRD and BET analysis. Various physico-chemical parameters like the effect of contact time, pH and adsorbent dose were studied, using batch process to optimize conditions for maximum adsorption. Results: The results demonstrated that the size of the NiFe2O4 nanoparticles was about 12 nm and had selectivity for Cr(VI adsorption. Also, adsorption process was found to be fast with equilibrium time of 55 min. Optimum pH was found to be 3. Maximum adsorption capacity (qm as calculated from Langmuir isotherm was found to be 294.1 mg g-1. Analysis of adsorption kinetics indicated better applicability of pseudo-second-order kinetic model. Conclusions: The results of this study represented that the synthesized NiFe2O4 nanoparticles could be useful for the simultaneous removal of anionic ions from wastewaters.

  7. Inter-atomic bonding and dielectric polarization in Gd{sup 3+} incorporated Co-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, R.A. [Department of Physics, P.V.P. Arts, Commerce and Science College, Pravaranagar, MS (India); Desai, S.S. [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Patange, S.M., E-mail: drsmpatange@rediffmail.com [Materials Research Laboratory, Shrikrishna Mahavidyalaya, Gunjoti 413613, MS (India); Jadhav, S.S. [Department of Physics, Dnyanopasak Shikshan Mandal' s Arts, Commerce and Science College, Jintur 431509, MS (India); Jadhav, K.M. [Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad 431001, MS (India)

    2017-04-01

    A series of ferrite with a chemical composition Co{sub 0.7}Zn{sub 0.3}Gd{sub x}Fe{sub 2−x}O{sub 4} (where x=0.0 to x=0.1) were prepared by sol-gel auto-combustion method. X-ray diffraction pattern were used to determine the crystal structure and phase formation of the prepared samples. Scanning electron microscopy is used to study the surface morphology of the prepared samples. Elastic properties were determined from the infrared spectroscopy. Debye temperature, wave velocities, elastic constants found to increase with the increase in Gd{sup 3+} substitution. Dielectric properties such as dielectric constant and dielectric loss were studied as a function of Gd{sup 3+} substitution and frequency. Dielectric constant decreased with the increase in frequency and Gd{sup 3+} substitution. Behavior of dielectric properties was explained on the basis of Maxwell-Wagner interfacial polarization which in accordance with Koops phenomenological theory. Real and imaginary part of impedance was studied as a function of resistance and Gd{sup 3+} substitution. The behavior of impedance is systematically discussed on the basis of resistance-capacitance circuit.

  8. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  9. Effect of γ-rays irradiation on the structural, magnetic, and electrical properties of Mg–Cu–Zn and Ni–Cu–Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Assar, S.T.; Abosheiasha, H.F., E-mail: Hatem_fouad@f-eng.tanta.edu.eg; El Sayed, A.R.

    2017-01-01

    Nanoparticles of Ni{sub 0.35}Cu{sub 0.15}Zn{sub 0.5}Fe{sub 2}O{sub 4} and Mg{sub 0.35}Cu{sub 0.15}Zn{sub 0.5}Fe{sub 2}O{sub 4}, have been synthesized by citrate precursor method. Then some of the prepared samples have been irradiated by γ-rays of {sup 60}Co radioactive source at room temperature with doses of 1 Mrad and 2 Mrad, at a dose rate of 0.1 Mrad/h to study the effect of γ-rays irradiation on some structural, magnetic and electrical properties of the samples. The X-ray diffraction analysis (XRD), transmission electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometer measurements have been used to investigate the samples. The XRD results show that the irradiation has caused a decrease in the crystallite size and the measured density and an increase in the porosity, specific surface area, and microstrain in the case of Ni–Cu–Zn ferrite whereas in the case of Mg–Cu–Zn ferrite the reverse trend has been noticed. The lattice constant of the investigated samples has been increased with the increase of irradiation due to the conversion of Fe{sup 3+} (0.67 Å) to Fe{sup 2+} (0.76 Å). The magnetization results show an increase in saturation and remnant magnetizations for the two prepared ferrites after γ-rays irradiation. The main reason of this behavior is most probably due to the redistribution of the cations between A and B sites. The cation distribution has been proposed such that the values of theoretical and experimental magnetic moment are identical and increase as the magnetization increases. Moreover, a theoretical estimation of the lattice constant has been calculated on the basis of the proposed cation distribution for each sample and compared with the corresponding experimental values obtained by XRD analysis; where they have been found in a good agreement with each other. This can be considered as another confirmation of the validity of the cation distribution. Moreover, the cation distribution is thought

  10. Synthesis and characterization of nanoparticles ferrites of the type ZN_xCu_1_-_xFE_2O_4 and your application catalyst in acetylation vegetable oils

    International Nuclear Information System (INIS)

    Casagrande, D.S; Costa, W.V; Hechenleitner, A.A.W.; Oliveira, D.M.F. de; Pineda, E.A.G.

    2016-01-01

    In this work were synthesized copper and zinc ferrites (0 - 10% mol with respect to copper), by the combustion method, using citrate as stabilizer. The obtained products were analyzed by Infrared spectrometry (FTIR), Raman spectroscopy (RAMAN) and x-ray diffractometry (DRX). Synthesized ferrites present hematite phase, maghemite phase and copper ferrite phases. The analysis indicated that increasing the zinc content leads to decreased of hematite phase. Increasing of zinc content lead to an increase of particle size. The best results of oil acylation were obtained with ferrites containing 2 and 4% of zinc, wherein the increase the increase of yield of acetylated product reached at 19% when compared with the yield obtained whit copper ferrite without zinc. (author)

  11. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    Science.gov (United States)

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  13. Preparation of single-crystal copper ferrite nanorods and nanodisks

    International Nuclear Information System (INIS)

    Du Jimin; Liu Zhimin; Wu Weize; Li Zhonghao; Han Buxing; Huang Ying

    2005-01-01

    This article, for the first time, reports the preparation of single-crystal copper ferrite nanorods and nanodisks. Using amorphous copper ferrite nanoparticles synthesized by reverse micelle as reaction precursor, single-crystal copper ferrite nanorods were synthesized via hydrothermal method in the presence of surfactant polyethylene glycol (PEG), however, copper ferrite nanodisks were prepared through the same procedures except the surfactant PEG. The resulting nanomaterials have been characterized by powder X-ray diffraction (XRD), selected electron area diffraction (SEAD), and transmission electron microscopy (TEM). The bulk composition of the samples was determined by means of X-ray photoelectron spectroscopy (XPS)

  14. Pegylated and amphiphilic Chitosan coated manganese ferrite nanoparticles for pH-sensitive delivery of methotrexate: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Z. [Department of materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Abbasi, S. [Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shokrollahi, H., E-mail: shokrollahi@sutech.ac.ir [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Yousefi, Gh., E-mail: ghyousefi@sums.ac.ir [Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Fahham, M. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Karimi, L. [Materials Science and Engineering Department, Islamic Azad University Ahvaz Branch, Ahvaz (Iran, Islamic Republic of); Firuzi, O. [Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of)

    2017-02-01

    Magnetic nanoparticles (MNPs) are the major class of nanoparticles (NPs) with specific functional properties that make them good candidates for biomedical applications. Due to their response to the magnetic field, they can be used in targeted drug delivery systems. In current research, the MNPs were synthesized with the general formula of Fe{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} by the co-precipitation technique. First, the effect of the Fe{sup 2+} ions in the system was investigated. Succinic anhydride was used as the first stabilizer to prepare surface for binding two types of polymer, including Polyethylene glycol (PEG) and palmitoylated Polyethylene glycol-grafted Chitosan (Cs-PEG-PA) were introduced as a polymeric shell. The composition, size, structure and magnetic properties of NPs were determined by the particle size analysis (PSA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). Determining the well-defined properties of MNPs, methotrexate (MTX), as a common anticancer drug, was encapsulated into the coated MNPs. The drug encapsulation efficiency was as high as 92.8% with the magnetization value of 19.7 emu/g. The in-vitro release pattern was studied, showing only 6% of the drug release in pH = 7.4 (as a model of the physiological environment) and 25% in pH = 5.4 (as a model of the tumor tissue environment) after 72 h. Based on these results, we may be able to introduce this specific system as a novel pH sensitive MNP system for MTX targeting to tumor tissues in cancer chemotherapy. - Highlights: • Magnetic and structural studies of Fe{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} are investigated. • Simple co-precipitation method involving less energy and low-cost is used. • Superparamagnetic particles with high magnetization and low coercivity are obtained. • The highest amount of MTX loading is related to S-Fe{sub 0.3}Mn{sub 0.7}Fe{sub 2}O{sub 4}-Cs-PEG-PA-MTX (1:1).

  15. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    Science.gov (United States)

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform.

  16. Rapid magnetic solid-phase extraction based on monodisperse magnetic single-crystal ferrite nanoparticles for the determination of free fatty acid content in edible oils.

    Science.gov (United States)

    Wei, Fang; Zhao, Qin; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-01-09

    This study proposes a rapid magnetic solid-phase extraction (MSPE) based on monodisperse magnetic single-crystal ferrite (Fe(3)O(4)) nanoparticles (NPs) for determining the quantities of eight free fatty acids (FFAs), including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), eicosenoic acid (C20:1), and behenic acid (C22:0) in oil. The amine-functionalized mesoporous Fe(3)O(4) magnetic NPs were applied as a sorbent for MSPE of FFAs from oil samples in a process that is based on hydrophilic interaction. The extraction can be completed rapidly in a dispersive mode with the aid of vigorous vortex. Additional tedious processing steps such as centrifugation and evaporation of organic solvent were not necessary with this procedure. Furthermore, esterification of FFAs can be accomplished during the desorption procedure by using methanol/sulfuric acid (99:1, v/v) as the desorption solvent. Several parameters affecting the extraction efficiency were investigated, including the matrix solvent for extraction, the desorption solvent and desorption time, and the amount of sorbent and extraction time. The pretreatment process was rapid under optimal conditions, being accomplished within 15 min. When coupled with gas chromatography-flame ionization detection (GC-FID), a rapid, simple, and convenient MSPE-GC-FID method for the determination of FFAs in oil samples was established with a total analysis time within 25 min. The limits of detection for the target FFAs were found to be 7.22-26.26 ng/mL. Recoveries in oil samples were in the range of 81.33-117.75%, with RSDs of <6.4% (intraday) and <6.9% (interday). This method was applied successfully to the analysis of dynamic FFA formation in four types of edible oils subjected to an accelerated storage test. The simple, rapid, and cost-effective method developed in the current study offers a potential application for the extraction and

  17. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  18. Ferrites and ceramic composites

    CERN Document Server

    Jotania, Rajshree B

    2013-01-01

    The Ferrite term is used to refer to all magnetic oxides containing iron as major metallic component. Ferrites are very attractive materials because they simultaneously show high resistivity and high saturation magnetization, and attract now considerable attention, because of the interesting physics involved. Typical ferrite material possesses excellent chemical stability, high corrosion resistivity, magneto-crystalline anisotropy, magneto-striction, and magneto-optical properties. Ferrites belong to the group of ferrimagnetic oxides, and include rare-earth garnets and ortho-ferrites. Several

  19. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  20. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  1. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  2. Zinc substituted ferrite nanoparticles with Zn{sub 0.9}Fe{sub 2.1}O{sub 4} formula used as heating agents for in vitro hyperthermia assay on glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hanini, Amel [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Lartigue, Lenaic [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Gavard, Julie [Institut Cochin, Université Paris Descartes, Sorbonne Paris Cité, CNRS UMR-8104, INSERM U1016, 75005 Paris (France); Kacem, Kamel [Laboratoire de Physiologie Intégrée (LPI), Université de Carthage, 7021, Jarzouna (Tunisia); Wilhelm, Claire; Gazeau, Florence [Matière et Systèmes Complexes (MSC), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7057, 75013, Paris (France); Chau, François [Interface Traitement Organisation et Dynamique des Systèmes (TODYS), Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR-7086, 75013, Paris (France); and others

    2016-10-15

    In this paper we investigate the ability of zinc rich ferrite nanoparticles to induce hyperthermia on cancer cells using an alternating magnetic field (AMF). First, we synthesized ferrites and then we analyzed their physico-chemical properties by transmission electron microscopy, X-ray diffraction and magnetic and magnetocalorimetric measurements. We found that the polyol-made magnetically diluted particles are of 11 nm in size. They are superparamagnetic at body temperature (310 K) with a low but non-negligible magnetization. Interestingly, as nano-ferrimagnets they exhibit a Curie temperature of 366 K, close to the therapeutic temperature range. Their effect on human healthy endothelial (HUVEC) and malignant glioma (U87-MG) cells was also evaluated using MTT viability assays. Incubated with the two cell lines, at doses ≤100 µg mL{sup −1} and contact times ≤4 h, they exhibit a mild in vitro toxicity. In these same operating biological conditions and coupled to AMF (700 kHz and 34.4 Oe) for 1 h, they rapidly induce a net temperature increase. In the case of tumor cells it reaches 4 K, making the produced particles particularly promising for self-regulated magnetically-induced heating in local glioma therapy. - Highlights: • Highly crystallized monodisperse 11 nm sized Zn{sub 0.9}Fe{sub 2.1}O{sub 4} particles were produced in polyol. • They exhibit a superparamagnetic behavior at 37 °C with a magnetization of 12 emu g{sup −1} at 50 kOe. • Their Curie temperature reaches 88 °C, close to the therapeutic hyperthermia temperatures. • Incubated with glioma cells and exposed to ac-magnetic field they induce a 4 °C temperature increase. • They can be considered as potential self-regulated heating probes for glioma therapy.

  3. XXIst Century Ferrites

    International Nuclear Information System (INIS)

    Mazaleyrat, F; Zehani, K; Pasko, A; Loyau, V; LoBue, M

    2012-01-01

    Ferrites have always been a subject of great interest from point of view of magnetic application, since the fist compass to present date. In contrast, the scientific interest for iron based magnetic oxides decreased after Oersted discovery as they where replaced by coil as magnetizing sources. Neel discovery of ferrimagnetism boosted again interest and leads to strong developments during two decades before being of less interest. Recently, the evolution of power electronics toward higher frequency, the down sizing of ceramics microstructure to nanometer scale, the increasing price of rare-earth elements and the development of magnetocaloric materials put light again on ferrites. A review on three ferrite families is given herein: harder nanostructured Ba 2+ Fe 12 O 19 magnet processed by spark plasma sintering, magnetocaloric effect associated to the spin transition reorientation of W-ferrite and low temperature spark plasma sintered Ni-Zn-Cu ferrites for high frequency power applications.

  4. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  5. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  6. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    International Nuclear Information System (INIS)

    Zhang Deyuan; Zhang Wenqiang; Cai Jun

    2011-01-01

    Hexagonal ferrite BaZn 1.1 Co 0.9 Fe 16 O 27 coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: → We synthesize the flake ferrite particles using diatomite as a template. → Flake ferrite particles' coating layers are constituted by BaZn 1.1 Co 0.9 Fe 16 O 27 nanoparticles. → Flake ferrite particles have good static magnetic properties.→ Flake ferrites are a kind lightweight broad band microwave absorber.

  7. Fabrication and electromagnetic properties of flake ferrite particles based on diatomite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Zhang Wenqiang, E-mail: zwqzwqzwqzwq@126.com [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China); Cai Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, Beihang University, Beijing 100191 (China)

    2011-09-15

    Hexagonal ferrite BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} coated surfaces of diatomite flakes of low density were synthesized by a sol-gel method. The phase structures, morphologies, particle size and chemical compositions of the composites were characterized by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy. The results show that hexagonal ferrite coated diatomite flakes can be achieved, and that the coating consisted of BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. The vibranting sample magnetometer results reveal that the flake ferrite particles have static magnetic properties. The complex permeability and permittivity of the composites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of these ferrite particles are discussed. The results indicate that the flake ferrites have the potential to be used as a lightweight broad band microwave absorber. - Highlights: > We synthesize the flake ferrite particles using diatomite as a template. > Flake ferrite particles' coating layers are constituted by BaZn{sub 1.1}Co{sub 0.9}Fe{sub 16}O{sub 27} nanoparticles. > Flake ferrite particles have good static magnetic properties. > Flake ferrites are a kind lightweight broad band microwave absorber.

  8. Ferrite materials for memory applications

    CERN Document Server

    Saravanan, R

    2017-01-01

    The book discusses the synthesis and characterization of various ferrite materials used for memory applications. The distinct feature of the book is the construction of charge density of ferrites by deploying the maximum entropy method (MEM). This charge density gives the distribution of charges in the ferrite unit cell, which is analyzed for charge related properties.

  9. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  10. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis.

    Science.gov (United States)

    Kalikeri, Shankramma; Shetty Kodialbail, Vidya

    2018-05-01

    Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO 3 /Bi 25 FeO 40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.

  11. High strength ferritic alloy

    International Nuclear Information System (INIS)

    1977-01-01

    A high strength ferritic steel is specified in which the major alloying elements are chromium and molybdenum, with smaller quantities of niobium, vanadium, silicon, manganese and carbon. The maximum swelling is specified for various irradiation conditions. Rupture strength is also specified. (U.K.)

  12. Effect of particle size on degree of inversion in ferrites

    International Nuclear Information System (INIS)

    Siddique, M.; Butt, N.M.

    2012-01-01

    Ferrites with the spinel structure are important materials because of their structural, magnetic and electrical properties. The suitability of these materials depends on both the intrinsic behavior of the material and the effects of the grain size. Moessbauer spectroscopy was employed to investigate the cation distribution and degree of inversion in bulk and nano sized particles of CuFe/sub 2/O/sub 4/, MnFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ ferrites. The Moessbauer spectra of all bulk ferrites showed complete magnetic behavior, whereas nanoparticle ferrites showed combination of ferromagnetic and superparamagnetic components. Moreover, the cation distribution in nanoparticle materials was also found to be different to that of their bulk counterparts indicating the particle size dependency. The inversion of Cu and Ni ions in bulk sample was greater than that of nanoparticles; whereas the inversion of Mn ions was less in bulk material as compared to the nanoparticles. Hence the degree of inversion decreased in CuFe/sub 2/O/sub 4/ and NiFe/sub 2/O/sub 4/ samples whereas, it increased in MnFe/sub 2/O/sub 4/ as the particle size decreased and thus showed the anomalous behavior in this case. The nanoparticle samples also showed paramagnetic behaviour due to superparamagnetism and this effect is more prominent in MnFe/sub 2/O/sub 4/. Moessbauer spectra of bulk and nanoparticles CuFe/sub 2/O/sub 4/ is shown. (Orig./A.B.)

  13. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  14. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  15. Preferential spin canting in nanosize zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Pune 411112 (India); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Institut für Physik der Kondensierten Materie,Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig (Germany); Baggio-Saitovitch, E.M. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2015-07-01

    Zinc ferrite nanoparticles powder with average size of 10.0±0.5 nm was synthesized by the citrate precursor route. We studied the structural and magnetic properties using X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. X-ray diffraction patterns show that the synthesized zinc ferrite possesses good spinel structure. Both Mössbauer and magnetization data indicate superparamagnetic ferrimagnetic particles at room temperature. The magnetic behavior is determined by a considerable degree of cation inversion with Fe{sup III} in tetrahedral A-sites. Mössbauer spectroscopy at low temperature and in high applied magnetic field reveals that A-site spins are aligned antiparallel to the applied field with some possible angular scatter whereas practically all octahedral B-site spins are canted contrasting some earlier reported partial B-site spin canting in nanosize zinc ferrite. Deviations from the antiferromagnetic arrangement of B-site spins are supposed to be caused by magnetic frustration effects. - Highlights: • Spinel structure ZnFe{sub 2}O{sub 4} nanoparticles in the uniform size range of 10.0±0.5 nm have been synthesized using the citrate precursor route. • Canting of the spins of A- and B-sublattice sites has been studied by low temperature and high magnetic field Mössbauer spectroscopy. • A-site spins are aligned antiparallel to the applied field with only small angular scatter. • B-site spins are strongly canted in contrast to earlier quoted only partial canting. • B site spin structure deviates significantly from a collinear antiferromagnetic arrangement.

  16. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  17. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  18. X-ray diffraction and Moessbauer studies on superparamagnetic nickel ferrite (NiFe{sub 2}O{sub 4}) obtained by the proteic sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, N.A.S. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Utuni, V.H.S.; Silva, Y.C. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Kiyohara, P.K. [Instituto de Física, Universidade de São Paulo – USP, 05315-970 São Paulo, SP (Brazil); Vasconcelos, I.F. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Miranda, M.A.R., E-mail: marcus.a.r.miranda@gmail.com [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Sasaki, J.M. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil)

    2015-08-01

    Nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe{sub 2}O{sub 4} with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Moessbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Moessbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C. - Highlights: • Superparamagnetic nickel ferrite nanoparticles were grown by the proteic sol–gel method. • The proteic sol–gel method provided superparamagnetic nickel ferrite nanoparticles with sizes in the range of 9–13 nm. • Nickel ferrite nanoparticles were prepared at temperatures as low as 250 °C. • The nickel ferrite nanoparticles were studied by x-ray diffraction and Moessbauer.

  19. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  20. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  1. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  2. Structure and magnetic properties of granular NiZn-ferrite - SiO2

    Directory of Open Access Journals (Sweden)

    Albuquerque Adriana Silva de

    1999-01-01

    Full Text Available Granular systems composed by nanostructured magnetic materials embedded in a non-magnetic matrix present unique physical properties that depend crucially on their nanostructure. In this work, we have studied the structural and magnetic properties of NiZn-ferrite nanoparticles embedded in SiO2, a granular system synthesized by sol-gel processing. Samples with ferrite volumetric fraction x ranging from 6% to 78% were prepared, and characterized by X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometry. Our results show the formation of pure stoichiometric NiZn-ferrite in the SiO2 matrix for x < 34%. Above these fraction, our samples presented also small amounts of Fe2O3. Mössbauer spectroscopy revealed the superparamagnetic behaviour of the ferrimagnetic NiZn-ferrite nanoparticles. The combination of different ferrite concentration and heat treatments allowed the obtaintion of samples with saturation magnetization between 1.3 and 68 emu/g and coercivity ranging from 0 to 123 Oe, value which is two orders of magnitude higher than the coercivity of bulk NiZn-ferrite.

  3. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  4. FTIR and structural properties of co-precipitated cobalt ferrite nano particles

    International Nuclear Information System (INIS)

    Hutamaningtyas, E.; Utari; Suharyana; Purnama, B.; Wijayanta, A. T.

    2016-01-01

    The FTIR and structural properties in co-precipitated cobalt ferrite (CoFe 2 O 4 ) nanoparticles are discussed in this paper. The synthesis was conducted at temperatures of 75°C and 95°C following post annealing at 1200°C for 5 hours. Other modification samples were synthesis at temperature of 95°C and then annealing at temperature of 1000°C and 1200°C for 5 hours. For both modification of synthesis and annealing temperature, FTIR result showed a metal oxide at a wave number of 590 cm -1 which indicated cobalt ferrite nanoparticles. The crystalline structure was confirmed using x-ray diffraction that the high purity of cobalt ferrite was realized. Calculation of the cation distribution by using comparison I 220 /I 222 and I 422 /I 222 show that the synthesis and annealing temperature succesfully modify cation occupy the site octahedral and tetrahedral. (paper)

  5. Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels

    International Nuclear Information System (INIS)

    Hossein Nedjad, S.; Zahedi Moghaddam, Y.; Mamdouh Vazirabadi, A.; Shirazi, H.; Nili Ahmadabadi, M.

    2011-01-01

    Research highlights: → Bainite showed weak property improvement after rolling and annealing. → Additions of titanium and titanium oxide stimulated acicular ferrite. → Acicular ferrite obtained by nanoparticles exhibited very high strength. → Rolling and annealing of acicular ferrite gave substantial property improvement. - Abstract: The propensity of bainite and acicular ferrite structures of experimental C-Mn steels for enhanced grain refinement by combining phase transformation and plastic deformation has been investigated. Formation of acicular ferrite structures were stimulated with a small amount of titanium and titanium oxide nanoparticles added into the molten steels of high Mn concentrations. Isothermal transformations into the bainite and acicular ferrite structures were performed for 1.8 ks at 823 K after preliminary austenitization for 1.8 ks at 1523 K. Cold rolling for 50% thickness reduction was conducted on the isothermally transformed structures. Subsequent annealing of the deformed structures was conducted for 3.6 ks at 773, 873 and 973 K. Optical microscopy, scanning electron microscopy and tensile test were used for characterization of the studied steels. Cold rolling and annealing of the transformed structures at 873 K resulted in strengthening at the expense of ductility where an initial stage of recrystallization is realized. Acicular ferrite obtained by the addition of titanium into the molten steel exhibited the remarkable improvement of tensile properties. Discontinuous recrystallization of the deformed structures at 973 K leads to the formation of fine grains wherein acicular structures represented more enhanced grain refinement than bainite.

  6. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  7. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    Directory of Open Access Journals (Sweden)

    Y K Dasan

    Full Text Available Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00 synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM. The results revealed that saturation magnetization (Ms and coercivity (Hc of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  8. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  9. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  10. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Mazuera, David; Perales, Oscar; Suarez, Marcelo; Singh, Surinder

    2010-01-01

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  11. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  12. Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method

    International Nuclear Information System (INIS)

    Tholkappiyan, R.; Vishista, K.

    2014-01-01

    Pure and lanthanum doped zinc ferrite nanoparticles were synthesized by a combustion method using glycine as fuel. The mechanism of formation of these nanoferrites is discussed briefly. The prepared nanoparticles characterized using powder X-ray diffraction analysis (XRD) revealed the formation of cubic spinel phase with high crystallinity. Average crystallite size, X-ray density and bulk density were found to decrease with an increase in La 3+ concentration. The chemical elements and states on the surface of these ferrites were determined using X-ray photoelectron spectroscopy (XPS). The detailed core level spectra of the photoelectron peaks of Zn 2p, Fe 2p, La 3d and O 1s were analyzed. The magnetic behavior of these nanoparticles was studied using a vibrating sample magnetometer (VSM) and corresponding changes in the saturation magnetization (Ms), coercivity (Hc) and remanent magnetization (Mr) were analyzed. The optical behavior of these ferrite nanoparticles was characterized by UV–Diffuse reflectance studies (UV–DRS). From the UV–DRS studies, the optical band gap was found to be in the range of 1.87–1.97 eV. The combustion method significantly produces large amount of products within a short time. Therefore, this method is potentially suitable for manufacturing industries for preparing the magnetic nanoparticles

  13. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method

    Science.gov (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong

    2017-10-01

    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  14. Irradiation creep in ferritic steels

    International Nuclear Information System (INIS)

    Vandermeulen, W.; Bremaecker, A. de; Burbure, S. de; Huet, J.J.; Asbroeck, P. van

    Pressurized and non-pressurized capsules of several ferritic steels have been irradiated in Rapsodie between 400 and 500 0 C up to 3.7 x 10 22 n/cm 2 (E>0.1 MeV). Results of the diameter measurements are presented and show that the total in-pile deformation is lower than for austenitic steels

  15. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  16. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  17. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  18. Electrical and optical properties of nickel ferrite/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Khairy

    2015-07-01

    Full Text Available Polyaniline–NiFe2O4 nanocomposites (PANI–NiFe2O4 with different contents of NiFe2O4 (2.5, 5 and 50 wt% were prepared via in situ chemical oxidation polymerization, while the nanoparticles nickel ferrite were synthesized by sol–gel method. The prepared samples were characterized using some techniques such as Fourier transforms infrared (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and thermogravimetric analysis (TGA. Moreover, the electrical conductivity and optical properties of the nanocomposites were investigated. Pure (PANI and the composites containing 2.5 and 5 wt% NiFe2O4 showed amorphous structures, while the one with 50 wt% NiFe2O4 showed a spinel crystalline structure. The SEM images of the composites showed different aggregations for the different nickel ferrite contents. FTIR spectra revealed to the formation of some interactions between the PANI macromolecule and the NiFe2O4 nanoparticles, while the thermal analyses indicated an increase in the composites stability for samples with higher NiFe2O4 nanoparticles contents. The electrical conductivity of PANI–NiFe2O4 nanocomposite was found to increase with the rise in NiFe2O4 nanoparticle content, probably due to the polaron/bipolaron formation. The optical absorption experiments illustrate direct transition with an energy band gap of Eg = 1.0 for PANI–NiFe2O4 nanocomposite.

  19. Self-biased cobalt ferrite nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)

    2014-03-15

    Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.

  20. Self-biased cobalt ferrite nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent

    2014-01-01

    Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results

  1. Ferrite measurements for SNS accelerating cavities

    International Nuclear Information System (INIS)

    Bendall, R.G.; Church, R.A.

    1979-03-01

    The RF system for the SNS has six double accelerating cavities each containing seventy ferrite toroids. Difficulties experienced in obtaining toroids to the required specifications are discussed and the two toroid test cavity built to test those supplied is described. Ferrite measurements are reported which were undertaken to measure; (a) μQf as a function of frequency and RF field level and (b) bias current as a function of frequency for different ranges of ferrite permeability μ. (U.K.)

  2. Structural and magnetic properties of cadmium substituted manganese ferrites prepared by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Zaki, Z.I. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Advanced Materials Division, Central Metallurgical R and D Institute (CMRDI), P.O. Box: 87 Helwan, Cairo (Egypt); Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt)

    2013-03-15

    Cd-substituted manganese ferrite Mn{sub 1-x}Cd{sub x}Fe{sub 2}O{sub 4} powders with x having values 0.0, 0.1, 0.3 and 0.5 have been synthesized by hydrothermal route at 180 Degree-Sign C in presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x upto 0.3. However, sample with x{>=}0.5 showed hexagonal phase of cadmium hydroxide (Cd(OH){sub 2}) besides the ferrite phase. The increase in Cd-substitution upto x=0.3 leads to an increase in the lattice parameter as well as the average crystallite size of the prepared ferrites. The average crystallite size increased by increasing the Cd-content and was in the range of 39-57 nm. According to VSM results, the saturation magnetization increased with Cd ion substitution. - Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of mono dispersed Cd-substituted MnFe{sub 2}O{sub 4} nanoparticles. Black-Right-Pointing-Pointer The change in Ms with increasing Cd-substitution was investigated Black-Right-Pointing-Pointer Pure single phases of cubic ferrites were obtained with x up to 0.3 Black-Right-Pointing-Pointer Sample with x{>=}0.5 showed hexagonal phase of Cd(OH){sub 2} beside the ferrite.

  3. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  4. Ferrite-guided cyclotron-resonance maser

    International Nuclear Information System (INIS)

    Jerby, Eli; Kesar, A.; Aharony, A.; Breitmeier, G.

    2002-01-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  5. Spinel Ferrite Core-Shell Nanostructures by a Versatile Solvothermal Seed-Mediated Growth Approach and Study of Their Nanointerfaces

    Czech Academy of Sciences Publication Activity Database

    Angotzi, M. S.; Musinu, A.; Mameli, V.; Ardu, A.; Cara, C.; Nižňanský, Daniel; Xin, H. L.; Cannas, C.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 7889-7900 ISSN 1936-0851 Institutional support: RVO:61388980 Keywords : ferrite * core-shell nanoparticles * cofe2o4/nife2o4 * EELS * EDX Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 13.942, year: 2016

  6. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  7. Magnetic heating by silica-coated Co–Zn ferrite particles

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Závěta, K.; Kaman, Ondřej; Veverka, Pavel; Knížek, Karel; Pollert, Emil; Burian, M.; Kašpar, P.

    2014-01-01

    Roč. 47, č. 6 (2014), "065503-1"-"065503-11" ISSN 0022-3727 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional support: RVO:68378271 Keywords : cobalt–zinc ferrite * magnetic nanoparticles * coprecipitation * silica coating * hysteresis loops * calorimetric measurements * hyperthermia Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.721, year: 2014 http://stacks.iop.org/0022-3727/47/065503

  8. Distribution of cations in nanosize and bulk Co-Zn ferrites

    Czech Academy of Sciences Publication Activity Database

    Veverka, Miroslav; Jirák, Zdeněk; Kaman, Ondřej; Knížek, Karel; Maryško, Miroslav; Pollert, Emil; Závěta, K.; Lančok, Adriana; Dlouhá, M.; Vratislav, S.

    2011-01-01

    Roč. 22, č. 34 (2011), 345701/1-345701/7 ISSN 0957-4484 R&D Projects: GA ČR GAP204/10/0035; GA ČR(CZ) GAP108/11/0807 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40320502 Keywords : cobalt zinc ferrites * nanoparticles distribution of cations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.979, year: 2011

  9. Microwave Measurements of Ferrite Polymer Composite Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2004-01-01

    Full Text Available The article focuses on the microwave measurements performed on the nickel-zinc sintered ferrite with the chemical formula Ni0.3Zn0.7Fe2O4 produced by the ceramic technique and composite materials based on this ferrite and a non-magnetic polymer (polyvinyl chloride matrix. The prepared composite samples had the same particle size distribution 0-250um but different ferrite particle concentrations between 23 vol% and 80 vol%. The apparatus for measurement of the signal proportional to the absolute value of scattering parameter S11 (reflexion coefficient is described and the dependence of measured reflected signal on a bias magnetic field has been studied. By means of experiments, the resonances to be connected with the geometry of microwave experimental set-up were distinguished from ferromagnetic resonance arising in ferrite particles of composite structure. The role of local interaction fields of ferrite particles in composite material has been discussed.

  10. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  11. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Runhua, Qin [Department of Physics, North University of China, Taiyuan 030051 (China); National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Li Fengsheng, E-mail: qinrunh@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Wei, Jiang; Mingyue, Chen [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2010-08-01

    Special diethylenetriaminepentaacetic acid (DTPA)-chitosan-coated cobalt ferrite core/shell nanoparticles have been synthesized via a novel zero-length emulsion crosslinking process and characterized via crosslinking degree, simultaneous thermogravimetric analysis and differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectrometer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometry. The experimental results showed that the CoFe{sub 2}O{sub 4} nanoparticles were really encapsulated with a DTPA-chitosan hybrid layer and the nanocomposites were proved to be nearly superparamagnetic with saturation magnetization of 26.6 emu g{sup -1}.

  12. Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels

    International Nuclear Information System (INIS)

    Li, D.Z.; Xiao, N.M.; Lan, Y.J.; Zheng, C.W.; Li, Y.Y.

    2007-01-01

    The mesoscale deterministic cellular automaton (CA) method and probabilistic Q-state Potts-based Monte Carlo (MC) model have been adopted to investigate independently the individual growth behavior of ferrite grain during the austenite (γ)-ferrite (α) transformation. In these models, the γ-α phase transformation and ferrite grain coarsening induced by α/α grain boundary migration could be simulated simultaneously. The simulations demonstrated that both the hard impingement (ferrite grain coarsening) and the soft impingement (overlapping carbon concentration field) have a great influence on the individual ferrite growth behavior. Generally, ferrite grains displayed six modes of growth behavior: parabolic growth, delayed nucleation and growth, temporary shrinkage, partial shrinkage, complete shrinkage and accelerated growth in the transformation. Some modes have been observed before by the synchrotron X-ray diffraction experiment. The mesoscopic simulation provides an alternative tool for investigating both the individual grain growth behavior and the overall transformation behavior simultaneously during transformation

  13. Synthesis and super-paramagnetic properties of neodymium ferrites nanorods

    Energy Technology Data Exchange (ETDEWEB)

    El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Mounkachi, O., E-mail: o.mounkachi@mascir.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid, BP 63, 46000 Safi (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the High Energies, URAC 12, Departement of Physique, Faculty of Science, Mohammed V- Agdal University, BP 1014, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2013-12-25

    Highlights: •Magnetic properties of Neodymium nanorods depend on calcination temperature. •The as-synthesized Nd ferrite nanorods are superparamagnetic at room temperature. •The blocking temperature is higher than room temperature. -- Abstract: In this work we report the microstructural characterization and the magnetic properties of neodymium ferrites (NdFe{sub 2}O{sub 4}) nanorods prepared by well controlled co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of NdFe{sub 2}O{sub 4} has been investigated. The transmission electron microscopy (TEM) observations revealed that the as-prepared nanoparticles have rods-like shape with the average diameter ranging from 5 to 14 nm and uniform length. The magnetic measurements show that the as-synthesized nanorods have a superparamagnetic behavior at room temperature, with a blocking temperature of 360 K and magnetic anisotropy constant of 2.8 × 10{sup 5} ergs/cm{sup 3}. The magnetization and coercitivity at room temperature are increased from 26 to 34 emu/g and from 151 to 171 Oe with increasing annealing temperature from 400 to 600 °C, respectively.

  14. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Science.gov (United States)

    El Moussaoui, H.; Mahfoud, T.; Habouti, S.; El Maalam, K.; Ben Ali, M.; Hamedoun, M.; Mounkachi, O.; Masrour, R.; Hlil, E. K.; Benyoussef, A.

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn1-xMnxFe2O4 with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn0.5Mn0.5Fe2O4 has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn0.5Mn0.5Fe2O4 with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn1-xMnxFe2O4; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases.

  15. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  16. Focused Application Software for Ferrite Patch Antennas

    National Research Council Canada - National Science Library

    Trott, Keith

    1999-01-01

    ... (brick and tetrahedral elements) are combined by MRC via a graphical user interface (GUI) into a user friendly code capable of modeling conformal antennas with ferrite sub and superstrates recessed in planar surfaces.

  17. Oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Asbroeck, P. van.

    1976-10-01

    The publication gives the available data on the DTO2 dispersion-strengthened ferritic alloy developed at C.E.N./S.C.K. Mol, Belgium. DTO2 is a Fe-Cr-Mo ferritic alloy, strengthened by addition of titanium oxide and of titanium leading to the formation of Chi phase. It was developed for use as canning material for fast breeder reactors. (author)

  18. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  19. Micromagnetic simulations of spinel ferrite particles

    International Nuclear Information System (INIS)

    Dantas, Christine C.; Gama, Adriana M.

    2010-01-01

    This paper presents the results of simulations of the magnetization field ac response (at 2-12 GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed here by M 1 - n Zn n Fe 2 O 4 (where M stands for a divalent metal), and the parameters chosen were the following: (a) for n=0: M={Fe, Mn, Co, Ni, Mg, Cu }; (b) for n=0.1: M = {Fe, Mg} (mixed ferrites). These runs represent full 3D micromagnetic (one-particle) ferrite simulations. We find evidences of confined spin waves in all simulations, as well as a complex behavior nearby the main resonance peak in the case of the M = {Mg, Cu} ferrites. A comparison of the n=0 and n=0.1 cases for fixed M reveals a significant change in the spectra in M = Mg ferrites, but only a minor change in the M=Fe case. An additional larger scale simulation of a 3 by 3 particle array was performed using similar conditions of the Fe 3 O 4 (magnetite; n=0, M = Fe) one-particle simulation. We find that the main resonance peak of the Fe 3 O 4 one-particle simulation is disfigured in the corresponding 3 by 3 particle simulation, indicating the extent to which dipolar interactions are able to affect the main resonance peak in that magnetic compound.

  20. Nickel-zinc ferrite/permalloy (Ni0.5Zn0.5Fe2O4/Ni-Fe soft magnetic nanocomposites fabricated by electro-infiltration

    Directory of Open Access Journals (Sweden)

    Xiao Wen

    2016-05-01

    Full Text Available Magnetically soft NiZn ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles are embedded within a permalloy (Ni-Fe matrix via an electro-infiltration process as thin films intended for use as on-chip inductor cores in the MHz frequency regime. A layer of NiZn ferrite nanoparticles is first deposited, and then permalloy is electroplated through the voids to encapsulate the particles and form three-dimensional ferrite/alloy nanocomposites. The composites are estimated to contain 37% ferrite by volume and exhibit a relative permeability of ∼320, a saturation of ∼1.15 T, and an operational bandwidth of 93 MHz. Compared to a permalloy thin film of similar thickness, the nanocomposite exhibits 39% higher electrical resistivity and 50% higher bandwidth.

  1. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  2. Preparation and structural characterization of vulcanized natural rubber nanocomposites containing nickel-zinc ferrite nanopowders.

    Science.gov (United States)

    Bellucci, F S; Salmazo, L O; Budemberg, E R; da Silva, M R; Rodríguez-Pérez, M A; Nobre, M A L; Job, A E

    2012-03-01

    Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanocomposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 x 10(-5) respectively.

  3. Structural and Magnetic Properties of Type-M Barium Ferrite - Thermoplastic Natural Rubber Nano composites

    International Nuclear Information System (INIS)

    Nurhidayaty Mokhtar

    2012-01-01

    Structural and magnetic properties of type-M barium ferrite (BaFe 12 O 19 ) nanoparticles (∼ 20 nm) embedded in non-magnetic thermoplastic natural rubber (TPNR) matrices were investigated. The TPNR matrices were prepared from high density polyethylene (HDPE) and natural rubber (NR) in the weight ratios of 80:20 and 60:40, respectively, with 10 wt % of NR in the form of liquid natural rubber (LNR) which act as a comparabilities. BaFe 12 O 19 - filled nano composites with 2 - 12 wt % BaFe 12 O 19 ferrite were prepared using a melt- blending technique. Magnetic hysteresis was measured using a vibrating sample magnetometer (VSM) in a maximum field of 10 kOe at room temperature (25 degree Celsius). The saturation magnetisation (MS), remanence (MR) and coercivity (Hc) were derived from the hysteresis loops. The results show that the structural and magnetic properties of nano composites depend on both the ferrite content and the composition of the natural rubber or plastic in the nano composites. All the nano composites exhibit an exchange bias-like phenomenon resulting from the exchange coupling of spins at the interface between the core ferrimagnetic region and the disordered surface region of the nanoparticles. (author)

  4. Ni-Zn Ferrite-graphene Nanohybrids: Synthesis and Characterization of Magnetic and Microwave Absorbing Properties

    Directory of Open Access Journals (Sweden)

    Thim Ng Yau

    2017-01-01

    Full Text Available An in-situ deposition technique was used in the synthesis of Ni-Zn ferrite-graphene (NZFG nanohybrids. The XRD patterns revealed the presence of cubic spinel structure of Ni-Zn ferrite (NZF nanoparticles with good crystallinity and small crystallite sizes. The SEM images showed NZF nanoparticles were uniformly deposited on graphene sheets. The effect of different loading amounts of NZF nanoparticles in the nanohybrids was also investigated by tuning the mass ratio of FeCl3 and expanded graphite (EG. The magnetic measurements showed ferromagnetic behaviour with low coercivity. Improvements in saturation magnetization of the nanohybrids can be seen with increasing mass ratio of FeCl3:EG. The microwave absorption properties were determined based on the measured relative complex permittivity and permeability. For the nanohybrids, the minimum reflection loss (RL obtained is -37.57 dB at 7.54 GHz and the absorbing bandwidth in which the RL is less than -10 dB is 7.30 GHz when the NZF content was 79 wt·% at 7 mm thickness. The enhancement in the minimum RL was due to the synergistic effect between NZF nanoparticles and graphene.

  5. Interaction effects in magnetic oxide nanoparticle systems

    Indian Academy of Sciences (India)

    The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by ...

  6. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    International Nuclear Information System (INIS)

    Li Siheng; Wang Enbo; Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-01-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe 2 O 4 ) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe 2 O 4 (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters

  7. Synthesis and magnetic properties of tin spinel ferrites doped manganese

    Energy Technology Data Exchange (ETDEWEB)

    El Moussaoui, H., E-mail: elmoussaoui.hassan@gmail.com [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Mahfoud, T.; Habouti, S. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); El Maalam, K.; Ben Ali, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hamedoun, M.; Mounkachi, O. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Masrour, R. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Route Sidi Bouzid – BP 63, 46000 Safi (Morocco); Hlil, E.K. [Institut Néel, CNRS-UJF, B.P. 166, 38042 Grenoble Cedex (France); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Laboratoire of Magnetism and the Physics of the high Energies, URAC 12, Departement of physique, B.P. 1014, Faculty of science, Mohammed V University, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2016-05-01

    In this work we report the synthesis, the microstructural characterization and the magnetic properties of tin spinel ferrites doped manganese (Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4} with x=0.25, 0.5, 0.75, and 1) nanoparticles prepared by co-precipitation method. The effect of annealing temperature on the structure, morphology and magnetic properties of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} has been investigated. The synthesized nanoparticle sizes have been controlled between 4 and 9 nm, with uniform spherical morphology as confirmed by transmission electron microscopy (TEM). All the samples prepared possess single domain magnetic. The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} with 4 nm in diameter have a blocking temperature close to 100 K. In addition, the cation distribution obtained from the X-ray diffraction of this sample was confirmed by magnetic measurement. For the Sn{sub 1−x}Mn{sub x}Fe{sub 2}O{sub 4}; (0≤x≤1) samples, the magnetization and coercive fields increase when the augmentation of Mn content increases. For x=0.5, such parameters decrease when the calcination temperature increases. - Highlights: • We have studied the microstructural and the magnetic properties of Sn{sub 1-x}MnxFe{sub 2}O{sub 4}. • The nanoparticles of Sn{sub 0.5}Mn{sub 0.5}Fe{sub 2}O{sub 4} have a blocking temperature around 100 K. • The Ms and Hc increase with the augmentation of Mn content.

  8. Tunable inkjet-printed slotted waveguide antenna on a ferrite substrate

    KAUST Repository

    Nafe, Ahmed

    2015-04-13

    In this work an inkjet-printed frequency-tunable slotted waveguide antenna on a ferrite substrate is reported. Unlike the typical substrate integrated waveguide approach with via holes, a true 3D rectangular waveguide is realized by inkjet-printing of nano-particle based conductive ink on the broad faces as well as on sides of the substrate. The operating frequency of the antenna can be tuned by applying a variable static bias magnetic field that controls the permeability of the host ferrite substrate. The antenna operates about a center frequency of approximately 14 GHz with an instantaneous impedance bandwidth of 75 MHz. A fabricated prototype has demonstrated a tuning range of 10% (1.5 GHz) using an applied bias magnetic field of 3 kOe yielding it especially attractive for tunable and reconfigurable yet low cost microwave systems.

  9. Characterization of Austempered Ferritic Ductile Iron

    Science.gov (United States)

    Dakre, Vinayak S.; Peshwe, D. R.; Pathak, S. U.; Likhite, A. A.

    2018-04-01

    The ductile iron (DI) has graphite nodules enclose in ferrite envelop in pearlitic matrix. The pearlitic matrix in DI was converted to ferritic matrix through heat treatment. This heat treatment includes austenitization of DI at 900°C for 1h, followed by furnace cooling to 750°C & hold for 1h, then again furnace cooling to 690°C hold for 2h, then samples were allowed to cool in furnace. The new heat treated DI has graphite nodules in ferritic matrix and called as ferritic ductile iron (FDI). Both DIs were austenitized at 900°C for 1h and then quenched into salt bath at 325°C. The samples were soaked in salt bath for 60, 120, 180, 240 and 300 min followed by air cooling. The austempered samples were characterized with help of optical microscopy, SEM and X-ray diffraction analysis. Austempering of ferritic ductile iron resulted in finer ausferrite matrix as compared to ADI. Area fraction of graphite, ferrite and austenite were determining using AXIOVISION-SE64 software. Area fraction of graphite was more in FDI than that of as cast DI. The area fraction of graphite remains unaffected due to austempering heat treatment. Ausferritic matrix coarsened (feathered) with increasing in austempering time for both DI and FDI. Bulk hardness test was carried on Rockwell Hardness Tester with load of 150 kgf and diamond indenter. Hardness obtained in as cast DI is 28 HRC which decreased to 6 HRC in FDI due conversion of pearlitic matrix to ferritic matrix. Hardness is improved by austempering process.

  10. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    Science.gov (United States)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  11. Electrokinetic properties of PMAA functionalized NiFe2O4 nanoparticles synthesized by thermal plasma route

    Science.gov (United States)

    Bhosale, Shivaji V.; Mhaske, Pravin; Kanhe, N.; Navale, A. B.; Bhoraskar, S. V.; Mathe, V. L.; Bhatt, S. K.

    2014-04-01

    The magnetic nickel ferrite (NiFe2O4) nanoparticles with an average size of 30nm were synthesised by Transferred arc DC Thermal Plasma route. The synthesized nickel ferrite nanoparticles were characterized by TEM and FTIR techniques. The synthesized nickel ferrite nanoparticles were further functionalized with PMAA (polymethacrylic acid) by self emulsion polymerization method and subsequently were characterized by FTIR and Zeta Analyzer. The variation of zeta potential with pH was systematically studied for both PMAA functionalized (PNFO) and uncoated nickel ferrite nanoparticles (NFO). The IEP (isoelectric points) for PNFO and NFO was determined from the graph of zeta potential vs pH. It was observed that the IEP for NFO was at 7.20 and for PNFO it was 2.52. The decrease in IEP of PNFO was attributed to the COOH functional group of PMAA.

  12. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  13. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  14. Ferritic steels for French LMFBR steam generators

    International Nuclear Information System (INIS)

    Aubert, M.; Mathieu, B.; Petrequin, P.

    1983-06-01

    Austenitic stainless steels have been widely used in many components of the French LMFBR. Up to now, ferritic steels have not been considered for these components, mainly due to their relatively low creep properties. Some ferritic steels are usable when the maximum temperatures in service do not exceed about 530 0 C. It is the case of the steam generators of the Phenix plant, where the exchange tubes of the evaporator are made of 2,25% Cr-1% Mo steel, stabilized or not by addition of niobium. These ferritic alloys have worked successfully since the first steam production in October 1973. For the SuperPhenix power plant, an ''all austenitic stainless alloy'' apparatus has been chosen. However, for the future, ferritic alloys offer potential for use as alternative materials in the evaporators: low alloys steels type 2,25% Cr-1% Mo (exchange tubes, tube-sheets, shells), or at higher chromium content type 9% Cr-2% Mo NbV (exchange tubes) or 12M Cr-1% Mo-V (tube-sheets). Most of these steels have already an industrial background, and are widely used in similar applications. The various potential applications of these steels are reviewed with regards to the French LMFBR steam generators, indicating that some points need an effort of clarification, for instance the properties of the heterogeneous ferritic/austenitic weldments

  15. Green Synthesis Methods of CoFe_2O_4 and Ag-CoFe_2O_4 Nanoparticles Using Hibiscus Extracts and Their Antimicrobial Potential

    International Nuclear Information System (INIS)

    Gingasu, D.; Mindru, I.; Patron, L.; Caleron-Moreno, J.M.; Mocioiu, O.C.; Preda, S.; Stanica, N.; Nita, S.; Dobre, N.; Popa, M.; Gradisteanu, G.; Chifiriuc, M. C.

    2016-01-01

    The cobalt ferrite (CoFe_2O_4) and silver-cobalt ferrite (Ag-CoFe_2O_4) nanoparticles were obtained through self-combustion and wet ferritization methods using aqueous extracts of Hibiscus rosa-sinensis flower and leaf. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and magnetic measurements were used for the characterization of the obtained oxide powders. The antimicrobial activity of the cobalt ferrite and silver-cobalt ferrite nanoparticles against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated by qualitative and quantitative assays. The most active proved to be the Ag-CoFe_2O_4 nanoparticles, particularly those obtained through self-combustion using hibiscus leaf extract, which exhibited very low minimal inhibitory concentration values (0.031-0.062 mg/ml) against all tested microbial strains, suggesting their potential for the development of novel antimicrobial agents.

  16. Reduction under hydrogen of ferrite MFe{sub 2}O{sub 4} (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe{sub 2}, Fe and Ni{sub 3}Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ballot, N.; Schoenstein, F.; Mercone, S.; Chauveau, T.; Brinza, O. [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France); Jouini, N., E-mail: jouini@univ-paris13.fr [Laboratoire des Sciences des Procedes et des Materiaux, CNRS, LSPM - UPR 3407, Universite Paris 13, PRES Sorbonne-Paris-Cite, 99 Avenue J.-B. Clement, 93430 Villetaneuse (France)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Spinels nano-particles MFe{sub 2}O{sub 4} (M: Co, Fe or Ni) are obtained by hydrolysis in polyol medium. Black-Right-Pointing-Pointer Gentle reduction under hydrogen flow of spinel nano-particles yields metal and alloy nanoparticles. Black-Right-Pointing-Pointer TEM and X-ray analysis show that CoFe{sub 2}, Fe and Ni{sub 3}Fe nano-particles are monocrystalline particles with size less than 160 nm. Black-Right-Pointing-Pointer Iron with size of 150 nm presents ferromagnetic behavior. Black-Right-Pointing-Pointer CoFe{sub 2} alloy with size of 55 nm could be considered as a superparamagnetic material. - Abstract: A novel method to process metal and various alloy particles of nanometric size is described. The first step consists in the elaboration of MFe{sub 2}O{sub 4} (M: Fe, Ni or Co) spinel nanoparticles in polyol medium via hydrolysis and the second one in gently reducing these latter under hydrogen at 300 Degree-Sign C. X-ray diffraction analysis shows that pure Fe and CoFe{sub 2} alloy are well obtained by reducing Fe{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4}, respectively. This is not the case when we try to reduce NiFe{sub 2}O{sub 4}. A mixture of Fe and Ni{sub 3}Fe is observed. TEM analysis reveals that the size of metal particles stays within the range of a few tenths of nm up to 150 nm, while the precursors (MFe{sub 2}O{sub 4}) never exceed 5 nm. Our results show that the formation of metal particles occurs via two main steps: (i) reduction of the spinel oxide nanoparticles into metal ones and (ii) aggregation of the latter, leading to larger metal nanoparticles. Magnetic measurements indicate that the as-obtained metallic materials have good magnetic properties mainly affected by the sizes of the nanoparticles and the purity of the reduced phases.

  17. Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: A study on their structural, magnetic, optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Charanjit; Jauhar, Sheenu [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Kumar, Vinod [ICON Analytical Equipment (P) Ltd., Mumbai 400018 (India); Singh, Jagdish [Institute Instrumentation Centre, Indian Institute of Technology–Roorkee (India); Singhal, Sonal, E-mail: sonal1174@gmail.com [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2015-04-15

    Nano-crystalline particles of visible light responsive Zn–Co ferrites having formula Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) were successfully synthesized via reverse micelle technique. Sodium dodecyl sulfate was used as a surfactant/templating agent. The ferrite formation was confirmed using powder X-Ray Diffraction (XRD) and Fourier Transform Infrared (FT-IR) spectroscopy. The spherical shape of the ferrite particles was established by High Resolution Transmission Electron Microscope (HR-TEM) analysis. From the magnetic studies, the ferromagnetic nature of CoFe{sub 2}O{sub 4} was known. However, the nano-particles exhibited a transition from ferromagnetic to super-paramagnetic upon increasing the zinc concentration. In addition, the photo-Fenton activity of ferrites was also studied by carrying out degradation of Rhodamine B (RhB) dye under visible light irradiation. The catalytic activity increased with increase in zinc ion concentration. - Highlights: • Controlled dimensions of Zn–Co ferrite nanoparticles by microemulsion technique. • Spherical shape with uniform size distribution of ∼5 nm was achieved. • Significant shift from ferromagnetic to superparamagnetic with Zn{sup 2+} ion doping. • Improved photocatalytic activity with Zn{sup 2+} ion doping.

  18. Ferritic/martensitic steels: Promises and problems

    International Nuclear Information System (INIS)

    Klueh, R.L.; Ehrlich, K.; Abe, F.

    1992-01-01

    Ferritic/martensitic steels are candidate structural materials for fusion reactors because of their higher swelling resistance, higher thermal conductivity, lower thermal expansion, and better liquid-metal compatibility than austenitic steels. Irradiation effects will ultimately determine the applicability of these steels, and the effects of irradiation on microstructure and swelling, and on the tensile, fatigue, and impact properties of the ferritic/martensitic steels are discussed. Most irradiation studies have been carried out in fast reactors, where little transmutation helium forms. Helium has been shown to enhance swelling and affect tensile and fracture behavior, making helium a critical issue, since high helium concentrations will be generated in conjunction with displacement damage in a fusion reactor. These issues are reviewed to evaluate the status of ferritic/martensitic steels and to assess the research required to insure that such steels are viable candidates for fusion applications

  19. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  20. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method

    Directory of Open Access Journals (Sweden)

    Nejati Kamellia

    2012-03-01

    Full Text Available Abstract Background Nickel ferrite, a kind of soft magnetic materials is one of the most attracting class of materials due to its interesting and important properties and has many technical applications, such as in catalysis, sensors and so on. In this paper the synthesis of NiFe2O4 nanoparticles by the hydrothermal method is reported and the inhibition of surfactant (Glycerol or Sodium dodecyl sulfate on the particles growth is investigated. Methods For investigation of the inhibition effect of surfactant on NiFe2O4 particles growth, the samples were prepared in presence of Glycerol and Sodium dodecyl sulfate. The X-ray powder diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, vibrating sample magnetometer (VSM and inductively coupled plasma atomic emission spectrometer (ICP-AES techniques were used to characterize the samples. Results The results of XRD and ICP-AES show that the products were pure NiFe2O4 and also nanoparticles grow with increasing the temperature, while surfactant prevents the particle growth under the same condition. The average particle size was determined from the Scherrer's equation and TEM micrographs and found to be in the range of 50-60 nm that decreased up to 10-15 nm in presence of surfactant. The FT-IR results show two absorption bands near to 603 and 490 cm-1 for the tetrahedral and octahedral sites respectively. Furthermore, the saturated magnetization and coercivity of NiFe2O4 nanoparticles were in the range of 39.60 emu/g and 15.67 Qe that decreased for samples prepared in presence of surfactant. As well as, the nanoparticles exhibited a superparamagnetic behavior at room temperature. Conclusions Nanosized nickel ferrite particles were synthesized with and without surfactant assisted hydrothermal methods. The results show that with increasing of temperature, the crystallinity of nanoparticles is increased. In the presence of surfactants, the crystallinity of

  1. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Mohammad, E-mail: m_amani@sbu.ac.ir [Mechanical and Energy Engineering Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Amani, Pouria, E-mail: pouria.amani@ut.ac.ir [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kasaeian, Alibakhsh, E-mail: akasa@ut.ac.ir [Department of Renewable Energies, Faculty of New Science & Technologies, University of Tehran, Tehran (Iran, Islamic Republic of); Mahian, Omid, E-mail: omid.mahian@mshdiau.ac.ir [Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Kasaeian, Fazel, E-mail: f.kasa92@student.sharif.edu [Faculty of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Wongwises, Somchai, E-mail: somchai.won@kmutt.ac.th [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi (KMUTT), Bangmod, Bangkok (Thailand)

    2017-04-15

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe{sub 2}O{sub 4}/water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe{sub 2}O{sub 4}/water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  2. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field

    International Nuclear Information System (INIS)

    Amani, Mohammad; Amani, Pouria; Kasaeian, Alibakhsh; Mahian, Omid; Kasaeian, Fazel; Wongwises, Somchai

    2017-01-01

    In this paper, an experimental evaluation on the viscosity of water-based manganese ferrite nanofluid with and without magnetic field with 100, 200, 300, and 400 G intensities has been conducted. The Brookfield DV-I PRIME viscometer is implemented to measure the MnFe 2 O 4 /water nanofluid viscosity and to evaluate the influence of different volume concentrations (from 0.25% to 3%) and various temperatures (from 20 to 60 °C) on the viscosity. According to the measurements, viscosity incrementally increases with the augmentation of nanoparticles concentration while it remarkably decreases at higher temperatures under absence and attendance of magnetic field. The maximum viscosity ratio of 1.14 is achieved at 3 vol% of nanoparticles and 20 °C under no magnetic field, whereas it increments to maximum viscosity ratio of 1.75 at 3 vol% of nanoparticles and 40 °C under 400 G magnetic field. Furthermore, new correlation is proposed for determination of viscosity of MnFe 2 O 4 /water nanofluids in terms of magnetic field intensity, volume concentration and temperature. - Highlights: • Viscosity of spinel-type manganese ferrite nanofluids is measured. • Effect of a constant magnetic field on the viscosity is investigated. • A novel correlation is proposed for estimation of the measured viscosity.

  3. Recrystallization induced plasticity in austenite and ferrite

    International Nuclear Information System (INIS)

    Huang Mingxin; Pineau, André; Bouaziz, Olivier; Vu, Trong-Dai

    2012-01-01

    Highlights: ► Plasticity can be induced by recrystallization in austenite and ferrite. ► Strain rate is proportional to recrystallization kinetics. ► Overall atomic flux selects a preferential direction may be the origin. - Abstract: New experimental evidences are provided to demonstrate that plastic strain can be induced by recrystallization in austenite and ferrite under an applied stress much smaller than their yield stresses. Such Recrystallization Induced Plasticity (RIP) phenomenon occurs because the overall atomic flux during recrystallization follows a preferential direction imposed by the applied stress.

  4. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  5. Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites

    Science.gov (United States)

    Nikzad, Alireza; Parvizi, Roghaieh; Rezaei, Ghasem; Vaseghi, Behrooz; Khordad, Reza

    2018-02-01

    A series of Co- and Gd-substituted NiFe2O4 ferrite nanoparticles with the formula Ni1- x Co x Fe2- y Gd y O4 (where x = 0.0-1.0 and y = 0.0-0.1) have been successfully synthesized using a hydrothermal method. X-ray diffraction and field emission scanning electron microscopy results indicated that a highly crystallized spherical ferrite nanoparticle structure was obtained along with an increase in the lattice parameters. Compositional analysis of the prepared nanoferrite powders has been carried out using energy-dispersive x-ray (EDX) spectra. The EDX analysis reveals the presence of Ni, Co, Gd and Fe elements in the specimens. Magnetization and the coercive field improved dramatically with an increase in the amount of cobalt and gadolinium added, attributed to the redistribution of cations in the spinel nanoferrite structure. Saturation magnetization and coercivity values up to 99 emu/g and 918 Oe, respectively, were measured using a vibration sample magnetometer at room temperature. Comparative microwave absorption experiments demonstrated that the reflection loss (RL) properties enhanced with increasing substitution of cations in the Ni-ferrite spinel structure for an absorber thickness of 1.8 mm. A maximum RL of - 26.7 dB was obtained for substituted Ni-Co-Gd nanoferrite with x = 1.0 and y = 0.1 at a frequency of 9.4 GHz with a bandwidth of 3.6 GHz (RL ≤ - 10 dB). Experimental results revealed that the synthesized nanoparticles possessed great potential in microwave absorption applications.

  6. Simulation of non-linear coaxial line using ferrite beads

    International Nuclear Information System (INIS)

    Furuya, S.; Matsumoto, H.; Tachi, K.; Takano, S.; Irisawa, J.

    2002-01-01

    A ferrite sharpener is a non-linear coaxial line using ferrite beads, which produces high-voltage, high-dV/dt pulses. We have been examining the characteristics of ferrite sharpeners experimentally, varying various parameters. Also we have made the simulation of the ferrite sharpener and compared the predictions with the experimental results in detail to analyze the characteristics of the sharpener. In this report, calculating the magnetization M of the ferrite bead, we divide the bead into n sections radially instead of adopting M at the average radius in the previous report. (author)

  7. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  8. The structural changes of Y2O3 in ferritic ODS alloys during milling

    International Nuclear Information System (INIS)

    Hilger, I.; Tegel, M.; Gorley, M.J.; Grant, P.S.; Weißgärber, T.; Kieback, B.

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are usually fabricated via mechanical alloying and subsequent consolidation via hot extrusion or hot isostatic pressing. During the individual process steps, a complex evolution of the nanoparticle structure is taking place. Powders with different Y 2 O 3 contents were milled and examined by means of X-ray diffraction (XRD) and atom probe tomography (APT). It has been observed that the Y 2 O 3 is fragmented and becomes partially amorphous upon milling due to the grain refinement of Y 2 O 3 during the milling process. There was no compelling evidence for Y 2 O 3 dissociation and dissolution into the steel matrix

  9. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, V.J., E-mail: v11131@rediffmail.com [Department of Chemistry, Smt.K.W.College, Sangli, MS 416416 (India); Bamane, S.R. [Department of Chemistry, Raja Shripatrao Bhagwantrao College, Aundh, Satara, MS (India); Shejwal, R.V. [L.B.S. College, Satara, MS (India); Patil, S.B. [A.Birnale College of Pharmacy, Sangli, MS (India)

    2016-11-01

    The functionalization and surface engineering of CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  10. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Sawant, V.J.; Bamane, S.R.; Shejwal, R.V.; Patil, S.B.

    2016-01-01

    The functionalization and surface engineering of CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were performed by coating with PEG and Chitosan respectively using simple wet co-precipitation. Then multiactive therapeutic drug curcumin was loaded to form drug delivery nanohybrids by precipitation. These nanohybrids were characterized separately using UV–vis, FTIR, PL spectroscopy, XRD, VSM, SEM and TEM analysis. The moderate antibacterial activities of the nanohybrids were elaborated by in vitro antibacterial screening on Escherichia coli and Staphylococcus aureus. The anticancer potentials, apoptotic effects and enhanced drug delivery properties of these nanohybrids were confirmed and compared on MCF-7 cells by in vitro MTT assay. The drug delivery activities for hydrophobic drug and anticancer effects of chitosan coated zinc ferrite functionalized nanoparticles were higher than PEG coated cobalt ferrite nanohybrids. - Highlights: • CoFe 2 O 4 and ZnFe 2 O 4 nanoparticles were surface functionalized with PEG and Chitosan respectively. • Hydrophobic multi therapeutic anticancer drug curcumin was loaded into these nanohybrids and their structure, morphologies were confirmed. • The effects of PEG and Chitosan coating over ferrites for curcumin release have been elaborated, and the Chitosan coated curcumin loaded Zinc ferrite nanohybrid exhibited higher drug delivery and anticancer effects.

  11. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  12. Magnetic properties of nanostructured spinel ferrites and ...

    Indian Academy of Sciences (India)

    exchange interaction strength because of an increase in the magnetic ion concentration in the A-site on milling, ... By using a copper wheel, rotating with the ... Zn ferrite with a small applied field of 4 mT for two different grain sizes. The Néel ... By varying the concentration of the oxidant (KNO3) or ferric ions, we could achieve.

  13. Structural properties of Cd–Co ferrites

    Indian Academy of Sciences (India)

    36, No. 5, October 2013, pp. 919–922. c Indian Academy of Sciences. Structural properties of Cd–Co ferrites. S P DALAWAIa,∗. , T J SHINDEb, A B GADKARIc and P N VASAMBEKARa. aDepartment of Electronics, Shivaji University, Kolhapur 416 004, India. bDepartment of Physics, KRP Kanya Mahavidyalaya, Islampur ...

  14. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  15. Modeling of austenite to ferrite transformation

    Indian Academy of Sciences (India)

    395–398. c Indian Academy of Sciences. Modeling of austenite to ferrite transformation. MOHSEN KAZEMINEZHAD. ∗. Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran. MS received 17 January 2011; revised 9 July 2011. Abstract. In this research, an algorithm ...

  16. Synthesis of lithium ferrites from polymetallic carboxylates

    Directory of Open Access Journals (Sweden)

    STEFANIA STOLERIU

    2008-10-01

    Full Text Available Lithium ferrite was prepared by the thermal decomposition of three polynuclear complex compounds containing as ligands the anions of malic, tartaric and gluconic acid: (NH42[Fe2.5Li0.5(C4H4O53(OH4(H2O2]×4H2O (I, (NH46[Fe2.5Li0.5(C4H4O63(OH8]×2H2O (II and (NH42[Fe2.5Li0.5(C6H11O73(OH7] (III. The polynuclear complex precursors were characterized by chemical analysis, IR and UV–Vis spectra, magnetic measurements and thermal analysis. The obtained lithium ferrites were characterized by XRD, scanning electron microscopy, IR spectra and magnetic measurements. The single α-Li0.5Fe2.5O4 phase was obtained by thermal decomposition of the tartarate complex annealed at 700 °C for 1 h. The magnetization value ≈ 50 emu g-1 is lower than that obtained for the bulk lithium ferrite due to the nanostructural character of the ferrite. The particle size was smaller than 100 nm.

  17. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  18. Mössbauer and magnetic studies of nanocrystalline zinc ferrites synthesized by microwave combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Mohamed, E-mail: mamdouh-2000-2000@yahoo.com [Assiut University, Department of Physics (Egypt); Hassan, Azza Mohamed [Asuite University, Physics Department, Faculty of Sciences (Egypt); Ahmed, Mamdouh Abdel aal [Al Azhar University, Physics Department, Faculty of Science (Egypt); Zhu, Kaixin; Ganeshraja, Ayyakannu Sundaram; Wang, Junhu, E-mail: Wangjh@dicp.ac.cn [Chinese Academy Sciences, Mössbauer Effect Data Center & Laboratory of Catalysts and New Materials for Aerospace, Dalian Institute of Chemical Physics (China)

    2016-12-15

    Zinc ferrite nano-crystals were synthesized by a microwave assisted combustion route with varying the urea to metal nitrates (U/N) molar ratio The process takes only a few minutes to obtain Zinc ferrite powders. The Effect of U/N ratio on the obtained phases, particle size, magnetization and structural properties has been investigated. The specimens were characterized by XRD, Mössbauer and VSM techniques. The sample prepared with urea/metal nitrate ratio of 1/1 was a poorly crystalline phase with very small crystallite size. A second phase is also detected in the sample. The crystallite size increases while the second phase decrease with increasing the urea ratio. The saturation magnetization and coercivity of the as prepared nano-particles changed with the change of the U/N ratio. The powder with the highest U/N ratio showed the presence of an unusually high saturation magnetization of 16 emu/g at room temperature. The crystallinity of the as prepared powder was developed by annealing the samples at 700 {sup ∘}C and 900 {sup ∘}C. Both the saturation magnetization (Ms) and the remnant magnetization (Mr) were found to be highly dependent upon the annealing temperature. Mössbauer studies show magnetic ordering in the powder even at room temperature. The Mössbauer and the magnetic parameters of this fraction are different from the standard values for bulk zinc ferrite.

  19. Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites

    Science.gov (United States)

    Ateia, Ebtesam E.; Takla, E.; Mohamed, Amira T.

    2017-10-01

    In the presented paper, strontium (Sr) and barium (Ba) nano ferrites were synthesized by citrate auto combustion method. The investigated samples are characterized by X-ray diffraction technique (XRD), field emission scanning electron microscopy, high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. The structural properties of the obtained samples were examined by XRD analysis showing that the synthesized nanoparticles are in cubic spinel structure. The average crystallite sizes are in the range of 22.66 and 21.95 nm for Mg0.7Ba0.3Fe2O4 and Mg0.7 Sr0.3Fe2O4 respectively. The VSM analysis confirms the existence of ferromagnetic nature of Sr2+/Ba2+ substituted magnesium nano particles. Exchange interaction between hard (Sr/Ba) and soft (Mg) magnetic phases improves the structural and magnetic properties of nano ferrite particles. Rigidity modulus, longitudinal and shear wave velocities are predicted theoretically from Raman spectroscopy and structural data of the investigated spinel ferrite. The magnetic and structural properties of magnesium are enhanced by doping with barium and strontium nano particles. The saturation magnetization, remanent magnetization and coercivity reported on vibrating sample magnetometer curve illustrate the promising industrial and magnetic recording applications of the prepared samples.

  20. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il

    2012-01-01

    Ba-ferrite (BaFe 12 O 19 ) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  1. Large polaron tunneling, magnetic and impedance analysis of magnesium ferrite nanocrystallite

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, Dev K., E-mail: drdevkumar@yahoo.com [Department of Physics, National Institute of Technology Patna, Patna 800 005 (India); Majumder, Sumit [Department of Physics, Jadavpur University, Kolkata 700032 (India); Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Banerjee, S. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2017-08-15

    Graphical abstract: The diffraction peaks corresponding to the planes (111), (220), (311), (222), (400), (422), (511), (440), (620), (533) and (444) provide a clear evidence for the formation of spinel structure of the ferrites. The lattice parameter ‘a’ determined as 8.392 Å matches well with JCPDS (73-2410) file for MgFe{sub 2}O{sub 4.} The volume of the unit cell is 591.012 Å{sup 3}. The crystallite size of the synthesized powder estimated from X-ray peak broadening of (311) highest intensity diffraction peak using Scherer formula was 56.4 nm. - Highlights: • Both the grain and grain boundaries contribution to conductivity of the Mg-ferrite has been observed. • Polydispersive nature of the material is checked using Cole – Cole relation. • The ac conductivity of magnesium ferrite followed σ{sub ac} ∝ ω{sup n} dependence. • The variation of the exponent ‘n’ with temperature suggests that overlapping large polaron tunnelling is the dominant conduction mechanism. • The superparamagnetic behavior of this Mg-ferrite has been observed for sample S1 annealed at 500 °C. - Abstract: Single phase MgFe{sub 2}O{sub 4} (MFO) ferrite was prepared through sol-gel auto-combustion route. The Rietveld analysis of X-ray patterns reveals that our samples are single phase. The increase in average particle size with annealing temperature and formation of nanoparticle agglomerates is observed in MgFe{sub 2}O{sub 4}. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is confirmed using Fourier transform infrared spectroscopy (FTIR). The Zero-Field-Cooled (ZFC) and Field-Cooled (FC) magnetization measurements show the maximum irreversibility at 700 °C annealing temperature. The formation of a maximum at blocking temperature, T{sub B}∼ 180 K for sample annealed at 500 °C in the ZFC curve shows the superparamagnetic behavior of the sample. The increase of saturation magnetism (M

  2. Synthesis and characterization of zinc ferrite nanoparticles obtained ...

    Indian Academy of Sciences (India)

    Administrator

    (Hamdeh et al 1997), hydrothermal technique (Toledo-. Antonio and ... heptahydrate/zinc nitrate and oxalic acid were dissolved in minimum quantity of water and was stirred well. The respective metal oxalate precipitate obtained was filtered.

  3. Barium ferrite nanoparticles prepared by self-propagating low ...

    Indian Academy of Sciences (India)

    Administrator

    Kubo et al 1982; Lucchini et al 1983), hydrothermal. (Barb et al 1986), microemulsion ... combustion route employing metal oxalate precursors. In search of a suitable ... heptahydrate/barium nitrate and oxalic acid were dis- solved in minimum ...

  4. Manganese zinc ferrite nanoparticles as efficient catalysts for wet ...

    Indian Academy of Sciences (India)

    ing 4-chlorophenol as the model compound. A series of ... 8M/Na3 where, N is Avogadro number and M is molec- ular weight of ... using PHILIPS Model CM 200 Transmission Electron .... cles are formed from integer multiples of primary par-.

  5. Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: A green chemistry approach using sesame seed extract

    Energy Technology Data Exchange (ETDEWEB)

    Gingasu, Dana [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mindru, Ioana, E-mail: imandru@yahoo.com [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Mocioiu, Oana Catalina; Preda, Silviu; Stanica, Nicolae; Patron, Luminita [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest (Romania); Ianculescu, Adelina; Oprea, Ovidiu [Politehnica University of Bucharest, Faculty of Chemistry, 1-7 Polizu Street, 011061, Bucharest (Romania); Nita, Sultana; Paraschiv, Ileana [National Institute for Chemical Pharmaceutical Research and Development, 112 Calea Vitan, 031299, Bucharest (Romania); Popa, Marcela; Saviuc, Crina [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania); Bleotu, Coralia [Stefan S. Nicolau Institute of Virology, Cellular and Molecular Pathology Department, 285 Mihai Bravu Avenue, Bucharest (Romania); Chifiriuc, Mariana Carmen [University of Bucharest, Faculty of Biology, Microbiology Department, Research Institute of the University of Bucharest-ICUB, Life, Environmental and Earth Sciences Division, 91-95 Splaiul Independentei, Bucharest (Romania)

    2016-10-01

    The nanocrystalline cobalt ferrites (CoFe{sub 2}O{sub 4}) were obtained through self-combustion and wet ferritization methods using aqueous extracts of sesame (Sesamum indicum L) seeds. The multimetallic complex compounds were characterized by Fourier transform infrared spectroscopy (FTIR), UV-VIS spectroscopy and thermal analysis. Phase identification, morphological evolution and magnetic properties of the obtained cobalt ferrites were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), FTIR and magnetic measurements. FE-SEM investigations revealed the particle size of CoFe{sub 2}O{sub 4} obtained by wet ferritization method ranged between 3 and 20.45 nm. Their antimicrobial, anti-biofilm and cytotoxic properties were evaluated. - Highlights: • CoFe{sub 2}O{sub 4} were obtained by two chemical synthesis methods. • Sesame seed extract was used as gelling or chelating agent. • The morphological features of CoFe{sub 2}O{sub 4} nanoparticles were evaluated. • CoFe{sub 2}O{sub 4} exhibited good microbicidal and anti-biofilm features.

  6. Annealing effect on the microstructure and magnetic properties of 14%Cr-ODS ferritic steel

    International Nuclear Information System (INIS)

    Ding, H.L.; Gao, R.; Zhang, T.; Wang, X.P.; Fang, Q.F.; Liu, C.S.

    2015-01-01

    Graphical abstract: TEM images of microstructure for 14%Cr-ODS ferritic steel annealed for 2 h at different temperatures: (a) 600 °C, (b) 800 °C, (c) 950 °C, and (d) 1150 °C, and the evolution trends of coercivity field (H_C) and Vickers microhardness for samples annealed at above temperatures for 2 h and 50 h. - Highlights: • The thermal stability of annealed 14%Cr-ODS ferritic steel was investigated. • The particle size keeps fairly constant with increasing annealing temperature. • The grain size is still 2–4 μm even after annealing for 50 h at 1150 °C. • The hardness and H_C are almost unchanged after annealing from 800 °C to 1150 °C. - Abstract: The microstructure and magnetic properties of the 14%Cr oxide dispersion strengthened (ODS) ferritic steel fabricated by sol–gel and HIP method were investigated by annealing in vacuum for 2 h (at 300, 600, 800, 950 and 1150 °C) and 50 h (at 600, 800, 950 and 1150 °C). Microstructure analysis shows that as the annealing temperature increases, the size of oxide nanoparticles becomes smaller and their dispersion in matrix becomes more homogeneous. Grain size remains stable when the annealing temperature is below 800 °C, while above 800 °C, grain size grows with the increasing annealing temperature and time. The Vickers microhardness and coercivity (H_C) display almost similar evolution trend with annealing temperature for 2 h and 50 h. No obvious recrystallization appears after 1150 °C annealing, which indicates the high microstructural stability of 14%Cr-ODS ferritic steel. The possible mechanism for above behaviors is discussed in this paper.

  7. Manganese ferrite prepared using reverse micelle process: Structural and magnetic properties characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd, E-mail: md.hashim09@gmail.com [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Shirsath, Sagar E. [Spin Device Technology Centre, Department of Engineering, Shinshu University, Nagano 380-8553 (Japan); Meena, S.S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mane, M.L. [Department of Physics, S.G.R.G. Shinde Mahavidyalaya, Paranda 413502, MS (India); Kumar, Shalendra [School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773 (Korea, Republic of); Bhatt, Pramod [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur, HP (India); Prasad, N.K.; Alla, S.K. [Deptartment of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Shah, Jyoti; Kotnala, R.K. [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Mohammed, K.A. [Department of Mathematics & Physics Sciences, College of Arts and Sciences, University of Nizwa, Nizwa (Oman); Şentürk, Erdoğan [Department of Physics, Sakarya University, Esentepe, 54187 Sakarya (Turkey); Alimuddin [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2015-09-05

    Highlights: • Preparation of Mn{sup 3+} substituted MnFe{sub 2}O{sub 4} ferrite by Reverse microemulsion process. • Characterization by XRD, SEM, VSM, Mössbauer spectroscopy and dielectric measurements techniques. • Magnetic properties of MnFe{sub 2}O{sub 4} enhanced after Mn{sup 3+} substitution. • The dielectric constant and ac conductivity increased with Mn{sup 3+} substitution. - Abstract: Reverse microemulsion process was employed to prepare of nanocrystalline Mn{sup 3+} substituted MnFe{sub 2−x}Mn{sub x}O{sub 4} ferrites. The structural, magnetic and dielectric properties were studied for different concentrations of Mn{sup 3+}. The structural and microstructural properties were analyzed using X-ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy techniques. The phase identification of the materials was studied by Rietveld refined XRD patterns which reveals single phase with cubic symmetry for the samples. The lattice parameters were ranged in between 8.369 and 8.379 Å and do not show any significant change with the substitution of Mn{sup 3+}. The average particles size was found to be around 11 ± 3 nm. Magnetization results obtained from the vibrating sample magnetometer (VSM) confirm that the substitution of Mn{sup 3+} in MnFe{sub 2}O{sub 4} ferrite caused an increase in the saturation magnetization and coercivity. The dependence of Mössbauer parameters on Mn{sup 3+} substitution has been analyzed. Magnetic behavior of the samples were also studied at field cooled (FC) and zero field cooled (ZFC) mode. The dependence of Mössbauer parameters on Mn{sup 3+} substitution was also analyzed. All the magnetic characterization shows that Mn{sup 3+} substitution enhance the magnetic behavior of MnFe{sub 2}O{sub 4} ferrite nanoparticles.

  8. Synthesis and characterization of nanoparticles ferrites of the type ZN{sub x}Cu{sub 1-x}FE{sub 2}O{sub 4} and your application catalyst in acetylation vegetable oils; Sintese e caracterizacao de nanoparticulas de ferritas do tipo Zn{sub x}Cu{sub 1-x}Fe{sub 2}O{sub 4} e a sua aplicacao como catalisador em acetilacao em oleos vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, D.S; Costa, W.V; Hechenleitner, A.A.W.; Oliveira, D.M.F. de; Pineda, E.A.G., E-mail: diogo_casagrande@msn.com [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2016-07-01

    In this work were synthesized copper and zinc ferrites (0 - 10% mol with respect to copper), by the combustion method, using citrate as stabilizer. The obtained products were analyzed by Infrared spectrometry (FTIR), Raman spectroscopy (RAMAN) and x-ray diffractometry (DRX). Synthesized ferrites present hematite phase, maghemite phase and copper ferrite phases. The analysis indicated that increasing the zinc content leads to decreased of hematite phase. Increasing of zinc content lead to an increase of particle size. The best results of oil acylation were obtained with ferrites containing 2 and 4% of zinc, wherein the increase the increase of yield of acetylated product reached at 19% when compared with the yield obtained whit copper ferrite without zinc. (author)

  9. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Greene

    2014-04-01

    Full Text Available In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM, Energy Dispersive X-Ray Analysis (EDX, Vibrational Sample Magnetometer (VSM measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst.

  10. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  11. High-Q perpendicular-biased ferrite-tuned cavity

    International Nuclear Information System (INIS)

    Carlini, R.D.; Thiessen, H.A.; Potter, J.M.

    1983-01-01

    Rapid-cycling proton synchrotrons, such as the proposed LAMPF II accelerator, require approximately 10 MV per turn rf with 17% tuning range near 50 MHz. The traditional approach to ferrite-tuned cavities uses a ferrite which is longitudinally biased (rf magnetic field parallel to bias field). This method leads to unacceptably high losses in the ferrite. At Los Alamos, we are developing a cavity with transverse bias (rf magnetic field perpendicular to the bias field) that makes use of the tensor permeability of the ferrite. Modest power tests of a small (10-cm-dia) quarter-wave singly re-entrant cavity tuned by nickel-zinc ferrites and aluminum-doped garnets indicate that the losses in the ferrite can be made negligible compared with the losses due to the surface resistivity of the copper cavity at power levels from 2 to 200 watts

  12. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  13. Microwave firing of MnZn-ferrites

    International Nuclear Information System (INIS)

    Tsakaloudi, V.; Papazoglou, E.; Zaspalis, V.T.

    2004-01-01

    Microwave firing is evaluated in comparison to conventional firing for MnZn-ferrites. For otherwise identical conditions, microwave firing results to higher densities and coarser microstructures. Initial magnetic permeability values (25 kHz, 25 deg. C, <0.1 mT) after conventional firing are approximately 5000, but the corresponding values after microwave firing are approximately 6000. Unlike the conventional firing process, the final density after microwave firing is increased by increasing the prefiring temperature. As appears from the results of this study, microwave firing could be in principle a promising MnZn-ferrite firing technology for materials to be used in high magnetic permeability applications. No advantages of microwave firing are evident for materials intended to be used in high field power applications

  14. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe 3 O 4 and SrFe 12 O 19 ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic

  15. Titanium oxide dispersion-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Hendrix, W.; Vandermeulen, W.

    1980-04-01

    The available data on the DT02 and DT3911 ferritic dispersion strengthened alloys, developed at SCK/CEN, Mol, Belgium, are presented. Both alloys consist of Fe - 13% Cr - 1.5% Mo to which 2% TiO 2 and about 3.5% Ti are added (wt.%). Their main use is for the fabrication of fast breeder reactor cladding tubes but their application as turbine blade material is also envisaged for cases where high damping is important. (auth.)

  16. Magnetocapacitance effects in MnZn ferrites

    Directory of Open Access Journals (Sweden)

    Y. M. Xu

    2015-11-01

    Full Text Available The magnetocapacitance effects of MnZn ferrites with different initial permeabilities have been studied systematically. Both intrinsic effect associated with magnetoelectric coupling and extrinsic effect, which means the combined contribution of magnetoresistance and the Maxwell-Wagner effect, have been observed simultaneously. Analysis shows that the relationship between the origins of both is in competitive equilibrium. Either of both mechanisms plays a dominant role in magnetocapacitance effects under different conditions, respectively, such as permeability and frequency of applied signals.

  17. CHARACTERIZING AND MODELING FERRITE-CORE PROBES

    International Nuclear Information System (INIS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.

    2010-01-01

    In this paper, we accurately and carefully characterize a ferrite-core probe that is widely used for aircraft inspections. The characterization starts with the development of a model that can be executed using the proprietary volume-integral code, VIC-3D(c), and then the model is fitted to measured multifrequency impedance data taken with the probe in freespace and over samples of a titanium alloy and aluminum. Excellent results are achieved, and will be discussed.

  18. Ferritic stainless steels: corrosion resistance + economy

    International Nuclear Information System (INIS)

    Remus, A.L.

    1976-01-01

    Ferritic stainless steels provide corrosion resistance at lower cost. They include Type 409, Type 439, 18SR, 20-Mo (1.6 Mo), 18-2 (2 Mo), 26-1S, E-Brite 26-1, 29 Cr-4 Mo, and 29 Cr-4 Mo-2 Ni. Their corrosion and mechanical properties are examined. Resistance to stress-corrosion cracking is an advantage compared to austenitic types

  19. Removal of radioactive materials from waste solutions via magnetic ferrites

    International Nuclear Information System (INIS)

    Boyd, T.E.; Kochen, R.L.; Price, M.Y.

    1982-01-01

    Ferrite waste treatment was found to be effective in removing actinides from simulated Rocky Flats process waste solutions. With a one-stage ferrite treatment, plutonium concentrations were consistently reduced from 10 -4 g/l to less than 10 -8 g/l, and americium concentrations were lowered from 10 -7 g/l to below 10 -10 g/l. In addition, siginficantly less solid was produced as compared with the flocculant precipitation technique now employed at Rocky Flats. Aging of ferrite solids and elevated beryllium and phosphate concentrations were identified as interferences in the ferrite treatment of process waste, but neither appeeared serious enough to prevent implementation in plant operations

  20. Low-Loss Ferrite Components for NASA Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ferrite based isolators and circulators have been successfully demonstrated at microwave, millimeter-wave and submillimeter-wave frequencies. These components are...

  1. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  2. One-pot synthesis of stable colloidal solutions of MFe2O4 nanoparticles using oleylamine as solvent and stabilizer

    International Nuclear Information System (INIS)

    Pérez-Mirabet, Leonardo; Solano, Eduardo; Martínez-Julián, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Pomar, Alberto; Yáñez, Ramón; Ros, Josep; Ricart, Susagna

    2013-01-01

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles ( 3 and M(acac) 2 (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media

  3. Contribution to the structural study of austeno-ferritic steels. Morphological and analytical definition of the ferritic phase

    International Nuclear Information System (INIS)

    Bathily, Alassane.

    1977-07-01

    Conditions of fast and selective austenite dissolution were defined by means of current-voltage curves using AISI 316-type materials (welding beads). The ferritic phase was isolated and identified with X-rays. The percentages of ferrite were compared gravimetrically with those obtained by traditional methods. The ferrite isolated was chemically analysed by atomic absorption, the only doubtful value being carbon. It is shown by this method that a morphological study of the solidification of the ferritic lattice is possible, even for percentages around 1% [fr

  4. Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles

    Science.gov (United States)

    Ebrahimi, Hamid Reza; Parish, Mohammad; Amiri, Gholam Reza; Bahraminejad, Behzad; Fatahian, Soheil

    2016-09-01

    Nickel zinc ferrite nanoparticles with diameters less than 20 nm were synthesized by co-precipitation method. The synthesized nanoparticles were annealed at 500 °C. Two types of samples (powder and disk) were prepared. The disk sample was prepared by pressing the powder sample. Magnetic and structural properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and alternating gradient-force magnetometer (AGFM). The X-ray analysis shows that the formation of the synthesized nickel zinc ferrite is spinell. The average crystalline size for nickel zinc ferrite powder was found around 19 nm (calculated by Debye-Scherer formula).The formation, size and the uniformity of the samples were determined by TEM. It was found that the size of nanoparticles should be around 18 nm from the SEM image. AGFM diagrams shows that the magnetization of the powder sample at the 9 kOe is 21.5 emu/g that of disk sample is 33 emu/g. Therefore, the magnetization was increased by pressing the nickel zinc ferrite nanoparticles. Sensor sensitivity of this disk ferrite is investigated in an isolated box. For this purpose, the samples are injected to this box and six gases (ethanol, methanol, chloroform, acetonitrile, acetone and methane) are exposed to the ferrite by a mechanical gate. The acetonitrile had the best sensitivity performance.

  5. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  6. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    microwave and satellite communication, bubble devices, audio-video, digital recording and as permanent magnets. (Viswanathan and Murthy 1990), ferrites have opened a new vista in the field of chemical physics of materials. Keeping in view these technological applications, ferrites have been regarded as an important ...

  7. on the magnetic properties of ultra-fine zinc ferrites

    NARCIS (Netherlands)

    Anantharaman, M.R.; Jagatheesan, S.; Malini, K.A.; Sindhu, S.; Narayanasamy, A.; Chinnasamy, C.N.; Jacobs, J.P.; Reijne, S.; Seshan, Kulathuiyer; Smits, R.H.H.; Smits, R.H.H.; Brongersma, H.H.

    1998-01-01

    Zinc ferrite belongs to the class of normal spinels where it is assumed to have a cation distribution of Zn2+(Fe3+)2(O2−)4, and it is purported to be showing zero net magnetisation. However, there have been recent reports suggesting that zinc ferrite exhibits anomaly in its magnetisation. Zinc

  8. A seeded ambient temperature ferrite process for treatment of AMD ...

    African Journals Online (AJOL)

    A seeded ambient temperature ferrite process for treatment of AMD waters: magnetite formation in the presence and absence of calcium ions under steady state operation. ... promising for AMD treatment. Keywords: Ferrite process, Magnetite seed, Calcium interference, Acid mine drainage (WaterSA: 2003 29(2): 117-124) ...

  9. Performance Variation of Ferrite Magnet PMBLDC Motor with Temperature

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    The price fluctuations of rare earth metals and the uncertainty in their availability has generated an increased interest in ferrite magnet machines. The influence of temperature on BH characteristics of the ferrite magnet differ considerably from that of the rare earth magnet and hence, requires...

  10. A Novel Composite Material Designed from FeSi Powder and Mn0.8Zn0.2Fe2O4 Ferrite

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Bureš, R.; Fáberová, M.; Kurek, P.; Roupcová, Pavla; Hadraba, Hynek; Girman, V.; Strečka, J.

    2015-01-01

    Roč. 2015, č. 1 (2015), Art. n. 924859 ISSN 1687-8434 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GAP108/11/1350 Institutional support: RVO:68081723 Keywords : soft-magnetic composite s * Mn-Zn ferrites * nanoparticles * coprecipitation * combustion * batteries Subject RIV: JG - Metallurgy Impact factor: 1.010, year: 2015

  11. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  12. The effect of cooling rate and austenite grain size on the austenite to ferrite transformation temperature and different ferrite morphologies in microalloyed steels

    International Nuclear Information System (INIS)

    Esmailian, M.

    2010-01-01

    The effect of different austenite grain size and different cooling rates on the austenite to ferrite transformation temperature and different ferrite morphologies in one Nb-microalloyed high strength low alloy steel has been investigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtaining austenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have been quenched, partially, for investigation on the microstructural evolution. In order to assess the influence of austenite grain size on the ferrite transformation temperature, a temperature differences method is established and found to be a good way for detection of austenite to ferrite, pearlite and sometimes other ferrite morphologies transformation temperatures. The results obtained in this way show that increasing of austenite grain size and cooling rate has a significant influence on decreasing of the ferrite transformation temperature. Micrographs of different ferrite morphologies show that at high temperatures, where diffusion rates are higher, grain boundary ferrite nucleates. As the temperature is lowered and the driving force for ferrite formation increases, intragranular sites inside the austenite grains become operative as nucleation sites and suppress the grain boundary ferrite growth. The results indicate that increasing the austenite grain size increases the rate and volume fraction of intragranular ferrite in two different cooling rates. Moreover, by increasing of cooling rate, the austenite to ferrite transformation temperature decreases and volume fraction of intragranular ferrite increases.

  13. Magnetic behavior of nanocrystalline nickel ferrite

    International Nuclear Information System (INIS)

    Nathani, H.; Gubbala, S.; Misra, R.D.K.

    2005-01-01

    In the previous papers [R.D.K. Misra, A. Kale, R.S. Srivatsava, O. Senkov, Mater. Sci. Technol. 19 (2003) 826; R.D.K. Misra, A. Kale, B. Hooi, J.Th. DeHosson, Mater. Sci. Technol. 19 (2003) 1617; A. Kale, S. Gubbala, R.D.K. Misra, J. Magn. Magn. Mater. 277 (2004) 350; S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348 (2004) 317; R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff, Mater. Sci. Eng. B. 111 (2004) 164], we reported the synthesis, structural characterization and magnetic behavior of nanocrystalline ferrites of inverse and mixed spinel structure made by reverse micelle technique that enabled a narrow particle size distribution to be obtained. In the present paper, the reverse micelle approach has been extended to synthesize nanocrystalline ferrites with varying surface roughness of 8-18 A (the surface roughness was measured by atomic force microscopy) and the magnetic behavior studied by SQUID magnetometer. Two different kinds of measurement were performed: (a) zero-field cooling (ZFC) and field cooling (FC) magnetization versus temperature measurements and (b) magnetization as a function of applied field. The analysis of magnetic measurement suggests significant influence of surface roughness of particles on the magnetic behavior. While the superparamagnetic behavior is retained by the nanocrystalline ferrites of different surface roughness at 300 K, the hysteresis loop at 2 K becomes non-squared and the coercivity increases with increase in surface roughness. This behavior is discussed in terms of broken bonds and degree of surface spin disorder

  14. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  15. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2015-01-01

    and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending...

  16. CASS Ferrite and Grain Structure Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Clayton O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-13

    This document summarizes the results of research conducted at Pacific Northwest National Laboratory (PNNL) to determine whether, based on experimental measurements, a correlation existed between grain structure in cast austenitic stainless steel (CASS) piping and ferrite content of the casting alloy. The motivation for this research lies in the fact that ultrasonic testing (UT) is strongly influenced by CASS grain structure; knowledge of this grain structure may help improve the ability to interpret UT responses, thereby improving the overall reliability of UT inspections of CASS components.

  17. Advances in ferrite microwave materials and devices

    International Nuclear Information System (INIS)

    Schloemann, Ernst

    2000-01-01

    The application of ferrites in non-reciprocal components is discussed, with the emphasis on broadband isolators and circulators. The performance of such devices may be characterized by the ratio f max /f min of the frequencies that define the edges of the frequency band, within which satisfactory performance has been achieved. For the best currently available devices this ratio is approx. 3 : 1, but larger values appear feasible according to a detailed analysis of the 'low-field, low-frequency loss' that limits the performance

  18. Plasticity of oxide dispersion strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Zakine, C.; Prioul, C.; Alamo, A.; Francois, D.

    1993-01-01

    Two 13%Cr oxide dispersion strengthened (ODS) ferritic alloys, DT and DY, exhibiting different oxide particle size distribution and a χ phase precipitation were studied. Their tensile properties have been tested from 20 to 700 C. Experimental observations during room temperature tensile tests performed in a scanning electronic microscope have shown that the main damage mechanism consists in microcracking of the χ phase precipitates on grain boundaries. These alloys are high tensile and creep resistant between 500 and 700 C. Their strongly stress-sensitive creep behaviour can be described by usual creep laws and incorporating a threshold stress below which the creep rate is negligible. (orig.)

  19. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  20. Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Rajjab [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Alina [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Haider, Sajjad [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia); Malik, Abdul Sattar [Department of Electrical Engineering, University College of Engineering and Technology, Bahauddin Zakariya University, Multan 60800 Pakistan (Pakistan); Sher, Muhammad [Department of Chemistry, University of Sargodha, Sargodha 40100 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); FarooqWarsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2017-05-01

    Nano-sized Zr-Co doped nickel ferrites with nominal composition, NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} (x=0.0, 0.2, 0.4, 0.6, 0.8) were synthesized using the micro-emulsion route. The structural elucidation of the synthesized materials was carried out by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis confirmed face centered cubic (FCC) structure of all compositions of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nanocrystallites. Crystallite size was calculated by Scherrer's formula found in the range 10–15 nm. The variation in lattice parameter as determined by XRD data agreed with size variation of host (Fe{sup 3+}) and guest (Zr{sup 4+} and Co{sup 2+}) cations. FTIR spectra of doped NiFe{sub 2}O{sub 4} exhibited the typical octahedral bands at 528.4 cm{sup −1} which is the characteristic feature of spinel structure of spinel ferrites. The characterized spinel NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites were evaluated for their potential applications by magnetic hysteresis loops and dielectric measurements. The value of saturation magnetization (M{sub s}) decreased from 47.9 to 13.09 emu/g up to x=0.8 with ups and downs fluctuations in between x=0.0 to x=0.8. The high values of Ms of some compositions predicted the potential applications in high density perpendicular recording media and microwave devices. The frequency dependent behavior of permittivity (ε') is recorded and discussed with the help of hopping mechanism of both holes and electrons. The dielectric and magnetic data of NiZr{sub x}Co{sub x}Fe{sub 2-2x}O{sub 4} nano-ferrites suggested the potential applications of these ferrite nanoparticles in high frequency and magnetic data storage devices fabrication. - Graphical abstract: Zr-Co doped nickel nano-ferrites were prepared via micro-emulsion method. The crystallite size calculated by scherrer's formula lie in the range 10–15 nm. The saturation magnetization decreases from 47

  1. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  2. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  3. Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method

    International Nuclear Information System (INIS)

    Reyes-Rodríguez, Pamela Yajaira; Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena; Méndez-Nonell, Juan; Hurtado-López, Gilberto Francisco

    2017-01-01

    In this study, the Mg 1−x Zn x Fe 2 O 4 nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn 2+ ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg 0.9 Zn 0.1 Fe 2 O 4 and Mg 0.7 Zn 0.3 Fe 2 O 4 aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg 1−x Zn x Fe 2 O 4 were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg 0.7 Zn 0.3 Fe 2 O 4 and Mg 0.9 Zn 0.1 Fe 2 O 4 show heating ability.

  4. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  5. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    International Nuclear Information System (INIS)

    Ranganathan, S.; Narasimhan, S.V.; Gopalan, R.

    2004-01-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  6. Manufacturing of Mn-Zn ferrite transformer cores

    International Nuclear Information System (INIS)

    Waqas, H.; Qureshi, A.H.; Hussain, N.; Ahmed, N.

    2012-01-01

    The present work is related to the development of soft ferrite transformer cores, which are extensively used in electronic devices such as switch mode power supplies, electromagnetic devices, computers, amplifiers etc. Mn-Zn Ferrite (soft ferrite) powders were prepared by conventional mixed oxide and auto combustion routes. These powders were calcined and then pressed in toroid shapes. Sintering was done at different temperatures to develop desired magnetic phase. Impedance resistance of sintered toroid cores was measured at different frequencies. Results revealed that Mn-Zn Ferrite cores synthesized by auto combustion route worked more efficiently in a high frequency range i.e. > 2MHz than the cores developed by conventional mixed oxide method. It was noticed that compact size, light weight and high impedance resistance are the prime advantages of auto combustion process which supported the performance of core in MHz frequency range. Furthermore, these compact size cores were successfully tested in linear pulse amplifier circuit of Pakistan Atomic Research Reactor-I. The fabrication of soft ferrite (Mn-Zn Ferrite) cores by different processing routes is an encouraging step towards indigenization of ferrite technology. (Orig./A.B.)

  7. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Science.gov (United States)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  8. Characterization of Ni ferrites powders prepared by plasma arc discharge process

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A. [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Gheisari, Kh., E-mail: khgheisari@scu.ac.ir [Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Farbod, M. [Physics Department, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2017-01-01

    The aim of this work was to synthesize a single-phase spinel structure from a mixture of zinc, iron and nickel powders by plasma arc discharge method. A mixture of zinc, iron and nickel powders with the appropriate molar ratio was prepared and formed into a cylindrical shape. The synthesis process was performed in air, oxygen and argon atmospheres with the applied arc current of 400 A and pressure of 1 atm. After establishing an arc between the electrodes, the produced powders were collected and their structure and magnetic properties were examined by XRD and VSM, respectively. ZnO as an impurity was appeared in the as-produced powders owing to the high reactivity of zinc atoms, preventing the formation of Ni–Zn ferrite. A pure spinel structure with the highest saturation magnetization (43.8 emu/g) was observed as zinc powders removed completely from the initial mixture. Morphological evaluations using field emission scanning electron microscopy showed that the mean size of fabricated nanoparticles was in the range 100–200 nm and was dependent on the production conditions. - Highlights: • Nanocrystalline Ni ferrite powders are prepared by plasma arc discharge process. • The mean particle size of the as-synthesized ceramic powders is about 100 nm. • The highest saturation magnetization is observed as zinc powders removed completely from the initial mixture.

  9. Synthesis, characterization and gas sensitivity investigation of Ni0.5Zn0.5Fe2O4 nanoparticles

    International Nuclear Information System (INIS)

    Ebrahimi, Hamid Reza; Parish, Mohammad; Amiri, Gholam Reza; Bahraminejad, Behzad; Fatahian, Soheil

    2016-01-01

    Nickel zinc ferrite nanoparticles with diameters less than 20 nm were synthesized by co-precipitation method. The synthesized nanoparticles were annealed at 500 °C. Two types of samples (powder and disk) were prepared. The disk sample was prepared by pressing the powder sample. Magnetic and structural properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and alternating gradient-force magnetometer (AGFM). The X-ray analysis shows that the formation of the synthesized nickel zinc ferrite is spinell. The average crystalline size for nickel zinc ferrite powder was found around 19 nm (calculated by Debye-Scherer formula).The formation, size and the uniformity of the samples were determined by TEM. It was found that the size of nanoparticles should be around 18 nm from the SEM image. AGFM diagrams shows that the magnetization of the powder sample at the 9 kOe is 21.5 emu/g that of disk sample is 33 emu/g. Therefore, the magnetization was increased by pressing the nickel zinc ferrite nanoparticles. Sensor sensitivity of this disk ferrite is investigated in an isolated box. For this purpose, the samples are injected to this box and six gases (ethanol, methanol, chloroform, acetonitrile, acetone and methane) are exposed to the ferrite by a mechanical gate. The acetonitrile had the best sensitivity performance. - Highlights: • Powder and disk nickel zinc ferrite nanoparticles with diameters less than 20 nm were prepared. • Sensor sensitivity of six different gases was tested in an isolated box and acetonitrile had the best sensitivity performance. • The maximum sensor sensitivity was maximum at 350 °C for all tested gases except chloroform. • At 200 ppm concentration, the sensor capacity is reached to the saturation state.

  10. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  11. Fast ferrite tuner for the BNL synchrotron light source

    International Nuclear Information System (INIS)

    Pivit, E.; Hanna, S.M.; Keane, J.

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs

  12. The mechanism of nickel ferrite formation by glow discharge effect

    Science.gov (United States)

    Frolova, L. A.

    2018-04-01

    The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.

  13. Moessbauer spectroscopic characterization of ferrite ceramics

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1999-01-01

    The principle of Moessbauer effect and the nature of hyperfine interactions were presented. The discovery of the Moessbauer effect was the basis of a new spectroscopic technique, called Moessbauer spectroscopy, which has already made important contribution to research in physics, chemistry, metallurgy, mineralogy and biochemistry. In the present work the selected ferrites such as spinel ferrite, NiFe 2 O 4 , and some rare earth orthoferrites and garnets were investigated using Moessbauer spectroscopy. X-ray powder diffraction and Fourier transform infrared spectroscopy were used as complementary techniques. The formation of NiFe 2 O 4 was monitored during the thermal decomposition of mixed salt (Ni(NO 3 ) 2 +2Fe(NO 3 ) 3 )nH 2 O. The ferritization of Ni 2+ ions was observed at 500 deg. C and after heating at 1300 deg. C the stoichiometric NiFe 2 O 4 was produced. The Moessbauer parameters obtained for NiFe 2 O 4 , d Fe = 0.36 mm s -1 and HMF = 528 kOe, can be ascribed to Fe 3+ ions in the octahedral sublattice, while parameters d Fe = 0.28 mm s -1 and HMF = 494 kOe can be ascribed to Fe 3+ ions in the tetrahedral lattice. The effect of ball-milling of NiFe 2 O 4 was monitored. The formation of oxide phases and their properties in the systems Nd 2 O 3 -Fe 2 O 3 , Sm 2 O 3 -Fe 2 O 3 , Gd 2 O 3 -Fe 2 O 3 , Eu 2 O 3 -Fe 2 O 3 and Er 2 O 3 -Fe 2 O 3 were also investigated. Quantitative distributions of oxide phases, a-Fe 2 O 3 , R 2 O 3 , R 3 Fe 5 O 12 and RFeO 3 , R = Gd or Eu, were determined for the systems xGd 2 O 3 +(1-x)Fe 2 O 3 and xEu 2 O 3 +(1-x)Fe 2 O 3 . The samples, prepared by chemical coprecipitation in the system xEu 2 O 3 +(1-x)Fe 2 O 3 , 0≤x≤1, were completely amorphous as observed by XRD, even at the relatively high temperature of the sample preparation (600 deg. C). Similar behavior was observed during the formation of Er 3 Fe 5 O 12 . Moessbauer spectroscopy indicated that this 'amorphous' phase is actually composed of very small and/or poor

  14. The effect of annealing on the structural and magnetic properties of Ni-ferrite nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Ojha, Chaturbhuj, E-mail: cbophy@yahoo.co.in; Chauhan, S. S.; Shrivastava, A. K. [School of Studies in Physics, Jiwaji University, Gwalior (India); Verma, A. K. [Govt. Post Graduate College Dholpur, Rajasthan (India)

    2015-06-24

    Magnetic nanoparticles NiFe{sub 2}O{sub 4} were prepared by chemical co-precipitation technique using the chlorides of Ni, Fe (III) and oleic acid. The precursors were annealed at different temperature 500, 700, and 900 °C. The XRD of samples show the presence of inverse cubic spinel structure. Grain size was determined using Scherrer formula and SEM technique. The Particle size, Lattice parameter and X-ray density were also estimated from X-ray diffraction data. The particles size was found to vary from 17nm to 37 nm and largely depends on the annealing temperature. Magnetization measurements have also carried out using VSM and it was found that saturation magnetization (Ms), Remanance (Mr) and coercivity (H{sub c}) of nano ferrite materials are lower compared to bulk materials.

  15. Influence of the preparation route on the magnetic and structural properties of cobalt ferrites

    International Nuclear Information System (INIS)

    Revoredo Junior, Frederico Alves; Silva Junior, Jose Holanda da; Hernandez, Eduardo Padron

    2014-01-01

    Cobalt ferrite nanoparticles were produced using two methods of preparation, co-precipitation and reaction in the solid state. In synthesis made by solid state reaction was performed by heat treatment at 1200 ° C for four hours alternating with triturations to increase the efficiency of the process. The synthesis by coprecipitation was made with different flows of addition of alkali (NaOH). All samples were structurally characterized by X-ray diffraction and the average size of the crystals was obtained by Scherrer's formula and the Williamson-Hall method. The magnetic measurements were made as a function of applied magnetic field and temperature. Qualitative analyzes of energy dispersive spectroscopy defined the elements of sampling and analysis. Finally, Mössbauer spectroscopy analysis defined the magnetic character of the samples. (author)

  16. Barium ferrite/epoxy resin nanocomposite system: Fabrication, dielectric, magnetic and hydration studies

    Directory of Open Access Journals (Sweden)

    A. Kanapitsas

    2016-03-01

    Full Text Available Composite systems of epoxy resin and barium ferrite nanoparticles have been prepared, and studied varying the content of the inclusions. Morphology of prepared samples has been examined via scanning electron microscopy and X-ray diffraction spectra, while electrical and magnetic properties were investigated by means of broadband dielectric spectroscopy, and magnetization tests respectively. Finally, water vapor sorption measurements were conducted in order to study the water sorption dynamics of the system. Electron microscopy images revealed the successful fabrication of nanocomposites. Dielectric permittivity increases with filler content, while three relaxation processes were detected in the relative spectra. These processes are attributed to interfacial polarization, glass to rubber transition of the matrix, and re-orientation of polar side groups of the polymer’s chain. Magnetization and magnetic saturation increase with magnetic nano-powder content. Nanocomposites absorb a small amount of water, not exceeding 1.7 wt%, regardless filler content, indicating their hydrophobic character.

  17. Study of the preparation of NI–Mn–Zn ferrite using spent NI–MH and alkaline Zn–Mn batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Guoxi, E-mail: xuhuidao1983@hotmail.com; Xi, Yuebin; Xu, Huidao, E-mail: xuhuidao1983@163.com; Wang, Lu

    2016-01-15

    Magnetic nanoparticles of Ni–Mn–Zn ferrite have been prepared by a sol–gel method making use of spent Ni–MH and Zn–Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The M{sub s} values increase and the H{sub c} values decrease as the size of the Ni–Mn–Zn ferrite particles increases. - Highlights: • Ni–Mn–Zn ferrites could be prepared using spentbatteries as raw materials. • This work could provide an environmentally friendly process to recycle spent batteries. • The process could reduce cost and secondary pollution of spent batteries recycling. • The magnetic property of the ferrite could be controlled by changing the temperature.

  18. Synthesis and characterization of nanosized MgxMn1−xFe2O4 ferrites by both sol-gel and thermal decomposition methods

    International Nuclear Information System (INIS)

    De-León-Prado, Laura Elena; Cortés-Hernández, Dora Alicia; Almanza-Robles, José Manuel; Escobedo-Bocardo, José Concepción; Sánchez, Javier; Reyes-Rdz, Pamela Yajaira; Jasso-Terán, Rosario Argentina; Hurtado-López, Gilberto Francisco

    2017-01-01

    This work reports the synthesis of Mg x Mn 1−x Fe 2 O 4 (x=0–1) nanoparticles by both sol-gel and thermal decomposition methods. In order to determine the effect of synthesis conditions on the crystal structure and magnetic properties of the ferrites, the synthesis was carried out varying some parameters, including composition. By both methods it was possible to obtain ferrites having a single crystalline phase with cubic inverse spinel structure and a behavior near to that of superparamagnetic materials. Saturation magnetization values were higher for materials synthesized by sol-gel. Furthermore, in both cases particles have a spherical-like morphology and nanometric sizes (11–15 nm). Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia. - Highlights: • Mg–Mn ferrites were synthesized by sol-gel and thermal decomposition methods. • Materials showed a single cubic inverse spinel crystalline structure. • Ferrites have a soft ferrimagnetic behavior close to superparamagnetic materials.

  19. Structural and magnetic Properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Department of Electronics, University of York, York YO10 5DD (United Kingdom); Islam, M.U., E-mail: dr.misbahulislam@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Xu, Yongbing [Department of Electronics, University of York, York YO10 5DD (United Kingdom); Nanjing–York International Centre of Spintronics and Nano-Engineering, Nanjing University, Nanjing 210093 (China); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); National University of Science and Technology, College of E and ME, Islamabad (Pakistan); Ali, Irshad [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2014-03-15

    Highlights: • Tb–Zn substituted Ca{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19} samples exhibit single magnetoplumbite phase. • Lattice parameters a and c have increasing values. • Coercivity can be tuned at lower substitution level • Crystallites size was found in the range 18–25 nm by TEM and by Scherrer formula. • These hexa-ferrites are suitable for microwave devices and magnetic recording media. -- Abstract: Effect of TbZn substitution on the structural and magnetic properties of Ca{sub 0.5}Ba{sub 0.5−x}Tb{sub x}Zn{sub y}Fe{sub 12−y}O{sub 19}, (x = 0.00–0.10; y = 0.00–1.00) ferrites prepared by sol–gel auto combustion is reported. The synthesized samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Vibrating Sample magnetometery. The X-ray diffraction analysis confirmed single phase M-type hexa-ferrite structure. The lattice parameters were found to increase as TbZn contents increases, which is attributed to the ionic sizes of the implicated cations. The TbZn seems to be completely soluble in the lattice. The results of scanning electron microscopy and transmission electron microscopy shows that the grain size decreases with increase of TbZn substitution. The coercivity values (1277–2025 Oe) of all samples lies in the range of M-type hexa-ferrite and indicate that an increase of anisotropy was achieved by substitution of TbZn, while the size of nanoparticles was drastically reduced between 18 and 25 nm. The increased anisotropy and fine particle size are useful for many applications, such as improving signal noise ratio of recording devices.

  20. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, Nasser Y. [Materials and Corrosion Group, Department of Chemistry, Faculty of Science, Taif University (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd Elkader, Omar H. [Electron Microscope & Thin Films Department, Physics Division, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, College of Science, King Saud University, Riyadh (Saudi Arabia); Hemeda, D.M.; Tawfik, A.; Mostafa, M. [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2015-11-15

    A series of Zn{sub 1–x}Ni{sub x}Fe{sub 2}O{sub 4} nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (∆S) obtained near Curie temperature which makes these material candidates for magnetocaloric applications. - Highlights: • Nanoparticles of Ni–Zn ferrite were prepared by solution combustion method. • A shift in dielectric maximum is observed toward high temperature with increasing the Ni content. • The inter planner distance obtained from HRTEM coincide with the f XRD results. • The entropy change vs. temperature shows a broad maximum near Curie temperature. • This results are useful for the operation of cooling devices.

  1. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  2. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K.H; Koenig, H. [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1998-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  3. New ferritic steels for advanced steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, K H; Koenig, H [GEC ALSTHOM Energie GmbH, Nuremberg (Germany)

    1999-12-31

    During the last 15-20 years ferritic-martensitic 9-12 % chromium steels have been developed under international research programmes which permit inlet steam temperatures up to approx. 625 deg C and pressures up to about 300 bars, thus leading to improvements in thermal efficiency of around 8 % and a CO{sub 2} reduction of about 20 % versus conventional steam parameters. These new steels are already being applied in 13 European and 34 Japanese power stations with inlet steam temperature up to 610 deg C. This presentation will give an account of the content, scope and results of the research programmes and of the experience gained during the production of components which have been manufactured from the new steels. (orig.) 13 refs.

  4. Positron annihilation characterization of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Alinger, M.J.; Glade, S.C.; Wirth, B.D.; Odette, G.R.; Toyama, T.; Nagai, Y.; Hasegawa, M.

    2009-01-01

    Nanostructured ferritic alloys (NFAs) were produced by mechanically alloying Fe-14Cr-3W-0.4Ti and 0.25Y 2 O 3 (wt%) powders followed by hot isostatic pressing consolidation at 850, 1000 and 1150 deg. C. Positron annihilation lifetime and orbital momentum spectroscopy measurements are in qualitative agreement with small angle neutron scattering, transmission electron microscopy and atom probe tomography observations, indicating that up to 50% of the annihilations occur at high densities of Y-Ti-O enriched nm-scale features (NFs). Some annihilations may also occur in small cavities. In Y-free control alloys, that do not contain NFs, positrons primarily annihilate in the Fe-Cr matrix and at features such as dislocations, while a small fraction annihilate in large cavities or Ar bubbles.

  5. Behavior of ferritic steels irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Erler, Jean; Maillard, Arlette; Brun, Gilbert; Lehmann, Jeanne; Dupouy, J.-M.

    1979-01-01

    Ferritic steels were irradiated in Rapsodie and Phenix at varying doses. The swelling and irradiation creep characteristics are reported below as are the mechanical characteristics of these materials [fr

  6. The behaviour of ferritic steels under fast neutron irradiation

    International Nuclear Information System (INIS)

    Erler, J.; Maillard, A.; Brun, G.; Lehmann, J.; Dupouy, J.M.

    1979-07-01

    Ferritic steels have been irradiated in Rapsodie and Phenix to doses up to 150 dpa F. The swelling and irradiation creep characteristics and the mechanical properties of these materials are reported. (author)

  7. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Fernandez-Garcia, L.; Suarez, M.; Menéndez, J.L.; Pecharromán, C.; Torrecillas, R.; Peretyagin, P.Y.; Petzelt, Jan; Savinov, Maxim; Frait, Zdeněk

    2015-01-01

    Roč. 2, č. 5 (2015), 055003 ISSN 2053-1591 Institutional support: RVO:68378271 Keywords : ceramic composites * ferromagnetic resonance * ferrite devices Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.968, year: 2015

  8. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  9. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  10. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe 2 O 4 ) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of ∼ 10 6 erg cm -3 can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than Fe into the structure

  11. Ferrite bead effect on Class-D amplifier audio quality

    OpenAIRE

    Haddad , Kevin El; Mrad , Roberto; Morel , Florent; Pillonnet , Gael; Vollaire , Christian; Nagari , Angelo

    2014-01-01

    International audience; This paper studies the effect of ferrite beads on the audio quality of Class-D audio amplifiers. This latter is a switch-ing circuit which creates high frequency harmonics. Generally, a filter is used at the amplifier output for the sake of electro-magnetic compatibility (EMC). So often, in integrated solutions, this filter contains ferrite beads which are magnetic components and present nonlinear behavior. Time domain measurements and their equivalence in frequency do...

  12. Chromium Enrichment on P11 Ferritic Steel by Pack Cementation

    OpenAIRE

    Fauzi F. A.; Kurniawan T.; Salwani M. S.; Bin Y. S.; Harun W. S. W.

    2016-01-01

    The future thermal power plant is expected to operate at higher temperature to improve its efficiency and to reduce greenhouse gas emission. This target requires better corrosion properties of ferritic steels, which commonly used as materials for superheater and reheater of boiler tubes. In this work, chromium enrichment on the surface of ferritic steel is studied. The deposited chromium is expected to become a reservoir for the formation of chromia protective layer. Chromium was deposited on...

  13. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  14. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Abstract. Synthesis of non-collinear (spin canted) ferrites having the formula, CoCdFe2−O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ ...

  15. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  16. Barium hexaferrite nanoparticles: Synthesis and magnetic properties

    International Nuclear Information System (INIS)

    Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang Yiju; Litvinov, D.

    2011-01-01

    Carbon combustion synthesis is applied to rapid and energy efficient fabrication of crystalline barium hexaferrite nanoparticles with the average particle size of 50-100 nm. In this method, the exothermic oxidation of carbon nanoparticles with an average size of 5 nm with a surface area of 80 m 2 /g generates a self-propagating thermal wave with maximum temperatures of up to 1000 deg. C. The thermal front rapidly propagates through the mixture of solid reactants converting it to the hexagonal barium ferrite. Carbon is not incorporated in the product and is emitted from the reaction zone as a gaseous CO 2 . The activation energy for carbon combustion synthesis of BaFe 12 O 19 was estimated to be 98 kJ/mol. A complete conversion to hexagonal barium ferrite is obtained for carbon concentration exceeding 11 wt.%. The magnetic properties H c ∼3000 Oe and M s ∼50.3 emu/g of the compact sintered ferrites compare well with those produced by other synthesis methods.

  17. Synthesis and characterization of structural and magnetic properties of polyaniline-cobalt ferrite (PA-CoFe) nanocomposites

    Science.gov (United States)

    Thakur, Sonika; Kaur, Parminder; Singh, Lakhwant

    2018-05-01

    The growing interest in the investigation of the properties of modified conducting polymers stems from their potential applications in various fields such as in sensing and catalytic devices. The present work reports the modification of conducting polymer polyaniline with cobalt ferrite (CoFe) nanoparticles, where CoFe nanoparticles are added in different successive weight percents. The composite samples were synthesized by in-situ chemical oxidative polymerization technique. The density of the samples has been found to increase with an increase in the CoFe content. Structural analysis of the synthesized sample has been done using X-ray diffraction studies. Perusal of the hysteresis curves of the prepared samples depicts that the introduction of CoFe into the polymer matrix leads to enhancement in the ferromagnetic behavior of the synthesized samples, suggesting that these nanocomposites have excellent microwave absorbing capacity.

  18. Intragranular ferrite morphologies in medium carbon vanadium-microalloyed steel

    Directory of Open Access Journals (Sweden)

    Fadel A.

    2013-01-01

    Full Text Available The aim of this work was to determine TTT diagram of medium carbon V-N micro-alloyed steel with emphasis on the development of intragranular ferrite morphologies. The isothermal treatment was carried out at 350, 400, 450, 500, 550 and 600°C. These treatments were interrupted at different times in order to analyze the evolution of the microstructure. Metallographic evaluation was done using optical and scanning electron microscopy (SEM. The results show that at high temperatures (≥ 500°C polygonal intragranulary nucleated ferrite idiomorphs, combined with grain boundary ferrite and pearlite were produced and followed by an incomplete transformation phenomenon. At intermediate temperatures (450, 500°C an interloced acicular ferrite (AF microstructure is produced, and at low temperatures (400, 350°C the sheave of parallel acicular ferrite plates, similar to bainitic sheaves but intragranularly nucleated were observed. In addition to sheaf type acicular ferrite, the grain boundary nucleated bainitic sheaves are observed. [Projekat Ministartsva nauke Republike Srbije, br. OI174004

  19. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    Science.gov (United States)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  20. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  1. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Lee, Se-Ho [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of); Shim, In-Bo [Department of Electronic Physics, Kookmin University, Seoul 136-702 (Korea, Republic of); Lee, Yong-Keun [Brain Korea 21 Project for Medical Science, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of) and Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 120-752 (Korea, Republic of)]. E-mail: leeyk@yumc.yonsei.ac.kr

    2005-05-15

    We investigated the cytotoxicity of the prepared various ferrites (Fe-, Li-, Ni/Zn/Cu-, Ba-, Sr-, Co-, Co/Ni-ferrites) using MTT assay as well as agar diffusion method. Their cytotoxicity was compared with that of alginate-encapsulated ferrites. In the MTT assay, Fe{sub 3}O{sub 4} and SrFe{sub 12}O{sub 19} ferrite showed the highest cell viability of 90%. Alginate-encapsulated Ba-ferrite was ranked mildly cytotoxic, whereas their ferrite particles were ranked cytotoxic.

  2. One-pot synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} nanoparticles using oleylamine as solvent and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Mirabet, Leonardo [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Solano, Eduardo, E-mail: eduardo.solano@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Martínez-Julián, Fernando; Guzmán, Roger [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona (Spain); Puig, Teresa; Obradors, Xavier; Pomar, Alberto [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Yáñez, Ramón; Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2013-03-15

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles (<10 nm) in non-polar media. ► Nanoparticles present high monocrystal quality and monodispersion. ► Superparamagnetic behavior at room temperature. ► Nanoparticles transfer to polar media via ligand exchange. - Abstract: An easy, efficient, reproducible and scalable one-pot synthetic methodology to obtain magnetic spinel ferrite nanoparticles has been developed. This approach is based on one-pot thermal decomposition of Fe(acac){sub 3} and M(acac){sub 2} (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media.

  3. Synthesis, characterization and hemolysis studies of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} ferrites synthesized by sol-gel for hyperthermia treatment applications

    Energy Technology Data Exchange (ETDEWEB)

    Jasso-Terán, Rosario Argentina, E-mail: arg.jasso@gmail.com; Cortés-Hernández, Dora Alicia; Sánchez-Fuentes, Héctor Javier; Reyes-Rodríguez, Pamela Yajaira; León-Prado, Laura Elena de; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel

    2017-04-01

    The synthesis of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} nanoparticles, x=0, 0.25, 0.50, 0.75 and 1.0, was performed by sol-gel method followed by a heat treatment at 400 °C for 30 min. These ferrites showed nanometric sizes and nearly superparamagnetic behavior. The Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} and CaFe{sub 2}O{sub 4} ferrites presented a size within the range of 12–14 nm and appropriate heating ability for hyperthermia applications. Hemolysis testing demonstrated that Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} ferrite was not cytotoxic when using 10 mg of ferrite/mL of solution. According to the results obtained, Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} is a potential material for cancer treatment by magnetic hyperthermia therapy. - Highlights: • The synthesis of Zn{sub (1−x)}Ca{sub x}Fe{sub 2}O{sub 4} ferrites was performed by sol-gel method. • CaFe{sub 2}O{sub 4} and Zn{sub 0.50}Ca{sub 0.}50Fe{sub 2}O{sub 4} ferrites showed heating ability. • The Zn{sub 0.50}Ca{sub 0.50}Fe{sub 2}O{sub 4} ferrite demonstrated to be no hemolytic.

  4. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    Science.gov (United States)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  5. (BDMCA) Nanoparticles

    African Journals Online (AJOL)

    Erah

    Available online at http://www.tjpr.org. Research Article ... Methods: Nanoparticle formulations were fabricated by a double emulsion solvent evaporation technique using .... Characterization of BDMCA nanoparticles. The nanoparticle ...

  6. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  7. Preparation of MgFe2O4 nanoparticles by microemulsion method and their characterization

    Czech Academy of Sciences Publication Activity Database

    Holec, Petr; Plocek, Jiří; Nižňanský, D.; Vejpravová, J.P.

    2009-01-01

    Roč. 51, č. 3 (2009), s. 301-305 ISSN 0928-0707 R&D Projects: GA ČR GA106/07/0949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnesium ferrite * microemulsion * nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.393, year: 2009

  8. SYNTHESIS OF M–Nd DOPED Fe3O4 NANOPARTICLES (M = Co ...

    African Journals Online (AJOL)

    Preferred Customer

    nanoparticles were spherical shaped with inverse spinel structure. ... To obtain nano sized spinel ferrite particles, various preparation techniques have been ... SEM images of (a) Fe3O4, (b) Fe3O4 doped with Nd3+ and Co2+, (c) Fe3O4 doped with. Nd3+ .... Nayar, S.; Mir, A.; Ashok, A.; Sharma, A. J. Bionic Eng. 2010, 7, 29.

  9. Evolution of oxide nanoparticles during dynamic plastic deformation of ODS steel

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Mishin, Oleg; Tao, Nairong

    2014-01-01

    The microstructure as well as the deformation behavior of oxide nanoparticles has been analyzed in the ferritic ODS steel PM2000 after compression by dynamic plastic deformation (DPD) to different strains. A dislocation cell structure forms after deformation to a strain of 1.0. DPD to a strain of 2...

  10. Structural and magnetic properties of sol-gel derived CaFe2O4 nanoparticles

    Science.gov (United States)

    Das, Arnab Kumar; Govindaraj, Ramanujan; Srinivasan, Ananthakrishnan

    2018-04-01

    Calcium ferrite nanoparticles with average crystallite size of ∼11 nm have been synthesized by sol-gel method by mixing calcium and ferric nitrates in stoichiometric ratio in the presence of ethylene glycol. As-synthesized nanoparticles were annealed at different temperatures and their structural and magnetic properties have been evaluated. X-ray diffraction studies showed that unlike most ferrites, as-synthesized cubic calcium ferrite showed a slow transformation to orthorhombic structure when annealed above 400 °C. Single phase orthorhombic CaFe2O4 was obtained upon annealing at 1100 °C. Divergence of zero field cooled and field cooled magnetization curves at low temperatures indicated superparamagnetic behavior in cubic calcium ferrite particles. Superparamagnetism persisted in cubic samples annealed up to 500 °C. As-synthesized nanoparticles heat treated at 1100 °C exhibited mixed characteristics of antiferromagnetic and paramagnetic grains with saturation magnetization of 0.4 emu/g whereas nanoparticles calcined at 400 °C exhibited superparamagnetic characteristics with saturation magnetization of 22.92 emu/g. An antiferromagnetic to paramagnetic transition was observed between 170 and 190 K in the sample annealed at 1100 °C, which was further confirmed by Mössbauer studies carried out at different temperatures across the transition.

  11. Some of Physical Properties of Nanostructured (Mg1-xCoxFe2O4 Ferrites Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Ammer Alsherefi

    2018-01-01

    Full Text Available Sol-gel auto combustion technique was used to prepare nanoparticles of magnesium-cobalt ferrites with the chemical formula Mg1-xCoxFe2O4 for  (x=0, 0.2, 0.4, 0.6, 0.8, 1, where x added as weight  percentages, and sintering  at temperature (1100 oC. The X-ray patterns of prepared powder has confirmed the structure of cubic spinel structure (fcc. The prepared samples were composed of nearly spherical nano particles .An average particle size of  magnesium-cobalt ferrite  were  calculated  using  Debye Scherer’s relation is equal 53.12 nm. The surface structure of the samples was investigated by Scanning Electron Microscope(SEM. The electromagnetic properties for prepared samples were investigated using Vector Network Analyzer (VNA in X-band microwave region.

  12. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  13. Water corrosion resistance of ODS ferritic-martensitic steel tubes

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasuji

    2008-01-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels have superior radiation resistance; it is possible to achieve a service temperature of up to around 973 K because of their superior creep strength. These advantages of ODS steels facilities their application to long-life cladding tubes in advanced fast reactor fuel elements. In addition to neutron radiation resistance, sufficient general corrosion resistance to maintain the strength of the cladding, and the stress corrosion cracking (SCC) resistance for spent-fuel-pool cooling systems and high-temperature oxidation for the fuel-clad chemical interaction (FCCI) of ODS ferritic steel are required. Although the addition of Cr to ODS is effective in preventing water corrosion and high-temperature oxidation, an excessively high amount of Cr leads to embrittlement due to the formation of a Cr-rich α' precipitate. The Cr content in 9Cr-ODS martensite and 12Cr-ODS ferrite, the ODS steels developed by the Japan Atomic Energy Agency (JAEA), is controlled. In a previous paper, it has been demonstrated that the resistances of 9Cr- and 12Cr-ODS ferritic-martensitic steels for high-temperature oxidation are superior to those of conventional 12Cr ferritic steel. However, the water corrosion data of ODS ferritic-martensitic steels are very limited. In this study, a water corrosion test was conducted on ODS steels in consideration of the spent-fuel-pool cooling condition, and the results were compared with those of conventional austenitic stainless steel and ferritic-martensitic stainless steel. (author)

  14. Giant Photogalvanic Effect in Noncentrosymmetric Plasmonic Nanoparticles

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Evlyukhin, Andrey B.

    2014-01-01

    Photoelectric properties of noncentrosymmetric, similarly oriented metallic nanoparticles embedded in a homogeneous semiconductor matrix are theoretically studied. Because of the asymmetric shape of the nanoparticle boundary, photoelectron emission acquires a preferred direction, resulting......, but is several orders of magnitude stronger. Termed the giant plasmonic photogalvanic effect, the reported phenomenon is valuable for characterizing photoemission and photoconductive properties of plasmonic nanostructures and can find many uses for photodetection and photovoltaic applications....... in a photocurrent flow in that direction when nanoparticles are uniformly illuminated by a homogeneous plane wave. This effect is a direct analogy of the photogalvanic (or bulk photovoltaic) effect known to exist in media with noncentrosymmetric crystal structure, such as doped lithium niobate or bismuth ferrite...

  15. Synthesis, characterization and gas sensitivity investigation of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Hamid Reza, E-mail: hebrahimi2010@gmail.com [Center for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Parish, Mohammad [Center for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Amiri, Gholam Reza [Falavarjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Bahraminejad, Behzad [Center for Advanced Engineering Research, Majlesi Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Fatahian, Soheil [Falavarjan Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2016-09-15

    Nickel zinc ferrite nanoparticles with diameters less than 20 nm were synthesized by co-precipitation method. The synthesized nanoparticles were annealed at 500 °C. Two types of samples (powder and disk) were prepared. The disk sample was prepared by pressing the powder sample. Magnetic and structural properties of the products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and alternating gradient-force magnetometer (AGFM). The X-ray analysis shows that the formation of the synthesized nickel zinc ferrite is spinell. The average crystalline size for nickel zinc ferrite powder was found around 19 nm (calculated by Debye-Scherer formula).The formation, size and the uniformity of the samples were determined by TEM. It was found that the size of nanoparticles should be around 18 nm from the SEM image. AGFM diagrams shows that the magnetization of the powder sample at the 9 kOe is 21.5 emu/g that of disk sample is 33 emu/g. Therefore, the magnetization was increased by pressing the nickel zinc ferrite nanoparticles. Sensor sensitivity of this disk ferrite is investigated in an isolated box. For this purpose, the samples are injected to this box and six gases (ethanol, methanol, chloroform, acetonitrile, acetone and methane) are exposed to the ferrite by a mechanical gate. The acetonitrile had the best sensitivity performance. - Highlights: • Powder and disk nickel zinc ferrite nanoparticles with diameters less than 20 nm were prepared. • Sensor sensitivity of six different gases was tested in an isolated box and acetonitrile had the best sensitivity performance. • The maximum sensor sensitivity was maximum at 350 °C for all tested gases except chloroform. • At 200 ppm concentration, the sensor capacity is reached to the saturation state.

  16. Theory and design of a half-mode SIW Ferrite LTCC phase shifter

    KAUST Repository

    Ghaffar, Farhan A.; Shamim, Atif

    2015-01-01

    A half mode SIW based Ferrite LTCC phase shifter is presented in this work. A theoretical model to predict the phase shift in the partially magnetized state has been derived. Contrary to the bulky external magnets employed by conventional ferrite

  17. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...

  18. Effect of Ferrite Morphology on Sensitization of 316L Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hun; Lee, Jun Ho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The sensitization behaviors of L-grade SSs having predominant austenitic structure with small amount of ferrite have not been well understood. In this regard, the effect of ferrite morphology on sensitization was investigated in this study. The sensitization behaviors of three heats of 316L and 316LN SSs were investigated, Stringer type of ferrite (316L - heat A and B) showed the early sensitization by chromium depletion at ferrite. austenite interface. And, later sensitization is due to GB sensitization. On the other hand, blocky type of ferrite (316L - heat C) showed lower DOS and higher resistance to GB sensitization. It could be due to sufficient supply of chromium from relatively large ferrite phase. As a consequence, the sensitization of 316L SSs could be affected by their ferrite morphology rather than ferrite content. The sensitized region was distinguishable from results of DL-EPR tests. It can be used as an effective method for evaluation of type of sensitization.

  19. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  20. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  1. Microwave left-handed composite material made of slim ferrite rods and metallic wires

    International Nuclear Information System (INIS)

    Fang, Xu; Yang, Bai; Li-Jie, Qiao; Hong-Jie, Zhao; Ji, Zhou

    2009-01-01

    This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Plasma discharge in ferritic first wall vacuum vessel of the Hitachi Tokamak HT-2

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Nakayama, Takeshi; Asano, Katsuhiko; Otsuka, Michio

    1997-01-01

    A tokamak discharge with ferritic material first wall was tried successfully. The Hitachi Tokamak HT-2 had a stainless steel SUS304 vacuum vessel and modified to have a ferritic plate first wall for experiments to investigate the possibility of ferritic material usage in magnetic fusion devices. The achieved vacuum pressure and times used for discharge cleaning was roughly identical with the stainless steel first wall or the original HT-2. We concluded that ferritic material vacuum vessel is possible for tokamaks. (author)

  3. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  4. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  5. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.

    Science.gov (United States)

    Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N; Huang, Shenyan; Teng, Zhenke; Liu, Chain T; Asta, Mark D; Gao, Yanfei; Dunand, David C; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E; Liaw, Peter K

    2015-11-09

    There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. The present research will broaden the applications of ferritic alloys to higher temperatures.

  6. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  7. Structure and magnetic properties of highly textured nanocrystalline Mn–Zn ferrite thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Jaison, E-mail: jaisonjosephp@gmail.com [Department of Physics, Goverment College, Khandola, Goa 403107 India (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 India (India); Pillai, V.P. Mahadevan [Department of Optoelectronics, University of Kerala,Thiruvananthapuram, Kerala 695581 India (India); Choudhary, R.J.; Phase, D.M.; Ganeshan, V. [UGC-DAE-CSR Indore, Madhya Pradesh 452017 India. (India)

    2015-01-01

    Nanoparticles of Mn{sub 0.2}Zn{sub 0.8}Fe{sub 2}O{sub 4} were chemically synthesized by co-precipitating the metal ions in aqueous solutions in a suitable alkaline medium. The identified XRD peaks confirm single phase spinal formation. The nanoparticle size authentication is carried out from XRD data using Debye Scherrer equation. Thin film fabricated from this nanomaterial by pulse laser deposition technique on quartz substrate was characterized using XRD and Raman spectroscopic techniques. XRD results revealed the formation of high degree of texture in the film. AFM analysis confirms nanogranular morphology and preferred directional growth. A high deposition pressure and the use of a laser plume confined to a small area for transportation of the target species created certain level of porosity in the deposited thin film. Magnetic property measurement of this highly textured nanocrystalline Mn–Zn ferrite thin film revealed enhancement in properties, which are explained on the basis of texture and surface features originated from film growth mechanism.

  8. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  9. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  10. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... NUCLEAR REGULATORY COMMISSION [[NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in...

  11. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  12. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  13. Future directions for ferritic/martensitic steels for nuclear applications

    International Nuclear Information System (INIS)

    Klueh, R.L.; Swindeman, R.W.

    2000-01-01

    High-chromium (7-12% Cr) ferritic/martensitic steels are being considered for nuclear applications for both fission and fusion reactors. Conventional 9-12Cr Cr-Mo steels were the first candidates for these applications. For fusion reactors, reduced-activation steels were developed that were patterned on the conventional steels but with molybdenum replaced by tungsten and niobium replaced by tantalum. Both the conventional and reduced-activation steels are considered to have an upper operating temperature limit of about 550degC. For improved reactor efficiency, higher operating temperatures are required. For ferritic/martensitic steels that could meet such requirements, oxide dispersion-strengthened (ODS) steels are being considered. In this paper, the ferritic/martensitic steels that are candidate steels for nuclear applications will be reviewed, the prospect for ODS steel development and the development of steels produced by conventional processes will be discussed. (author)

  14. Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Saraswathi, Ramiah

    2014-11-01

    A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  16. Tri-metallic ferrite oxygen carriers for chemical looping combustion

    Science.gov (United States)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-10-25

    The disclosure provides a tri-metallic ferrite oxygen carrier for the chemical looping combustion of carbonaceous fuels. The tri-metallic ferrite oxygen carrier comprises Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta., where Cu.sub.xFe.sub.yMn.sub.zO.sub.4-.delta. is a chemical composition. Generally, 0.5.ltoreq.x.ltoreq.2.0, 0.2.ltoreq.y.ltoreq.2.5, and 0.2.ltoreq.z.ltoreq.2.5, and in some embodiments, 0.8.ltoreq.x.ltoreq.1.2, y.ltoreq.1.2, and z.gtoreq.0.8. The tri-metallic ferrite oxygen carrier may be used in various applications for the combustion of carbonaceous fuels, including as an oxygen carrier for chemical looping combustion.

  17. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  18. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  19. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng, E-mail: doup@tsinghua.edu.cn [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko, E-mail: kimura@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, Takanari, E-mail: okuda.takanari@kki.kobelco.com [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Inoue, Masaki, E-mail: inoue.masaki@jaea.go.jp [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Ukai, Shigeharu, E-mail: s-ukai@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Ohnuki, Somei, E-mail: ohnuki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Fujisawa, Toshiharu, E-mail: fujisawa@esi.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Abe, Fujio, E-mail: ABE.Fujio@nims.go.jp [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Jiang, Shan, E-mail: js93518@gmail.com [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Yang, Zhigang, E-mail: zgyang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y{sub 2}O{sub 3}), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y{sub 2}O{sub 3}), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  20. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    International Nuclear Information System (INIS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-01-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y 2 O 3 ), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y 2 O 3 ), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  1. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  2. Modeling ferrite electromagnetic response in the time domain

    International Nuclear Information System (INIS)

    Johnson, J.; DeFord, J.F.; Craig, G.D.

    1989-01-01

    The behavior of ferrite loads commonly found in induction accelertors has important consequences for the performance of these accelerators. Previous work by the authors on modeling the electromagnetic fields in induction cavities has focussed upon use of a simple, phenomenological model for the process of magnetization reversal in these ferrite loads. In this paper we consider a model for magnetization reversal which is more deeply rooted in theory, and present a simulation of the reversal process based upon this model for an idealized set of boundary conditions. 7 refs., 3 figs

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  4. Microstructural examination of commercial ferritic alloys at 299 DPA

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1995-11-01

    Microstructures and density change measurements are reported for Martensitic commercial steels HT-9 and Modified 9Cr-lMo (T9) and oxide dispersion strengthened ferritic alloys MA956 and NU957 following irradiation in the FFTF/MOTA at 420 degrees C to 200 DPA. Swelling as determined by density change remains below 2% for all conditions. Microstructures are found to be stable except in recrystallized grains of MA957, which are fabrication artifacts, with only minor swelling in the Martensitic steels and α' precipitation in alloys with 12% or more chromium. These results further demonstrate the high swelling resistance and microstructural stability of the ferritic alloy class

  5. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  6. Evaluation of cost reduction method for manufacturing ODS ferritic claddings

    International Nuclear Information System (INIS)

    Fujiwara, Masayuki; Mizuta, Shunji; Ukai, Shigeharu

    2000-04-01

    For evaluating the fast reactor system technology, it is important to evaluate the practical feasibility of ODS ferritic claddings, which is the most promising materials to attain the goal of high coolant temperature and more than 150 GWd/t. Based on the results of their technology development, mass production process with highly economically benefit as well as manufacturing cost estimation of ODS ferritic claddings were preliminarily conducted. From the view point of future utility scale, the cost for manufacturing mother tubes has a dominant factor in the total manufacturing cost. The method to reduce the cost of mother tube manufacturing was also preliminarily investigated. (author)

  7. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  8. Evaluation of welds on a ferritic-austenitic stainless steel

    International Nuclear Information System (INIS)

    Pleva, J.; Johansson, B.

    1984-01-01

    Five different welding methods for the ferritic-austenitic steel 22Cr6Ni3MoN have been evaluated on mill welded heavy wall pipes. The corrosion resistance of the weld joints has been tested both in standard tests and in special environments, related to certain oil and gas wells. The tests were conclusive in that a welding procedure with the addition of sufficient amounts of filler metal should be employed. TIG welds without or with marginal filler addition showed poor resistance to pitting, and to boiling nitric acid. Contents of main alloying elements in ferrite and austenite phases have been measured and causes of corrosion attack in welds are discussed

  9. Some design considerations for perpendicular biased ferrite tuners

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Poirier, R.L.

    1994-10-01

    Recently remarkable progress has been achieved in the development of perpendicular biased ferrite tuned rf resonators for fast cycled synchrotrons. Compared with the broadly used parallel biased rf cavities they provide higher resonator quality factor Q. However when designing perpendicular biased cavities, special attention should be paid to the methods to provide eddy current suppression in the resonator walls, the ferrite nonlinearity influence, the generated heat removal, the fast self resonant frequency control. The prospective of a faster additional biasing system are discussed and conclusions are drawn. (author). 8 refs., 6 figs

  10. Study of some Mg-based ferrites as humidity sensors

    International Nuclear Information System (INIS)

    Rezlescu, N; Rezlescu, E; Doroftei, C; Popa, P D

    2005-01-01

    The micostructure and humidity sensitivity of MgFe 2 O 4 + CaO, Mg 0.5 Cu 0.5 Fe 1.8 Ga 0.2 O 4 , Mg 0.5 Zn 0.5 Fe 2 O 4 + KCl and MgMn 0.2 Fe 1.8 O 4 ferrites were investigated. We have found that the humidity sensitivity largely depends on composition, crystallite size, surface area and porosity. The best results concerning humidity sensitivity were obtained for MgMn 0.2 Fe 1.8 O 4 ferrite

  11. Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application

    Science.gov (United States)

    Kale, Swati B.; Somvanshi, Sandeep B.; Sarnaik, M. N.; More, S. D.; Shukla, S. J.; Jadhav, K. M.

    2018-05-01

    This paper reports facile synthesis, characterizations by X-ray diffraction and scanning electron microscopy and magnetic behaviour of cobalt ferrite nanoparticles. Cobalt ferrite nanoparticles were prepared by sol-gel auto combustion technique using glycine as a fuel. Phase purity and nanocrystalline nature of the prepared sample was confirmed through X-ray diffraction technique. No extra peak other than cubic spinel structure was observed in the XRD pattern. The crystallite size calculated by using Scherrer's formula is of the order of 21.6 nm indicating the nanocrystalline nature of the prepared cobalt ferrite sample. The surface morphological studies were carried out using scanning electron microscope (SEM). SEM image shows homogeneous, agglomerated particles with sponge-like form. The saturation magnetization, coercivity and remenance magnetization obtained by hysteresis curve clearly gives the evidence of excellent and enhanced magnetic behaviour.

  12. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun

    2005-01-01

    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  13. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    OpenAIRE

    Zaspalis V. T.; Tsakaloudi V.; Kogias G.

    2014-01-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz,...

  14. Thermal effect on magnetic parameters of high-coercivity cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

    2014-07-21

    We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600 °C for 30 and 180 min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600 °C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600 °C for 30 and 180 min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57 emu/g to 66 and 70 emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400 °C.

  15. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  16. Resistance to pitting corrosion in ferritic and austenitic/ferritic steels

    International Nuclear Information System (INIS)

    De Bouvier, O.

    1995-01-01

    Stainless steel tubes carrying raw water are potentially vulnerable to pitting corrosion. With a view to minimizing the corrosion risk in the river-water-cooled condensers at PWR power plant, a study was conducted to determine initiation conditions and incubation durations for pitting corrosion in stagnant water. As a result, condenser tubes in Z2 CI 18 (439) or Z2 CT 18-10 (304L) steels were phased out in favour of Z2 CND 16-32 (316L) stainless steel. The same question can be yield for other applications and especially for all types of exchangers for use in electrical applications. This study sought to assess alternative methods for estimating pitting corrosion, and to check the results of these methods against the actual behaviour of studied steels. The study covered ferritic steels (439, 444, 290Mo), austenitic steel (316L) and austenitic/ferritic steels (Uranus 35N, 45N, 47N, 52N). Two approaches were adopted: laboratory tests to compare pitting corrosion risks on different materials, and tests for characterizing the behaviour of steels exposed to river water. The study begins with a laboratory tests that yield an arbitrary parameter for quantifying pitting corrosion resistance. One method involves measuring the pitting temperature in an aggressive ferric chloride solution. Other methods measure the pitting potential, either statistically (Multipit method) or deterministically (polarization curve). We then go on to discuss tests under simulated life-like conditions, involving repeated immersions in water from the Seine. (author). 9 refs., 13 figs, 9 tabs

  17. Progress in the preparation of magnetic nanoparticles for applications in biomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Roca, A G; Costo, R; Rebolledo, A F; Veintemillas-Verdaguer, S; Tartaj, P; Gonzalez-Carreno, T; Morales, M P; Serna, C J, E-mail: puerto@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid (Spain)

    2009-11-21

    This review summarizes recent advances in synthesis routes for quickly and reliably making and functionalizing magnetic nanoparticles for applications in biomedicine. We put special emphasis on describing synthetic strategies that result in the production of nanosized materials with well-defined physical and crystallochemical characteristics as well as colloidal and magnetic properties. Rather than grouping the information according to the synthetic route, we have described methods to prepare water-dispersible equiaxial magnetic nanoparticles with sizes below about 10 nm, sizes between 10 and 30 nm and sizes around the monodomain-multidomain magnetic transition. We have also described some recent examples reporting the preparation of anisometric nanoparticles as well as methods to prepare magnetic nanosized materials other than iron oxide ferrites, for example Co and Mn ferrite, FePt and manganites. Finally, we have described examples of the preparation of multicomponent systems with purely inorganic or organic-inorganic characteristics. (topical review)

  18. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.

    Science.gov (United States)

    Santhosh, Poornima Budime; Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kulkarni, Mukta; Genova, Julia; Eleršič, Kristina; Iglič, Aleš; Kralj-Iglič, Veronika; Ulrih, Nataša Poklar

    2014-02-01

    The aim of this work is to investigate the effect of electrostatic interactions between the nanoparticles and the membrane lipids on altering the physical properties of the liposomal membrane such as fluidity and bending elasticity. For this purpose, we have used nanoparticles and lipids with different surface charges. Positively charged iron oxide (γ-Fe2O3) nanoparticles, neutral and negatively charged cobalt ferrite (CoFe2O4) nanoparticles were encapsulated in neutral lipid 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine lipid mixture. Membrane fluidity was assessed through the anisotropy measurements using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene. Though the interaction of both the types of nanoparticles reduced the membrane fluidity, the results were more pronounced in the negatively charged liposomes encapsulated with positively charged iron oxide nanoparticles due to strong electrostatic attractions. X-ray photoelectron spectroscopy results also confirmed the presence of significant quantity of positively charged iron oxide nanoparticles in negatively charged liposomes. Through thermally induced shape fluctuation measurements of the giant liposomes, a considerable reduction in the bending elasticity modulus was observed for cobalt ferrite nanoparticles. The experimental results were supported by the simulation studies using modified Langevin-Poisson-Boltzmann model. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  20. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  1. Lithium ferrite: The study on magnetic and complex permittivity characteristics

    Directory of Open Access Journals (Sweden)

    Madhavaprasad Dasari

    2017-03-01

    Full Text Available Lithium ferrite (Li0.5Fe2.5O4 powder was prepared by solid state reaction method, which was finally pressed and sintered at 1150 °C. The spinel structure of the lithium ferrite was confirmed by X-ray diffraction and grain size estimation was obtained from scanning electron microscope (SEM. Fourier transform infrared spectroscopy (FTIR confirmed the presence of primary and secondary absorption bands characteristic for spinel structure. The force constants were estimated using absorption bands for the lithium ferrite. Magnetization and dielectric studies were carried out for the sintered sample. Saturation magnetization (Ms of 59.6 emu/g was achieved and variation of magnetization with temperature was used to identify the Curie temperature. The complex permittivity (ε∗ for the lithium ferrite sample was obtained for wide frequency range up to 3 GHz and discussed based on available models. The Curie temperature was estimated around 480 °C and verified from both magnetization versus temperature and dielectric constant versus temperature measurements.

  2. Analyse des structures planaires multicouches à ferrite par la ...

    African Journals Online (AJOL)

    Finite element analysis of multi-layer planar structures with Ferrite. Electromagnetic Analysis of microwave integrated circuits is an attractive subject do to the recent development and use of new materials such as magnetic anisotropic materials (hexaferrite, ...). These materials are used in many microwave components ...

  3. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  4. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  5. Determination of delta ferrite volumetric fraction in austenitic stainless steels

    International Nuclear Information System (INIS)

    Almeida Macedo, W.A. de.

    1983-01-01

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray difraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Forster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author) [pt

  6. The evolution of ferrite grain size in structural steels

    International Nuclear Information System (INIS)

    Hodgson, P.D.

    1999-01-01

    The refinement of the ferrite grain size is the main aim of modern thermomechanical processes for hot rolled steels. The ferrite grain size is determined by the composition, the state of the austenite at the point of transformation and the cooling rate through transformation. By adding microalloying additions of Ti for grain refinement and Nb to retard recrystallisation, it is possible to reduce the ferrite grain size to less than 5μm at moderate to high cooling rates. However, it is not possible under even the most extreme traditional controlled rolling and accelerated cooling conditions to produce an equiaxed ferrite grain size of less than 3μm. More recent work, though, involving rolling with high undercooling and friction conditions that lead to high shear, suggests that it is possible to produce microstructures in a single rolling pass with an average grain size less than 1μm. This appears to involve a dynamic (ie strain induced) transformation process. The current understanding of static and dynamic transformation and the resultant grain size is reviewed and areas requiring further research are highlighted

  7. Mössbauer and magnetization studies of nanosize chromium ferrite ...

    African Journals Online (AJOL)

    Nanosize chromium ferrite (CrF) powder samples were synthesized by citrate precursor route in the size range of 6 to 35 nm. The structural and magnetic behaviour of these samples were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Mössbauer spectroscopic techniques. Synthesized ...

  8. Irradiation proposition of ferritic steels in a russian reactor

    International Nuclear Information System (INIS)

    Seran, J.L.; Decours, J.; Levy, L.

    1987-04-01

    Using the low temperatures of russian reactors, a sample irradiation is proposed to study mechanical properties and swelling of martensitic steels (EM10, T91, 1.4914, HT9), ferrito-martensitic (EM12) and ferritic (F17), at temperatures lower than 400 0 C [fr

  9. Domain structure in soft ferrites by the longitudinal Kerr effect

    International Nuclear Information System (INIS)

    Kaczmarek, R.; Dautain, M.; Barradi-Ismail, T.

    1992-01-01

    For the first time, the longitudinal Kerr effect has been used in order to observe magnetic domains and their development in power ferrites. Image subtraction and processing leads to a magnetic contrast being a quasi derivative of the domains. A kind of integration procedure applied to them permits a reconstruction of a local hysteresis which parameters closely approach the global hysteresis data. (orig.)

  10. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  11. Bismuth Ferrite for Active Control of Surface Plasmon Polariton Modes

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose and investigate several layouts of m etal-insulator-metal waveguide with active core which can be utilized for dynamic switching in photonic integrated circuits. The active material, bismuth ferrite (BiFeO3), is sandwiched between metal plates and changes i ts refractive index through...

  12. Carbon diffusion in carbon-supersaturated ferrite and austenite

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír

    2014-01-01

    Roč. 586, FEB (2014), s. 129-135 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GAP108/11/0148; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : carbon diffusion * Carbon supersaturation * Carbon supersaturation * Ferrite * Austenite Subject RIV: BJ - Thermodynamics Impact factor: 2.999, year: 2014

  13. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  14. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    Science.gov (United States)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  15. Spin canting phenomenon in cadmium doped cobalt ferrites ...

    Indian Academy of Sciences (India)

    O4 ( = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), has been carried out using the sol–gel auto combustion method. The ferrite samples show an interesting magnetic transition from Neel to Yafet–Kittel configuration, as the Cd2+ concentration is increased ...

  16. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Directory of Open Access Journals (Sweden)

    Abhijit Banerjee

    2012-12-01

    Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

  17. Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors

    Science.gov (United States)

    Xiong, Pan; Huang, Huajie; Wang, Xin

    2014-01-01

    A ternary cobalt ferrite/graphene/polyaniline nanocomposite (CGP) is designed and fabricated via a facile two-step approach: cobalt ferrite nanoparticles dispersed on graphene sheets are achieved by a hydrothermal method, followed by coating with polyaniline (PANI) through in situ polymerization process. Electrochemical measurements demonstrate that the specific capacitance of the resulting ternary hybrid (CGP) is up to 1133.3 F g-1 at a scan rate of 1 mV s-1 and 767.7 F g-1 at a current density of 0.1 A g-1 using a three-electrode system, while 716.4 F g-1 at a scan rate of 1 mV s-1 and 392.3 F g-1 at a current density of 0.1 A g-1 using a two-electrode system, which are significantly higher than those of pure CoFe2O4, graphene and PANI, or binary CoFe2O4/graphene, CoFe2O4/PANI and graphene/PANI hybrids. In addition, over 96% of the initial capacitance can be retained after repeating test for 5000 cycles, demonstrating a high cycling stability. The extraordinary electrochemical performance of the ternary CGP nanocomposite can be attributed to its well-designed nanostructure and the synergistic effects of the individual components.

  18. Cellulose-precursor synthesis of nanocrystalline Co0.5Cu0.5Fe2O4 spinel ferrites

    International Nuclear Information System (INIS)

    Ounnunkad, Kontad; Phanichphant, Sukon

    2012-01-01

    Highlights: ► Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu 0.5 Co 0.5 Fe 2 O 4 powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450–600 °C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16–42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

  19. Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample

    International Nuclear Information System (INIS)

    Cador, O.; Grasset, F.; Haneda, H.; Etourneau, J.

    2004-01-01

    A system consisting of aggregated nonstoichiometric zinc ferrite nanoparticles has been studied using AC and DC magnetization measurements. A superparamagnetic-super-spin-glass phase transition at T g has been identified. The relaxation time diverges at T g and the nonlinear susceptibility shows an abrupt increase. The critical behavior vanishes when the nanoparticles are not in close contact. The observation of the memory effect identical to that which has been already discovered in canonical spin-glass supports the existence of a true thermodynamic transition in agglomerated magnetic nanoparticles

  20. On the formation and stability of Y-Ti-O nanoparticles in ODS alloys

    International Nuclear Information System (INIS)

    Sundar, C.S.

    2012-01-01

    The thermal and radiation stability of Y-Ti-O nanoparticles in oxide dispersion strengthened steels is a topic of interest, given that these nanoparticles bestow the crucial high temperature creep strength, and these ferritic alloys are candidate materials for cladding and structural materials for fast and fusion reactors. In addition, there is also interest in obtaining a basic understanding of the various issues, such as the role of alloying element Ti, on the formation of uniform sized and small nanoparticles in these alloys that are formed using the powder metallurgy route of ball milling followed by consolidation using hot extrusion

  1. Synthesis and characterization of magnetic nanoparticles of oxides for dual MnFe2O4 bioseparation, stabilized in fatty acid and the system chitosan - Eu(TTA)3(TPPO)2. Studies on the influence of doping with Gd3+, Tb3+, Ho3+ e Eu3+ in structural and magnetic properties

    International Nuclear Information System (INIS)

    Kovacs, Thelma Antunes Rodrigues

    2014-01-01

    This work was synthesized and characterized ferrite magnetic nanoparticles manganese, using the chemical coprecipitation method. By varying the heating time under 98°C (0, 10,20,40,60 3 80 minutes), the molar percentage of doping (1, 3, 5, 7, and 10%), gadolinium, europium, terbium and holmium. Magnetic ferrite nanoparticles and manganese ferrite doped with manganese were synthesized by coprecipitation method starting with chloride solutions of metals (iron (III), manganese (II), europium (III), gadolinium (III), terbium (III) and holmium (III)) and NaOH 5mol.L -1 as precipitating agent. The magnetic nanoparticles were characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, magnetization curves, and thermal analysis. Most of manganese ferrite particles showed superparamagnetic behavior. After the characterization it was found that the samples synthesized manganese ferrite with more than 40 minutes heating time, crystal structure showed the characteristic pattern of the inverted manganese ferrite spinel type. The stabilization of the samples in oleic acid nanoparticles produced with a hydrophobic outer layer and facilitated by coating chitosan biopolymer, since this has a positive charge. Among the doped samples there was no significant change in the magnetic behavior. Several techniques for characterizing these materials have been used such as X-ray diffraction spectrum in the infrared region, magnetization curves and thermal analysis. The resins were tested as magnetic material for the separation of biological materials. In this paper, are used as biological targets separation of bovine serum albumin. (author)

  2. Development of a Ferrite-Based Electromagnetic Wave Detector

    Directory of Open Access Journals (Sweden)

    Muhammad Hanish Zakariah

    2017-11-01

    Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM wave termed Sea Bed Logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges including sensitivity and lapsed time. Our initial response to this issue is to develop a ferrite-based EM wave detector for Sea Bed Logging (SBL. Ferrite bar and copper rings in various diameters were used as detector 1 (D1. For Detector 2 (D2, toroid added with copper wires in different lengths at the centre of it were used. The first experiment is to determine the inductance and resistance for both detectors by using LCR meter. We obtained the highest inductance value of 0.02530 mH at the ferrite bar when it was paired with a 15 cm diameter copper ring and 0.00526 mH for D2 using a 100 cm copper wire placed at the centre of the toroid. The highest resistivity for D1 was measured at ferrite bar paired with a 15 cm diameter  copper ring and 1.099 Ω when using 20 cm length of copper wire. The second interest deals with voltage peak-to-peak (Vp-p value for both detectors by using oscilloscope. The highest voltage value at the ferrite bar of D1 was 25.30 mV. While at D2, the highest voltage measured was 27.70 mV when using a 100 cm copper wire. The third premise is the comparison of sensitivity and lapsed time for both detectors. It was found that D1 was 61% more sensitive than D2 but had higher lapsed time than D2.

  3. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting