WorldWideScience

Sample records for nicotine promotes cell

  1. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity.

    Science.gov (United States)

    Huang, R; Li, M; Gregory, R L

    2015-08-01

    Several epidemiology studies have reported a positive relationship between smoking and dental caries. Nicotine, an alkaloid component of tobacco, has been demonstrated to stimulate biofilm formation and metabolic activity of Streptococcus mutans, one of the most important pathogens of dental caries. The first aim of the present study was to explore the possible mechanisms leading to increased biofilm by nicotine treatment from three aspects, extracellular polysaccharides (EPS) synthesis, glucosyltransferase (Gtf) synthesis and glucan-binding protein (Gbp) synthesis at the mRNA and protein levels. The second aim was to investigate how nicotine affects S. mutans virulence, particular in lactate dehydrogenase (LDH) activity. Confocal laser scanning microscopy results demonstrated that both biofilm bacterial cell numbers and EPS were increased by nicotine. Gtf and GbpA protein expression of S. mutans planktonic cells were upregulated while GbpB protein expression of biofilm cells were downregulated by nicotine. The mRNA expression trends of those genes were mostly consistent with results on protein level but not statistically significant, and gtfD and gbpD of biofilm cells were inhibited. Nicotine was not directly involved in S. mutans LDH activity. However, since it increases the total number of bacterial cells in biofilm, the overall LDH activity of S. mutans biofilm is increased. In conclusion, nicotine stimulates S. mutans planktonic cell Gtf and Gbp expression. This leads to more planktonic cells attaching to the dental biofilm. Increased cell numbers within biofilm results in higher overall LDH activity. This contributes to caries development in smokers.

  2. Nitric oxide promotes nicotine-triggered ERK signaling via redox reactions in PC12 cells.

    Science.gov (United States)

    Miyamoto, Yoshiaki; Sakai, Ryosuke; Maeda, Chiharu; Takata, Tsuyoshi; Ihara, Hideshi; Tsuchiya, Yukihiro; Watanabe, Yasuo

    2011-10-30

    Nitric oxide (NO), produced by neuronal NO synthase (nNOS), serves as a signaling molecule with diverse biological responses in the central nervous system (CNS). In the present study, we demonstrated that nNOS expression enhances the nicotine-triggered activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in nNOS-transfected PC12 (NPC12) cells. Treatment with nicotine increased the phosphorylation level of ERK1/2 in the NPC12 cells as compared with that in control PC12 cells. However, nicotine treatment failed to enhance ERK1/2 phosphorylation when NPC12 cells were pretreated with several selective inhibitors of NOS, the nicotinic acetylcholine receptors, L-type voltage-dependent Ca(2+) channels, protein kinase C, Src, epidermal growth factor receptor, and MEK. The nicotine-induced ERK1/2 phosphorylation in PC12 cells was observed by their pretreatment with a NO donor. Moreover, the enhancement of nicotine-induced ERK1/2 phosphorylation in the NPC12 cells was regulated by intracellular glutathione levels, but not by the soluble guanylate cyclase-cGMP-protein kinase G signaling. Meanwhile, depolarization stimulated ERK1/2 phosphorylation in both PC12 and NPC12 cells. Taken together, these findings suggest that nicotine modulates NO-dependent redox condition; the resulting calcium influx, would increase ERK1/2 phosphorylation in nNOS expressing cells. Blockade of NO pathway may be selective target to reduce ERK1/2 phosphorylation via attenuation of the nicotine responses in the CNS.

  3. Nitric oxide enhances increase in cytosolic Ca(2+) and promotes nicotine-triggered MAPK pathway in PC12 cells.

    Science.gov (United States)

    Kajiwara, Aya; Tsuchiya, Yukihiro; Takata, Tsuyoshi; Nyunoya, Mayumi; Nozaki, Naohito; Ihara, Hideshi; Watanabe, Yasuo

    2013-11-01

    The purpose of this study was to investigate the roles of neuronal nitric oxide synthase (nNOS), Ca(2+)/calmodulin (CaM)-dependent protein kinases (CaMKs), and protein kinase C (PKC) in nicotine-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation. Treatment with nicotine stimulated ERK1/2 and p38 MAPK phosphorylation in the PC12 cells expressing nNOS (NPC12 cells) as compared with that in control PC12 cells. An inhibitor of L-type voltage-sensitive Ca(2+) channel suppressed the nicotine-induced phosphorylation of p38 MAPK. The inhibition of CaMK-kinase, the upstream activator of CaMKI and CaMKIV, did not inhibit the enhanced their phosphorylation. ERK1/2 phosphorylation was attenuated by inhibitors of p38 MAPK, PKC, and MAPK-kinase 1/2, indicating the involvement of these protein kinases upstream of ERK1/2. Furthermore, we found that nNOS expression enhances the nicotine-induced increase in the intracellular concentration of Ca(2+), using the Ca(2+)-sensitive fluorescent probe Fura2. These data suggest that NO promotes nicotine-triggered Ca(2+) transient in PC12 cells to activate possibly CaMKII, leading to sequential phosphorylation of p38 MAPK and ERK1/2.

  4. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling.

    Directory of Open Access Journals (Sweden)

    Dingbo Shi

    Full Text Available Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.

  5. Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains.

    Science.gov (United States)

    Xu, Lijun; Deng, Xingming

    2006-02-17

    Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.

  6. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways.

    Science.gov (United States)

    Wang, Chengze; Xu, Xin; Jin, Hairu; Liu, Gangli

    2017-05-01

    To investigate the effects and the possible underlying mechanisms of nicotine stimulation on tongue squamous cell carcinoma (TSCC) progression, a TSCC cell line Cal27 and 34 samples of paraffin-embedded TSCC were examined. Immunofluorescence, western blot analysis, and TOP/FOP flash, CCK-8, wound healing and Transwell invasion assays were used to evaluate Cal27 in response to nicotine stimulation. We also investigated expression levels of related proteins of Wnt/β-catenin and Wnt/PCP pathways in paraffin-embedded TSCC samples with or without a history of smoking by immunohistochemistry. Nicotine stimulation can promote proliferation, migration, and invasion of TSCC cells in vitro, downregulate E-cadherin, and activate the Wnt/β-catenin and Wnt/PCP pathways, which could be antagonized by the α7 nicotine acetylcholine receptor (α7 nAChR) inhibitor α-BTX. Moreover, the expression levels of β-catenin, Wnt5a and Ror2 were higher in TSCC patients with a history of smoking than those without a history of smoking. Our results suggest nicotine may promote tongue squamous carcinoma cells progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways and may play a significant role in the progression and metastasis of smoking-related TSCC.

  7. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    Science.gov (United States)

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  8. Estradiol promotes the rewarding effects of nicotine in female rats.

    Science.gov (United States)

    Flores, Rodolfo J; Pipkin, Joseph A; Uribe, Kevin P; Perez, Adriana; O'Dell, Laura E

    2016-07-01

    It is presently unclear whether ovarian hormones, such as estradiol (E2), promote the rewarding effects of nicotine in females. Thus, we compared extended access to nicotine intravenous self-administration (IVSA) in intact male, intact female, and OVX female rats (Study 1) as well as OVX females that received vehicle or E2 supplementation (Study 2). The E2 supplementation procedure involved a 4-day injection regimen involving 2 days of vehicle and 2 days of E2 administration. Two doses of E2 (25 or 250μg) were assessed in separate groups of OVX females in order to examine the dose-dependent effects of this hormone on the rewarding effects of nicotine. The rats were given 23-hour access to nicotine IVSA using an escalating dose regimen (0.015, 0.03, and 0.06mg/kg/0.1mL). Each dose was self-administered for 4 days with 3 intervening days of nicotine abstinence. The results revealed that intact females displayed higher levels of nicotine intake as compared to males. Also, intact females displayed higher levels of nicotine intake versus OVX females. Lastly, our results revealed that OVX rats that received E2 supplementation displayed a dose-dependent increase in nicotine intake as compared to OVX rats that received vehicle. Together, our results suggest that the rewarding effects of nicotine are enhanced in female rats via the presence of the ovarian hormone, E2.

  9. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Bao-An Liu

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostinsilenced cells were obtained by G418 screening. Periostin- silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine.

  10. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  12. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  13. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    Science.gov (United States)

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Learning and nicotine interact to increase CREB phosphorylation at the jnk1 promoter in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Justin W Kenney

    Full Text Available Nicotine is known to enhance long-term hippocampus dependent learning and memory in both rodents and humans via its activity at nicotinic acetylcholinergic receptors (nAChRs. However, the molecular basis for the nicotinic modulation of learning is incompletely understood. Both the mitogen activated protein kinases (MAPKs and cAMP response element binding protein (CREB are known to be integral to the consolidation of long-term memory and the disruption of MAPKs and CREB are known to abrogate some of the cognitive effects of nicotine. In addition, the acquisition of contextual fear conditioning in the presence of nicotine is associated with a β2-subunit containing nAChR-dependent increase in jnk1 (mapk8 transcription in the hippocampus. In the present study, chromatin immunoprecipitation (ChIP was used to examine whether learning and nicotine interact to alter transcription factor binding or histone acetylation at the jnk1 promoter region. The acquisition of contextual fear conditioning in the presence of nicotine resulted in an increase in phosphorylated CREB (pCREB binding to the jnk1 promoter in the hippocampus in a β2-subunit containing nAChR dependent manner, but had no effect on CREB binding; neither fear conditioning alone nor nicotine administration alone altered transcription factor binding to the jnk1 promoter. In addition, there were no changes in histone H3 or H4 acetylation at the jnk1 promoter following fear conditioning in the presence of nicotine. These results suggest that contextual fear learning and nicotine administration act synergistically to produce a unique pattern of protein activation and gene transcription in the hippocampus that is not individually generated by fear conditioning or nicotine administration alone.

  15. Nicotine overrides DNA damage-induced G1/S restriction in lung cells.

    Directory of Open Access Journals (Sweden)

    Takashi Nishioka

    Full Text Available As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1 arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.

  16. Nicotine-induced resistance of non-small cell lung cancer to treatment--possible mechanisms.

    Science.gov (United States)

    Czyżykowski, Rafał; Połowinczak-Przybyłek, Joanna; Potemski, Piotr

    2016-03-04

    Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine--an addictive component of tobacco--is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine's influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy.

  17. Nicotine inhibits potassium currents in Aplysia bag cell neurons.

    Science.gov (United States)

    White, Sean H; Sturgeon, Raymond M; Magoski, Neil S

    2016-06-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K(+) with Cs(+) Consistent with an underlying mechanism of direct inhibition of one or more K(+) channels, nicotine was found to rapidly reduce the fast-inactivating A-type K(+) current as well as both components of the delayed-rectifier K(+) current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K(+) channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time.

  18. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  19. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  20. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  1. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  2. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  3. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  4. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  5. Nicotine Alters the Proteome of Two Human Pancreatic Duct Cell Lines

    Science.gov (United States)

    Paulo, Joao A

    2015-01-01

    Context Cigarette smoking is a known risk factor of pancreatic disease. Nicotine - a major cigarette tobacco component - can traffic through the circulatory system and may induce fibrosis and metastasis, hallmarks of chronic pancreatitis and pancreatic adenocarcinoma, respectively. However, at the biomolecular level, particularly in pancreatic research, the effects of nicotine remain unresolved. Methods The effects of nicotine on the proteomes of two pancreatic duct cell lines–an immortalized normal cell line (HPNE) and a cancer cell line (PanC1)- were investigated using mass spectrometry-based proteomics. For each cell line, the global proteomesof cells exposed to nicotine for 24 hrswere compared with untreated cells in triplicate using 6-plex tandem mass tag-based isobaric labeling techniques. Results Over 5,000 proteins were detectedper cell line. Of these, over 900 proteins were differentially abundant with statistical significance (corrected p-value <0.01) upon nicotine treatment, 57 of which were so in both cell lines. Amyloid precursor protein, previously observed to increase expression in pancreatic stellate cells when exposed to nicotine, was also up-regulated in both cell lines.In general, the two cell lines varied in the classes of proteins altered by nicotine treatment, supporting published evidence that nicotine may play different roles in the initiation and progression of pancreatic disease. Conclusions Understanding the underlying mechanisms associating nicotine with pancreatic function is paramount to intervention aiming to retard, arrest, or ameliorate pancreatic disease. PMID:25262714

  6. Nicotine enhances migration and invasion of human esophageal squamous carcinoma cells which is inhibited by nimesulide

    Institute of Scientific and Technical Information of China (English)

    Ye Zong; Shu-Tian Zhang; Sheng-Tao Zhu

    2009-01-01

    AIM:To study the effect of nicotine on the migration and invasion of human esophageal squamous carcinoma cells and to investigate whether nimesulide can inhibit the effect of nicotine. METHODS:The esophageal squamous carcinoma cell line (TE-13) was treated with different concentrations of nicotine (100 mg/mL and 200 mg/mL) or 200 mg/mL nicotine plus 100 mmol/L nimesulide. Cell migration and invasion were measured using migration and invasion chamber systems. COX-2 expression was determined by Western blotting. Matrix metalloproteinase-2 (MMP-2) was analyzed by zymography and ELISA. RESULTS:Nicotine (100 mg/mL, 200 mg/mL) enhanced TE-13 cells migration and invasion, and increased the protein expression of COX-2 and the activity of MMP-2. Nicotine (200 mg/mL) stimulated TE-13 cells migration and invasion which were partly blocked by nimesulide. This was associated with decreased protein expression of COX-2 and decreased activity and protein expression of MMP-2.CONCLUSION:Nicotine enhances the migration and invasion of the esophageal squamous carcinoma cell line, and nimesulide partly blocks the effect of nicotine-enhanced esophageal squamous carcinoma cell migration and invasion.

  7. Nicotine Treatment Induces Expression of Matrix Metalloproteinases in Human Osteoblastic Saos-2 Cells

    Institute of Scientific and Technical Information of China (English)

    Tomoko KATONO; Takayuki KAWATO; Natsuko TANABE; Naoto SUZUKI; Kazuhiro YAMANAKA; Hitoshi OKA; Masafumi MOTOHASHI; Masao MAENO

    2006-01-01

    Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1(PAI- 1), α7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3,and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the α7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process.

  8. Uptake of [3H]-nicotine and [3H]-noradrenaline by cultured chromaffin cells.

    Science.gov (United States)

    Ceña, V.; García, A. G.; Montiel, C.; Sánchez-García, P.

    1984-01-01

    Three day-old cultured bovine adrenal chromaffin cells incubated at room temperature with Krebs-HEPES solution containing different concentrations of [3H]-nicotine, took up and retained increasing amounts of the drug by a mechanism that did not saturate. Concentrations of cold nicotine as high as 100 microM did not alter the amount of [3H]-nicotine retained by cells. Imipramine, cocaine, tetracaine or mecamylamine, at concentrations (10 microM) that blocked the catecholamine secretory effects of nicotine completely, did not modify the uptake of [3H]-nicotine. Both imipramine and cocaine drastically inhibited [3H]-noradrenaline uptake by cells in a concentration-dependent manner (IC50S of 0.08 and 1 microM, respectively). These data indicate that the secretory effects of nicotine are not coupled to its previous uptake into cells, and are evidence in favour of a site of action for nicotine located in or at the surface of the chromaffin cell membrane. PMID:6704577

  9. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  10. Nicotine alters MicroRNA expression and hinders human adult stem cell regenerative potential.

    Science.gov (United States)

    Ng, Tsz Kin; Carballosa, Carlos M; Pelaez, Daniel; Wong, Hoi Kin; Choy, Kwong Wai; Pang, Chi Pui; Cheung, Herman S

    2013-03-01

    Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

  11. A crucial role for the mitogen-activated protein kinase pathway in nicotinic cholinergic signaling to secretory protein transcription in pheochromocytoma cells.

    Science.gov (United States)

    Tang, K; Wu, H; Mahata, S K; O'Connor, D T

    1998-07-01

    The mitogen-activated protein kinase (MAPK) pathway plays a pivotal role in intracellular signaling, and this cascade may impinge on cAMP response elements (CREs) of target genes. Both the MAPK pathway and chromogranin A expression may be activated by cytosolic calcium influx, and calcium-dependent signals map onto the chromogranin A promoter proximal CRE. We therefore probed the role of the MAPK pathway in chromogranin A biosynthesis after secretory stimulation of PC12 pheochromocytoma cells by the nicotinic cholinergic pathway, the physiological secretory trigger. Chemical inhibition of either MAPK or MAPK kinase blocked the response of a transfected chromogranin A promoter to nicotine or protein kinase C activation [by phorbol-12-myristate-13-acetate (PMA)], although nicotine-evoked catecholamine secretion was unaffected. Activation of the MAP kinase cascade (Ras, Raf, MAPK, or CREB kinase) by cotransfection of pathway components stimulated the chromogranin A promoter. Cotransfection of MAPK pathway dominant negative mutants (for Raf, MAPK, or CREB kinase) blocked nicotinic or PMA activation of chromogranin A, although a dominant negative Ras mutant was without effect. MAPK pathway enzymatic activity was stimulated by both nicotine and PMA. Point mutations of the chromogranin A CRE suggested that this element was necessary in cis for stimulation by nicotine, PMA, or chemical activation of the MAPK pathway. Transfer of the CRE to a heterologous promoter conferred inducibility by not only nicotine or cAMP but also MAPK activation. Expression of the CREB antagonist KCREB blocked the response of the chromogranin A promoter to nicotine, cAMP, or MAPK pathway activation by either chemical stimulation or cotransfection of active cascade components. Chromogranin A mRNA responded to MAPK pathway manipulation in a fashion similar to the transfected chromogranin A promoter, in both direction and magnitude. We conclude that the MAPK pathway is a necessary intermediate in

  12. Effect of nicotine and porphyromonas gingivalis lipopolysaccharide on endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Na An

    Full Text Available Smoking is considered a significant risk factor for both periodontal disease and cardiovascular disease (CVD. Endothelial cells play an important role in the progression of both diseases. In the present study, we investigated in vitro the impact of nicotine on functional properties of human umbilical vein endothelial cells (HUVECs stimulated with lipopolysaccharide (LPS of periodontal pathogen Porphyromonas gingivalis. HUVECs were stimulated with different concentrations of nicotine (10 µM-10 mM and/or P. gingivalis LPS. Expression levels of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, monocyte chemoattractant protein 1, and interleukin-8 were measured on both gene and protein levels. Cell proliferation/viability, apoptosis, and migration were also investigated. Nicotine at a concentration of 10 mM significantly decreased P. gingivalis LPS-induced expression of all investigated proteins after 4 h stimulation, while lower nicotine concentrations had no significant effect on protein expression with or without P. gingivalis LPS. Proliferation/viability of HUVECs was also significantly inhibited by 10-mM nicotine but not by lower concentrations. Migration of HUVECs was significantly decreased by nicotine at concentrations of 1-10 mM. Nicotine at a concentration similar to that observed in the serum of smokers had no significant effect on the functional properties of HUVECs. However, high concentrations of nicotine, similar to that observed in the oral cavity of smokers, inhibited the inflammatory response of HUVECs. This effect of nicotine might be associated with decreased gingival bleeding indices in smoking periodontitis patients.

  13. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux.

    Science.gov (United States)

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis.

  14. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux

    Science.gov (United States)

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  15. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux.

    Directory of Open Access Journals (Sweden)

    Hong-Feng Gu

    Full Text Available Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis.

  16. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  17. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  18. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Science.gov (United States)

    Setti-Perdigão, Pedro; Serrano, Maria A R; Flausino, Otávio A; Bolzani, Vanderlan S; Guimarães, Marília Z P; Castro, Newton G

    2013-01-01

    Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  19. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Francisco J Barrantes

    2014-11-01

    Full Text Available Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: a clustering mediated by homotropic inter-molecular receptor-receptor associations; b heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional trapping, and c protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR. Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain 7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory and GABAergic (inhibitory synapses. An important function of the 7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain.

  20. The effect of nicotine on the mechanical properties of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ruiz JP

    2012-03-01

    Full Text Available Juan P Ruiz1,2, Daniel Pelaez1,2, Janice Dias1, Noël M Ziebarth1, Herman S Cheung1,21Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA; 2Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, FL, USAPurpose: To measure the elasticity of the nucleus and cytoplasm of human mesenchymal stem cells (MSCs as well as changes brought about by exposure to nicotine in vitro.Methods: MSCs were synchronized to the G0 stage of the cell cycle through serum deprivation techniques. The cells were then treated with medium containing nicotine (0.1 µM, 0.5 µM, and 1 µM. Atomic force microscopy was then used to measure the Young’s modulus of both the nucleus and cytoplasm of these cells.Results: For both unsynchronized and synchronized cells, the nucleus was softer than the cytoplasm, although this difference was not found to be statistically significant. The nucleus of cells treated with nicotine was significantly stiffer than the control for all concentrations. The cytoplasm was significantly stiffer in nicotine-treated cells than in control cells for the 0.5 µM and 1.0 µM concentrations only.Conclusions: The results of this study could suggest that nicotine affects the biophysical properties of human MSCs in a dose-dependent manner, which may render the cells less responsive to mechanoinduction and other physical stimuli.Keywords: atomic force microscopy, elasticity, mesenchymal stem cells, nicotine

  1. Regulation of nicotinic receptor subtypes following chronic nicotinic agonist exposure in M10 and SH-SY5Y neuroblastoma cells

    DEFF Research Database (Denmark)

    Warpman, U; Friberg, L; Gillespie, A

    1998-01-01

    The present study further investigated whether nicotinic acetylcholine receptor (nAChR) subtypes differ in their ability to up-regulate following chronic exposure to nicotinic agonists. Seven nicotinic agonists were studied for their ability to influence the number of chick alpha4beta2 n......AChR binding sites stably transfected in fibroblasts (M10 cells) following 3 days of exposure. The result showed a positive correlation between the Ki values for binding inhibition and EC50 values for agonist-induced alpha4beta2 nAChR up-regulation. The effects of epibatidine and nicotine were further...... investigated in human neuroblastoma SH-SY5Y cells (expressing alpha3, alpha5, beta2, and beta4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines...

  2. Nicotine-induced expression of low-density lipoprotein receptor in oral epithelial cells.

    Science.gov (United States)

    Ito, Satoshi; Gojoubori, Takahiro; Tsunoda, Kou; Yamaguchi, Yoko; Asano, Masatake; Goke, Eiji; Koshi, Ryosuke; Sugano, Naoyuki; Yoshinuma, Naoto; Komiyama, Kazuo; Ito, Koichi

    2013-01-01

    Nicotine use is one of the most important risk factors for the development of cardiovascular and periodontal diseases. Numerous reports have suggested the possible contribution of disturbed lipid metabolism for the development of both disease groups. Despite these observations, little is known about the relationship between tobacco smoking and the development of these diseases. Our previous microarray data revealed that nicotine induced low-density lipoprotein receptor (LDLR) expression in oral epithelial cells (OECs). The aim of the present study was to confirm nicotine-mediated LDLR induction and to elucidate the signaling mechanisms leading to the augmented expression of LDLR in OECs. LDLR and nicotinic acetylcholine receptor (nAChR) subunit expression was detected by real-time PCR. The production of LDLR was demonstrated by immunofluorescence staining. nAChR-mediated LDLR induction was examined by pre-incubation of the cells with its specific inhibitor, α-bungarotoxin (α-BTX). The functional importance of transcription factor specific protein 1 (Sp1) was examined by luciferase assay, mithramycin pre-incubation or by small interfering RNA (siRNA) transfection. The specific binding of Sp1 to R3 region of LDLR 5'-untranslated region was demonstrated with electrophoretic mobility shift assay (EMSA) and streptavidin-agarose precipitation assay followed by western blotting. The results confirmed that nicotine induced LDLR expression at the transcriptional level. Nicotine was sensed by nAChR and the signal was transduced by Sp1 which bound to the R3 region of LDLR gene. Augmented production of LDLR in the gingival epithelial cells was further demonstrated by immunofluorescence staining using the gingival tissues obtained from the smoking patients. Taken together, the results suggested that nicotine might contribute to the development of both cardiovascular and periodontal diseases by inducing the LDLR in OECs thereby disturbing lipid metabolism.

  3. Nicotine-induced expression of low-density lipoprotein receptor in oral epithelial cells.

    Directory of Open Access Journals (Sweden)

    Satoshi Ito

    Full Text Available BACKGROUND: Nicotine use is one of the most important risk factors for the development of cardiovascular and periodontal diseases. Numerous reports have suggested the possible contribution of disturbed lipid metabolism for the development of both disease groups. Despite these observations, little is known about the relationship between tobacco smoking and the development of these diseases. Our previous microarray data revealed that nicotine induced low-density lipoprotein receptor (LDLR expression in oral epithelial cells (OECs. The aim of the present study was to confirm nicotine-mediated LDLR induction and to elucidate the signaling mechanisms leading to the augmented expression of LDLR in OECs. METHODS AND RESULTS: LDLR and nicotinic acetylcholine receptor (nAChR subunit expression was detected by real-time PCR. The production of LDLR was demonstrated by immunofluorescence staining. nAChR-mediated LDLR induction was examined by pre-incubation of the cells with its specific inhibitor, α-bungarotoxin (α-BTX. The functional importance of transcription factor specific protein 1 (Sp1 was examined by luciferase assay, mithramycin pre-incubation or by small interfering RNA (siRNA transfection. The specific binding of Sp1 to R3 region of LDLR 5'-untranslated region was demonstrated with electrophoretic mobility shift assay (EMSA and streptavidin-agarose precipitation assay followed by western blotting. The results confirmed that nicotine induced LDLR expression at the transcriptional level. Nicotine was sensed by nAChR and the signal was transduced by Sp1 which bound to the R3 region of LDLR gene. Augmented production of LDLR in the gingival epithelial cells was further demonstrated by immunofluorescence staining using the gingival tissues obtained from the smoking patients. CONCLUSIONS: Taken together, the results suggested that nicotine might contribute to the development of both cardiovascular and periodontal diseases by inducing the LDLR in

  4. Nicotine-induced upregulation of antioxidant protein Prx 1 in oral squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    ZHAO YanHua; ZHANG Min; YAN Fei; CASTO Bruce C; TANG XiaoFei

    2013-01-01

    Nicotine is a source of exogenous oxidative stress,which is associated with the pathogenesis of numerous diseases including oral squamous cell carcinoma (OSCC),whereas an antioxidant protein,peroxiredoxin 1 (Prx 1),plays an important role in the modulation of this condition.This study was to investigate the association between Prx 1 and tobacco-induced oxidative stress.The expression of Prx 1 and GST π in OSCC Tca8113 cells,which were pre-treated with nicotine,was determined.In the present study,MTT assay,reactive oxygen species (ROS) assay,RT-PCR and Western blot analyses,respectively,were conducted to assess cell viability,ROS level,and expression level of Prx 1 and GST π in nicotine-treated Tca8113 cells.Nuclear factor kappa B (NF-κB) expression was detected by immuno-fluorescence.Our results showed the growth of Tca8113 cells was increased in a dose-dependent manner when cells were treated with nicotine at concentrations from 0.1 to 10 μmol/L,but the proliferation of the ceils decreased at 100 μmol/L.ROS levels increased in all groups treated with nicotine at concentrations of 0.1,1,10,or 100/μmol/L for 24 h.Prx 1 and GST π mRNA and protein expression were up-regulated in cells treated with nicotine for the same time at different concentrations or at the same concentration for different times (P<0.05).NF-κB was translocated from cytoplasm to nucleus,the expression of NF-κB was increased in nucleus.These results suggest that up-regulation of Prx1 expression appears to be associated with tobacco-induced oxidative stress,which may play an important role in the pathogenesis of OSCC.

  5. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  6. Nicotine enhances the malignant potential of human pancreatic cancer cells via activation of atypical protein kinase C.

    Science.gov (United States)

    Hanaki, Takehiko; Horikoshi, Yosuke; Nakaso, Kazuhiro; Nakasone, Masato; Kitagawa, Yoshinori; Amisaki, Masataka; Arai, Yosuke; Tokuyasu, Naruo; Sakamoto, Teruhisa; Honjo, Soichiro; Saito, Hiroaki; Ikeguchi, Masahide; Yamashita, Kazunari; Ohno, Shigeo; Matsura, Tatsuya

    2016-11-01

    Pancreatic cancer (PC) is the most lethal malignancy among solid tumors, and the most common risk factor for its development is cigarette smoking. Atypical protein kinase C (aPKC) isozymes function in cell polarity, proliferation, and survival, and have also been implicated in carcinogenesis. However, the involvement of aPKC in PC progression and the effect of nicotine, a major component of cigarette smoke, on the biological activities of aPKC remain to be fully elucidated. We investigated the effects of nicotine on the proliferation, migration and invasion of the human PC cell lines Panc1 and BxPC3. We analyzed aPKC localization and activity by immunohistochemistry and in vitro kinase assays, respectively, to assess their involvement in the regulation of PC progression. Moreover, we examined the effect of nicotine on implanted peritoneal tumors of PC cells in mice. Nicotine enhanced cell proliferation, migration and invasion in Panc1 and BxPC3 cells. In nicotine-treated PC cells, the aPKC was significantly activated. We also found that nicotine induced phosphatidylinositol 3-kinase (PI3K) signal activation, and a specific inhibitor of the nicotine acetylcholine receptor (nAChR) as well as knockdown of nAChR prevented nicotine-mediated Akt phosphorylation and aPKC activation. In a peritoneal dissemination model of PC, nicotine-treated mice had larger tumors and increased numbers of nodules. Immunohistochemistry showed enhanced expression levels of aPKC and phosphorylated Akt in nodules from nicotine-treated mice. Nicotine induces aberrant activation of aPKC via nAChR/PI3K signaling in PC cells, resulting in enhancement of cellular proliferation, migration and invasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Directory of Open Access Journals (Sweden)

    Avi Ring

    Full Text Available Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase, but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21 and neuronal (SH-SY5Y cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  8. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Science.gov (United States)

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R; Timperley, Christopher M; Bird, Michael; Green, A Christopher; Chad, John E; Worek, Franz; Tattersall, John E H

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  9. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Pham Phan, Thu Anh

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (

  10. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Van Le, Tan Nhuut;

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (<10 mM) increased the N719 rutheni...

  11. Cytisine binds with similar affinity to nicotinic alpha4beta2 receptors on the cell surface and in homogenates.

    Science.gov (United States)

    Zhang, Jessie; Steinbach, Joe Henry

    2003-01-03

    Cytisine and nicotine bound to specific sites in homogenates prepared from HEK 293 cells which stably express human neuronal nicotinic alpha4 and beta2 subunits. The number of sites was the same for both ligands and nicotine was a full competitive inhibitor of cytisine binding. However, when binding was done to intact cells the number of binding sites per cell for nicotine was approximately 4-fold the number of sites for cytisine. Nicotine fully blocked cytisine binding, but cytisine only partially blocked nicotine binding to intact cells. When cells were permeabilized with saponin, the number of sites for nicotine was unchanged, while the number of sites for cytisine was increased, and cytisine was able to fully block nicotine binding. These data indicate that cytisine binds only to surface receptors on intact cells. The apparent affinity of cytisine for surface receptors (K(d)=0.8 nM) was not significantly different from that for receptors in the cell homogenate (0.3 nM).

  12. Nicotine stimulates adhesion molecular expression via calcium influx and mitogen-activated protein kinases in human endothelial cells.

    Science.gov (United States)

    Wang, Yajing; Wang, Zhaoxia; Zhou, Ying; Liu, Liming; Zhao, Yangxing; Yao, Chenjiang; Wang, Lianyun; Qiao, Zhongdong

    2006-02-01

    To evaluate the effect of nicotine on endothelium dysfunction and development of vascular diseases, we investigated the influence on adhesion molecular expression mediated by nicotine and the mechanism of this effect in human umbilical vein endothelial cells (HUVECs). The result showed that nicotine could induce surface/soluble vascular cell adhesion molecule (VCAM-1) and endothelial selectin (E-selectin) expression in a time-response decline manner and the peak appeared at 15 min. This action could be mediated by mitogen-activated protein kinase/extracellular signal regulated kinase 1/2 (MAPK/ERK1/2) and MAPK/p38 because their activation could be distinctly blocked by MAPK inhibitors, PD098059 or SB203580. Mecamylamine (non-selective nicotinic receptor inhibitor), alpha-bungarotoxin (alpha7 nicotinic receptor inhibitor) could block Ca2+ accumulation, and then, prevented the phosphorylation on ERK1/2 and p38. They also inhibited the surface/soluble VCAM-1, E-selectin production of HUVECs modulated by nicotine. Therefore, we concluded that: (i) nicotine obviously up-regulates VCAM-1 and E-selectin expression at 15 min in HUVECs, (ii) nicotine activates HUVECs triggered by the ERK1/2 and p38 phosphorylation with an involvement of intracellular calcium mobilization chiefly mediated by alpha7 nicotinic receptor, (iii) intracellular Ca2+ activates a sequential pathway from alpha7 nicotinic receptor to the phosphorylation of ERK1/2, p38. These elucidate that nicotine activates HUVECs through fast signal transduction pathway and arguments their capacity of adhesion molecular production. Further more nicotine may contribute its influence to the progression of vascular disease such as atherosclerotic lesion.

  13. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits.

  14. Nicotine Elevated Intracellular Ca2+ in Rat Airway Smooth Muscle Cells via Activating and Up-Regulating α7-Nicotinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yongliang Jiang

    2014-02-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by airway remodeling with airway smooth muscle (ASM hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs. Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.

  15. Nicotine Dependence

    Science.gov (United States)

    Nicotine dependence Overview By Mayo Clinic Staff Nicotine dependence ― also called tobacco dependence ― is an addiction to tobacco products caused by the drug nicotine. Nicotine dependence means you can't stop using the substance, ...

  16. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro

    DEFF Research Database (Denmark)

    Nielsen, Hanne Mørck; Rassing, Margrethe Rømer

    2002-01-01

    The present study was conducted to investigate and compare the effect of pH and drug concentration on nicotine permeability across the TR146 cell culture model and porcine buccal mucosa in vitro. As a further characterization of the TR146 cell culture model, it was explored whether the results were...... comparable for bi-directional and uni-directional transport in the presence of a transmembrane pH gradient. Nicotine concentrations between 10(-5) and 10(-2) M were applied to the apical side of the TR146 cell culture model or the mucosal side of porcine buccal mucosa. Buffers with pH values of 5.5, 7.......4 and 8.1 were used to obtain different fractions of non- and mono-ionized nicotine. The apparent permeability (P(app)) of nicotine across both models increased significantly with increasing pH, and the P(app) values obtained with the two models could be correlated in a linear manner. With increasing...

  17. Beta-cryptoxanthin restores nicotine-reduced lung SIRT1 to normal levels and inhibits nicotine-promoted lung tumorigenesis and emphysema in A/J mice

    Science.gov (United States)

    Nicotine, a large constituent of cigarette smoke, is associated with an increased risk of lung cancer, but the data supporting this relationship are inconsistent. Here, we found that nicotine treatment not only induced emphysema but also increased both lung tumor multiplicity and volume in 4-nitrosa...

  18. Fetal and neonatal nicotine exposure in Wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Jennifer E Bruin

    Full Text Available Nicotine replacement therapy (NRT is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control or nicotine bitartrate (1 mg/kg/d via subcutaneous injection for 2 weeks prior to mating until weaning. At 3-4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted.

  19. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.

    Science.gov (United States)

    Wang, Da-wei; Zhou, Rong-bin; Yao, Yong-ming; Zhu, Xiao-mei; Yin, Yi-mei; Zhao, Guang-ju; Dong, Ning; Sheng, Zhi-yong

    2010-12-01

    α7 Nicotinic acetylcholine receptor (α7 nAChR) has been found in several non-neuronal cells and is described as an important regulator of cellular function. Naturally occurring CD4(+)CD25(+) regulatory T cells (Tregs) are essential for the active suppression of autoimmunity. The present study investigated whether naturally occurring Tregs expressed α7 nAChR and investigated the functionary role of this receptor in controlling suppressive activity of these cells. We found that CD4(+)CD25(+) Tregs from naive C57BL/6J mice positively expressed α7 nAChR, and its activation by nicotine enhanced the suppressive capacity of Tregs. Nicotine stimulation up-regulated the expression of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 and forkhead/winged helix transcription factor p3 (Foxp3) on Tregs but had no effect on the production of interleukin (IL)-10 and transforming growth factor-β1 by Tregs. In the supernatants of CD4(+)CD25(+) Tregs/CD4(+)CD25(-) T-cell cocultures, we observed a decrease in the concentration of IL-2 in nicotine-stimulated groups, but nicotine stimulation had no effect on the ratio of IL-4/interferon (IFN)-γ, which partially represented T-cell polarization. The above-mentioned effects of nicotine were reversed by a selective α7 nAChR antagonist, α-bungarotoxin. In addition, the ratio of IL-4/IFN-γ was increased by treatment with α-bungarotoxin. We conclude that nicotine might increase Treg-mediated immune suppression of lymphocytes via α7 nAChR. The effect is related to the up-regulation of CTLA-4 as well as Foxp3 expression and decreased IL-2 secretion in CD4(+)CD25(+) Tregs/CD4(+)CD25(-) T-cell coculture supernatants. α7 nAChR seems to be a critical regulator for immunosuppressive function of CD4(+)CD25(+) Tregs.

  20. The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of hippocampal neural cells.

    Science.gov (United States)

    Demiralay, Rezan; Gürsan, Nesrin; Erdem, Havva

    2008-08-01

    This study investigated the frequency of apoptosis in rat hippocampal neural cells after intraperitoneal nicotine injection, examining the roles of the inflammatory markers myeloperoxidase (MPO) and tumor necrosis factor alpha (TNF-alpha) in nicotine-induced brain damage and the protective effects of three known antioxidant agents, N-acetylcysteine (NAC), erdosteine, and vitamin E. Female Wistar rats were divided into seven groups, each composed of nine rats: 2 negative control groups, 2 positive control groups, one erdosteine-treated group (500 mg/kg), one NAC-treated group (500 mg/kg), and one vitamin E-treated group (500 mg/kg). Nicotine was intraperitoneally injected at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally; treatment was continued until the rats were killed. Apoptosis level in hippocampal neural cells was determined by using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling) method. Staining of cytoplasmic TNF-alpha in hippocampal neural cells and hippocampus MPO activity were evaluated by immunohistochemistry. Nicotine administration had no effect on local TNF-alpha production, or hippocampal MPO activity. The treatments with erdosteine, NAC and vitamin E significantly reduced the rate of nicotine-induced hippocampal neural cell apoptosis. This findings suggest that erdosteine and NAC can be as effective as vitamin E in protecting against nicotine-induced hippocampal neural cell apoptosis.

  1. Perinatal hypoxia-ischemia reduces α 7 nicotinic receptor expression and selective α 7 nicotinic receptor stimulation suppresses inflammation and promotes microglial Mox phenotype.

    Science.gov (United States)

    Hua, Sansan; Ek, C Joakim; Mallard, Carina; Johansson, Maria E

    2014-01-01

    Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α 7 nicotinic acetylcholine receptors ( α 7R) present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α 7R expression in neonatal mice after hypoxia-ischemia (HI). We further examined possible anti-inflammatory role of α 7R stimulation in vitro and microglia polarization after α 7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α 7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α 7R agonist AR-R 17779 significantly attenuated TNF α release and increased α 7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α 7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1) and sulforedoxin-1 (Srx1) were significantly increased, suggesting a polarization towards the Mox phenotype after α 7R stimulation. Thus, our data suggest a role for the α 7R also in the neonatal brain and support the anti-inflammatory role of α 7R in microglia, suggesting that α 7R stimulation could enhance the polarization towards a reparative Mox phenotype.

  2. Perinatal Hypoxia-Ischemia Reduces α7 Nicotinic Receptor Expression and Selective α7 Nicotinic Receptor Stimulation Suppresses Inflammation and Promotes Microglial Mox Phenotype

    Directory of Open Access Journals (Sweden)

    Sansan Hua

    2014-01-01

    Full Text Available Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α7 nicotinic acetylcholine receptors (α7R present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α7R expression in neonatal mice after hypoxia-ischemia (HI. We further examined possible anti-inflammatory role of α7R stimulation in vitro and microglia polarization after α7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α7R agonist AR-R 17779 significantly attenuated TNFα release and increased α7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1 and sulforedoxin-1 (Srx1 were significantly increased, suggesting a polarization towards the Mox phenotype after α7R stimulation. Thus, our data suggest a role for the α7R also in the neonatal brain and support the anti-inflammatory role of α7R in microglia, suggesting that α7R stimulation could enhance the polarization towards a reparative Mox phenotype.

  3. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.

  4. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells*

    Science.gov (United States)

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E.; Ziegler, Mathias; Nikiforov, Andrey

    2015-01-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  5. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  6. Activation of the α7 nicotinic receptor promotes lipopolysaccharide-induced conversion of M1 microglia to M2

    Science.gov (United States)

    Zhang, Qichun; Lu, Ying; Bian, Huimin; Guo, Liwei; Zhu, Huaxu

    2017-01-01

    The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR) plays an essential role in the cholinergic anti-inflammatory pathway that regulates macrophage/microglia function in inflammation. Similar to M1 and M2 macrophages, M1 and M2 microglia exhibit pro-inflammation and anti-inflammation properties, respectively. In the present study, we analyzed function-associated phenotypes to detect the transformation of microglia with activation of α7 nAChRs. We used lentivirus-mediated shRNA to knockdown the expression of α7 nAChR in BV-2 microglia incubated with lipopolysaccharides (LPS, 0.1 μg/mL) and measured the acetylcholine (Ach, 1 μg/mL)-mediated release of cytokines, such as IL-1β, IL-4, IL-6, and IL-10, in the culture supernatant via radioimmunoassay. After stimulation with Ach, the expression of typical biomarkers for different microglia phenotypes, Iba-1 and Arg-1, was determined by cellular immunofluorescence. Furthermore, the expression of signaling molecules, including p38, JAK2/STAT3, PI3K/Akt and miR-124, was analyzed via western blotting and real-time PCR. We found that Ach inhibited LPS-induced IL-1β and IL-6 elevation and promoted IL-4 and IL-10 production and that knockdown of the α7 nAChR abolished these effects of Ach. In addition, Ach decreased LPS-induced Iba-1 expression and increased Arg-1 levels in an α7 nAChR-dependent manner. The LPS-inhibited activation of JAK2/STAT3 and PI3K/Akt was also rescued by Ach, an effect that was blocked by knockdown of the α7 nAChR. In contrast, Ach triggered the phosphorylation of JAK2 and STAT3 that was otherwise inactivated by LPS in BV-2 cells. Finally, the levels of miR-124 and downstream targets C/EBPα and PU.1 were significantly enhanced in LPS-treated BV-2 microglia, and the effect of Ach on this signaling pathway was blocked by α7 nAChR knockdown as expected. Overall, our data demonstrate that activation ofα7 nAChRs inhibits the transformation of M1 microglia and promotes the M2

  7. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins......Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal...

  8. Century Tide Nicotine Patch

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Century Tide Nicotine Patch, a hi-tech smoking control therapy, is designed in accordance with the scientific principle of nicotine replacement. The therapy is promoted by the World Health Organization. Meanwhile, it also integrates traditional Chinese medical therapy and adopts advanced TTS technology.

  9. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    Science.gov (United States)

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects.

  10. Nicotinic acid as a new co-adsorbent in dye-sensitized solar cells

    Science.gov (United States)

    Nguyen, Phuong Tuyet; Nguyen, Vinh Son; Phan, Thu Anh Pham; Le, Tan Nhut Van; Le, Duyen My; Le, Duy Dang; Tran, Vy Anh; Huynh, Tuan Van; Lund, Torben

    2017-01-01

    With the aim of introduction a new inexpensive co-adsorbent to improve solar cell performance, the influence of nicotinic acid (NTA) used as a co-adsorbent in dye-sensitized solar cells (DSCs) was investigated. The findings showed that low concentrations of NTA (optimized co-adsorbent concentration (1 mM NTA, 0.03 mM CDA, 0.015 mM OPA), the efficiency of the corresponding solar cells increased to the same extent. Specifically, the use of NTA at optimum concentration improved the efficiency of the resulting DSC from 3.14 to 5.02%.

  11. Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system

    Science.gov (United States)

    Cordiglieri, Chiara; Odoardi, Francesca; Zhang, Bo; Nebel, Merle; Kawakami, Naoto; Klinkert, Wolfgang E. F.; Lodygin, Dimtri; Lühder, Fred; Breunig, Esther; Schild, Detlev; Ulaganathan, Vijay Kumar; Dornmair, Klaus; Dammermann, Werner; Potter, Barry V. L.; Guse, Andreas H.

    2010-01-01

    Nicotinic acid adenine dinucleotide phosphate represents a newly identified second messenger in T cells involved in antigen receptor-mediated calcium signalling. Its function in vivo is, however, unknown due to the lack of biocompatible inhibitors. Using a recently developed inhibitor, we explored the role of nicotinic acid adenine dinucleotide phosphate in autoreactive effector T cells during experimental autoimmune encephalomyelitis, the animal model for multiple sclerosis. We provide in vitro and in vivo evidence that calcium signalling controlled by nicotinic acid adenine dinucleotide phosphate is relevant for the pathogenic potential of autoimmune effector T cells. Live two photon imaging and molecular analyses revealed that nicotinic acid adenine dinucleotide phosphate signalling regulates T cell motility and re-activation upon arrival in the nervous tissues. Treatment with the nicotinic acid adenine dinucleotide phosphate inhibitor significantly reduced both the number of stable arrests of effector T cells and their invasive capacity. The levels of pro-inflammatory cytokines interferon-gamma and interleukin-17 were strongly diminished. Consecutively, the clinical symptoms of experimental autoimmune encephalomyelitis were ameliorated. In vitro, antigen-triggered T cell proliferation and cytokine production were evenly suppressed. These inhibitory effects were reversible: after wash-out of the nicotinic acid adenine dinucleotide phosphate antagonist, the effector T cells fully regained their functions. The nicotinic acid derivative BZ194 induced this transient state of non-responsiveness specifically in post-activated effector T cells. Naïve and long-lived memory T cells, which express lower levels of the putative nicotinic acid adenine dinucleotide phosphate receptor, type 1 ryanodine receptor, were not targeted. T cell priming and recall responses in vivo were not reduced. These data indicate that the nicotinic acid adenine dinucleotide phosphate

  12. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    Science.gov (United States)

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  13. Peroxisome proliferator-activated receptor delta agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1.

    Science.gov (United States)

    Kim, Dong Hyun; Liu, Jiayong; Bhat, Samerna; Benedict, Gregory; Lecka-Czernik, Beata; Peterson, Stephen J; Ebraheim, Nabil A; Heck, Bruce E

    2013-01-01

    Smoking has long been associated with osteoporosis, decreased bone mineral density, increased risk of bone fracture, and increased health costs. Nicotine, the main component of cigarette smoke, has major negative effects on bone metabolism and skeletal remodeling in vivo. Although osteoblasts and osteoblast-like cells have been used extensively to study the impact of nicotine, few studies have been performed on human mesenchymal stem cells (hMSCs). In this context, we examined the impact of nicotine on (a) hMSCs proliferation, (b) osteoblastic differentiation, (c) alkaline phosphatase (ALP) activity, and (d) expression of canonical genes during differentiation of hMSCs. MSCs isolated from human bone marrow were treated with different concentrations (0, 0.1, 1 and 10 μM) of nicotine for 7 days. Nicotine caused a dose-dependent decrease in cell proliferation, decreased heme oxygenase-1 (HO-1) expression (p nicotine caused a dose-dependent decrease in alizarin red staining for calcium and staining for ALP. Induction of HO-1 by peroxisome proliferator-activated receptor delta agonist (GW0742) prevented the effect of nicotine. Nicotine caused a dose-dependent reduction in the expression of BMP-2, a well-known marker for bone formation; however, this was prevented by GW0742 treatment. Therefore, induction of HO-1 prevents the deleterious effects of nicotine on osteogenesis in hMSC. This offers insight into both how nicotine affects bone remodeling and a therapeutic approach to prevent fracture and osteoporosis in smokers.

  14. Harmful effects of nicotine.

    Science.gov (United States)

    Mishra, Aseem; Chaturvedi, Pankaj; Datta, Sourav; Sinukumar, Snita; Joshi, Poonam; Garg, Apurva

    2015-01-01

    With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel.

  15. Harmful effects of nicotine

    Directory of Open Access Journals (Sweden)

    Aseem Mishra

    2015-01-01

    Full Text Available With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel.

  16. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

    Science.gov (United States)

    Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin

    2017-01-01

    Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers. PMID:28280743

  17. Effects of combined nicotine and fluoxetine treatment on adult hippocampal neurogenesis and conditioned place preference.

    Science.gov (United States)

    Faillace, M P; Zwiller, J; Bernabeu, R O

    2015-08-06

    Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. It is shown that repeated, but not a single injection of rats with fluoxetine was able to abolish the decrease in adult dentate cell proliferation produced by nicotine treatment. We measured the expression of several biochemical parameters known to be associated with neurogenesis in the dentate gyrus. Both drugs increased the expression of p75 neurotrophin receptor, which promotes proliferation and early maturation of dentate gyrus cells. Using the conditioned place preference (CPP) paradigm, we also gave both drugs in a context in which their rewarding properties could be measured. Fluoxetine produced a significant but less robust CPP than nicotine. A single injection of fluoxetine was found to reduce nicotine-induced CPP. Moreover, the rewarding properties of nicotine were completely abolished in response to repeated fluoxetine injections. Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy.

  18. Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells.

    Science.gov (United States)

    Hone, Arik J; Michael McIntosh, J; Rueda-Ruzafa, Lola; Passas, Juan; de Castro-Guerín, Cristina; Blázquez, Jesús; González-Enguita, Carmen; Albillos, Almudena

    2017-01-01

    Varenicline is a nicotinic acetylcholine receptor (nAChR) agonist used to treat nicotine addiction, but a live debate persists concerning its mechanism of action in reducing nicotine consumption. Although initially reported as α4β2 selective, varenicline was subsequently shown to activate other nAChR subtypes implicated in nicotine addiction including α3β4. However, it remains unclear whether activation of α3β4 nAChRs by therapeutically relevant concentrations of varenicline is sufficient to affect the behavior of cells that express this subtype. We used patch-clamp electrophysiology to assess the effects of varenicline on native α3β4* nAChRs (asterisk denotes the possible presence of other subunits) expressed in human adrenal chromaffin cells and compared its effects to those of nicotine. Varenicline and nicotine activated α3β4* nAChRs with EC50 values of 1.8 (1.2-2.7) μM and 19.4 (11.1-33.9) μM, respectively. Stimulation of adrenal chromaffin cells with 10 ms pulses of 300 μM acetylcholine (ACh) in current-clamp mode evoked sodium channel-dependent action potentials (APs). Under these conditions, perfusion of 50 or 100 nM varenicline showed very little effect on AP firing compared to control conditions (ACh stimulation alone), but at higher concentrations (250 nM) varenicline increased the number of APs fired up to 436 ± 150%. These results demonstrate that therapeutic concentrations of varenicline are unlikely to alter AP firing in chromaffin cells. In contrast, nicotine showed no effect on AP firing at any of the concentrations tested (50, 100, 250, and 500 nM). However, perfusion of 50 nM nicotine simultaneously with 100 nM varenicline increased AP firing by 290 ± 104% indicating that exposure to varenicline and nicotine concurrently may alter cellular behavior such as excitability and neurotransmitter release.

  19. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction.

    Science.gov (United States)

    Christensen, Mark H; Ishibashi, Masaru; Nielsen, Michael L; Leonard, Christopher S; Kohlmeier, Kristi A

    2014-10-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine induced larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age.

  20. Nicotine derived genotoxic effects in human primary parotid gland cells as assessed in vitro by comet assay, cytokinesis-block micronucleus test and chromosome aberrations test.

    Science.gov (United States)

    Ginzkey, Christian; Steussloff, Gudrun; Koehler, Christian; Burghartz, Marc; Scherzed, Agmal; Hackenberg, Stephan; Hagen, Rudolf; Kleinsasser, Norbert H

    2014-08-01

    Genotoxic effects of nicotine were described in different human cells including salivary gland cells. Based on the high nicotine concentration in saliva of smokers or patients using therapeutic nicotine patches, the current study was performed to evaluate the genotoxic potential of nicotine in human salivary gland cells. Therefore, primary salivary gland cells from 10 patients undergoing parotid gland surgery were exposed to nicotine concentrations between 1 μM and 1000 μM for 1 h in the absence of exogenous metabolic activation. The acinar phenotype was proven by immunofluorescent staining of alpha-amylase. Genotoxic effects were evaluated using the Comet assay, the micronucleus test and the chromosome aberration test. Cytotoxicity and apoptosis were determined by trypan blue exclusion test and Caspase-3 assay. Nicotine was able to induce genotoxic effects in all three assays. The chromosome aberration test was the most sensitive and increases in numerical and structural (chromatid-type and chromosome-type) aberrations were seen at ≥1 μM, whereas increases in micronuclei frequency were detected at 10 μM and DNA damage as measured in the Comet assay was noted at >100 μM. No cytotoxic damage or influence of apoptosis could be demonstrated. Nicotine as a possible risk factor for tumor initiation in salivary glands is still discussed controversially. Our results demonstrated the potential of nicotine to induce genotoxic effects in salivary gland cells. These results were observed at saliva nicotine levels similar to those found after oral or transdermal exposure to nicotine and suggest the necessity of careful monitoring of the use of nicotine in humans.

  1. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correlation between the level of nicotinic acetylcholine receptor (nAChR expression and B lymphocyte differentiation or activation state. Methods. Expression of nAChRs in the REH, Ramos and Daudi cell lines was studied by flow cytometry using nAChR subunit-specific antibodies; cell proliferation was studied by MTT test. Results. It is shown that the level of 42/4 and 7 nAChRs expression increased along with B lymphocyte differentiation (Ramos > REH and activation (Daudi > > Ramos and depended on the antigen-specific receptor expression. The nAChR stimulation/blockade did not influence the intensity of cell proliferation.

  2. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent

    Directory of Open Access Journals (Sweden)

    Puliyappadamba Vineshkumar T

    2010-08-01

    Full Text Available Abstract Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/- and A549 (p53+/+ which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.

  3. Nicotine reduces TNF-α expression through a α7 nAChR/MyD88/NF-ĸB pathway in HBE16 airway epithelial cells.

    Science.gov (United States)

    Li, Qi; Zhou, Xiang-Dong; Kolosov, Victor P; Perelman, Juliy M

    2011-01-01

    To explore the signaling mechanism associated with the inhibitory effect of nicotine on tumor necrosis factor (TNF)- α expression in human airway epithelial cells. HBE16 airway epithelial cells were cultured and incubated with either nicotine or cigarette smoke extract (CE). Cells were then transfected with α1, α5, or α7 nicotinic acetylcholine receptor (nAChR)-specific small interfering RNAs (siRNAs). The effects of nicotine on the production of proinflammatory factors TNF-α, in transfected cells were analyzed. Furthermore, we assayed the expression levels of myeloid differentiation primary response gene 88 (MyD88) protein, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 protein, NF-κB activity and NF-κB inhibitor alpha (I-κBα) expression in cells after treatment with nicotine or α7 nAChR inhibitor, α -bungarotoxin (α-BTX). The production of TNF-α was lower in cells pretreated with nicotine before lipopolysaccharide (LPS) stimulation, compared with LPS-only-treated cells. In contrast, in α7 siRNA-transfected cells incubated with nicotine and LPS, TNF-α expression was higher than that in non-transfected cells or in α1 or α5 siRNA-transfected cells. Addition of MyD88 siRNA or the NF-κB inhibitor pyridine-2,6-dithiocarboxylic acid (PDTC) also reduced TNF-α expression. Furthermore, we found that nicotine decreased MyD88 protein, NF-κB p65 protein, NF-κB activity and phospho-I-κBα expression induced by CE or LPS. The inhibitor α-BTX could reverse these effects. Nicotine reduces TNF-α expression in HBE16 airway epithelial cells, mainly through an α7 nAChR/MyD88/NF-κB pathway. Copyright © 2011 S. Karger AG, Basel.

  4. Postsynaptic scaffolds for nicotinic receptors on neurons

    Institute of Scientific and Technical Information of China (English)

    Robert A NEFF III; David GOMEZ-VARELA; Catarina C FERNANDES; Darwin K BERG

    2009-01-01

    Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innerva- tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep- tor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.

  5. Desensitized nicotinic receptors that, however, afford cytoprotection in bovine chromaffin cells.

    Science.gov (United States)

    Egea, Javier; Hernández-Guijo, Jesús Miguel; Olivares, Roman; López, Manuela G; García, Antonio G

    2006-01-01

    Neuronal nicotinic receptors for acetylcholine (nAChRs) are among the ionotropic receptors that suffer the most desensitization upon prolonged exposure to their agonists. This is particularly true for the alpha7 subtype of nAChRs, although alpha3beta4 receptors also suffer quick desensitization. This study was planned to test the hypothesis that even after suffering desensitization, a given nAChR might still afford cell protection against a noxious stimulus. Of the many agonists developed for nAChRs, we selected the poorly desensitizing ligand dimethylphenylpiperazinium (DMPP) (Britt and Brenner, 1997) and the highly desensitizing agent epibatidine (EPB) (Marks et al., 1996). We have measured nAChR currents, catecholamine secretory responses, and changes of [Ca2+]c elicited by stimulation of nAChRs with DMPP or EPB. We have also investigated cytoprotection elicited by DMPP and EPB against the cytotoxic effects of veratridine in bovine chromaffin cells.

  6. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  7. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    Directory of Open Access Journals (Sweden)

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  8. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  9. Octopamine and Dopamine differentially modulate the nicotine-induced calcium response in Drosophila Mushroom Body Kenyon Cells.

    Science.gov (United States)

    Leyton, V; Goles, N I; Fuenzalida-Uribe, N; Campusano, J M

    2014-02-07

    In Drosophila associative olfactory learning, an odor, the conditioned stimulus (CS), is paired to an unconditioned stimulus (US). The CS and US information arrive at the Mushroom Bodies (MB), a Drosophila brain region that processes the information to generate new memories. It has been shown that olfactory information is conveyed through cholinergic inputs that activate nicotinic acetylcholine receptors (nAChRs) in the MB, while the US is coded by biogenic amine (BA) systems that innervate the MB. In this regard, the MB acts as a coincidence detector. A better understanding of the properties of the responses gated by nicotinic and BA receptors is required to get insights on the cellular and molecular mechanisms responsible for memory formation. In recent years, information has become available on the properties of the responses induced by nAChR activation in Kenyon Cells (KCs), the main neuronal MB population. However, very little information exists on the responses induced by aminergic systems in fly MB. Here we have evaluated some of the properties of the calcium responses gated by Dopamine (DA) and Octopamine (Oct) in identified KCs in culture. We report that exposure to BAs induces a fast but rather modest increase in intracellular calcium levels in cultured KCs. The responses to Oct and DA are fully blocked by a VGCC blocker, while they are differentially modulated by cAMP. Moreover, co-application of BAs and nicotine has different effects on intracellular calcium levels: while DA and nicotine effects are additive, Oct and nicotine induce a synergistic increase in calcium levels. These results suggest that a differential modulation of nicotine-induced calcium increase by DA and Oct could contribute to the events leading to learning and memory in flies.

  10. In Vitro Interaction of Nicotine and Hemoglobin under Liver Cell Metabolizing Condition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    he in vitro interaction of nicotine and hemoglobin (Hb) in a metabolizing system was studied by spectroscopy assays. Visible spectra showed two isobestics,and fluorescence spectra showed static quenching with increasing of nicotine dose. Meanwhile,the CD spectra intensity reduced,showing the conformation of Hb varied markedly through the interaction.All these results suggested that the interaction of nicotine or its metabolites and Hb might do harm to physicological function of Hb.

  11. The effects of erdosteine, N-acetylcysteine, and vitamin E on nicotine-induced apoptosis of pulmonary cells.

    Science.gov (United States)

    Demiralay, Rezan; Gürsan, Nesrin; Erdem, Havva

    2006-02-15

    This study was conducted to investigate the frequency of apoptosis in the pulmonary epithelial cells of rats after intratraperitoneal nicotine injection, in order to examine the role of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-alpha)] in nicotine-induced lung damage, and to determine the protective effects of three known antioxidant agents [N-acetylcysteine (NAC), erdosteine, and vitamin E] on the lung toxicity of nicotine in the lungs. Female Wistar rats were divided into seven groups, each composed of nine rats: two negative control groups, two positive control groups, one erdosteine-treated group (500 mg/kg), one NAC-treated group (500 mg/kg), and one vitamin E-treated group (500 mg/kg). Nicotine was injected intraperitoneally at a dosage of 0.6 mg/kg for 21 days. Following nicotine injection, the antioxidants were administered orally, treatment was continued until the rats were killed. Lung tissue samples were stained with hematoxylin-eosin (H&E) for histopathological assessments. The apoptosis level in the lung bronchiolar and alveolar epithelium was determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) method. Cytoplasmic TNF-alpha in the bronchiolar and alveolar epithelial cells and the lung MPO activity were evaluated immunohistochemically. The protective effect of vitamin E on lung histology was stronger than that of erdosteine or NAC. Treatment with erdosteine, NAC, and vitamin E significantly reduced the rate of nicotine-induced pulmonary epithelial cell apoptosis, and there were no significant differences in apoptosis among the three antioxidants groups. Erdosteine, NAC, and vitamin E significantly reduced the increases in TNF-alpha staining and lung MPO activity. The effects of erdosteine on the increases in the local TNF-alpha level and lung MPO activity were weaker than that of NAC or vitamin E. This findings suggest that erdosteine and NAC can be as effective as

  12. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease.

    Science.gov (United States)

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D; Michalski, Dominik; Pinborg, Lars H; Härtig, Wolfgang; Thomsen, Morten S

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal gyrus from AD patients and found significantly increased PSCA levels (approximately 70%). In contrast, no changes in Lypd6 levels were detected. In concordance with our findings in AD patients, PSCA levels were increased in the frontal cortex of triple transgenic mice with an AD-like pathology harboring human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting that PSCA-nAChR interactions may be involved in the cognitive dysfunction observed in AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nicotine dependence and psychiatric disorders.

    Science.gov (United States)

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  14. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Alicia Hernández-Vivanco

    Full Text Available Nicotinic acetylcholine receptors (nAChRs that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  15. Effect of nicotine on exocytotic pancreatic secretory response: role of calcium signaling

    Directory of Open Access Journals (Sweden)

    Chowdhury Parimal

    2013-01-01

    Full Text Available Abstract Background Nicotine is a risk factor for pancreatitis resulting in loss of pancreatic enzyme secretion. The aim of this study was to evaluate the mechanisms of nicotine-induced secretory response measured in primary pancreatic acinar cells isolated from Male Sprague Dawley rats. The study examines the role of calcium signaling in the mechanism of the enhanced secretory response observed with nicotine exposure. Methods Isolated and purified pancreatic acinar cells were subjected to a nicotine exposure at a dose of 100 μM for 6 minutes and then stimulated with cholecystokinin (CCK for 30 min. The cell’s secretory response was measured by the percent of amylase released from the cells in the incubation medium Calcium receptor antagonists, inositol trisphosphate (IP3 receptor blockers, mitogen activated protein kinase inhibitors and specific nicotinic receptor antagonists were used to confirm the involvement of calcium in this process. Results Nicotine exposure induced enhanced secretory response in primary cells. These responses remained unaffected by mitogen activated protein kinases (MAPK’s inhibitors. The effects, however, have been completely abolished by nicotinic receptor antagonist, calcium channel receptor antagonists and inositol trisphosphate (IP3 receptor blockers. Conclusions The data suggest that calcium activated events regulating the exocytotic secretion are affected by nicotine as shown by enhanced functional response which is inhibited by specific antagonists… The results implicate the role of nicotine in the mobilization of both intra- and extracellular calcium in the regulation of stimulus-secretory response of enzyme secretion in this cell system. We conclude that nicotine plays an important role in promoting enhanced calcium levels inside the acinar cell.

  16. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  17. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D;

    2015-01-01

    and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal...... human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting...

  18. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet

    Directory of Open Access Journals (Sweden)

    Juan Andrés Orellana

    2014-12-01

    Full Text Available Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins (hemichannels and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of Cx43 and Panx1 unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 hemichannels in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of iNOS, COX2 and EP1, P2X7 and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced ATP and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter release through Cx43 and Panx1 unopposed channels may participate in brain alterations observed in offspring of mothers exposed to tobacco smoke

  19. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    Science.gov (United States)

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-09-03

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.

  20. Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells.

    Science.gov (United States)

    Wu, Mingchun; Jia, Ji; Lei, Chong; Ji, Ling; Chen, Xiaodan; Sang, Hanfei; Xiong, Lize

    2015-03-01

    Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

  1. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  2. Strychnine, but not PMBA, inhibits neuronal nicotinic acetylcholine receptors expressed by rabbit retinal ganglion cells.

    Science.gov (United States)

    Renna, J M; Strang, C E; Amthor, F R; Keyser, K T

    2007-01-01

    Strychnine is considered a selective competitive antagonist of glycine gated Cl- channels (Saitoh et al., 1994) and studies have used strychnine at low micromolar concentrations to study the role of glycine in rabbit retina (Linn, 1998; Protti et al., 2005). However, other studies have shown that strychnine, in the concentrations commonly used, is also a potent competitive antagonist of alpha7 nicotinic acetylcholine receptors (nAChRs; Matsubayashi et al., 1998). We tested the effects of low micromolar concentrations of strychnine and 3-[2'-phosphonomethyl[1,1'-biphenyl]-3-yl] alanine (PMBA), a specific glycine receptor blocker (Saitoh et al., 1994; Hosie et al., 1999) on the activation of both alpha7 nAChRs on retinal ganglion cells and on ganglion cell responses to a light flash. Extracellular recordings were obtained from ganglion cells in an isolated retina/choroid preparation and 500 microM choline was used as an alpha7 agonist (Alkondon et al., 1997). We recorded from brisk sustained and brisk transient OFF cells, many of which have been previously shown to have alpha7 receptors (Strang et al., 2005). Further, we tested the effect of strychnine, PMBA and alpha-bungarotoxin on the binding of tetramethylrhodamine alpha-bungarotoxin in the inner plexiform layer. Our data indicates that strychnine, at doses as low as 1.0 microM, can inhibit the alpha7 nAChR-mediated response to choline, but PMBA at concentrations as high as 0.4 microM does not. Binding studies show strychnine and alpha-bungarotoxin inhibit binding of labeled alpha-bungarotoxin in the IPL. Thus, the effects of strychnine application may be to inhibit glycine receptors expressed by ganglion cell or to inhibit amacrine cell alpha7 nAChRs, both of which would result in an increase in the ganglion cell responses. Further research will be required to disentangle the effects of strychnine previously believed to be caused by a single mechanism of glycine receptor inhibition.

  3. Lipopolysaccharide Enhances the Production of Nicotine-Induced Prostaglandin E2 by an Increase in Cyclooxygenase-2 Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Maiko SHOJI; Natsuko TANABE; Narihiro MITSUI; Naoto SUZUKI; Osamu TAKEICHI; Tomoko KATONO; Akira MOROZUMI; Masao MAENO

    2007-01-01

    Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E2 (PGE2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase)activity,PGE2 production,and the expression of cyclooxygenase (COX-1,COX-2),PGE2 receptors Ep1-4,and macrophage colony stimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10-3 M nicotine in the presence of 0,1,or 10 μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured with nicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE2 production significantly increased in the former and increased further in the latter.By itself,nicotine did not affect expression of COX-1,COX-2,any of the PGE2 receptors,or M-CSF,but when both nicotine and LPS were present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of 10-4 M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE2 production,and MCSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.These results suggest that LPS enhances the production of nicotine-induced PGE2 by an increase in COX-2 expression in osteoblasts,that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode,and that the nicotine-LPS-induced PGE2 then decreases ALPase activity and increases M-CSF expression.

  4. Cooperative regulation of non-small cell lung carcinoma by nicotinic and beta-adrenergic receptors: a novel target for intervention.

    Directory of Open Access Journals (Sweden)

    Hussein A N Al-Wadei

    Full Text Available Lung cancer is the leading cause of cancer death; 80-85% of lung cancer cases are non-small cell lung cancer (NSCLC. Smoking is a documented risk factor for the development of this cancer. Although nicotine does not have the ability to initiate carcinogenic events, recent studies have implicated nicotine in growth stimulation of NSCLC. Using three NSCLC cell lines (NCI-H322, NCI-H441 and NCI-H1299, we identified the cooperation of nicotinic acetylcholine receptors (nAChRs and β-adrenergic receptors (β-ARs as principal regulators of these effects. Proliferation was measured by thymidine incorporation and MTT assays, and Western blots were used to monitor the upregulation of the nAChRs and activation of signaling molecules. Noradrenaline and GABA were measured by immunoassays. Nicotine-treated NSCLC cells showed significant induction of the α7nAChR and α4nAChR, along with significant inductions of p-CREB and p-ERK1/2 accompanied by increases in the stress neurotransmitter noradrenaline, which in turn led to the observed increase in DNA synthesis and cell proliferation. Effects on cell proliferation and signaling proteins were reversed by the α7nAChR antagonist α-BTX or the β-blocker propranolol. Nicotine treatment also down-regulated expression of the GABA synthesizing enzyme GAD 65 and the level of endogenous GABA, while treatment of NSCLC cells with GABA inhibited cell proliferation. Interestingly, GABA acts by reducing β-adrenergic activated cAMP signaling. Our findings suggest that nicotine-induced activation of this autocrine noradrenaline-initiated signaling cascade and concomitant deficiency in inhibitory GABA, similar to modulation of these neurotransmitters in the nicotine-addicted brain, may contribute to the development of NSCLC in smokers. Our data suggest that exposure to nicotine either by tobacco smoke or nicotine supplements facilitates growth and progression of NSCLC and that pharmacological intervention by β blocker may

  5. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  6. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria;

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...

  7. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe?

    Science.gov (United States)

    2014-01-01

    Background Both active and passive tobacco smoke (TS) potentially impair the vascular endothelial function in a causative and dose-dependent manner, largely related to the content of reactive oxygen species (ROS), nicotine, and pro-inflammatory activity. Together these factors can compromise the restrictive properties of the blood–brain barrier (BBB) and trigger the pathogenesis/progression of several neurological disorders including silent cerebral infarction, stroke, multiple sclerosis and Alzheimer’s disease. Based on these premises, we analyzed and assessed the toxic impact of smoke extract from a range of tobacco products (with varying levels of nicotine) on brain microvascular endothelial cell line (hCMEC/D3), a well characterized human BBB model. Results Initial profiling of TS showed a significant release of reactive oxygen (ROS) and reactive nitrogen species (RNS) in full flavor, nicotine-free (NF, “reduced-exposure” brand) and ultralow nicotine products. This release correlated with increased oxidative cell damage. In parallel, membrane expression of endothelial tight junction proteins ZO-1 and occludin were significantly down-regulated suggesting the impairment of barrier function. Expression of VE-cadherin and claudin-5 were also increased by the ultralow or nicotine free tobacco smoke extract. TS extract from these cigarettes also induced an inflammatory response in BBB ECs as demonstrated by increased IL-6 and MMP-2 levels and up-regulation of vascular adhesion molecules, such as VCAM-1 and PECAM-1. Conclusions In summary, our results indicate that NF and ultralow nicotine cigarettes are potentially more harmful to the BBB endothelium than regular tobacco products. In addition, this study demonstrates that the TS-induced toxicity at BBB ECs is strongly correlated to the TAR and NO levels in the cigarettes rather than the nicotine content. PMID:24755281

  8. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  9. Baculovirus ETL promoter acts as a shuttle promoter between insect cells and mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Yu-kou LIU; Chih-chieh CHU; Tzong-yuan WU

    2006-01-01

    Aim:To identify a shuttle promoter that can mediate gene expression in both insect cells and mammalian cells to facilitate the development of a baculovirus vector-based mammalian cell gene delivery vehicle.Methods:Recombinant baculoviruses carrying the β-galactosidase reporter gene under the control of an early to late(ETL)promoter of the Autographa califomica multiple nuclear polyhedrosis virus(AcMNPV)or a cytomegalovirus immediate early promoter (CMV promoter)were constructed.COS1,HeLa,CHO-K1,hFob1.19,and MCF-7 mammalian cells were tested for the expression of β-galactosidase.Results:ETL promoter activity was higher in bone-derived hFob1.19 than in COS1,HeLa,CHOK1,or MCF-7 mammalian cells.The transient plasmid transfection assay indicated that ETL promoter activity in mammalian cells was dependent on baculovirus gene expression.Conclusion:ETL promoter activity in mammalian cells is baculovirus gene expression-dependent,and the shuttle promoter will facilitate the application of baculovirus expression vectors in mammalian cell expression systems and for gene therapy.

  10. Prenatal nicotine exposure enhances Cx43 and Panx1 unopposed channel activity in brain cells of adult offspring mice fed a high-fat/cholesterol diet.

    Science.gov (United States)

    Orellana, Juan A; Busso, Dolores; Ramírez, Gigliola; Campos, Marlys; Rigotti, Attilio; Eugenín, Jaime; von Bernhardi, Rommy

    2014-01-01

    Nicotine, the most important neuroteratogen of tobacco smoke, can reproduce brain and cognitive disturbances per se when administered prenatally. However, it is still unknown if paracrine signaling among brain cells participates in prenatal nicotine-induced brain impairment of adult offspring. Paracrine signaling is partly mediated by unopposed channels formed by connexins hemichannels (HCs) and pannexins serving as aqueous pores permeable to ions and small signaling molecules, allowing exchange between the intra- and extracellular milieus. Our aim was to address whether prenatal nicotine exposure changes the activity of those channels in adult mice offspring under control conditions or subjected to a second challenge during young ages: high-fat/cholesterol (HFC) diet. To induce prenatal exposure to nicotine, osmotic minipumps were implanted in CF1 pregnant mice at gestational day 5 to deliver nicotine bitartrate or saline (control) solutions. After weaning, offspring of nicotine-treated or untreated pregnant mice were fed ad libitum with chow or HFC diets for 8 weeks. The functional state of connexin 43 (Cx43) and pannexin 1 (Panx1) unopposed channels was evaluated by dye uptake experiments in hippocampal slices from 11-week-old mice. We found that prenatal nicotine increased the opening of Cx43 HCs in astrocytes, and Panx1 channels in microglia and neurons only if offspring mice were fed with HFC diet. Blockade of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2) and prostaglandin E receptor 1 (EP1), ionotropic ATP receptor type 7 (P2X7) and NMDA receptors, showed differential inhibition of prenatal nicotine-induced channel opening in glial cells and neurons. Importantly, inhibition of the above mentioned enzymes and receptors, or blockade of Cx43 and Panx1 unopposed channels greatly reduced adenosine triphosphate (ATP) and glutamate release from hippocampal slices of prenatally nicotine-exposed offspring. We propose that unregulated gliotransmitter

  11. The pro-oxidant gene p66shc increases nicotine exposure-induced lipotoxic oxidative stress in renal proximal tubule cells.

    Science.gov (United States)

    Arany, Istvan; Hall, Samuel; Reed, Dustin K; Dixit, Mehul

    2016-09-01

    Nicotine (NIC) exposure augments free fatty acid (FFA) deposition and oxidative stress, with a concomitant increase in the expression of the pro-oxidant p66shc. In addition, a decrease in the antioxidant manganese superoxide dismutase (MnSOD) has been observed in the kidneys of mice fed a high‑fat diet. The present study aimed to determine whether the pro‑oxidant p66shc mediates NIC‑dependent increases in renal oxidative stress by augmenting the production of reactive oxygen species (ROS) and suppressing the FFA‑induced antioxidant response in cultured NRK52E renal proximal tubule cells. Briefly, NRK52E renal proximal tubule cells were treated with 200 µM NIC, 100 µM oleic acid (OA), or a combination of NIC and OA. The expression levels of p66shc and MnSOD were modulated according to genetic methods. ROS production and cell injury, in the form of lactate dehydrogenase release, were subsequently detected. Promoter activity of p66shc and MnSOD, as well as forkhead box (FOXO)‑dependent transcription, was investigated using reporter luciferase assays. The results demonstrated that NIC exacerbated OA‑mediated intracellular ROS production and cell injury through the transcriptional activation of p66shc. NIC also suppressed OA‑mediated induction of the antioxidant MnSOD promoter activity through p66shc‑dependent inactivation of FOXO activity. Overexpression of p66shc and knockdown of MnSOD had the same effect as treatment with NIC on OA‑mediated lipotoxicity. These data may be used to generate a therapeutic means to ameliorate renal lipotoxicity in obese smokers.

  12. Nicotine Addiction

    NARCIS (Netherlands)

    Andel I van; Rambali AB; Amsterdam JGC van; Wolterink G; Aerts LAGJM van; Vleeming W; TOX; SIR; BMT

    2003-01-01

    This report discusses the current knowledge on nicotine dependence, devoting a special chapter to smoking among youths, given that most smoking careers start in adolescence. The transition period, in which youths go from elementary to high school (ages 13-14), showes to be particularly risky for smo

  13. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  14. Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents.

    Science.gov (United States)

    List, Olivier; Calas-List, Delphine; Taillebois, Emiliane; Juchaux, Marjorie; Heuland, Emilie; Thany, Steeve H

    2014-08-01

    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is

  15. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression.

    Science.gov (United States)

    Krais, Annette M; Hautefeuille, Agnès H; Cros, Marie-Pierre; Krutovskikh, Vladimir; Tournier, Jean-Marie; Birembaut, Philippe; Thépot, Amélie; Paliwal, Anupam; Herceg, Zdenko; Boffetta, Paolo; Brennan, Paul; Hainaut, Pierre L

    2011-09-01

    Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronchial cells and in lung cancer cell lines. In both cell types, silencing CHRNA5 or inhibiting receptors containing nAChR α5 with α-conotoxin MII exerted a nicotine-like effect, with increased motility and invasiveness in vitro and increasing calcium influx. The effects on motility were enhanced by addition of nicotine but blocked by inhibiting CHRNA7, which encodes the homopentameric receptor α7 subunit. Silencing CHRNA5 also decreased the expression of cell adhesion molecules P120 and ZO-1 in lung cancer cells as well as the expression of DeltaNp63α in squamous cell carcinoma cell lines. These results demonstrate a role for CHRNA5 in modulating adhesion and motility in bronchial cells, as well as in regulating p63, a potential oncogene in squamous cell carcinoma.

  16. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats.

    Science.gov (United States)

    El Golli, Narges; Jrad-Lamine, Aicha; Neffati, Hajira; Rahali, Dalila; Dallagi, Yosra; Dkhili, Houssem; Ba, Nathalie; El May, Michele V; El Fazaa, Saloua

    2016-07-01

    This study was conducted to evaluate the effects of e-cigarette refill liquid administration alone or with nicotine on the antioxidant defense status, functional and histopathological changes in adult rat liver tissue. For this purpose, 32 rats were treated for 28 days as follows: control group was injected intra-peritoneally with physiological saline; e-cigarette 0% treated group received an intra-peritoneal injection of e-liquid without nicotine diluted in physiological saline, e-cigarette-treated group received an intra-peritoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline and nicotine-treated group received an intra-peritoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline. In e-liquid without nicotine-exposed group, activities of the liver biomarkers aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase increase. Interestingly, oxidative stress indicators showed decreased total protein content, associated with a reduction in the antioxidant enzymes activities superoxide dismutase, catalase and glutathione-S-transferase, and an elevation in malondialdehyde content, highlighting the promotion of lipid peroxidation and oxidative stress. Histological studies identified inflammatory cells infiltration and cell death. Thus, e-liquid seems to promote oxidative tissue injuries, which in turn lead to the observed histopathological finding. In comparison, nicotine alone induced less oxidative stress and less histopathological disorders, whereas e-liquid with nicotine gave rise to more histopathological injuries. Thereby, e-liquid, per se, is able to induce hepatotoxicity and supplementation with nicotine worsens this state.

  17. Dazl Promotes Germ Cell Differentiation from Embryonic Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yu; Ping Ji; Jinping Cao; Shu Zhu; Yao Li; Lin Zheng; Xuejin Chen; Lixin Feng

    2009-01-01

    It has been demonstrated that through the formation of embryoid bodies (Ebs) germ cells can be derived from embryonic stem (ES) cells. Here, we describe a transgene expression approach to derive germ cells directly from ES cells in vitro without EB formation. Through the ectopic expression of Deleted in Azoospermia-Like (Dazl), a germ cell-specific RNA-binding protein,both motile tailed-sperm and oocytes were induced from mouse ES (mES) cells in culture. Furthermore, transient overexpression of Dazl led to suppression of Nanog but induced germ cell nuclear antigen in mES cells. Dazl knockdown resulted in reduction in the expression of germ cell markers including Stella, MVH and Prdm1. Our study indicates that Dazl is a master gene controlling germ cell differentiation and that ectopic expression of Dazl promotes the dynamic differentiation of mouse ES cells into gametes in vitro.

  18. 尼古丁乙酰胆碱受体促肺癌细胞增殖及抑凋亡作用%Roles of Nicotinic acetylcholine receptors on cell proliferation and apoptosis in lung cancer

    Institute of Scientific and Technical Information of China (English)

    赵云; 马晓丽

    2009-01-01

    尼古丁乙酰胆碱受体(nAchR)除具有传导神经冲动的作用外,还能促进肺癌细胞增殖、抑制肺癌细胞凋亡.烟草成分尼古丁和亚硝胺是尼古丁乙酰胆碱受体的激动剂.当前的研究表明α7nAchR是调节尼古丁促进肺癌细胞增殖的主要亚基.最新流行病学研究表明,编码nAchR的基因簇与肺癌发生密切相关.nAehR可能成为治疗肺癌有效的分子靶点,nAchR促进肺癌细胞增殖的研究将为治疗烟草相关肿瘤提供更大的帮助.%Nicotinic acetylcholine receptors (nAChR) can promote proliferation and inhibit apoptosis of lung cancer cell except its functions on neurotransmission. Nicotine and nitrosamine,the principal tobacco alkaloids,act through nAChR. Recent studies have shown that a7 is the main nAChR subunit that mediates the proliferative effects of nicotine in lung cancer cells. Epidemiological studies show that the genes encoding specific nAChR subunits are significantly associated with lung carcinogenesis. nAchR may be the effective molecular target of lung cancer treatment. Future studies involving the design of nAChR antagonists might identify novel strategies for the treatment of cancers related with tobacco.

  19. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.

    Directory of Open Access Journals (Sweden)

    Julian Taranda

    2009-01-01

    Full Text Available The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.

  20. Histopathologycal findings in the ovaries and uterus of albino female rats promoted by co-administration of synthetic steroids and nicotine

    OpenAIRE

    Camargo, Isabel Cristina Chericci [UNESP; Leite, Gabriel Adan Araújo [UNESP; Pinto, Tiago; Ribeiro-Paes,João Tadeu

    2014-01-01

    The use of anabolic androgenic steroids is often associated with the use of other substances, licit or not, such as nicotine present in the tobacco. The present study investigated for the first time the effects of co-administration of synthetic steroids and nicotine on the ovarian and uterine tissue and fertility of adult female rats. Animals were submitted to treatment groups (n = 16/group): nandrolone decanoate (ND; 7.5 mg/kg BW/week); testosterone mixture (T; 7.5 mg/kg BW/week); nicotine (...

  1. Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes alpha7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons.

    Science.gov (United States)

    Hruska, Martin; Keefe, Julie; Wert, David; Tekinay, Ayse Begum; Hulce, Jonathan J; Ibañez-Tallon, Ines; Nishi, Rae

    2009-11-25

    Vertebrate alpha-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases >100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of alpha7-containing nicotinic acetylcholine receptors (alpha7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks alpha7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of alpha7 signaling-induced cell death during development.

  2. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Directory of Open Access Journals (Sweden)

    Yi An

    Full Text Available It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP, which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  3. Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population.

    Science.gov (United States)

    An, Yi; Kiang, Alan; Lopez, Jay Patrick; Kuo, Selena Z; Yu, Michael Andrew; Abhold, Eric L; Chen, Jocelyn S; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2012-01-01

    It is well known that many patients continue to smoke cigarettes after being diagnosed with cancer. Although smoking cessation has typically been presumed to possess little therapeutic value for cancer, a growing body of evidence suggests that continued smoking is associated with reduced efficacy of treatment and a higher incidence of recurrence. We therefore investigated the effect of cigarette smoke condensate (CSC) on drug resistance in the lung cancer and head and neck cancer cell lines A549 and UMSCC-10B, respectively. Our results showed that CSC significantly increased the cellular efflux of doxorubicin and mitoxantrone. This was accompanied by membrane localization and increased expression of the multi-drug transporter ABCG2. The induced efflux of doxorubicin was reversed upon addition of the specific ABCG2 inhibitor Fumitremorgin C, confirming the role of ABCG2. Treatment with CSC increased the concentration of phosphorylated Akt, while addition of the PI3K inhibitor LY294002 blocked doxorubicin extrusion, suggesting that Akt activation is required for CSC-induced drug efflux. In addition, CSC was found to promote resistance to doxorubicin as determined by MTS assays. This CSC-induced doxurbicin-resistance was mitigated by mecamylamine, a nicotinic acetylcholine receptor inhibitor, suggesting that nicotine is at least partially responsible for the effect of CSC. Lastly, CSC increased the size of the side population (SP), which has been linked to a cancer stem cell-like phenotype. In summary, CSC promotes chemoresistance via Akt-mediated regulation of ABCG2 activity, and may also increase the proportion of cancer stem-like cells, contributing to tumor resilience. These findings underscore the importance of smoking cessation following a diagnosis of cancer, and elucidate the mechanisms of continued smoking that may be detrimental to treatment.

  4. Nicotine and periodontal tissues

    Directory of Open Access Journals (Sweden)

    Malhotra Ranjan

    2010-01-01

    Full Text Available Tobacco use has been recognized to be a significant risk factor for the development and progression of periodontal disease. Its use is associated with increased pocket depths, loss of periodontal attachment, alveolar bone and a higher rate of tooth loss. Nicotine, a major component and most pharmacologically active agent in tobacco is likely to be a significant contributing factor for the exacerbation of periodontal diseases. Available literature suggests that nicotine affects gingival blood flow, cytokine production, neutrophil and other immune cell function; connective tissue turnover, which can be the possible mechanisms responsible for overall effects of tobacco on periodontal tissues. Inclusion of tobacco cessation as a part of periodontal therapy encourages dental professionals to become more active in tobacco cessation counseling. This will have far reaching positive effects on our patients′ oral and general health.

  5. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    Science.gov (United States)

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  6. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, P.J.; Schuster, G.S.; Lubas, S. (Medical College of Georgia, Augusta (USA))

    1991-02-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4{degree}C using a mixture of {sup 3}H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between {sup 3}H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37{degree}C after treating cells with {sup 3}H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours.

  7. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    Directory of Open Access Journals (Sweden)

    Carol M Rubin

    Full Text Available Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2 display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC axons to their dorsal lateral geniculate nuclei (dLGNs. Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4, during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1, a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1 and chemokine (C-C motif ligand 21 (Ccl21 mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  8. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...... depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased......, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non...

  9. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    Science.gov (United States)

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  10. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Kumi Kimura

    2016-03-01

    Full Text Available Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  11. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    by their inefficient functional expression in vitro. In the present study we have characterized and compared the pharmacological properties displayed by α6β4 and α6β4β3 nicotinic acetylcholine receptors assembled in tsA201 cells from the classical α6/α3 chimera (C1) and two novel α6/α3 chimeras (C6F223L and C16F223L...... should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these receptors....

  12. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    Science.gov (United States)

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  13. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  14. Nitrosamines as nicotinic receptor ligands.

    Science.gov (United States)

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  15. Comparative tumor promotion assessment of e-cigarette and cigarettes using the in vitro Bhas 42 cell transformation assay.

    Science.gov (United States)

    Breheny, Damien; Oke, Oluwatobiloba; Pant, Kamala; Gaça, Marianna

    2017-05-01

    In vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays. Cigarette smoke also contains nongenotoxic carcinogens and is a tumour promoter and cocarcinogen in vivo. We have combined a suite of in vitro assays to compare the relative biological effects of new categories of tobacco and nicotine products with traditional cigarettes. The Bhas promotion assay has been included in this test battery to provide an in vitro surrogate for detecting tumor promoters. The activity of an electronic cigarette (e-cigarette; Vype ePen) was compared to that of a reference cigarette (3R4F) in the promotion assay, using total particulate matter (TPM)/aerosol collected matter (ACM) and aqueous extracts (AqE) of product aerosol emissions. 3R4F TPM was positive in this assay at concentrations ≥6 µg/mL, while e-cigarette ACM did not have any promoter activity. AqE was found to be a lesssuitable test matrix in this assay due to high cytotoxicity. This is the first study to use the Bhas assay to compare tobacco and nicotine products and demonstrates the potential for its future application as part of a product assessment framework. These data add to growing evidence suggesting that e-cigarettes may provide a safer alternative to traditional cigarettes. Environ. Mol. Mutagen. 58:190-198, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Nicotine Induces the Production of IL-1ß and IL-8 via the a7 nAChR/NF-κB Pathway in Human Periodontal Ligament Cells: an in Vitro Study

    Directory of Open Access Journals (Sweden)

    Lizheng Wu

    2014-07-01

    Full Text Available Background/Aims: Tobacco smoking is a major risk factor for the occurrence and progression of periodontitis. We previously demonstrated that nicotine could induce the expression of a7 nicotinic acetylcholine receptors (a7 nAChR in human and rat periodontal tissues. To further examine the signal pathways mediated by a7 nAChR in periodontal ligament (PDL cells, we investigated whether nicotine affects interleukin-1ß (IL-1ß and interleukin-8 (IL-8 via the a7 nAChR/NF-κB pathway in human PDL cells. Methods: Human PDL cells were pre-incubated with alpha-bungarotoxin (a-BTX or pyrrolidine dithiocarbamate (PDTC, then cultured with nicotine. Then, we used western blotting, a dual-luciferase reporter, real-time quantitative PCR and an enzyme-linked immunoassay to assess expression of the NF-κB p65 subunit, NF-κB activity and production of IL-1ß and IL-8 in human PDL cells. Results: Compared with the control group, nicotine could significantly induce production of IL-1ß and IL-8 in human PDL cells and cause the similar effects on the expression of the NF-κB p65 subunit and NF-κB activity. Conclusion: This study demonstrates that nicotine could induce production of IL-1ß and IL-8 via the a7 nAChR/NF-κB pathway in human PDL cells, providing data for a better understanding of the relationships among smoking, nicotine, and periodontitis.

  17. Nicotine induces the production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human periodontal ligament cells: an in vitro study.

    Science.gov (United States)

    Wu, Lizheng; Zhou, Yongchuan; Zhou, Zhifei; Liu, Yingfeng; Bai, Yudi; Xing, Xianghui; Wang, Xiaojing

    2014-01-01

    Tobacco smoking is a major risk factor for the occurrence and progression of periodontitis. We previously demonstrated that nicotine could induce the expression of α7 nicotinic acetylcholine receptors (α7 nAChR) in human and rat periodontal tissues. To further examine the signal pathways mediated by α7 nAChR in periodontal ligament (PDL) cells, we investigated whether nicotine affects interleukin-1β (IL-1β) and interleukin-8 (IL-8) via the α7 nAChR/NF-κB pathway in human PDL cells. Human PDL cells were pre-incubated with alpha-bungarotoxin (α-BTX) or pyrrolidine dithiocarbamate (PDTC), then cultured with nicotine. Then, we used western blotting, a dual-luciferase reporter, real-time quantitative PCR and an enzyme-linked immunoassay to assess expression of the NF-κB p65 subunit, NF-κB activity and production of IL-1β and IL-8 in human PDL cells. Compared with the control group, nicotine could significantly induce production of IL-1β and IL-8 in human PDL cells and cause the similar effects on the expression of the NF-κB p65 subunit and NF-κB activity. This study demonstrates that nicotine could induce production of IL-1β and IL-8 via the α7 nAChR/NF-κB pathway in human PDL cells, providing data for a better understanding of the relationships among smoking, nicotine, and periodontitis. © 2014 S. Karger AG, Basel.

  18. Nicotine-induced alterations in the expression of nicotinic receptors in primary cultures from human prenatal brain.

    Science.gov (United States)

    Hellström-Lindahl, E; Seiger A; Kjaeldgaard, A; Nordberg, A

    2001-01-01

    The nicotinic receptor proteins and gene transcripts for the different nicotinic receptor subunits exist in human prenatal brain already at 4-5 weeks of gestation. The early presence of nicotinic receptors suggests an important role for these receptors in modulating dendritic outgrowth, establishment of neuronal connections and synaptogenesis during development. When measurements of nicotinic receptors using [(3)H]epibatidine (labelling both the alpha3 and alpha4 subtype) and [(3)H]cytisine (labelling the alpha4 subtype) were performed in intact cells from the cortex, subcortical forebrain and mesencephalon (7.5-11 weeks of gestation), the highest specific binding for both ligands was detected in cells from mesencephalon, followed by subcortical forebrain and cortex. The effects of nicotine exposure were studied in primary cultures of prenatal brain (7.5-11 weeks of gestation). Treatment with nicotine (1-100 microM) for 3 days significantly increased the specific binding of [(3)H]epibatidine and [(3)H]cytisine in cortical cells but not in cells from subcortical forebrain and mesencephalon brain regions, indicating region-specific differences in the sensitivity to nicotine exposure. Relative quantification of mRNA showed that the expression of the nicotinic receptor subunits alpha3 and alpha7, but not alpha4, was increased in cortical cells after nicotine treatment. These findings support the assumption of a potential risk of disturbance in the functional role of nicotinic receptors during brain development as a consequence of maternal smoking during pregnancy.

  19. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  20. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity

    Directory of Open Access Journals (Sweden)

    Michael J. Molumby

    2016-05-01

    Full Text Available Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs, have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron’s dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  1. The effects of erdosteine, N-acetylcysteine and vitamin E on nicotine-induced apoptosis of cardiac cells.

    Science.gov (United States)

    Demiralay, Rezan; Gürsan, Nesrin; Erdem, Havva

    2007-01-01

    This study was conducted to investigate the frequency of apoptosis in rat cardiomyocytes after intratraperitoneal nicotine injection, in order to examine the roles of inflammatory markers [myeloperoxidase (MPO) and tumor necrosis factor alpha (TNF-alpha)] in nicotine-induced cardiac damage and to determine the protective effects of three known antioxidant agents (N-acetylcysteine (NAC), erdosteine and vitamin E) on nicotine toxicity in the heart. Female Wistar rats were divided into seven groups, each composed of nine rats: two negative control groups, two positive control groups, one erdosteine-treated group (500 mg kg(-1)), one NAC-treated group (500 mg kg(-1)) and one vitamin E-treated group (500 mg kg(-1)). Nicotine was intraperitoneally injected at a dosage of 0.6 mg kg(-1) for 21 days. Following nicotine injection, the antioxidants were administered orally; treatment was continued until the rats were killed. Heart tissue samples were stained with hematoxylin-eosin for histopathological assessments. Apoptosis level in cardiomyocytes was determined by using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick endlabelling) method. Staining of cytoplasmic TNF-alpha in cardiomyocytes and heart MPO activity were evaluated by immunohistochemistry. The treatments with erdosteine, NAC and vitamin E significantly reduced the rate of nicotine-induced cardiomyocyte apoptosis. The effect of vitamin E on apoptosis regulation was weaker than the effects of erdosteine and NAC. Erdosteine, NAC and vitamin E significantly reduced the increases in the local production of TNF-alpha and heart MPO activity. This findings suggest that the effects of erdosteine and NAC on apoptosis regulation are stronger than that of vitamin E.

  2. Mesenchymal stem cell conditioning promotes rat oligodendroglial cell maturation.

    Directory of Open Access Journals (Sweden)

    Janusz Joachim Jadasz

    Full Text Available Oligodendroglial progenitor/precursor cells (OPCs represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS. In demyelinating diseases such as multiple sclerosis (MS myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC's oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.

  3. Kinetics of desensitization and recovery from desensitization for human a4β2-nicotinic acetylcholine receptors stably expressed in SH-EP1 cells

    Institute of Scientific and Technical Information of China (English)

    Kewei D YU; Qiang LIU; Jie WU; Ronald J LUKAS

    2009-01-01

    Aim: Studies were conducted to define the kinetics of the onset of and recovery from desensitization for human a4p2-nicotinic acetylcholine receptors (nAChR) heterologously expressed in the SH-EP1 human epithelial cell line. Methods: Whole-cell patch clamp recordings were performed to evaluate a4p2-nAChR currents.Results: Application of 0.1 nmol/L nicotine or 1 mmol/L acetylcholine (ACh) for 1 s or longer induced two phases, with time constants of ~70 and ~700 ms, for the onset of a4(32-nAChR desensitization. For a given duration of agonist exposure, recovery from desensitization induced by nicotine was slower than recovery from ACh-induced desensitization. Comparisons with published reports indicate that time constants for the recovery of a4p2-nAChRs from desensitization are smaller than those for the recovery of human muscle-type nAChRs'1' from desensitization produced by the same concentrations and durations of exposure to an agonist. Moreover, the extent of human a4p2-nAChR desensitization and rate of recovery are the same, regardless of whether they are measured using whole-cell recording or based on published findings'21 using isotopic ion flux assays; this equality demonstrates the equivalent legitimacy of these techniques in the evaluation of nAChR desensitization. Perhaps most significantly, recovery from desensitization also was best fit to a biphasic process. Regardless of whether it was fit to single or double exponentials, however, half-times for recovery from desensitization grew progressively longer with an increased duration of agonist exposure during the desensitizing pulse.Conclusion: These findings indicate the existence of a4p2-nAChRs in many distinctive states of desensitization, as well as the induction of progressively deeper states of desensitization with the increased duration of agonist exposure.

  4. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamoto

    Full Text Available The prevalence of food allergy (FA has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2 cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR agonists (nicotine and α7 nAChR agonist GTS-21 alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA.

  5. Expression of nicotinic acetylcholine receptor subunit α9 in type Ⅱ vestibular hair cells of rats

    Institute of Scientific and Technical Information of China (English)

    Wei-jia KONG; Hua-mao CHENG; Paul van CAUWENBERGE

    2006-01-01

    Aim: To explore the cell specific existence of α9 AChR in the vestibular type Ⅱ hair cells (VHC Ⅱ) of rats. Methods: To detect the expression of α9 AChR messenger RNA (mRNA) in the vestibular endorgans and single VHC Ⅱ of rats by using the reverse transcription polymerase chain reaction (RT-PCR) technique and the single cell RT-PCR technique, respectively. Results: It was shown that α9 AChR mRNA was detected in the vestibular endorgans. By using single-cell RT-PCR, mRNA encoding α9 AChR was also detected in the VHC Ⅱ of the rats. Sequence analysis of the PCR products confirmed identity to corresponding cDNA sequence in the predicted region. Conclusion: We established a method which could effectively detect the cell specific expression of mRNA in an individual VHC. Present data confirm that α9 AChR mRNA is expressed in the VHC Ⅱ of rats and indicates that α9 AChR may function as a mediator of efferent cholinergic signaling in mammalian VHC.

  6. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann;

    2014-01-01

    in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7–P15), nicotine induced larger...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  7. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  8. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  9. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  10. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons.

    Science.gov (United States)

    Schreiner, Benjamin S P; Lehmann, Ramona; Thiel, Ulrike; Ziemba, Paul M; Beltrán, Leopoldo R; Sherkheli, Muhammad A; Jeanbourquin, Philippe; Hugi, Alain; Werner, Markus; Gisselmann, Günter; Hatt, Hanns

    2014-04-05

    Nicotine sensory perception is generally thought to be mediated by nicotinic acetylcholine (nACh) receptors. However, recent data strongly support the idea that other receptors (e.g., transient receptor potential A1 channel, TRPA1) and other pathways contribute to the detection mechanisms underlying the olfactory and trigeminal cell response to nicotine flavor. This is in accordance with the reported ability of humans to discriminate between (+)- and (-)- nicotine enantiomers. To get a more detailed understanding of the molecular and cellular basis underlying the sensory perception of nicotine, we studied the activity of (+)- and (-)-nicotine on cultured murine trigeminal sensory neurons and on a range of heterologously expressed receptors. The human TRPA1 channel is activated by (-)-nicotine. In this work, we show that (+)-nicotine is also an activator of this channel. Pharmacological experiments using nicotinic acetylcholine receptors and transient receptor potential blockers revealed that trigeminal neurons express one or more unidentified receptors that are sensitive to (+)- and/or (-)-nicotine. Results also indicate that the presence of extracellular calcium ions is required to elicit trigeminal neuron responses to (+)- and (-)-nicotine. Results also show that both (+)-nicotine and (-)-nicotine can block 5-hydroxytryptamine type 3 (5-HT3) receptor-mediated responses in recombinant expression systems and in cultured trigeminal neurons expressing 5-HT3 receptors. Our investigations broaden the spectra of receptors that are targets for nicotine enantiomers and give new insights into the physiological role of nicotine.

  11. Nicotinic Receptor Polymorphism in Lung Cancer

    Science.gov (United States)

    2013-10-01

    bronchial cells to the tobacco nitrosamine-induced carcinogenic transformation of human bronchial cells [1-2]. 15. SUBJECT TERMS nicotinic receptor...cells to the tobacco nitrosamine-induced carcinogenic transformation of human bronchial cells [1-2]. Body According to the Statement of Works

  12. Transdermal nicotine absorption handling e-cigarette refill liquids.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids.

  13. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    OpenAIRE

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwa...

  14. Ric-3 chaperone-mediated stable cell-surface expression of the neuronal a7 nicotinic acetylcholine receptor in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Ana Sofia VALLfiS; Ana M ROCCAMO; Francisco J BARRANTES

    2009-01-01

    Aim: Studies of the a7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of a7-type AChRs'11. The current work aims at obtaining and characterizing a cell line with high functional expression of the human a7 AChR.Methods: Ric-3 cDNA was incorporated into SHE-Pl-ha7 cells expressing the a7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [125I]a-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent a-bungarotoxin, anti-a7 antibody, and GFP-a7 were performed on the new clone.Results: The human a7-type AChR was stably expressed in a new cell line, which we coined SHE-PI-ha7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [125I]aBTX saturable binding with an apparent KD of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-PI-ha7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-a7 antibodies, hi contrast, chaperone-less SHE-PI-ha7 cells expressed only intracellular a.7 AChRs and failed to produce detectable single-channel currents.Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal a7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells.

  15. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  16. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    Science.gov (United States)

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  17. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  18. Amelioration strategies fail to prevent tobacco smoke effects on neurodifferentiation: Nicotinic receptor blockade, antioxidants, methyl donors.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Card, Jennifer; Levin, Edward D; Seidler, Frederic J

    2015-07-03

    Tobacco smoke exposure is associated with neurodevelopmental disorders. We used neuronotypic PC12 cells to evaluate the mechanisms by which tobacco smoke extract (TSE) affects neurodifferentiation. In undifferentiated cells, TSE impaired DNA synthesis and cell numbers to a much greater extent than nicotine alone; TSE also impaired cell viability to a small extent. In differentiating cells, TSE enhanced cell growth at the expense of cell numbers and promoted emergence of the dopaminergic phenotype. Nicotinic receptor blockade with mecamylamine was ineffective in preventing the adverse effects of TSE and actually enhanced the effect of TSE on the dopamine phenotype. A mixture of antioxidants (vitamin C, vitamin E, N-acetyl-l-cysteine) provided partial protection against cell loss but also promoted loss of the cholinergic phenotype in response to TSE. Notably, the antioxidants themselves altered neurodifferentiation, reducing cell numbers and promoting the cholinergic phenotype at the expense of the dopaminergic phenotype, an effect that was most prominent for N-acetyl-l-cysteine. Treatment with methyl donors (vitamin B12, folic acid, choline) had no protectant effect and actually enhanced the cell loss evoked by TSE; they did have a minor, synergistic interaction with antioxidants protecting against TSE effects on growth. Thus, components of tobacco smoke perturb neurodifferentiation through mechanisms that cannot be attributed to the individual effects of nicotine, oxidative stress or interference with one-carbon metabolism. Consequently, attempted amelioration strategies may be partially effective at best, or, as seen here, can actually aggravate injury by interfering with normal developmental signals and/or by sensitizing cells to TSE effects on neurodifferentiation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Notch Promotes Radioresistance of Glioma Stem Cells

    OpenAIRE

    Wang, Jialiang; Wakeman, Timothy P.; Latha, Justin D.; Hjelmeland, Anita B.; Wang, Xiao-Fan; White, Rebekah R.; Rich, Jeremy N.; Sullenger, Bruce A.

    2010-01-01

    Radiotherapy represents the most effective nonsurgical treatments for gliomas. Yet, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we showed that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) rendered the glioma st...

  20. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  1. Collective cell movement promotes synchronization of coupled genetic oscillators.

    Science.gov (United States)

    Uriu, Koichiro; Morelli, Luis G

    2014-07-15

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.

  2. Commensal bacteria promote migration of mast cells into the intestine.

    Science.gov (United States)

    Kunii, Junichi; Takahashi, Kyoko; Kasakura, Kazumi; Tsuda, Masato; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-06-01

    Mast cells differentiate from hematopoietic stem cells in the bone marrow and migrate via the circulation to peripheral tissues, where they play a pivotal role in induction of both innate and adaptive immune responses. In this study, the effect of intestinal commensal bacteria on the migration of mast cells into the intestine was investigated. Histochemical analyses showed that germ-free (GF) mice had lower mast cell densities in the small intestine than normal mice. It was also shown that GF mice had lower mast cell proportion out of lamina propria leukocytes in the small intestine and higher mast cell percentages in the blood than normal mice by flow cytometry. These results indicate that migration of mast cells from the blood to the intestine is promoted by intestinal commensal bacteria. In addition, MyD88⁻/⁻ mice had lower densities of intestinal mast cells than CV mice, suggesting that the promotive effect of commensals is, at least in part, TLR-dependent. The ligands of CXC chemokine receptor 2 (CXCR2), which is critical for homing of mast cells to the intestine, were expressed higher in intestinal tissues and in intestinal epithelial cells (IECs) of normal mice than in those of GF or MyD88⁻/⁻ mice. Collectively, it is suggested that commensals promote migration of mast cells into the intestine through the induction of CXCR2 ligands from IECs in a TLR-dependent manner.

  3. Human α3β4 neuronal nicotinic receptors show different stoichiometry if they are expressed in Xenopus oocytes or mammalian HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Paraskevi Krashia

    Full Text Available BACKGROUND: The neuronal nicotinic receptors that mediate excitatory transmission in autonomic ganglia are thought to be formed mainly by the α3 and β4 subunits. Expressing this composition in oocytes fails to reproduce the properties of ganglionic receptors, which may also incorporate the α5 and/or β2 subunits. We compared the properties of human α3β4 neuronal nicotinic receptors expressed in Human embryonic kidney cells (HEK293 and in Xenopus oocytes, to examine the effect of the expression system and α:β subunit ratio. METHODOLOGY/PRINCIPAL FINDINGS: Two distinct channel forms were observed: these are likely to correspond to different stoichiometries of the receptor, with two or three copies of the α subunit, as reported for α4β2 channels. This interpretation is supported by the pattern of change in acetylcholine (ACh sensitivity observed when a hydrophilic Leu to Thr mutation was inserted in position 9' of the second transmembrane domain, as the effect of mutating the more abundant subunit is greater. Unlike α4β2 channels, for α3β4 receptors the putative two-α form is the predominant one in oocytes (at 1:1 α:β cRNA ratio. This two-α form has a slightly higher ACh sensitivity (about 3-fold in oocytes, and displays potentiation by zinc. The putative three-α form is the predominant one in HEK cells transfected with a 1:1 α:β DNA ratio or in oocytes at 9:1 α:β RNA ratio, and is more sensitive to dimethylphenylpiperazinium (DMPP than to ACh. In outside-out single-channel recordings, the putative two-α form opened to distinctive long bursts (100 ms or more with low conductance (26 pS, whereas the three-α form gave rise to short bursts (14 ms of high conductance (39 pS. CONCLUSIONS/SIGNIFICANCE: Like other neuronal nicotinic receptors, the α3β4 receptor can exist in two different stoichiometries, depending on whether it is expressed in oocytes or in mammalian cell lines and on the ratio of subunits transfected.

  4. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation.

    Directory of Open Access Journals (Sweden)

    Emilios Gemenetzidis

    Full Text Available BACKGROUND: Cancer associated with smoking and drinking remains a serious health problem worldwide. The survival of patients is very poor due to the lack of effective early biomarkers. FOXM1 overexpression is linked to the majority of human cancers but its mechanism remains unclear in head and neck squamous cell carcinoma (HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: FOXM1 mRNA and protein expressions were investigated in four independent cohorts (total 75 patients consisting of normal, premalignant and HNSCC tissues and cells using quantitative PCR (qPCR, expression microarray, immunohistochemistry and immunocytochemistry. Effect of putative oral carcinogens on FOXM1 transcriptional activity was dose-dependently assayed and confirmed using a FOXM1-specific luciferase reporter system, qPCR, immunoblotting and short-hairpin RNA interference. Genome-wide single nucleotide polymorphism (SNP array was used to 'trace' the genomic instability signature pattern in 8 clonal lines of FOXM1-induced malignant human oral keratinocytes. Furthermore, acute FOXM1 upregulation in primary oral keratinocytes directly induced genomic instability. We have shown for the first time that overexpression of FOXM1 precedes HNSCC malignancy. Screening putative carcinogens in human oral keratinocytes surprisingly showed that nicotine, which is not perceived to be a human carcinogen, directly induced FOXM1 mRNA, protein stabilisation and transcriptional activity at concentrations relevant to tobacco chewers. Importantly, nicotine also augmented FOXM1-induced transformation of human oral keratinocytes. A centrosomal protein CEP55 and a DNA helicase/putative stem cell marker HELLS, both located within a consensus loci (10q23, were found to be novel targets of FOXM1 and their expression correlated tightly with HNSCC progression. CONCLUSIONS/SIGNIFICANCE: This study cautions the potential co-carcinogenic effect of nicotine in tobacco replacement therapies. We hypothesise that

  5. Cellular basis for the olfactory response to nicotine.

    Science.gov (United States)

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  6. LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells

    Science.gov (United States)

    Wang, J.Z.; Xu, C.L.; Wu, H.; Shen, S.J.

    2017-01-01

    Several long non-coding RNA (lncRNA) might be correlated with the prognosis of colorectal cancer (CRC) and serve as a diagnostic and prognostic biomarker. However, the exact expression pattern of small nucleolar RNA host gene 12 (SNHG12) in colorectal cancer and its clinical significance remains unclear. The level of SNHG12 was detected by qRT-PCR in CRC tissues and CRC cells. MTT assay and colony formation assay were performed to examine the cell proliferation of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. Flow cytometry technology was used to detect cell cycle and cell apoptosis of CRC cells transfected with pcDNA-SNHG12 or si-SNHG12. The protein level of cell cycle progression-related molecules, including cyclin-dependent kinases (CDK4, CDK6), cyclin D1 (CCND1) and cell apoptosis-related molecule caspase 3 was detected by western blot. The effect of SNHG12 knockdown was examined in vivo. Increased levels of SNHG12 were observed in CRC tissues and in CRC cells. SNHG12 promoted the cell proliferation of CRC cells. In addition, SNHG12 overexpression boosted the cell cycle progression of SW480 cells transfected with pcDNA-SNHG12 and SNHG12 knockdown inhibited the cell cycle progression of HT29 cells transfected with si-SNHG12. SNHG12 also inhibited the cell apoptosis of CRC cells. We also found that SNHG12 increased the expression of cell cycle-related proteins and suppressed the expression of caspase 3. Our results suggest that SNHG12 promoted cell growth and inhibited cell apoptosis in CRC cells, indicating that SNHG12 might be a useful biomarker for colorectal cancer. PMID:28225893

  7. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  8. The Transfer of Nicotine from Nicotine Salts to Mainstream Smoke

    Directory of Open Access Journals (Sweden)

    Perfetti TA

    2014-12-01

    Full Text Available Transfer of nicotine to mainstream smoke was measured for Reference cigarettes made with the addition of 20 -40 mg of seven different nicotine salts, d- and l-nicotine and N’-formylnornicotine. Regression analysis of the nicotine yields from these cigarettes as a function of the nicotine content of the tobacco rods indicated an average nicotine transfer efficiency (17.5%, similar to that found for a separate series of cigarettes made with single-grade tobacco materials (16.2%. Analysis of the enantiomeric purity of the smoke nicotine from the cigarettes made with added nicotine salts and neat nicotine showed no evidence of conversion between l- and d-nicotine during the smoking process. The cigarette made with added N’-formylnornicotine showed no evidence of additional nicotine transfer attributable to reduction of this compound to nicotine. A third series of cigarettes were made with varying levels of d- and l-nicotine added to a tobacco blend and to reconstituted tobacco to further investigate transfer efficiency of the enantiomers. Regression analysis indicated no statistically significant difference between transfer efficiencies of d- and l-nicotine. These results suggest that nicotine salts and d- and l-nicotine transfer to smoke at the same efficiency. However, transfer efficiency of either compound was lower when applied to reconstituted tobacco (9.7% than when applied to the Reference tobacco blend (15.3%. The thermal stabilities of nicotine salts have little bearing on efficiency of transfer to smoke or on racemization between d- and l-nicotine. Formation of d-nicotine in mainstream smoke via reduction of N’-formylnornicotine does not appear to occur.

  9. HIF-1α Promotes A Hypoxia-Independent Cell Migration.

    Science.gov (United States)

    Li, Liyuan; Madu, Chikezie O; Lu, Andrew; Lu, Yi

    2010-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is known as a transactivator for VEGF gene promoter. It can be induced by hypoxia. However, no study has been done so far to dissect HIF-1α-mediated effects from hypoxia or VEGF-mediated effects. By using a HIF-1α knockout (HIF-1α KO) cell system in mouse embryonic fibroblast (MEF) cells, this study analyzes cell migration and HIF-1α, hypoxia and VEGF activation. A hypoxia-mediated HIF-1α induction and VEGF transactivation were observed: both HIF-1α WT lines had significantly increased VEGF transactivation, as an indicator for HIF-1α induction, in hypoxia compared to normoxia; in contrast, HIF-1α KO line had no increased VEGF transactivation under hypoxia. HIF-1α promotes cell migration: HIF-1α-KO cells had a significantly reduced migration compared to that of the HIF-1α WT cells under both normoxia and hypoxia. The significantly reduced cell migration in HIF-1α KO cells can be partially rescued by the restoration of WT HIF-1α expression mediated by adenoviral-mediated gene transfer. Interestingly, hypoxia has no effect on cell migration: the cells had a similar cell migration rate under hypoxic and normoxic conditions for both HIF-1α WT and HIF-1α KO lines, respectively. Collectively, these data suggest that HIF-1α plays a role in MEF cell migration that is independent from hypoxia-mediated effects.

  10. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells.

    Directory of Open Access Journals (Sweden)

    María Berdasco

    Full Text Available Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.

  11. Promoting justice in stem cell intellectual property.

    Science.gov (United States)

    Regenberg, Alan; Mathews, Debra J H

    2011-11-01

    According to the World Trade Organization, intellectual property rights are "rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time." The rationale behind intellectual property rights is to offer a quid pro quo, between creators and the public, intended to spur innovation. Inventors gain exclusivity (and an opportunity for profits) in exchange for publicly disclosing details about their creations. The public gains free access to information - information that can then be used to support further innovation. Innovation is seen as an inherent good in this context, as it can lead to the development of things people need (e.g., treatments for disease, green energy technologies or a better mousetrap). Exclusive rights to intellectual property are managed via patents and licenses, with patenting being primarily regulated at the national level. Intellectual property rights are the dominant mechanism used in innovation policy, particularly in science. However, myriad modifications and alternatives to intellectual property rights have been proposed and utilized, including patent pooling, intellectual property exchanges and clearing houses, innovation prizes and open-source licenses. The challenges related to competing models of innovation policy present in a fairly consistent manner across most fields of science. However, this paper will focus exclusively on intellectual property rights and models of innovation policy in the context of stem cell science. It is not that the issues themselves are unique in this context, but rather that there are a series of factors that make a discussion of intellectual property rights and models of innovation policy particularly important in the context of stem cell science.

  12. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  13. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion.

    Science.gov (United States)

    Kenny, Hilary A; Chiang, Chun-Yi; White, Erin A; Schryver, Elizabeth M; Habis, Mohammed; Romero, Iris L; Ladanyi, Andras; Penicka, Carla V; George, Joshy; Matlin, Karl; Montag, Anthony; Wroblewski, Kristen; Yamada, S Diane; Mazar, Andrew P; Bowtell, David; Lengyel, Ernst

    2014-10-01

    Ovarian cancer (OvCa) metastasizes to organs in the abdominal cavity, such as the omentum, which are covered by a single layer of mesothelial cells. Mesothelial cells are generally thought to be "bystanders" to the metastatic process and simply displaced by OvCa cells to access the submesothelial extracellular matrix. Here, using organotypic 3D cultures, we found that primary human mesothelial cells secrete fibronectin in the presence of OvCa cells. Moreover, we evaluated the tumor stroma of 108 human omental metastases and determined that fibronectin was consistently overexpressed in these patients. Blocking fibronectin production in primary mesothelial cells in vitro or in murine models, either genetically (fibronectin 1 floxed mouse model) or via siRNA, decreased adhesion, invasion, proliferation, and metastasis of OvCa cells. Using a coculture model, we determined that OvCa cells secrete TGF-β1, which in turn activates a TGF-β receptor/RAC1/SMAD-dependent signaling pathway in the mesothelial cells that promotes a mesenchymal phenotype and transcriptional upregulation of fibronectin. Additionally, blocking α5 or β1 integrin function with antibodies reduced metastasis in an orthotopic preclinical model of OvCa metastasis. These findings indicate that cancer-associated mesothelial cells promote colonization during the initial steps of OvCa metastasis and suggest that mesothelial cells actively contribute to metastasis.

  14. Nicotine inhibits memory CTL programming.

    Directory of Open Access Journals (Sweden)

    Zhifeng Sun

    Full Text Available Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development.

  15. Nicotine inhibits memory CTL programming.

    Science.gov (United States)

    Sun, Zhifeng; Smyth, Kendra; Garcia, Karla; Mattson, Elliot; Li, Lei; Xiao, Zhengguo

    2013-01-01

    Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development.

  16. Nicotine addiction and withdrawal

    Science.gov (United States)

    ... Hg Possibly cause sweating, nausea, and diarrhea Stimulate memory and alertness; people who use tobacco often depend on it to help them accomplish certain tasks and perform well Symptoms of nicotine withdrawal appear within 2 to 3 hours after ...

  17. Nicotine and health.

    Science.gov (United States)

    2014-07-01

    Nicotine, an alkaloid derived from the leaves of tobacco plants (Nicotiana tabacum and Nicotiana rustica) is the primary addictive agent in tobacco products.(1,2) There are different ways of administering the various products including smoking cigarettes, chewing tobacco, holding moist snuff in the mouth, inhaling dry snuff through the nose, inhaling smoke from a waterpipe and inhaling vapour from an electronic cigarette.(3-6) It can be difficult differentiating the effects of nicotine from the many other toxic substances these products also contain. Here we review the pharmacological effects of nicotine but we will not review the well-known harmful effects of cigarettes, where it is primarily the toxins and carcinogens in tobacco smoke rather than the nicotine that cause illness and death.(7) A future article will consider the use of electronic cigarettes.

  18. Pyrilamine inhibits nicotine-induced catecholamine secretion.

    Science.gov (United States)

    Kim, Dong-Chan; Yun, So Jeong; Park, Yong-Soo; Jun, Dong-Jae; Kim, Dongjin; Jiten Singh, N; Kim, Sanguk; Kim, Kyong-Tai

    2014-07-01

    Function of nicotine, which induces activation of all parts of the body including our brain, has been receiving much attention for a long period of time and also been actively studied by researchers for its pharmacological actions in the central nervous system. The modulation of nicotine concentration and the inhibition of nicotine binding on target receptors in the brain are the key factors for smoking addiction therapy. In previous studies showed that influx of nicotine at the blood-brain barrier was through the pyrilamine-sensitive organic cation transporters. But the direct interacting mechanism of pyrilamine on the nicotine binding target receptors has not yet been clarified. The aim of the present study is to investigate the direct binding mechanisms of a pyrilamine on the nicotinic acetylcholine receptors (nAChRs). We found that pyrilamine shares the same ligand binding pocket of nicotine (NCT) on nAChRs but interacts with more amino acid residues than NCT does. The extended part of pyrilamine interacts with additional residues in the ligand binding pocket of nAChRs which are located nearby the entrance of the binding pocket. The catecholamine (CA) secretion induced by nAChR agonist (NCT') was significantly inhibited by the pyrilamine pretreatment. Real time carbon-fiber amperometry confirmed the inhibition of the NCT'-induced exocytosis by pyrilamine in a single cell level. We also found that pyrilamine inhibited the NCT'-induced [Ca(2+)]i. In contrast, pyrilamine did not affect the increase in calcium induced by high K(+). Overall, these data suggest that pyrilamine directly docks into the ligand binding site of nAChRs and specifically inhibits the nAChR-mediated effects thereby causing inhibition of CA secretion. Therefore, pyrilamine may play an important role to explore new treatments to aid smoking cessation.

  19. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry.

    Science.gov (United States)

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-04-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos.

  20. Progesterone promotes propagation and viability of mouse embryonic stem cells.

    Science.gov (United States)

    Shen, Shan-Wei; Song, Hou-Yan

    2009-10-25

    It has been known that estrogen-17beta stimulates proliferation of mouse embryonic stem (mES) cells. To explore the function of another steroid hormone progesterone, we used MTT method and BrdU incorporation assay to obtain growth curves, clone forming assay to detect the propagation and viability of individual mES cells, Western blot to test the expression of ES cell marker gene Oct-4, fluorescence activated cell sorter (FACS) to test cell cycle, and real-time PCR to detect the expressions of cyclins, cyclin-dependent kinases and proto-oncogenes. The results showed that progesterone promoted proliferation of mES cells. The number of clones was more in progesterone-treated group than that in the control group. The expression of pluripotency-associated transcriptional factor Oct-4 changed little after progesterone treatment as shown by Western blot, indicating that most of mES cells were in undifferentiated state. The results of FACS proved that progesterone promoted DNA synthesis in mES cells. The proportion of mES cells in S+G(2)/M phase was higher in progesterone-treated group than that in the control group. Cyclins and cyclin-dependent kinases, as well as proto-oncogenes (c-myc, c-fos) were up-regulated when cells were treated with progesterone. The results obtained indicate that progesterone promotes propagation and viability of mES cells. The up-regulation of cell cycle-related factors might contribute to the function of progesterone.

  1. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction.

    Science.gov (United States)

    Govind, Anitha P; Vezina, Paul; Green, William N

    2009-10-01

    A major hurdle in defining the molecular biology of nicotine addiction has been characterizing the different nicotinic acetylcholine receptor (nAChR) subtypes in the brain and how nicotine alters their function. Mounting evidence suggests that the addictive effects of nicotine, like other drugs of abuse, occur through interactions with its receptors in the mesolimbic dopamine system, particularly ventral tegmental area (VTA) neurons, where nicotinic receptors act to modulate the release of dopamine. The molecular identity of the nicotinic receptors responsible for drug seeking behavior, their cellular and subcellular location and the mechanisms by which these receptors initiate and maintain addiction are poorly defined. In this commentary, we review how nicotinic acetylcholine receptors (nAChRs) are upregulated by nicotine exposure, the potential posttranslational events that appear to cause it and how upregulation is linked to nicotine addiction.

  2. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  3. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  4. Insulin resistance in vascular endothelial cells promotes intestinal tumour formation

    DEFF Research Database (Denmark)

    Wang, X; Häring, M-F; Rathjen, Thomas

    2017-01-01

    in tumour endothelial cells produces an activated, proinflammatory state that promotes tumorigenesis. Improvement of endothelial dysfunction may reduce colorectal cancer risk in patients with obesity and type 2 diabetes.Oncogene advance online publication, 1 May 2017; doi:10.1038/onc.2017.107....

  5. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  6. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n......AChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our...

  7. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  8. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    Science.gov (United States)

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  9. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  10. Nicotine-seeking reinstatement is reduced by inhibition of instrumental memory reconsolidation.

    Science.gov (United States)

    Tedesco, Vincenzo; Mutti, Anna; Auber, Alessia; Chiamulera, Cristiano

    2014-12-01

    The reinforcing properties of nicotine play a major role in instrumental conditioning to nicotine taking in smokers. Retrieval of nicotine-related memories may promote relapse to nicotine seeking after prolonged abstinence. Once consolidated, memories are stable, but they return to a labile phase, called reconsolidation, after their retrieval. The aim of our study was to investigate whether it was possible to interfere with the reconsolidation of instrumental nicotine-related memories by acting at glutamatergic receptors [N-methyl-D-aspartate receptors (NMDARs)] to prevent relapse to nicotine-seeking behaviour in the rat. We assessed whether the NMDAR antagonist MK-801, administered before or after nicotine-related instrumental memory retrieval, can reduce reinstatement of nicotine-seeking behaviour in rats previously trained to nicotine self-administration. Following a period of forced abstinence, MK-801 (0.1 mg/kg intraperitoneally) was administered 30 min before or 1 h after the re-exposure to 20 lever presses without any contingency in the training context to retrieve instrumental memory. MK-801 administered after, but not before, retrieval inhibited reinstatement compared with vehicle controls and groups without retrieval of instrumental memory. Interestingly, a retrieval factor effect was observed as an increase of reinstatement in vehicle-treated groups, suggesting a behavioural outcome of the occurrence of instrumental memory reconsolidation. Our findings suggest that, by acting on NMDARs, it is possible to reduce the reinstatement of nicotine-seeking behaviour through inhibition of instrumental nicotine-related memory reconsolidation.

  11. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  12. PPARα Promotes Cancer Cell Glut1 Transcription Repression.

    Science.gov (United States)

    You, Mengli; Jin, Jianhua; Liu, Qian; Xu, QingGang; Shi, Juanjuan; Hou, Yongzhong

    2017-06-01

    Abundant nutrient availability including glucose and amino acids plays an important role in maintaining cancer cell energetic and biosynthetic pathways. As a nuclear receptor, peroxisome-proliferator-activated receptor α (PPARα) regulates inflammation and cancer progression, however, it is still unclear the interaction of PPARα with the cancer cell glucose metabolism. Here we found that PPARα reduced Glut1 (Glucose transporter 1) protein and gene levels in HCT-116, SW480, HeLa, and MCF-7 cancer cell lines. In contrast, silenced PPARα reversed this event. Further analysis shows that PPARα directly targeted the consensus PPRE motif of Glut1 promoter region resulting in Glut1 transcription repression. PPARα-mediated Glut1 transcription repression led to decreased influx of glucose in cancer cells. These findings revealed a novel mechanism of PPARα-mediated cancer cell Glut1 transcription repression. J. Cell. Biochem. 118: 1556-1562, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Nitric oxide: promoter or suppressor of programmed cell death?

    Science.gov (United States)

    Wang, Yiqin; Chen, Chen; Loake, Gary J; Chu, Chengcai

    2010-02-01

    Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and - independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.

  14. Maternal nicotine exposure during pregnancy and developtnent ...

    African Journals Online (AJOL)

    whether nicotine exposure (1 lllglkg body lllass/d) during pregnancy and lactation ... adverse influence on the metabolic, structural and func- tional development of the .... fact: mat: me nuclei of me cells in Figs I and 2 are the same size is a clear ...

  15. Fascin promotes the motility and invasiveness of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Feng Xu; Shuang-Ni Yu; Zhao-Hui Lu; Jian-Ping Liu; Jie Chen

    2011-01-01

    AIM: To explore the role of actin-bundling protein, fascin during the progression of pancreatic cancer. METHODS: The plasmid expressing human fascin-1 was stably transfected into the pancreatic cancer cell line MIA PaCa-2. The proliferation, cell cycle, motility, scattering, invasiveness and organization of the actin filament system in fascin-transfected MIA PaCa-2 cells and control non-transfected cells were determined. RESULTS: Heterogeneous overexpression of fascin markedly enhanced the motility, scattering, and invasiveness of MIA PaCa-2 cells. However, overexpression of fascin had minimal effect on MIA PaCa-2 cell proliferation and cell cycle. In addition, cell morphology and organization of the actin filament system were distinctly altered in fascin overexpressed cells. When transplanted into BALB/c-nu mice, fascin-transfected pancreatic cancer cells developed solid tumors at a slightly slower rate, but these tumors displayed more aggressive behavior in comparison with control tumors. CONCLUSION: Fascin promotes pancreatic cancer cell migration, invasion and scattering, thus contributes to the aggressive behavior of pancreatic cancer cells.

  16. Glutamine analogs promote cytoophidium assembly in human and Drosophila cells

    Institute of Scientific and Technical Information of China (English)

    Kangni Chen; Jing Zhang; (O)mür Yilmaz Tastan; Zillah Anne Deussen; Mayte Yu-Yin Siswick; Ji-Long Liu

    2011-01-01

    CTP synthase is compartmentalized within a subcellular structure,termed the cytoophidium,in a range of organisms including bacteria,yeast,fruit fly and rat.Here we show that CTP synthase is also compartmentalized into cytoophidia in human cells.Surprisingly,the occurrence of cyloophidia in human cells increases upon treatment with a glutamine analog 6-diazo-5-oxo-L-norleucine (DON),an inhibitor of glutaminedependent enzymes including CTP synthase.Experiments in flies confirmned that DON globally promotes cytoophidium assembly.Clonal analysis via CTP synthase RNA interference in somatic cells indicates that CTP synthase expression level is critical for the formation of cytoophidia.Moreover,DON facilitates cytoophidium assembly even when CTP synthase level is low.A second glutamine analog azaserine also promotes cytoophidum formation.Our data demonstrate that glutamine analogs serve as useful tools in the study of cytoophidia.

  17. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Alam Hunain

    2012-01-01

    Full Text Available Abstract Background Fascin is a globular actin cross-linking protein, which plays a major role in forming parallel actin bundles in cell protrusions and is found to be associated with tumor cell invasion and metastasis in various type of cancers including oral squamous cell carcinoma (OSCC. Previously, we have demonstrated that fascin regulates actin polymerization and thereby promotes cell motility in K8-depleted OSCC cells. In the present study we have investigated the role of fascin in tumor progression of OSCC. Methods To understand the role of fascin in OSCC development and/or progression, fascin was overexpressed along with vector control in OSCC derived cells AW13516. The phenotype was studied using wound healing, Boyden chamber, cell adhesion, Hanging drop, soft agar and tumorigenicity assays. Further, fascin expression was examined in human OSCC samples (N = 131 using immunohistochemistry and level of its expression was correlated with clinico-pathological parameters of the patients. Results Fascin overexpression in OSCC derived cells led to significant increase in cell migration, cell invasion and MMP-2 activity. In addition these cells demonstrated increased levels of phosphorylated AKT, ERK1/2 and JNK1/2. Our in vitro results were consistent with correlative studies of fascin expression with the clinico-pathological parameters of the OSCC patients. Fascin expression in OSCC showed statistically significant correlation with increased tumor stage (P = 0.041, increased lymph node metastasis (P = 0.001, less differentiation (P = 0.005, increased recurrence (P = 0.038 and shorter survival (P = 0.004 of the patients. Conclusion In conclusion, our results indicate that fascin promotes tumor progression and activates AKT and MAPK pathways in OSCC-derived cells. Further, our correlative studies of fascin expression in OSCC with clinico-pathological parameters of the patients indicate that fascin may prove to be useful in prognostication and

  18. Methylation of Gene CHFR Promoter in Acute Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    GONG Hui; LIU Wengli; ZHOU Jianfeng; XU Huizhen

    2005-01-01

    Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.

  19. Arecoline inhibits interleukin-2 secretion in Jurkat cells by decreasing the expression of alpha7-nicotinic acetylcholine receptors and prostaglandin E2.

    Science.gov (United States)

    Hwang, G S; Hu, S; Lin, Y H; Chen, S T; Tang, T K; Wang, P S; Wang, S W

    2013-10-01

    The purpose of the present study was to explore the effect of arecoline on phytohemagglutinin (PHA)-stimulated interleukin-2 (IL-2) secretion, the expression of alpha7-nicotinic acetylcholine receptors (α7-nAChRs), prostaglandin E2(PGE2) protein, and IL-2 mRNA in human lymphocyte cells (Jurkat cell line). The IL-2 and PGE2 were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of phosphorylated extracellular signal-regulated kinase (ERK) and α7-nAChRs were determined by Western blotting. The level of IL-2 mRNA was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). Arecoline, in a dose-dependent manner, significantly decreased IL-2 and PGE2 secretion by Jurkat cells incubated with 0 or 5 μg/ml 5 μg/ml PHA. PGE2 also significantly inhibited IL-2 secretion by Jurkat cells in a dose-dependent manner. In addition, reduced expression of PHA-induced ERK phosphorylation was observed in Jurkat cells treated with arecoline. PHA-enhanced IL-2 mRNA expression was also inhibited by arecoline. These results imply that arecoline inhibits the release of PGE2 and PHA-induced IL-2 secretion by Jurkat cells and that these effects seem to occur, at least in part, either through the attenuation of ERK in conjunction with a decrease of PHA-induced IL-2 mRNA expression. These results imply that arecoline inhibits the protein expression of α7-nAChRs , the release of PGE2 and PHA-induced IL-2 secretion by Jurkat cells.

  20. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Griewank, Klaus G; Murali, Rajmohan; Schilling, Bastian; Schimming, Tobias; Möller, Inga; Moll, Iris; Schwamborn, Marion; Sucker, Antje; Zimmer, Lisa; Schadendorf, Dirk; Hillen, Uwe

    2013-01-01

    Activating mutations in the TERT promoter were recently identified in up to 71% of cutaneous melanoma. Subsequent studies found TERT promoter mutations in a wide array of other major human cancers. TERT promoter mutations lead to increased expression of telomerase, which maintains telomere length and genomic stability, thereby allowing cancer cells to continuously divide, avoiding senescence or apoptosis. TERT promoter mutations in cutaneous melanoma often show UV-signatures. Non-melanoma skin cancer, including basal cell carcinoma and squamous cell carcinoma, are very frequent malignancies in individuals of European descent. We investigated the presence of TERT promoter mutations in 32 basal cell carcinomas and 34 cutaneous squamous cell carcinomas using conventional Sanger sequencing. TERT promoter mutations were identified in 18 (56%) basal cell carcinomas and in 17 (50%) cutaneous squamous cell carcinomas. The recurrent mutations identified in our cohort were identical to those previously described in cutaneous melanoma, and showed a UV-signature (C>T or CC>TT) in line with a causative role for UV exposure in these common cutaneous malignancies. Our study shows that TERT promoter mutations with UV-signatures are frequent in non-melanoma skin cancer, being present in around 50% of basal and squamous cell carcinomas and suggests that increased expression of telomerase plays an important role in the pathogenesis of these tumors.

  1. Nicotine Inhibits Memory CTL Programming

    OpenAIRE

    Zhifeng Sun; Kendra Smyth; Karla Garcia; Elliot Mattson; Lei Li; Zhengguo Xiao

    2013-01-01

    Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but imp...

  2. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  3. Nicotinic activation of laterodorsal tegmental neurons: implications for addiction to nicotine.

    Science.gov (United States)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-11-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non-cholinergic neurons. Utilization of nicotinic acetylcholine receptors (nAChR) subunit antagonists revealed that presynaptic, inhibitory terminals on cholinergic neurons were activated by receptors containing alpha 7, beta2, and non-alpha 7 subunits, whereas, presynaptic glutamatergic terminals were activated by nAChRs that comprised non-alpha 7 subunits. We also found that direct nicotinic actions on cholinergic LDT neurons were mediated by receptors containing alpha 7, beta2, and non

  4. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  5. Neurocognitive Insights in Nicotine Addiction

    NARCIS (Netherlands)

    M. Luijten (Maartje)

    2012-01-01

    textabstractIn the Netherlands, 27% of the population is currently smoking. Nicotine is among the most addictive substances of abuse. Thirty-two percent of the people who tried smoking develop nicotine dependence within ten year. This percentage is higher for nicotine than for other substances of ab

  6. Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Weiss, Daniel; Stockmann, Christian; Schrödter, Katrin; Rudack, Claudia

    2013-06-01

    Epigenetic alterations of the transcription factor 21 (TCF21) gene have been associated with head and neck squamous cell carcinoma (HNSCC) and other tumor entities. So far, however, no reports have appeared in the literature on TCF21 protein expression in HNSCC and its relevance as a putative biomarker. TCF21 protein expression was assessed in 74 HNSCCs and 31 benign tonsils by immunohistochemistry. Methylation analyses of the corresponding gene promoter were performed in 45 HNSCCs and 31 benign tonsils. The TCF21 expression levels in the tumors and controls were compared with each other and within each group and, in addition, with the TCF21 promoter methylation status and various clinicopathological characteristics. Overall, both the expression levels and methylation frequencies of TCF21 were significantly higher in the HNSCCs than in the benign controls (p promoter hypermethylation resulted in a reduced protein expression in a subgroup of the HNSCCs (p = 0.038), but not in the tonsils. In the tonsils, TCF21 protein expression positively correlated with that of CD31 (p = 0.039), a marker for blood vessels. Also, in the tonsils the TCF21 protein methylation frequency showed a positive correlation with age (p = 0.008). The HNSCCs of patients with a positive history for alcohol and nicotine abuse showed higher TCF21 protein expression levels than their respective counterparts (p = 0.028 and p = 0.062, respectively). The same was observed in human papilloma virus (HPV)-negative tumors (p = 0.042), tumors located in the oral cavity (p = 0.016) and early-stage tumors (p = 0.025). Interestingly, expression rates in tumors of the oropharynx, where HPV-positive tumors were most frequently found, tended to be lower (p = 0.065). The methylation frequencies of TCF21 were found to be significantly higher in tumors of patients without nicotine abuse (p = 0.030), in HPV-positive tumors (p = 0.014) and in tumors exhibiting over

  7. Engineering of a hybrid nanoparticle-based nicotine nanovaccine as a next-generation immunotherapeutic strategy against nicotine addiction: A focus on hapten density.

    Science.gov (United States)

    Zhao, Zongmin; Powers, Kristen; Hu, Yun; Raleigh, Michael; Pentel, Paul; Zhang, Chenming

    2017-04-01

    Although vaccination is a promising way to combat nicotine addiction, most traditional hapten-protein conjugate nicotine vaccines only show limited efficacy due to their poor recognition and uptake by immune cells. This study aimed to develop a hybrid nanoparticle-based nicotine vaccine with improved efficacy. The focus was to study the impact of hapten density on the immunological efficacy of the proposed hybrid nanovaccine. It was shown that the nanovaccine nanoparticles were taken up by the dendritic cells more efficiently than the conjugate vaccine, regardless of the hapten density on the nanoparticles. At a similar hapten density, the nanovaccine induced a significantly stronger immune response against nicotine than the conjugate vaccine in mice. Moreover, the high- and medium-density nanovaccines resulted in significantly higher anti-nicotine antibody titers than their low-density counterpart. Specifically, the high-density nanovaccine exhibited better immunogenic efficacy, resulting in higher anti-nicotine antibody titers and lower anti-carrier protein antibody titers than the medium- and low-density versions. The high-density nanovaccine also had the best ability to retain nicotine in serum and to block nicotine from entering the brain. These results suggest that the hybrid nanoparticle-based nicotine vaccine can elicit strong immunogenicity by modulating the hapten density, thereby providing a promising next-generation immunotherapeutic strategy against nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Activation of α7 nicotinic acetylcholine receptor protects against oxidant stress damage through reducing vascular peroxidase-1 in a JNK signaling-dependent manner in endothelial cells.

    Science.gov (United States)

    Li, Dong-Jie; Zhao, Ting; Xin, Ru-Juan; Wang, Yuan-Yuan; Fei, Yi-Bo; Shen, Fu-Ming

    2014-01-01

    Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotransmission in central nervous system, is an essential regulator of cholinergic anti-inflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endothelial cells. Cultured human umbilical vein endothelial cells were treated with H2O2 (400 µM) or H2O2 plus PNU-282987 (10 µM). Cell viability and membrane integrity were measured. Annexin V + PI assay, immunoblotting of bcl-2, bax and cleaved capase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 (VPO-1) and phosphor-JNK were measured by immunoblotting. Activation of α7nAChR by a selective agonist PNU-282987 prevented H2O2-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2O2-induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activation on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyllycaconitine blocked the cytoprotective effect of PNU-282987. These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signaling pathway-dependent manner in endothelial cells. © 2014 S. Karger AG, Basel.

  9. UBXD4, a UBX containing protein, regulates the cell surface number and the stability of α3-containing nicotinic acetylcholine receptors

    Science.gov (United States)

    Rezvani, Khosrow; Teng, Yanfen; Pan, Yaping; Dani, John A.; Lindstrom, Jon.; Gras, Eduardo A. Garcáa; McIntosh, J. Michael; De Biasi, Mariella.

    2010-01-01

    Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the α3 and α4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with α3-containing nAChRs (α3* nAChRs) expressed in HEK293 cells, PC12 cells and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the α3β2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of α3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the α3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of α3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the α3 subunit and, consequently, the number of receptors at the cell surface. PMID:19474315

  10. Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsukura, Hiroshi, E-mail: hmatsukura.epi@mri.tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Aisaki, Ken-ichi; Igarashi, Katsuhide; Matsushima, Yuko; Kanno, Jun [Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Muramatsu, Masaaki [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Sudo, Katsuko [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Animal Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402 (Japan); Sato, Noriko, E-mail: nsato.epi@tmd.ac.jp [Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2011-08-26

    Highlights: {yields} Genistein (GEN) is a phytoestrogen found in soy products. {yields} GEN demethylated/unsilenced the steroidogenic factor 1 gene in endometrial tissue. {yields} GEN thus altered mRNA expression in uteri of ovariectomized (OVX) mice. {yields} A high-resolution melting assay was used to screen for epigenetic change. {yields} We isolated an endometrial cell clone that was epigenetically modulated by GEN. -- Abstract: It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.

  11. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots.

    Science.gov (United States)

    Takada, Shinobu; Takada, Nozomi; Yoshida, Ayaka

    2013-05-01

    Molecular mechanisms that generate distinct tissue layers in plant shoots are not well understood. ATML1, an Arabidopsis homeobox gene, is expressed in the outermost cell layer, beginning at an early stage of development. The promoters of many epidermis-specific genes, including ATML1, contain an ATML1-binding site called an L1 box, suggesting that ATML1 regulates epidermal cell fate. Here, we show that overexpression of ATML1 was sufficient to activate the expression of epidermal genes and to induce epidermis-related traits such as the formation of stomatal guard cells and trichome-like cells in non-epidermal seedling tissues. Detailed observation of the division planes of these ectopic stomatal cells suggested that a near-surface position, as well as epidermal cell identity, were required for regular anticlinal cell division, as seen in wild-type epidermis. Moreover, analyses of a loss-of-function mutant and overexpressors implied that differentiation of epidermal cells was associated with repression of mesophyll cell fate. Collectively, our studies contribute new information about the molecular basis of cell fate determination in different layers of plant aerial organs.

  12. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  13. Surveillance of moist snuff: total nicotine, moisture, pH, un-ionized nicotine, and tobacco-specific nitrosamines.

    Science.gov (United States)

    Richter, Patricia; Hodge, Knachelle; Stanfill, Stephen; Zhang, Liqin; Watson, Clifford

    2008-11-01

    In 2005, approximately 2.3% of U.S. adults used smokeless tobacco. Moist snuff leads all types of smokeless tobacco in revenues and marketing expenditures. The U.S. Surgeon General has concluded that smokeless tobacco use can lead to nicotine addiction. The National Toxicology Program of the National Institutes of Health has classified smokeless tobacco as a human carcinogen. Tobacco-specific nitrosamines (TSNAs) are potent carcinogens in smokeless tobacco products, and the pH of the product influences the content of un-ionized nicotine which is the form of nicotine most rapidly absorbed in the mouth. The Centers for Disease Control and Prevention analyzed 40 top-selling brands of moist snuff to measure nicotine, moisture, pH, un-ionized nicotine, and TSNAs, including 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). The study findings indicate that moist snuff brands varied widely in content of rapidly absorbed, addictive un-ionized nicotine (500-fold range) and of carcinogenic TSNAs (18-fold range). Product characteristics such as packaging and moisture content appeared to be correlated with concentrations of un-ionized nicotine, and flavor characteristics of low-priced brands may correlate with TSNA concentrations. These findings warrant further study in light of (a) the marketing of smokeless tobacco for use in places where smoking is prohibited, (b) the promotion of smokeless tobacco as a harm-reduction product, and (c) the ever-expanding number of highly flavored smokeless varieties brought to the market.

  14. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells.

    Science.gov (United States)

    Li, Jianhua; Lu, Erick; Yi, Tangsheng; Cyster, Jason G

    2016-05-05

    T follicular helper (Tfh) cells are a subset of T cells carrying the CD4 antigen; they are important in supporting plasma cell and germinal centre responses. The initial induction of Tfh cell properties occurs within the first few days after activation by antigen recognition on dendritic cells, although how dendritic cells promote this cell-fate decision is not fully understood. Moreover, although Tfh cells are uniquely defined by expression of the follicle-homing receptor CXCR5 (refs 1, 2), the guidance receptor promoting the earlier localization of activated T cells at the interface of the B-cell follicle and T zone has been unclear. Here we show that the G-protein-coupled receptor EBI2 (GPR183) and its ligand 7α,25-dihydroxycholesterol mediate positioning of activated CD4 T cells at the interface of the follicle and T zone. In this location they interact with activated dendritic cells and are exposed to Tfh-cell-promoting inducible co-stimulator (ICOS) ligand. Interleukin-2 (IL-2) is a cytokine that has multiple influences on T-cell fate, including negative regulation of Tfh cell differentiation. We demonstrate that activated dendritic cells in the outer T zone further augment Tfh cell differentiation by producing membrane and soluble forms of CD25, the IL-2 receptor α-chain, and quenching T-cell-derived IL-2. Mice lacking EBI2 in T cells or CD25 in dendritic cells have reduced Tfh cells and mount defective T-cell-dependent plasma cell and germinal centre responses. These findings demonstrate that distinct niches within the lymphoid organ T zone support distinct cell fate decisions, and they establish a function for dendritic-cell-derived CD25 in controlling IL-2 availability and T-cell differentiation.

  15. Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Gao, Z; Nissen, J C; Legakis, L; Tsirka, S E

    2015-06-25

    Nicotine has been shown to attenuate experimental autoimmune encephalomyelitis (EAE) through inhibiting inflammation in microglial populations during the disease course. In this study, we investigated whether nicotine modified the regenerative process in EAE by examining nestin-expressing neural stem cells (NSCs) in the spinal cord, which is the primary area of demyelination and inflammation in EAE. Our results show that the endogenous neurogenic responses in the spinal cord after EAE are limited and delayed: while nestin expression is increased, the proliferation of ependymal cells is inhibited compared to healthy animals. Nicotine application significantly reduced nestin expression and partially allowed for the proliferation of ependymal cells. We found that reduction of ependymal cell proliferation correlated with inflammation in the same area, which was relieved by the administration of nicotine. Further, increased numbers of oligodendrocytes (OLs) were observed after nicotine treatment. These findings give a new insight into the mechanism of how nicotine functions to attenuate EAE.

  16. Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis.

    Science.gov (United States)

    Dubey, Lalit Kumar; Karempudi, Praneeth; Luther, Sanjiv A; Ludewig, Burkhard; Harris, Nicola L

    2017-08-28

    Lymphatic growth (lymphangiogenesis) within lymph nodes functions to promote dendritic cell entry and effector lymphocyte egress in response to infection or inflammation. Here we demonstrate a crucial role for lymphotoxin-beta receptor (LTβR) signaling to fibroblastic reticular cells (FRCs) by lymphotoxin-expressing B cells in driving mesenteric lymph node lymphangiogenesis following helminth infection. LTβR ligation on fibroblastic reticular cells leads to the production of B-cell-activating factor (BAFF), which synergized with interleukin-4 (IL-4) to promote the production of the lymphangiogenic factors, vascular endothelial growth factors (VEGF)-A and VEGF-C, by B cells. In addition, the BAFF-IL-4 synergy augments expression of lymphotoxin by antigen-activated B cells, promoting further B cell-fibroblastic reticular cell interactions. These results underlie the importance of lymphotoxin-dependent B cell-FRC cross talk in driving the expansion of lymphatic networks that function to promote and maintain immune responsiveness.The growth of lymph nodes in response to infection requires lymphangiogenesis. Dubey et al. show that the mesenteric lymph node lymphangiogenesis upon helminth infection depends on the signaling loop between the B and fibroblastic reticular cells (FRCs), whereby the FRCs respond to lymphotoxin secreted by B cells by releasing B cell activating factor.

  17. Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6).

    Science.gov (United States)

    Mitchell, Kathryn J; Lai, F Anthony; Rutter, Guy A

    2003-03-28

    We have demonstrated recently (Mitchell, K. J., Pinton, P., Varadi, A., Tacchetti, C., Ainscow, E. K., Pozzan, T., Rizzuto, R., and Rutter, G. A. (2001) J. Cell Biol. 155, 41-51) that ryanodine receptors (RyR) are present on insulin-containing secretory vesicles. Here we show that pancreatic islets and derived beta-cell lines express type I and II, but not type III, RyRs. Purified by subcellular fractionation and membrane immuno-isolation, dense core secretory vesicles were found to possess a similar level of type I RyR immunoreactivity as Golgi/endoplasmic reticulum (ER) membranes but substantially less RyR II than the latter. Monitored in cells expressing appropriately targeted aequorins, dantrolene, an inhibitor of RyR I channels, elevated free Ca(2+) concentrations in the secretory vesicle compartment from 40.1 +/- 6.7 to 90.4 +/- 14.8 microm (n = 4, p < 0.01), while having no effect on ER Ca(2+) concentrations. Furthermore, nicotinic acid adenine dinucleotide phosphate (NAADP), a novel Ca(2+)-mobilizing agent, decreased dense core secretory vesicle but not ER free Ca(2+) concentrations in permeabilized MIN6 beta-cells, and flash photolysis of caged NAADP released Ca(2+) from a thapsigargin-insensitive Ca(2+) store in single MIN6 cells. Because dantrolene strongly inhibited glucose-stimulated insulin secretion (from 3.07 +/- 0.51-fold stimulation to no significant glucose effect; n = 3, p < 0.01), we conclude that RyR I-mediated Ca(2+)-induced Ca(2+) release from secretory vesicles, possibly potentiated by NAADP, is essential for the activation of insulin secretion.

  18. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  19. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    Directory of Open Access Journals (Sweden)

    Laila Ziko

    2015-01-01

    Full Text Available Cisplatin (CisPt is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2 cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death. Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death.

  20. Role of neural precursor cells in promoting repair following stroke

    Institute of Scientific and Technical Information of China (English)

    Pooya DIBAJNIA; Cindi M MORSHEAD

    2013-01-01

    Stem cell-based therapies for the treatment of stroke have received considerable attention.Two broad approaches to stem cell-based therapies have been taken:the transplantation of exogenous stem cells,and the activation of endogenous neural stem and progenitor cells (together termed neural precursors).Studies examining the transplantation of exogenous cells have demonstrated that neural stem and progenitor cells lead to the most clinically promising results.Endogenous activation of neural precursors has also been explored based on the fact that resident precursor cells have the inherent capacity to proliferate,migrate and differentiate into mature neurons in the uninjured adult brain.Studies have revealed that these neural precursor cell behaviours can be activated following stroke,whereby neural precursors will expand in number,migrate to the infarct site and differentiate into neurons.However,this innate response is insufficient to lead to functional recovery,making it necessary to enhance the activation of endogenous precursors to promote tissue repair and functional recovery.Herein we will discuss the current state of the stem cell-based approaches with a focus on endogenous repair to treat the stroke injured brain.

  1. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  2. Being a long-term user of nicotine replacement therapy

    DEFF Research Database (Denmark)

    Borup, Gitte; Nørgaard, Lotte Stig; Tønnesen, Philip

    Background During recent years a gradual shift in the application of nicotine replacement therapy (NRT) has taken place from NRT-products only being recommended to achieve smoking cessation, to now including smoking reduction, and long-term substitution of tobacco with NRT has taken place. This has...... been promoted as a way of achieving harm-reduction in highly nicotine dependent smokers who are unwilling or incapable of quitting all nicotine products, as continued use of NRT is widely accepted as being far less hazardous than continued smoking. To our knowledge no previous research has been done...... of feeling addicted, cost of NRT products and fear of adverse health consequences. Aim of study • To get a thorough understanding of the lived experiences of nicotine dependent long-term NRT users. • To investigate what motivates or discourages quitting NRT. Method Semi-structured interviews with long...

  3. Methylene blue promotes quiescence of rat neural progenitor cells.

    Science.gov (United States)

    Xie, Luokun; Choudhury, Gourav R; Wang, Jixian; Park, Yong; Liu, Ran; Yuan, Fang; Zhang, Chun-Li; Yorio, Thomas; Jin, Kunlin; Yang, Shao-Hua

    2014-01-01

    Neural stem cell-based treatment holds a new therapeutic opportunity for neurodegenerative disorders. Here, we investigated the effect of methylene blue on proliferation and differentiation of rat neural progenitor cells (NPCs) both in vitro and in vivo. We found that methylene blue inhibited proliferation and promoted quiescence of NPCs in vitro without affecting committed neuronal differentiation. Consistently, intracerebroventricular infusion of methylene blue significantly inhibited NPC proliferation at the subventricular zone (SVZ). Methylene blue inhibited mTOR signaling along with down-regulation of cyclins in NPCs in vitro and in vivo. In summary, our study indicates that methylene blue may delay NPC senescence through enhancing NPCs quiescence.

  4. Obesity promotes aerobic glycolysis in prostate cancer cells.

    Science.gov (United States)

    Cavazos, David A; deGraffenried, Matthew J; Apte, Shruti A; Bowers, Laura W; Whelan, Kaitlin A; deGraffenried, Linda A

    2014-01-01

    Obesity is the leading preventable comorbidity associated with increased prostate cancer-related recurrence and mortality. Epidemiological and clinical studies indicate that a body mass index >30 is associated with increased oxidative DNA damage within the prostate gland and increased prostate cancer-related mortality. Here we provide evidence that obesity promotes worse clinical outcome through induction of metabolic abnormalities known to promote genotoxic stress. We have previously reported that blood serum derived from obese mice may enhance the proliferative and invasive potential of human prostate cancer cell lines ex vivo. Here we show that a 1-h exposure of LNCaP or PacMetUT1 prostate cancer cell lines and nonmalignant RWPE-1 prostate epithelial cells to 2% serum from obese mice induces markers of aerobic glycolysis relative to those exposed to serum from nonobese mice. This metabolic change was correlated with accumulation of reactive oxygen species (ROS) and increased frequency of DNA double-strand breaks. Interestingly, N-tert-Butylhydroxylamine, an antioxidant, significantly suppressed markers of aerobic glycolysis in the cells exposed to the blood serum of obese mice, suggesting that ROS contributes to a metabolic shift toward aerobic glycolysis. Here we describe obesity-induced changes in key metabolic markers that impact prostate cancer cell progression and explore the role of antioxidants in ameliorating these effects.

  5. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  6. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  7. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  8. Promoter Methylation Primarily Occurs in Tumor Cells of Patients with Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    De Jong, Wouter K.; Verpooten, Gonda F.; Kramer, Henk; Louwagie, Joost; Groen, Harry J. M.

    Background: The distribution of promoter methylation throughout the lungs of patients with non-small cell lung cancer (NSCLC) is unknown. In this explorative study, we assessed the methylation status of the promoter region of 11 genes in brush samples of 3 well-defined endobronchial locations in

  9. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats.

    Science.gov (United States)

    Palmatier, Matthew I; Kellicut, Marissa R; Brianna Sheppard, A; Brown, Russell W; Robinson, Donita L

    2014-11-01

    Nicotine is a psychomotor stimulant with 'reinforcement enhancing' effects--the actions of nicotine in the brain increase responding for non-nicotine rewards. We hypothesized that this latter effect of nicotine depends on increased incentive properties of anticipatory cues; consistent with this hypothesis, multiple laboratories have reported that nicotine increases sign tracking, i.e. approach to a conditioned stimulus (CS), in Pavlovian conditioned-approach tasks. Incentive motivation and sign tracking are mediated by mesolimbic dopamine (DA) transmission and nicotine facilitates mesolimbic DA release. Therefore, we hypothesized that the incentive-promoting effects of nicotine would be impaired by DA antagonists. To test this hypothesis, separate groups of rats were injected with nicotine (0.4mg/kg base) or saline prior to Pavlovian conditioning sessions in which a CS (30s illumination of a light or presentation of a lever) was immediately followed by a sweet reward delivered in an adjacent location. Both saline and nicotine pretreated rats exhibited similar levels of conditioned approach to the reward location (goal tracking), but nicotine pretreatment significantly increased approach to the CS (sign tracking), regardless of type (lever or light). The DAD1 antagonist SCH-23390 and the DAD2/3 antagonist eticlopride reduced conditioned approach in all rats, but specifically reduced goal tracking in the saline pretreated rats and sign tracking in the nicotine pretreated rats. The non-selective DA antagonist flupenthixol reduced sign-tracking in nicotine rats at all doses tested; however, only the highest dose of flupenthixol reduced goal tracking in both nicotine and saline groups. The reductions in conditioned approach behavior, especially those by SCH-23390, were dissociated from simple motor suppressant effects of the antagonists. These experiments are the first to investigate the effects of dopaminergic drugs on the facilitation of sign-tracking engendered by

  10. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  11. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  12. 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells.

    Science.gov (United States)

    Chen, Li; Zhang, Lishan; Xian, Guozhe; Lv, Yinping; Lin, Yanliang; Wang, Yibing

    2017-03-18

    25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase in various organs and is involved in many processes, including lipid metabolism, inflammation and the immune response. However, the role of 25-HC in the migration and invasion of lung adenocarcinoma (ADC) cells remains largely unknown. In this study, we demonstrated that 0.1 μM 25-HC promoted ADC cell migration and invasion without affecting cell proliferation, especially after coculture with THP1-derived macrophages. Further investigation showed that 0.1 μM 25-HC significantly stimulated interleukin-1β (IL-1β) secretion in a coculture system and increased the expression of LXR and Snail. IL-1β also mimicked the effect of 25-HC. LXR knockdown notably blocked the 25-HC-induced Snail expression, migration and invasion in both the monoculture system and the coculture system, but it did not impact the effect of IL-1β, which suggested that IL-1β functioned in an LXR-independent manner. These results suggested that 25-HC promoted ADC cell migration and invasion in an LXR-dependent manner in the monoculture system but that in the coculture system, the 25-HC-induced IL-1β secretion enhanced the effect of 25-HC in an LXR-independent manner.

  13. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    Science.gov (United States)

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  14. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    Science.gov (United States)

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P cell aggregation elimination role at all concentrations (P cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  15. Nicotine replacement therapy

    Science.gov (United States)

    ... without a prescription. Or, you can have your health care provider prescribe the patch for you. All nicotine patches are placed and ... National Library of Medicine 8600 Rockville Pike, Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page ...

  16. Nicotine: the Desirable Drug

    Institute of Scientific and Technical Information of China (English)

    瞿桂林

    2001-01-01

    Pure Nicotine,just three drops can kill an adult Yet every day,millions ofpeople take it into their lungs. 纯尼古丁,三滴就可以毒死一个成年人。但每天仍有数以百万的人将它吸入肺中。

  17. CCDC106 promotes non-small cell lung cancer cell proliferation.

    Science.gov (United States)

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Wang, Enhua

    2017-04-18

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.

  18. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation.

    Science.gov (United States)

    Pietrella, Donatella; Corbucci, Cristina; Perito, Stefano; Bistoni, Giovanni; Vecchiarelli, Anna

    2005-02-01

    Our previous data show that mannoproteins (MPs) from Cryptococcus neoformans are able to induce protective responses against both C. neoformans and Candida albicans. Here we provide evidence that MPs foster maturation and activation of human dendritic cells (DCs). Maturation was evaluated by the ability of MPs to facilitate expression of costimulatory molecules such as CD40, CD86, CD83, and major histocompatibility complex classes I and II and to inhibit receptors such as CD14, CD16, and CD32. Activation of DCs was measured by the capacity of MPs to promote interleukin-12 and tumor necrosis factor alpha secretion. DC-induced maturation and interleukin-12 induction are largely mediated by engagement of mannose receptors and presume MP internalization and degradation. DC activation leads to IkappaBalpha phosphorylation, which is necessary for nuclear factor kappaB transmigration into the nucleus. MP-loaded DCs are efficient stimulators of T cells and show a remarkable capacity to promote CD4 and CD8 proliferation. In conclusion, we have evidenced a novel regulatory role of MPs that promotes their candidacy as a vaccine against fungi.

  19. Biotin-Avidin Based Universal Cell-Matrix Interaction for Promoting Three-Dimensional Cell Adhesion.

    Science.gov (United States)

    Dou, Xiao-Qiu; Zhang, Jia; Feng, Chuanliang

    2015-09-23

    To promote cell adhesion in three-dimensional (3D) extracellular matrix (ECM) is crucial for avoiding cell anoikis, which is one of the most important issues for fundamental cell biology. Herein, a biotin-avidin based universal cell-matrix interaction for different types of cells is developed in order to achieve the promoted adhesion in 3D ECM. For the purpose, biotinylated nanofibrous hydrogels are constructed by coassembling 1,4-benzyldicarboxamide (C2) based non-biotinylated and biotinylated supramolecular gelators. The used cells are modified by avidin (AV-cells) through biotinylating cells and then interacting with avidin. After in situ encapsulating AV-cells in the hydrogels, the adhered amount can be increased by tens of percent even with adding several percentages of the biotinylated C2 gelators in the coassembly due to the specific biotin-avidin interaction. Reverse transcription polymerase chain reaction (RT-PCR) confirms that AV-cells can proliferate without varying gene expression and denaturation. Compared with the interaction between RGD and cells, this avidin-biotin interaction should be much more universal and it is feasible to be employed to promote cell adhesion for most types of cells in 3D matrix.

  20. Vitamin E Nicotinate

    Science.gov (United States)

    Duncan, Kimbell R.; Suzuki, Yuichiro J.

    2017-01-01

    Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate. PMID:28335380

  1. Vitamin E Nicotinate

    Directory of Open Access Journals (Sweden)

    Kimbell R. Duncan

    2017-03-01

    Full Text Available Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate.

  2. Vitamin E Nicotinate.

    Science.gov (United States)

    Duncan, Kimbell R; Suzuki, Yuichiro J

    2017-03-13

    Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate.

  3. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  4. Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells.

    Science.gov (United States)

    Lyukmanova, E N; Shulepko, M A; Bychkov, M L; Shenkarev, Z O; Paramonov, A S; Chugunov, A O; Arseniev, A S; Dolgikh, D A; Kirpichnikov, M P

    2014-10-01

    Human secreted Ly-6/uPAR related proteins (SLURP-1 and SLURP-2) are produced by various cells, including the epithelium and immune system. These proteins act as autocrine/paracrine hormones regulating the growth and differentiation of keratinocytes and are also involved in the control of inflammation and malignant cell transformation. These effects are assumed to be mediated by the interactions of SLURP-1 and SLURP-2 with the α7 and α3β2 subtypes of nicotinic acetylcholine receptors (nAChRs), respectively. Available knowledge about the molecular mechanism underling the SLURP-1 and SLURP-2 effects is very limited. SLURP-2 remains one of the most poorly studied proteins of the Ly-6/uPAR family. In this study, we designed for the first time a bacterial system for SLURP-2 expression and a protocol for refolding of the protein from cytoplasmic inclusion bodies. Milligram quantities of recombinant SLURP-2 and its 13C-15N-labeled analog were obtained. The recombinant protein was characterized by NMR spectroscopy, and a structural model was developed. A comparative study of the SLURP-1 and SLURP-2 effects on the epithelial cell growth was conducted using human colorectal adenocarcinoma HT-29 cells, which express only α7-nAChRs. A pronounced antiproliferative effect of both proteins was observed. Incubation of cells with 1 μM SLURP-1 and 1 μM SLURP-2 during 48 h led to a reduction in the cell number down to ~ 54 and 63% relative to the control, respectively. Fluorescent microscopy did not reveal either apoptotic or necrotic cell death. An analysis of the dose-response curve revealed the concentration-dependent mode of the SLURP-1 and SLURP-2 action with EC50 ~ 0.1 and 0.2 nM, respectively. These findings suggest that the α7-nAChR is the main receptor responsible for the antiproliferative effect of SLURP proteins in epithelial cells.

  5. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    Science.gov (United States)

    Sladitschek, Hanna L; Neveu, Pierre A

    2016-01-01

    MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs) and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  6. Bidirectional Promoter Engineering for Single Cell MicroRNA Sensors in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Hanna L Sladitschek

    Full Text Available MicroRNAs have emerged as important markers and regulators of cell identity. Precise measurements of cellular miRNA levels rely traditionally on RNA extraction and thus do not allow to follow miRNA expression dynamics at the level of single cells. Non-invasive miRNA sensors present an ideal solution but they critically depend on the performance of suitable ubiquitous promoters that reliably drive expression both in pluripotent and differentiated cell types. Here we describe the engineering of bidirectional promoters that drive the expression of precise ratiometric fluorescent miRNA sensors in single mouse embryonic stem cells (mESCs and their differentiated derivatives. These promoters are based on combinations of the widely used CAG, EF1α and PGK promoters as well as the CMV and PGK enhancers. miR-142-3p, which is known to be bimodally expressed in mESCs, served as a model miRNA to gauge the precision of the sensors. The performance of the resulting miRNA sensors was assessed by flow cytometry in single stable transgenic mESCs undergoing self-renewal or differentiation. EF1α promoters arranged back-to-back failed to drive the robustly correlated expression of two transgenes. Back-to-back PGK promoters were shut down during mESC differentiation. However, we found that a back-to-back arrangement of CAG promoters with four CMV enhancers provided both robust expression in mESCs undergoing differentiation and the best signal-to-noise for measurement of miRNA activity in single cells among all the sensors we tested. Such a bidirectional promoter is therefore particularly well suited to study the dynamics of miRNA expression during cell fate transitions at the single cell level.

  7. Insulin promotes cell migration by regulating PSA-NCAM.

    Science.gov (United States)

    Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A

    2017-06-01

    Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  9. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  10. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.

    Science.gov (United States)

    Zambirinis, Constantinos P; Levie, Elliot; Nguy, Susanna; Avanzi, Antonina; Barilla, Rocky; Xu, Yijie; Seifert, Lena; Daley, Donnele; Greco, Stephanie H; Deutsch, Michael; Jonnadula, Saikiran; Torres-Hernandez, Alejandro; Tippens, Daniel; Pushalkar, Smruti; Eisenthal, Andrew; Saxena, Deepak; Ahn, Jiyoung; Hajdu, Cristina; Engle, Dannielle D; Tuveson, David; Miller, George

    2015-11-16

    Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis. © 2015 Zambirinis et al.

  11. CD4+ T cells memorize obesity and promote weight regain.

    Science.gov (United States)

    Zou, Jianghuan; Lai, Beibei; Zheng, Mingzhu; Chen, Qin; Jiang, Shujun; Song, Anying; Huang, Zan; Shi, Peiliang; Tu, Xin; Wang, Di; Lu, Linrong; Lin, Zhaoyu; Gao, Xiang

    2017-06-19

    Body weight regain often causes failure of obesity therapies while the underlying mechanism remains largely unknown. In this study, we report that immune cells, especially CD4+ T cells, mediate the 'memory' of previous obese status. In a weight gain-loss-regain model, we found that C57BL/6J mice with an obesity history showed a much faster rate of body weight regain. This obesity memory could last for at least 2 months after previously obese mice were kept at the same body weight as non-obese mice. Surprisingly, such obesity memory was abrogated by dexamethasone treatment, whereas immunodeficient Rag1(-/-) and H2A(-/-) mice failed to establish such memory. Rag1(-/-) mice repossessed the obesity memory when immune cells or CD4+ T cells isolated from previously obese mice were transferred. Furthermore, depletion of CD4+ T cells led to obesity memory ablation. Taken together, we conclude that CD4+ T cells mediate obesity memory and promote weight regain.Cellular &Molecular Immunology advance online publication, 19 June 2017; doi:10.1038/cmi.2017.36.

  12. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  13. SNAILs promote G1 phase in selected cancer cells.

    Science.gov (United States)

    Wu, Ya-Lan; Xue, Jian-Xin; Zhou, Lin; Deng, Lei; Shang, Yan-Na; Liu, Fang; Mo, Xian-Ming; Lu, You

    2015-11-01

    Cells can acquire a stem-like cell phenotype through epithelial-mesenchymal transition (EMT). However, it is not known which of the stem-like cancer cells are generated by these phenotype transitions. We studied the EMT-inducing roles of SNAILs (the key inducers for the onset of EMT) in selected cancer cells (lung cancer cell line with relatively stable genome), in order to provide more implications for the investigation of EMT-related phenotype transitions in cancer. However, SNAILs fail to induce completed EMT. In addition, we proved that Snail accelerates the early G1 phase whereas Slug accelerates the late G1 phase. Blocking G1 phase is one of the basic conditions for the onset of EMT-related phenotype transitions (e.g., metastasis, acquiring stemness). The discovery of this unexpected phenomenon (promoting G1 phase) typically reveals the heterogeneity of cancer cells. The onset of EMT-related phenotype transitions in cancer needs not only the induction and activation of SNAILs, but also some particular heredity alterations (genetic or epigenetic alterations, which cause heterogeneity). The new connection between heredity alteration (heterogeneity) and phenotype transition suggests a novel treatment strategy, the heredity alteration-directed specific target therapy. Further investigations need to be conducted to study the relevant heredity alterations.

  14. Promotion of stem cell proliferation by vegetable peptone.

    Science.gov (United States)

    Lee, J; Lee, J; Hwang, H; Jung, E; Huh, S; Hyun, J; Park, D

    2009-10-01

    Technical limitations and evolution of therapeutic applications for cell culture-derived products have accelerated elimination of animal-derived constituents from such products to minimize inadvertent introduction of microbial contaminants, such as fungi, bacteria or viruses. The study described here was conducted to investigate the proliferative effect of vegetable peptone on adult stem cells in the absence of serum, and its possible mechanisms of action. Cell viability and proliferation were determined using the MTT assay and Click-iT EdU flow cytometry, respectively. In addition, changes in expression of cytokine genes were analysed using MILLIPLEX human cytokine enzyme-linked immunosorbent assay kit. Viability of cord blood-derived mesenchymal stem cells (CB-MSC) and adipose tissue-derived stem cells (ADSC) increased significantly when treated with the peptone. In addition, median value of the group treated with peptone shifted to the right when compared to the untreated control group. Furthermore, quantitative analysis of the cytokines revealed that production of vascular endothelial growth factor (VEGF), transforming growth factor-beta1 (TGF-beta1), and interleukin-6 (IL-6) increased significantly in response to treatment with our vegetable peptone in both CB-MSCs and ADSCs. Our findings revealed that the vegetable peptone promotes proliferation of CB-MSCs and ADSCs. In addition, results of this study suggest that induction of stem cell proliferation by vegetable peptone is likely to be related to its induction of VEGF, TGF-beta1, and IL-6 expression.

  15. SIRT1 promotes metastasis of human osteosarcoma cells.

    Science.gov (United States)

    Zhang, Ning; Xie, Tao; Xian, Miao; Wang, Yi-Jie; Li, Heng-Yuan; Ying, Mei-Dan; Ye, Zhao-Ming

    2016-11-29

    Pulmonary metastasis is the leading cause of mortality in patients with osteosarcoma; however, the underlying mechanism remains unclear. The NAD+-dependent deacetylase, sirtuin 1 (SIRT1), has been reported to play a key role in carcinogenesis through deacetylation of important regulatory proteins. Here, we report that SIRT1 promotes osteosarcoma metastasis by regulating the expression of metastatic-associated genes. The SIRT1 protein was significantly upregulated in most primary osteosarcoma tumours, compared with normal tissues, and the SIRT1 expression level may be coupled with metastatic risk in patients with osteosarcoma. Moreover, the results of cell migration and wound-healing assays further suggested that higher expression of SIRT1 promoted invasive activity of osteosarcoma cells. Importantly, downregulating SIRT1 with shRNA inhibited the migration ability of osteosarcoma cells in vitro and suppressed tumour lung metastasis in mice. Finally, a gene expression analysis showed that knockdown of SIRT1 profoundly activated translation of its downstream pathway, particularly at migration and invasion. In summary, high levels of SIRT1 may be a biomarker for a high metastatic rate in osteosarcoma patients; inhibiting SIRT1 could be a potent therapeutic intervention for these patients.

  16. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  17. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions.

  18. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  19. State activities that promote fuel cell and hydrogen infrastructure development

    Energy Technology Data Exchange (ETDEWEB)

    Gangi, J. [Fuel Cells 2000, Washington, DC (United States). Breakthrough Technologies Inst.

    2007-07-01

    The fuel cell and hydrogen industry provide environmental benefits in addition to economic benefits in the form of jobs and business. This presentation outlined the initiatives, policy and partnerships that individual states are initiating to promote the commercialization of fuel cells and hydrogen fuels. Multi-state partnerships and regional organizations and initiatives were highlighted along with state programs, regulations, demonstrations and incentives that include hydrogen, fuel cells and zero emission vehicles. It was shown that 47 states and the District of Columbia (DC) are involved in the promotion of fuel cell or hydrogen legislation and funding. Breakthrough Technologies Institute, the parent organization of Fuel Cells 2000, and the U.S. Department of Energy's Hydrogen Program has launched a searchable database that catalogues all stationary installations, hydrogen fueling stations and vehicle demonstration programs in the United States, including cars, buses and specialty vehicles. The database is intended to be a guide for local, state and federal lawmakers to implement similar legislation and initiatives in their jurisdictions. The database includes regulations such as interconnection standards, renewable portfolio standards and net metering as well as legislation such as tax credits, grants, and loans. Roadmaps and funding/support for business incubators and relocation are included. The database is also an important tool for the general public who are trying to learn more about the technology. Although federal research money has mainly focused on transportation and related fuel technologies, individual states are targeting other applications and areas such as materials and components, stationary power and fuel storage.

  20. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    Science.gov (United States)

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  1. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells.

    Science.gov (United States)

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre

    2016-01-01

    Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling.

  2. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    Science.gov (United States)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

  3. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  4. Spectral confocal imaging of fluorescently tagged nicotinic receptors in knock-in mice with chronic nicotine administration.

    Science.gov (United States)

    Renda, Anthony; Nashmi, Raad

    2012-02-10

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates. Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons. Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology. By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells. More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer resolution in CNS

  5. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423 as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05 in high adipogenic cells, while transforming growth factor (TGF-β was higher (156.1±48.7%, P<0.05 in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ and CCAAT/enhancer binding protein α (C/EBPα were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05 in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular

  6. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  7. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  8. Nicotine and inflammatory neurological disorders

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua PIAO; Denise CAMPAGNOLO; Carlos DAYAO; Ronald J LUKAS; Jie WU; Fu-Dong SHI

    2009-01-01

    Cigarette smoke is a major health risk factor which significantly increases the incidence of diseases including lung cancer and respiratory infections. However, there is increasing evidence that smokers have a lower incidence of some inflamma- tory and neurodegenerative diseases. Nicotine is the main immunosuppressive constituent of cigarette smoke, which inhib-its both the innate and adaptive immune responses. Unlike cigarette smoke, nicotine is not yet considered to be a carcino-gen and may, in fact, have therapeutic potential as a neuroprotective and anti-inflammatory agent. This review provides a synopsis summarizing the effects of nicotine on the immune system and its (nicotine) influences on various neurological diseases.

  9. Nicotinic receptors, memory, and hippocampus.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.

  10. Experimental Study of Nicotine on Angiogenesis and Restenosis

    Institute of Scientific and Technical Information of China (English)

    Yin Ruixing; Bi Qi; Liu Tangwei

    2005-01-01

    arteriogenesis in ischemic hindlimb of rabbits, but is capable of significantly promoting intramuscular angiogenesis in ischemic hindlimb.Nicotine can also accelerate intimal thickening of balloon catheter denuding injury iliac artery, so it may contribute to the development of restenosis.

  11. Natural killer cells promote early CD8 T cell responses against cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Scott H Robbins

    2007-08-01

    Full Text Available Understanding the mechanisms that help promote protective immune responses to pathogens is a major challenge in biomedical research and an important goal for the design of innovative therapeutic or vaccination strategies. While natural killer (NK cells can directly contribute to the control of viral replication, whether, and how, they may help orchestrate global antiviral defense is largely unknown. To address this question, we took advantage of the well-defined molecular interactions involved in the recognition of mouse cytomegalovirus (MCMV by NK cells. By using congenic or mutant mice and wild-type versus genetically engineered viruses, we examined the consequences on antiviral CD8 T cell responses of specific defects in the ability of the NK cells to control MCMV. This system allowed us to demonstrate, to our knowledge for the first time, that NK cells accelerate CD8 T cell responses against a viral infection in vivo. Moreover, we identify the underlying mechanism as the ability of NK cells to limit IFN-alpha/beta production to levels not immunosuppressive to the host. This is achieved through the early control of cytomegalovirus, which dramatically reduces the activation of plasmacytoid dendritic cells (pDCs for cytokine production, preserves the conventional dendritic cell (cDC compartment, and accelerates antiviral CD8 T cell responses. Conversely, exogenous IFN-alpha administration in resistant animals ablates cDCs and delays CD8 T cell activation in the face of NK cell control of viral replication. Collectively, our data demonstrate that the ability of NK cells to respond very early to cytomegalovirus infection critically contributes to balance the intensity of other innate immune responses, which dampens early immunopathology and promotes optimal initiation of antiviral CD8 T cell responses. Thus, the extent to which NK cell responses benefit the host goes beyond their direct antiviral effects and extends to the prevention of innate

  12. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  13. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Zsolt K. Bali

    2017-09-01

    Full Text Available The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA and acetylcholine (ACh. Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA to assess the contribution of muscarinic ACh receptor (mAChR or α7 nicotinic ACh receptor (nAChR receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline.

  14. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells.

    Science.gov (United States)

    Kust, Nadezda; Rybalkina, Ekaterina; Mertsalov, Ilya; Savchenko, Ekaterina; Revishchin, Alexander; Pavlova, Gali

    2014-01-01

    The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.

  15. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice.

    Directory of Open Access Journals (Sweden)

    Shakir D Alsharari

    Full Text Available Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c. for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.

  16. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice.

    Science.gov (United States)

    Alsharari, Shakir D; King, Justin R; Nordman, Jacob C; Muldoon, Pretal P; Jackson, Asti; Zhu, Andy Z X; Tyndale, Rachel F; Kabbani, Nadine; Damaj, M Imad

    2015-01-01

    Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia) and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease) and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c.) for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.

  17. Hyperbaric oxygen promotes malignant glioma cell growth and inhibits cell apoptosis.

    Science.gov (United States)

    Wang, Yong-Gang; Zhan, Yi-Ping; Pan, Shu-Yi; Wang, Hai-Dong; Zhang, Dun-Xiao; Gao, Kai; Qi, Xue-Ling; Yu, Chun-Jiang

    2015-07-01

    Glioblastoma multiforme (GBM) is the most frequently diagnosed intracranial malignant tumor in adults. Clinical studies have indicated that hyperbaric oxygen may improve the prognosis and reduce complications in glioma patients; however, the specific mechanism by which this occurs remains unknown. The present study investigated the direct effects of hyperbaric oxygen stimulation on glioma by constructing an intracranial transplanted glioma model in congenic C57BL/6J mice. Bioluminescent imaging (BLI) was used to assess the growth of intracranial transplanted GL261-Luc glioma cells in vivo, while flow cytometric and immunohistochemical assays were used to detect and compare the expression of the biomarkers, Ki-67, CD34 and TUNEL, reflecting the cell cycle, apoptosis and angiogenesis. BLI demonstrated that hyperbaric oxygen promoted the growth of intracranially transplanted GL261-Luc glioma cells in vivo. Flow cytometric analysis indicated that hyperbaric oxygen promoted GL261-Luc glioma cell proliferation and also prevented cell cycle arrest. In addition, hyperbaric oxygen inhibited the apoptosis of the transplanted glioma cells. Immunohistochemical analysis also indicated that hyperbaric oxygen increased positive staining for Ki-67 and CD34, while reducing staining for TUNEL (a marker of apoptosis). The microvessel density was significantly increased in the hyperbaric oxygen treatment group compared with the control group. In conclusion, hyperbaric oxygen treatment promoted the growth of transplanted malignant glioma cells in vivo and also inhibited the apoptosis of these cells.

  18. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Kazuhiro [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan); Egawa, Shinichi; Unno, Michiaki [Department of Hepatobiliary-Pancreatic Surgery, Tohoku University Graduate School of Medicine, Sendai (Japan); Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai (Japan)

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  19. Nicotine stimulates expression of proteins implicated in peripheral and central sensitization.

    Science.gov (United States)

    Hawkins, J L; Denson, J E; Miley, D R; Durham, P L

    2015-04-02

    Pain patients who are nicotine dependent report a significantly increased incidence and severity of pain intensity. The goal of this study was to determine the effects of prolonged nicotine administration on inflammatory proteins implicated in the development of peripheral and central sensitization of the trigeminal system. Behavioral, immunohistochemical, and microarray studies were utilized to investigate the effects of nicotine administered daily for 14 days via an Alzet® osmotic pump in Sprague Dawley rats. Systemic nicotine administration caused a significant increase in nocifensive withdrawals to mechanical stimulation of trigeminal neurons. Nicotine stimulated expression of the pro-inflammatory signal transduction proteins phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and protein kinase A (PKA) in the spinal trigeminal nucleus. Nicotine also promoted elevations in the expression of glial fibrillary acidic protein (GFAP), a biomarker of activated astrocytes, and the microglia biomarker ionized calcium-binding adapter molecule 1 (Iba1). Similarly, levels of eleven cytokines were significantly elevated with the largest increase in expression of TNF-α. Levels of PKA, p-ERK, and p-JNK in trigeminal ganglion neurons were increased by nicotine. Our findings demonstrate that prolonged systemic administration of nicotine promotes sustained behavioral and cellular changes in the expression of key proteins in the spinal trigeminal nucleus and trigeminal ganglion implicated in the development and maintenance of peripheral and central sensitization.

  20. 6-mercaptopurine promotes energetic failure in proliferating T cells.

    Science.gov (United States)

    Fernández-Ramos, Ana A; Marchetti-Laurent, Catherine; Poindessous, Virginie; Antonio, Samantha; Laurent-Puig, Pierre; Bortoli, Sylvie; Loriot, Marie-Anne; Pallet, Nicolas

    2017-06-27

    The anticancer drug 6-mercaptopurine (6-MP) inhibits de novo purine synthesis and acts as an antiproliferative agent by interfering with protein, DNA and RNA synthesis and promoting apoptosis. Metabolic reprogramming is crucial for tumor progression to foster cancer cells growth and proliferation, and is regulated by mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) as well as the oncogenes Myc and hypoxia inducible factor 1α (HIF-1α). We hypothesized that 6-MP impacts metabolic remodeling through its action on nucleotide synthesis. The aim of our study is to provide a comprehensive characterization of the metabolic changes induced by 6-MP in leukemic T cells. Our results indicate that exposition to 6-MP rapidly reduces intracellular ATP concentration, leading to the activation of AMPK. In turn, mTOR, an AMPK target, was inhibited, and the expression of HIF-1α and Myc was reduced upon 6-MP incubation. As a consequence of these inhibitions, glucose and glutamine fluxes were strongly decreased. Notably, no difference was observed on glucose uptake upon exposition to 6-MP. In conclusion, our findings provide new insights into how 6-MP profoundly impacts cellular energetic metabolism by reducing ATP production and decreasing glycolytic and glutaminolytic fluxes, and how 6-MP modifies human leukemic T cells metabolism with potential antiproliferative effects.

  1. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke.

    Science.gov (United States)

    Lin, Yu-Ching; Ko, Tsui-Ling; Shih, Yang-Hsin; Lin, Maan-Yuh Anya; Fu, Tz-Win; Hsiao, Hsiao-Sheng; Hsu, Jung-Yu C; Fu, Yu-Show

    2011-07-01

    Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.

  2. Activated gammadelta T cells promote the activation of uveitogenic T cells and exacerbate EAU development.

    Science.gov (United States)

    Nian, Hong; Shao, Hui; O'Brien, Rebecca L; Born, Willi K; Kaplan, Henry J; Sun, Deming

    2011-07-29

    To determine how the activation of γδ T cells affects the generation of uveitogenic αβ T cells and the development of experimental autoimmune uveitis (EAU). γδ T cells were isolated from B6 mice immunized with the uveitogenic peptide IRBP(1-20) and αβ T cells from immunized TCR-δ(-/-) mice. Resting γδ T cells were prepared by culture of separated γδ T cells in cytokine-free medium for 3 to 5 days, when they showed downregulation of CD69 expression. Activated γδ T cells were prepared by incubating resting γδ T cells with anti-γδ TCR (GL3) for 2 days. Responder αβ T cells were cocultured with immunizing antigen and antigen-presenting cells. The numbers of antigen-specific T cells expressing IL-17 or IFN-γ were determined by intracellular staining followed by FACS analysis after stimulation, with or without the addition of purified γδ T cells. The cytokines in the culture medium were measured by ELISA. Highly enriched γδ T cells exert widely different effects on autoreactive αβ T cells in EAU, depending on the activation status of the γδ T cells. Whereas nonactivated γδ T cells had little effect on the activation of interphotoreceptor retinoid-binding protein-specific αβ T cells in vitro and in vivo, activated γδ T cells promoted the generation of uveitogenic T cells and exacerbated the development of EAU. The functional ability of γδ T cells is greatly influenced by their activation status. Activated γδ T cells exacerbate EAU through increased activation of uveitogenic T cells.

  3. The psychobiology of nicotine dependence

    Directory of Open Access Journals (Sweden)

    D. J. K. Balfour

    2008-12-01

    Full Text Available There is abundant evidence to show that nicotine is the principal addictive component of tobacco smoke. The results of laboratory studies have shown that nicotine has many of the behavioural and neurobiological properties of a drug of dependence. This article focuses on the evidence that nicotine has the rewarding and reinforcing properties typical of an addictive drug and that these properties are mediated, in part, by its effects on mesolimbic dopamine neurones. However, in many experimental models of dependence, nicotine has relatively weak reinforcing properties that do not appear to explain adequately the powerful addiction to tobacco smoke experienced by many habitual smokers. Some of the reasons for this conundrum will be covered herein. This article focuses on the hypothesis that sensory stimuli and other pharmacologically active components in tobacco smoke play a pivotal role in the addiction to nicotine when it is inhaled in tobacco smoke. The article will discuss the evidence that dependence upon tobacco smoke reflects a complex interaction between nicotine and the components of the smoke, which are mediated by complementary effects of nicotine on the dopamine projections to the shell and core subdivisions of the accumbens. It will also discuss the extent to which the complexity of the dependence explains why nicotine replacement therapy does not provide a completely satisfying aid to smoking cessation and speculate on the properties treatments should exhibit if they are to provide a better treatment for tobacco dependence than those currently available.

  4. Effect of promoter architecture on the cell-to-cell variability in gene expression.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    2011-03-01

    Full Text Available According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.

  5. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Jasmin H Bavarva

    Full Text Available Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold and NPAS3 (down-regulated by -2.73 fold; both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold and alternative splicing of NEAT1 (lncRNA that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.

  6. Nicotine and neurodegeneration in ageing.

    Science.gov (United States)

    Zanardi, Alessio; Leo, Giuseppina; Biagini, Giuseppe; Zoli, Michele

    2002-02-28

    Impairment in cholinergic systems is a highly consistent finding in human dementia. Among cholinergic markers, marked decreases in nicotine binding have been most consistently observed in the telencephalic regions of demented patients and are thought to contribute to the cognitive deficits associated with ageing and age-related neurodegenerative diseases. New evidence that the cholinergic system has a specific pathogenic role in the neurodegenerative alterations of aged and, especially, demented patients is fast accumulating. Both in vivo and in culture, nicotine protects striatal, hippocampal and cortical neurons against the neurotoxicity induced by excitotoxic amino acids as well as the toxicity caused by beta-amyloid, the major component of senile plaques. Further support for the implication of nicotinic receptors in brain ageing is come from recent studies on transgenic animals lacking nicotinic receptor subtypes, which shed light on the mechanisms of nicotine neuroprotection and neurotoxicity.

  7. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  8. Behavioral, biochemical and molecular indices of stress are enhanced in female versus male rats experiencing nicotine withdrawal

    Directory of Open Access Journals (Sweden)

    OSCAR VALENTIN TORRES

    2013-05-01

    Full Text Available Stress is a major factor that promotes tobacco use and relapse during withdrawal. Although women are more vulnerable to tobacco use than men, the manner in which stress contributes to tobacco use in women versus men is unclear. Thus, the goal of this study was to compare behavioral and biological indices of stress in male and female rats during nicotine withdrawal. Since the effects of nicotine withdrawal are age-dependent, this study also included adolescent rats. An initial study was conducted to provide comparable nicotine doses across age and sex during nicotine exposure and withdrawal. Rats received sham surgery or an osmotic pump that delivered nicotine. After 14 days of nicotine, the pumps were removed and controls received a sham surgery. Twenty-four hours later, anxiety-like behavior and plasma corticosterone were assessed. The nucleus accumbens (NAcc, amygdala, and hypothalamus were examined for changes in corticotropin-releasing factor (CRF gene expression. In order to differentiate the effects of nicotine withdrawal from exposure to nicotine, a cohort of rats did not have their pumps removed. The major finding is that during nicotine withdrawal, adult females display higher levels of anxiety-like behavior, plasma corticosterone, and CRF mRNA expression in the NAcc relative to adult males. However, during nicotine exposure, adult males exhibited higher levels of corticosterone and CRF mRNA in the amygdala relative to females. Adolescents displayed less nicotine withdrawal than adults. Moreover, adolescent males displayed an increase in anxiety-like behavior and an up-regulation of CRF mRNA in the amygdala during nicotine exposure and withdrawal. These findings are likely related to stress produced by the high doses of nicotine that were administered to adolescents to produce equivalent levels of cotinine as adults. In conclusion, these findings suggest that intense stress produced by nicotine withdrawal may contribute to tobacco use

  9. CCDC106 promotes non-small cell lung cancer cell proliferation

    OpenAIRE

    Zhang, Xiupeng; Zheng, Qin; Wang, Chen; Zhou, Haijing; Jiang, Guiyang; Miao, Yuan; Zhang, Yong; Liu, Yang; Li, Qingchang; Qiu, Xueshan; Enhua WANG

    2017-01-01

    Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung c...

  10. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  11. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Science.gov (United States)

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  12. Interaction of Nicotine and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The binding of nicotine to bovine serum albumin (BSA) was studied by UV absorption, fluorescence, and 1H NMR methods. With the addition of nicotine, the absorption band of BSA at about 210 nm decreased gradually, moved to longer wavelengths, and narrowed. BSA fluorescence of tryptophan residue was quenched by nicotine. The 1H NMR peaks of nicotine moved to downfield by the addition of BSA. The experimental results showed that nicotine was capable of binding with BSA to form a 1:1 complex. BSA's high selectivity for nicotine binding suggests a unique role for this protein in the detoxification and/or transport of nicotine.

  13. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects.

    Science.gov (United States)

    Pistillo, Francesco; Clementi, Francesco; Zoli, Michele; Gotti, Cecilia

    2015-01-01

    Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.

  14. Nicotine analogues as potential therapeutic agents in Parkinson’s disease by targeting nicotinic acetylcholine receptors (nAChRs in astrocytes

    Directory of Open Access Journals (Sweden)

    Valentina Echeverria Moran

    2015-02-01

    Full Text Available Parkinson’s disease (PD is a relatively common disorder of the Central Nervous System (CNS, whose etiology is characterized by a selective and progressive degeneration of dopaminergic neurons, and the presence of Lewy bodies in the pars compacta of the substantia nigra, thus dopamine depletion in the striatum. Patients with this disease suffer from tremors, slowness of movements, gait instability, rigidity, and may also present functional disability, reduced quality of life, and rapid cognitive decline. The prevalence of this disease is in a range of 107-187 per 100,000 inhabitants. Previous studies have shown that nicotine exerts beneficial effects in patients with PD and in in vitro and in vivo models of this disease. Astrocytes have an important role in the immune system, and that nicotine might be able to reduce inflammation-induced activation of pro-apoptotic signaling in PD. Nicotine might exert its effect through activation of α7 nicotinic acetylcholine receptors (α7-nAChRs expressed in glial cells. Moreover, nicotine administration can protect dopaminergic neurons against degeneration by inhibiting astrocytes activation in the substantia nigra pars compacta (SNpc and therefore reducing inflammation. Besides this beneficial effect of nicotine, its continuing use can induce toxicity and cause dependency. To counteract this effect, nicotine analogues have risen as an important therapeutic approach to maintain nicotine´s beneficial effects, but avoid its toxicity. Since astrocytes might drive chronic inflammatory processes in PD, therefore increasing neuronal vulnerability to damage, the administration of nicotine analogues in astrocytes is of interest to diminish neuronal death. In this work, we assess the role of different nicotine analogues in astrocytes following rotenone stimuli, and determine whether the possible beneficial effects of nicotine are via activation of α7-nAChRs.

  15. Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell

    NARCIS (Netherlands)

    Kleijn, J.; Folgering, J. H. A.; van der Hart, M. C. G.; Rollema, H.; Cremers, T. I. F. H.; Westerink, B. H. C.

    2011-01-01

    Nicotine stimulates dopamine (DA) cell firing via a local action at somatodendritic sites in the ventral tegmental area (VTA), increasing DA release in the nucleus accumbens (NAcc). Additionally, nicotine may also modulate DA release via a direct effect in the NAcc. This study examined the

  16. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells.

    Science.gov (United States)

    Deauvieau, Florence; Ollion, Vincent; Doffin, Anne-Claire; Achard, Carole; Fonteneau, Jean-François; Verronese, Estelle; Durand, Isabelle; Ghittoni, Raffaella; Marvel, Jacqueline; Dezutter-Dambuyant, Colette; Walzer, Thierry; Vie, Henri; Perrot, Ivan; Goutagny, Nadège; Caux, Christophe; Valladeau-Guilemond, Jenny

    2015-03-01

    Dendritic cells (DCs) cross-present antigen (Ag) to initiate T-cell immunity against most infections and tumors. Natural killer (NK) cells are innate cytolytic lymphocytes that have emerged as key modulators of multiple DC functions. Here, we show that human NK cells promote cross-presentation of tumor cell-derived Ag by DC leading to Ag-specific CD8(+) T-cell activation. Surprisingly, cytotoxic function of NK cells was not required. Instead, we highlight a critical and nonredundant role for IFN-γ and TNF-α production by NK cells to enhance cross-presentation by DC using two different Ag models. Importantly, we observed that NK cells promote cell-associated Ag cross-presentation selectively by monocytes-derived DC (Mo-DC) and CD34-derived CD11b(neg) CD141(high) DC subsets but not by myeloid CD11b(+) DC. Moreover, we demonstrate that triggering NK cell activation by monoclonal antibodies (mAbs)-coated tumor cells leads to efficient DC cross-presentation, supporting the concept that NK cells can contribute to therapeutic mAbs efficiency by inducing downstream adaptive immunity. Taken together, our findings point toward a novel role of human NK cells bridging innate and adaptive immunity through selective induction of cell-associated Ag cross-presentation by CD141(high) DC, a process that could be exploited to better harness Ag-specific cellular immunity in immunotherapy. © 2014 UICC.

  17. Being a long-term user of nicotine replacement therapy

    DEFF Research Database (Denmark)

    Borup, Gitte; Nørgaard, Lotte Stig; Tønnesen, Philip;

    Background During recent years a gradual shift in the application of nicotine replacement therapy (NRT) has taken place from NRT-products only being recommended to achieve smoking cessation, to now including smoking reduction, and long-term substitution of tobacco with NRT has taken place. This has...... been promoted as a way of achieving harm-reduction in highly nicotine dependent smokers who are unwilling or incapable of quitting all nicotine products, as continued use of NRT is widely accepted as being far less hazardous than continued smoking. To our knowledge no previous research has been done......, regarding long-term NRT users’ experiences with continuing the use of NRT. Results from a survey study among long-term NRT-users, who had used NRT for 12 months or more, found that out of 92 former smokers 88 % wished to quit using NRT. The primary causes stated for wishing to quit were being tired...

  18. Developmental sex differences in nicotinic currents of prefrontal layer VI neurons in mice and rats.

    Directory of Open Access Journals (Sweden)

    Nyresa C Alves

    Full Text Available BACKGROUND: There is a large sex difference in the prevalence of attention deficit disorder; yet, relatively little is known about sex differences in the development of prefrontal attention circuitry. In male rats, nicotinic acetylcholine receptors excite corticothalamic neurons in layer VI, which are thought to play an important role in attention by gating the sensitivity of thalamic neurons to incoming stimuli. These nicotinic currents in male rats are significantly larger during the first postnatal month when prefrontal circuitry is maturing. The present study was undertaken to investigate whether there are sex differences in the nicotinic currents in prefrontal layer VI neurons during development. METHODOLOGY/PRINCIPAL FINDINGS: Using whole cell recording in prefrontal brain slice, we examined the inward currents elicited by nicotinic stimulation in male and female rats and two strains of mice. We found a prominent sex difference in the currents during the first postnatal month when males had significantly greater nicotinic currents in layer VI neurons compared to females. These differences were apparent with three agonists: acetylcholine, carbachol, and nicotine. Furthermore, the developmental sex difference in nicotinic currents occurred despite male and female rodents displaying a similar pattern and proportion of layer VI neurons possessing a key nicotinic receptor subunit. CONCLUSIONS/SIGNIFICANCE: This is the first illustration at a cellular level that prefrontal attention circuitry is differently affected by nicotinic receptor stimulation in males and females during development. This transient sex difference may help to define the cellular and circuit mechanisms that underlie vulnerability to attention deficit disorder.

  19. Nicotine impact on melanogenesis and antioxidant defense system in HEMn-DP melanocytes.

    Science.gov (United States)

    Delijewski, Marcin; Wrześniok, Dorota; Otręba, Michał; Beberok, Artur; Rok, Jakub; Buszman, Ewa

    2014-10-01

    Nicotine is a compound of tobacco plants and is responsible for addictive properties of tobacco which is used by about one billion of smokers all over the world. Recently, nicotine has drawn even more attention due to its presumed neuroprotective and antioxidant features as far as common use in various forms of smoking cessation therapies. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn influence biochemical processes in human cells producing melanin. The aim of this study was to examine the impact of nicotine on melanogenesis and antioxidant defense system in cultured normal human melanocytes (HEMn-DP). Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC50 was determined to be 2.52 mM. Nicotine modulated melanin biosynthesis in normal human melanocytes. Significant changes in hydrogen peroxide content and cellular antioxidant enzymes: SOD, CAT, and GPx activities were stated in melanocytes exposed to nicotine, which indicates alterations of antioxidant defense system. The results obtained in vitro may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long-term exposition to nicotine.

  20. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes.

    Science.gov (United States)

    Osborne, Suzanne E; Sit, Brandon; Shaker, Andrew; Currie, Elissa; Tan, Joël M J; van Rijn, Jorik; Higgins, Darren E; Brumell, John H

    2017-03-01

    Type I interferons (IFNs) play a critical role in antiviral immune responses, but can be deleterious to the host during some bacterial infections. Listeria monocytogenes (Lm) induces a type I IFN response by activating cytosolic antiviral surveillance pathways. This is beneficial to the bacteria as mice lacking the type I IFN receptor (IFNAR1(-/-) ) are resistant to systemic infection by Lm. The mechanisms by which type I IFNs promote Lm infection are unclear. Here, we show that IFNAR1 is required for dissemination of Lm within infection foci in livers of infected mice and for efficient cell-to-cell spread in vitro in macrophages. IFNAR1 promotes ActA polarization and actin-based motility in the cytosol of host cells. Our studies suggest type I IFNs directly impact the intracellular life cycle of Lm and provide new insight into the mechanisms used by bacterial pathogens to exploit the type I IFN response. © 2016 John Wiley & Sons Ltd.

  1. The serotonin transporter gene and startle response during nicotine deprivation.

    Science.gov (United States)

    Minnix, Jennifer A; Robinson, Jason D; Lam, Cho Y; Carter, Brian L; Foreman, Jennifer E; Vandenbergh, David J; Tomlinson, Gail E; Wetter, David W; Cinciripini, Paul M

    2011-01-01

    Affective startle probe methodology was used to examine the effects of nicotine administration and deprivation on emotional processes among individuals carrying at least one s allele versus those with the l/l genotype of the 5-Hydroxytryptamine (Serotonin) Transporter Linked Polymorphic Region, 5-HTTLPR in the promoter region of the serotonin transporter gene [solute ligand carrier family 6 member A4 (SLC6A4) or SERT]. Smokers (n=84) completed four laboratory sessions crossing deprivation (12-h deprived vs. non-deprived) with nicotine spray (nicotine vs. placebo). Participants viewed affective pictures (positive, negative, neutral) while acoustic startle probes were administered. We found that smokers with the l/l genotype showed significantly greater suppression of the startle response when provided with nicotine vs. placebo than those with the s/s or s/l genotypes. The results suggest that l/l smokers, who may have higher levels of the serotonin transporter and more rapid synaptic serotonin clearance, experience substantial reduction in activation of the defensive system when exposed to nicotine.

  2. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  3. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    Science.gov (United States)

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  4. An Investigation of Cigarettes Smoking Behavior and Nicotine Dependence among Chinese Methamphetamine Users in Two Provinces

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    2014-01-01

    Full Text Available Objective. To survey cigarette behaviors and nicotine dependence among Chinese MA users, explore risk factors for high nicotine dependence, and analyze the relationship between nicotine dependence and MA-related euphoria and sexual impulse. Methods. A cross-sectional study, applying a self-designed questionnaire with the Fagerström Test for Nicotine Dependence (FTND and Visual Analog Scale (VAS, was performed among 391 MA users in Beijing and Guangdong, China. Results. Most MA users were smokers, including 159 having high dependence on nicotine (HD users, FTND>5 and 197 low or medium dependent (LMD users, FTND≤5. Men or married users were more likely to be highly dependent than women or unmarried users. Higher MA dose and ever-use of ketamine or alcohol were associated with higher likelihood of high nicotine dependence. HD users reported significantly higher euphoria and stronger sexual impulse after using MA, indicated by higher VAS scores. Conclusions. Potential risk factors for high nicotine dependence among MA users may include male gender, being married, higher MA dosage, and ever-use of ketamine or alcohol, which should be taken into consideration in individualized health promotion on smoking cessation. Severe nicotine dependence was associated with stronger MA-related euphoria and sexual impulse and it should be confirmed by further studies.

  5. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  6. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  7. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-02-03

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach), a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  8. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  9. Menthol disrupts nicotine's psychostimulant properties in an age and sex-dependent manner in C57BL/6J mice.

    Science.gov (United States)

    Fait, Benjamin W; Thompson, David C; Mose, Tenna N; Jatlow, Peter; Jordt, Sven E; Picciotto, Marina R; Mineur, Yann S

    2017-09-15

    Menthol is a commonly used flavorant in tobacco and e-cigarettes, and could contribute to nicotine sensitivity. To understand how menthol could contribute to nicotine intake and addiction, it is important to determine whether specific mechanisms related to sex and age could underlie behavioral changes induced by menthol-laced nicotinic products. Using a validated paradigm of nicotine-dependent locomotor stimulation, adolescent and adult C57BL/6J mice of both sexes were exposed to nicotine, or nicotine laced with menthol, as their sole source of fluid, and psychostimulant effects were evaluated by recording home cage locomotor activity for ten days. Nicotine and cotinine blood levels were measured following exposure. Results show an interaction between treatment, age, and sex on liquid consumption, indicating that mice responded differently to menthol and nicotine based on their age and sex. Adult male mice greatly increased their nicotine intake when given menthol. In female mice of both age groups, menthol did not have this effect. Despite an increase in nicotine intake promoted by menthol, adult male mice showed a significant decrease in locomotion, suggesting that menthol blunted nicotine-induced psychostimulation. This behavioral response to menthol was not detected in adolescent mice of either sex. These data confirm that menthol is more than a flavorant, and can influence both nicotine intake and its psychostimulant effects. These results suggest that age- and sex-dependent mechanisms could underlie menthol's influence on nicotine intake and that studies including adolescent and adult menthol smokers of both sexes are warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  11. [Comparative analysis of activity of different promoters for NIS gene expression in melanoma cells].

    Science.gov (United States)

    Kuz'mich, A I; Kopantsev, E P; Vinogradova, T V; Sverdlov, E D

    2014-01-01

    Development of targeted drug delivery system is key problem of cancer gene therapy. To ensure specific delivery of these therapeutic compounds to the tumor it is preferable for therapeutic gene expression to occur predominantly in cancer cells. Therefore, when testing drug in vivo, it is necessary to study distribution of therapeutic gene expression products in different tissues of the organism. Sodium iodide symporter (NIS) is attractive reporter because its tissue level is easily quantitatively detected by noninvasive imaging methods. Different promoters are used to direct expression of therapeutic genes in tumor cells: strong nonspecific, moderate tissue-specific and tumor-specific. Tumor-specific promoters function in wide range of tumor cells, however they are relatively weak. Relationship between promoter and sodium iodide symporter activity is unclear to date. In this report we examined activity of different promoters in two melanoma cell lines, functional activity of NIS driven by these promoters, also we compared promoter strength and NIS activity. We demonstrated that in spite of strong differences in promoter activity functional activity of NIS directed by these promoters varies weakly. Relatively weak melanoma-specific promoter directs high NIS activity in melanoma cell, however weaker cancer-specific promoters drive high NIS activity only in certain melanoma cell line.

  12. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection.

    Directory of Open Access Journals (Sweden)

    Emma C Reilly

    Full Text Available α-Galactosylceramide (α-GalCer is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV. We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8(+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8(+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8(+ T cells, as a consequence of reduced inflammation.

  13. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells

    National Research Council Canada - National Science Library

    OTA, ICHIRO; MASUI, TAKASHI; KURIHARA, MIYAKO; YOOK, JONG-IN; MIKAMI, SHINJI; KIMURA, TAKAHIRO; SHIMADA, KEIJI; KONISHI, NOBORU; YANE, KATSUNARI; YAMANAKA, TOSHIAKI; KITAHARA, TADASHI

    .... We demonstrated that Snail is one of the master regulators that promotes EMT and mediates cancer cell migration and invasion in many types of malignancies including head and neck squamous cell carcinoma (HNSCC...

  14. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    Science.gov (United States)

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  15. Nitrosamines as nicotinic receptor ligands

    OpenAIRE

    Schuller, Hildegard M

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensi...

  16. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  17. Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens.

    Science.gov (United States)

    Vroomans, Renske M A; Marée, Athanasius F M; de Boer, Rob J; Beltman, Joost B

    2012-01-01

    In many immunological processes chemoattraction is thought to play a role in guiding cells to their sites of action. However, based on in vivo two-photon microscopy experiments in the absence of cognate antigen, T cell migration in lymph nodes (LNs) has been roughly described as a random walk. Although it has been shown that dendritic cells (DCs) carrying cognate antigen in some circumstances attract T cells chemotactically, it is currently still unclear whether chemoattraction of T cells towards DCs helps or hampers scanning. Chemoattraction towards DCs could on the one hand help T cells to rapidly find DCs. On the other hand, it could be deleterious if DCs become shielded by a multitude of attracted yet non-specific T cells. Results from a recent simulation study suggested that the deleterious effect dominates. We re-addressed the question whether T cell chemoattraction towards DCs is expected to promote or hamper the detection of rare antigens using the Cellular Potts Model, a formalism that allows for dynamic, flexible cellular shapes and cell migration. Our simulations show that chemoattraction of T cells enhances the DC scanning efficiency, leading to an increased probability that rare antigen-specific T cells find DCs carrying cognate antigen. Desensitization of T cells after contact with a DC further improves the scanning efficiency, yielding an almost threefold enhancement compared to random migration. Moreover, the chemotaxis-driven migration still roughly appears as a random walk, hence fine-tuned analysis of cell tracks will be required to detect chemotaxis within microscopy data.

  18. Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens.

    Directory of Open Access Journals (Sweden)

    Renske M A Vroomans

    Full Text Available In many immunological processes chemoattraction is thought to play a role in guiding cells to their sites of action. However, based on in vivo two-photon microscopy experiments in the absence of cognate antigen, T cell migration in lymph nodes (LNs has been roughly described as a random walk. Although it has been shown that dendritic cells (DCs carrying cognate antigen in some circumstances attract T cells chemotactically, it is currently still unclear whether chemoattraction of T cells towards DCs helps or hampers scanning. Chemoattraction towards DCs could on the one hand help T cells to rapidly find DCs. On the other hand, it could be deleterious if DCs become shielded by a multitude of attracted yet non-specific T cells. Results from a recent simulation study suggested that the deleterious effect dominates. We re-addressed the question whether T cell chemoattraction towards DCs is expected to promote or hamper the detection of rare antigens using the Cellular Potts Model, a formalism that allows for dynamic, flexible cellular shapes and cell migration. Our simulations show that chemoattraction of T cells enhances the DC scanning efficiency, leading to an increased probability that rare antigen-specific T cells find DCs carrying cognate antigen. Desensitization of T cells after contact with a DC further improves the scanning efficiency, yielding an almost threefold enhancement compared to random migration. Moreover, the chemotaxis-driven migration still roughly appears as a random walk, hence fine-tuned analysis of cell tracks will be required to detect chemotaxis within microscopy data.

  19. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  20. Regulatory T cells and human myeloid dendritic cells promote tolerance via programmed death ligand-1.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    2010-02-01

    Full Text Available Immunotherapy using regulatory T cells (Treg has been proposed, yet cellular and molecular mechanisms of human Tregs remain incompletely characterized. Here, we demonstrate that human Tregs promote the generation of myeloid dendritic cells (DC with reduced capacity to stimulate effector T cell responses. In a model of xenogeneic graft-versus-host disease (GVHD, allogeneic human DC conditioned with Tregs suppressed human T cell activation and completely abrogated posttransplant lethality. Tregs induced programmed death ligand-1 (PD-L1 expression on Treg-conditioned DC; subsequently, Treg-conditioned DC induced PD-L1 expression in vivo on effector T cells. PD-L1 blockade reversed Treg-conditioned DC function in vitro and in vivo, thereby demonstrating that human Tregs can promote immune suppression via DC modulation through PD-L1 up-regulation. This identification of a human Treg downstream cellular effector (DC and molecular mechanism (PD-L1 will facilitate the rational design of clinical trials to modulate alloreactivity.

  1. PML(NLS(-)) inhibits cell apoptosis and promotes proliferation in HL-60 cells.

    Science.gov (United States)

    Gao, Yuan-Mei; Zhong, Liang; Zhang, Xi; Hu, Xiu-Xiu; Liu, Bei-Zhong

    2013-01-01

    Promyelocytic leukemia (PML) is a cell-growth suppressor, and PML-retinoic acid receptor α (PML-RARα) is known as a fusion gene of acute promyelocytic leukemia (APL). Studies have reported that neutrophil elastase(NE) cleaved bcr-1-derived PML-RARα in early myeloid cells leading to the removal of nuclear localization signal (NLS) from PML. The resultant PML without NLS named PML(NLS(-)). PML(NLS(-)) mainly locates and functions in the cytoplasm. PML(NLS(-)) may act in different ways from PML, but its biological characteristics have not been reported. In this study, the PML (NLS(-)) was silenced with shRNA [HL-60/pPML(NLS(-))-shRNA] and over-expressed by preparation of recombinant adenovirus [HL-60/pAd-PML(NLS(-))]. The mRNA and protein expression of PML(NLS(-)) were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect apoptotic cells. The transcription of BCL-2, BAX and C-MYC was detected in HL-60/pAd-PML(NLS(-)) cells. Our results showed that compared to the control group, the expression of PML(NLS(-)) was significantly reduced in the HL-60/pPML(NLS(-))-shRNA cells, and increased significantly in the HL-60/pAd-PML(NLS(-)) cells. The proliferation was significantly inhibited in the HL-60/pPML(NLS(-))-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-PML(NLS(-)) cells treated with 60 μmol/L emodin. FCM revealed the apoptosis increased in HL-60/pPML(NLS(-))-shRNA cells, and decreased in the HL-60/pAd-PML(NLS(-)) cells. The expression of BAX decreased significantly, while that of BCL-2 and C-MYC increased significantly in HL-60/ pAd-PML(NLS(-)) cells. Down-regulation of PML(NLS(-)) expression inhibits the proliferation and induces the apoptosis of HL-60 cells. On the contrary, over-expression of PML(NLS(-)) promotes the proliferation and reduce the emodin-induced apoptosis of HL-60 cells.

  2. Menthol facilitates the intravenous self-administration of nicotine in rats

    Directory of Open Access Journals (Sweden)

    Tengfei eWang

    2014-12-01

    Full Text Available Menthol is preferred by approximately 25% of smokers and is the most common flavoring additive in tobacco and electronic cigarettes. Although some clinical studies have suggested that menthol facilitates the initiation of smoking and enhances the dependence on nicotine, many controversies remain. Using licking as the operant behavior, we found that adolescent rats self-administering nicotine (30 μg/kg/infusion, free base, i.v. with contingent oral menthol (60 μl, 0.01% w/v obtained significantly more infusions than rats receiving a vehicle cue or rats self-administering i.v. saline with a menthol cue. Rats yoked to their menthol-nicotine masters emitted significantly fewer licks on the active spouts, indicating that contingent pairing between nicotine and menthol is required for sustained nicotine intake. Rats that self-administered nicotine with a menthol cue also exhibited a long-lasting extinction burst and robust reinstatement behavior, neither of which were observed in rats that self-administered saline with a menthol cue. The cooling sensation of menthol is induced by activating the transient receptor potential M8 (TRPM8 channel. When WS-23, an odorless agonist of the TRPM8 channel, was used as a contingent cue for nicotine, the rats obtained a similar number of nicotine infusions as the rats that were provided a menthol cue and exhibited a strong preference for the active spout. In contrast, highly appetitive taste and odor cues failed to support nicotine self-administration. These data indicated that menthol, likely by inducing a cooling sensation, becomes a potent conditioned reinforcer when it is contingently delivered with nicotine. Together, these results provide a key behavioral mechanism by which menthol promotes the use of tobacco products or electronic cigarettes.

  3. Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation.

    Science.gov (United States)

    Ichihara, Yoshinori; Doi, Toru; Ryu, Youngjae; Nagao, Motoshi; Sawada, Yasuhiro; Ogata, Toru

    2017-05-01

    Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC-rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU-positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate-mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α-cyano-4-hydroxy-cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986-995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  4. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion.

    Science.gov (United States)

    Yu, Nan; Yan, Wenjie; Yin, Tailang; Wang, Yaqin; Guo, Yue; Zhou, Danni; Xu, Mei; Ding, Jinli; Yang, Jing

    2015-01-01

    Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo-secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion.

  5. Cancer specificity of promoters of the genes involved in cell proliferation control.

    Science.gov (United States)

    Kashkin, K N; Chernov, I P; Stukacheva, E A; Kopantzev, E P; Monastyrskaya, G S; Uspenskaya, N Ya; Sverdlov, E D

    2013-07-01

    Core promoters with adjacent regions of the human genes CDC6, POLD1, CKS1B, MCM2, and PLK1 were cloned into a pGL3 vector in front of the Photinus pyrails gene Luc in order to study the tumor specificity of the promoters. The cloned promoters were compared in their ability to direct luciferase expression in different human cancer cells and in normal fibroblasts. The cancer-specific promoter BIRC5 and non-specific CMV immediately early gene promoter were used for comparison. All cloned promoters were shown to be substantially more active in cancer cells than in fibroblasts, while the PLK1 promoter was the most cancer-specific and promising one. The specificity of the promoters to cancer cells descended in the series PLK1, CKS1B, POLD1, MCM2, and CDC6. The bidirectional activity of the cloned CKS1B promoter was demonstrated. It apparently directs the expression of the SHC1 gene, which is located in a "head-to-head" position to the CKS1B gene in the human genome. This feature should be taken into account in future use of the CKS1B promoter. The cloned promoters may be used in artificial genetic constructions for cancer gene therapy.

  6. Stereotypical chronic lymphocytic leukemia B-cell receptors recognize survival promoting antigens on stromal cells.

    Directory of Open Access Journals (Sweden)

    Mascha Binder

    Full Text Available Chronic lymphocytic leukemia (CLL is the most common leukemia in the Western world. Survival of CLL cells depends on their close contact with stromal cells in lymphatic tissues, bone marrow and blood. This microenvironmental regulation of CLL cell survival involves the stromal secretion of chemo- and cytokines as well as the expression of adhesion molecules. Since CLL survival may also be driven by antigenic stimulation through the B-cell antigen receptor (BCR, we explored the hypothesis that these processes may be linked to each other. We tested if stromal cells could serve as an antigen reservoir for CLL cells, thus promoting CLL cell survival by stimulation through the BCR. As a proof of principle, we found that two CLL BCRs with a common stereotyped heavy chain complementarity-determining region 3 (previously characterized as "subset 1" recognize antigens highly expressed in stromal cells--vimentin and calreticulin. Both antigens are well-documented targets of autoantibodies in autoimmune disorders. We demonstrated that vimentin is displayed on the surface of viable stromal cells and that it is present and bound by the stereotyped CLL BCR in CLL-stroma co-culture supernatant. Blocking the vimentin antigen by recombinant soluble CLL BCR under CLL-stromal cell co-culture conditions reduces stroma-mediated anti-apoptotic effects by 20-45%. We therefore conclude that CLL BCR stimulation by stroma-derived antigens can contribute to the protective effect that the stroma exerts on CLL cells. This finding sheds a new light on the understanding of the pathobiology of this so far mostly incurable disease.

  7. [Nicotinic acid increases cellular transport of high density lipoprotein cholesterol in patients with hypoalphalipoproteinemia].

    Science.gov (United States)

    Figueroa, Catalina; Droppelmann, Katherine; Quiñones, Verónica; Amigo, Ludwig; Mendoza, Camila; Serrano, Valentina; Véjar, Margarita; Maiz, Alberto; Rigotti, Attilio

    2015-09-01

    Plasma high density lipoproteins (HDL) are involved in reverse cholesterol transport mediated by the scavenger receptor class B type I (SR-BI). Nicotinic acid increases HDL cholesterol levels, even though its specific impact on SR-BI dependent-cellular cholesterol transport remains unknown. To determine the effect of nicotinic acid on HDL particle functionality in cholesterol efflux and uptake mediated by SR-BI in cultured cells in hypoalphalipoproteinemic patients. In a pilot study, eight patients with low HDL (≤ 40 mg/dL) were treated with extended release nicotinic acid. HDL cholesterol and phospholipid levels, HDL2 and HDL3 fractions and HDL particle sizes were measured at baseline and post-therapy. Before and after nicotinic acid treatment, HDL particles were used for cholesterol transport studies in cells transfected with SR-BI. Nicotinic acid treatment raised total HDL cholesterol and phospholipids, HDL2 levels as well as HDL particle size. Nicotinic acid significantly increased HDL cholesterol efflux and uptake capacity mediated by SR-BI in cultured cells. Nicotinic acid therapy increases SR-BI-dependent HDL cholesterol transport in cultured cells, establishing a new cellular mechanism by which this lipid-lowering drug appears to modulate HDL metabolism in patients with hypoalphalipoproteinemia.

  8. Utilization of Rad51C promoter for transcriptional targeting of cancer cells

    Science.gov (United States)

    Li, Zhen; Jiang, Ying; Tian, Xiao; Seluanov, Andrei; Gorbunova, Vera; Mao, Zhiyong

    2014-01-01

    Cancer therapy that specifically targets malignant cells with minimal or no toxicity to normal tissue has been a long-standing goal of cancer research. Rad51 expression is elevated in a wide range of cancers and Rad51 promoter has been used to transcriptionally target tumor cells, however, a large size of Rad51 promoter limits its application for gene therapy. To identify novel tumor-specific promoters, we examined expression levels of Rad51 paralogs, Rad51B, Rad51C, and Rad51D as well as Rad52 in a panel of normal and tumor cell lines. We found that Rad51C is significantly overexpressed in cancer cells. The expression was up-regulated by approximately 6-fold at the mRNA level and 9-fold at the protein level. Interestingly, the 2064 bp long Rad51C promoter fragment was approximately 300-fold higher in cancer cells than in normal cells. A construct containing Rad51C promoter driving diphtheria toxin A efficiently killed several types of cancer cells with very mild effect to normal cells. These results underscore the potential of targeting the homologous recombination pathway in cancer cells and provide a proof of principle that the Rad51C promoter fragment can be used to transcriptionally target cancer cells. PMID:24742710

  9. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n......AChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n...

  10. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Hyun; Kim, Hyung Woo; Cha, Kyoung Je; Han, Jiyou; Jang, Yu Jin; Kim, Dong Sung; Kim, Jong-Hoon

    2016-03-22

    Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.

  11. Activated T cell exosomes promote tumor invasion via Fas signaling pathway.

    Science.gov (United States)

    Cai, Zhijian; Yang, Fei; Yu, Lei; Yu, Zhou; Jiang, Lingling; Wang, Qingqing; Yang, Yunshan; Wang, Lie; Cao, Xuetao; Wang, Jianli

    2012-06-15

    Activated T cells release bioactive Fas ligand (FasL) in exosomes, which subsequently induce self-apoptosis of T cells. However, their potential effects on cell apoptosis in tumors are still unknown. In this study, we purified exosomes expressing FasL from activated CD8(+) T cell from OT-I mice and found that activated T cell exosomes had little effect on apoptosis and proliferation of tumor cells but promoted the invasion of B16 and 3LL cancer cells in vitro via the Fas/FasL pathway. Activated T cell exosomes increased the amount of cellular FLICE inhibitory proteins and subsequently activated the ERK and NF-κB pathways, which subsequently increased MMP9 expression in the B16 murine melanoma cells. In a tumor-invasive model in vivo, we observed that the activated T cell exosomes promoted the migration of B16 tumor cells to lung. Interestingly, pretreatment with FasL mAb significantly reduced the migration of B16 tumor cells to lung. Furthermore, CD8 and FasL double-positive exosomes from tumor mice, but not normal mice, also increased the expression of MMP9 and promoted the invasive ability of B16 murine melanoma and 3LL lung cancer cells. In conclusion, our results indicate that activated T cell exosomes promote melanoma and lung cancer cell metastasis by increasing the expression of MMP9 via Fas signaling, revealing a new mechanism of tumor immune escape.

  12. Proteomics Identification of Differentially Expressed Proteins Relevant for Nicotine Synthesis in Flue-Cured Tobacco Roots Before and After Decapitation

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-qun; GUO Hong-xiang; LI Hao

    2008-01-01

    Nicotine is a secondary substance synthesized in tobacco roots.In flue-cured tobacco planting,tobacco decapitation is an effective practice to promote nicotine biosynthesis by regulation of the redistribution of total nitrogen amounts,However,proteins relevant to nicotine synthesis in tobacco roots has not been identified and characterized yet.It is important to explore the regulation of nicotine biosynthesis in tobacco roots.To identify the proteins relevant to nicotine synthesis,the protein patterns in roots of flue-cured tobacco (cv.K326) before and after decapitation were analyzed.In the present study,the protein patterns in roots of flue-cured tobacco were analyzed by two-dimensional electrophoresis (2-DE),and the differentially-expressed spots were identified by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Paired comparison of 2-DE maps revealed 26 spots of differentially-expressed proteins in roots before and after decapitation.Furthermore,nine differentially-expressed spots were identified.There were four proteins which were enzymes possibly involved in nicotine biosynthesis.In addition,the roles of the four enzymes in nicotine biosynthesis were discussed in a putative network.Our results would contribute to the understanding of the regulation pathway of nicotine biosynthesis and further to the molecular manipulation on the nicotine contents in flue-cured tobacco.

  13. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  14. Inositol Hexakisphosphate Kinase 2 Promotes Cell Death in Cells with Cytoplasmic TDP-43 Aggregation.

    Science.gov (United States)

    Nagata, Eiichiro; Nonaka, Takashi; Moriya, Yusuke; Fujii, Natsuko; Okada, Yoshinori; Tsukamoto, Hideo; Itoh, Johbu; Okada, Chisa; Satoh, Tadayuki; Arai, Tetsuaki; Hasegawa, Masato; Takizawa, Shunya

    2016-10-01

    TAR DNA-binding protein 43 (TDP-43) has been identified as a major component of ubiquitin-positive inclusions in the brains and spinal cords of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) or amyotrophic lateral sclerosis (ALS). The phosphorylated C-terminal fragment of TDP-43 forms aggregates in the neuronal cytoplasm, possibly resulting in neuronal cell death in patients with FTLD-U or ALS. The inositol pyrophosphate known as diphosphoinositol pentakisphosphate (InsP7) contains highly energetic pyrophosphate bonds. We previously reported that inositol hexakisphosphate kinase type 2 (InsP6K2), which converts inositol hexakisphosphate (InsP6) to InsP7, mediates cell death in mammalian cells. Moreover, InsP6K2 is translocated from the nucleus to the cytosol during apoptosis. In this study, we verified that phosphorylated TDP-43 co-localized and co-bound with InsP6K2 in the cytoplasm of anterior horn cells of the spinal cord. Furthermore, we verified that cell death was augmented in the presence of cytoplasmic TDP-43 aggregations and activated InsP6K2. However, cells with only cytoplasmic TDP-43 aggregation survived because Akt activity increased. In the presence of both TDP-43 aggregation and activated InsP6K2 in the cytoplasm of cells, the expression levels of HSP90 and casein kinase 2 decreased, as the activity of Akt decreased. These conditions may promote cell death. Thus, InsP6K2 could cause neuronal cell death in patients with FTLD-U or ALS. Moreover, InsP6K2 plays an important role in a novel cell death pathway present in FTLD-U and ALS.

  15. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  16. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  17. Structurally distinct nicotine immunogens elicit antibodies with non-overlapping specificities

    Science.gov (United States)

    Pravetoni, M; Keyler, DE; Pidaparthi, RR; Carroll, FI; Runyon, SP; Murtaugh, MP; Earley, CA; Pentel, PR

    2011-01-01

    Nicotine conjugate vaccine efficacy is limited by the concentration of nicotine-specific antibodies that can be reliably generated in serum. Previous studies suggest that the concurrent use of 2 structurally distinct nicotine immunogens in rats can generate additive antibody responses by stimulating distinct B cell populations. In the current study we investigated whether it is possible to identify a third immunologically distinct nicotine immunogen. The new 1′-SNic immunogen (2S)-N,N′-(disulfanediyldiethane-2,1-diyl)bis[4-(2-pyridin-3-ylpyrrolidin-1-yl)butanamide] conjugated to keyhole limpet hemocyanin (KLH) differed from the existing immunogens 3′-AmNic-rEPA and 6-CMUNic-BSA in linker position, linker composition, conjugation chemistry, and carrier protein. Vaccination of rats with 1′-SNic-KLH elicited high concentrations of high affinity nicotine-specific antibodies. The antibodies produced in response to 1′-SNic-KLH did not appreciably cross-react in ELISA with either 3′-AmNic-rEPA or 6-CMUNic-BSA or vice-versa, showing that the B cell populations activated by each of these nicotine immunogens were non-overlapping and distinct. Nicotine retention in serum was increased and nicotine distribution to brain substantially reduced in rats vaccinated with 1′-SNic-KLH compared to controls. Effects of 1′-SNic-KLH on nicotine distribution were comparable to those of 3′-AmNic-rEPA which has progressed to late stage clinical trials as an adjunct to smoking cessation. These data show that it is possible to design multiple immunogens from a small molecule such as nicotine which elicit independent immune responses. This approach could be applicable to other addiction vaccines or small molecule targets as well. PMID:22100986

  18. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  19. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  20. Differential blockade of rat α3β4 and α7 neuronal nicotinic receptors by ω-conotoxin MVIIC, ω-conotoxin GVIA and diltiazem

    Science.gov (United States)

    Herrero, Carlos J; García-Palomero, Esther; Pintado, Antonio J; García, Antonio G; Montiel, Carmen

    1999-01-01

    Rat α3β4 or α7 neuronal nicotinic acetylcholine receptors (AChRs) were expressed in Xenopus laevis oocytes, and the effects of various toxins and non-toxin Ca2+ channel blockers studied. Nicotinic AChR currents were elicited by 1 s pulses of dimethylphenylpiperazinium (DMPP, 100 μM) applied at regular intervals.The N/P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC inhibited α3β4 currents with an IC50 of 1.3 μM; the blockade was non-competitive and reversible. The α7 currents were unaffected.At 1 μM, ω-conotoxin GVIA (N-type Ca2+ channel blocker) inhibited by 24 and 20% α3β4 and α7 currents, respectively. At 1 μM, ω-agatoxin IVA (a P/Q-type Ca2+ channel blocker) did not affect α7 currents and inhibited α3β4 currents by only 15%.L-type Ca2+ channel blockers furnidipine, verapamil and, particularly, diltiazem exhibited a preferential blocking activity on α3β4 nicotinic AChRs.The mechanism of α3β4 currents blockade by ω-conotoxins and diltiazem differed in the following aspects: (i) the onset and reversal of the blockade was faster for toxins; (ii) the blockade by the peptides was voltage-dependent, while that exerted by diltiazem was not; (iii) diltiazem promoted the inactivation of the current while ω-toxins did not.These data show that, at concentrations currently employed as Ca2+ channel blockers, some of these compounds also inhibit certain subtypes of nicotinic AChR currents. Our data calls for caution when interpreting many of the results obtained in neurons and other cell types, where nicotinic receptor and Ca2+ channels coexist. PMID:10455287

  1. Collective Cell Movement Promotes Synchronization of Coupled Genetic Oscillators

    OpenAIRE

    Uriu, Koichiro; Morelli, Luis G.

    2014-01-01

    Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somito...

  2. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    Science.gov (United States)

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  3. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  4. Cell-Specific Promoters Enable Lipid-Based Nanoparticles to Deliver Genes to Specific Cells of the Retina In Vivo.

    Science.gov (United States)

    Wang, Yuhong; Rajala, Ammaji; Cao, Binrui; Ranjo-Bishop, Michelle; Agbaga, Martin-Paul; Mao, Chuanbin; Rajala, Raju V S

    2016-01-01

    Non-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects. To circumvent this problem, we have tested LPD-mediated gene delivery using various generalized, modified, and retinal cell-specific promoters. We achieved retinal pigment epithelium cell specificity with vitelliform macular dystrophy (VMD2), rod cell specificity with mouse rhodopsin, cone cell specificity with red/green opsin, and ganglion cell specificity with thymocyte antigen promoters. Here we show for the first time that cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. This work will inspire investigators in the field of lipid nanotechnology to couple cell-specific promoters to drive expression in a cell- and tissue-specific manner.

  5. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits.

    Science.gov (United States)

    Bell, Karen A; Shim, Hoon; Chen, Ching-Kang; McQuiston, A Rory

    2011-12-01

    In the hippocampus, activation of nicotinic receptors that include α4 and β2 subunits (α4β2*) facilitates memory formation. α4β2* receptors may also play a role in nicotine withdrawal, and their loss may contribute to cognitive decline in aging and Alzheimer's disease (AD). However, little is known about their cellular function in the hippocampus. Therefore, using optogenetics, whole cell patch clamping and voltage-sensitive dye (VSD) imaging, we measured nicotinic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1. In a subpopulation of inhibitory interneurons, release of ACh resulted in slow depolarizations (rise time constant 33.2 ± 6.5 ms, decay time constant 138.6 ± 27.2 ms) mediated by the activation of α4β2* nicotinic receptors. These interneurons had somata and dendrites located in the stratum oriens (SO) and stratum lacunosum-moleculare (SLM). Furthermore, α4β2* nicotinic EPSPs were largest in the SLM. Thus, our data suggest that nicotinic EPSPs in hippocampal CA1 interneurons are predominantly mediated by α4β2* nicotinic receptors and their activation may preferentially affect extrahippocampal inputs in SLM of hippocampal CA1.

  6. Nicotinic Receptor Activity Alters Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    John A. Dani

    2001-01-01

    Full Text Available Studies using specific agonists, antagonists, and lesions have shown that nicotinic cholinergic systems participate in attention, learning, and memory[1,2]. The nicotinic manipulations usually have the greatest influence on difficult tasks or on cognitively impaired subjects[2]. For example, Alzheimer's disease is characterized by a loss of cholinergic projections and nicotinic acetylcholine receptors (nAChRs in the cortex and hippocampus[3]. Nicotine skin patches can improve learning rates and attention in Alzheimer's patients[4].

  7. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells.

    Directory of Open Access Journals (Sweden)

    Nadezda Kust

    Full Text Available The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.

  8. The Transcriptional Repressor ZNF503/Zeppo2 Promotes Mammary Epithelial Cell Proliferation and Enhances Cell Invasion*

    Science.gov (United States)

    Shahi, Payam; Slorach, Euan M.; Wang, Chih-Yang; Chou, Jonathan; Lu, Angela; Ruderisch, Aline; Werb, Zena

    2015-01-01

    The NET (nocA, Nlz, elB, TLP-1) subfamily of zinc finger proteins is an important mediator during developmental processes. The evolutionary conserved zinc finger protein ZNF503/Zeppo2 (zinc finger elbow-related proline domain protein 2, Zpo2) plays critical roles during embryogenesis. We found that Zpo2 is expressed in adult tissue and examined its function. We found that ZPO2 is a nuclearly targeted transcriptional repressor that is expressed in mammary epithelial cells. Elevated Zpo2 levels increase mammary epithelial cell proliferation. Zpo2 promotes cellular invasion through down-regulation of E-cadherin and regulates the invasive phenotype in a RAC1-dependent manner. We detect elevated Zpo2 expression during breast cancer progression in a MMTV-PyMT transgenic mouse model. Tumor transplant experiments indicated that overexpression of Zpo2 in MMTV-PyMT mammary tumor cell lines enhances lung metastasis. Our findings suggest that Zpo2 plays a significant role in mammary gland homeostasis and that deregulation of Zpo2 may promote breast cancer development. PMID:25538248

  9. Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis.

    Science.gov (United States)

    Huang, Y Q; Guan, H; Liu, C H; Liu, D C; Xu, B; Jiang, L; Lin, Z X; Chen, M

    2016-04-25

    Epigenetic inactivation of Ras-associated domain family 1A (RASSF1A) by hyper-methylation of its promoter region has been identified in various cancers. However, the role of RASSF1A in renal cancer has neither been thoroughly investigated nor reviewed. In this study, we reviewed and performed a meta-analysis of 13 published studies reporting correlations between methylation frequency of the RASSF1A promoter region and renal cancer risk. The odds ratios (ORs) of eligible studies and their corresponding 95% confidence intervals (95%CIs) were used to correlate RASSF1A promoter methylation with renal cell cancer risk and clinical or pathological variables, respectively. RASSF1A promoter methylation was significantly associated with the risk of renal cell cancer (OR = 19.35, 95%CI = 9.57-39.13). RASSF1A promoter methylation was significantly associated with pathological tumor grade (OR = 3.32, 95%CI = 1.55-7.12), and a possible positive correlation between RASSF1A promoter methylation status and tumor stage was noted (OR = 1.89, 95%CI = 1.00-3.56, P = 0.051). Overall, this meta-analysis demonstrated that RASSF1A promoter methylation is significantly associated with increased risk of renal cell cancer. RASSF1A promoter methylation frequency was positively correlated with pathological tumor grade, but not the clinical stage. This study showed that RASSF1A promoter methylation could be utilized to predict renal cell cancer prognosis.

  10. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.

  11. High Temperature Induces Expression of Tobacco Transcription Factor NtMYC2a to Regulate Nicotine and JA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Liming Yang

    2016-10-01

    Full Text Available Environmental stress elevates the level of jasmonic acid (JA and activates the biosynthesis of nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. by up-regulating the expression of putrescine N-methyltransferase 1 (NtPMT1, which encodes a putrescine N-methyl transferase that catalyzes nicotine formation. The JA signal suppressor JASMONATE ZIM DOMAIN 1 (NtJAZ1 and its target protein, NtMYC2a, also regulate nicotine biosynthesis; however, how these proteins interact to regulate abiotic-induced nicotine biosynthesis is poorly understood. In this study, we found that high-temperature (HT treatment activated transcription of NtMYC2a, which subsequently stimulated the transcription of genes associated with JA biosynthesis, including Lipoxygenase (LOX, Allene oxide synthase (AOS, Allene oxide cyclase (AOC, and 12-oxophytodienodate reductase (OPR. Overexpression of NtMYC2a increased nicotine biosynthesis by enhancing its binding to the promoter of NtPMT1. Overexpression of either NtJAZ1 or proteasome-resistant NtJAZ1∆C suppressed nicotine production under normal conditions, but overexpression only of the former resulted in low levels of nicotine under HT treatment. These data suggest that HT induces NtMYC2a accumulation through increased transcription to activate nicotine synthesis; meanwhile, HT-induced NtMYC2a can activate JA synthesis to promote additional NtMYC2a activity by degrading NtJAZ1 at the post-transcriptional level.

  12. Nicotine's defensive function in nature.

    Directory of Open Access Journals (Sweden)

    Anke Steppuhn

    2004-08-01

    Full Text Available Plants produce metabolites that directly decrease herbivore performance, and as a consequence, herbivores are selected for resistance to these metabolites. To determine whether these metabolites actually function as defenses requires measuring the performance of plants that are altered only in the production of a certain metabolite. To date, the defensive value of most plant resistance traits has not been demonstrated in nature. We transformed native tobacco(Nicotiana attenuata with a consensus fragment of its two putrescine N-methyl transferase (pmt genes in either antisense or inverted-repeat (IRpmt orientations. Only the latter reduced (by greater than 95% constitutive and inducible nicotine. With D(4-nicotinic acid (NA, we demonstrate that silencing pmt inhibits nicotine production, while the excess NA dimerizes to form anatabine. Larvae of the nicotine-adapted herbivore Manduca sexta (tobacco hornworm grew faster and, like the beetle Diabrotica undecimpunctata, preferred IRpmt plants in choice tests. When planted in their native habitat, IRpmt plants were attacked more frequently and, compared to wild-type plants, lost 3-fold more leaf area from a variety of native herbivores, of which the beet armyworm, Spodoptera exigua, and Trimerotropis spp. grasshoppers caused the most damage. These results provide strong evidence that nicotine functions as an efficient defense in nature and highlights the value of transgenic techniques for ecological research.

  13. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge.

    Science.gov (United States)

    Liu, Yaping; Lyle, Stephen; Yang, Zaixin; Cotsarelis, George

    2003-11-01

    Putative epithelial stem cells in the hair follicle bulge are thought to play pivotal roles in the homeostasis, aging, and carcinogenesis of the cutaneous epithelium. Elucidating the role of bulge cells in these processes has been hampered by the lack of gene promoters that target this area with specificity. Here we describe the isolation of the mouse keratin 15 (K15) promoter and demonstrate its utility for preferentially targeting hair follicle bulge cells in adult K15/lacZ transgenic mice. We found that patterns of K15 expression and promoter activity changed with age and correlated with levels of differentiation within the cutaneous epithelium; less differentiated keratinocytes in the epidermis of the neonatal mouse and in the bulge area of the adult mouse preferentially expressed K15. These findings demonstrate the utility of the K15 promoter for targeting epithelial stem cells in the hair follicle bulge and set the stage for elucidating the role of bulge cells in skin biology.

  14. CanScript, an 18-Base pair DNA sequence, boosts tumor cell-specific promoter activity

    Science.gov (United States)

    Huang, Yu-Hung; Cozzitorto, Joseph A; Richards, Nathan G; Eltoukhy, Ahmed A; Yeo, Charles J; Langer, Robert; Anderson, Daniel G; Brody, Jonathan R

    2010-01-01

    Gene therapy protocols for the treatment of cancer often employ gene promoter sequences that are known to be overexpressed in specific tumor cell types relative to normal cells. These promoters, while specific, are often weakly active. It would be desirable to increase the activity of such promoters, while at the same time retain specificity, so that the therapeutic gene is more robustly expressed. Using a luciferase reporter DNA construct in both in vitro cell transfection assays and in vivo mouse tumor models, we have determined that in the absence of any other DNA sequence, a previously identified 18-base pair enhancer sequence called CanScript, lying upstream of the MSLN gene, has ∼25% of the promoter activity of CAG, a very strong non-specific promoter/enhancer, in tumor cells in which MSLN is highly expressed. Furthermore, tandem repeat copies of CanScript enhance transcription in a dose-dependent manner and, when coupled with promoter sequences that are active in tumor cells, increase promoter activity. These findings suggest that the incorporation of CanScript into gene constructs may have application in enhancing activity of promoters used in cancer-targeting gene therapy strategies, thereby improving therapeutic efficacy. PMID:20798601

  15. An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior

    Science.gov (United States)

    Jung, Yonwoo; Hsieh, Lawrence S.; Lee, Angela M.; Zhou, Zhifeng; Coman, Daniel; Heath, Christopher J.; Hyder, Fahmeed; Mineur, Yann S.; Yuan, Qiaoping; Goldman, David; Bordey, Angelique; Picciotto, Marina R.

    2016-01-01

    Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l, a component of a histone methyltransferase complex. We therefore examined genome-wide changes in H3K4 tri-methylation, a mark induced by the Ash2l complex associated with increased gene transcription. A significant number of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4 tri-methylation. Knockdown of Ash2l or Mef2c abolishes nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuates nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimics nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a novel target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior. PMID:27239938

  16. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  17. Nicotine enhances the expression of a sucrose or cocaine conditioned place preference in adult male rats.

    Science.gov (United States)

    Buffalari, Deanne M; Marfo, Nana Yaa A; Smith, Tracy T; Levin, Melissa E; Weaver, Matthew T; Thiels, Edda; Sved, Alan F; Donny, Eric C

    2014-09-01

    Nicotine has been shown to enhance the motivational properties of non-nicotine stimuli. This reinforcement-enhancing property of nicotine has the potential to promote the use of other illicit substances as well as maladaptive patterns of food intake. Therefore, the current study aimed to examine whether nicotine enhances preference for contexts paired with cocaine or sucrose utilizing a place conditioning procedure. Separate groups of adult male rats were administered sucrose or cocaine in one of two compartments of a standard CPP chamber on four consecutive days. Preference was then assessed following no injection, a single subcutaneous (s.c.) injection of nicotine, and a s.c. saline injection. The animals preferred the chamber paired with either sucrose or cocaine, as evident from an increased time spent in the paired chamber compared to baseline. Nicotine further increased the time spent in the sucrose- or cocaine-paired chamber, consistent with a reinforcement-enhancement effect. Previous results demonstrate an interaction between nicotine and intake of other drugs or food. The present findings provide an additional mechanism that may underlie these effects and which may have implications for drug dependence and obesity.

  18. Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review.

    Science.gov (United States)

    Le Houezec, J

    2003-09-01

    Smoking is a complex behaviour involving both pharmacological and psychological components. Nicotine is the main alkaloid found in tobacco, and is responsible for its addictive potential. Nicotine-positive effects on mood and cognition are strong reinforcements for smokers that contribute to their addiction, and cigarette smoking is particularly addictive because inhaled nicotine is absorbed through the pulmonary venous rather than the systemic venous system, and thus reaches the brain in 10-20 seconds. As the likelihood that a substance will be abused depends on the time between administration and central reinforcement, tobacco smoking can easily become addictive. Nicotine replacement therapy (NRT) is available in different forms (gum, transdermal patch, nasal spray, inhaler, sublingual tablet and lozenge), and has been shown to relieve withdrawal symptoms and to double abstinence rates compared to placebo. Most NRT forms deliver nicotine more slowly than smoking, and the increase in nicotine blood levels is more gradual. Compared to tobacco smoking or even tobacco chewing, few positive (reinforcing) effects are obtained from NRT use. Nasal spray provides faster withdrawal relief than other NRT, but compared to smoking absorption is slower and nicotine blood levels obtained are lower than with smoking. These differences in pharmacokinetic profiles compared with smoking may explain that some smokers still have difficulties quitting smoking even when using NRT (apart from psychological and/or social factors). Combination therapy (e.g., patch+gum, patch+inhaler), higher dosage, temporary abstinence or smoking reduction (using NRT to reduce smoke intake) may be needed to help more smokers to quit.

  19. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kato, Kagayaki; Taniguchi, Misako; Ng, Julian; Hayashi, Shigeo

    2003-04-01

    Cell rearrangement, accompanied by the rapid assembly and disassembly of cadherin-mediated cell adhesions, plays essential roles in epithelial morphogenesis. Various in vitro and cell culture studies on the small GTPase Rac have suggested it to be a key regulator of cell adhesion, but this notion needs to be verified in the context of embryonic development. We used the tracheal system of Drosophila to investigate the function of Rac in the epithelial cell rearrangement, with a special attention to its role in regulating epithelial cadherin activity. We found that a reduced Rac activity led to an expansion of cell junctions in the embryonic epidermis and tracheal epithelia, which was accompanied by an increase in the amount of Drosophila E-Cadherin-Catenin complexes by a post-transcriptional mechanism. Reduced Rac activity inhibited dynamic epithelial cell rearrangement. Hyperactivation of Rac, on the other hand, inhibited assembly of newly synthesized E-Cadherin into cell junctions and caused loss of tracheal cell adhesion, resulting in cell detachment from the epithelia. Thus, in the context of Drosophila tracheal development, Rac activity must be maintained at a level necessary to balance the assembly and disassembly of E-Cadherin at cell junctions. Together with its role in cell motility, Rac regulates plasticity of cell adhesion and thus ensures smooth remodeling of epithelial sheets into tubules.

  20. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes.

    Science.gov (United States)

    Kon, Shunsuke; Ishibashi, Kojiro; Katoh, Hiroto; Kitamoto, Sho; Shirai, Takanobu; Tanaka, Shinya; Kajita, Mihoko; Ishikawa, Susumu; Yamauchi, Hajime; Yako, Yuta; Kamasaki, Tomoko; Matsumoto, Tomohiro; Watanabe, Hirotaka; Egami, Riku; Sasaki, Ayana; Nishikawa, Atsuko; Kameda, Ikumi; Maruyama, Takeshi; Narumi, Rika; Morita, Tomoko; Sasaki, Yoshiteru; Enoki, Ryosuke; Honma, Sato; Imamura, Hiromi; Oshima, Masanobu; Soga, Tomoyoshi; Miyazaki, Jun-Ichi; Duchen, Michael R; Nam, Jin-Min; Onodera, Yasuhito; Yoshioka, Shingo; Kikuta, Junichi; Ishii, Masaru; Imajo, Masamichi; Nishida, Eisuke; Fujioka, Yoichiro; Ohba, Yusuke; Sato, Toshiro; Fujita, Yasuyuki

    2017-05-01

    Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.

  1. Acidic extracellular microenvironment promotes the invasion and cathepsin B secretion of PC-3 cells.

    Science.gov (United States)

    Gao, Li; Fang, You-Qiang; Zhang, Tian-Yu; Ge, Bo; Tang, Rong-Jing; Huang, Jie-Fu; Jiang, Lei-Ming; Tan, Ning

    2015-01-01

    This study aimed to investigate the effect of acidic microenvironment on the invasion of prostatic carcinoma PC-3 cells and to explore the potential mechanism. PC-3 cells were maintained in medium at different pHs (pH 7.4, pH 7.0 and pH 6.6). Invasion and metastasis of PC-3 cells were investigated in vitro. Acridine orange staining was performed, followed by laser confocal scanning microscopy for the localization of lysosomes. Western blot assay and ELISA were employed to evaluate the effect of acidic microenvironment on the cathepsin B secretion. Acidic microenvironment remarkably promote the invasion and migration of PC-3 cells (Pmicroenvironment promoted the cathepsin B secretion in PC- cells. Acidic microenvironment may significantly promote the invasion of PC-3 cells and increase the secretion of cathepsin B. This suggests that the acidic microenvironment induced invasion of PC- cells is related to the elevated cathepsin B secretion.

  2. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Gary Lam

    2016-10-01

    Full Text Available Non-Hodgkin lymphomas (NHL are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL.

  3. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma

    Science.gov (United States)

    Lam, Gary; Xian, Rena R.; Li, Yingying; Burns, Kathleen H.; Beemon, Karen L.

    2016-01-01

    Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL. PMID:27792139

  4. Soft fibrin gels promote selection and growth of tumorigenic cells

    Science.gov (United States)

    Liu, Jing; Tan, Youhua; Zhang, Huafeng; Zhang, Yi; Xu, Pingwei; Chen, Junwei; Poh, Yeh-Chuin; Tang, Ke; Wang, Ning; Huang, Bo

    2012-08-01

    The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.

  5. Rational promoter selection for gene transfer into cardiac cells

    NARCIS (Netherlands)

    Maass, A; Langer, SJ; Oberdorf-Maass, S; Bauer, S; Neyses, L; Leinwand, LA

    2003-01-01

    Cardiomyocytes (CMCs) are extremely difficult to transfect with non-viral techniques, but they are efficiently infected by adenoviruses. The most commonly used promoters to drive protein expression in cardiac myocytes are of viral origin, since they are believed to be constitutively active and minim

  6. Rapamycin Conditioning of Dendritic Cells Differentiated from Human ES Cells Promotes a Tolerogenic Phenotype

    Directory of Open Access Journals (Sweden)

    Kathryn M. Silk

    2012-01-01

    Full Text Available While human embryonic stem cells (hESCs may one day facilitate the treatment of degenerative diseases requiring cell replacement therapy, the success of regenerative medicine is predicated on overcoming the rejection of replacement tissues. Given the role played by dendritic cells (DCs in the establishment of immunological tolerance, we have proposed that DC, rendered tolerogenic during their differentiation from hESC, might predispose recipients to accept replacement tissues. As a first step towards this goal, we demonstrate that DC differentiated from H1 hESCs (H1-DCs are particularly responsive to the immunosuppressive agent rapamycin compared to monocyte-derived DC (moDC. While rapamycin had only modest impact on the phenotype and function of moDC, H1-DC failed to upregulate CD40 upon maturation and displayed reduced immunostimulatory capacity. Furthermore, coculture of naïve allogeneic T cells with rapamycin-treated H1-DC promoted an increased appearance of CD25hi Foxp3+ regulatory T cells, compared to moDC. Our findings suggest that conditioning of hESC-derived DC with rapamycin favours a tolerogenic phenotype.

  7. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    Science.gov (United States)

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  8. MAGEB2 is activated by promoter demethylation in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Kavita M Pattani

    Full Text Available PURPOSE: Although promoter hypermethylation has been an accepted means of tumor suppressor gene inactivation, activation of otherwise normally repressed proto-oncogenes by promoter demethylation has been infrequently documented. EXPERIMENTAL DESIGN: In this study we performed an integrative, whole-genome analysis for discovery of epigenetically activated proto-oncogenes in head and neck cancer tumors. We used the 47K GeneChip U133 Plus 2.0 Affymetrix expression microarray platform to obtain re-expression data from 5-aza treated normal cell line and expression data from primary head and neck squamous cell carcinoma (HNSCC tumor tissues and normal mucosa tissues. We then investigated candidate genes by screening promoter regions for CpG islands and bisulfite sequencing followed by QUMSP and RT PCR for the best candidate genes. Finally, functional studies were performed on the top candidate gene. RESULTS: From the top 178 screened candidates 96 had CpG islands in their promoter region. Seven candidate genes showed promoter region methylation in normal mucosa samples and promoter demethylation in a small cohort of primary HNSCC tissues. We then studied the demethylation of the top 3 candidate genes in an expanded cohort of 76 HNSCC tissue samples and 17 normal mucosa samples. We identified MAGEB2 as having significant promoter demethylation in primary head and neck squamous cell carcinoma tissues. We then found significantly higher expression of MAGEB2 in tumors in a separate cohort of 73 primary HNSCC tissues and 31 normal tissues. Finally, we found that MAGEB2 has growth promoting effects on minimally transformed oral keratinocyte cell lines but not a definite effect on HNSCC cell lines. CONCLUSION: In conclusion, we identified MAGEB2 as activated by promoter demethylation in HNSCCand demonstrates growth promoting effects in a minimally transformed oral keratinocyte cell line. More studies are needed to evaluate MAGBE2's exact role in HNSCC.

  9. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  10. Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    Science.gov (United States)

    Bachstetter, Adam D.; Jernberg, Jennifer; Schlunk, Andrea; Vila, Jennifer L.; Hudson, Charles; Cole, Michael J.; Shytle, R. Douglas; Tan, Jun; Sanberg, Paul R.; Sanberg, Cyndy D.; Borlongan, Cesario; Kaneko, Yuji; Tajiri, Naoki; Gemma, Carmelina; Bickford, Paula C.

    2010-01-01

    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1β in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative

  11. Role of sortase in Streptococcus mutans under the effect of nicotine

    Institute of Scientific and Technical Information of China (English)

    Ming-Yun Li; Rui-Jie Huang; Xue-Dong Zhou; Richard L. Gregory

    2013-01-01

    Streptococcus mutans is a common Gram-positive bacterium and plays a significant role in dental caries. Tobacco and/or nicotine have documented effects on S. mutans growth and colonization. Sortase A is used by many Gram-positive bacteria, including S. mutans, to facilitate the insertion of certain cell surface proteins, containing an LPXTGX motif such as antigen I/II. This study examined the effect of nicotine on the function of sortase A to control the physiology and growth of S. mutans using wild-type S. mutans NG8, and its isogenic sortase-defective and-complemented strains. Briefly, the strains were treated with increasing amounts of nicotine in planktonic growth, biofilm metabolism, and sucrose-induced and saliva-induced antigen I/II-dependent biofilm formation assays. The strains exhibited no significant differences with different concentrations of nicotine in planktonic growth assays. However, they had significantly increased (Pf0.05) biofilm metabolic activity (2-to 3-fold increase) as the concentration of nicotine increased. Furthermore, the sortase-defective strain was more sensitive metabolically to nicotine than the wild-type or sortase-complemented strains. All strains had significantly increased sucrose-induced biofilm formation (2-to 3-fold increase) as a result of increasing concentrations of nicotine. However, the sortase-defective strain was not able to make as much sucrose-and saliva-induced biofilm as the wild-type NG8 did with increasing nicotine concentrations. These results indicated that nicotine increased metabolic activity and sucrose-induced biofilm formation. The saliva-induced biofilm formation assay and qPCR data suggested that antigen I/II was upregulated with nicotine but biofilm was not able to be formed as much as wild-type NG8 without functional sortase A.

  12. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes alpha7 containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons

    OpenAIRE

    2009-01-01

    Vertebrate alpha-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss ...

  14. Functional analysis of a novel human serotonin transporter gene promoter in immortalized raphe cells

    DEFF Research Database (Denmark)

    Mortensen, O V; Thomassen, M; Larsen, M B

    1999-01-01

    were found to possess the additional 379 bp fragment. The integrity of the promoter was furthermore confirmed by genomic Southern blotting. The promoter activity was analyzed by reporter gene assays in neuronal and non-neuronal serotonergic cell lines. In immortalized serotonergic raphe neurons, RN46A...

  15. Obesity promotes colonic stem cell expansion during cancer initiation.

    Science.gov (United States)

    DeClercq, V; McMurray, D N; Chapkin, R S

    2015-12-28

    There is an urgent need to elucidate the mechanistic links between obesity and colon cancer. Convincing evidence for the role of Lgr5(+) stem cells in colon tumorigenesis has been established; however, the influence of obesity on stem cell maintenance is unknown. We assessed the effects of high fat (HF) feeding on colonic stem cell maintenance during cancer initiation (AOM induced) and the responsiveness of stem cells to adipokine signaling pathways. The number of colonic GFP(+) stem cells was significantly higher in the AOM-injected HF group compared to the LF group. The Lgr5(+) stem cells of the HF fed mice exhibited statistically significant increases in cell proliferation and decreases in apoptosis in response to AOM injection compared to the LF group. Colonic organoid cultures from lean mice treated with an adiponectin receptor agonist exhibited a reduction in Lgr5-GPF(+) stem cell number and an increase in apoptosis; however, this response was diminished in the organoid cultures from obese mice. These results suggest that the responsiveness of colonic stem cells to adiponectin in diet-induced obesity is impaired and may contribute to the stem cell accumulation observed in obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Collective cell motility promotes chemotactic prowess and resistance to chemorepulsion.

    Science.gov (United States)

    Malet-Engra, Gema; Yu, Weimiao; Oldani, Amanda; Rey-Barroso, Javier; Gov, Nir S; Scita, Giorgio; Dupré, Loïc

    2015-01-19

    Collective cell migration is a widespread biological phenomenon, whereby groups of highly coordinated, adherent cells move in a polarized fashion. This migration mode is a hallmark of tissue morphogenesis during development and repair and of solid tumor dissemination. In addition to circulating as solitary cells, lymphoid malignancies can assemble into tissues as multicellular aggregates. Whether malignant lymphocytes are capable of coordinating their motility in the context of chemokine gradients is, however, unknown. Here, we show that, upon exposure to CCL19 or CXCL12 gradients, malignant B and T lymphocytes assemble into clusters that migrate directionally and display a wider chemotactic sensitivity than individual cells. Physical modeling recapitulates cluster motility statistics and shows that intracluster cell cohesion results in noise reduction and enhanced directionality. Quantitative image analysis reveals that cluster migration runs are periodically interrupted by transitory rotation and random phases that favor leader cell turnover. Additionally, internalization of CCR7 in leader cells is accompanied by protrusion retraction, loss of polarity, and the ensuing replacement by new leader cells. These mechanisms ensure sustained forward migration and resistance to chemorepulsion, a behavior of individual cells exposed to steep CCL19 gradients that depends on CCR7 endocytosis. Thus, coordinated cluster dynamics confer distinct chemotactic properties, highlighting unexpected features of lymphoid cell migration.

  17. Delocalized Claudin-1 promotes metastasis of human osteosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Yuekui; Chen, Changqiong; Li, Bo; Tian, Xiaobin, E-mail: drtxb_guiyang@sina.com

    2015-10-23

    Tight junction proteins (TJPs) including Claudins, Occludin and tight junction associated protein Zonula occludens-1 (ZO-1), are the most apical component of junctional complex that mediates cell–cell adhesion in epithelial and endothelial cells. In human malignancies, TJPs are often deregulated and affect cellular behaviors of tumor cells. In this study, we investigated alternations of TJPs and related biological characteristics in human osteosarcoma (OS). Claudin1 was increased in the metastatic OS cells (KRIB and KHOS) compared with the normal osteoblast cells (hFOB1.19) or primary tumor cells (HOS and U2OS), whereas no significant difference was found in Occludin and ZO-1. Immunohistochemistry, immunofluorescence and Western blotting revealed that Claudin1 was initially localized at cell junctions of normal osteoblasts, but substantially delocalized to the nucleus of metastatic OS cells. Phenotypically, inhibition of the nucleus Claudin1 expression compromised the metastatic potential of KRIB and KHOS cells. Moreover, we found that protein kinase C (PKC) but not PKA phosphorylation influenced Claudin1 expression and cellular functions, as PKC inhibitor (Go 6983 and Staurosporine) or genetic silencing of PKC reduced Claudin1 expression and decreased the motility of KRIB and KHOS cells. Taken together, our study implied that delocalization of claudin-1 induced by PKC phosphorylation contributes to metastatic capacity of OS cells. - Highlights: • Claudin1 is increased during the malignant transformation of human OS. • Delocalization of Claudin1 in metastatic OS cells. • Silencing nuclear Claudin1 expression inhibits cell invasion of OS. • Deregulated Claudin1 is regulated by PKC.

  18. Mesenchymal Stem Cells Promote Metastasis of Lung Cancer Cells by Downregulating Systemic Antitumor Immune Response

    Directory of Open Access Journals (Sweden)

    Marina Gazdic

    2017-01-01

    Full Text Available Since majority of systemically administered mesenchymal stem cells (MSCs become entrapped within the lungs, we used metastatic model of lung cancer, induced by intravenous injection of Lewis lung cancer 1 (LLC1 cells, to investigate the molecular mechanisms involved in MSC-mediated modulation of metastasis. MSCs significantly augmented lung cancer metastasis, attenuate concentrations of proinflammatory cytokines (TNF-α, IL-17, and increase levels of immunosuppressive IL-10, nitric oxide, and kynurenine in sera of LLC1-treated mice. MSCs profoundly reduced infiltration of macrophages, TNF-α-producing dendritic cells (DCs, TNF-α-, and IL-17-producing CD4+ T cells but increased IL-10-producing CD4+ T lymphocytes in the lungs of tumor-bearing animals. The total number of lung-infiltrated, cytotoxic FasL, perforin-expressing, TNF-α-, and IL-17-producing CD8+ T lymphocytes, and NKG2D-expressing natural killer (NK cells was significantly reduced in LLC1 + MSC-treated mice. Cytotoxicity of NK cells was suppressed by MSC-conditioned medium. This phenomenon was abrogated by the inhibitors of inducible nitric oxide synthase (iNOS and indoleamine 2,3-dioxygenase (IDO, suggesting the importance of iNOS and IDO for MSC-mediated suppression of antitumor cytotoxicity of NK cells. This study provides the evidence that MSCs promote lung cancer metastasis by suppressing antitumor immune response raising concerns regarding safety of MSC-based therapy in patients who have genetic susceptibility for malignant diseases.

  19. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  20. TKTL1 promotes cell proliferation and metastasis in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Li, Juan; Zhu, Shu-Chai; Li, Shu-Guang; Zhao, Yan; Xu, Jin-Rui; Song, Chun-Yang

    2015-08-01

    Transketolase-like-1 (TKTL1), which is a rate-limiting enzyme in the non-oxidative part of the pentose-phosphate pathway, has been demonstrated to promote carcinogenesis through enhanced aerobic glycolysis. Dysregulation of TKTL1 expression also leads to poor prognosis in patients with urothelial and colorectal cancer. However, the expression pattern and underlying cellular functions in human esophageal squamous cell carcinoma (ESCC) remain largely unexplored. In this study, we measured TKTL1 expression in ESCC cell lines and paraffin-embedded ESCC tumor tissues. Our results revealed that TKTL1 expression was upregulated in all of the four ESCC cell lines and in 61.25% (98/160) of ESCC specimens detected, while only 27.5% (11/40) in normal epithelium. Silencing of TKTL1 expression decreased cell proliferation through inhibiting the expression of MKI67 and cyclins including Ccna2, Ccnb1, Ccnd1 and Ccne1. Meanwhile, down-regulation of TKTL1 also associated with increased apoptotic ratio and altered protein expression of Bcl-2 family in ESCC cells. Furthermore, knockdown of TKTL1 significantly reduced the invasive potential of ESCC cells through up-regulation of anti-metastasis genes (MTSS1, TIMP2 and CTSK) and down-regulation of pr-metastasis genes (MMP2, MMP9, MMP10 and MMP13). Taken together, our results indicate that TKTL1 is associated with a more aggressive behavior in ESCC cells and suppresses its expression or enzyme activity might represents a potential target for developing novel therapies in human ESCCs.

  1. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.

    Science.gov (United States)

    Segal, Dagan; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-08-01

    Indirect flight muscles (IFMs) in Drosophila are generated during pupariation by fusion of hundreds of myoblasts with larval muscle templates (myotubes). Live observation of these muscles during the fusion process revealed multiple long actin-based protrusions that emanate from the myotube surface and require Enabled and IRSp53 for their generation and maintenance. Fusion is blocked when formation of these filopodia is compromised. While filopodia are not required for the signaling process underlying critical myoblast cell-fate changes prior to fusion, myotube-myoblast adhesion appears to be filopodia dependent. Without filopodia, close apposition between the cell membranes is not achieved, the cell-adhesion molecule Duf is not recruited to the myotube surface, and adhesion-dependent actin foci do not form. We therefore propose that the filopodia are necessary to prime the heterotypic adhesion process between the two cell types, possibly by recruiting the cell-adhesion molecule Sns to discrete patches on the myoblast cell surface.

  2. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters.

    Science.gov (United States)

    Aldea, M; Garrido, T; Pla, J; Vicente, M

    1990-11-01

    The cell division ftsQAZ cluster and the ftsZ-dependent bolA morphogene of Escherichia coli are found to be driven by gearboxes, a distinct class of promoters characterized by showing an activity that is inversely dependent on growth rate. These promoters contain specific sequences upstream from the mRNA start point, and their -10 region is essential for the inverse growth rate dependence. Gearbox promoters are essential for driving ftsQAZ and bolA gene expression so that the encoded products are synthesized at constant amounts per cell independently of cell size. This mode of regulation would be expected for the expression of proteins that either play a regulatory role in cell division or form a stoichiometric component of the septum, a structure that, independently of cell size and growth rate, is produced once per cell cycle.

  3. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris.

    Directory of Open Access Journals (Sweden)

    Alfredo Ambrosone

    Full Text Available Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi based on an enhanced uptake of small interfering RNAi (siRNA, we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1 in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.

  4. MicroRNA-93 promotes cell proliferation by directly targeting P21 in osteosarcoma cells

    Science.gov (United States)

    He, Yu; Yu, Bo

    2017-01-01

    enhances the proliferation of osteosarcoma cells, at least in part via inhibiting P21 expression and thus promoting cell cycle progression. PMID:28565800

  5. Antigen Processing by Autoreactive B Cells Promotes Determinant Spreading

    Institute of Scientific and Technical Information of China (English)

    Yang D.Dai; George Carayanniotis; Eli Sercarz

    2005-01-01

    Acute primary immune responses tend to focus on few immunodominant determinants using a very limited number of T cell clones for expansion, whereas chronic inflammatory responses generally recruit a large number of different T cell clones to attack a broader range of determinants of the invading pathogens or the inflamed tissues.In T cell-mediated organ-specific autoimmune disease, a transition from the acute to the chronic phase contributes to pathogenesis, and the broadening process is called determinant spreading. The cellular components catalyzing the spreading reaction are not identified. It has been suggested that autoreactive B cells may play a central role in diversifying autoreactive T cell responses, possibly through affecting antigen processing and presentation. The clonal identity and diversity of the B cells and antibodies seem critical in regulating T cell activity and subsequent tissue damage or repair. Here, we use two autoimmune animal models, experimental autoimmune thyroiditis (EAT)and type 1 diabetes (T1D), to discuss how autoreactive B cells or antibodies alter the processing and presentation of autoantigens to regulate specific T cell response.

  6. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility.

    Science.gov (United States)

    Riemann, A; Schneider, B; Gündel, D; Stock, C; Gekle, M; Thews, O

    2016-01-01

    The tumor microenvironment is characterized by hypoxia, acidosis as well as other metabolic and biochemical alterations. Its role in cancer progression is increasingly appreciated especially on invasive capacity and the formation of metastasis. The effect of acidosis on metastasis formation of two rat carcinoma cell lines was studied in the animal model. In order to analyze the pH dependency of different steps of metastasis formation, invasiveness, cell adhesion and migration of AT-1 prostate cancer cells as well as possible underlying cell signaling pathways were studied in vitro. Acidosis significantly increased the formation of lung metastases of both tumor cell lines in vivo. In vitro, extracellular acidosis neither enhanced invasiveness nor affected cell adhesion to a plastic or to an endothelial layer. However, cellular motility was markedly elevated at pH 6.6 and this effect was sustained even when extracellular pH was switched back to pH 7.4. When analyzing the underlying mechanism, a prominent role of ROS in the induction of migration was observed. Signaling through the MAP kinases ERK1/2 and p38 as well as Src family kinases was not involved. Thus, cancer cells in an acidic microenvironment can acquire enhanced motility, which is sustained even if the tumor cells leave their acidic microenvironment e.g. by entering the blood stream. This increase depended on elevated ROS production and may contribute to the augmented formation of metastases of acidosis-primed tumor cells in vivo.

  7. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Liao, Qi; Tang, Qiang [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China); Deng, Huan [Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006 (China); Chen, Lu, E-mail: chenlu0578@163.com [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China)

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cells growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.

  8. Trypsin promotes C6 glioma cell proliferation in serum- and growth factor-free medium.

    Science.gov (United States)

    Amano, H; Kurosaka, R; Ema, M; Ogawa, Y

    1996-07-01

    C6 glioma cells could be successively subcultured and maintained in serum- and growth factor-free medium (SF/GFF medium). C6 cell proliferation in SF/GFF medium was positively correlated with the initial cell density at plating. This correlation disappeared when the medium had been renewed early after cell adhesion (3 h after plating), suggesting that C6 cell growth depends on some diffusible factor in the medium before renewal, and that this factor is not secreted from C6 cells in the assay culture but is transferred from the cell suspension. The supernatant of trypsinized C6 cell suspension (SCS), trypsin-EDTA solution for routine cell harvesting use, and modified trypsin of protein sequencing grade all promoted C6 cell proliferation at, appropriate dilutions or concentrations under SF/GFF conditions. The growth promoting effects of SCS and trypsin-EDTA solution were completely inhibited by soybean trypsin inhibitor. These results demonstrate that the serine protease trypsin has a proliferative effect on C6 cells continuously subcultured in SF/GFF medium. In addition, it is suggested that trypsin used for cell dispersion is transferred from cell suspension into the culture, where it promotes C6 cell growth after passage in our SF/GFF subculture system.

  9. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival... trauma , sepsis/disease, cancer, and congenital defects. In most cases, current reconstructive strategies are sub-optimal or fail to provide optimal

  10. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells.

    Science.gov (United States)

    Zhang, Lijun; Hua, Qiuhong; Tang, Kaiyi; Shi, Changjie; Xie, Xin; Zhang, Ru

    2016-11-19

    G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth, death, movement, transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study, we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol, we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially, the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted, whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4, knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together, our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.

  11. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus

    Science.gov (United States)

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766

  12. Baseline impulsive choice predicts the effects of nicotine and nicotine withdrawal on impulsivity in rats.

    Science.gov (United States)

    Kayir, Hakan; Semenova, Svetlana; Markou, Athina

    2014-01-03

    Impulsive choice, a form of impulsivity, is associated with tobacco smoking in humans. Trait impulsivity may be a vulnerability factor for smoking, or smoking may lead to impulsive behaviors. We investigated the effects of 14-day nicotine exposure (6.32mg/kg/day base, subcutaneous minipumps) and spontaneous nicotine withdrawal on impulsive choice in low impulsive (LI) and high impulsive (HI) rats. Impulsive choice was measured in the delayed reward task in which rats choose between a small immediate reward and a large delayed reward. HI and LI rats were selected from the highest and lowest quartiles of the group before exposure to nicotine. In non-selected rats, nicotine or nicotine withdrawal had no effect on impulsive choice. In LI rats, chronic nicotine exposure decreased preference for the large reward with larger effects at longer delays, indicating increased impulsive choice. Impulsive choices for the smaller immediate rewards continued to increase during nicotine withdrawal in LI rats. In HI rats, nicotine exposure and nicotine withdrawal had no effect on impulsive choice, although there was a tendency for decreased preference for the large reward at short delays. These results indicate that nicotine- and nicotine withdrawal-induced increases in impulsive choice depend on trait impulsivity with more pronounced increases in impulsive choice in LI compared to HI subjects. Increased impulsivity during nicotine exposure may strengthen the addictive properties of nicotine and contribute to compulsive nicotine use.

  13. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    Science.gov (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  14. Homeodomain-containing gene 10 inhibits cell apoptosis and promotes cell invasion and migration in osteosarcoma cell lines.

    Science.gov (United States)

    Xiong, Wen; Zhou, Quan; Liu, Gang; Liu, Xiang-Sheng; Li, Xin-Yu

    2017-05-01

    Homeodomain-containing gene 10 (HOXC10) belongs to the homeobox family, which encodes a highly conserved family of transcription factors that plays an important role in morphogenesis in all multicellular organisms. Altered expressions of HOXC10 have been reported in several malignancies. This study was aimed to reveal the expression profile of HOXC10 in osteosarcoma and evaluated whether HOXC10 is a molecular target for cancer therapy. We found that HOXC10 was up-regulated in osteosarcoma tissues compared with bone cyst specimens from The Cancer Genome Atlas database. Osteosarcoma MG63 cells were infected with HOXC10 shRNA expressing vector, and 143B cells were infected with HOXC10 expressing vector. We found that reduced expression of HOXC10 markedly impaired the ability of proliferation, invasion, and migration, and promoted cell apoptosis in vitro and in vivo. Up-regulated expression of HOXC10 promoted the proliferation, invasion, and migration, and inhibited apoptosis of 143B cells. Additionally, HOXC10 regulated apoptosis and migration via modulating expression of Bax/Bcl-2, caspase-3, MMP-2/MMP-9, and E-cadherin in both MG63 and 143B cells and in vivo. These results indicated that HOXC10 might be a diagnostic marker for osteosarcoma and could be a potential molecular target for the therapy of osteosarcoma.

  15. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    Institute of Scientific and Technical Information of China (English)

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  16. Antiteratogenic Effects of beta-Carotene in Cultured Mouse Embryos Exposed to Nicotine

    OpenAIRE

    C. Lin; Yon, J. M.; Jung, A.Y.; Lee, J. G.; Jung, K. Y.; Lee, B.J.; Yun, Y.W.; Nam, S Y

    2013-01-01

    After maternal intake, nicotine crosses the placental barrier and causes severe embryonic disorders and fetal death. In this study, we investigated whether beta -carotene has a beneficial effect against nicotine-induced teratogenesis in mouse embryos (embryonic day 8.5) cultured for 48 h in a whole embryo culture system. Embryos exposed to nicotine (1 mM) exhibited severe morphological anomalies and apoptotic cell death, as well as increased levels of TNF- alpha , IL-1 beta , and caspase 3 mR...

  17. Exendin-4 Promotes Beta Cell Proliferation via PI3k/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Chaoxun Wang

    2015-04-01

    Full Text Available Background/Aims: Prevention of diabetes requires maintenance of a functional beta-cell mass, the postnatal growth of which depends on beta cell proliferation. Past studies have shown evidence of an effect of an incretin analogue, Exendin-4, in promoting beta cell proliferation, whereas the underlying molecular mechanisms are not completely understood. Methods: Here we studied the effects of Exendin-4 on beta cell proliferation in vitro and in vivo through analysing BrdU-incorporated beta cells. We also analysed the effects of Exendin-4 on beta cell mass in vivo, and on beta cell number in vitro. Then, we applied specific inhibitors of different signalling pathways and analysed their effects on Exendin-4-induced beta cell proliferation. Results: Exendin-4 increased beta cell proliferation in vitro and in vivo, resulting in significant increases in beta cell mass and beta cell number, respectively. Inhibition of PI3K/Akt signalling, but not inhibition of either ERK/MAPK pathway, or JNK pathway, significantly abolished the effects of Exendin-4 in promoting beta cell proliferation. Conclusion: Exendin-4 promotes beta cell proliferation via PI3k/Akt signaling pathway.

  18. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    Directory of Open Access Journals (Sweden)

    Chi-Chin Sun

    Full Text Available Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  19. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  20. Sox2 promotes tamoxifen resistance in breast cancer cells

    Science.gov (United States)

    Piva, Marco; Domenici, Giacomo; Iriondo, Oihana; Rábano, Miriam; Simões, Bruno M; Comaills, Valentine; Barredo, Inmaculada; López-Ruiz, Jose A; Zabalza, Ignacio; Kypta, Robert; Vivanco, Maria d M

    2014-01-01

    Development of resistance to therapy continues to be a serious clinical problem in breast cancer management. Cancer stem/progenitor cells have been shown to play roles in resistance to chemo- and radiotherapy. Here, we examined their role in the development of resistance to the oestrogen receptor antagonist tamoxifen. Tamoxifen-resistant cells were enriched for stem/progenitors and expressed high levels of the stem cell marker Sox2. Silencing of the SOX2 gene reduced the size of the stem/progenitor cell population and restored sensitivity to tamoxifen. Conversely, ectopic expression of Sox2 reduced tamoxifen sensitivity in vitro and in vivo. Gene expression profiling revealed activation of the Wnt signalling pathway in Sox2-expressing cells, and inhibition of Wnt signalling sensitized resistant cells to tamoxifen. Examination of patient tumours indicated that Sox2 levels are higher in patients after endocrine therapy failure, and also in the primary tumours of these patients, compared to those of responders. Together, these results suggest that development of tamoxifen resistance is driven by Sox2-dependent activation of Wnt signalling in cancer stem/progenitor cells. PMID:24178749

  1. BAX supports the mitochondrial network, promoting bioenergetics in nonapoptotic cells

    Science.gov (United States)

    Boohaker, Rebecca J.; Zhang, Ge; Carlson, Adina Loosley; Nemec, Kathleen N.

    2011-01-01

    The dual functionality of the tumor suppressor BAX is implied by the nonapoptotic functions of other members of the BCL-2 family. To explore this, mitochondrial metabolism was examined in BAX-deficient HCT-116 cells as well as primary hepatocytes from BAX-deficient mice. Although mitochondrial density and mitochondrial DNA content were the same in BAX-containing and BAX-deficient cells, MitoTracker staining patterns differed, suggesting the existence of BAX-dependent functional differences in mitochondrial physiology. Oxygen consumption and cellular ATP levels were reduced in BAX-deficient cells, while glycolysis was increased. These results suggested that cells lacking BAX have a deficiency in the ability to generate ATP through cellular respiration. This conclusion was supported by detection of reduced citrate synthase activity in BAX-deficient cells. In nonapoptotic cells, a portion of BAX associated with mitochondria and a sequestered, protease-resistant form was detected. Inhibition of BAX with small interfering RNAs reduced intracellular ATP content in BAX-containing cells. Expression of either full-length or COOH-terminal-truncated BAX in BAX-deficient cells rescued ATP synthesis and oxygen consumption and reduced glycolytic activity, suggesting that this metabolic function of BAX was not dependent upon its COOH-terminal helix. Expression of BCL-2 in BAX-containing cells resulted in a subsequent loss of ATP measured, implying that, even under nonapoptotic conditions, an antagonistic interaction exists between the two proteins. These findings infer that a basal amount of BAX is necessary to maintain energy production via aerobic respiration. PMID:21289292

  2. Establishment of a cell-based assay to screen regulators for Klotho gene promoter

    Institute of Scientific and Technical Information of China (English)

    Zhi-liang XU; Hong GAO; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU

    2004-01-01

    AIM: To discover compounds which can regulate Klotho promoter activity. Klotho is an aging suppressor gene. A defect in Klotho gene expression in the mouse results in the phenotype similar to human aging. Recombinant Klotho protein improves age-associated diseases in animal models. It has been proposed that up-regulation of Klotho gene expression may have anti-aging effects. METHODS: Klotho promoter was cloned into a vector containing luciferase gene, and the reporter gene vector was transfected into HEK293 cells to make a stable cell line (HEK293/KL). A model for cellular aging was established by treating HEK293/KL cells with H2O2. These cells were treated with extracts from Traditional Chinese Medicines (TCMs). The luciferase activity was detected to identify compounds that can regulate Klotho promoter. RESULTS:The expression of luciferase in these cells was under control of Klotho promoter and down-regulated after H2O2 treatment The down-regulation of luciferase expression was H2O2 concentration-dependent with an IC50 at approximately 0.006 %. This result demonstrated that the Klotho gene promoter was regulated by oxidative stress. Using the cell-based reporter gene assay, we screened natural product extracts for regulation of Klotho gene promoter. Several extracts were identified that could rescue the H2O2effects and up-regulated Klotho promoter activity. CONCLUSION: A cell -based assay for high-throughput drug screening was established to identify compounds that regulate Klotho promoter activity, and several hits were discovered from natural products. Further characterization of these active extracts could help to investigate Klotho function and aging mechanisms.

  3. Nicotine effect on inflammatory and growth factor responses in murine cutaneous wound healing.

    Science.gov (United States)

    Xanthoulea, Sofia; Deliaert, An; Romano, Andrea; Rensen, Sander S; Buurman, Wim A; van der Hulst, Rene' R W J

    2013-12-01

    The aim of the current study was to investigate the effect of nicotine in an experimental mouse model of cutaneous injury and healing responses, during the inflammatory phase of repair. Nicotine injection in full-thickness excisional skin wounds minimally affected inflammatory mediators like TNF, IL-6 and IL-12 while it induced a down-regulation in the expression of growth factors like VEGF, PDGF, TGF-β1 and TGF-β2, and the anti-inflammatory cytokine IL-10. Analysis of wound closure rate indicated no significant differences between nicotine and saline injected controls. In-vitro studies using bone marrow derived macrophages, resident peritoneal macrophages and RAW 264.7 macrophages, indicated that nicotine down-regulates TNF production. Moreover, nicotine was shown to down-regulate VEGF, PDGF and TGF-β1 in both bone marrow derived macrophages and RAW 264.7 cells. Using an NF-κB luciferase reporter RAW 264.7 cell line, we show that nicotine effects are minimally dependent on NF-κB inhibition. Moreover, nicotinic acetylcholine receptor (nAChR) subunit expression analyses indicated that while β2 nAChR subunit is expressed in mouse macrophages, α7 nAChR is not. In conclusion, while skin inflammatory parameters were not significantly affected by nicotine, a down-regulation of growth factor expression in both mouse skin and macrophages was observed. Reduced growth factor expression by nicotine might contribute, at least in part, to the overall detrimental effects of tobacco use in wound healing and skin diseases.

  4. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.

    Science.gov (United States)

    Denis, Erwan; Kbiri, Nadia; Mary, Viviane; Claisse, Gaëlle; Conde E Silva, Natalia; Kreis, Martin; Deveaux, Yves

    2017-05-01

    Procambial and cambial stem cells provide the initial cells that allow the formation of vascular tissues. WOX4 and WOX14 have been shown to act redundantly to promote procambial cell proliferation and differentiation. Gibberellins (GAs), which have an important role in wood formation, also stimulate cambial cell division. Here we show that the loss of WOX14 function phenocopies some traits of GA-deficient mutants that can be complemented by exogenous GA application, whereas WOX14 overexpression stimulates the expression of GA3ox anabolism genes and represses GA2ox catabolism genes, promoting the accumulation of bioactive GA. More importantly, our data clearly indicate that WOX14 but not WOX4 promotes vascular cell differentiation and lignification in inflorescence stems of Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective.

    Science.gov (United States)

    Neumann, Silke; Shields, Nicholas J; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N

    2015-12-04

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer's disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  6. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    2015-12-01

    Full Text Available Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  7. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells

    OpenAIRE

    Pérez-Escuredo, Jhudit; Dadhich, Rajesh K.; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F.; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E.; Sonveaux, Pierre

    2015-01-01

    Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning th...

  8. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  9. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  10. High levels of protein expression using different mammalian CMV promoters in several cell lines.

    Science.gov (United States)

    Xia, Wei; Bringmann, Peter; McClary, John; Jones, Patrick P; Manzana, Warren; Zhu, Ying; Wang, Soujuan; Liu, Yi; Harvey, Susan; Madlansacay, Mary Rose; McLean, Kirk; Rosser, Mary P; MacRobbie, Jean; Olsen, Catherine L; Cobb, Ronald R

    2006-01-01

    With the recent completion of the human genome sequencing project, scientists are faced with the daunting challenge of deciphering the function of these newly found genes quickly and efficiently. Equally as important is to produce milligram quantities of the therapeutically relevant gene products as quickly as possible. Mammalian expression systems provide many advantages to aid in this task. Mammalian cell lines have the capacity for proper post-translational modifications including proper protein folding and glycosylation. In response to the needs described above, we investigated the protein expression levels driven by the human CMV in the presence or absence of intron A, the mouse and rat CMV promoters with intron A, and the MPSV promoter in plasmid expression vectors. We evaluated the different promoters using an in-house plasmid vector backbone. The protein expression levels of four genes of interest driven by these promoters were evaluated in HEK293EBNA and CHO-K1 cells. Stable and transient transfected cells were utilized. In general, the full-length human CMV, in the presence of intron A, gave the highest levels of protein expression in transient transfections in both cell lines. However, the MPSV promoter resulted in the highest levels of stable protein expression in CHO-K1 cells. Using the CMV driven constitutive promoters in the presence of intron A, we have been able to generate >10 microg/ml of recombinant protein using transient transfections.

  11. Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion.

    Science.gov (United States)

    Zhang, Zheng; Cheng, Liang; Zhao, Juanjuan; Li, Guangming; Zhang, Liguo; Chen, Weiwei; Nie, Weiming; Reszka-Blanco, Natalia J; Wang, Fu-Sheng; Su, Lishan

    2015-09-01

    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1-infected patients. In HIV-1-infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1-dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1-induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC- and IFN-I-dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis.

  12. Changes in aromatase (CYP19) gene promoter usage in non-small cell lung cancer.

    Science.gov (United States)

    Demura, Masashi; Demura, Yoshiki; Ameshima, Shingo; Ishizaki, Takeshi; Sasaki, Masato; Miyamori, Isamu; Yamagishi, Masakazu; Takeda, Yoshiyu; Bulun, Serdar E

    2011-09-01

    In humans, aromatase (CYP19) gene expression is regulated via alternative promoters. Activation of each promoter gives rise to a CYP19 mRNA species with a unique 5'-untranslated region. Inhibition of aromatase has been reported to downregulate lung tumor growth. The genetic basis for CYP19 gene expression and aromatase activity in lung cancer remains poorly understood. We analyzed tissues from 15 patients with non-small cell lung cancer (NSCLC) to evaluate CYP19 promoter usage and promoter-specific aromatase mRNA levels in NSCLC tumor tissues and adjacent non-malignant tissues. CYP19 promoter usage was determined by multiplex RT-PCR and aromatase mRNA levels were measured with real-time RT-PCR. In non-malignant tissues, aromatase mRNA was primarily derived from activation of CYP19 promoter I.4. Although promoter I.4 usage was also dominant in tumor tissues, I.4 activation was significantly lower compared with adjacent non-malignant tissues. Activity of promoters I.3, I.1 and I.7 was significantly higher in tumor tissues compared with non-malignant tissues. In 4 of 15 cases of non-small cell lung cancer, switching from CYP19 promoter I.4 to the alternative promoters II, I.1 or I.7 was observed. In 9 cases, there were significantly higher levels of aromatase mRNA in lung tumor tissues compared with adjacent non-malignant tissues. These findings suggest aberrant activation of alternative CYP19 promoters that may lead to upregulation of local aromatase expression in some cases of NSCLC. Further studies are needed to examine the impact of alternative CYP19 promoter usage on local estrogen levels and lung tumor growth. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  14. Lymphocytes prime activation is required for nicotine-induced calcium waves.

    Science.gov (United States)

    Landais, Emilie; Liautaud-Roger, Francoise; Antonicelli, Frank

    2010-06-01

    Lymphocytes are reported to express nicotinic acetylcholine receptors (nAChR). However, no data are available on the expression of these nAChR on activated lymphocyte relatively to resting lymphocytes. In this study, we examined nAChR subunits expression in PHA-stimulated versus un-stimulated lymphocytes, and four leukemic cell lines. Cell stimulation with nicotine triggered calcium responses only in some experiments conducted with PHA-stimulated lymphocytes. Likewise, only the Jurkat and HL-60 cell lines displayed calcium waves upon nicotine stimulation, whereas the Raji and CCRF-CEM did not. All responding cells displayed an active form of the nicotinic a-7 nAChR. Indeed, use of 2 different sets of primers for the corresponding mRNA showed that expression of the full-length a-7 subunit mRNA was only present in PHA-stimulated lymphocytes for which calcium waves had been evidenced. Microscopy analysis of lymphocytes structure showed a direct relationship between their size, their a-7 nAChR expression, and calcium release upon nicotine stimulation. Then, this relationship suggested that lymphocytes need a prime activation to express the a-7 nAChR, and therefore to release calcium in response to nicotine.

  15. Protective effect of Eruca sativa seed oil against oral nicotine induced testicular damage in rats.

    Science.gov (United States)

    Abd El-Aziz, Gamal Said; El-Fark, Magdy Omar; Hamdy, Raid Mahmoud

    2016-08-01

    Nicotine is a pharmacologically active component of the tobacco that adversely affects the male reproductive system and fertility. Nicotine administration in experimental animals was found to affect spermatogenesis, epididymal sperm count, motility and the fertilizing potential of sperms. The goal of this work is to assess the protective or ameliorative effect of Eruca Sativa seed oil against testicular damage induced by oral administration of nicotine in rats. Male adult Sprague-Dawley rats were used and divided into three groups; control, nicotine treated and nicotine and Eruca seed oil treated groups. After three weeks of treatment, the rats were weighed and sacrificed where testes were removed and weighed then calculating relative testis weights. The testes were processed for routine paraffin embedding and staining and the sections were examined for different morphometric and histopathological changes. The results show that nicotine administration had an effect on the body and testis weight and various morphometric parameters of the testis. It also induced varying degrees of structural damage to the seminiferous tubules, with shrinkage and absence of mature spermatids. Disorganized, vacuolization and loss of germinal cells were noticed in the basement membrane. The co-administration of Eruca Sativa seed oil led to improvement in the morphometric and histopathological changes of the seminiferous tubules. In conclusion, Eruca Sativa seed oil treatment in this study had a protective role by reversing, almost completely, all morphometric and histological changes in the testis induced by nicotine administration.

  16. Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes

    Science.gov (United States)

    Gold, Allison B.

    2013-01-01

    Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene–gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype. PMID:22290489

  17. C3-halogenation of cytisine generates potent and efficacious nicotinic receptor agonists.

    Science.gov (United States)

    Abin-Carriquiry, J Andrés; Voutilainen, Merja H; Barik, Jacques; Cassels, Bruce K; Iturriaga-Vásquez, Patricio; Bermudez, Isabel; Durand, Claudia; Dajas, Federico; Wonnacott, Susan

    2006-04-24

    Neuronal nicotinic acetylcholine receptors subserve predominantly modulatory roles in the brain, making them attractive therapeutic targets. Natural products provide key leads in the quest for nicotinic receptor subtype-selective compounds. Cytisine, found in Leguminosae spp., binds with high affinity to alpha4beta2* nicotinic receptors. We have compared the effect of C3 and C5 halogenation of cytisine and methylcytisine (MCy) on their interaction with native rat nicotinic receptors. 3-Bromocytisine (3-BrCy) and 3-iodocytisine (3-ICy) exhibited increased binding affinity (especially at alpha7 nicotinic receptors; Ki approximately 0.1 microM) and functional potency, whereas C5-halogenation was detrimental. 3-BrCy and 3-ICy were more potent than cytisine at evoking [3H]dopamine release from striatal slices (EC50 approximately 11 nM), [3H]noradrenaline release from hippocampal slices (EC50 approximately 250 nM), increases in intracellular Ca2+ in PC12 cells and inward currents in Xenopus oocytes expressing human alpha3beta4 nicotinic receptor (EC50 approximately 2 microM). These compounds were also more efficacious than cytisine. C3-halogenation of cytisine is proposed to stabilize the open conformation of the nicotinic receptor but does not enhance subtype selectivity.

  18. In vitro evaluation of transdermal nicotine delivery systems commercially available in Brazil

    Directory of Open Access Journals (Sweden)

    André Luís Morais Ruela

    2013-09-01

    Full Text Available The aim of this study was to develop and validate a method for evaluating the release and skin permeation from transdermal nicotine patches using the vertical diffusion cell (VDC. The VDC is an experimental apparatus employed in research, development, and the pharmaceutical field because it can simulate conditions closest to those established in clinical trials. Two transdermal nicotine delivery systems marketed in Brazil to release 14 mg over 24 hours were evaluated. Release studies were carried out using a regenerated cellulose dialysis membrane and permeation studies were carried out using excised porcine ear skin. The results indicated that nicotine release from both evaluated patches follows Higuchi's release kinetics, while skin permeation studies indicated zero-order release kinetics. Nicotine release rates were different between both evaluated patches, but drug permeation rates were not significantly different. According to validation studies, the method was appropriate for evaluating in vitro performance of nicotine patches. The proposed method can be applied to in vitro comparative studies between different commercial nicotine patches and may be used as an auxiliary tool in the design of new transdermal nicotine delivery systems.

  19. Alcohol and nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    2013-05-01

    Full Text Available Background The frequent co-abuse of alcohol and tobacco may suggest that they share some common neurological mechanisms. For example, nicotine acts on Nicotinic acetylcholine receptors (nAChRs in the brain to release dopamine to sustain addiction. Might nAChRs be entwined with alcohol? Objectives This review summarizes recent studies on the relationship between alcohol and nAChRs, including the role of nAChRs in molecular biological studies, genetic studies and pharmacological studies on alcohol, which indicate that nAChRs have been potently modulated by alcohol. Methods We performed a cross-referenced literature search on biological, genetic and pharmacological studies of alcohol and nAChRs. Results Molecular biological and genetic studies indicated that nAChR (genes may be important in mediating alcohol intake, but we still lack substantial evidence about how it works. Pharmacological studies proved the correlation between nAChRs and alcohol intake, and the association between nicotine and alcohol at the nAChRs. The positive findings of varenicline (a partial agonist at the _4_2 nAChR, smoking-cessation pharmaceutical treatment for alcoholism, provides a new insight for treating co-abuse of these two substances. >Conclusions Molecular biological, genetic and pharmacological studies of alcohol at the nAChR level, provide a new sight for preventing and treating the co-abuse of alcohol and nicotine. Given the important role of nAChRs in nicotine dependence, the interaction between alcohol and nAChRs would provide a new insight in finding effective pharmacological treatments, in decreasing or stopping alcohol consumption and cigarette smoking concurrently.

  20. Biodiesel from soybean promotes cell proliferation in vitro.

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G; Jiménez-Vélez, Braulio D

    2016-08-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100μgmL(-1). In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (h