WorldWideScience

Sample records for nicotine exposure alters

  1. Fetal Nicotine Exposure Increases Preference for Nicotine Odor in Early Postnatal and Adolescent, but Not Adult, Rats

    Science.gov (United States)

    Mantella, Nicole M.; Kent, Paul F.; Youngentob, Steven L.

    2013-01-01

    Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse. PMID:24358374

  2. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  3. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  4. E-cigarettes: Impact of E-Liquid Components and Device Characteristics on Nicotine Exposure.

    Science.gov (United States)

    DeVito, Elise E; Krishnan-Sarin, Suchitra

    2018-01-01

    Electronic cigarette (e-cigarette) use has increased substantially in recent years. While e-cigarettes have been proposed as a potentially effective smoking cessation tool, dualuse in smokers is common and e-cigarettes are widely used by non-smokers, including youth and young-adult non-smokers. Nicotine, the primary addictive component in cigarettes, is present at varying levels in many e-liquids. E-cigarettes may lead to initiation of nicotine use in adult and youth non-smokers, re-initiation of nicotine dependence in ex-smokers or increased severity of nicotine dependence in dual-users of cigarettes and e-cigarettes. As such, there are important clinical and policy implications to understanding factors impacting nicotine exposure from e-cigarettes. However, the broad and rapidly changing range of e-liquid constituents and e-cigarette hardware which could impact nicotine exposure presents a challenge. Recent changes in regulatory oversight of e-cigarettes underscore the importance of synthesizing current knowledge on common factors which may impact nicotine exposure. This review focuses on factors which may impact nicotine exposure by changing e-cigarette use behavior, puff topography, altering the nicotine yield (amount of nicotine exiting the e-cigarette mouth piece including nicotine exhaled as vapor) or more directly by altering nicotine absorption and bioavailability. Topics reviewed include e-liquid components or characteristics including flavor additives (e.g., menthol), base e-liquid ingredients (propylene glycol, vegetable glycerin), components commonly used to dissolve flavorants (e.g., ethanol), and resulting properties of the e-liquid (e.g., pH), e-cigarette device characteristics (e.g., wattage, temperature, model) and user behavior (e.g., puff topography) which may impact nicotine exposure. E-liquid characteristics and components, e-cigarette hardware and settings, and user behavior can all contribute substantially to nicotine exposure from e

  5. Repeated nicotine exposure enhances reward-related learning in the rat.

    Science.gov (United States)

    Olausson, Peter; Jentsch, J David; Taylor, Jane R

    2003-07-01

    Repeated exposure to addictive drugs causes neuroadaptive changes in cortico-limbic-striatal circuits that may underlie alterations in incentive-motivational processes and reward-related learning. Such drug-induced alterations may be relevant to drug addiction because enhanced incentive motivation and increased control over behavior by drug-associated stimuli may contribute to aspects of compulsive drug-seeking and drug-taking behaviors. This study investigated the consequences of repeated nicotine treatment on the acquisition and performance of Pavlovian discriminative approach behavior, a measure of reward-related learning, in male rats. Water-restricted rats were trained to associate a compound conditioned stimulus (tone+light) with the availability of water (the unconditioned stimulus) in 15 consecutive daily sessions. In separate experiments, rats were repeatedly treated with nicotine (0.35 mg/kg, s.c.) either (1) prior to the onset of training, (2) after each daily training session was completed (ie postsession injections), or (3) received nicotine both before the onset of training as well as after each daily training session. In this study, all nicotine treatment schedules increased Pavlovian discriminative approach behavior and, thus, prior repeated exposure to nicotine, repeated postsession nicotine injections, or both, facilitated reward-related learning.

  6. Chronic Nicotine Exposure Initiated in Adolescence and Unpaired to Behavioral Context Fails to Enhance Sweetened Ethanol Seeking

    Directory of Open Access Journals (Sweden)

    Aric C. Madayag

    2017-08-01

    Full Text Available Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v, gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session.

  7. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice.

    Science.gov (United States)

    Tumolo, Jessica M; Kutlu, Munir Gunes; Gould, Thomas J

    2018-04-02

    Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Enduring effects of perinatal nicotine exposure on murine sleep in adulthood.

    Science.gov (United States)

    Borniger, Jeremy C; Don, Reuben F; Zhang, Ning; Boyd, R Thomas; Nelson, Randy J

    2017-09-01

    The long-term consequences of early life nicotine exposure are poorly defined. Approximately 8-10% of women report smoking during pregnancy, and this may promote aberrant development in the offspring. To this end, we investigated potential enduring effects of perinatal nicotine exposure on murine sleep and affective behaviors in adulthood (~13-15 wk of age) in C57Bl6j mice. Mothers received a water bottle containing 200 µg/ml nicotine bitartrate dihydrate in 2% wt/vol saccharin or pH-matched 2% saccharin with 0.2% (vol/vol) tartaric acid throughout pregnancy and before weaning. Upon reaching adulthood, offspring were tested in the open field and elevated plus maze, as well as the forced swim and sucrose anhedonia tests. Nicotine-exposed male (but not female) mice had reduced mobility in the open field, but no differences were observed in anxiety-like or depressive-like responses. Upon observing this male-specific phenotype, we further assessed sleep-wake states via wireless EEG/EMG telemetry. Following baseline recording, we assessed whether mice exposed to nicotine altered their homeostatic response to 5 h of total sleep deprivation and whether nicotine influenced responses to a powerful somnogen [i.e., lipopolysaccharides (LPS)]. Males exposed to perinatal nicotine decreased the percent time spent awake and increased time in non-rapid eye movement (NREM) sleep, without changes to REM sleep. Nicotine-exposed males also displayed exaggerated responses (increased time asleep and NREM spectral power) to sleep deprivation. Nicotine-exposed animals additionally had blunted EEG slow-wave responses to LPS administration. Together, our data suggest that perinatal nicotine exposure has long-lasting effects on normal sleep and homeostatic sleep processes into adulthood. Copyright © 2017 the American Physiological Society.

  9. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Science.gov (United States)

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  10. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    Science.gov (United States)

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  11. Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc), and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.

  12. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    International Nuclear Information System (INIS)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    2009-01-01

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  13. Adverse effects of perinatal nicotine exposure on reproductive outcomes.

    Science.gov (United States)

    Wong, Michael K; Barra, Nicole G; Alfaidy, Nadia; Hardy, Daniel B; Holloway, Alison C

    2015-12-01

    Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be a widespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g. obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women. © 2015 Society for Reproduction and Fertility.

  14. Offspring of prenatal IV nicotine exposure exhibit increased sensitivity to the reinforcing effects of methamphetamine

    Directory of Open Access Journals (Sweden)

    Steven Brown Harrod

    2012-06-01

    Full Text Available Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH in offspring using a low dose, intravenous (IV exposure method. Pregnant dams were administered nicotine (0.05 mg/kg/injection or prenatal saline (PS 3×/day on gestational days 8-21, and adult offspring were tested using METH self-administration (experiment 1 or METH-induced conditioned taste aversion (CTA; experiment 2 procedures. For METH self-administration, animals were trained to respond for IV METH (0.05 mg/kg/injection; fixed-ratio 3 and they were tested on varying doses the reinforcer (0.0005-1.0 mg/kg/injection. For METH CTA, rats received three saccharin and METH pairings (0, 0.3, or 0.5 mg/kg, sc followed by fourteen daily extinction trials. Experiment 1: PN and PS animals exhibited inverted U-shaped dose-response curves; however, the PN animal’s curve was shifted to the left, suggesting PN animals were more sensitive to the reinforcing effects of METH. Experiment 2: METH CTA was acquired in a dose-dependent manner and the factor of PN exposure was not related to the acquisition or extinction of METH-induced CTA. There were no sex differences in either experiment. These results indicate that adult offspring of IV PN exposure exhibited altered motivation for the reinforcing effects of METH. This suggests that PN exposure, via maternal smoking, will alter the reinforcing effects of METH during later stages of development, and furthermore, will influence substance use vulnerability in adult human offspring.

  15. Effects of Nicotine Exposure on In Vitro Metabolism of Chlorpyrifos in Male Sprague-Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Busby, Andrea L.; Timchalk, Charles; Poet, Torka S.

    2009-01-30

    Chlorpyrifos (CPF) is a common organophosphate (OP) insecticide which is metabolized by CYP450s to the neurotoxic metabolite, chlorpyrifos-oxon (CPF-oxon) and a non-toxic metabolite, 3,5,6-trichloro-2-pyridinol (TCP). The objective of this study was to quantify the effect of repeated in vivo nicotine exposures on CPF in vitro metabolism and marker substrate activities in rats. Male Sprague-Dawley rats were dosed subcutaneously with 1 mg nicotine/kg/, for up to 10 days. Animals showed signs of cholinergic crisis after the initial nicotine doses, but exhibited adaptation after a couple days of treatment. Rats were sacrificed on selected days 4 or 24 hr after the last nicotine-treatment. While CYP450 reduced CO spectra were not different across the treatments, the single nicotine dose group showed a 2-fold increase in CYP2E1 marker substrate (p-nitrophenol) activity 24 hr after a single nicotine treatment compared to saline controls. Conversely, repeated nicotine treatments resulted in decreased EROD marker substrate activity 4 hr after the 7th day of treatment. CPF-oxon Vmax and Km did not show significant changes across the different nicotine treatment groups. The Vmax describing the metabolism of CPF to TCP was increased on all groups (days 1, 7, and 10) 24 hr after nicotine treatment but were unchanged 4 hr after nicotine treatment. Results of this in vitro study suggest that repeated nicotine exposure (i.e., from smoking) may result in altered metabolism of CPF. Future in vivo experiments based on these results will be conducted to ascertain the impact of in vivo nicotine exposures on CPF metabolism in rats.

  16. Electronic cigarettes are a source of thirdhand exposure to nicotine.

    Science.gov (United States)

    Goniewicz, Maciej L; Lee, Lily

    2015-02-01

    Substances remaining on the surfaces in areas where people have smoked contribute to thirdhand exposure. Nicotine from tobacco smoke has been shown to react with oxidizing chemicals in the air to form secondary pollutants, such as carcinogenic nitrosamines. While previous studies have demonstrated thirdhand exposure to nicotine from tobacco smoke, none have investigated whether nicotine from electronic cigarettes (e-cigarettes) can also be deposited on various surfaces. Three brands of e-cigarettes were refilled with varying nicotine concentrations. We released 100 puffs from each product directly into an exposure chamber. Surface wipe samples were taken from 5 indoor 100 cm(2) surfaces (window, walls, floor, wood, and metal) pre- and post-release of vapors. Nicotine was extracted from the wipes and was analyzed using gas chromatography. Three of the 4 experiments showed significant increases in the amount of nicotine on all five surfaces. The floor and glass windows had the greatest increases in nicotine, on average by a factor of 47 and 6, respectively (p risk for thirdhand exposure to nicotine from e-cigarettes. Thirdhand exposure levels differ depending on the surface and the e-cigarette brand. Future research should explore the potential risks of thirdhand exposure to carcinogens formed from the nicotine that is released from e-cigarettes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. E-Cigarette and Liquid Nicotine Exposures Among Young Children.

    Science.gov (United States)

    Govindarajan, Preethi; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Smith, Gary A

    2018-04-23

    To investigate exposures to liquid nicotine (including electronic cigarette devices and liquids) among children <6 years old in the United States and evaluate the impact of legislation requiring child-resistant packaging for liquid nicotine containers. Liquid nicotine exposure data from the National Poison Data System for January 2012 through April 2017 were analyzed. There were 8269 liquid nicotine exposures among children <6 years old reported to US poison control centers during the study period. Most (92.5%) children were exposed through ingestion and 83.9% were children <3 years old. Among children exposed to liquid nicotine, 35.1% were treated and released from a health care facility, and 1.4% were admitted. The annual exposure rate per 100 000 children increased by 1398.2% from 0.7 in 2012 to 10.4 in 2015, and subsequently decreased by 19.8% from 2015 to 8.3 in 2016. Among states without a preexisting law requiring child-resistant packaging for liquid nicotine containers, there was a significant decrease in the mean number of exposures during the 9 months before compared with the 9 months after the federal child-resistant packaging law went into effect, averaging 4.4 (95% confidence interval: -7.1 to -1.7) fewer exposures per state after implementation of the law. Pediatric exposures to liquid nicotine have decreased since January 2015, which may, in part, be attributable to legislation requiring child-resistant packaging and greater public awareness of risks associated with electronic cigarette products. Liquid nicotine continues to pose a serious risk for young children. Additional regulation of these products is warranted. Copyright © 2018 by the American Academy of Pediatrics.

  18. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  19. NICOTINE EFFECTS ON THE MOTOR ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...

  20. Gender-related response in open-field activity following developmental nicotine exposure in rats.

    Science.gov (United States)

    Romero, Roland D; Chen, Wei-Jung A

    2004-08-01

    Smoking during pregnancy may lead to low birthweight and behavioral alterations in the offspring. In this study, the effects of developmental nicotine exposure on the somatic growth of the offspring and the behavioral performance in the open-field test were examined. Sprague-Dawley female rats were implanted with nicotine (35 mg for 21-day time release; NIC 35) or placebo pellets on gestational day (GD) 8 (postblastocyst implantation). A normal control group with no pellet implant was also included. There was a significantly higher maternal weight gain in the placebo group possibly due to a larger litter size. However, there were no significant differences in body weights among all three treatment groups for male and female offspring. The amount of activity, measured by the total number of crossings in the open-field test, indicated a gender difference in baseline level and pattern of ambulatory activity, with less activity (lower number of crossings) in male offspring and an increase in the activity of the female offspring as a function of testing day. The increase in the ambulatory activity of the female offspring was observed in the placebo and normal, but not the NIC 35 group suggesting that developmental nicotine exposure interferes with open-field activity, and this behavioral alteration is gender related. Copyright 2004 Elsevier Inc.

  1. The Influence of Puff Characteristics, Nicotine Dependence, and Rate of Nicotine Metabolism on Daily Nicotine Exposure in African American Smokers.

    Science.gov (United States)

    Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon; Delucchi, Kevin; Benowitz, Neal L

    2016-06-01

    African American (AA) smokers experience greater tobacco-related disease burden than Whites, despite smoking fewer cigarettes per day (CPD). Understanding factors that influence daily nicotine intake in AA smokers is an important step toward decreasing tobacco-related health disparities. One factor of interest is smoking topography, or the study of puffing behavior. (i) to create a model using puff characteristics, nicotine dependence, and nicotine metabolism to predict daily nicotine exposure, and (ii) to compare puff characteristics and nicotine intake from two cigarettes smoked at different times to ensure the reliability of the puff characteristics included in our model. Sixty AA smokers smoked their preferred brand of cigarette at two time points through a topography device. Plasma nicotine, expired CO, and changes in subjective measures were measured before and after each cigarette. Total nicotine equivalents (TNE) was measured from 24-hour urine collected during ad libitum smoking. In a model predicting daily nicotine exposure, total puff volume, CPD, sex, and menthol status were significant predictors (R(2) = 0.44, P smokers. Cancer Epidemiol Biomarkers Prev; 25(6); 936-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  3. The long-term effects of prenatal nicotine exposure on verbal working memory: an fMRI study of young adults.

    Science.gov (United States)

    A Longo, Carmelinda; A Fried, Peter; Cameron, Ian; M Smith, Andra

    2014-11-01

    Using functional magnetic resonance imaging (fMRI), the long-term effects of prenatal nicotine exposure on verbal working memory were investigated in young adults. Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood. This allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a 2-Back working memory task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants with more prenatal nicotine exposure demonstrated significantly greater activity in several regions of the brain that typically subserve verbal working memory including the middle frontal gyrus, precentral gyrus, the inferior parietal lobe and the cingulate gyrus. These results suggest that prenatal nicotine exposure contributes to altered neural functioning during verbal working memory that continues into adulthood. Working memory is critical for a wide range of cognitive skills such as language comprehension, learning and reasoning. Thus, these findings highlight the need for continued educational programs and public awareness campaigns to reduce tobacco use among pregnant women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  5. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Zago, A.; Leão, R.M.; Carneiro-de-Oliveira, P.E.; Marin, M.T.; Cruz, F.C.; Planeta, C.S.

    2011-01-01

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  6. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  7. Cigarettes with different nicotine levels affect sensory perception and levels of biomarkers of exposure in adult smokers.

    Science.gov (United States)

    McKinney, Diana L; Frost-Pineda, Kimberly; Oldham, Michael J; Fisher, Michael T; Wang, Jingzhu; Gogova, Maria; Kobal, Gerd

    2014-07-01

    Few clinical studies involving cigarettes have provided a comprehensive picture of smoke exposure, test article characterization, and insights into sensory properties combined. The purpose of these pilot studies was to determine whether cigarettes with different levels of nicotine but similar tar levels would affect sensory experience or smoking behavior so as to significantly alter levels of selected biomarkers of exposure (BOE). In 2 confined, double-blind studies, 120 adult smokers switched from Marlboro Gold cigarettes at baseline to either 1 of 2 lower nicotine cigarettes or 1 of 2 higher nicotine cigarettes and then to the other cigarette after 5 days. Urinary excretion of exposure biomarkers (nicotine equivalents [NE], total and free 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL], 1-hydroxypyrene, and 3-hydroxypropyl mercapturic acid) as well as carboxyhemoglobin and plasma cotinine were measured at baseline, Day 5, and Day 10. Daily cigarette consumption was monitored and sensory characteristics were rated for each cigarette. With higher nicotine yield, urine NE, urine total NNAL, and plasma cotinine increased while nonnicotine BOE decreased without changes in cigarette consumption. In contrast, with lower nicotine yield, urine NE, urine total NNAL, and plasma cotinine dropped while nonnicotine BOE and cigarettes per day increased. Higher nicotine cigarettes were rated harsher and stronger than at baseline while lower nicotine cigarettes were less strong. All 4 test cigarettes were highly disliked. These studies demonstrate that abrupt increases or decreases in nicotine and the resulting sensory changes impact BOE through changes in intensity or frequency of smoking. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  9. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.

    2009-01-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  10. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use and compulsive smoking

    Directory of Open Access Journals (Sweden)

    Ami eCohen

    2013-06-01

    Full Text Available Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.

  11. First trimester nicotine exposure and the risk of infantile colic

    DEFF Research Database (Denmark)

    Milidou, Ioanna; Henriksen, Tine Brink; Jensen, Morten Søndergaard

    Background: Although prenatal exposure to maternal smoking has been associated with infantile colic (IC), to date no published studies have reported on the relationship between the prenatal use of nicotine replacement therapy (NRT) and IC. Aim: We aimed to assess the relationship between fetal...... exposure to nicotine, coming from both cigarette smoking and use of NRT early in pregnancy, and IC. Methods: The study population consisted of 63,883 pregnancies that resulted in live born singletons enrolled in the Danish National Birth Cohort between 1997 and 2002. Mother’s smoking habits and use of NRT......: The results indicate that prenatal exposure to nicotine from any source during the first trimester of the pregnancy increases the risk of infantile colic....

  12. The effect of nicotine pre-exposure on demand for cocaine and sucrose in male rats.

    Science.gov (United States)

    Schwartz, Lindsay P; Kearns, David N; Silberberg, Alan

    2018-06-01

    The aim of the present study was to determine how nicotine pre-exposure affects the elasticity of demand for intravenous cocaine and for sucrose pellets in adult male rats. In Experiment 1, demand for cocaine was assessed in rats that had nicotine in their drinking water. Nicotine pre-exposure significantly decreased rats' willingness to defend cocaine consumption as the price (measured as the number of responses per cocaine infusion) increased compared with a control group with no nicotine pre-exposure. That is, nicotine increased the elasticity of demand for cocaine infusions. Experiment 2 repeated the first experiment, but with rats working for sucrose pellets instead of cocaine. Nicotine pre-exposure had no effect on the elasticity of demand for sucrose. This pattern of results suggests that nicotine pre-exposure can reduce the reinforcing effects of cocaine, but not sucrose, in adult male rats.

  13. 'Real-world' compensatory behaviour with low nicotine concentration e-liquid: subjective effects and nicotine, acrolein and formaldehyde exposure.

    Science.gov (United States)

    Dawkins, Lynne; Cox, Sharon; Goniewicz, Maciej; McRobbie, Hayden; Kimber, Catherine; Doig, Mira; Kośmider, Leon

    2018-06-07

    To compare the effects of i) high versus low nicotine concentration e-liquid, ii) fixed versus adjustable power and iii) the interaction between the two on: a) vaping behaviour, b) subjective effects, c) nicotine intake, and d) exposure to acrolein and formaldehyde in e-cigarette users vaping in their everyday setting. Counterbalanced, repeated measures with four conditions: i) low nicotine (6 mg/mL)/fixed power; ii) low nicotine/adjustable power; iii) high nicotine (18 mg/mL)/fixed power; iv) high nicotine/adjustable power. London and the South East, England. Twenty experienced e-cigarette users (recruited between September 2016 and February 2017) vaped ad libitum using an eVic Supreme™ with a 'Nautilus Aspire' tank over four weeks (one week per condition). Puffing patterns (daily puff number [PN], puff duration [PD], inter-puff interval [IPI]), mL of e-liquid consumed, changes to power (where permitted), and subjective effects (urge to vape, nicotine withdrawal symptoms) were measured in each condition. Nicotine intake was measured via salivary cotinine. 3-hydroxypropylmercapturic acid (3-HPMA), a metabolite of the toxicant acrolein, and formate, a metabolite of the carcinogen formaldehyde, were measured in urine. There was a significant nicotine concentration x power interaction for PD (p<0.01). PD was longer with low nicotine/fixed power compared with i) high nicotine/fixed power (p< 0.001 and ii) low nicotine/adjustable power (p< 0.01). PN and liquid consumed were higher in the low versus high nicotine condition (main effect of nicotine, p<0.05). Urge to vape and withdrawal symptoms were lower, and nicotine intake was higher, in the high nicotine condition (main effects of nicotine: p<0.01). Whilst acrolein levels did not differ, there was a significant nicotine x power interaction for formaldehyde (p<0.05). Use of a lower nicotine concentration e-liquid may be associated with compensatory behaviour (e.g., higher number and duration of puffs) and increases

  14. Prenatal Nicotine Exposure Disrupts Infant Neural Markers of Orienting.

    Science.gov (United States)

    King, Erin; Campbell, Alana; Belger, Aysenil; Grewen, Karen

    2017-08-17

    Prenatal nicotine exposure (PNE) from maternal cigarette-smoking is linked to developmental deficits, including impaired auditory processing, language, generalized intelligence, attention and sleep. Fetal brain undergoes massive growth, organization and connectivity during gestation, making it particularly vulnerable to neurotoxic insult. Nicotine binds to nicotinic acetylcholine receptors, which are extensively involved in growth, connectivity and function of developing neural circuitry and neurotransmitter systems. Thus, PNE may have long-term impact on neurobehavioral development. The purpose of this study was to compare the auditory K-complex, an event-related potential reflective of auditory gating, sleep preservation and memory consolidation during sleep, in infants with and without PNE and to relate these neural correlates to neurobehavioral development. We compared brain responses to an auditory paired-click paradigm in 3 to 5-month-old infants during Stage 2 sleep, when the K-complex is best observed. We measured component amplitude and delta activity during the K-complex. PNE may impair auditory sensory gating, which may contribute to disrupted sleep and to reduced auditory discrimination and learning, attention re-orienting and/or arousal during wakefulness reported in other studies. Links between PNE and reduced K-complex amplitude and delta power may represent altered cholinergic and GABAergic synaptic programming, and possibly reflect early neural bases for PNE-linked disruptions in sleep quality and auditory processing. These may pose significant disadvantage for language acquisition, attention, and social interaction necessary for academic and social success. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Self-reported and laboratory evaluation of late pregnancy nicotine exposure and drugs of abuse.

    Science.gov (United States)

    Hall, E S; Wexelblatt, S L; Greenberg, J M

    2016-10-01

    The objective of this study was to evaluate the prevalence of late pregnancy nicotine exposures, including secondhand smoke exposures, and to evaluate the associated risk of exposure to drugs of abuse. The study was a retrospective single-center cohort analysis of more than 18 months. We compared self-reported smoking status from vital birth records with mass spectrometry laboratory results of maternal urine using a chi-square test. Logistic regression estimated adjusted odds for detection of drugs of abuse based on nicotine detection. Compared with 8.6% self-reporting cigarette use, mass spectrometry detected high-level nicotine exposures for 16.5% of 708 women (Pdrugs of abuse, presented as adjusted odds ratios, (95% confidence interval (CI), for both low-level (5.69, CI: 2.09 to 15.46) and high-level (13.93, CI: 7.06 to 27.49) nicotine exposures. Improved measurement tactics are critically needed to capture late pregnancy primary and passive nicotine exposures from all potential sources.

  16. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Mantella

    Full Text Available Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1 or orosensory-mediated responses to nicotine solutions (Experiment 2 were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are

  17. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Science.gov (United States)

    Mantella, Nicole M; Youngentob, Steven L

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our

  18. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that

  19. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner.

    Science.gov (United States)

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-12-01

    The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures.

    Science.gov (United States)

    Schweitzer, Kelly S; Chen, Steven X; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J; Hubbard, Walter C; Kim, Elena S; Lai, Xianyin; Wang, Mu; Kranz, William D; Carroll, Clinton J; Ray, Bruce D; Bittman, Robert; Goodpaster, John; Petrache, Irina

    2015-07-15

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.

  1. Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention.

    Science.gov (United States)

    Kohlmeier, K A

    2015-06-01

    Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.

  2. Passive exposure to nicotine from e-cigarettes.

    Science.gov (United States)

    Gallart-Mateu, D; Elbal, L; Armenta, S; de la Guardia, M

    2016-05-15

    A procedure based on the use of ion mobility spectrometry (IMS), after liquid-liquid microextraction (LLME), has been successfully employed for the determination of passive exposure to nicotine from cigarette and e-cigarette smoking. Nicotine has been determined in exhaled breath and oral fluids of both, active and passive smokers. The aforementioned studies, made in closed environments, evidenced that the exhaled breath after conventional blend cigarette smoke provides nicotine levels of the order of 220 ng per puff, in the case of experienced smokers, being exhaled only 32 ng in the case of e-cigarettes. On the other hand, the nicotine amount in oral fluids of passive vapers was between 8 and 14 µg L(-1) lower than the average value of 38±14 µg L(-1) found for passive smokers of rolling tobacco and clearly lower than the 79±36 µg L(-1) obtained from passive smokers of classical yellow blend. This study was also placed in the frame of the verification of the e-cigarettes composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pediatric Exposure to E-Cigarettes, Nicotine, and Tobacco Products in the United States.

    Science.gov (United States)

    Kamboj, Alisha; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thiphalak; Smith, Gary A

    2016-06-01

    To investigate the epidemiologic characteristics and outcomes of exposures to electronic cigarettes (e-cigarettes), nicotine, and tobacco products among young children in the United States. A retrospective analysis of exposures associated with nicotine and tobacco products among children younger than 6 years old was conducted by using National Poison Data System data. From January 2012 through April 2015, the National Poison Data System received 29 141 calls for nicotine and tobacco product exposures among children younger than 6 years, averaging 729 child exposures per month. Cigarettes accounted for 60.1% of exposures, followed by other tobacco products (16.4%) and e-cigarettes (14.2%). The monthly number of exposures associated with e-cigarettes increased by 1492.9% during the study period. Children e-cigarettes had 5.2 times higher odds of a health care facility admission and 2.6 times higher odds of having a severe outcome than children exposed to cigarettes. One death occurred in association with a nicotine liquid exposure. The frequency of exposures to e-cigarettes and nicotine liquid among young children is increasing rapidly and severe outcomes are being reported. Swift government action is needed to regulate these products to help prevent child poisoning. Prevention strategies include public education; appropriate product storage and use away from children; warning labels; and modifications of e-cigarette devices, e-liquid, and e-liquid containers and packaging to make them less appealing and less accessible to children. Copyright © 2016 by the American Academy of Pediatrics.

  4. Assessment of Nicotine Exposure From Active Human Cigarette Smoking Time

    Directory of Open Access Journals (Sweden)

    Cahours Xavier

    2017-09-01

    Full Text Available The burning of a cigarette is a series of consecutive sequences of both passive and active burnings when a smoking cycle is applied to the cigarette. A previous study, using a smoking machine, showed that cigarette nicotine yields are dependent linearly on the difference between the time of smouldering (passive burning and the time of smoking (active burning. It is predicted that the smoker’s nicotine yield increases when the intensity of smoking increases, i.e., when the time to smoke a cigarette (smoking time decreases. Note that observations made on machines might not be comparable to human behaviours. The aim of this study was to determine whether nicotine mouth-level exposure could be predicted through measurement of human smoking time. A smoking behaviour study was conducted to compare human smoking nicotine yields obtained from both filter tip analysis and the cigarette burning time model. Results showed that smokers’ exposure to the smoke depends essentially on the speed at which the cigarette is smoked. An increase in human smoking intensity, resulting in a decrease in smoking time, generates an increase in smoke exposure, whatever the puff number, puff duration, puff volume and filter ventilation (open or blocked. The association of a machine smoking yield with a corresponding smoking time, and the time taken by a consumer to smoke the cigarette would provide information on the exposure to smoke constituents in a simple and effective manner.

  5. An Exploratory Study on the Development of an Animal Model of Acute Pancreatitis Following Nicotine Exposure

    Directory of Open Access Journals (Sweden)

    Chowdhury P

    2003-09-01

    Full Text Available Abstract Cigarette smoking is known to be a major risk factor for pancreatic cancer and pancreatitis is believed to be a predisposed condition for pancreatic cancer. As of this date, there is no established experimental animal model to conduct detailed studies on these two deadly diseases. Our aim is to establish a rodent model by which we can systematically study the pathogenesis of pancreatitis and pancreatic cancer. Methods Adult Male Sprague Dawley rats were exposed to graded doses of nicotine by various routes for periods of three to 16 weeks. Blood samples were measured for hormonal and metabolic parameters. The pancreas was evaluated for histopathological changes and its function was assessed in isolated pancreatic acini upon stimulation with cholecystokinin (CCK or carbachol (Cch. The pancreatic tissue was evaluated further for oncogene expression. Results Body weight, food and fluid intakes, plasma glucose and insulin levels were significantly reduced in animals with nicotine exposure when compared to control. However, CCK and gastrin levels in the blood were significantly elevated. Pancreatic function was decreased significantly with no alteration in CCK receptor binding. Pancreatic histology revealed vacuolation, swelling, cellular pyknosis and karyorrhexis. Mutant oncogene, H-ras, was overexpressed in nicotine-treated pancreatic tissue. Summary and conclusion The results suggest that alterations in metabolic, hormonal and pathologic parameters following nicotine-treatment appear consistent with diagnostic criteria of human pancreatitis. It is proposed that rats could be considered as a potential animal model to study the pathogenesis of pancreatitis.

  6. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    International Nuclear Information System (INIS)

    Ma, Noelle; Nicholson, Catherine J.; Wong, Michael; Holloway, Alison C.; Hardy, Daniel B.

    2014-01-01

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  7. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Noelle [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University (Canada); Wong, Michael [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Holloway, Alison C. [Department of Obstetrics and Gynecology, McMaster University (Canada); Hardy, Daniel B., E-mail: Daniel.Hardy@schulich.uwo.ca [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Children' s Health Research Institute, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada)

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  8. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease?

    International Nuclear Information System (INIS)

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-01-01

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of ( 3 H)-ketanserin to serotonin receptors in frontal cortex and of ( 3 H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of ( 3 H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens

  9. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    Science.gov (United States)

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  10. In vitro human epidermal permeation of nicotine from electronic cigarette refill liquids and implications for dermal exposure assessment.

    Science.gov (United States)

    Frasch, H Frederick; Barbero, Ana M

    2017-11-01

    Nicotine plus flavorings in a propylene glycol (PG) vehicle are the components of electronic cigarette liquids (e-liquids), which are vaporized and inhaled by the user. Dermal exposure to nicotine and e-liquids may occur among workers in mixing and filling of e-cigarettes in the manufacturing process. Inadvertent skin contact among consumers is also a concern. In vitro nicotine permeation studies using heat-separated human epidermis were performed with surrogate and two commercial e-liquids, neat and aqueous nicotine donor formulations. Steady-state fluxes (J ss ), and lag times (t lag ) were measured for each formulation. In addition, transient (4 h) exposure and finite dose (1-10 μl/cm 2 ) experiments were undertaken using one commercial e-liquid. Average J ss (μg/cm 2 /h) from formulations were: nicotine in PG (24 mg/ml): 3.97; commercial e-liquid containing menthol (25 mg/ml nicotine): 10.2; commercial e-liquid containing limonene (25 mg/ml nicotine): 23.7; neat nicotine: 175. E-liquid lag times ranged from 5 to 10 h. Absorbed fraction of nicotine from finite doses was ≈0.3 at 48 h. The data were applied to transient exposure and finite dose dermal exposure assessment models and to a simple pharmacokinetic model. Three illustrative exposure scenarios demonstrate use of the data to predict systemic uptake and plasma concentrations from dermal exposure. The data demonstrate the potential for significant nicotine absorption through skin contact with e-cigarette refill solutions and the neat nicotine used to mix them.

  11. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  12. Second Generation Electronic Nicotine Delivery System Vape Pen Exposure Generalizes as a Smoking Cue.

    Science.gov (United States)

    King, Andrea C; Smith, Lia J; McNamara, Patrick J; Cao, Dingcai

    2018-01-05

    Second generation electronic nicotine delivery systems (ENDS; also known as e-cigarettes, vaporizers or vape pens) are designed for a customized nicotine delivery experience and have less resemblance to regular cigarettes than first generation "cigalikes." The present study examined whether they generalize as a conditioned cue and evoke smoking urges or behavior in persons exposed to their use. Data were analyzed in N = 108 young adult smokers (≥5 cigarettes per week) randomized to either a traditional combustible cigarette smoking cue or a second generation ENDS vaping cue in a controlled laboratory setting. Cigarette and e-cigarette urge and desire were assessed pre- and post-cue exposure. Smoking behavior was also explored in a subsample undergoing a smoking latency phase after cue exposure (N = 26). The ENDS vape pen cue evoked both urge and desire for a regular cigarette to a similar extent as that produced by the combustible cigarette cue. Both cues produced similar time to initiate smoking during the smoking latency phase. The ENDS vape pen cue elicited smoking urge and desire regardless of ENDS use history, that is, across ENDS naїve, lifetime or current users. Inclusion of past ENDS or cigarette use as covariates did not significantly alter the results. These findings demonstrate that observation of vape pen ENDS use generalizes as a conditioned cue to produce smoking urge, desire, and behavior in young adult smokers. As the popularity of these devices may eventually overtake those of first generation ENDS cigalikes, exposure effects will be of increasing importance. This study shows that passive exposure to a second generation ENDS vape pen cue evoked smoking urge, desire, and behavior across a range of daily and non-daily young adult smokers. Smoking urge and desire increases after vape pen exposure were similar to those produced by exposure to a first generation ENDS cigalike and a combustible cigarette, a known potent cue. Given the increasing

  13. Does longstanding nicotine exposure impair bone healing and osseointegration? An experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, Klaus; Lindh, Christian H; Berglundh, Tord

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze the effect of longstanding nicotine exposure on bone healing and osseointegration of titanium implants. MATERIALS AND METHODS: 20 female rabbits received either nicotine (n = 10) or saline (n = 10) administered subcutaneously via mini-osmotic pumps...... for 32 weeks. The pump delivered 6 microg/kg/min of nicotine for the animals in the test group. Blood samples were collected and plasma cotinine levels were measured monthly. Six months after the commencement of nicotine or saline administration three osteotomy preparations, one in right, femoral condyle...... increase in RMT between 2 and 4 weeks within each group. The histomorphometric analysis of bone-to-implant contact and bone density in the bone defects revealed no differences between the test and the control group after 2 or 4 weeks of healing. CONCLUSION: Longstanding (6 months) nicotine exposure did...

  14. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  15. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    OpenAIRE

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods: Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until d...

  16. Nicotine And The Risk Of Exposure To The Organophosphorus Insecticide Cyolane

    International Nuclear Information System (INIS)

    Hassanin M, M.; Bahig Mervat, E.

    1999-01-01

    The present investigation was undertaken to show the effect of repeated oral doses of nicotine (0.5 mg/kg) on rats pretreated or during treatment with cyolane (0.5 mg/kg 1/20 LD 5 0). The results revealed that exposure of smokers to organophosphorus pesticides exerted slight changes in GOT and GPT. Alkaline phosphatase was significantly increased to reach maximal (228.54 and 148.64%) after nicotine + cyolane and/or nicotine were given for a week to rats pretreated with cyolane for 2 weeks. Total protein, albumin and Albumin/Globulin (A/G) ratio were also affected. Administration of nicotine along with cyolane to rats showed a significant increase in cholesterol content compared to that of cyolane treated rats. Values of thyroxine (T 4 ) and triiodothyronine (T 3 ) also fluctuated

  17. Fetal and neonatal nicotine exposure in Wistar rats causes progressive pancreatic mitochondrial damage and beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Jennifer E Bruin

    Full Text Available Nicotine replacement therapy (NRT is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control or nicotine bitartrate (1 mg/kg/d via subcutaneous injection for 2 weeks prior to mating until weaning. At 3-4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted.

  18. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Kwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Chlorpyrifos (CPF) is one of the most studied and widely used broad spectrum organophosphorus (OP) insecticides. The neurotoxicity of CPF results from inhibition of cholinesterase (ChE) by its metabolite, chlorpyrifos-oxon (CPF-oxon), which subsequently leads to cholinergic hyperstimulation. The routine consumption of alcoholic beverages and tobacco products will modify a number of metabolic and physiological processes which may impact the metabolism and pharmacokinetics of other xenobiotics including pesticides. The objective of this study was to evaluate the influence of repeated ethanol and nicotine co-exposure on in vivo CPF pharmacokinetics and pharmacodynamics. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine along with changes in plasma and brain AChE activities were measured in male Sprague-Dawley (S-D) rats. Animals were repeatedly treated with either saline or ethanol (1 g/kg/day, po) and nicotine (1 mg/kg/day, sc) in addition to CPF (1 or 5 mg/kg/day, po) for 7 days. Rats were sacrificed at times from 1 to 24 hr post-last dosing of CPF. There were apparent differences in blood TCPy pharmacokinetics following ethanol and nicotine pretreatments in both CPF dose groups, which showed higher TCPy peak concentrations and increased blood TCPy AUC in ethanol and nicotine groups over CPF-only (~1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain acetylcholinesterase (AChE) activities from both ethanol and nicotine-treated groups showed substantially less inhibition following repeated 5 mg CPF/kg dosing compared to CPF-only controls (96 ± 13 and 66 ± 7% of naïve at 4 hr post-last CPF dosing, respectively). Inhibition of brain AChE activities was minimal in both 1 mg CPF/kg/day dosing groups, but a similar trend indicating less inhibition following ethanol/nicotine pretreatment was apparent. No differences were observed in plasma ChE activities due to the combined alcohol and nicotine treatments. In vitro, CPF

  19. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    National Research Council Canada - National Science Library

    Roman, Jesse

    2005-01-01

    We hypothesize that prenatal exposure to nicotine, a major component of tobacco that transverses the placenta, is largely responsible for the development of asthma in children born of mothers who smoke...

  20. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  1. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    International Nuclear Information System (INIS)

    Yan, You-e; Liu, Lian; Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan; Wang, Hui

    2014-01-01

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  2. Long-term nicotine exposure dampens LPS-induced nerve-mediated airway hyperreactivity in murine airways.

    Science.gov (United States)

    Xu, Yuan; Cardell, Lars-Olaf

    2017-09-01

    Nicotine is a major component of cigarette smoke. It causes addiction and is used clinically to aid smoke cessation. The aim of the present study is to investigate the effect of nicotine on lipopolysaccharide (LPS)-induced airway hyperreactivity (AHR) and to explore the potential involvement of neuronal mechanisms behind nicotine's effects in murine models in vivo and in vitro. BALB/c mice were exposed to nicotine in vivo via subcutaneous Alzet osmotic minipumps containing nicotine tartate salt solution (24 mg·kg -1 ·day -1 ) for 28 days. LPS (0.1 mg/ml, 20 µl) was administered intranasally for 3 consecutive days during the end of this period. Lung functions were measured with flexiVent. For the in vitro experiments, mice tracheae were organcultured with either nicotine (10 μM) or vehicle (DMSO, 0.1%) for 4 days. Contractile responses of the tracheal segments were measured in myographs following electric field stimulation (EFS; increasing frequencies of 0.2 to 12.8 Hz) before and after incubation with 10 µg/ml LPS for 1 h. Results showed that LPS induced AHR to methacholine in vivo and increased contractile responses to EFS in vitro. Interestingly, long-term nicotine exposure markedly dampened this LPS-induced AHR both in vitro and in vivo. Tetrodotoxin (TTX) inhibited LPS-induced AHR but did not further inhibit nicotine-suppressed AHR in vivo. In conclusion, long-term nicotine exposure dampened LPS-induced AHR. The effect of nicotine was mimicked by TTX, suggesting the involvement of neuronal mechanisms. This information might be used for evaluating the long-term effects of nicotine and further exploring of how tobacco products interact with bacterial airway infections. Copyright © 2017 the American Physiological Society.

  3. Behavioral and Physiological Responses to Nicotine Patch Administration Among Nonsmokers Based on Acute and Chronic Secondhand Tobacco Smoke Exposure.

    Science.gov (United States)

    Okoli, Chizimuzo; Kodet, Jonathan; Robertson, Heather

    2016-01-01

    Despite the large amount that is known about the physical health effects of secondhand tobacco smoke (SHS) exposure, little is known about the behavioral health effects. Nicotine, the principle psychoactive substance in SHS, elicits subjective mood and physiological responses in nonsmokers. However, no studies have examined the subjective mood or physiological responses to nicotine in nonsmokers while accounting for prior chronic or acute SHS exposure. A 7-mg nicotine patch was administered to 17 adult nonsmokers for 2 hr. Main outcome measures obtained at ½ hr, 1 hr, and 2 hr were subjective behavioral drug effects (based on eleven 10-cm Visual Analog Scales [VASs]) and the physiological measures of heart rate, blood pressure, and serum nicotine levels. Analysis of outcome data was based on participants' chronic (using hair nicotine) or acute (using saliva cotinine) SHS exposure. Greater chronic SHS exposure was negatively associated with pleasurable responses to nicotine administration ("drug feels good" score at 2-hr time point, Spearman's ρ = -.65, p < .004), whereas greater acute SHS exposure was associated with positive responses ("like feeling of drug" score at 2-hr time point, Spearman's ρ = .63, p < .01). There were no associations between chronic or acute exposure and physiological changes in response to nicotine administration. The findings of this study may be useful in providing preliminary empirical data for future explorations of the mechanism whereby SHS exposure can influence behavioral outcomes in nonsmokers. Such studies can inform future interventions to reduce the physical and behavioral health risks associated with SHS exposure. © The Author(s) 2015.

  4. Changes in the α4β2* nicotinic acetylcholine system during chronic controlled alcohol exposure in nonhuman primates.

    Science.gov (United States)

    Hillmer, Ansel T; Tudorascu, Dana L; Wooten, Dustin W; Lao, Patrick J; Barnhart, Todd E; Ahlers, Elizabeth O; Resch, Leslie M; Larson, Julie A; Converse, Alexander K; Moore, Colleen F; Schneider, Mary L; Christian, Bradley T

    2014-05-01

    The precise nature of modifications to the nicotinic acetylcholine receptor (nAChR) system in response to chronic ethanol exposure is poorly understood. The present work used PET imaging to assay α4β2* nAChR binding levels of eight rhesus monkeys before and during controlled chronic ethanol intake. [(18)F]Nifene PET scans were conducted prior to alcohol exposure, and then again after at least 8 months controlled ethanol exposure, including 6 months at 1.5 g/kg/day following a dose escalation period. Receptor binding levels were quantified with binding potentials (BPND) using the cerebellum as a reference region. Alcohol self-administration was assessed as average daily alcohol intake during a 2 month free drinking period immediately following controlled alcohol. Significant decreases in α4β2* nAChR binding were observed in both frontal and insular cortex in response to chronic ethanol exposure. During chronic alcohol exposure, BPND in the lateral geniculate region correlated positively with the amount of alcohol consumed during free drinking. The observed decreases in nAChR availability following chronic alcohol consumption suggest alterations to this receptor system in response to repeated alcohol administration, making this an important target for further study in alcohol abuse and alcohol and nicotine codependence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  6. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Jasmin H Bavarva

    Full Text Available Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold and NPAS3 (down-regulated by -2.73 fold; both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold and alternative splicing of NEAT1 (lncRNA that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.

  7. Secondhand tobacco smoke exposure in selected public places (PM2.5 and air nicotine) and non-smoking employees (hair nicotine) in Ghana.

    Science.gov (United States)

    Agbenyikey, Wilfred; Wellington, Edith; Gyapong, John; Travers, Mark J; Breysse, Patrick N; McCarty, Kathleen M; Navas-Acien, Ana

    2011-03-01

    Secondhand tobacco smoke (SHS) exposure is a global public health problem. Ghana currently has no legislation to prevent smoking in public places. To provide data on SHS levels in hospitality venues in Ghana the authors measured (1) airborne particulate matter working in smoking venues (median 2.49 [0.46-6.84] ng/mg) compared to those working in non-smoking venues (median 0.16 [0.08-0.79]ng/mg). Hair nicotine concentrations correlated with self-reported hours of SHS exposure (r=0.35), indoor air PM(2.5) concentrations (r=0.47) and air nicotine concentrations (r=0.63). SHS levels were unacceptably high in public places in Ghana where smoking is allowed, despite a relatively low-smoking prevalence in the country. This is one of the first studies to ascertain SHS and hair nicotine in Africa. Levels were comparable to those measured in American, Asian and European countries without or before smoking bans. Implementing a comprehensive smoke-free legislation that protects workers and customers from exposure to secondhand smoke is urgently needed in Ghana.

  8. Arsenic and nicotine co-exposure lead to some synergistic effects on oxidative stress and apoptotic markers in young rat blood, liver, kidneys and brain

    Directory of Open Access Journals (Sweden)

    Anshu Jain

    2015-01-01

    Full Text Available Arsenic and nicotine exposure has been a major health concern globally. Individually both these toxicants increase the risk to various diseases including cancers. However, limited information exists on the co-exposure. In this study, we evaluate the effects of their individual and combined exposure and if co-exposure to these toxicants might have a synergism or antagonism. Male rats were exposed to a very low dose of arsenic (25 ppm in drinking water or nicotine (0.25 mg/kg, sub-cutaneously for a period of 5 months and post exposure various biochemical variables indicative of oxidative stress and apoptosis evaluated. Almost all glutathione linked enzymes showed marked alteration in individual as well as co-exposure treated groups. While serum creatinine and apoptosis indicator, lactate dehydrogenase (LDH were significantly increased in both treatments, an additive effect was noted in co-exposure group. A similar trend was also seen in brain and liver but not in kidneys. Gene expression studies showed marked reduction in catalase, Cu-Zn SOD, GST, there was a significant up regulation in Bax, caspase 3 in various tissues along with urinary 8-OHdG levels, indicative of DNA damage and apoptosis. Interestingly, a decrease in liver arsenic concentration was noted in co-exposed group compared to arsenic alone exposed group. In conclusion, the present study suggests that arsenic and nicotine exhibited significant toxicity during individual exposure whereas co-exposure to these toxins showed variable conditions (indicative of both synergism and antagonism in male rats.

  9. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats

    Directory of Open Access Journals (Sweden)

    Uta Waterhouse

    2016-10-01

    Full Text Available Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg at one of three neurodevelopmental time periods [gestation days (GD 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND 60] and included: prepulse inhibition (PPI, latent inhibition (LI and delayed non-matching to sample (DNMTS. Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously were administered, and animals were re-tested in the same tasks (PND 110. Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11 resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI and selective (LI improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI and induced a global enhancement of sensorimotor gating (PPI.

  10. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    International Nuclear Information System (INIS)

    Zielinska, Elzbieta; Kuc, Damian; Zgrajka, Wojciech; Turski, Waldemar A.; Dekundy, Andrzej

    2009-01-01

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks α7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-β-erythroidine, methyllycaconitine and mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 μg/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  11. The effects of nicotine exposure during Pavlovian conditioning in rats on several measures of incentive motivation for a conditioned stimulus paired with water.

    Science.gov (United States)

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-06-01

    Nicotine enhances approach toward and operant responding for conditioned stimuli (CSs), but the effect of exposure during different phases of Pavlovian incentive learning on these measures remains to be determined. These studies examined the effects of administering nicotine early, late or throughout Pavlovian conditioning trials on discriminated approach behavior, nicotine-enhanced responding for conditioned reinforcement, extinction, and the reinstatement of responding for conditioned reinforcement. We also tested the effect of nicotine on approach to a lever-CS in a Pavlovian autoshaping procedure and for this CS to serve as a conditioned reinforcer. Thirsty rats were exposed to 13 conditioning sessions where a light/tone CS was paired with the delivery of water. Nicotine was administered either prior to the first or last seven sessions, or throughout the entire conditioning procedure. Responding for conditioned reinforcement, extinction, and the reinstatement of responding by the stimulus and nicotine were compared across exposure groups. Separately, the effects of nicotine on conditioned approach toward a lever-CS during autoshaping, and responding for that CS as a conditioned reinforcer, were examined. Nicotine exposure was necessary for nicotine-enhanced responding for conditioned reinforcement and the ability for nicotine and the stimulus to additively reinstate responding on the reinforced lever. Nicotine increased contacts with a lever-CS during autoshaping, and removal of nicotine abolished this effect. Prior nicotine exposure was necessary for nicotine-enhanced responding reinforced by the lever. Enhancements in the motivating properties of CSs by nicotine occur independently from duration and timing effects of nicotine exposure during conditioning.

  12. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Science.gov (United States)

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  14. Absorption of nicotine and carbon monoxide from passive smoking under natural conditions of exposure.

    Science.gov (United States)

    Jarvis, M J; Russell, M A; Feyerabend, C

    1983-01-01

    Seven non-smokers were exposed to tobacco smoke under natural conditions for two hours in a public house. Measures of nicotine and cotinine in plasma, saliva, and urine and expired air carbon monoxide all showed reliable increases. The concentrations of carbon monoxide and nicotine after exposure averaged 15.7% and 7.5% respectively of the values found in heavy smokers. Although the increase in expired air carbon monoxide of 5.9 ppm was similar to increases in smokers after a single cigarette, the amount of nicotine absorbed was between a tenth and a third of the amount taken in from one cigarette. Since this represented a relatively extreme acute natural exposure, any health risks of passive smoking probably depend less on quantitative factors than on qualitative differences between sidestream and mainstream smoke. PMID:6648864

  15. Intrauterine nicotine exposure, birth weight, gestational age and the risk of infantile colic

    DEFF Research Database (Denmark)

    Milidou, Ioanna; Søndergaard, Charlotte; Jensen, Morten Søndergaard

    Background and aim: Infantile colic is characterised by crying bouts in a healthy infant during the first months. Smoking in pregnancy and low birth weight (BW) have been previously identified as risk factors for infantile colic. Nicotine acts as a neurotransmitter and is known to affect the intr......Background and aim: Infantile colic is characterised by crying bouts in a healthy infant during the first months. Smoking in pregnancy and low birth weight (BW) have been previously identified as risk factors for infantile colic. Nicotine acts as a neurotransmitter and is known to affect...... the intrauterine central nervous system development, while low BW and premature birth have both been related to adverse neurodevelopmental outcomes. We investigated the association between intrauterine nicotine exposure, BW, gestational age (GA) and infantile colic in a large cohort study. Materials and methods......: We used data from the Danish National Birth Cohort. The study on nicotine exposure included 63,128 infants and the study on BW and GA included 62, 785 infants with complete data. Infantile colic was defined according to the modified Wessel’s criteria based on maternal interview 6 months postpartum...

  16. Nicotinic plant poisoning.

    Science.gov (United States)

    Schep, Leo J; Slaughter, Robin J; Beasley, D Michael G

    2009-09-01

    A wide range of plants contain nicotinic and nicotinic-like alkaloids. Of this diverse group, those that have been reported to cause human poisoning appear to have similar mechanisms of toxicity and presenting patients therefore have comparable toxidromes. This review describes the taxonomy and principal alkaloids of plants that contain nicotinic and nicotinic-like alkaloids, with particular focus on those that are toxic to humans. The toxicokinetics and mechanisms of toxicity of these alkaloids are reviewed and the clinical features and management of poisoning due to these plants are described. This review was compiled by systematically searching OVID MEDLINE and ISI Web of Science. This identified 9,456 papers, excluding duplicates, all of which were screened. Reviewed plants and their principal alkaloids. Plants containing nicotine and nicotine-like alkaloids that have been reported to be poisonous to humans include Conium maculatum, Nicotiana glauca and Nicotiana tabacum, Laburnum anagyroides, and Caulophyllum thalictroides. They contain the toxic alkaloids nicotine, anabasine, cytisine, n-methylcytisine, coniine, n-methylconiine, and gamma-coniceine. These alkaloids act agonistically at nicotinic-type acetylcholine (cholinergic) receptors (nAChRs). The nicotinic-type acetylcholine receptor can vary both in its subunit composition and in its distribution within the body (the central and autonomic nervous systems, the neuromuscular junctions, and the adrenal medulla). Agonistic interaction at these variable sites may explain why the alkaloids have diverse effects depending on the administered dose and duration of exposure. Nicotine and nicotine-like alkaloids are absorbed readily across all routes of exposure and are rapidly and widely distributed, readily traversing the blood-brain barrier and the placenta, and are freely distributed in breast milk. Metabolism occurs predominantly in the liver followed by rapid renal elimination. Following acute exposure

  17. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    Science.gov (United States)

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  18. Developmental hippocampal neuroplasticity in a model of nicotine replacement therapy during pregnancy and breastfeeding.

    Directory of Open Access Journals (Sweden)

    Ian Mahar

    Full Text Available The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP.Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15 and adolescent (P41 offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion.

  19. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression...... kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine...... was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  20. Sympathomimetic Effects of Acute E-Cigarette Use: Role of Nicotine and Non-Nicotine Constituents.

    Science.gov (United States)

    Moheimani, Roya S; Bhetraratana, May; Peters, Kacey M; Yang, Benjamin K; Yin, Fen; Gornbein, Jeffrey; Araujo, Jesus A; Middlekauff, Holly R

    2017-09-20

    Chronic electronic (e) cigarette users have increased resting cardiac sympathetic nerve activity and increased susceptibility to oxidative stress. The purpose of the present study is to determine the role of nicotine versus non-nicotine constituents in e-cigarette emissions in causing these pathologies in otherwise healthy humans. Thirty-three healthy volunteers who were not current e-cigarette or tobacco cigarette smokers were studied. On different days, each participant used an e-cigarette with nicotine, an e-cigarette without nicotine, or a sham control. Cardiac sympathetic nerve activity was determined by heart rate variability, and susceptibility to oxidative stress was determined by plasma paraoxonase activity. Following exposure to the e-cigarette with nicotine, but not to the e-cigarette without nicotine or the sham control, there was a significant and marked shift in cardiac sympathovagal balance towards sympathetic predominance. The decrease in high-frequency component and the increases in the low-frequency component and the low-frequency to high-frequency ratio were significantly greater following exposure to the e-cigarette with nicotine compared with exposure to the e-cigarette without nicotine or to sham control. Oxidative stress, as estimated by plasma paraoxonase, did not increase following any of the 3 exposures. The acute sympathomimetic effect of e-cigarettes is attributable to the inhaled nicotine, not to non-nicotine constituents in e-cigarette aerosol, recapitulating the same heart rate variability pattern associated with increased cardiac risk in multiple populations with and without known cardiac disease. Evidence of oxidative stress, as estimated by plasma paraoxonase activity, was not uncovered following acute e-cigarette exposure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  1. Pre-adolescent and adolescent mice are less sensitive to the effects of acute nicotine on extinction and spontaneous recovery.

    Science.gov (United States)

    Kutlu, Munir Gunes; Zeid, Dana; Tumolo, Jessica M; Gould, Thomas J

    2018-04-01

    Adolescence is a period of high risk for the initiation of nicotine product usage and exposure to traumatic events. In parallel, nicotine exposure has been found to age-dependently modulate acquisition of contextual fear memories; however, it is unknown if adolescent nicotine exposure alters extinction of fear related memories. Age-related differences in sensitivity to the effects of nicotine on fear extinction could increase or decrease susceptibility to anxiety disorders. In this study, we examined the effects of acute nicotine administration on extinction and spontaneous recovery of contextual fear memories in pre-adolescent (PND 23), late adolescent (PND 38), and adult (PND 53) C57B6/J mice. Mice were first trained in a background contextual fear conditioning paradigm and given an intraperitoneal injection of one of four doses of nicotine (0.045, 0.09, 0.18, or 0.36mg/kg, freebase) prior to subsequent extinction or spontaneous recovery sessions. Results indicated that all acute nicotine doses impaired extinction of contextual fear in adult mice. Late adolescent mice exhibited impaired extinction of contextual fear only following higher doses of acute nicotine, and extinction of contextual fear was unaffected by acute nicotine exposure in pre-adolescent mice. Finally, acute nicotine exposure enhanced spontaneous recovery of fear memory, but only in adult mice. Overall, our results suggest that younger mice were less sensitive to nicotine's impairing effects on extinction of contextual fear and to nicotine's enhancing effects on spontaneous recovery of contextual fear memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats.

    Science.gov (United States)

    Feltenstein, Matthew W; Ghee, Shannon M; See, Ronald E

    2012-03-01

    Tobacco addiction is a relapsing disorder that constitutes a substantial worldwide health problem, with evidence suggesting that nicotine and nicotine-associated stimuli play divergent roles in maintaining smoking behavior in men and women. While animal models of tobacco addiction that utilize nicotine self-administration have become more widely established, systematic examination of the multiple factors that instigate relapse to nicotine-seeking have been limited. Here, we examined nicotine self-administration and subsequent nicotine-seeking in male and female Sprague-Dawley rats using an animal model of self-administration and relapse. Rats lever pressed for nicotine (0.03 and 0.05 mg/kg/infusion, IV) during 15 daily 2-h sessions, followed by extinction of lever responding. Once responding was extinguished, we examined the ability of previously nicotine-paired cues (tone+light), the anxiogenic drug yohimbine (2.5mg/kg, IP), a priming injection of nicotine (0.3mg/kg, SC), or combinations of drug+cues to reinstate nicotine-seeking. Both males and females readily acquired nicotine self-administration and displayed comparable levels of responding and intake at both nicotine doses. Following extinction, exposure to the previously nicotine-paired cues or yohimbine, but not the nicotine-prime alone, reinstated nicotine-seeking in males and females. Moreover, when combined with nicotine-paired cues, both yohimbine and nicotine enhanced reinstatement. No significant sex differences or estrous cycle dependent changes were noted across reinstatement tests. These results demonstrate the ability to reinstate nicotine-seeking with multiple modalities and that exposure to nicotine-associated cues during periods of a stressful state or nicotine can increase nicotine-seeking. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Acute nicotine disrupts consolidation of contextual fear extinction and alters long-term memory-associated hippocampal kinase activity.

    Science.gov (United States)

    Kutlu, Munir Gunes; Garrett, Brendan; Gadiwalla, Sana; Tumolo, Jessica M; Gould, Thomas J

    2017-11-01

    Previous research has shown that acute nicotine, an agonist of nAChRs, impaired fear extinction. However, the effects of acute nicotine on consolidation of contextual fear extinction memories and associated cell signaling cascades are unknown. Therefore, we examined the effects of acute nicotine injections before (pre-extinction) and after (post-extinction) contextual fear extinction on behavior and the phosphorylation of dorsal and ventral hippocampal ERK1/2 and JNK1 and protein levels on the 1st and 3rd day of extinction. Our results showed that acute nicotine administered prior to extinction sessions downregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but not dorsal hippocampus, and JNK1 in both dorsal and ventral hippocampus on the 3rd extinction day. These effects were absent on the 1st day of extinction. We also showed that acute nicotine administered immediately and 30 min, but not 6 h, following extinction impaired contextual fear extinction suggesting that acute nicotine disrupts consolidation of contextual fear extinction memories. Finally, acute nicotine injections immediately after extinction sessions upregulated the phosphorylated forms of ERK1/2 in the ventral hippocampus, but did not affect JNK1. These results show that acute nicotine impairs contextual fear extinction potentially by altering molecular processes responsible for the consolidation of extinction memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mechanisms of Imidacloprid-Induced Alteration of Hypothalamic-Pituitary-Adrenal (HPA Axis after Subchronic Exposure in Male Rats

    Directory of Open Access Journals (Sweden)

    Alya Annabi

    2015-11-01

    Full Text Available Imidacloprid (IMI is known to target the nicotinic acetylcholine receptors (nAChRs in insects, and potentially in mammals. However, IMI toxicity on mammalian tissues has not been adequately evaluated. The aim of the present study was to examine whether IMI induced functional impairment in hypthalamic-pituitary-adrenal (HPA axis tissues. An oral exposure of 40 mg IMI/kg for 28 days in male rats caused a significant increase in malondialdehyde (MDA level. The antioxidant catalase, superoxide dismutase, and glutathione S-transferase showed various alterations following administration, but a significantly depleted thiol (SH groups was only recorded in hypothalamic tissues. The increase in the relative weight of adrenal glands and the increased adrenal cholesterol and plasma adrenocorticotropic hormone (ACTH levels are indicative of general adaptation syndrome. The hypothalamic and pituitary acetylcholinesterase activity and calcium level were significantly increased, highlighting the alteration of cholinergic transmission. In conclusion, the findings obtained show that chronic exposure to IMI may alter biochemical processes of HPA axis.

  5. Airborne Nicotine, Secondhand Smoke, and Precursors to Adolescent Smoking.

    Science.gov (United States)

    McGrath, Jennifer J; Racicot, Simon; Okoli, Chizimuzo T C; Hammond, S Katharine; O'Loughlin, Jennifer

    2018-01-01

    Secondhand smoke (SHS) directly increases exposure to airborne nicotine, tobacco's main psychoactive substance. When exposed to SHS, nonsmokers inhale 60% to 80% of airborne nicotine, absorb concentrations similar to those absorbed by smokers, and display high levels of nicotine biomarkers. Social modeling, or observing other smokers, is a well-established predictor of smoking during adolescence. Observing smokers also leads to increased pharmacological exposure to airborne nicotine via SHS. The objective of this study is to investigate whether greater exposure to airborne nicotine via SHS increases the risk for smoking initiation precursors among never-smoking adolescents. Secondary students ( N = 406; never-smokers: n = 338, 53% girls, mean age = 12.9, SD = 0.4) participated in the AdoQuest II longitudinal cohort. They answered questionnaires about social exposure to smoking (parents, siblings, peers) and known smoking precursors (eg, expected benefits and/or costs, SHS aversion, smoking susceptibility, and nicotine dependence symptoms). Saliva and hair samples were collected to derive biomarkers of cotinine and nicotine. Adolescents wore a passive monitor for 1 week to measure airborne nicotine. Higher airborne nicotine was significantly associated with greater expected benefits ( R 2 = 0.024) and lower expected costs ( R 2 = 0.014). Higher social exposure was significantly associated with more temptation to try smoking ( R 2 = 0.025), lower aversion to SHS ( R 2 = 0.038), and greater smoking susceptibility ( R 2 = 0.071). Greater social exposure was significantly associated with more nicotine dependence symptoms; this relation worsened with higher nicotine exposure (cotinine R 2 = 0.096; airborne nicotine R 2 = 0.088). Airborne nicotine exposure via SHS is a plausible risk factor for smoking initiation during adolescence. Public health implications include limiting airborne nicotine through smoking bans in homes and cars, in addition to stringent restrictions

  6. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. © 2016 Federation of European Neuroscience Societies and John

  8. Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference

    Directory of Open Access Journals (Sweden)

    Ream eAl-Hasani

    2013-08-01

    Full Text Available Stress increases the risk of drug abuse, causes relapse to drug seeking, and potentiates the rewarding properties of both nicotine and cocaine. Understanding the mechanisms by which stress regulates the rewarding properties of drugs of abuse provides valuable insight into potential treatments for drug abuse. Prior reports have demonstrated that stress causes dynorphin release, activating kappa-opioid receptors (KOR in monoamine circuits resulting in both potentiation and reinstatement of cocaine and nicotine conditioned place preference. Here we report that kappa-opioid dependent reinstatement of cocaine and nicotine place preference is reduced when the mice are exposed to a randomized chronic mild stress regime prior to training in a conditioned place preference-reinstatement paradigm. The chronic mild stress schedule involves seven different stressors (removal of nesting for 24hr, 5min forced swim stress at 15°C, 8hr food and water deprivation, damp bedding overnight, white noise, cage tilt and disrupted home cage lighting rotated over a three-week period. This response is KOR-selective, because chronic mild stress does not protect against cocaine or nicotine drug-primed reinstatement. This protection from reinstatement is also observed following sub-chronic social defeat stress, where each mouse is placed in an aggressor mouse home cage for a period of 20 min over five days. In contrast, a single acute stressor resulted in a potentiation of KOR-induced reinstatement, similarly to previously reported. Prior studies have shown that stress alters sensitivity to opioids and prior stress can influence the pharmacodynamics of the opioid receptor system. Together, these findings suggest that exposure to different forms of stress may cause a dysregulation of kappa opioid circuitry and that changes resulting from mild stress can have protective and adaptive effects against drug relapse.

  9. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet

    Science.gov (United States)

    Karatayev, Olga; Lukatskaya, Olga; Moon, Sang-Ho; Guo, Wei-Ran; Chen, Dan; Algava, Diane; Abedi, Susan; Leibowitz, Sarah F.

    2015-01-01

    Clinical studies demonstrate frequent co-existence of nicotine and alcohol abuse and suggest that this may result, in part, from the ready access to and intake of fat-rich diets. Whereas animal studies show that high-fat diet intake in adults can enhance the consumption of either nicotine or ethanol and that maternal consumption of a fat-rich diet during pregnancy increases operant responding for nicotine in offspring, little is known about the impact of dietary fat on the co-abuse of these two drugs. The goal of this study was to test in Long-Evans rats the effects of perinatal exposure to fat on the co-use of nicotine and ethanol, using a novel paradigm that involves simultaneous intravenous (IV) self-administration of these two drugs. Fat- vs. chow-exposed offspring were characterized and compared, first in terms of their nicotine self-administration behavior, then in terms of their nicotine/ethanol self-administration behavior, and lastly in terms of their self-administration of ethanol in the absence of nicotine. The results demonstrate that maternal consumption of fat compared to low-fat chow during gestation and lactation significantly stimulates nicotine self-administration during fixed-ratio testing. It also increases nicotine/ethanol self-administration during fixed-ratio and dose-response testing, with BEC elevated to 120 mg/dL, and causes an increase in breakpoint during progressive ratio testing. Of particular note is the finding that rats perinatally exposed to fat self-administer significantly more of the nicotine/ethanol mixture as compared to nicotine alone, an effect not evident in the chow-control rats. After removal of nicotine from the nicotine/ethanol mixture, this difference between the fat- and chow-exposed rats was lost, with both groups failing to acquire the self-administration of ethanol alone. Together, these findings suggest that perinatal exposure to a fat-rich diet, in addition to stimulating self-administration of nicotine, causes

  10. Influence of cigarette filter ventilation on smokers' mouth level exposure to tar and nicotine.

    Science.gov (United States)

    Caraway, John W; Ashley, Madeleine; Bowman, Sheri A; Chen, Peter; Errington, Graham; Prasad, Krishna; Nelson, Paul R; Shepperd, Christopher J; Fearon, Ian M

    2017-12-01

    Cigarette filter ventilation allows air to be drawn into the filter, diluting the cigarette smoke. Although machine smoking reveals that toxicant yields are reduced, it does not predict human yields. The objective of this study was to investigate the relationship between cigarette filter ventilation and mouth level exposure (MLE) to tar and nicotine in cigarette smokers. We collated and reviewed data from 11 studies across 9 countries, in studies performed between 2005 and 2013 which contained data on MLE from 156 products with filter ventilation between 0% and 87%. MLE among 7534 participants to tar and nicotine was estimated using the part-filter analysis method from spent filter tips. For each of the countries, MLE to tar and nicotine tended to decrease as filter ventilation increased. Across countries, per-cigarette MLE to tar and nicotine decreased as filter ventilation increased from 0% to 87%. Daily MLE to tar and nicotine also decreased across the range of increasing filter ventilation. These data suggest that on average smokers of highly ventilated cigarettes are exposed to lower amounts of nicotine and tar per cigarette and per day than smokers of cigarettes with lower levels of ventilation. Copyright © 2017 British American Tobacco. Published by Elsevier Inc. All rights reserved.

  11. Developmental Implications for Prenatal Exposure to Environmental Toxins: Consumption Habits of Pregnant Women and Prenatal Nicotine Exposure in a Mouse Model

    Science.gov (United States)

    Santiago, Sarah Emily

    This dissertation provides a discussion of the effects of maternal consumption of environmental toxins, and will hopefully contribute to the prevention and understanding of developmental disorders and physiological deficits. Developing systems are particularly susceptible to toxic insults, and small changes in utero can result in long-term deficits. Chapter one of this dissertation reviews the potential teratogenicity of nicotine, alcohol, caffeine, MeHg, PCBs, BPA, and tap water contaminants, so as to characterize the current body of literature detailing the effects and implications of prenatal exposure to toxins. In chapter two, research on maternal consumption habits is presented, with an emphasis on commonly-consumed, potentially-teratogenic substances. Occurrences and frequencies of maternal intake of healthy and unhealthy foods, beverages, and medications in a population of predominantly Hispanic women in Southern California were assessed using the Food, Beverage, and Medication Intake Questionnaire (FBMIQ). The described study reveals that a proportion of pregnant women consumed BPA, MeHg, caffeine, and alcohol at varied levels during pregnancy. The following chapters provide an in-depth analysis of the postnatal effects of a particular neuroteratogen, nicotine, which has been shown to impart various detrimental postnatal effects on exposed offspring. A CD-1 mouse model of prenatal nicotine exposure (PNE) was used to analyze aspects of the brain and neocortex that may underly some of the cognitive and behavioral phenotypes seen with PNE. Analyses included postnatal measurements of brain weight, brain widths and lengths, development of neocortical circuitry, and cortical thickness measures. Exposed mice were found to exhibit reduced brain and body weights at birth, a phenotype that recovered by postnatal day 10. No changes in neocortical circuity or thickness in sensory and motor areas were found. PNE also resulted in persistent behavioral effects, including

  12. Utility and Cutoff Value of Hair Nicotine as a Biomarker of Long-Term Tobacco Smoke Exposure, Compared to Salivary Cotinine

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2014-08-01

    Full Text Available While hair samples are easier to collect and less expensive to store and transport than biological fluids, and hair nicotine characterizes tobacco exposure over a longer time period than blood or urine cotinine, information on its utility, compared with salivary cotinine, is still limited. We conducted a cross-sectional study with 289 participants (107 active smokers, 105 passive smokers with self-reported secondhand smoke (SHS exposure, and 77 non-smokers with no SHS exposure in Baltimore (Maryland, USA. A subset of the study participants (n = 52 were followed longitudinally over a two-month interval.  Median baseline hair nicotine concentrations for active, passive and non-smokers were 16.2, 0.36, and 0.23 ng/mg, respectively, while those for salivary cotinine were 181.0, 0.27, and 0.27 ng/mL, respectively. Hair nicotine concentrations for 10% of passive or non-smokers were higher than the 25th percentile value for active smokers while all corresponding salivary cotinine concentrations for them were lower than the value for active smokers. This study showed that hair nicotine concentration values could be used to distinguish active or heavy passive adult smokers from non-SHS exposed non-smokers. Our results indicate that hair nicotine is a useful biomarker for the assessment of long-term exposure to tobacco smoke.

  13. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    Science.gov (United States)

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  14. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  15. Differential control of central cardiorespiratory interactions by hypercapnia and the effect of prenatal nicotine.

    Science.gov (United States)

    Huang, Zheng-Gui; Griffioen, Kathleen J S; Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Bouairi, Euguenia; Mendelowitz, David

    2006-01-04

    Hypercapnia evokes a strong cardiorespiratory response including gasping and a pronounced bradycardia; however, the mechanism responsible for these survival responses initiated in the brainstem is unknown. To examine the effects of hypercapnia on the central cardiorespiratory network, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and inhibitory synaptic neurotransmission to cardioinhibitory vagal neurons (CVNs). Hypercapnia differentially modulated inhibitory neurotransmission to CVNs; whereas hypercapnia selectively depressed spontaneous glycinergic IPSCs in CVNs without altering respiratory-related increases in glycinergic neurotransmission, it decreased both spontaneous and inspiratory-associated GABAergic IPSCs. Because maternal smoking is the highest risk factor for sudden infant death syndrome (SIDS) and prenatal nicotine exposure is proposed to be the link between maternal smoking and SIDS, we examined the cardiorespiratory responses to hypercapnia in animals exposed to nicotine in the prenatal and perinatal period. In animals exposed to prenatal nicotine, hypercapnia evoked an exaggerated depression of GABAergic IPSCs in CVNs with no significant change in glycinergic neurotransmission. Hypercapnia altered inhibitory neurotransmission to CVNs at both presynaptic and postsynaptic sites. Although the results obtained in this study in vitro cannot be extrapolated with certainty to in vivo responses, the results of this study provide a likely neurochemical mechanism for hypercapnia-evoked bradycardia and the dysregulation of this response with exposure to prenatal nicotine, creating a higher risk for SIDS.

  16. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner

    OpenAIRE

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-01-01

    Background The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Methods Mice were exposed to aerosolised phosphate-buf...

  17. Maternal exposure of rats to nicotine via infusion during gestation produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in the cerebellum and CA1 subfield in the offspring at puberty

    International Nuclear Information System (INIS)

    Abdel-Rahman, Ali; Dechkovskaia, Anjelika M.; Sutton, Jazmine M.; Chen, Wei-Chung; Guan, Xiangrong; Khan, Wasiuddin A.; Abou-Donia, Mohamed B.

    2005-01-01

    Maternal smoking during pregnancy is known to be a significant contributor to developmental neurological health problems in the offspring. In animal studies, nicotine treatment via injection during gestation has been shown to produce episodic hypoxia in the developing fetus. Nicotine delivery via mini osmotic pump, while avoiding effects due to hypoxia-ischemia, it also provides a steady level of nicotine in the plasma. In the present study timed-pregnant Sprague-Dawley rats (300-350 g) were treated with nicotine (3.3 mg/kg, in bacteriostatic water via s.c. implantation of mini osmotic pump) from gestational days (GD) 4-20. Control animals were treated with bacteriostatic water via s.c. implantation of mini osmotic pump. Offspring on postnatal day (PND) 30 and 60, were evaluated for changes in the ligand binding for various types of nicotinic acetylcholine receptors and neuropathological alterations. Neurobehavioral evaluations for sensorimotor functions, beam-walk score, beam-walk time, incline plane and grip time response were carried out on PND 60 offspring. Beam-walk time and forepaw grip time showed significant impairments in both male and female offspring. Ligand binding densities for [ 3 H]epibatidine, [ 3 H]cytisine and [ 3 H]α-bungarotoxin did not show any significant changes in nicotinic acetylcholine receptors subtypes in the cortex at PND 30 and 60. Histopathological evaluation using cresyl violet staining showed significant decrease in surviving Purkinje neurons in the cerebellum and a decrease in surviving neurons in the CA1 subfield of hippocampus on PND 30 and 60. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer of cerebellum and the CA1 subfield of hippocampus on PND 30 and 60 of both male and female offspring. These results indicate that maternal exposure to nicotine produces significant neurobehavioral deficits, a decrease in the surviving neurons and an

  18. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    International Nuclear Information System (INIS)

    Yu, Cheng-Chia; Chang, Yu-Chao

    2013-01-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  19. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Cheng-Chia [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China); School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chang, Yu-Chao, E-mail: cyc@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China)

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  20. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered

  1. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  2. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure.

    Science.gov (United States)

    Cox, Sharon; Kośmider, Leon; McRobbie, Hayden; Goniewicz, Maciej; Kimber, Catherine; Doig, Mira; Dawkins, Lynne

    2016-09-20

    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein). A counterbalanced repeated measures design. Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i) low strength (6mg/mL), fixed settings; ii) low strength user-defined settings; iii) high strength (18mg/mL) fixed settings; iv) high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. i) Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed) and user behaviour (changes to device settings: voltage and air-flow) associated with using high and low strength nicotine e-liquid. ii) Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. i) Subjective effects. ii) comparisons with toxicant exposure from tobacco smoke (using documented evidence) and with recommended safety limits

  3. E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure

    Directory of Open Access Journals (Sweden)

    Sharon Cox

    2016-09-01

    Full Text Available Abstract Background Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs or user behaviour (increasing the wattage can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein. Methods/design A counterbalanced repeated measures design. Participants: Non-tobacco smoking vapers; have used an e-cigarette for ≥3 months; currently using nicotine strength e-liquid ≥12mg/mL and a second or third generation device. Intervention: This study will measure puffing patterns in vapers whilst they use high and low strength nicotine e-liquid under fixed and user-defined settings, each for a week. The 4 counterbalanced conditions are: i low strength (6mg/mL, fixed settings; ii low strength user-defined settings; iii high strength (18mg/mL fixed settings; iv high strength user-defined settings. Biomarkers of exposure to toxicants and carcinogens will be measured in urine. In the second phase of this study, toxicant yields will be measured in aerosol generated using a smoking machine operated to replicate the puffing behaviours of each participant. Primary outcomes: i Puffing patterns (mean puff number, puff duration, inter-puff interval and mL of liquid consumed and user behaviour (changes to device settings: voltage and air-flow associated with using high and low strength nicotine e-liquid. ii Toxicant/carcinogen exposure associated with the puffing patterns/device settings used by our participants. Secondary outcomes: i Subjective effects. ii comparisons

  4. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  5. Genotoxicity study on nicotine and nicotine-derived nitrosamine by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Li, X.S.; Wang, H.F.; Shi, J.Y.; Wang, X.Y.; Liu, Y.F.; Li, K.; Lu, X.Y.; Wang, J.J.; Liu, K.X.; Guo, Z.Y.

    1997-01-01

    The authors have studied DNA adduction with 14 C-labelled nicotine and nicotine-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), by accelerator mass spectrometry (AMS) in mouse liver at doses equivalent to low-level exposure of humans. The dose ranges of nicotine and NNK administered were from 0.4 μg to 4.0 x 10 2 μg·kg -1 , and from 0.1 μg to 2.0 x 10 4 μg·kg -1 , respectively. In the exposure of mice to either nicotine or NNK, the number of DNA adducts increased linearly with increasing dose. The detection limit of DNA adducts was 1 adduct per 10 11 nucleotide molecules. This limit is 1-4 orders of magnitude lower than that of other techniques used for quantification of DNA adducts. The results of the animal experiments enabled us to speculate that nicotine is a potential carcinogen. According to the procedure for 14 C-labelled-NNK synthesis, the authors discuss the ultimate chemical speciation of NNK bound to DNA. From the animal tests the authors derived a directly perceivable relation between tobacco consumption and DNA adduction as the carcinogenic risk assessment

  6. Effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in male rhesus monkeys.

    Science.gov (United States)

    Schwienteck, Kathryn L; Negus, S Stevens; Poklis, Justin L; Banks, Matthew L

    2015-10-01

    One complicating factor in cocaine addiction may be concurrent exposure and potential dependence on nicotine. The aim of the present study was to determine the effects of continuous nicotine treatment and subsequent termination on cocaine versus food choice in rhesus monkeys (Macaca mulatta). For comparison, we also determined effects of the nicotinic receptor antagonist mecamylamine on cocaine versus food choice during continuous saline and nicotine treatment. Rhesus monkeys (N = 3) responded under a concurrent schedule of food pellet (1 g) and intravenous cocaine (0-0.1 mg/kg/injection) availability. Saline and ascending nicotine doses (0.1-1.0 mg/kg/hr, intravenous) were continuously infused for 7-day treatment periods and separated by 24-hr saline treatment periods. Acute effects of mecamylamine (0.32-1.8 mg/kg, intramuscular, 15 min pretreatment) were determined during continuous saline and 0.32-mg/kg/hr nicotine treatments. During saline treatment, cocaine maintained a dose-dependent increase in cocaine choice. Nicotine treatment did not alter cocaine versus food choice. In contrast, preference of 0.032 mg/kg/injection cocaine was attenuated 24 hr following termination of 0.32-mg/kg/hr nicotine treatment, despite no somatic abstinence signs being observed. Acute mecamylamine enhanced cocaine choice during saline treatment and mainly suppressed rates of behavior during nicotine treatment. Overall, continuous nicotine exposure, up to 1 mg/kg/hr, does not enhance cocaine choice and does not produce nicotine dependence, as demonstrated by the lack of abstinence signs. (c) 2015 APA, all rights reserved).

  7. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study.

    Science.gov (United States)

    Goniewicz, Maciej L; Gawron, Michal; Smith, Danielle M; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L

    2017-02-01

    Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p knowledge, this is the first study that demonstrates that substituting tobacco cigarettes with an e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A Two-Day Continuous Nicotine Infusion Is Sufficient to Demonstrate Nicotine Withdrawal in Rats as Measured Using Intracranial Self-Stimulation

    Science.gov (United States)

    Muelken, Peter; Schmidt, Clare E.; Shelley, David; Tally, Laura; Harris, Andrew C.

    2015-01-01

    Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models

  9. Cue exposure treatment in a virtual environment to reduce nicotine craving: a functional MRI study.

    Science.gov (United States)

    Moon, Jiyoon; Lee, Jang-Han

    2009-02-01

    Smokers show an increase in cue reactivity during exposure to smoking-related cues. CET aims at extinguishing cue reactivity by repeated presentation of substance-related cues and has been claimed a potentially effective method of treating addictive behaviors, including cigarette smoking. We applied CET to eight late-adolescent smokers in virtual environments (VEs). When comparing pre-CET regions to those of post-CET, the inferior frontal gyrus and superior frontal gyrus were detected. These regions are consistent with previous studies of activated brain regions related to nicotine craving, and VE-CET seems to be an effective method of treating nicotine craving.

  10. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal Within-Subjects Observational Study

    Science.gov (United States)

    Gawron, Michal; Smith, Danielle M.; Peng, Margaret; Jacob, Peyton; Benowitz, Neal L.

    2017-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are purported to deliver nicotine aerosol without any toxic combustion products present in tobacco smoke. In this longitudinal within-subjects observational study, we evaluated the effects of e-cigarettes on nicotine delivery and exposure to selected carcinogens and toxicants. Methods: We measured seven nicotine metabolites and 17 tobacco smoke exposure biomarkers in the urine samples of 20 smokers collected before and after switching to pen-style M201 e-cigarettes for 2 weeks. Biomarkers were metabolites of 13 major carcinogens and toxicants in cigarette smoke: one tobacco-specific nitrosamine (NNK), eight volatile organic compounds (1,3-butadiene, crotonaldehyde, acrolein, benzene, acrylamide, acrylonitrile, ethylene oxide, and propylene oxide), and four polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, and pyrene). Changes in urine biomarkers concentration were tested using repeated measures analysis of variance. Results: In total, 45% of participants reported complete abstinence from cigarette smoking at 2 weeks, while 55% reported continued smoking. Levels of total nicotine and some polycyclic aromatic hydrocarbon metabolites did not change after switching from tobacco to e-cigarettes. All other biomarkers significantly decreased after 1 week of using e-cigarettes (p e-cigarette may reduce user exposure to numerous toxicants and carcinogens otherwise present in tobacco cigarettes. Data on reduced exposure to harmful constituents that are present in tobacco cigarettes and e-cigarettes can aid in evaluating e-cigarettes as a potential harm reduction device. PMID:27613896

  11. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  12. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  13. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Otręba, Michał; Buszman, Ewa

    2016-01-01

    Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.

  14. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Otręba, Michał; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2016-11-15

    Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine on this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.

  15. Nicotine increases brain functional network efficiency.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  16. Acute nicotine alteration of sensory memory impairment in smokers with schizophrenia.

    Science.gov (United States)

    Dulude, Louise; Labelle, Alain; Knott, Verner J

    2010-10-01

    Patients with schizophrenia have a high rate of cigarette smoking and also exhibit profound deficits in sensory processing, which may in part be ameliorated by the acute actions of smoke-inhaled nicotine. The mismatch negativity (MMN), a preattentive event-related potential index of auditory sensory memory, is diminished in schizophrenia. The MMN is increased in healthy controls with acute nicotine. To utilize the MMN to compare auditory sensory memory in minimally tobacco-deprived (3 hours) patients and matched tobacco-deprived smoking controls and to assess the effects of acute nicotine on MMN-indexed sensory memory processing in the patients. Event-related potentials were recorded in 2 auditory oddball paradigms, one involving tone frequency changes (frequency MMN) and one involving tone duration changes (duration MMN). Controls were assessed once under nontreatment conditions, and patients were assessed twice under randomized double-blind treatment conditions involving placebo and nicotine (8 mg) gum. Outpatient mental health center. Twelve smokers with schizophrenia and twelve control smokers. Compared with the controls, the patients showed reduced frequency-MMN (P sensory memory processing in patients with schizophrenia, an effect that may be mediated by activation of α7 nicotinic acetylcholine receptors, the function of which is diminished in schizophrenia. These ameliorating actions of nicotine may have implications for understanding the close relationship between tobacco smoking and schizophrenia and for developing nicotinic pharmacotherapies to alleviate sensory memory impairments in schizophrenia.

  17. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  18. A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD-associated cognitive phenotypes.

    Science.gov (United States)

    Zhu, Jinmin; Fan, Fangfang; McCarthy, Deirdre M; Zhang, Lin; Cannon, Elisa N; Spencer, Thomas J; Biederman, Joseph; Bhide, Pradeep G

    2017-05-01

    Prenatal exposure to nicotine via cigarette smoke or other forms of tobacco use is a significant environmental risk factor for attention deficit hyperactivity disorder (ADHD). The neurobiological mechanisms underlying the link between prenatal nicotine exposure (PNE) and ADHD are not well understood. Animal models, especially rodent models, are beginning to bridge this gap in knowledge. Although ADHD is characterized by hyperactivity, inattention, impulsivity and working memory deficits, the majority of the animal models are based on only one or two ADHD associated phenotypes, in particular, hyperactivity or inattention. We report a PNE mouse model that displays the full range of ADHD associated behavioral phenotypes including working memory deficit, attention deficit and impulsive-like behavior. All of the ADHD-associated phenotypes respond to a single administration of a therapeutic equivalent dose of methylphenidate. In an earlier study, we showed that PNE produces hyperactivity, frontal cortical hypodopaminergic state and thinning of the cingulate cortex. Collectively, these data suggest that the PNE mouse model recapitulates key features of ADHD and may be a suitable preclinical model for ADHD research. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Nicotine, Carcinogen, and Toxin Exposure in Long-Term E-Cigarette and Nicotine Replacement Therapy Users: A Cross-sectional Study.

    Science.gov (United States)

    Shahab, Lion; Goniewicz, Maciej L; Blount, Benjamin C; Brown, Jamie; McNeill, Ann; Alwis, K Udeni; Feng, June; Wang, Lanqing; West, Robert

    2017-03-21

    Given the rapid increase in the popularity of e-cigarettes and the paucity of associated longitudinal health-related data, the need to assess the potential risks of long-term use is essential. To compare exposure to nicotine, tobacco-related carcinogens, and toxins among smokers of combustible cigarettes only, former smokers with long-term e-cigarette use only, former smokers with long-term nicotine replacement therapy (NRT) use only, long-term dual users of both combustible cigarettes and e-cigarettes, and long-term users of both combustible cigarettes and NRT. Cross-sectional study. United Kingdom. The following 5 groups were purposively recruited: combustible cigarette-only users, former smokers with long-term (≥6 months) e-cigarette-only or NRT-only use, and long-term dual combustible cigarette-e-cigarette or combustible cigarette-NRT users (n = 36 to 37 per group; total n = 181). Sociodemographic and smoking characteristics were assessed. Participants provided urine and saliva samples and were analyzed for biomarkers of nicotine, tobacco-specific N-nitrosamines (TSNAs), and volatile organic compounds (VOCs). After confounders were controlled for, no clear between-group differences in salivary or urinary biomarkers of nicotine intake were found. The e-cigarette-only and NRT-only users had significantly lower metabolite levels for TSNAs (including the carcinogenic metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL]) and VOCs (including metabolites of the toxins acrolein; acrylamide; acrylonitrile; 1,3-butadiene; and ethylene oxide) than combustible cigarette-only, dual combustible cigarette-e-cigarette, or dual combustible cigarette-NRT users. The e-cigarette-only users had significantly lower NNAL levels than all other groups. Combustible cigarette-only, dual combustible cigarette-NRT, and dual combustible cigarette-e-cigarette users had largely similar levels of TSNA and VOC metabolites. Cross-sectional design with self-selected sample. Former

  20. Nicotine and Cotinine Exposure from Electronic Cigarettes: A Population Approach

    Science.gov (United States)

    de Mendizábal, Nieves Vélez; Jones, David R.; Jahn, Andy; Bies, Robert R.; Brown, Joshua W.

    2015-01-01

    Background and Objectives Electronic cigarettes (e-cigarettes) are a recent technology that has gained rapid acceptance. Still, little is known about them in terms of safety and effectiveness. A basic question is how effectively they deliver nicotine, however the literature is surprisingly unclear on this point. Here, a population pharmacokinetic (PK) model was developed for nicotine and its major metabolite cotinine with the aim to provide a reliable framework for the simulation of nicotine and cotinine concentrations over time, based solely on inhalation airflow recordings and individual covariates (i.e. weight and breath carbon monoxide CO levels). Methods This study included 10 adults self-identified as heavy smokers (at least one pack per day). Plasma nicotine and cotinine concentrations were measured at regular 10-minute intervals for 90 minutes while human subjects inhaled nicotine vapor from a modified e-cigarette. Airflow measurements were recorded every 200 milliseconds throughout the session. A population PK model for nicotine and cotinine was developed based on previously published PK parameters and the airflow recordings. All the analyses were performed with the nonlinear mixed-effect modelling software NONMEM 7.2. Results The results show that e-cigarettes deliver nicotine effectively, although the pharmacokinetic profiles are lower than those achieved with regular cigarettes. Our PK model effectively predicts plasma nicotine and cotinine concentrations from the inhalation volume, and initial breath CO. Conclusion E-cigarettes are effective at delivering nicotine. This new PK model of e-cigarette usage might be used for pharmacodynamic analysis where the PK profiles are not available. PMID:25503588

  1. A pilot study on nicotine residues in houses of electronic cigarette users, tobacco smokers, and non-users of nicotine-containing products.

    Science.gov (United States)

    Bush, Derek; Goniewicz, Maciej L

    2015-06-01

    Nicotine deposited on the surfaces has been shown to react with airborne chemicals leading to formation of carcinogens and contributing to thirdhand exposure. While prior studies revealed nicotine residues in tobacco smokers' homes, none have examined the nicotine residue in electronic cigarette (e-cigarette) users' homes. We measured nicotine on the surfaces in households of 8 e-cigarette users, 6 cigarette smokers, and 8 non-users of nicotine-containing products in Western New York, USA. Three surface wipe samples were taken from the floor, wall and window. Nicotine was extracted from the wipes and analyzed using gas chromatography. Half of the e-cigarette users' homes had detectable levels of nicotine on surfaces whereas nicotine was found in all of the tobacco cigarette smokers' homes. Trace amounts of nicotine were also detected in half of the homes of non-users of nicotine-containing products. Nicotine levels in e-cigarette users homes was significantly lower than that found in cigarette smokers homes (average concentration 7.7±17.2 vs. 1303±2676 μg/m2; pe-cigarette users and non-users (p>0.05). Nicotine is a common contaminant found on indoor surfaces. Using e-cigarettes indoors leads to significantly less thirdhand exposure to nicotine compared to smoking tobacco cigarettes. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.

    Science.gov (United States)

    Becker, Jérôme A J; Kieffer, Brigitte L; Le Merrer, Julie

    2017-09-01

    Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse. © 2016 Society for the Study of Addiction.

  3. Characterisation of the borgwaldt LM4E system for in vitro exposures to undiluted aerosols from next generation tobacco and nicotine products (NGPs).

    Science.gov (United States)

    Adamson, Jason; Jaunky, Tomasz; Thorne, David; Gaça, Marianna D

    2018-03-01

    Traditional in vitro exposure to combustible tobacco products utilise exposure systems that include the use of smoking machines to generate, dilute and deliver smoke to in vitro cell cultures. With reported lower emissions from next generation tobacco and nicotine products (NGPs), including e-cigarettes and tobacco heating products (THPs), diluting the aerosol is potentially not required. Herein we present a simplified exposure scenario to undiluted NGP aerosols, using a new puffing system called the LM4E. Nicotine delivery from an e-cigarette was used as a dosimetry marker, and was measured at source across 4 LM4E ports and in the exposure chamber. Cell viability studies, using Neutral Red Uptake (NRU) assay, were performed using H292 human lung epithelial cells, testing undiluted aerosols from an e-cigarette and a THP. E-cigarette mean nicotine generated at source was measured at 0.084 ± 0.005 mg/puff with no significant differences in delivery across the 4 different ports, p = 0.268 (n = 10/port). Mean nicotine delivery from the e-cigarette to the in vitro exposure chamber (measured up to 100 puffs) was 0.046 ± 0.006 mg/puff, p = 0.061. Aerosol penetration within the LM4E was 55% from source to chamber. H292 cells were exposed to undiluted e-cigarette aerosol for 2 h (240 puffs) or undiluted THP aerosol for 1 h (120 puffs). There were positive correlations between puff number and nicotine in the exposed culture media, R 2  = 0.764 for the e-cigarette and R 2  = 0.970 for the THP. NRU determined cell viability for e-cigarettes after 2 h' exposure resulted in 21.5 ± 17.0% cell survival, however for the THP, full cytotoxicity was reached after 1-h exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Delivery of nicotine aerosol to mice via a modified electronic cigarette device.

    Science.gov (United States)

    Lefever, Timothy W; Lee, Youn O K; Kovach, Alexander L; Silinski, Melanie A R; Marusich, Julie A; Thomas, Brian F; Wiley, Jenny L

    2017-03-01

    Although both men and women use e-cigarettes, most preclinical nicotine research has focused on its effects in male rodents following injection. The goals of the present study were to develop an effective e-cigarette nicotine delivery system, to compare results to those obtained after subcutaneous (s.c.) injection, and to examine sex differences in the model. Hypothermia and locomotor suppression were assessed following aerosol exposure or s.c. injection with nicotine in female and male mice. Subsequently, plasma and brain concentrations of nicotine and cotinine were measured. Passive exposure to nicotine aerosol produced concentration-dependent and mecamylamine reversible hypothermic and locomotor suppressant effects in female and male mice, as did s.c. nicotine injection. In plasma and brain, nicotine and cotinine concentrations showed dose/concentration-dependent increases in both sexes following each route of administration. Sex differences in nicotine-induced hypothermia were dependent upon route of administration, with females showing greater hypothermia following aerosol exposure and males showing greater hypothermia following injection. In contrast, when they occurred, sex differences in nicotine and cotinine levels in brain and plasma consistently showed greater concentrations in females than males, regardless of route of administration. In summary, the e-cigarette exposure device described herein was used successfully to deliver pharmacologically active doses of nicotine to female and male mice. Further, plasma nicotine concentrations following exposure were similar to those after s.c. injection with nicotine and within the range observed in human smokers. Future research on vaped products can be strengthened by inclusion of translationally relevant routes of administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. T-type calcium channel antagonism decreases motivation for nicotine and blocks nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine.

    Science.gov (United States)

    Uslaner, Jason M; Vardigan, Joshua D; Drott, Jason M; Uebele, Victor N; Renger, John J; Lee, Ariel; Li, Zhaoxia; Lê, A D; Hutson, Pete H

    2010-10-15

    Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse. We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group). Furthermore, we examined the specificity of the TTA-A2 effects by characterizing its influence on PR responding for food (in the absence or presence of nicotine-potentiated responding), food- versus nicotine-induced cue-potentiated reinstatement for a response previously reinforced by food administration (n = 11 or 12 Wistar Hannover rats/group), and its ability to induce a conditioned place aversion. TTA-A2 dose-dependently decreased self-administration of nicotine on a PR schedule and the ability of both nicotine and a cue paired with nicotine to reinstate responding. The effects were specific for nicotine's incentive motivational properties, as TTA-A2 did not influence responding for food on a PR schedule but did attenuate the ability of nicotine to potentiate responding for food. Likewise, TTA-A2 did not alter food-induced cue-potentiated reinstatement for a response previously reinforced by food but did decrease nicotine-induced cue-potentiated reinstatement. Finally, TTA-A2 did not produce an aversive state, as indicated by a lack of ability to induce conditioned place aversion. These data suggest that T-type calcium channel antagonists have potential for alleviating nicotine addiction by selectively decreasing the incentive motivational properties of nicotine. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. The effects of smoking and nicotine ingestion on exercise heat tolerance.

    Science.gov (United States)

    Druyan, Amit; Atias, Danit; Ketko, Itay; Cohen-Sivan, Yoav; Heled, Yuval

    2017-03-01

    Smoking has a thermogenic effect and is associated with low physical performance. Nevertheless, a direct, quantitative effect of acute smoking on exercise heat tolerance has not been reported. Sixteen healthy young male volunteers, eight cigarette smokers, and eight non-smokers participated in the study. All subjects performed a maximal oxygen consumption test (VO2max) and a standardized heat tolerance test (HTT) after at least 12 h without smoking under the following conditions: no nicotine exposure, 10 min after nicotine exposure (2 mg nicotine lozenge), and 10 min after smoking two cigarettes (0.8 mg nicotine in each cigarette, smokers only). There was no significant effect of nicotine exposure on physiological performance and heat tolerance in the non-smokers group. In the smokers group, cigarette smoking, but not nicotine ingestion, resulted with higher heart rate (by 9±9 bpm) at the end of the HTT (psmoking and nicotine ingestion increased smokers' rectal temperature at the end of the HTT (by 0.24±0.16°C and 0.21±0.26°C, respectively, psmoking in the smokers group compared with no exposure (2.13±2.57 and 2.48±2.76, respectively, psmoking and nicotine ingestion increase the physiological strain during a HTT in smokers. Acute smoking may, therefore, increase heat intolerance and the risk to heat injuries.

  7. Electronic cigarettes and nicotine clinical pharmacology.

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-05-01

    To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products' ability to support and maintain nicotine dependence. Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products' impact on public health.

  8. Electronic cigarettes and nicotine clinical pharmacology

    Science.gov (United States)

    Schroeder, Megan J; Hoffman, Allison C

    2014-01-01

    Objective To review the available literature evaluating electronic cigarette (e-cigarette) nicotine clinical pharmacology in order to understand the potential impact of e-cigarettes on individual users, nicotine dependence and public health. Methods Literature searches were conducted between 1 October 2012 and 30 September 2013 using key terms in five electronic databases. Studies were included in the review if they were in English and publicly available; non-clinical studies, conference abstracts and studies exclusively measuring nicotine content in e-cigarette cartridges were excluded from the review. Results Nicotine yields from automated smoking machines suggest that e-cigarettes deliver less nicotine per puff than traditional cigarettes, and clinical studies indicate that e-cigarettes deliver only modest nicotine concentrations to the inexperienced e-cigarette user. However, current e-cigarette smokers are able to achieve systemic nicotine and/or cotinine concentrations similar to those produced from traditional cigarettes. Therefore, user experience is critically important for nicotine exposure, and may contribute to the products’ ability to support and maintain nicotine dependence. Conclusions Knowledge about e-cigarette nicotine pharmacology remains limited. Because a user's e-cigarette experience may significantly impact nicotine delivery, future nicotine pharmacokinetic and pharmacodynamic studies should be conducted in experienced users to accurately assess the products’ impact on public health. PMID:24732160

  9. Electronic Nicotine Delivery Systems.

    Science.gov (United States)

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.

  10. Binding, uptake, and release of nicotine by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-01-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3 H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3 H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3 H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  11. Nicotine Contamination in Particulate Matter Sampling

    Directory of Open Access Journals (Sweden)

    Eric Garshick

    2009-02-01

    Full Text Available We have addressed potential contamination of PM2.5 filter samples by nicotine from cigarette smoke. We collected two nicotine samples – one nicotine sampling filter was placed in-line after the collection of PM2.5 and the other stood alone. The overall correlation between the two nicotine filter levels was 0.99. The nicotine collected on the “stand-alone” filter was slightly greater than that on the “in-line” filter (mean difference = 1.10 μg/m3, but the difference was statistically significant only when PM2.5 was low (≤ 50 μg/m3. It is therefore important to account for personal and secondhand smoke exposure while assessing occupational and environmental PM.

  12. Treatment with a nicotine vaccine does not lead to changes in brain activity during smoking cue exposure or a working memory task.

    Science.gov (United States)

    Havermans, Anne; Vuurman, Eric F; van den Hurk, Job; Hoogsteder, Philippe; van Schayck, Onno C P

    2014-08-01

    To assess whether immunization attenuates nicotinic stimulation of the brain and elucidate brain and behavioural responses during exposure to smoking cues and a working memory task. Randomized, placebo-controlled parallel-group, repeated-measures design. Maastricht University, the Netherlands. Forty-eight male smokers were randomized to receive five injections with either 400 μg/ml of the 3'-aminomethylnicotine Pseudomonas aeruginosa r-Exoprotein-conjugated vaccine or placebo. Subjects were tested on two occasions, once after a nicotine challenge and once after a placebo challenge, and were asked to refrain from smoking 10 hours before testing. Reaction-times and accuracies were recorded during an n-back task. Moreover, regional blood oxygenated level-dependent (BOLD) response was measured during this task and during smoking cue exposure. Greater activation was found in response to smoking cues compared to neutral cues in bilateral trans-occipital sulcus (P cues between the treatment groups and no effects of acute nicotine challenge were established. For the n-back task we found working memory load-sensitive increases in brain activity in several frontal and parietal areas (P < 0.0025). However, no effects of immunization or nicotine challenge were observed. No significant effects of immunization on brain activity in response to a nicotine challenge were established. Therefore this vaccine is not likely to be an effective aid in smoking cessation. © 2014 Society for the Study of Addiction.

  13. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier

  14. Insight into nicotine addiction

    Directory of Open Access Journals (Sweden)

    Sahil Handa

    2017-01-01

    Full Text Available The emergence of the epidemic of nicotine addiction in India and other nations is a global public health tragedy of untoward proportions. Smoking or chewing tobacco can seriously affect general, as well as oral health. Smoking-caused disease is a consequence of exposure to toxins in tobacco smoke and addiction to nicotine is the proximate cause of these diseases. This article focuses on nicotine as a determinant of addiction to tobacco and the pharmacologic effects of nicotine that sustain cigarette smoking. The pharmacologic reasons for nicotine use are an enhancement of mood, either directly or through relief of withdrawal symptoms and augmentation of mental or physical functions. Tobacco cessation is necessary to reduce morbidity and mortality related to tobacco use. Strategies for tobacco cessation involves 5A's and 5R's approach and pharmacotherapy. Dental professionals play an important role in helping patients to quit tobacco at the community and national levels, to promote tobacco prevention and control nicotine addiction. Dentists are in a unique position to educate and motivate patients concerning the hazards of tobacco to their oral and systemic health, and to provide intervention programs as a part of routine patient care.

  15. Withdrawal from chronic exposure to amphetamine, but not nicotine, leads to an immediate and enduring deficit in motivated behavior without affecting social interaction in rats

    OpenAIRE

    Der-Avakian, Andre; Markou, Athina

    2010-01-01

    Psychostimulant withdrawal leads to depressive symptoms, such as anhedonia and social dysfunction. We determined the effects of withdrawal from chronic exposure to nicotine (9 mg/kg/day salt, 28 days) or amphetamine (10 mg/kg/day salt, 7 days) on the motivated response for a sucrose reward and on social interaction in rats. Both nicotine and amphetamine exposure increased the motivated response for sucrose. However, only spontaneous amphetamine withdrawal led to an immediate and persistent de...

  16. Adolescent Social Stress Increases Anxiety-like Behavior and Alters Synaptic Transmission, Without Influencing Nicotine Responses, in a Sex-Dependent Manner.

    Science.gov (United States)

    Caruso, Michael J; Crowley, Nicole A; Reiss, Dana E; Caulfield, Jasmine I; Luscher, Bernhard; Cavigelli, Sonia A; Kamens, Helen M

    2018-03-01

    Early-life stress is a risk factor for comorbid anxiety and nicotine use. Because little is known about the factors underlying this comorbidity, we investigated the effects of adolescent stress on anxiety-like behavior and nicotine responses within individual animals. Adolescent male and female C57BL/6J mice were exposed to chronic variable social stress (CVSS; repeated cycles of social isolation + social reorganization) or control conditions from postnatal days (PND) 25-59. Anxiety-like behavior and social avoidance were measured in the elevated plus-maze (PND 61-65) and social approach-avoidance test (Experiment 1: PND 140-144; Experiment 2: 95-97), respectively. Acute nicotine-induced locomotor, hypothermic, corticosterone responses, (Experiment 1: PND 56-59; Experiment 2: PND 65-70) and voluntary oral nicotine consumption (Experiment 1: PND 116-135; Experiment 2: 73-92) were also examined. Finally, we assessed prefrontal cortex (PFC) and nucleus accumbens (NAC) synaptic transmission (PND 64-80); brain regions that are implicated in anxiety and addiction. Mice exposed to adolescent CVSS displayed increased anxiety-like behavior relative to controls. Further, CVSS altered synaptic excitability in PFC and NAC neurons in a sex-specific manner. For males, CVSS decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents in the PFC and NAC, respectively. In females, CVSS decreased the amplitude of spontaneous inhibitory postsynaptic currents in the NAC. Adolescent CVSS did not affect social avoidance or nicotine responses and anxiety-like behavior was not reliably associated with nicotine responses within individual animals. Taken together, complex interactions between PFC and NAC function may contribute to adolescent stress-induced anxiety-like behavior without influencing nicotine responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    Science.gov (United States)

    Christensen, Mark H.; Ishibashi, Masaru; Nielsen, Michael L.; Leonard, Christopher S.; Kohlmeier, Kristi A.

    2015-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on several parameters affecting LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine was found to induce larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age. PMID:24863041

  18. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n......AChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our...

  19. Intrauterine low-functional programming of IGF1 by prenatal nicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring.

    Science.gov (United States)

    Tie, Kai; Zhang, Xianrong; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Wang, Hui; Chen, Liaobin

    2016-02-01

    This study aimed to evaluate whether female adult offspring born with intrauterine growth retardation induced by prenatal nicotine exposure (PNE) are susceptible to osteoarthritis (OA) and to explore the underlying programming mechanisms. Pregnant rats were treated with nicotine or saline at 2.0 mg/kg/d from gestational d 11 to 20. The female adult offspring with or without PNE were forced with a strenuous treadmill running for 6 wk to induce OA. Nicotine's effects on fetal articular chondrocytes were studied by exposing chondrocytes to nicotine for 10 d, and dihydro-β-erythroidine, a selective α4β2-nicotinic acetylcholine receptor (nAChR) inhibitor, was used to identify the change of nicotine's effect. For adult offspring, increased cartilage destruction and accelerated OA progression were observed in the PNE group with running; the expression of α1 chain of type II collagen (Col2A1), aggrecan, SRY-type high mobility group box 9 (Sox9), and IGF1 signaling molecules in the cartilage of PNE offspring were decreased. For fetuses, elevated serum corticosteroid and nicotine levels and suppressed IGF1 levels were observed; expression of Col2A1, aggrecan, Sox9, and IGF1 were reduced. The result of chondrocytes revealed that nicotine impeded the expression of Col2A1, aggrecan, and IGF1; blocking α4β2-nAChR rescued nicotine's suppression. In conclusion, PNE increases the susceptibility of adult offspring to OA; the potential mechanism involves IGF1 low-functional programming in articular cartilage caused directly by the action of nicotine on α4β2-nAChR. © FASEB.

  20. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  1. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  2. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  3. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    Science.gov (United States)

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  4. Nicotine concentrations in urine and saliva of smokers and non-smokers.

    Science.gov (United States)

    Feyerabend, C; Higenbottam, T; Russell, M A

    1982-01-01

    Nicotine concentrations were measured in saliva and urine samples collected from 82 smokers and 56 non-smokers after a morning at work. Each subject answered a series of questions related to their recent intentional or passive exposure to tobacco smoke. All non-smokers had measurable amounts of nicotine in both saliva and urine. Those non-smokers who reported recent exposure to tobacco smoke had significantly higher nicotine concentrations (p less than 0.001) than those who had not been exposed; their concentrations overlapped those of smokers who had smoked up to three cigarettes before sampling had the greatest influence on nicotine concentrations (r=0.62 for saliva and r=0.51 for urine). Neither the nicotine for yield of cigarettes nor the self-reported degree of inhalation had any significant effect on nicotine concentrations. PMID:6802384

  5. EFFECTS OF ACUTE AND WEEKLY EPISODIC EXPOSURES TO ANATOXIN-A ON THE MOTOR ACTIVITY OF RATS: COMPARISON WITH NICOTINE.

    Science.gov (United States)

    Anatoxin-a is a potent nicotinic cholinergic agonist, that is produced by many genera of cyanobacteria, and has caused several poisoning episodes of wildlife, livestock, and domestic animals. Cyanobacterial blooms and toxin exposures are likely to occur episodically as environmen...

  6. Nicotine intake and problem solving strategies are modified during a cognitively demanding water maze task in rats.

    Science.gov (United States)

    Nesil, Tanseli; Kanit, Lutfiye; Pogun, Sakire

    2015-11-01

    Nicotine is the major addictive component in tobacco, and despite well-established adverse health effects of tobacco addiction, some smokers have difficulty quitting. The acute cognitive enhancement and/or the amelioration of the cognitive disruption during withdrawal that some smokers experience after smoking are among important factors that hinder quit attempts. The animal model presented in the current study is comparable to the human smoking condition although nicotine intake routes are different. Rats were exposed to a free choice of oral nicotine starting at adolescence, and given a water maze (WM) task as adults. This design allowed us to see if rats alter their nicotine intake during the WM task and if nicotine preference and intake modify abilities and strategies rats use for problem solving. Male and female rats were exposed to a free choice of oral nicotine/water for 24weeks, starting at five weeks of age. After this period, they were selected based on their nicotine intake and, together with control animals that received only water, were subjected to a place-learning task in the WM. Free-choice nicotine exposure continued during WM testing. Following acquisition, the probe trial presented the rats with a choice between using two different strategies for problem solving. Nicotine supported acquisition and rats increased their nicotine intake during WM testing; this effect was more pronounced in male rats with minimum nicotine preference and intake. Furthermore, nicotine modified the "female type" strategy in solving the place-learning task and nicotine treated female rats, unlike control females, behaved like males. The increase in nicotine intake during mental engagement, and the sexually dimorphic effect of nicotine on problem solving strategies that we have observed in rats, may suggest that implementing sex-specific smoking cessation approaches, especially under stressful and cognitively demanding conditions, may be useful in helping smokers quit

  7. Occupational secondhand smoke is the main determinant of hair nicotine concentrations in bar and restaurant workers

    Science.gov (United States)

    Iglesias, Verónica; Erazo, Marcia; Droppelmann, Andrea; Steenland, Kyle; Aceituno, Paulina; Orellana, Cecilia; Acuña, Marisol; Peruga, Armando; Breysse, Patrick N.; Navas-Acien, Ana

    2015-01-01

    Objective To evaluate the relative contribution of occupational vs. non-occupational secondhand tobacco smoke exposure to overall hair nicotine concentrations in non-smoking bar and restaurant employees. Method We recruited 76 non-smoking employees from venues that allowed smoking (n = 9), had mixed policies (smoking and non-smoking areas, n = 13) or were smoke-free (n = 2) between April and August 2008 in Santiago, Chile. Employees used personal air nicotine samplers during working and non-working hours for a 24-h period to assess occupational vs. non-occupational secondhand tobacco smoke exposure and hair nicotine concentrations to assess overall secondhand tobacco smoke exposure. Results Median hair nicotine concentrations were 1.5 ng/mg, interquartile range (IQR) 0.7 to 5.2 ng/mg. Time weighted average personal air nicotine concentrations were higher during working hours (median 9.7, IQR 3.3-25.4 μg/m3) compared to non-working hours (1.7, 1.0-3.1 μg/m3). Hair nicotine concentration was best predicted by personal air nicotine concentration at working hours. After adjustment, a 2-fold increase in personal air nicotine concentration in working hours was associated with a 42% increase in hair nicotine concentration (95% confidence interval 14-70%). Hair nicotine concentration was not associated with personal air nicotine concentration during non-working hours (non-occupational exposure). Conclusions Personal air nicotine concentration at working hours was the major determinant of hair nicotine concentrations in non-smoking employees from Santiago, Chile. Secondhand tobacco smoke exposure during working hours is a health hazard for hospitality employees working in venues where smoking is allowed. PMID:24813578

  8. Threshold dose for behavioral discrimination of cigarette nicotine content in menthol vs. non-menthol smokers.

    Science.gov (United States)

    Perkins, Kenneth A; Kunkle, Nicole; Karelitz, Joshua L

    2017-04-01

    The lowest threshold content (or "dose") of nicotine discriminated in cigarettes may differ due to menthol preference. Menthol and non-menthol Spectrum research cigarettes differing in nicotine content were used to determine discrimination thresholds. Dependent smokers preferring menthol (n = 40) or non-menthol (n = 21) brands were tested on ability to discriminate cigarettes (matched for their menthol preference) with nicotine contents of 16-17, 11-12, 5, 2, and 1 mg/g, one per session, from an "ultra-low" cigarette with 0.4 mg/g. Controlled exposure to each cigarette was four puffs/trial, and the number of sessions was determined by the lowest nicotine content they could discriminate on >80% of trials (i.e., ≥5 of 6). We also assessed subjective perceptions and behavioral choice between cigarettes to relate them to discrimination responses. Controlling for Fagerstrom Test of Nicotine Dependence score, discrimination thresholds were more likely to be at higher nicotine content cigarettes for menthol vs. non-menthol smokers (p vs. 11 mg/g, respectively. Compared to the ultra-low, threshold and subthreshold (next lowest) cigarettes differed on most perceptions and puff choice, but menthol preference did not alter these associations. Notably, threshold cigarettes did, but subthreshold did not, increase choice over the ultra-low. Threshold for discriminating nicotine via smoking may be generally higher for menthol vs. non-menthol smokers. More research is needed to identify why menthol smoking is related to higher nicotine thresholds and to verify that cigarettes unable to be discriminated do not support reinforcement.

  9. Responses to environmental smoking in never-smoking children: can symptoms of nicotine addiction develop in response to environmental tobacco smoke exposure?

    Science.gov (United States)

    Schuck, Kathrin; Kleinjan, Marloes; Otten, Roy; Engels, Rutger C M E; DiFranza, Joseph R

    2013-06-01

    A recent line of studies has brought attention to the question whether repeated exposure to environmental tobacco smoke (ETS) is capable of producing psycho-physiological effects in non-smokers and whether symptoms of nicotine dependence can develop in the absence of active smoking. Children seem to be particularly vulnerable to the effects of ETS. We examined the occurrence of psycho-behavioural symptoms, designed to assess nicotine addiction and nicotine withdrawal, in a sample of 778 never-smoking children aged 9-12 years using cross-sectional survey data collected in 15 Dutch primary schools. In the present study, 6% of never-smoking children reported symptoms of craving, 8% reported cue-triggered wanting to smoke, and 20% reported subjective symptoms in response to ETS exposure. In never-smoking children, a higher number of smokers in the child's social environment was associated with more symptoms of cue-triggered wanting to smoke and more subjective symptoms in response to ETS. Never-smoking children and children who had initiated smoking were equally likely to report subjective symptoms in response to ETS exposure. In conclusion, environmental smoking is associated with self-reported psycho-behavioural symptoms in never-smoking children. Future research needs to investigate whether symptoms in children exposed to ETS are physiologically based or whether they reflect other characteristics which predispose youth for smoking initiation in the future.

  10. Withdrawal from chronic exposure to amphetamine, but not nicotine, leads to an immediate and enduring deficit in motivated behavior without affecting social interaction in rats.

    Science.gov (United States)

    Der-Avakian, Andre; Markou, Athina

    2010-07-01

    Psychostimulant withdrawal leads to depressive symptoms, such as anhedonia and social dysfunction. We determined the effects of withdrawal from chronic exposure to nicotine (9 mg/kg/day salt, 28 days) or amphetamine (10 mg/kg/day salt, 7 days) on the motivated response for a sucrose reward and on social interaction in rats. Both nicotine and amphetamine exposure increased the motivated response for sucrose. However, only spontaneous amphetamine withdrawal led to an immediate and persistent decrease in motivated behavior, which was not correlated with body weight loss. Social interaction was not affected during withdrawal from either drug. These results indicate that withdrawal from chronic amphetamine exposure leads to an immediate and enduring anhedonic state.

  11. Gene expression signatures affected by ethanol and/or nicotine in normal human normal oral keratinocytes (NHOKs

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Kim

    2014-12-01

    Full Text Available It has been reported that nicotine/alcohol alters epigenetic control and leads to abrogated DNA methylation and histone modifications, which could subsequently perturb transcriptional regulation critically important in cellular transformation. The aim of this study is to determine the molecular mechanisms of nicotine/alcohol-induced epigenetic alterations and their mechanistic roles in transcriptional regulation in human adult stem cells. We hypothesized that nicotine/alcohol induces deregulation of epigenetic machinery and leads to epigenetic alterations, which subsequently affect transcriptional regulation in oral epithelial stem cells. As an initiating step we have profiled transcriptomic alterations induced by the combinatory administration of EtOH and nicotine in primary normal human oral keratinocytes. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57634. Our data provide comprehensive transcriptomic map describing molecular changes induced by EtOH and nicotine on normal human oral keratinocytes.

  12. Chronic ethanol or nicotine treatment results in partial cross-tolerance between these agents.

    Science.gov (United States)

    Burch, J B; de Fiebre, C M; Marks, M J; Collins, A C

    1988-01-01

    Female DBA/2Ibg mice were treated chronically (21 days) with ethanol- or dextrin-containing liquid diets or infused chronically with nicotine (8 mg/kg/h) or saline for 10 days. The responses of these animals to challenge doses of ethanol (2.5 g/kg) or nicotine (1 or 2 mg/kg) were measured using a test battery consisting of respiration rate, acoustic startle response, Y-maze crosses and rears, heart rate and body temperature. Chronic ethanol-treated animals were tolerant to the effects elicited by a challenge dose of ethanol on four of the six measures and were cross-tolerant to nicotine's effects on the acoustic startle test. Chronic nicotine-treated animals were tolerant to nicotine's effects on five of the six measures and cross-tolerant to ethanol's effects on heart rate and body temperature. Thus, partial cross-tolerance between ethanol and nicotine exists. Chronic nicotine treatment resulted in significant increases in L-[3H]-nicotine binding in six of seven brain regions and in alpha-[125I]-bungarotoxin binding in three of seven brain regions. Chronic ethanol treatment failed to alter the binding of either ligand. Therefore, the cross-tolerance that develops between ethanol and nicotine is not totally dependent on alterations in the number of brain nicotinic receptors.

  13. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  14. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  15. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Neonicotinoid Insecticides Alter the Gene Expression Profile of Neuron-Enriched Cultures from Neonatal Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Junko Kimura-Kuroda

    2016-10-01

    Full Text Available Neonicotinoids are considered safe because of their low affinities to mammalian nicotinic acetylcholine receptors (nAChRs relative to insect nAChRs. However, because of importance of nAChRs in mammalian brain development, there remains a need to establish the safety of chronic neonicotinoid exposures with regards to children’s health. Here we examined the effects of longterm (14 days and low dose (1 μM exposure of neuron-enriched cultures from neonatal rat cerebellum to nicotine and two neonicotinoids: acetamiprid and imidacloprid. Immunocytochemistry revealed no differences in the number or morphology of immature neurons or glial cells in any group versus untreated control cultures. However, a slight disturbance in Purkinje cell dendritic arborization was observed in the exposed cultures. Next we performed transcriptome analysis on total RNAs using microarrays, and identified significant differential expression (p < 0.05, q < 0.05, ≥1.5 fold between control cultures versus nicotine-, acetamiprid-, or imidacloprid-exposed cultures in 34, 48, and 67 genes, respectively. Common to all exposed groups were nine genes essential for neurodevelopment, suggesting that chronic neonicotinoid exposure alters the transcriptome of the developing mammalian brain in a similar way to nicotine exposure. Our results highlight the need for further careful investigations into the effects of neonicotinoids in the developing mammalian brain.

  17. Nicotine concentration of e-cigarettes used by adolescents.

    Science.gov (United States)

    Morean, Meghan E; Kong, Grace; Cavallo, Dana A; Camenga, Deepa R; Krishnan-Sarin, Suchitra

    2016-10-01

    E-cigarettes are popular among youth, but little is known about the nicotine concentrations of e-liquids used by adolescents. In Spring, 2014, we conducted cross-sectional surveys in four Connecticut high schools and two middle schools. Among past-30-day e-cigarette users (n=513, 45% female, mean age 15.9 [SD=1.4]), we examined what nicotine concentration adolescents typically used in their e-cigarettes (range 0-30mg/mL and "I don't know"). We first examined whether age, sex, smoking status, e-cigarette use frequency, and/or e-cigarette acquisition source were associated with using nicotine-free e-liquid, nicotine e-liquid, or not knowing the e-liquid nicotine concentration. Among nicotine users (n=185), we then examined whether the aforementioned variables were associated with using higher nicotine concentrations. Adolescents reported using nicotine-free e-liquid (28.5%), nicotine e-liquid (37.4%), or not knowing their e-liquid nicotine concentration (34.1%). Nicotine users comprised more smokers and heavier e-cigarette users compared to nicotine-free e-liquid users and those who did not know their nicotine concentration. Nicotine users also comprised more males and were more likely to purchase e-cigarettes online or from tobacco shops compared to those who did not know their nicotine concentration. Among nicotine users, cigarette smoking, male sex, and purchasing e-cigarettes from tobacco shops predicted using higher nicotine concentrations. Adolescents reported using e-liquids with variable nicotine concentrations. Smokers, males, and those who purchased their own e-cigarettes reported using the highest nicotine levels. Of concern, many adolescents were unaware of the nicotine concentration in their e-liquid, raising concerns about inadvertent nicotine exposure among youth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Inside-out neuropharmacology of nicotinic drugs.

    Science.gov (United States)

    Henderson, Brandon J; Lester, Henry A

    2015-09-01

    Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Measuring tobacco smoke exposure: quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods.

    Science.gov (United States)

    Dhar, Preeti

    2004-04-01

    Procedures to assess tobacco smoke exposure are reviewed and biomarkers used for determining the smoking status of an individual are compared. Methods used to extract these biomarkers from saliva, urine, and blood and the advantages and disadvantages of the assays are discussed. Finally, the procedures used to measure the levels of cortisol, a stress hormone speculated to be linked to nicotine metabolism, are discussed.

  20. Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine

    NARCIS (Netherlands)

    Poorthuis, R.B.; Bloem, B.R.; Verhoog, M.B.; Mansvelder, H.D.

    2013-01-01

    Adolescence is a period in which the developing prefrontal cortex (PFC) is sensitive to maladaptive changes when exposed to nicotine. Nicotine affects PFC function and repeated exposure to nicotine during adolescence impairs attention performance and impulse control during adulthood. Nicotine

  1. Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

    Science.gov (United States)

    Featherstone, Robert E.; Phillips, Jennifer M.; Thieu, Tony; Ehrlichman, Richard S.; Halene, Tobias B.; Leiser, Steven C.; Christian, Edward; Johnson, Edwin; Lerman, Caryn; Siegel, Steven J.

    2012-01-01

    Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2

  2. Waterpipe tobacco products: nicotine labelling versus nicotine delivery.

    Science.gov (United States)

    Vansickel, Andrea R; Shihadeh, Alan; Eissenberg, Thomas

    2012-05-01

    Waterpipe tobacco package labelling typically indicates "0.0% tar" and "0.05% or 0.5% nicotine". To determine the extent to which nicotine labeling is related to nicotine delivery. 110 waterpipe smokers engaged in a 45-minute waterpipe smoking session. Puff topography and plasma nicotine were measured. Three waterpipe tobacco brands were used: Nakhla (0.5% nicotine), Starbuzz (0.05% nicotine), and Al Fakher (0.05% nicotine). Data were analyzed by one-way ANOVA. Topography did not differ across brands. Peak plasma nicotine varied significantly across brands. Al Fakher had the highest nicotine delivery (11.4 ng/ml) followed by Nakhla (9.8 ng/ml) and Starbuzz (5.8 ng/ml). Nicotine labelling on waterpipe tobacco products does not reflect delivery; smoking a brand with a "0.05% nicotine" label led to greater plasma nicotine levels than smoking a brand with a "0.5% nicotine" label. Waterpipe tobacco products should be labelled in a manner that does not mislead consumers.

  3. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats.

    Science.gov (United States)

    Maggio, Sarah E; Saunders, Meredith A; Baxter, Thomas A; Nixon, Kimberly; Prendergast, Mark A; Zheng, Guangrong; Crooks, Peter; Dwoskin, Linda P; Slack, Rachel D; Newman, Amy H; Bell, Richard L; Bardo, Michael T

    2018-05-01

    Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, two-bottle choice), (2) nicotine alone (0.03 mg/kg/infusion, active vs. inactive lever), and (3) concurrent access to both EtOH and nicotine. Using this model, we examined the effects of (1) varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist with high affinity for the α4β2* subtype; (2) r-bPiDI, a subtype-selective antagonist at α6β2* nAChRs; and (3) (R)-modafinil, an atypical inhibitor of the dopamine transporter (DAT). In phases 1 and 2, pharmacologically relevant intake of EtOH and nicotine was achieved. In the concurrent access phase (phase 3), EtOH consumption decreased while nicotine intake increased relative to phases 1 and 2. For drug pretreatments, in the EtOH access phase (phase 1), (R)-modafinil (100 mg/kg) decreased EtOH consumption, with no effect on water consumption. In the concurrent access phase, varenicline (3 mg/kg), r-bPiDI (20 mg/kg), and (R)-modafinil (100 mg/kg) decreased nicotine self-administration but did not alter EtOH consumption, water consumption, or inactive lever pressing. These results indicate that therapeutics which may be useful for smoking cessation via selective inhibition of α4β2* or α6β2* nAChRs, or DAT inhibition, may not be sufficient to treat EtOH and nicotine co-use.

  4. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  5. The impact of nicotine on bone healing and osseointegration

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H

    2005-01-01

    OBJECTIVES: To examine the short-term effect of nicotine on bone healing and osseointegration. MATERIAL AND METHODS: Sixteen female rabbits were divided into two groups. The test group was exposed to nicotine tartrate for 8 weeks and the control group was exposed to placebo. Nicotine or placebo...... was administered via a miniosmotic pump and plasma cotinine levels were measured weekly. The pump delivered 15 mg of nicotine/day for the animals in the test group. All rabbits had three tibial bone preparations. In the proximal and distal bone bed, implants were placed after 4 weeks (right tibia) and after 6...... and the control group. CONCLUSION: Nicotine exposure in a short period of time did not have a significant impact on bone healing or implant osseointegration in rabbits....

  6. Role of green tea on nicotine toxicity on liver and lung of mice ...

    African Journals Online (AJOL)

    DR_Mohsen

    2012-01-26

    Jan 26, 2012 ... Nicotine is the more abundant component in cigarette smoking. The natural diet contains a variety ... morphometrical methods and study the protective effect of green tea against toxicity of nicotine. Four groups of the male ... nicotine exposure induced oxidative stress and causes histopathological changes ...

  7. Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues.

    Science.gov (United States)

    Clemens, Kelly J; Lay, Belinda P P; Holmes, Nathan M

    2017-03-01

    An array of pharmacological and environmental factors influence the development and maintenance of tobacco addiction. The nature of these influences likely changes across the course of an extended smoking history, during which time drug seeking can become involuntary and uncontrolled. The present study used an animal model to examine the factors that drive nicotine-seeking behavior after either brief (10 days) or extended (40 days) self-administration training. In Experiment 1, extended training increased rats' sensitivity to nicotine, indicated by a leftward shift in the dose-response curve, and their motivation to work for nicotine, indicated by an increase in the break point achieved under a progressive ratio schedule. In Experiment 2, extended training imbued the nicotine-paired cue with the capacity to maintain responding to the same high level as nicotine itself. However, Experiment 3 showed that the mechanisms involved in responding for nicotine or a nicotine-paired cue are dissociable, as treatment with the partial nicotine receptor agonist, varenicline, suppressed responding for nicotine but potentiated responding for the nicotine-paired cue. Hence, across extended nicotine self-administration, pharmacological and environmental influences over nicotine seeking increase such that nicotine seeking is controlled by multiple sources, and therefore highly resistant to change. © 2015 Society for the Study of Addiction.

  8. Transdermal nicotine absorption handling e-cigarette refill liquids.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and third-generation electronic cigarette users.

    Science.gov (United States)

    Wagener, Theodore L; Floyd, Evan L; Stepanov, Irina; Driskill, Leslie M; Frank, Summer G; Meier, Ellen; Leavens, Eleanor L; Tackett, Alayna P; Molina, Neil; Queimado, Lurdes

    2017-03-01

    Electronic cigarettes' (e-cigarettes) viability as a public health strategy to end smoking will likely be determined by their ability to mimic the pharmacokinetic profile of a cigarette while also exposing users to significantly lower levels of harmful/potentially harmful constituents (HPHCs). The present study examined the nicotine delivery profile of third- (G3) versus second-generation (G2) e-cigarette devices and their users' exposure to nicotine and select HPHCs compared with cigarette smokers. 30 participants (10 smokers, 9 G2 and 11 G3 users) completed baseline questionnaires and provided exhaled carbon monoxide (eCO), saliva and urine samples. Following a 12-hour nicotine abstinence, G2 and G3 users completed a 2-hour vaping session (ie, 5 min, 10-puff bout followed by ad libitum puffing for 115 min). Blood samples, subjective effects, device characteristics and e-liquid consumption were assessed. Smokers, G2 and G3 users had similar baseline levels of cotinine, but smokers had 4 and 7 times higher levels of eCO (pe-cigarette liquids with significantly lower nicotine concentrations. During the vaping session, G3 users achieved significantly higher plasma nicotine concentrations than G2 users following the first 10 puffs (17.5 vs 7.3 ng/mL, respectively) and at 25 and 40 min of ad libitum use. G3 users consumed significantly more e-liquid than G2 users. Vaping urges/withdrawal were reduced following 10 puffs, with no significant differences between device groups. Under normal use conditions, both G2 and G3 devices deliver cigarette-like amounts of nicotine, but G3 devices matched the amount and speed of nicotine delivery of a conventional cigarette. Compared with cigarettes, G2 and G3 e-cigarettes resulted in significantly lower levels of exposure to a potent lung carcinogen and cardiovascular toxicant. These findings have significant implications for understanding the addiction potential of these devices and their viability/suitability as aids to

  10. Training on motor and visual spatial learning tasks in early adulthood produces large changes in dendritic organization of prefrontal cortex and nucleus accumbens in rats given nicotine prenatally.

    Science.gov (United States)

    Muhammad, A; Mychasiuk, R; Hosain, S; Nakahashi, A; Carroll, C; Gibb, R; Kolb, B

    2013-11-12

    Experience-dependent plasticity is an ongoing process that can be observed and measured at multiple levels. The first goal of this study was to examine the effects of prenatal nicotine on the performance of rats in three behavioral tasks (elevated plus maze (EPM), Morris water task (MWT), and Whishaw tray reaching). The second goal of this experiment sought to examine changes in dendritic organization following exposure to the behavioral training paradigm and/or low doses of prenatal nicotine. Female Long-Evans rats were administered daily injections of nicotine for the duration of pregnancy and their pups underwent a regimen of behavioral training in early adulthood (EPM, MWT, and Whishaw tray reaching). All offspring exposed to nicotine prenatally exhibited substantial increases in anxiety. Male offspring also showed increased efficiency in the Whishaw tray-reaching task and performed differently than the other groups in the probe trial of the MWT. Using Golgi-Cox staining we examined the dendritic organization of the medial and orbital prefrontal cortex as well as the nucleus accumbens. Participation in the behavioral training paradigm was associated with dramatic reorganization of dendritic morphology and spine density in all brain regions examined. Although both treatments (behavior training and prenatal nicotine exposure) markedly altered dendritic organization, the effects of the behavioral experience were much larger than those of the prenatal drug exposure, and in some cases interacted with the drug effects. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Responses to environmental smoking in never-smoking children: can symptoms of nicotine addiction develop in response to environmental tobacco smoke exposure?

    NARCIS (Netherlands)

    Schuck, K.; Kleinjan, M.; Otten, R.; Engels, R.C.M.E.; DiFranza, J.R.

    2013-01-01

    A recent line of studies has brought attention to the question whether repeated exposure to environmental tobacco smoke (ETS) is capable of producing psycho-physiological effects in non-smokers and whether symptoms of nicotine dependence can develop in the absence of active smoking. Children seem to

  12. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  13. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  14. Exposure to electronic nicotine delivery systems (ENDS) visual imagery increases smoking urge and desire.

    Science.gov (United States)

    King, Andrea C; Smith, Lia J; Fridberg, Daniel J; Matthews, Alicia K; McNamara, Patrick J; Cao, Dingcai

    2016-02-01

    Use and awareness of electronic nicotine delivery systems (ENDS; also known as electronic cigarettes or e-cigarettes) has increased rapidly in recent years, particularly among young adults. As use of ENDS resembles traditional smoking in both hand-to-mouth movements and inhalation and exhalation behaviors, we determined whether exposure to e-cigarette use via video exposure would act as a cue to elicit urge and desire for a combustible cigarette. Young adult smokers (mean age of 26.3 ± 4.1 years) were randomized to view a brief video montage of advertisements depicting either e-cigarette vaping (n = 38) or bottled water drinking (n = 40). Pre- and postcue exposure assessments were conducted in a controlled laboratory setting without other smoking or vaping cues present or behaviors allowed. Primary outcomes included change from pre-exposure baseline in smoking urge (Brief Questionnaire of Smoking Urges) and desire for a combustible and e-cigarette (visual analogue scales). Results showed that relative to exposure to the bottled water video, exposure to the ENDS video significantly increased smoking urge (p e-cigarette (p < .001). These findings provide preliminary evidence that passive exposure to video imagery of ENDS use may generalize as a condition cue and evoke urges for a combustible cigarette in young adult smokers. It remains to be determined whether such increases in urge and desire correspond to increases in actual smoking behavior. (c) 2016 APA, all rights reserved).

  15. Tobacco Product Use Patterns, and Nicotine and Tobacco-Specific Nitrosamine Exposure: NHANES 1999-2012.

    Science.gov (United States)

    Choi, Kelvin; Sabado, Melanie; El-Toukhy, Sherine; Vogtmann, Emily; Freedman, Neal D; Hatsukami, Dorothy

    2017-10-01

    Background: Few studies have examined differences in product consumption patterns and nicotine and tobacco-specific nitrosamines (TSNA) exposure between single versus dual- and poly-tobacco users. We applied the Tobacco Product Use Patterns (T-PUPs) model to fill this gap in the literature. Methods: Data from adults (age ≥18 years) who used any tobacco products during the 5 days prior to participating in the 1999-2012 National Health and Nutrition Examination Survey (NHANES) were analyzed. Participants were classified into seven T-PUPs: (1) cigarettes only, (2) noncigarette combustibles only, (3) noncombustibles only, (4) dual noncigarette combustibles and noncombustibles, (5) dual cigarettes and noncombustibles, (6) dual cigarettes and noncigarette combustibles, and (7) poly-tobacco use. Weighted regression models were used to compare product consumption, serum cotinine, and urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (i.e., NNAL) levels between single-, dual-, and poly-tobacco T-PUPs. Results: Dual- and poly-tobacco T-PUPs were associated with lower product consumption compared with single-product T-PUPs only in some cases (e.g., dual cigarette and noncombustible users smoked cigarettes on 0.6 fewer days in the past 5 days compared with cigarette-only users; P product T-PUPs. Conclusions: Product consumption, and nicotine and TSNAs exposure of dual- and poly-tobacco product category users somewhat differ from those of single-product category users as defined by the T-TUPs model. Impact: Higher levels of cotinine and NNAL among dual- and poly-tobacco T-TUPs users compared with the single-product T-TUPs users may indicate health concerns. Cancer Epidemiol Biomarkers Prev; 26(10); 1525-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. The Relationship of Childhood Trauma to Nicotine Dependence in Pregnant Smokers

    OpenAIRE

    Blalock, Janice A.; Nayak, Nisha; Wetter, David W.; Schreindorfer, Lisa; Minnix, Jennifer A.; Canul, Jennifer; Cinciripini, Paul M.

    2011-01-01

    Pregnant women with high levels of nicotine dependence are the least likely to quit smoking spontaneously during pregnancy or to benefit from smoking cessation interventions. In the general population, there is increasing evidence of a relationship between smoking, nicotine dependence, and exposure to childhood trauma. We examined the relationship of childhood trauma to several measures of nicotine dependence and evaluated whether this relationship was mediated by major depressive disorder or...

  17. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    International Nuclear Information System (INIS)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-01-01

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC 50 was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress

  18. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  19. Cellular, Molecular, and Genetic Substrates Underlying the Impact of Nicotine on Learning

    Science.gov (United States)

    Gould, Thomas J.; Leach, Prescott T.

    2013-01-01

    Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: 1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, 2) how nicotine usurps the cellular mechanisms of synaptic plasticity, 3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal

  20. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    International Nuclear Information System (INIS)

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-01-01

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes

  1. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu; Cao, Hong; Cu, Fenglong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Lei, Youying [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Tan, Yang [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  2. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  3. Enriched environment palliates nicotine-induced addiction and associated neurobehavioral deficits in rats.

    Science.gov (United States)

    Nawaz, Amber; Batool, Zehra; Ahmed, Saara; Tabassum, Saiqa; Khaliq, Saima; Mehdi, Bushra Jabeen; Sajid, Irfan; Ahmad, Shoaib; Saleem, Sadia; Naqvi, Fizza; Naqvi, Faizan; Haider, Saida

    2017-11-01

    This study was designed to investigate the role of enriched environment in preventing and/or reducing the neurobehavioral deficits produced after nicotine administration in albino Wistar rats. Equal numbers of rat in two groups were either placed in social environment (control group) or social along with physically enriched environment for four weeks before the administration of nicotine. Exposure to different environmental conditions was followed by the intraperitoneal injection of nicotine at the dose of 0.6 mg/kg for seven consecutive days during which addictive behavior was monitored using conditioned placed preference paradigm. Behavioral responses to locomotor activity, anxiety and retention of short term memory were investigated in control and nicotine injected groups exposed to different environments. Results of this study showed that the rats pre-exposed to physical along with social enrichment exhibited a decrease in drug seeking behavior, hyper locomotion, anxiogenic effects along with improvement of working memory as compared to control and nicotine injected groups that were kept in social environment alone. This behavioral study suggests that the exposure to physical enrichment along with socialization in young age can later reduce the chances of compulsive dependence on nicotine and related neurobehavioral deficits.

  4. REINFORCEMENT ENHANCING EFFECTS OF ACUTE NICOTINE VIA ELECTRONIC CIGARETTES

    Science.gov (United States)

    Perkins, Kenneth A.; Karelitz, Joshua L.; Michael, Valerie C.

    2015-01-01

    Background Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. Methods We assessed acute effects of nicotine via electronic cigarettes (“e-cigarettes”) on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10 ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled “36 mg/ml”) or placebo (“0”) e-cigarette, or no e-cigarette use. A fourth session involved smoking one’s own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Results Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Conclusions Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. PMID:26070455

  5. Reinforcement enhancing effects of acute nicotine via electronic cigarettes.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L; Michael, Valerie C

    2015-08-01

    Recent human studies confirm animal research showing that nicotine enhances reinforcement from rewards unrelated to nicotine. These effects of acute nicotine via tobacco smoking may also occur when consumed from non-tobacco products. We assessed acute effects of nicotine via electronic cigarettes ("e-cigarettes") on responding reinforced by music, video, or monetary rewards, or for no reward (control). In a fully within-subjects design, adult dependent smokers (N=28) participated in three similar experimental sessions, each following overnight abstinence (verified by CO≤10ppm). Varying only in e-cigarette condition, sessions involved controlled exposure to a nicotine (labeled "36mg/ml") or placebo ("0″) e-cigarette, or no e-cigarette use. A fourth session involved smoking one's own tobacco cigarette brand after no abstinence, specifically to compare responses under typical nicotine satiation with these acute e-cigarette conditions after abstinence. Reinforced responding for video reward, but not the other rewards, was greater due to use of the nicotine versus placebo e-cigarette (i.e., nicotine per se), while no differences were found between the placebo e-cigarette and no e-cigarette conditions (i.e., e-cigarette use per se). For nicotine via tobacco smoking, responding compared to the nicotine e-cigarette was similar for video but greater for music, while both video and music reward were enhanced relative to the non-nicotine conditions (placebo and no e-cigarette). Acute nicotine from a non-tobacco product has some reinforcement enhancing effects in humans, in a manner partly consistent with nicotine via tobacco smoking and perhaps contributing to the rising popularity of nicotine e-cigarette use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    International Nuclear Information System (INIS)

    Patel, Shreya; Peretz, Jackye; Pan, Yuan-Xiang; Helferich, William G.; Flaws, Jodi A.

    2016-01-01

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  7. Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shreya, E-mail: Shreya.patel214@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Peretz, Jackye, E-mail: Jackye.peretz@gmail.com [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States); Pan, Yuan-Xiang, E-mail: yxpan@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Helferich, William G., E-mail: helferic@illinois.edu [Department of Food Science and Human Nutrition, University of Illinois, 905 S. Goodwin, Urbana, IL 61801 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802 (United States)

    2016-02-15

    Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36 μM) for 18–96 h. Every 24 h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36 μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36 μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96 h, and the expression of cell cycle regulators at 18 h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles. - Highlights: • Genistein exposure inhibits antral follicle growth. • Genistein exposure alters expression of cell cycle regulators. • Genistein exposure alters sex steroid hormones. • Genistein exposure alters expression of steroidogenic enzymes.

  8. In vivo effect of chronic nicotine exposure on outcome of Plasmodium berghei ANKA malaria

    Directory of Open Access Journals (Sweden)

    Tsige Ketema

    2017-04-01

    Full Text Available Objective: To assess effect of nicotine, major addictive component of tobacco smoke, on outcomes of the deadly malaria parasite using mice as animal model. Methods: Male Swiss albino mice were treated with 100 and 200 µg/mL of nicotine in drinking water daily for 6 weeks followed by Plasmodium berghei ANKA (PbA infection. On the seventh day of post infection (p.i., physical, clinical, histopathological, biochemical and hematological parameters were assessed. Data were analyzed using SPSS software. Results: Nicotine was significantly (P < 0.05 positively associated with lower levels of hemoglobin (Hb, hematocrit (HCT, red blood cells (RBCs, C-reactive protein (CRP and uric acid (UA, higher risk to incidence of pulmonary edema, elevated level of liver and kidney biomarkers. Also significant increment (P < 0.01 of monocyte-lymphocyte count ratio (MLCR was observed. Risk to high temperature, lower platelet count, high parastemia and cerebral malaria was lesser in mice treated with nicotine (100 and 200 µg/mL followed by PbA infection than the positive control. Lack of neurological symptoms might be accounted to the anti-inflammatory property of nicotine that could inhibit production of pro-inflammatory mediators responsible for occurrence of cerebral malaria. Conclusions: This study showed that despite down regulation of most cerebral malaria symptoms nicotine was strongly associated with increased risk to most clinical symptoms of malaria. Thus, like in respiratory infections, nicotine use might enhance susceptibility to malaria.

  9. Effects of nicotine on homeostatic and hedonic components of food intake.

    Science.gov (United States)

    Stojakovic, Andrea; Espinosa, Enma P; Farhad, Osman T; Lutfy, Kabirullah

    2017-10-01

    Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis. © 2017 Society for Endocrinology.

  10. Reduced-Nicotine Cigarettes in Young Smokers: Impact of Nicotine Metabolism on Nicotine Dose Effects.

    Science.gov (United States)

    Faulkner, Paul; Ghahremani, Dara G; Tyndale, Rachel F; Cox, Chelsea M; Kazanjian, Ari S; Paterson, Neil; Lotfipour, Shahrdad; Hellemann, Gerhard S; Petersen, Nicole; Vigil, Celia; London, Edythe D

    2017-07-01

    The use of cigarettes delivering different nicotine doses allows evaluation of the contribution of nicotine to the smoking experience. We compared responses of 46 young adult smokers to research cigarettes, delivering 0.027, 0.110, 0.231, or 0.763 mg nicotine, and conventional cigarettes. On five separate days, craving, withdrawal, affect, and sustained attention were measured after overnight abstinence and again after smoking. Participants also rated each cigarette, and the nicotine metabolite ratio (NMR) was used to identify participants as normal or slow metabolizers. All cigarettes equally alleviated craving, withdrawal, and negative affect in the whole sample, but normal metabolizers reported greater reductions of craving and withdrawal than slow metabolizers, with dose-dependent effects. Only conventional cigarettes and, to a lesser degree, 0.763-mg nicotine research cigarettes increased sustained attention. Finally, there were no differences between ratings of lower-dose cigarettes, but the 0.763-mg cigarettes and (even more so) conventional cigarettes were rated more favorably than lower-dose cigarettes. The findings indicate that smoking-induced relief of craving and withdrawal reflects primarily non-nicotine effects in slow metabolizers, but depends on nicotine dose in normal metabolizers. By contrast, relief of withdrawal-related attentional deficits and cigarette ratings depend on nicotine dose regardless of metabolizer status. These findings have bearing on the use of reduced-nicotine cigarettes to facilitate smoking cessation and on policy regarding regulation of nicotine content in cigarettes. They suggest that normal and slow nicotine metabolizers would respond differently to nicotine reduction in cigarettes, but that irrespective of metabolizer status, reductions to <0.763 mg/cigarette may contribute to temporary attentional deficits.

  11. Reduced nicotine product standards for combustible tobacco: building an empirical basis for effective regulation.

    Science.gov (United States)

    Donny, Eric C; Hatsukami, Dorothy K; Benowitz, Neal L; Sved, Alan F; Tidey, Jennifer W; Cassidy, Rachel N

    2014-11-01

    Both the Tobacco Control Act in the U.S. and Article 9 of the Framework Convention on Tobacco Control enable governments to directly address the addictiveness of combustible tobacco by reducing nicotine through product standards. Although nicotine may have some harmful effects, the detrimental health effects of smoked tobacco are primarily due to non-nicotine constituents. Hence, the health effects of nicotine reduction would likely be determined by changes in behavior that result in changes in smoke exposure. Herein, we review the current evidence on nicotine reduction and discuss some of the challenges in establishing the empirical basis for regulatory decisions. To date, research suggests that very low nicotine content cigarettes produce a desirable set of outcomes, including reduced exposure to nicotine, reduced smoking, and reduced dependence, without significant safety concerns. However, much is still unknown, including the effects of gradual versus abrupt changes in nicotine content, effects in vulnerable populations, and impact on youth. A coordinated effort must be made to provide the best possible scientific basis for regulatory decisions. The outcome of this effort may provide the foundation for a novel approach to tobacco control that dramatically reduces the devastating health consequences of smoked tobacco. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nicotine poisoning

    Science.gov (United States)

    Nicotine is found in: Chewing tobacco Cigarettes E-cigarettes Liquid nicotine Nicotine gum (Nicorette) Nicotine patches (Habitrol, Nicoderm) Pipe tobacco Some insecticides Tobacco leaves Note: This list may not be all-inclusive.

  13. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability

    Science.gov (United States)

    Fowler, Christie D.; Kenny, Paul J.

    2013-01-01

    Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. PMID:24055497

  14. Impact of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes.

    Science.gov (United States)

    St Helen, Gideon; Dempsey, Delia A; Havel, Christopher M; Jacob, Peyton; Benowitz, Neal L

    2017-09-01

    To describe the effect of e-liquid flavors on nicotine intake and pharmacology of e-cigarettes. 11 males and 3 females participated in a 3-day inpatient crossover study with strawberry, tobacco, and their usual flavor e-liquid. Nicotine levels were nominally 18mg/mL in the strawberry (pH 8.29) and tobacco (pH 9.10) e-liquids and ranged between 3-18mg/mL in the usual brands (mean pH 6.80). Each day consisted of a 15-puff session followed by 4h of abstinence, then 90min of ad libitum use. Subjects used a KangerTech mini ProTank 3. After 15 puffs, the amount of nicotine inhaled and systemically retained were not significantly different between the strawberry and tobacco e-liquids but plasma AUC (0 → 180) was significantly higher with the strawberry e-liquid. While not significantly different, C max was 22% higher and various early time point AUCs to measure rate of rise of nicotine in blood ranged between 17 and 23% higher with the strawberry e-liquid compared to the tobacco e-liquid. During ad libitum use, systemic exposure to nicotine (AUC (0 → 90) ) was the same for the tobacco and usual brand e-liquids but were both significantly lower than after using the strawberry e-liquid. The usual flavors were more liked and satisfying than the strawberry and tobacco e-liquids. Flavors influence nicotine exposure through flavor liking, may affect rate of nicotine absorption possibly through pH effects, and contribute to heart rate acceleration and subjective effects of e-cigarettes. E-cigarette users titrate their nicotine exposure but the extent of titration may vary across flavors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  16. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  17. Nicotine Vapor Method to Induce Nicotine Dependence in Rodents.

    Science.gov (United States)

    Kallupi, Marsida; George, Olivier

    2017-07-05

    Nicotine, the main addictive component of tobacco, induces potentiation of brain stimulation reward, increases locomotor activity, and induces conditioned place preference. Nicotine cessation produces a withdrawal syndrome that can be relieved by nicotine replacement therapy. In the last decade, the market for electronic cigarettes has flourished, especially among adolescents. The nicotine vaporizer or electronic nicotine delivery system is a battery-operated device that allows the user to simulate the experience of tobacco smoking without inhaling smoke. The device is designed to be an alternative to conventional cigarettes that emits vaporized nicotine inhaled by the user. This report describes a procedure to vaporize nicotine in the air to produce blood nicotine levels in rodents that are clinically relevant to those that are observed in humans and produce dependence. We also describe how to construct the apparatus to deliver nicotine vapor in a stable, reliable, and consistent manner, as well as how to analyze air for nicotine content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  18. Vitamin C supplementation ameliorates the adverse effects of nicotine on placental hemodynamics and histology in nonhuman primates.

    Science.gov (United States)

    Lo, Jamie O; Schabel, Matthias C; Roberts, Victoria H J; Morgan, Terry K; Rasanen, Juha P; Kroenke, Christopher D; Shoemaker, Sophie R; Spindel, Eliot R; Frias, Antonio E

    2015-03-01

    We previously demonstrated that prenatal nicotine exposure decreases neonatal pulmonary function in nonhuman primates, and maternal vitamin C supplementation attenuates these deleterious effects. However, the effect of nicotine on placental perfusion and development is not fully understood. This study utilizes noninvasive imaging techniques and histological analysis in a nonhuman primate model to test the hypothesis that prenatal nicotine exposure adversely effects placental hemodynamics and development but is ameliorated by vitamin C. Time-mated macaques (n = 27) were divided into 4 treatment groups: control (n = 5), nicotine only (n = 4), vitamin C only (n = 9), and nicotine plus vitamin C (n = 9). Nicotine animals received 2 mg/kg per day of nicotine bitartrate (approximately 0.7 mg/kg per day free nicotine levels in pregnant human smokers) from days 26 to 160 (term, 168 days). Vitamin C groups received ascorbic acid at 50, 100, or 250 mg/kg per day with or without nicotine. All underwent placental dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) at 135-140 days and Doppler ultrasound at 155 days to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. Animals were delivered by cesarean delivery at 160 days. A novel DCE-MRI protocol was utilized to calculate placental perfusion from maternal spiral arteries. Placental tissue was processed for histopathology. Placental volume blood flow was significantly reduced in nicotine-only animals compared with controls and nicotine plus vitamin C groups (P = .03). Maternal placental blood flow was not different between experimental groups by DCE-MRI, ranging from 0.75 to 1.94 mL/mL per minute (P = .93). Placental histology showed increased numbers of villous cytotrophoblast cell islands (P vitamin C. Prenatal nicotine exposure significantly decreased fetal blood supply via reduced placental volume blood flow, which

  19. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol

    Science.gov (United States)

    Versaggi, Cassandra L.; King, Christopher P.; Meyer, Paul J.

    2016-01-01

    Rationale Some individuals are particularly responsive to reward-associated stimuli (“cues”), including the effects of these cues on craving and relapse to drug-seeking behavior. In the cases of nicotine and alcohol, cues may acquire these abilities via the incentive-enhancing properties of the drug. Objectives To determine the interaction between cue-responsivity and nicotine reinforcement, we studied the patterns of nicotine self-administration in rats categorized based on their tendency to approach a food predictive cue (“sign-trackers”) or a reward-delivery location (“goal-trackers”). In a second experiment, we determined whether nicotine and ethanol altered the incentive value of a food cue. Methods Rats were classified as sign- or goal-trackers during a Pavlovian conditioned approach paradigm. Rats then self-administered intravenous nicotine (0.03 mg/kg infusions) followed by extinction and cue induced reinstatement tests. We also tested the effects of nicotine (0.4 mg/kg base s.c.) or ethanol (0.7 g/kg i.p.) on the approach to, and reinforcing efficacy of, a food cue. Results Sign-trackers showed greater reinstatement in response to a nicotine cue. Further, nicotine enhanced sign-tracking but not goal-tracking to a food cue, and also enhanced responding for the food cue during the conditioned reinforcement test. Conversely, ethanol reduced sign-tracking and increased goal-tracking, but had no effect on conditioned reinforcement. Conclusions Our studies demonstrate that the tendency to attribute incentive value to a food cue predicts enhanced cue-induced reinstatement. Additionally, the incentive value of food cues is differentially modulated by nicotine and ethanol, which may be related to the reinforcing effects of these drugs. PMID:27282365

  20. The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol.

    Science.gov (United States)

    Versaggi, Cassandra L; King, Christopher P; Meyer, Paul J

    2016-08-01

    Some individuals are particularly responsive to reward-associated stimuli ("cues"), including the effects of these cues on craving and relapse to drug-seeking behavior. In the cases of nicotine and alcohol, cues may acquire these abilities via the incentive-enhancing properties of the drug. To determine the interaction between cue-responsivity and nicotine reinforcement, we studied the patterns of nicotine self-administration in rats categorized based on their tendency to approach a food-predictive cue ("sign-trackers") or a reward-delivery location ("goal-trackers"). In a second experiment, we determined whether nicotine and ethanol altered the incentive value of a food cue. Rats were classified as sign- or goal-trackers during a Pavlovian conditioned approach paradigm. Rats then self-administered intravenous nicotine (0.03 mg/kg infusions) followed by extinction and cue-induced reinstatement tests. We also tested the effects of nicotine (0.4 mg/kg base s.c.) or ethanol (0.7 g/kg i.p.) on the approach to, and reinforcing efficacy of, a food cue. Sign-trackers showed greater reinstatement in response to a nicotine cue. Further, nicotine enhanced sign-tracking but not goal-tracking to a food cue and also enhanced responding for the food cue during the conditioned reinforcement test. Conversely, ethanol reduced sign-tracking and increased goal-tracking, but had no effect on conditioned reinforcement. Our studies demonstrate that the tendency to attribute incentive value to a food cue predicts enhanced cue-induced reinstatement. Additionally, the incentive value of food cues is differentially modulated by nicotine and ethanol, which may be related to the reinforcing effects of these drugs.

  1. Use of Nicotine in Electronic Nicotine and Non-Nicotine Delivery Systems by US Adults, 2015.

    Science.gov (United States)

    Weaver, Scott R; Kemp, Catherine B; Heath, J Wesley; Pechacek, Terry F; Eriksen, Michael P

    Nicotine in electronic nicotine and non-nicotine delivery systems (ENDS/ENNDS) may present a risk of harm to those with cardiovascular disease and the fetuses of pregnant women. We assessed the extent to which adult users of ENDS/ENNDS used these products with nicotine. We obtained data for this study from a national probability survey of 6051 US adults that was conducted in August and September 2015. Of 399 adult ENDS/ENNDS users who were current smokers, 337 (80.7%) used ENDS/ENNDS containing nicotine, whereas only 29 of 71 (36.9%) ENDS/ENNDS users who were never smokers used ENDS/ENNDS containing nicotine. Assessments of the population health impact of ENDS/ENNDS use among never smokers should take into account the extent to which use involves nicotine.

  2. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex

    Science.gov (United States)

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2′-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  3. Electronic Nicotine Delivery Systems (ENDS): What Nurses Need to Know.

    Science.gov (United States)

    Essenmacher, Carol; Naegle, Madeline; Baird, Carolyn; Vest, Bridgette; Spielmann, Rene; Smith-East, Marie; Powers, Leigh

    Efforts to decrease adverse effects of tobacco use are affected by emergence of new nicotine delivery products. Advertising, product promotion, and social media promote use of these products, yet a lack of evidence regarding safety leaves nurses unprepared to counsel patients. To critically evaluate current research, reviews of literature, expert opinion, and stakeholder policy proposals on use and safety of electronic nicotine delivery systems (ENDS). A targeted examination of literature generated by key stakeholders and subject matter experts was conducted using key words, modified by risk factors, and limited to the past 8 years. Current knowledge gaps in research literature and practice implications of the literature are discussed. The safety of ENDS is questionable and unclear. There are clear health risks of nicotine exposure to developing brains. Potential health risks of ENDS secondhand emissions exposure exist. Using ENDS to facilitate total tobacco cessation is not proven.

  4. Effects of Nicotine Metabolites on Nicotine Withdrawal Behaviors in Mice.

    Science.gov (United States)

    Elhassan, Sagi; Bagdas, Deniz; Damaj, M Imad

    2017-06-01

    Rodent studies suggest that nicotine metabolites and minor tobacco alkaloids such as nornicotine and cotinine may promote cigarette smoking by enhancing nicotine rewarding and reinforcing effects. However, there is little information on the effects of these minor tobacco alkaloids on nicotine withdrawal. The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine and cotinine exhibit nicotine-like behavioral effects in a mouse model of spontaneous nicotine withdrawal. Mice were infused with nicotine or saline for 14 days. Experiments were conducted on day 15, 18-24 hours after minipump removal. Ten minutes prior to testing, nicotine-dependent ICR male mice received an acute injection of nicotine (0.05 and 0.5 mg/kg), nornicotine (2.5 and 25 mg/kg), or cotinine (5 and 50 mg/kg) to determine effects on somatic signs, anxiety-like behaviors, and hyperalgesia spontaneous signs of withdrawal. Nicotine and the minor tobacco alkaloid nornicotine, but not cotinine, produced dose-dependent reversal of nicotine withdrawal signs in the mouse. The minor tobacco alkaloid and nicotine metabolite nornicotine at high doses have nicotinic like effects that may contribute to tobacco consumption and dependence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.

    Science.gov (United States)

    Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M

    2017-03-01

    Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.

  6. Effect of nicotine and tobacco administration method on the mechanical properties of healing bone following closed fracture.

    Science.gov (United States)

    Hastrup, Sidsel Gaarn; Chen, Xinqian; Bechtold, Joan E; Kyle, Richard F; Rahbek, Ole; Keyler, Daniel E; Skoett, Martin; Soeballe, Kjeld

    2010-09-01

    We previously showed different effects of tobacco and nicotine on fracture healing, but due to pump reservoir limits, maximum exposure period was 4 weeks. To allow flexibility in pre- and post-fracture exposure periods, the objective of this study was to compare a new oral administration route for nicotine to the established pump method. Four groups were studied: (1) pump saline, (2) pump saline + oral tobacco, (3) pump saline/nicotine + oral tobacco, and (4) pump saline + oral nicotine/tobacco. Sprague-Dawley rats (n = 84) received a transverse femoral fracture stabilized with an intramedullary pin 1 week after initiating dosing. After 3 weeks, no difference was found in torsional strength or stiffness between oral nicotine/tobacco or pump nicotine + tobacco, while energy absorption with oral nicotine/tobacco was greater than pump nicotine + tobacco (p < 0.05). Compared to saline control, strength for oral nicotine/tobacco was higher than control (p < 0.05), and stiffnesses for pump nicotine + tobacco and oral nicotine/tobacco were higher than control (p < 0.05). No differences in energy were found for either nicotine-tobacco group compared to saline control. Mean serum cotinine (stable nicotine metabolite) was different between pump and oral nicotine at 1 and 4 weeks, but all groups were in the range of 1-2 pack/day smokers. In summary, relevant serum cotinine levels can be reached in rats with oral nicotine, and, in the presence of tobacco, nicotine can influence mechanical aspects of fracture healing, dependent on administration method. Caution should be exercised when comparing results of fracture healing studies using different methods of nicotine administration. (c) 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  8. Nicotine Analysis in Several Non-Tobacco Plant Materials

    Directory of Open Access Journals (Sweden)

    Moldoveanu Serban C.

    2016-04-01

    Full Text Available Present study describes the determination of nicotine in various plant samples with a low content of this compound. Nicotine is found naturally in plants from the Solanaceae family. The plants from Nicotiana genus contain large levels of nicotine. However, only low levels are present in plants from Solanum genus including potato, tomato, eggplant, and from Capsicum genus, which are used as food. Because the levels of nicotine in these materials are in the range of parts per billion, the measurements are difficult and the results are very different from study to study. The present study evaluated the level of nicotine in a number of plants (fruits, roots, leaves, tubers from Solanaceae family (not including Nicotiana genus and from several other vegetables commonly used as food. The analysis consisted of the treatment of plant material with an aqueous solution 5% NaOH at 70°C for 30 min, followed by extraction with TBME containing d3-nicotine as an internal standard. The TBME organic layer was analyzed on a 7890B/7000C GC-MS/MS system with a 30 m × 0.25 mm, 0.25 μm film CAM column. The MS/MS system worked in MRM positive ionization mode monitoring the transition 162 - 84 for nicotine and 165 - 87 for d3-nicotine. Particular attention was given to the preservation of the intact levels of nicotine in the plant material. The plant material was analyzed as is, without drying and with minimal exposure to contaminations. Separately, the moisture of the plant material was measured in order to report the nicotine level on a dry-basis. Levels of nicotine around 180 ng/g dry material were obtained for tomatoes and eggplant (fruit and lower levels were obtained for green pepper and potato. Similar levels to that in the tomato fruit were detected in tomato leaves. Materials from other plant families also showed traces of nicotine. [Beitr. Tabakforsch. Int. 27 (2016 54-59

  9. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  10. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  11. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  12. Racial differences in hair nicotine concentrations among smokers.

    Science.gov (United States)

    Apelberg, Benjamin J; Hepp, Lisa M; Avila-Tang, Erika; Kim, Sungroul; Madsen, Camille; Ma, Jiemin; Samet, Jonathan M; Breysse, Patrick N

    2012-08-01

    In the United States, race/ethnicity is a strong determinant of tobacco use patterns, biomarkers of tobacco smoke components and metabolites, and likelihood of successful cessation. Although Black smokers tend to smoke fewer cigarettes than White smokers, they have higher cotinine levels and disease risk and lower cessation success. We examined racial differences in hair nicotine concentrations among daily tobacco smokers (n = 103) in Baltimore, Maryland. Participants completed a survey, and hair samples were collected and analyzed for nicotine concentration using gas chromatography coupled with mass spectrometry. After adjustment, hair nicotine concentrations among Black smokers were more than 5 times higher than among White smokers (95% CI 3.0, 10.5). Smokers reporting hair treatments other than coloring (bleaching, permanent, or straightening) in the past 12 months had 66% lower (95% CI 32%, 83%) hair nicotine concentrations. Smokers reporting smoking their first cigarette within 30 min of waking had twice the hair nicotine concentrations of those whose time to first cigarette was greater than 30 min after waking (95% CI 1.1, 4.2). For every additional cigarette smoked per day up to 20, mean hair nicotine concentration among all smokers increased by 4% (95% CI -1%, 9%). This study demonstrates that Black smokers have substantially higher hair nicotine levels than White smokers, after controlling for cigarettes smoked per day and other exposure sources. Time to first cigarette, cigarettes smoked per day, and use of hair treatments other than coloring were also associated with hair nicotine concentrations among smokers.

  13. Nicotine dose-concentration relationship and pregnancy outcomes in rat: Biologic plausibility and implications for future research

    International Nuclear Information System (INIS)

    Hussein, Jabeen; Farkas, Svetlana; MacKinnon, Yolanda; Ariano, Robert E.; Sitar, Daniel S.; Hasan, Shabih U.

    2007-01-01

    Cigarette smoke (CS) exposure during pregnancy can lead to profound adverse effects on fetal development. Although CS contains several thousand chemicals, nicotine has been widely used as its surrogate as well as in its own right as a neuroteratogen. The justification for the route and dose of nicotine administration is largely based on inferential data suggesting that nicotine 6 mg/kg/day infused continuously via osmotic mini pumps (OMP) would mimic maternal CS exposure. We provide evidence that 6 mg/kg/day nicotine dose as commonly administered to pregnant rats leads to plasma nicotine concentrations that are 3-10-fold higher than those observed in moderate to heavy smokers and pregnant mothers, respectively. Furthermore, the cumulative daily nicotine dose exceeds by several hundred fold the amount consumed by human heavy smokers. Our study does not support the widely accepted notion that regardless of the nicotine dose, a linear nicotine dose-concentration relationship exists in a steady-state OMP model. We also show that total nicotine clearance increases with advancing pregnancy but no significant change is observed between the 2nd and 3rd trimester. Furthermore, nicotine infusion even at this extremely high dose has little effect on a number of maternal and fetal biologic variables and pregnancy outcome suggesting that CS constituents other than nicotine mediate the fetal growth restriction in infants born to smoking mothers. Our current study has major implications for translational research in developmental toxicology and pharmacotherapy using nicotine replacement treatment as an aid to cessation of cigarette smoking in pregnant mothers

  14. Determination of the Nicotine Metabolites Cotinine and Trans-3′-Hydroxycotinine in Biologic fluids of Smokers and Non-Smokers using Liquid Chromatography - Tandem Mass Spectrometry: Biomarkers for Tobacco Smoke Exposure and for Phenotyping Cytochrome P450 2A6 Activity

    Science.gov (United States)

    Jacob, Peyton; Yu, Lisa; Duan, Minjiang; Ramos, Lita; Yturralde, Olivia; Benowitz, Neal L.

    2011-01-01

    The nicotine metabolite cotinine is widely used to assess the extent of tobacco use in smokers, and secondhand smoke exposure in non-smokers. The ratio of another nicotine metabolite, trans-3′-hydroxycotinine, to cotinine in biofluids is highly correlated with the rate of nicotine metabolism, which is catalyzed mainly by Cytochrome P450 2A6 (CYP2A6). Consequently, this nicotine metabolite ratio is being used to phenotype individuals for CYP2A6 activity and to individualize pharmacotherapies for tobacco addiction. In this paper we describe a highly sensitive liquid chromatography – tandem mass spectrometry method for determination of the nicotine metabolites cotinine and trans-3′-hydroxycotinine in human plasma, urine, and saliva. Lower limits of quantitation range from 0.02 to 0.1 ng/ mL. The extraction procedure is straightforward and suitable for large-scale studies. The method has been applied to several thousand biofluid samples for pharmacogenetic studies and for studies of exposure to low levels of secondhand smoke. Concentrations of both metabolites in urine of non-smokers with different levels of secondhand smoke exposure are presented. PMID:21208832

  15. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids--anatabine and anabasine--in smokers' urine.

    Directory of Open Access Journals (Sweden)

    James E McGuffey

    Full Text Available Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling--i.e., metabolite ratios. In addition, the minor tobacco alkaloids--anabasine and anatabine--can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1'-N-oxide, anatabine, and anabasine are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76-99%, specificity, accuracy (0-10% bias and reproducibility (2-9% C.V. make this method ideal for large high through-put studies.

  16. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-01-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. - Highlights: • BPA exposure induces various adult behavioral anomalies. • BPA exposure decreases social interaction and environmental adaptation of zebrafish. • BPA exposure increases ecological risk to wildlife. - Chronic bisphenol A exposure alters zebrafish behaviors.

  17. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  18. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  19. Cigarette nicotine yields and nicotine intake among Japanese male workers

    OpenAIRE

    Ueda, K; Kawachi, I; Nakamura, M; Nogami, H; Shirokawa, N; Masui, S; Okayama, A; Oshima, A

    2002-01-01

    Objectives: To analyse brand nicotine yield including "ultra low" brands (that is, cigarettes yielding ≤ 0.1 mg of nicotine by Federal Trade Commission (FTC) methods) in relation to nicotine intake (urinary nicotine, cotinine and trans-3'-hydroxycotinine) among 246 Japanese male smokers.

  20. Effects of a smoke-free law on hair nicotine and respiratory symptoms of restaurant and bar workers.

    Science.gov (United States)

    Hahn, Ellen J; Rayens, Mary Kay; York, Nancy; Okoli, Chizimuzo T C; Zhang, Mei; Dignan, Mark; Al-Delaimy, Wael K

    2006-09-01

    Bar and restaurant workers' exposure to secondhand smoke (SHS) was compared before and 3 and 6 months after implementation of a smoke-free ordinance. Hair nicotine, self-reported exposure to SHS, and respiratory symptoms were assessed on 105 smoking and nonsmoking workers from randomly selected establishments in Lexington, Kentucky. Thirty-eight percent were current smokers with more than half smoking 10 or fewer cigarettes per day. Workers provided a hair sample at baseline and at the 3-month interview. There was a significant decline in hair nicotine 3 months postlaw when controlling for cigarettes smoked per day. Bar workers showed a significantly larger decline in hair nicotine compared with restaurant workers. The only significant decline in SHS exposure was in the workplace and other public places. Regardless of smoking status, respiratory symptoms declined significantly postlaw. Hospitality workers demonstrated significant declines in hair nicotine and respiratory symptoms after the law. Comprehensive smoke-free laws can provide the greatest protection to bar workers who are the most vulnerable to SHS exposure at work.

  1. Nicotine Lozenges

    Science.gov (United States)

    Nicotine lozenges are used to help people stop smoking. Nicotine lozenges are in a class of medications called smoking cessation aids. They work by providing nicotine to your body to decrease the withdrawal symptoms ...

  2. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    Science.gov (United States)

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which could lead to dermal exposure to nicotine. Short-term e-cigarette use produced elevated PM2.5 and ultrafine particles, which could lead to secondhand inhalation of these particles and any chemicals associated with them by bystanders. We measured significant differences in PM2.5 and ultrafine particles between disposable e-cigarettes and tank-style e-cigarettes, suggesting a difference in the exposure profiles of e-cigarette products. Published by Oxford University Press on behalf of Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. The effect of nicotine on aortic endothelial cell turnover

    International Nuclear Information System (INIS)

    Zimmerman, Matthew; McGeachie, John

    1985-01-01

    Endothelial injury and increased mitotic activity are early features in the pathogenesis of intimal thickening in arteries. This study examines the effect of systemic nicotine on mitotic activity in endothelial cells. Nine adult mice were given nicotine in their drinking water for 5 weeks. The dose (5 mg/kg body wt/day) was equivalent to a human smoking 50-100 cigarettes/day. A group of 8 similar mice, not exposed to nicotine, was the control. At the end of the exposure period all mice were injected with ( 3 H)thymidine (1uCi/g body wt) and were killed 24 h later. After perfusion fixation, en-face preparations of aortic endothelium were processed for autoradiography. In nicotine-affected endothelium 0.46.+-0.11% (SEM) of cells were labeled, which was significantly higher (P<0.01) than in controls (0.14+-0.06). However, there was no difference in cell density between the groups. On this evidence it was concluded that the rate of cell loss, or cell turnover, was greater in nicotine-affected endothelium. Because other studies have shown that increased mitotic acitivity and cell loss are established features of endothelial injury, the present findings provide evidence in support of the hypothesis that nicotine contributes to the pathogenesis of arterial disease in smokers. (author)

  4. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Directory of Open Access Journals (Sweden)

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  5. E-Cigarette Liquid Nicotine Ingestion in a Child: Case Report and Discussion.

    Science.gov (United States)

    Gill, Natasha; Sangha, Gurinder; Poonai, Naveen; Lim, Rodrick

    2015-11-01

    Nicotine poisoning is well described in the pediatric population, and even small oral doses may result in toxic effects. The source of nicotine is usually tobacco products and nicotine replacement products such as gum and patches. With the more frequent use of novel products such as e-cigarettes, concern has arisen regarding liquid nicotine. As there are no regulations regarding childproof bottling and packaging, there may be increased potential for unintentional ingestion of these colorfully and appealingly packaged products by children. We present and discuss a case of this nature, as we feel emergency physicians should be aware of this new mode of poisoning, and public health efforts should be made to minimize such exposures.

  6. Emergence of dormant conditioned incentive approach by conditioned withdrawal in nicotine addiction.

    Science.gov (United States)

    Scott, Daniel; Hiroi, Noboru

    2010-10-15

    Nicotine is one of the determinants for the development of persistent smoking, and this maladaptive behavior is characterized by many symptoms, including withdrawal and nicotine seeking. The process by which withdrawal affects nicotine seeking is poorly understood. The impact of a withdrawal-associated cue on nicotine (.2 mg/kg)-conditioned place preference was assessed in male C57BL/6J mice (n = 8-17/group). To establish a cue selectively associated with withdrawal distinct from those associated with nicotine, a tone was paired with withdrawal in their home cages; mice were chronically exposed to nicotine (200 μg/mL for 15 days) from drinking water in their home cages and received the nicotinic acetylcholine receptor antagonist mecamylamine (2.5 mg/kg) to precipitate withdrawal in the presence of a tone. The effect of the withdrawal-associated tone on nicotine-conditioned place preference was then evaluated in the place-conditioning apparatus after a delay, when nicotine-conditioned place preference spontaneously disappeared. A cue associated with precipitated withdrawal reactivated the dormant effect of nicotine-associated cues on conditioned place preference. This effect occurred during continuous exposure to nicotine but not during abstinence. A conditioned withdrawal cue could directly amplify the incentive properties of cues associated with nicotine. This observation extends the contemporary incentive account of the role of withdrawal in addiction to cue-cue interaction. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  8. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils.

    Science.gov (United States)

    Abbasi, Ardeshir; Kukia, Nasim Rahmani; Froushani, Seyyed Meysam Abtahi; Hashemi, Seyed Mahmoud

    2018-04-15

    Mesenchymal stem cells (MSCs) express some of the nicotinic receptor subunits and adenosine receptors. The communication between tissue MSCs with neutrophils has been shown in previous studies. The aim of the present study is to determine the role of nicotine or caffeine on MSCs and its effects on neutrophils. After the isolation, MSCs were pulsed with LPS (10 ng/ml) for 1 h. Then, MSCs were incubated with different concentrations of caffeine (0.1, 0.5 and 1 mM) and or with different concentrations of nicotine (0.1, 0.5, and 1 μM) for 48 h. Afterwards, the medium was aspirated and the cells were used for co-culture experiment with neutrophil. The obtained data showed that LPS primed MSCs could decrease neutrophil vitality, whereas the treatment of MSCs with nicotine and/or especially a treatment with caffeine reverse this effect. Obtained data showed that when the LPS-primed MSCs were treated with nicotine or caffeine, the vitality of co-cultured neutrophils was significantly increased. The rate of the respiratory burst of neutrophils after co-culture by LPS-primed MSCs was decreased compared to the respiratory burst of neutrophil alone. Nicotine and/or caffeine treatment could reverse this reduction. Generally, these findings provide a new insight into understanding the anti-inflammatory and immunomodulatory effects of nicotine and caffeine. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Yin and Yang of nicotine: harmful during development, beneficial in adult patient populations

    Directory of Open Access Journals (Sweden)

    Danielle S Counotte

    2012-10-01

    Full Text Available Nicotine has remarkably diverse effects on the brain. Being the main active compound in tobacco, nicotine can aversively affect brain development. However, it has the ability to act positively by restoring attentional capabilities in smokers. Here, we focus on nicotine exposure during the prenatal and adolescent developmental periods and specifically, we will review the long-lasting effects of nicotine on attention, both in humans and animal models. We discuss the reciprocal relation of the beneficial effects of nicotine, improving attention in smokers and in patients with neuropsychiatric diseases, such as schizophrenia and attention deficit/hyperactivity disorder, versus nicotine-related attention deficits already caused during adolescence. Given the need for research on the mechanisms of nicotine’s cognitive actions, we discuss some of the recent work performed in animals.

  10. Evaluation of nicotine in tobacco-free-nicotine commercial products.

    Science.gov (United States)

    Hellinghausen, Garrett; Lee, Jauh T; Weatherly, Choyce A; Lopez, Diego A; Armstrong, Daniel W

    2017-06-01

    Recently, a variety of new tobacco-free-nicotine, TFN, products have been commercialized as e-liquids. Tobacco-derived nicotine contains predominantly (S)-(-)-nicotine, whereas TFN products may not. The TFN products are said to be cleaner, purer substances, devoid of toxic components that come from the tobacco extraction process. A variety of commercial tobacco and TFN products were analyzed to identify the presence and composition of each nicotine enantiomer. A rapid and effective enantiomeric separation of nicotine has been developed using a modified macrocyclic glycopeptide bonded to superficially porous particles. The enantiomeric assay can be completed in nicotine, which is present in much greater quantities in commercial TFN products compared to commercial tobacco-derived products. Such studies are required by the FDA for new enantiomeric pharmacological products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Skin contamination as pathway for nicotine intoxication in vapers.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Ghione, Giordana; Passini, Valter; Adami, Gianpiero; Larese Filon, Francesca; Crosera, Matteo

    2017-06-01

    Growing warnings on health effects related to electronic cigarettes have met inconclusive findings at present. This study analyzed the in vitro percutaneous absorption of nicotine resulting by skin contamination with two e-liquids (refill 1 and 2) containing nicotine at 1.8%. Donor chambers of 6 Franz cells for each refill liquid were filled with 1mL of nicotine e-liquid for 24h; at selected intervals, 1.5mL of the receptor solutions were collected for nicotine concentration analysis by mean gas chromatography-mass spectrometry (LOD: 0.01μg/mL). The experiment was repeated removing the nicotine donor solution after 10min from the application and rinsing the skin surface three times with 3.0mL of milliQ water. A total of 12 cells with 24h exposure and 12 cells washed were studied. The mean concentration of nicotine in the receiving phase at the end of the experiment was 54.9±29.5 and 30.2±18.4μg/cm 2 for refill 1 and 2 respectively and significantly lower in washed cells (4.7±2.4 and 3.5±1.3μg/cm 2 ). The skin absorption of nicotine can lead to minor health illness in vapers, while caution must be paid to dermal contamination by e liquids in children. The skin cleaning significantly reduced the transdermal absorption kinetic and intradermal deposition of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of hyperbaric oxygen on crystalline lens and retina in nicotine-exposed rats.

    Science.gov (United States)

    Ari, Seyhmus; Nergiz, Yusuf; Cingü, Abdullah Kürşat; Atay, Ahmet Engin; Sahin, Alparslan; Cinar, Yasin; Caca, Ihsan

    2013-03-01

    To determine histopathological changes on crystalline lens and retina of rats after subcutaneous injection of nicotine and to examine the effects of hyperbaric oxygen (HBO) on these changes related to nicotine exposure. Twenty-eight female Sprague-Dawley rats were enrolled in the study and the rats were divided into four equal sized groups randomly (Group N: the rats exposed only to nicotine, group HB: the rats received only HBO, group N+HB: the rats that underwent to nicotine injection and subsequently received HBO, group C: the control group that neither exposed to nicotine nor received HBO). The rats were sacrificed by decapitation method and all were enucleated immediately after scarification. Tissue samples from crystalline lens, lens capsule, and the retina from the right eyes of the rats were examined by light microscopy. While the histological appearances of the retina and the lens was similar in group HB, group N+HB, and the control group; group N showed some pathological changes like decrement in the retinal ganglion cell density, atrophy of the retinal nerve fiber layer, congestion of the vessels in the optic nerve head, thinning of the internal plexiform layer, thinning of the lens capsule, and transformation of the anterior subcapsular epithelium into squamous epithelia. Subcutaneous injection of nicotine was found to be related with some pathological changes in the retina and lens of the Sprague-Dawley rats. However HBO caused no significant negative effect. Furthermore, the histopathological changes related to nicotine exposure in the lens and retina of the rats recovered by the application of HBO.

  13. Altered Amygdala Function in Nicotine Addiction: Insights from Human Neuroimaging Studies

    Science.gov (United States)

    Mihov, Yoan; Hurlemann, Rene

    2012-01-01

    More than 5 million deaths a year are attributable to tobacco smoking, making it the largest single cause of preventable death worldwide. The primary addictive component in tobacco is nicotine. Its addictive power is exemplified by the fact that by far most attempts to quit smoking fail. It is therefore mandatory to understand the biological…

  14. Effect of urinary pH and nicotine excretion rate on plasma nicotine during cigarette smoking and chewing nicotine gum

    Science.gov (United States)

    Feyerabend, C.; Russell, M. A. H.

    1978-01-01

    1 Plasma nicotine levels produced by chewing nicotine gum were compared with those obtained by cigarette smoking under conditions of controlled urinary pH. 2 Although absorption was slower, plasma levels comparable to cigarette smoking were built up on 4 mg (but not 2 mg) nicotine gum. 3 Urinary excretion of nicotine was influenced markedly by pH and the rate of urine flow. 4 Plasma nicotine was higher under alkaline compared to acidic conditions (P < 0.001) but the rate of urinary nicotine excretion appeared to have little effect on the plasma level.

  15. Eliciting nicotine craving with virtual smoking cues.

    Science.gov (United States)

    Gamito, Pedro; Oliveira, Jorge; Baptista, André; Morais, Diogo; Lopes, Paulo; Rosa, Pedro; Santos, Nuno; Brito, Rodrigo

    2014-08-01

    Craving is a strong desire to consume that emerges in every case of substance addiction. Previous studies have shown that eliciting craving with an exposure cues protocol can be a useful option for the treatment of nicotine dependence. Thus, the main goal of this study was to develop a virtual platform in order to induce craving in smokers. Fifty-five undergraduate students were randomly assigned to two different virtual environments: high arousal contextual cues and low arousal contextual cues scenarios (17 smokers with low nicotine dependency were excluded). An eye-tracker system was used to evaluate attention toward these cues. Eye fixation on smoking-related cues differed between smokers and nonsmokers, indicating that smokers focused more often on smoking-related cues than nonsmokers. Self-reports of craving are in agreement with these results and suggest a significant increase in craving after exposure to smoking cues. In sum, these data support the use of virtual environments for eliciting craving.

  16. Meconium Nicotine and Metabolites by Liquid Chromatography–Tandem Mass Spectrometry: Differentiation of Passive and Nonexposure and Correlation with Neonatal Outcome Measures

    Science.gov (United States)

    Gray, Teresa R.; Magri, Raquel; Shakleya, Diaa M.; Huestis, Marilyn A.

    2011-01-01

    BACKGROUND Meconium analysis is a diagnostically sensitive and objective alternative to maternal self-report for detecting prenatal tobacco exposure. Nicotine and metabolite disposition in meconium is poorly characterized, and correlation of analytes’ concentrations with neonatal outcomes is unexplored. Our objectives were to quantify nicotine, cotinine, trans-3′-hydroxycotinine (OH-cotinine), nornicotine, norcotinine, and glucuronide concentrations in meconium, identify the best biomarkers of in utero tobacco exposure, compare meconium concentrations of tobacco-exposed and nonexposed neonates, and investigate concentration–outcome relationships. METHODS We quantified concentrations of nicotine and 4 metabolites with and without hydrolysis simultaneously in meconium from tobacco-exposed and nonexposed neonates by liquid chromatography–tandem mass spectrometry. We compared meconium concentrations to birth weight, length, head circumference, gestational age, and 1- and 5-min Apgar scores. RESULTS Nicotine, cotinine, and OH-cotinine were the most prevalent and abundant meconium tobacco biomarkers and were found in higher concentrations in tobacco-exposed neonates. Whereas cotinine and OH-cotinine are glucuronide bound, performing the lengthy and costly enzymatic hydrolysis identified only 1 additional positive specimen. Unconjugated nicotine, cotinine, or OH-cotinine meconium concentration >10 ng/g most accurately discriminated active from passive and nonexposed neonates. There was no significant correlation between quantitative nicotine and metabolite meconium results and neonatal outcomes, although presence of a nicotine biomarker predicted decreased head circumference. CONCLUSIONS Unconjugated nicotine, cotinine, and OH-cotinine should be analyzed in meconium to detect in utero tobacco exposure, as approximately 25% of positive specimens did not contain cotinine. Immunoassay testing monitoring cotinine only would underestimate the prevalence of prenatal

  17. Plasma dimethylglycine, nicotine exposure and risk of low bone mineral density and hip fracture: the Hordaland Health Study.

    Science.gov (United States)

    Øyen, J; Svingen, G F T; Gjesdal, C G; Tell, G S; Ueland, P M; Lysne, V; Apalset, E M; Meyer, K; Vollset, S E; Nygård, O K

    2015-05-01

    In the large community-based Hordaland Health Study, low plasma dimethylglycine was associated with low bone mineral density in both middle-aged and elderly subjects and to an increased risk of subsequent hip fracture among the elderly. These associations seemed to be particularly strong among subjects exposed to nicotine. Dimethylglycine (DMG) is a product of the choline oxidation pathway and formed from betaine during the folate-independent remethylation of homocysteine (Hcy) to methionine. Elevated plasma DMG levels are associated with atherosclerotic cardiovascular disease and inflammation, which in turn are related to osteoporosis. High plasma total Hcy and low plasma choline are associated with low bone mineral density (BMD) and hip fractures, but the role of plasma DMG in bone health is unknown. We studied the associations of plasma DMG with BMD among 5315 participants (46-49 and 71-74 years old) and with hip fracture among 3310 participants (71-74 years old) enrolled in the Hordaland Health Study. In age and sex-adjusted logistic regression models, subjects in the lowest versus highest DMG tertile were more likely to have low BMD (odds ratio [OR] 1.68, 95% confidence interval [CI] 1.43-1.99). The association was stronger in participants exposed compared to those unexposed to nicotine (OR 2.31, 95% CI 1.73-3.07 and OR 1.43, 95% CI 1.16-1.75, respectively, p interaction = 0.008). In the older cohort, Cox regression analyses adjusted for sex showed that low plasma DMG was associated with an increased risk of hip fracture (hazard ratio [HR] 1.70, 95% CI 1.28-2.26). A trend toward an even higher risk was found among women exposed to nicotine (HR 3.41, 95% CI 1.40-8.28). Low plasma DMG was associated with low BMD and increased risk of hip fractures. A potential effect modification by nicotine exposure merits particular attention.

  18. Nicotine response and nicotinic receptors in long-sleep and short-sleep mice.

    Science.gov (United States)

    De Fiebre, C M; Medhurst, L J; Collins, A C

    1987-01-01

    Nicotine response and nicotinic receptor binding were characterized in long-sleep (LS) and short-sleep (SS) mice which have been selectively bred for differential "sleep-time" following ethanol administration. LS mice are more sensitive than SS mice to nicotine as measured by a battery of behavioral and physiological tests and as measured by sensitivity to nicotine-induced seizures. The greater sensitivity of the LS mice is not due to differences in binding of [3H]nicotine. Unlike inbred mouse strains which differ in sensitivity to nicotine-induced seizures, these selected mouse lines do not differ in levels of binding of [125I]alpha-bungarotoxin (BTX) in the hippocampus. Significant differences in BTX binding were found in the cerebellum and striatum. Although these two mouse lines do not differ in blood levels of nicotine following nicotine administration, they differ slightly in brain levels of nicotine indicating differential distribution of the drug. Since this distribution difference is much smaller than the observed behavioral differences, these mice probably differ in CNS sensitivity to nicotine; however, follow-up studies are necessary to test whether the differential response of these mice is due to subtle differences in distribution of nicotine to the brain.

  19. Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats

    Directory of Open Access Journals (Sweden)

    Silvers Janelle M

    2006-04-01

    Full Text Available Abstract Background Prenatal cocaine exposure produces attentional deficits which to persist through early childhood. Given the role of norepinephrine (NE in attentional processes, we examined the forebrain NE systems from prenatal cocaine exposed rats. Cocaine was administered during pregnancy via the clinically relevant intravenous route of administration. Specifically, we measured α2-adrenergic receptor (α2-AR density in adolescent (35-days-old rats, using [3H]RX821002 (5 nM. Results Sex-specific alterations of α2-AR were found in the hippocampus and amygdala of the cocaine-exposed animals, as well as an upregulation of α2-AR in parietal cortex. Conclusion These data suggest that prenatal cocaine exposure results in a persistent alteration in forebrain NE systems as indicated by alterations in receptor density. These neurochemical changes may underlie behavioral abnormalities observed in offspring attentional processes following prenatal exposure to cocaine.

  20. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues.

    Directory of Open Access Journals (Sweden)

    Karine Guillem

    Full Text Available Nicotine self-administration (SA is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively. Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1 excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2 a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.

  1. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  2. Effects of nicotine and nicotine expectancy on attentional bias for emotional stimuli.

    Science.gov (United States)

    Adams, Sally; Attwood, Angela S; Munafò, Marcus R

    2015-06-01

    Nicotine's effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of nicotine abstinence (Experiment 1), and nicotine challenge and expectancy (Experiment 2) on attentional bias towards facial emotional stimuli differing in emotional valence. In Experiment 1, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In Experiment 2, 96 nicotine-deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. In Experiment 1, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In Experiment 2, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine's modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    Science.gov (United States)

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  4. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  5. Changes in serotoninergic receptors 1A and 2A in the piglet brainstem after intermittent hypercapnic hypoxia (IHH) and nicotine.

    Science.gov (United States)

    Say, Meichien; Machaalani, Rita; Waters, Karen A

    2007-06-04

    We studied the effects of intermittent hypercapnic hypoxia (IHH) and/or nicotine on the immunoreactivity of serotoninergic (5-HT) receptors 1A and 2A in the piglet brainstem. These exposures were developed to mimic two common risk factors for Sudden Infant Death Syndrome (SIDS); prone sleeping (IHH) and cigarette smoke exposure (nicotine). Immunoreactivity for 5-HT(1A)R and 5-HT(2A)R were studied in four nuclei of the caudal medulla. Three exposure groups were compared to controls (n=14): IHH (n=10), nicotine (n=14), and nicotine+IHH (n=14). In control piglets, the immunoreactivity of 5-HT(1A)R was highest in the hypoglossal nucleus (XII), followed by inferior olivary nucleus (ION), nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus (DMNV), whereas for 5-HT(2A)R, the immunoreactivity was highest in DMNV/NTS and then ION. Compared to controls, IHH reduced 5-HT(1A)R immunoreactivity in all studied nuclei (pIHH reduced 5-HT(1A)R in DMNV, ION and NTS (pIHH and/or nicotine can reduce 5-HT receptor immunoreactivity within functionally important nuclei of the piglet medulla. The findings support our hypothesis that 5-HT receptor abnormalities may be caused by postnatal exposures to clinically-relevant stimuli such as cigarette smoke exposure and/or prone sleeping.

  6. Nicotine-Mediated ADP to Spike Transition: Double Spiking in Septal Neurons.

    Science.gov (United States)

    Kodirov, Sodikdjon A; Wehrmeister, Michael; Colom, Luis

    2016-04-01

    The majority of neurons in lateral septum (LS) are electrically silent at resting membrane potential. Nicotine transiently excites a subset of neurons and occasionally leads to long lasting bursting activity upon longer applications. We have observed simultaneous changes in frequencies and amplitudes of spontaneous action potentials (AP) in the presence of nicotine. During the prolonged exposure, nicotine increased numbers of spikes within a burst. One of the hallmarks of nicotine effects was the occurrences of double spikes (known also as bursting). Alignment of 51 spontaneous spikes, triggered upon continuous application of nicotine, revealed that the slope of after-depolarizing potential gradually increased (1.4 vs. 3 mV/ms) and neuron fired the second AP, termed as double spiking. A transition from a single AP to double spikes increased the amplitude of after-hyperpolarizing potential. The amplitude of the second (premature) AP was smaller compared to the first one, and this correlation persisted in regard to their duration (half-width). A similar bursting activity in the presence of nicotine, to our knowledge, has not been reported previously in the septal structure in general and in LS in particular.

  7. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response.

    Science.gov (United States)

    McMillan, Douglas M; Tyndale, Rachel F

    2017-12-01

    Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; pnicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hyperactivity and memory/learning deficits evoked by developmental exposure to nicotine and/or ethanol are mitigated by cAMP and cGMP signaling cascades activation.

    Science.gov (United States)

    Abreu-Villaça, Yael; Carvalho-Graça, Anna C; Skinner, Gabriela; Lotufo, Bruna M; Duarte-Pinheiro, Vitor H S; Ribeiro-Carvalho, Anderson; Manhães, Alex C; Filgueiras, Claudio C

    2018-04-10

    Pregnant smoking women are frequently episodic drinkers. Here, we investigated whether ethanol exposure restricted to the brain growth spurt period when combined with chronic developmental exposure to nicotine aggravates memory/learning deficits and hyperactivity, and associated cAMP and cGMP signaling disruption. To further investigate the role of these signaling cascades, we verified whether vinpocetine (a phosphodiesterase inhibitor) ameliorates the neurochemical and behavioral outcomes. Swiss mice had free access to nicotine (NIC, 50 μg/ml) or water to drink during gestation and until the 8th postnatal day (PN8). Ethanol (ETOH, 5 g/kg, i.p.) or saline were injected in the pups every other day from PN2 to PN8. At PN30, animals either received vinpocetine (20 mg/kg, i.p.) or vehicle before being tested in the step-down passive avoidance or open field. Memory/learning was impaired in NIC, ETOH and NIC + ETOH mice, and vinpocetine mitigated ETOH- and NIC + ETOH-induced deficits. Locomotor hyperactivity identified in ETOH and NIC + ETOH mice was ameliorated by vinpocetine. While cyclic nucleotides levels in cerebral cortex and hippocampus were reduced by NIC, ETOH and NIC + ETOH, this outcome was more consistent in the latter group. As observed for behavior, vinpocetine normalized NIC + ETOH nucleotides levels. pCREB levels were also increased in response to vinpocetine, with stronger effects in the NIC + ETOH group. Exposure to both drugs of abuse worsens behavioral and neurochemical disruption. These findings and the amelioration of deleterious effects by vinpocetine support the idea that cAMP and cGMP signaling contribute to nicotine- and ethanol-induced hyperactivity and memory/learning deficits. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Impact of e-cigarette refill liquid exposure on rat kidney.

    Science.gov (United States)

    Golli, Narges El; Jrad-Lamine, Aicha; Neffati, Hajira; Dkhili, Houssem; Rahali, Dalila; Dallagi, Yosra; El May, Michele V; El Fazaa, Saloua

    2016-06-01

    Electronic-cigarettes (e-cigarette), the alternative to classic cigarettes are becoming extremely popular but their safety is not still established. Recent studies have showed cytotoxic effects of the electronic cigarette and its recharge e-liquid, in vitro. The present study was designed to evaluate e-cigarette liquid nephrotoxicity in rats. For this purpose, 32 rats were treated for 28 days as follows: Control group was injected intraperitoneally with NaCl 9 g/l; e-cigarette 0% treated group received an intraperitoneal injection of e-liquid without nicotine diluted in NaCl 9 g/l, e-cigarette treated group, received an intraperitoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l and nicotine-treated group received an intraperitoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in NaCl 9 g/l. In nicotine group, creatinine level was increased, whereas urea and acid uric levels were decreased. In e-liquid-exposed groups, levels of uric acid and mainly urea were lower. Interestingly, after e-liquid exposure, oxidative stress status showed increased total protein and sulfhydril content, whereas superoxide dismutase and catalase activities were decreased. However, the levels of lipid peroxides were not increased after e-liquid exposure. Histological studies identified excess of cells with reduced and dark nuclei exclusively located in the renal collecting ducts. Thus, e-liquid seems to alter anti-oxidant defense and to promote minor changes in renal function parameters. This preliminary study raises some flags about possible nephrotoxicity of e-cigarette liquids in rats. As some features observed in rats may not be observed in human smokers, additional studies are needed to further qualify conclusions that might be applicable to actual users of e-cigarettes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats

    Science.gov (United States)

    Wang, Xiao-Fei; Bi, Guo-Hua; He, Yi; Yang, Hong-Ju; Gao, Jun-Tao; Okunola-Bakare, Oluyomi M; Slack, Rachel D; Gardner, Eliot L; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-01-01

    (±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long–Evans rats. As Long–Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long–Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans. PMID:25613829

  11. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  12. Effects of the nicotinic receptor antagonist mecamylamine on ad-lib smoking behavior, topography, and nicotine levels in smokers with and without schizophrenia: a preliminary study.

    Science.gov (United States)

    McKee, Sherry A; Weinberger, Andrea H; Harrison, Emily L R; Coppola, Sabrina; George, Tony P

    2009-12-01

    Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to increase our understanding of smoking behavior, smoking topography, and resulting nicotine levels in smokers with schizophrenia. This preliminary study used a within-subject, placebo-controlled design in smokers with schizophrenia (n=6) and healthy control smokers (n=8) to examine the effects of MEC (10mg/day) on ad-lib smoking behavior, topography, nicotine levels, and tobacco craving across two smoking deprivation conditions (no deprivation and 12-h deprivation). MEC, compared to placebo, increased the number of cigarettes smoked and plasma nicotine levels. MEC increased smoking intensity and resulted in greater plasma nicotine levels in smokers with schizophrenia compared to controls, although these results were not consistent across deprivation conditions. MEC also increased tobacco craving in smokers with schizophrenia but not in control smokers. Our results suggest that antagonism of high-affinity nAChRs in smokers with schizophrenia may prompt compensatory smoking, increasing the intensity of smoking and nicotine exposure without alleviating craving. Further work is needed to assess whether nicotine levels are directly mediated by how intensely the cigarettes are smoked, and to confirm whether this effect is more pronounced in smokers with schizophrenia.

  13. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    International Nuclear Information System (INIS)

    Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-01

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor ( 11 C)vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in ( 11 C)vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  14. Nicotine replacement therapy

    Science.gov (United States)

    Smoking cessation - nicotine replacement; Tobacco - nicotine replacement therapy ... Before you start using a nicotine replacement product, here are some things to know: The more cigarettes you smoke, the higher the dose you may need to ...

  15. The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance.

    Science.gov (United States)

    Pesta, Dominik H; Angadi, Siddhartha S; Burtscher, Martin; Roberts, Christian K

    2013-12-13

    Caffeine, nicotine, ethanol and tetrahydrocannabinol (THC) are among the most prevalent and culturally accepted drugs in western society. For example, in Europe and North America up to 90% of the adult population drinks coffee daily and, although less prevalent, the other drugs are also used extensively by the population. Smoked tobacco, excessive alcohol consumption and marijuana (cannabis) smoking are addictive and exhibit adverse health effects. These drugs are not only common in the general population, but have also made their way into elite sports because of their purported performance-altering potential. Only one of the drugs (i.e., caffeine) has enough scientific evidence indicating an ergogenic effect. There is some preliminary evidence for nicotine as an ergogenic aid, but further study is required; cannabis and alcohol can exhibit ergogenic potential under specific circumstances but are in general believed to be ergolytic for sports performance. These drugs are currently (THC, ethanol) or have been (caffeine) on the prohibited list of the World Anti-Doping Agency or are being monitored (nicotine) due to their potential ergogenic or ergolytic effects. The aim of this brief review is to evaluate the effects of caffeine, nicotine, ethanol and THC by: 1) examining evidence supporting the ergogenic or ergolytic effects; 2) providing an overview of the mechanism(s) of action and physiological effects; and 3) where appropriate, reviewing their impact as performance-altering aids used in recreational and elite sports.

  16. Studies on the metabolism and bioactivation of (S)-nicotine and beta-nicotyrine

    International Nuclear Information System (INIS)

    Shigenaga, M.K.

    1989-01-01

    (S)-Nicotine has long been suspected of contributing to the chronic toxicities associated with the use of cigarettes and other tobacco products. The possibility that (S)-nicotine could contribute to these chronic toxicities by causing irreversible damage to cellular macromolecules has prompted studies aimed at characterizing the metabolic pathways of (S)-nicotine that form reactive metabolites which bind covalently. In order to study these processes, (S)-5- 3 H-nicotine was synthesized by catalytic tritiolysis of (S)-5-bromonicotine with carrier-free tritium gas, purified by HPLC and characterized by tritium NMR, diode array VV and HPLC chromatographic analysis. The metabolism of (S)-5- 3 H-nicotine by rabbit liver and lung microsomal enzymes produced reactive intermediates which bound covalently to microsomal macromolecules in a time, NADPH and cytochrome P-450 dependent manner. The results of studies employing rabbit lung microsomes and agents which inhibit or alter the expression of the cytochrome P-450 isozyme composition in this tissue indicated that the covalent binding of (S)-nicotine requires (S)-nicotine Δ 1',5' -iminium ion as an obligate intermediate and the catalytic activity of lung cytochrome P-450 isozyme-2. Investigations of the effects of (S)-nicotine and related tobacco alkaloids on the oxidation of the Parkinson's disease inducing agent MPTP by the mitochondrial enzyme MAO-B were prompted by the inverse correlation between cigarette smoking and Parkinson's disease. In the author studies (S)-nicotine A 1',5' -iminium bisperchlorate inhibited the MAOB catalyzed oxidation of MPTP by a linear-mixed type mechanism. Subsequent studies identified β-nicotyrine as a MAO-B catalyzed oxidation product of (S)-nicotine A 1',5' -iminium ion

  17. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  18. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    International Nuclear Information System (INIS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M.S.A.

    2016-01-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  19. Parental tobacco smoke exposure: Epigenetics and the ...

    Science.gov (United States)

    Epigenetic programming is an important mechanism underlying the Developmental Origins of Health and Disease (DOHaD). Much of the research in this area has focused on maternal nutrition. Parental smoking has emerged as a prime example of how exposure to environmental toxicants during the preconceptional and in utero periods can have long-term effects on offspring health, and the role of the epigenome in these effects. Maternal smoking and exposure to second-hand smoke during pregnancy result in lower birth weight of offspring, and there is now clear evidence that these offspring are at elevated risk for overweight/obesity, type-2 diabetes, respiratory effects during adolescence and adulthood, and may be programmed for increased risk of nicotine addiction. Epigenetic analyses of placenta, cord blood and offspring buccal cells have consistently revealed altered DNA methylation of genes involved in developmental processes and xenobiotic metabolism, and these epigenetic changes are persistent. Animal studies with cigarette smoke and nicotine support these findings. Paternal preconceptional smoking has been positively related to childhood cancers, potentially linked to changes in the sperm epigenome. Germ cell specification and preimplantation development are periods of widespread erasure and reprogramming of DNA methylation, and as such are likely to be sensitive periods for environmental effects on the epigenome. Exposure to tobacco smoke during gametogenesis and in

  20. Nicotine cut-off value in human hair as a tool to distinguish active from passive smokers: A cross-sectional study in Japanese men.

    Science.gov (United States)

    Tsuji, Masayoshi; Kanda, Hideyuki; Hayakawa, Takehito; Mori, Yayoi; Ito, Teruna; Hidaka, Tomoo; Kakamu, Takeyasu; Kumagai, Tomohiro; Osaki, Yoneatsu; Kawazoe, Miki; Sato, Sei; Fukushima, Tetsuhito

    2017-07-19

    Nicotine concentration in hair is a useful marker of tobacco exposure. Detection of nicotine in the hair of non-smokers indicates passive smoking. Accurate measurement of nicotine among active and passive smokers can help in smoking cessation programs or programs designed to prevent secondhand smoke exposure. To establish, using high-performance liquid chromatography-ultraviolet detection (HPLC/UV), a hair nicotine cut-off value to distinguish active from passive smokers. Hair samples were collected from randomly chosen Japanese men (n= 192) between 2009 and 2011. Nicotine and cotinine levels in hair were measured using HPLC/UV with column-switching. T-tests and chi-square tests were performed to compare active and passive smokers, while receiver operating characteristic curves were used to evaluate the effectiveness of the cut-off value. There were 69 active smokers and 123 passive smokers. The nicotine and cotinine concentrations in hair were significantly higher in active than in passive smokers (psmokers. Nicotine and cotinine concentrations in hair clearly distinguished active from passive smokers.

  1. Marijuana exposure and pulmonary alterations in primates.

    Science.gov (United States)

    Fligiel, S E; Beals, T F; Tashkin, D P; Paule, M G; Scallet, A C; Ali, S F; Bailey, J R; Slikker, W

    1991-11-01

    As part of a large multidisciplinary study, we examined lungs from 24 periadolescent male rhesus monkeys that were sacrificed seven months after daily marijuana smoke inhalation of 12 months duration. Animals were divided into four exposure groups: A) high-dose (one marijuana cigarette 7 days/week), B) low-dose (one marijuana cigarette 2 days/week and sham smoke 5 days/week), C) placebo (one extracted marijuana cigarette 7 days/week), and D) sham (sham smoke 7 days/week). Lungs, removed intact, were formalin inflated, sectioned and examined. Several pathological alterations, including alveolitis, alveolar cell hyperplasia and granulomatous inflammation, were found with higher frequency in all cigarette-smoking groups. Other alterations, such as bronchiolitis, bronchiolar squamous metaplasia and interstitial fibrosis, were found most frequently in the marijuana-smoking groups. Alveolar cell hyperplasia with focal atypia was seen only in the marijuana-smoking animals. These changes represent mostly early alterations of small airways. Additional follow-up studies are needed to determine their long-term prognostic significance.

  2. The effects of acute nicotine on contextual safety discrimination.

    Science.gov (United States)

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients. © The Author(s) 2014.

  3. Alterations in the developing testis transcriptome following embryonic vinclozolin exposure.

    Science.gov (United States)

    Clement, Tracy M; Savenkova, Marina I; Settles, Matthew; Anway, Matthew D; Skinner, Michael K

    2010-11-01

    The current study investigates the direct effects of in utero vinclozolin exposure on the developing F1 generation rat testis transcriptome. Previous studies have demonstrated that exposure to vinclozolin during embryonic gonadal sex determination induces epigenetic modifications of the germ line and transgenerational adult onset disease states. Microarray analyses were performed to compare control and vinclozolin treated testis transcriptomes at embryonic days 13, 14 and 16. A total of 576 differentially expressed genes were identified and the major cellular functions and pathways associated with these altered transcripts were examined. The sets of regulated genes at the different development periods were found to be transiently altered and distinct. Categorization by major known functions of altered genes was performed. Specific cellular process and pathway analyses suggest the involvement of Wnt and calcium signaling, vascular development and epigenetic mechanisms as potential mediators of the direct F1 generation actions of vinclozolin. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Prenatal nicotine exposure induces poor articular cartilage quality in female adult offspring fed a high-fat diet and the intrauterine programming mechanisms.

    Science.gov (United States)

    Tie, Kai; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2016-04-01

    Prenatal nicotine exposure (PNE) induces skeletal growth retardation and dyslipidemia in offspring displaying intrauterine growth retardation (IUGR). Cholesterol accumulation resulting from cholesterol efflux dysfunction may reduce the quality of articular cartilage through fetal programming. This study evaluated the quality of articular cartilage of female adult offspring fed a high-fat diet and explored the mechanisms using a rat IUGR model established by the administration of 2.0mg/kg/d of subcutaneous nicotine from gestational days 11-20. The results demonstrated an increased OARSI (Osteoarthritis Research Society International) score and total cholesterol content, decreased serum corticosterone, and increased IGF1 and dyslipidemia with catch-up growth in PNE adult offspring. Cartilage matrix, IGF1 and cholesterol efflux pathway expression were reduced in PNE fetuses and adult offspring. Therefore, PNE induced poor articular cartilage quality in female adult offspring fed a high-fat diet via a dual programming mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cigarette craving is associated with blunted reward processing in nicotine-dependent smokers.

    Science.gov (United States)

    Peechatka, Alyssa L; Whitton, Alexis E; Farmer, Stacey L; Pizzagalli, Diego A; Janes, Amy C

    2015-10-01

    Dysfunctional reward processing leading to the undervaluation of non-drug rewards is hypothesized to play a crucial role in nicotine dependence. However, it is unclear if blunted reward responsivity and the desire to use nicotine are directly linked after a brief period of abstinence. Such an association would suggest that individuals with reduced reward responsivity may be at increased risk to experience nicotine craving. Reward function was evaluated with a probabilistic reward task (PRT), which measures reward responsivity to monetary incentives. To identify whether smoking status influenced reward function, PRT performance was compared between non-depressed, nicotine-dependent smokers and non-smokers. Within smokers, correlations were conducted to determine if blunted reward responsivity on the PRT was associated with increased nicotine craving. Time since last nicotine exposure was standardized to 4h for all smokers. Smokers and non-smokers did not differ in reward responsivity on the PRT. However, within smokers, a significant negative correlation was found between reward responsivity and intensity of nicotine craving. The current findings show that, among smokers, the intensity of nicotine craving is linked to lower sensitivity to non-drug rewards. This finding is in line with prior theories that suggest reward dysfunction in some clinical populations (e.g., depressive disorders, schizophrenia) may facilitate nicotine use. The current study expands on such theories by indicating that sub-clinical variations in reward function are related to motivation for nicotine use. Identifying smokers who show blunted sensitivity to non-drug rewards may help guide treatments aimed at mitigating the motivation to smoke. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Cognitive dysfunction, affective states and vulnerability to nicotine addiction: a multifactorial perspective

    Directory of Open Access Journals (Sweden)

    Benoit Forget

    2016-09-01

    Full Text Available Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments such as emotional distress and deficits in attention, memory and inhibitory control, particularly in the context of psychiatric conditions such as ADHD, schizophrenia and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision making, and inhibitory control. Here we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the pro-cognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features.

  7. Effect of systemic administration of nicotine on healing in osseous defects. An experimental study in rabbits. Part II

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Sørensen, Lars

    2006-01-01

    OBJECTIVES: The aim of the present study was to analyze the effect of systemic administration of nicotine on bone healing in osseous defects in the tibia of rabbits. MATERIAL AND METHODS: Sixteen female rabbits received nicotine (n=8; test group) or saline (n=8; control group) via subcutaneously...... 4 weeks and in the left leg after 6 weeks of nicotine/placebo exposure. Thus, 2- and 4-week healing groups were created for the bone defects. After 8 weeks, the animals were killed. Tissue blocks including the bone defects were prepared for histological analysis. RESULTS: The animals in the test...... group lost weight, while the control group gained weight during the experiment. The prostaglandin E(2) levels in plasma increased significantly following nicotine exposure in the test group. No significant differences in the percentage of vessels and bone density in the osseous defects were found...

  8. The relationship of childhood trauma to nicotine dependence in pregnant smokers.

    Science.gov (United States)

    Blalock, Janice A; Nayak, Nisha; Wetter, David W; Schreindorfer, Lisa; Minnix, Jennifer A; Canul, Jennifer; Cinciripini, Paul M

    2011-12-01

    Pregnant women with high levels of nicotine dependence are the least likely to quit smoking spontaneously during pregnancy or to benefit from smoking cessation interventions. In the general population, there is increasing evidence of a relationship between smoking, nicotine dependence, and exposure to childhood trauma. We examined the relationship of childhood trauma to several measures of nicotine dependence and evaluated whether this relationship was mediated by major depressive disorder or depressive symptom severity in pregnant smokers. Moderate to extreme levels of childhood trauma were significantly related to smoking within 5 minutes or less of waking, and to the Behavioral Choice-Melioration, Negative Reinforcement, and Tolerance subscales of the Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) scale. The relationships between childhood emotional abuse and the WISDM-68 Total and Negative Reinforcement subscale were partially mediated by depressive symptoms. Results suggest that childhood trauma may be a risk factor underlying nicotine dependence in pregnant smokers. Increased understanding of the relationship of affect regulation to smoking in individuals with childhood trauma histories may aid in the development of more effective treatments of nicotine dependence for this population of smokers.

  9. Nicotine Withdrawal Disrupts Contextual Learning but Not Recall of Prior Contextual Associations: Implications for Nicotine Addiction

    OpenAIRE

    Portugal, George S.; Gould, Thomas J.

    2008-01-01

    Interactions between nicotine and learning could contribute to nicotine addiction. Although previous research indicates that nicotine withdrawal disrupts contextual learning, the effects of nicotine withdrawal on contextual memories acquired before withdrawal are unknown. The present study investigated whether nicotine withdrawal disrupted recall of prior contextual memories by examining the effects of nicotine withdrawal on recall of nicotine conditioned place preference (CPP) and contextual...

  10. Effects of nicotine on visuo-spatial selective attention as indexed by event-related potentials.

    Science.gov (United States)

    Meinke, A; Thiel, C M; Fink, G R

    2006-08-11

    Nicotine has been shown to specifically reduce reaction times to invalidly cued targets in spatial cueing paradigms. In two experiments, we used event-related potentials to test whether the facilitative effect of nicotine upon the detection of invalidly cued targets is due to a modulation of perceptual processing, as indexed by early attention-related event-related potential components. Furthermore, we assessed whether the effect of nicotine on such unattended stimuli depends upon the use of exogenous or endogenous cues. In both experiments, the electroencephalogram was recorded while non-smokers completed discrimination tasks in Posner-type paradigms after chewing a nicotine polacrilex gum (Nicorette 2 mg) in one session and a placebo gum in another session. Nicotine reduced reaction times to invalidly cued targets when cueing was endogenous. In contrast, no differential effect of nicotine on reaction times was observed when exogenous cues were used. Electrophysiologically, we found a similar attentional modulation of the P1 and N1 components under placebo and nicotine but a differential modulation of later event-related potential components at a frontocentral site. The lack of a drug-dependent modulation of P1 and N1 in the presence of a behavioral effect suggests that the effect of nicotine in endogenous visuo-spatial cueing tasks is not due to an alteration of perceptual processes. Rather, the differential modulation of frontocentral event-related potentials suggests that nicotine acts at later stages of target processing.

  11. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  12. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    Science.gov (United States)

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Maneckjee, R.; Minna, J.D.

    1990-01-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for μ, δ, and κ opioid agonists and for nicotine and α-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas μ, δ, and κ opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides (β-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer

  14. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maneckjee, R.; Minna, J.D. (National Cancer Institute-Navy Medical Oncology Branch, Bethesda, MD (USA) Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  15. Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity.

    Science.gov (United States)

    Liu, Huan; Luo, Qi; Du, Wanyi; Li, Xingbao; Zhang, Zhiwei; Yu, Renqiang; Chen, Xiaolu; Meng, Huaqing; Du, Lian

    2018-01-03

    Schizophrenia patients are at high risk for cigarette smoking, but the neurobiological mechanisms of this comorbid association are relatively unknown. Long-term nicotine intake may impact brain that are independently and additively associated with schizophrenia. We investigated whether altered intrinsic brain activity (iBA) related to schizophrenia pathology is also associated with nicotine addiction. Forty-two schizophrenia patients (21 smokers and 21 nonsmokers) and 21 sex- and age-matched healthy nonsmokers underwent task-free functional MRI. Whole brain iBA was measured by the amplitude of spontaneous low frequency fluctuation. Furthermore, correlation analyses between iBA, symptom severity and nicotine addiction severity were performed. We found that prefrontal cortex, right caudate, and right postcentral gyrus were related to both disease and nicotine addiction effects. More importantly, schizophrenia smokers, compared to schizophrenia nonsmokers showed reversed iBA in the above brain regions. In addition, schizophrenia smokers, relative to nonsmokers, altered iBA in the left striatal and motor cortices. The iBA of the right caudate was negatively correlated with symptom severity. The iBA of the right postcentral gyrus negatively correlated with nicotine addiction severity. The striatal and motor cortices could potentially increase the vulnerability of smoking in schizophrenia. More importantly, smoking reversed iBA in the right striatal and prefrontal cortices, consistent with the self-medication theory in schizophrenia. Smoking altered left striatal and motor cortices activity, suggesting that the nicotine addiction effect was independent of disease. These results provide a local property of intrinsic brain activity mechanism that contributes to cigarette smoking and schizophrenia.

  16. Nicotine dependence and psychiatric disorders.

    Science.gov (United States)

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  17. Nicotine Dependence and Urinary Nicotine, Cotinine and Hydroxycotinine Levels in Daily Smokers

    OpenAIRE

    Van Overmeire, Ilse P. I.; De Smedt, Tom; Dendale, Paul; Nackaerts, Kristiaan; Vanacker, Hilde; Vanoeteren, Jan F. A.; Van Laethem, Danny M. G.; Van Loco, Joris; De Cremer, Koen A. J.

    2016-01-01

    Nicotine dependence and smoking frequency are critical factors for smoking cessation. The aims of this study are (1) to determine if nicotine dependence Fagerstrom Test for Nicotine Dependence (FTND) scores are associated with urinary levels of nicotine metabolites, (2) to assess the relationship of hydroxycotinine/cotinine ratio with FTND score and cigarettes smoked per day (CPD), and (3) to identify significant predictors of cigarettes per day among biomarker concentrations and individual F...

  18. Effects of adolescent treatment with nicotine, harmane, or norharmane in male Sprague-Dawley rats.

    Science.gov (United States)

    Goodwin, Amy K; Lantz-McPeak, Susan M; Robinson, Bonnie L; Law, C Delbert; Ali, Syed F; Ferguson, Sherry A

    2015-01-01

    The initiation of tobacco use occurs most often in adolescence and may be especially detrimental as the adolescent brain is undergoing substantial development. In addition to nicotine, there are over 9000 other compounds present in tobacco products, including the β-carbolines harmane and norharmane. The present study aimed to determine the long-term effects of adolescent exposure to nicotine (NIC), harmane (HAR), or norharmane (NOR) on locomotor activity, learning and memory, anxiety-like behavior, motor coordination, and monoamine/metabolite concentrations in the striatum and nucleus accumbens of male Sprague-Dawley rats. Beginning on postnatal day (PND) 27 and continuing through PND 55, subjects received twice daily intraperitoneal injections of 1ml/kg saline (CON), 0.5mg NIC/kg, 0.5mg HAR/kg, or 0.5mg NOR/kg. Body weight, food, and water intake were measured daily (PNDs 27-96). Locomotor activity was assessed on PND 40 or 41, PND 55, and PNDs 81 and 82. Other behaviors (anxiety-like behavior, motor coordination, and spatial learning and memory) were assessed at least 25 days after drug exposure ended (PNDs 80-91). On PND 97, subjects were decapitated and the striatum and nucleus accumbens were dissected and frozen for analysis. NIC treatment significantly decreased food intake, but did not alter locomotor activity during or after treatment. HAR and NOR treatment, however, caused significant open field hypoactivity. Motor coordination, water maze performance, and concentrations of monoamines and metabolites in the striatum and nucleus accumbens were unaltered by any drug treatment. These results indicate a long-lasting effect on activity levels from adolescent HAR or NOR treatment; however, there were few long-lasting NIC effects. Given the paucity of data describing effects of HAR or NOR exposure, these data should encourage additional studies of these tobacco constituents as well as constituent combination studies. Published by Elsevier Inc.

  19. The effect of nicotine on reproduction and attachment of human gingival fibroblasts in vitro.

    Science.gov (United States)

    Peacock, M E; Sutherland, D E; Schuster, G S; Brennan, W A; O'Neal, R B; Strong, S L; Van Dyke, T E

    1993-07-01

    The ability of fibroblasts to reproduce and attach to teeth is of paramount importance in re-establishing the lost connective tissue attachment after periodontal therapy. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblast (HGF) reproduction and attachment to tissue culture surfaces. Pooled HGF cultures made from explants of gingival biopsies were utilized between passages 5 and 10 and plated in 96-well plates at 1.0 x 10(4) cells per well. Cell numbers were determined using 3-(4,5-dimethylthiazol-2-y)-2,5-diphenyl tetrazolium bromide (MTT), which is a reflection of mitochondrial dehydrogenase activity. The concentrations of nicotine used were 0.025, 0.05, 0.1, 0.2, and 0.4 microM, the average serum concentration for a smoker being approximately 0.1 microM. The effect of continuous nicotine exposure on HGF reproduction was determined by incubating cell cultures and media containing nicotine for up to 48 hours. Residual toxicity was determined by preincubating cells with nicotine for 1 or 6 hours. HGF suspensions and increasing concentrations of nicotine were added together to determine the effect on attachment. Results showed an enhanced effect of nicotine on HGF attachment, with increasing numbers of cells attaching with increasing nicotine concentrations, compared to the control. Low concentrations of nicotine had a stimulatory effect on cell replication, while higher concentrations of nicotine appear to have no significant effect on HGF reproduction. The responses of cells to some concentrations of nicotine may persist after its removal.

  20. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  1. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  2. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes.

    Science.gov (United States)

    Lee, Mi-Sun; LeBouf, Ryan F; Son, Youn-Suk; Koutrakis, Petros; Christiani, David C

    2017-04-27

    We aimed to assess the content of electronic cigarette (EC) emissions for five groups of potentially toxic compounds that are known to be present in tobacco smoke: nicotine, particles, carbonyls, volatile organic compounds (VOCs), and trace elements by flavor and puffing time. We used ECs containing a common nicotine strength (1.8%) and the most popular flavors, tobacco and menthol. An automatic multiple smoking machine was used to generate EC aerosols under controlled conditions. Using a dilution chamber, we targeted nicotine concentrations similar to that of exposure in a general indoor environment. The selected toxic compounds were extracted from EC aerosols into a solid or liquid phase and analyzed with chromatographic and spectroscopic methods. We found that EC aerosols contained toxic compounds including nicotine, fine and nanoparticles, carbonyls, and some toxic VOCs such as benzene and toluene. Higher mass and number concentrations of aerosol particles were generated from tobacco-flavored ECs than from menthol-flavored ECs. We found that diluted machine-generated EC aerosols contain some pollutants. These findings are limited by the small number of ECs tested and the conditions of testing. More comprehensive research on EC exposure extending to more brands and flavor compounds is warranted.

  3. Tributyltin Exposure Alters Cytokine Levels in Mouse Serum

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T.; Shanker, Anil; Whalen, Margaret M.

    2016-01-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, KC, MIP1β, MIP2 and RANTES was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40, and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in serum of mice exposed to TBT for less than 24 hr. IL1-β, IL-12βp40, IL-5 and IL-15 were also modulated in mouse serum depending on the specific experiment and the exposure concentration. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES, and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines. PMID:27602597

  4. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    Science.gov (United States)

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Acute and chronic in vivo effects of exposure to nicotine and propylene glycol from an E-cigarette on mucociliary clearance in a murine model.

    Science.gov (United States)

    Laube, Beth L; Afshar-Mohajer, Nima; Koehler, Kirsten; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2017-04-01

    To determine the effect of an acute (1 week) and chronic (3 weeks) exposure to E-cigarette (E-cig) emissions on mucociliary clearance (MCC) in murine lungs. C57BL/6 male mice (age 10.5 ± 2.4 weeks) were exposed for 20 min/day to E-cigarette aerosol generated by a Joyetech 510-T ® E-cig containing either 0% nicotine (N)/propylene glycol (PG) for 1 week (n = 6), or 3 weeks (n = 9), or 2.4% N/PG for one week (n = 6), or 3 weeks (n = 9), followed by measurement of MCC. Control mice (n = 15) were not exposed to PG alone, or N/PG. MCC was assessed by gamma camera following aspiration of 99m technetium aerosol and was expressed as the amount of radioactivity removed from both lungs over 6 hours (MCC6hrs). Venous blood was assayed for cotinine levels in control mice and in mice exposed for 3-weeks to PG alone and N/PG. MCC6hrs in control mice and in mice acutely exposed to PG alone and N/PG was similar, averaging (±1 standard deviation) 8.6 ± 5.2%, 7.5 ± 2.8% and 11.2 ± 5.9%, respectively. In contrast, chronic exposure to PG alone stimulated MCC6hrs (17.2 ± 8.0)% and this stimulation was significantly blunted following chronic exposure to N/PG (8.7 ± 4.6)% (p < .05). Serum cotinine levels were <0.5 ng/ml in control mice and in mice exposed to PG alone, whereas, N/PG exposed mice averaged 14.6 ± 12.0 ng/ml. In this murine model, a chronic, daily, 20 min-exposure to N/PG, but not an acute exposure, slowed MCC, compared to exposure to PG alone and led to systemic absorption of nicotine.

  6. DNA-nicotine adduction of lung and liver of mice exposed to passive smoking studied by AMS

    International Nuclear Information System (INIS)

    Hou Qin; Sun Hongfang; Shi Jingyuan; Liu Yuanfang; Wang Jianjun; Lu Xiangyang; Li Kun; Zhao Qiang

    1997-01-01

    The author presents the measurement of adduction of mice lung or liver DNA with nicotine by accelerator mass spectrometry (AMS). Mice were exposed in a toxicity infecting chamber filled up with cigarette smoke for a period of time of simulate the exposure of mice to passive smoking. The dose of nicotine inhaled by mice was determined. The results of AMS showed, when the dose of inhaled nicotine ranged from 33 μg/kg to 330 μg/kg, the adducts number of lung DNA was 10 3 -10 4 adducts/10 12 nucleotides, and the adducts increased linearly with increasing dose of nicotine; the adducts number of liver DNA reached to 10 4 -10 5 adducts/10 12 nucleotides, when the dose of nicotine ranged from 99 μg/kg to 330 μg/kg, and the adducts increased vigorously as dose of nicotine increased. Comparing the DNA adducts levels of the same nicotine dose, liver DNA adducts were more than lung DNA adducts. This study also suggested that the other components of cigarette smoke have synergic effect on the formation of nicotine derived DNA adducts

  7. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine.

    Science.gov (United States)

    Bébarová, Markéta; Matejovič, Peter; Švecová, Olga; Kula, Roman; Šimurdová, Milena; Šimurda, Jiří

    2017-05-01

    Nicotine abuse is associated with variety of diseases including arrhythmias, most often atrial fibrillation (AF). Altered inward rectifier potassium currents including acetylcholine-sensitive current I K(Ach) are known to be related to AF pathogenesis. Since relevant data are missing, we aimed to investigate I K(Ach) changes at clinically relevant concentrations of nicotine. Experiments were performed by the whole cell patch clamp technique at 23 ± 1 °C on isolated rat atrial myocytes. Nicotine was applied at following concentrations: 4, 40 and 400 nM; ethanol at 20 mM (∼0.09%). Nicotine at 40 and 400 nM significantly activated constitutively active component of I K(Ach) with the maximum effect at 40 nM (an increase by ∼100%); similar effect was observed at -110 and -50 mV. Changes at 4 nM nicotine were negligible on average. Coapplication of 40 nM nicotine and 20 mM ethanol (which is also known to activate this current) did not show cumulative effect. In the case of acetylcholine-induced component of I K(Ach) , a dual effect of nicotine and its correlation with the current magnitude in control were apparent: the current was increased by nicotine in the cells showing small current in control and vice versa. The effect of 40 and 400 nM nicotine on acetylcholine-induced component of I K(Ach) was significantly different at -110 and -50 mV. We conclude that nicotine at clinically relevant concentrations significantly increased constitutively active component of I K(Ach) and showed a dual effect on its acetylcholine-induced component, similarly as ethanol. Synchronous application of nicotine and ethanol did not cause additive effect.

  8. Intraportal nicotine infusion in rats decreases hepatic blood flow through endothelin-1 and both endothelin A and endothelin B receptors

    International Nuclear Information System (INIS)

    Hashimoto, Takashi; Yoneda, Masashi; Shimada, Tadahito; Kurosawa, Mieko; Terano, Akira

    2004-01-01

    Smoking has been demonstrated to aggravate liver injury. Nicotine, a major pharmacological component of tobacco smoke, affects a multitude of functions. Smoking and nicotine induce synthesis of endothelin (ET)-1. The effect of intraportal infusion of nicotine on hepatic circulation and an involvement of ET-1 and ET receptor in the action of nicotine were investigated in rats. Nicotine (0-100 μg/kg/h) was infused into the portal vein of urethane-anesthetized rats, and changes of hepatic blood flow were evaluated. Intraportal infusion of nicotine dose-dependently decreased hepatic blood flow and increased portal pressure without any alteration of heart rate or arterial blood pressure. This action of intraportal nicotine was completely abolished by pretreatment of ET-1 antibody. Either BQ485 (ET A receptor antagonist) or BQ788 (ET B receptor antagonist) partially reversed the effect of nicotine, and combination of BQ788 and BQ485 completely abolished it. These findings suggest that nicotine inhibits hepatic circulation through ET-1, and ET A and ET B receptor

  9. Studying the interactive effects of menthol and nicotine among youth: An examination using e-cigarettes.

    Science.gov (United States)

    Krishnan-Sarin, Suchitra; Green, Barry G; Kong, Grace; Cavallo, Dana A; Jatlow, Peter; Gueorguieva, Ralitza; Buta, Eugenia; O'Malley, Stephanie S

    2017-11-01

    Tobacco products containing menthol are widely used by youth. We used e-cigarettes to conduct an experimental evaluation of the independent and interactive effects of menthol and nicotine among youth. Pilot chemosensory experiments with fourteen e-cigarette users identified low (barely perceptible, 0.5%) and high (similar to commercial e-liquid, 3.5%) menthol concentrations. Sixty e-cigarette users were randomized to a nicotine concentration (0mg/ml, 6mg/ml, 12mg/ml) and participated in 3 laboratory sessions. During each session, they received their assigned nicotine concentration, along with one of three menthol concentrations in random counterbalanced order across sessions (0, 0.5%, 3.5%), and participated in three fixed-dose, and an ad-lib, puffing period. Urinary menthol glucuronide and salivary nicotine levels validated menthol and nicotine exposure. We examined changes in e-cigarette liking/wanting and taste, coolness, stimulant effects, nicotine withdrawal and ad-lib use. Overall, the high concentration of menthol (3.5%) significantly increased e-cigarette liking/wanting relative to no menthol (pe-cigarettes among youth. Further, menthol enhances positive rewarding effects of high nicotine-containing e-cigarettes among youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of a smoking ban in hospitality venues on second hand smoke exposure: a comparison of exposure assessment methods.

    Science.gov (United States)

    Rajkumar, Sarah; Huynh, Cong Khanh; Bauer, Georg F; Hoffmann, Susanne; Röösli, Martin

    2013-06-04

    In May 2010, Switzerland introduced a heterogeneous smoking ban in the hospitality sector. While the law leaves room for exceptions in some cantons, it is comprehensive in others. This longitudinal study uses different measurement methods to examine airborne nicotine levels in hospitality venues and the level of personal exposure of non-smoking hospitality workers before and after implementation of the law. Personal exposure to second hand smoke (SHS) was measured by three different methods. We compared a passive sampler called MoNIC (Monitor of NICotine) badge, to salivary cotinine and nicotine concentration as well as questionnaire data. Badges allowed the number of passively smoked cigarettes to be estimated. They were placed at the venues as well as distributed to the participants for personal measurements. To assess personal exposure at work, a time-weighted average of the workplace badge measurements was calculated. Prior to the ban, smoke-exposed hospitality venues yielded a mean badge value of 4.48 (95%-CI: 3.7 to 5.25; n = 214) cigarette equivalents/day. At follow-up, measurements in venues that had implemented a smoking ban significantly declined to an average of 0.31 (0.17 to 0.45; n = 37) (p = 0.001). Personal badge measurements also significantly decreased from an average of 2.18 (1.31-3.05 n = 53) to 0.25 (0.13-0.36; n = 41) (p = 0.001). Spearman rank correlations between badge exposure measures and salivary measures were small to moderate (0.3 at maximum). Nicotine levels significantly decreased in all types of hospitality venues after implementation of the smoking ban. In-depth analyses demonstrated that a time-weighted average of the workplace badge measurements represented typical personal SHS exposure at work more reliably than personal exposure measures such as salivary cotinine and nicotine.

  11. Nicotine Dependence and Urinary Nicotine, Cotinine and Hydroxycotinine Levels in Daily Smokers.

    Science.gov (United States)

    Van Overmeire, Ilse P I; De Smedt, Tom; Dendale, Paul; Nackaerts, Kristiaan; Vanacker, Hilde; Vanoeteren, Jan F A; Van Laethem, Danny M G; Van Loco, Joris; De Cremer, Koen A J

    2016-09-01

    Nicotine dependence and smoking frequency are critical factors for smoking cessation. The aims of this study are (1) to determine if nicotine dependence Fagerström Test for Nicotine Dependence (FTND) scores are associated with urinary levels of nicotine metabolites, (2) to assess the relationship of hydroxycotinine/cotinine ratio with FTND score and cigarettes smoked per day (CPD), and (3) to identify significant predictors of cigarettes per day among biomarker concentrations and individual FTND items. Urine samples and questionnaire data of 239 daily smokers were obtained. Nicotine, cotinine and hydroxycotinine urinary levels were determined by UPLC MS/MS.Multiple linear regression models were developed to explore the relationship between nicotine, cotinine, hydroxycotinine levels and separate FTND scores (for all six items). We found significant correlations between the different urinary biomarker concentrations, and the FTND score. The time before the first cigarette after waking (TTFC) was significantly associated with the nicotine, cotinine and hydroxycotinine concentrations. No association was found between the ratio of hydroxycotinine to cotinine and either the FTND or the CPD. A model including four FTND questions, sex, age, and the cotinine concentration, accounted for 45% of the variance of CPD. There are significant relationships between urinary levels of nicotine, cotinine, and hydroxycotinine and the FTND score. Especially the FTND question about TTFC is relevant for explaining the biomarker concentrations. CPD (below 15) was significantly explained by four FTND dependence items and urinary cotinine levels in a regression model. We investigated associations between urinary levels of nicotine, cotinine, and hydroxycotinine in daily smokers and the FTND scores for nicotine dependence. We did not find association between the hydroxycotinine/cotinine ratio and CPD. We developed a model that explains the cigarettes smoked daily (CPD) in a group of light

  12. Exposure to particulate matters (PM2.5) and airborne nicotine in computer game rooms after implementation of smoke-free legislation in South Korea.

    Science.gov (United States)

    Kim, Sungroul; Sohn, Jongryeul; Lee, Kiyoung

    2010-12-01

    In South Korea, computer game rooms are subject to regulations mandating a designated nonsmoking area pursuant to Article 7 of the Enforcement Rules of the National Health Promotion Act; nonsmoking areas must be enclosed on all sides by solid and impermeable partitions. Using PM(2.5) monitors (SidePak AM510) and airborne nicotine monitors, we measured concentrations in smoking and nonsmoking areas to examine whether separation of the nonsmoking areas as currently practiced is a viable way to protect the nonsmoking area from secondhand smoke exposure. Convenient samplings were conducted at 28 computer game rooms randomly selected from 14 districts in Seoul, South Korea between August and September 2009. The medians (interquartile range) of PM(2.5) concentrations in smoking and nonsmoking areas were 69.3 μg/m(3) (34.5-116.5 μg/m(3)) and 34 μg/m(3) (15.0-57.0 μg/m(3)), while those of airborne nicotine were 0.41 μg/m(3) (0.25-0.69 μg/m(3)) and 0.12 μg/m(3) (0.06-0.16 μg/m(3)), respectively. Concentrations of airborne nicotine and PM(2.5) in nonsmoking areas were substantially positively associated with those in smoking areas. The Spearman correlation coefficients for them were 0.68 (p = .02) and 0.1 (p = 0.7), respectively. According to our modeling result, unit increase of airborne nicotine concentration in a smoking area contributed to 7 (95% CI = 2.5-19.8) times increase of the concentration in the adjacent nonsmoking area after controlling for the degree of partition left closed and the indoor space volume. Our study thus provides evidence for the introduction of more rigorous policy initiatives aimed at encouraging a complete smoking ban in such venues.

  13. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Seidler, Frederic J

    2015-12-02

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. The impact of nicotine on osseointegration. An experimental study in the femur and tibia of rabbits

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H

    2005-01-01

    OBJECTIVES: The aim of the present study was to analyze the effect of an enhanced systematic dose of nicotine on osseointegration of titanium implants. MATERIAL AND METHODS: Sixteen female rabbits received either nicotine (n=8) or saline (n=8) administered subcutaneously via mini-osmotic pumps...... for 2 months. The pump delivered 6 mug/kg/min of nicotine for the animals in the test group. Blood was withdrawn and plasma cotinine levels were measured weekly. Thirty-two titanium implants were inserted into the femur and tibia of all rabbits after 4 weeks and after 6 weeks of nicotine...... and the peri-implant BD-i showed no significant differences between the test and the control group after 2 or after 4 weeks. CONCLUSION: Nicotine exposure for a short period of time even in a high dose did not have a significant impact on implant osseointegration in rabbits....

  15. Environmental monitoring of secondhand smoke exposure

    Science.gov (United States)

    Apelberg, Benjamin J; Hepp, Lisa M; Avila-Tang, Erika; Gundel, Lara; Hammond, S Katharine; Hovell, Melbourne F; Hyland, Andrew; Klepeis, Neil E; Madsen, Camille C; Navas-Acien, Ana; Repace, James; Samet, Jonathan M

    2013-01-01

    The complex composition of secondhand smoke (SHS) provides a range of constituents that can be measured in environmental samples (air, dust and on surfaces) and therefore used to assess non-smokers' exposure to tobacco smoke. Monitoring SHS exposure (SHSe) in indoor environments provides useful information on the extent and consequences of SHSe, implementing and evaluating tobacco control programmes and behavioural interventions, and estimating overall burden of disease caused by SHSe. The most widely used markers have been vapour-phase nicotine and respirable particulate matter (PM). Numerous other environmental analytes of SHS have been measured in the air including carbon monoxide, 3-ethenylpyridine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, nitrogen oxides, aldehydes and volatile organic compounds, as well as nicotine in dust and on surfaces. The measurement of nicotine in the air has the advantage of reflecting the presence of tobacco smoke. While PM measurements are not as specific, they can be taken continuously, allowing for assessment of exposure and its variation over time. In general, when nicotine and PM are measured in the same setting using a common sampling period, an increase in nicotine concentration of 1 μg/m3 corresponds to an average increase of 10 μg/m3 of PM. This topic assessment presents a comprehensive summary of SHSe monitoring approaches using environmental markers and discusses the strengths and weaknesses of these methods and approaches. PMID:22949497

  16. Testing environment shape differentially modulates baseline and nicotine-induced changes in behavior: Sex differences, hypoactivity, and behavioral sensitization.

    Science.gov (United States)

    Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B

    2018-02-01

    In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance

  17. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2017-06-01

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  18. A Role for Matrix Metalloproteinases in Nicotine-Induced Conditioned Place Preference and Relapse in Adolescent Female Rats

    Directory of Open Access Journals (Sweden)

    Reka Natarajan

    2013-01-01

    Full Text Available Reconfiguration of extracellular matrix proteins appears to be necessary for the synaptic plasticity that underlies memory consolidation. The primary candidates involved in controlling this process are a family of endopeptidases called matrix metalloproteinases (MMPs; however, the potential role of MMPs in nicotine addiction-related memories has not been adequately tested. Present results indicate transient changes in hippocampal MMP-2, -3, and -9 expression following context dependent learning of nicotine-induced conditioned place preference (CPP. Members of a CPP procedural control group also indicated similar MMP changes, suggesting that memory activation occurred in these animals as well. However, hippocampal MMP-9 expression was differentially elevated in members of the nicotine-induced CPP group on days 4 and 5 of training. Inhibition of MMPs using a broad spectrum MMP inhibitor (FN439 during nicotine-induced CPP training blocked the acquisition of CPP. Elevations in hippocampal and prefrontal cortex MMP-3 expression—but not MMP-2 and -9—accompanied reactivation of a previously learned drug related memory. Decreases in the actin regulatory cytoskeletal protein cortactin were measured in the HIP and PFC during the initial two days of acquisition of CPP; however, no changes were seen following re-exposure to the drug related environment. These results suggest that MMP-9 may be involved in facilitating the intracellular and extracellular events required for the synaptic plasticity underlying the acquisition of nicotine-induced CPP. Furthermore, MMP-3 appears to be important during re-exposure to the drug associated environment. However, rats introduced into the CPP apparatus and given injections of vehicle rather than nicotine during training also revealed a pattern of MMP expression similar to nicotine-induced CPP animals.

  19. Decreased sensitivity to nicotine-induced seizures as a consequence of nicotine pretreatment in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1988-01-01

    Male and female long-sleep (LS) and short-sleep (SS) mice were pretreated with a subseizure-producing dose of nicotine (2.0 mg/kg) 7.5, 15 and 30 minutes prior to challenge with seizure-producing doses of this drug. Nicotine pretreated animals were less susceptible to nicotine-induced seizures than were saline pretreated animals. The latency to seizure following nicotine challenge was greater in nicotine pretreated animals than in saline controls. Nicotine pretreated LS mice show a greater decrease in nicotine-induced seizure susceptibility than do nicotine pretreated SS mice. This decrease in seizure susceptibility is consistent with induction of nicotinic receptor desensitization via nicotine pretreatment. It is hypothesized that LS and SS mice might differ in sensitivity to nicotine in part because they differ in baseline levels of desensitized versus functional nicotinic receptors.

  20. Direct and Passive Prenatal Nicotine Exposure and the Development of Externalizing Psychopathology

    Science.gov (United States)

    Gatzke-Kopp, Lisa M.; Beauchaine, Theodore P.

    2007-01-01

    The association between maternal smoking during pregnancy and childhood antisocial outcomes has been demonstrated repeatedly across a variety of outcomes. Yet debate continues as to whether this association reflects a direct programming effect of nicotine on fetal brain development, or a phenotypic indicator of heritable liability passed from…

  1. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  2. CHRNA3 genotype, nicotine dependence, lung function and disease in the general population

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Nordestgaard, Børge G; Bojesen, Stig E

    2012-01-01

    The CHRNA3 rs1051730 polymorphism has been associated to chronic obstructive pulmonary disease (COPD), lung cancer and nicotine dependence in case-control studies with high smoking exposure; however, its influence on lung function and COPD severity in the general population is largely unknown. We...... genotyped 57,657 adult individuals from the Copenhagen General Population Study, of whom 34,592 were ever-smokers. Information on spirometry, hospital admissions, smoking behaviour and use of nicotinic replacement therapy was recorded. In homozygous (11%), heterozygous (44%) and noncarrier (45%) ever...

  3. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention.

    Science.gov (United States)

    Jacobsen, Leslie K; Slotkin, Theodore A; Mencl, W Einar; Frost, Stephen J; Pugh, Kenneth R

    2007-12-01

    Prenatal exposure to active maternal tobacco smoking elevates risk of cognitive and auditory processing deficits, and of smoking in offspring. Recent preclinical work has demonstrated a sex-specific pattern of reduction in cortical cholinergic markers following prenatal, adolescent, or combined prenatal and adolescent exposure to nicotine, the primary psychoactive component of tobacco smoke. Given the importance of cortical cholinergic neurotransmission to attentional function, we examined auditory and visual selective and divided attention in 181 male and female adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. Groups did not differ in age, educational attainment, symptoms of inattention, or years of parent education. A subset of 63 subjects also underwent functional magnetic resonance imaging while performing an auditory and visual selective and divided attention task. Among females, exposure to tobacco smoke during prenatal or adolescent development was associated with reductions in auditory and visual attention performance accuracy that were greatest in female smokers with prenatal exposure (combined exposure). Among males, combined exposure was associated with marked deficits in auditory attention, suggesting greater vulnerability of neurocircuitry supporting auditory attention to insult stemming from developmental exposure to tobacco smoke in males. Activation of brain regions that support auditory attention was greater in adolescents with prenatal or adolescent exposure to tobacco smoke relative to adolescents with neither prenatal nor adolescent exposure to tobacco smoke. These findings extend earlier preclinical work and suggest that, in humans, prenatal and adolescent exposure to nicotine exerts gender-specific deleterious effects on auditory and visual attention, with concomitant alterations in the efficiency of neurocircuitry supporting auditory attention.

  4. Measurements of Dermal Uptake of Nicotine Directly from Air and Clothing

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Morrison, Glenn; Weschler, Charles J.

    2016-01-01

    Dermal uptake directly from air is a significant contributor to total exposure for certain organic compounds, and has been recently experimentally verified for two phthalates. The objective of the current study was to investigate whether airborne nicotine can be dermally absorbed. Two bare-skinne...

  5. Measurements of dermal uptake of nicotine directly from air and clothing

    DEFF Research Database (Denmark)

    Beko, G.; Morrison, G.; Weschler, Charles J.

    2017-01-01

    In this preliminary study, we have investigated whether dermal uptake of nicotine directly from air or indirectly from clothing can be a meaningful exposure pathway. Two participants wearing only shorts and a third participant wearing clean cotton clothes were exposed to environmental tobacco smo...

  6. Tributyltin exposure alters cytokine levels in mouse serum.

    Science.gov (United States)

    Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M

    2016-11-01

    Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.

  7. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-01-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE 2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE 2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  8. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123

    Science.gov (United States)

    Storey, Granville P.; Heimbigner, Lauren; Walwyn, Wendy M.; Bamford, Nigel S.

    2016-01-01

    Abstract Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following

  9. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy.

    Science.gov (United States)

    Grebenstein, Patricia E; Burroughs, Danielle; Roiko, Samuel A; Pentel, Paul R; LeSage, Mark G

    2015-06-01

    The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. The present study examined these issues in a rodent nicotine self-administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy*

    Science.gov (United States)

    Grebenstein, Patricia E.; Burroughs, Danielle; Roiko, Samuel A.; Pentel, Paul R.; LeSage, Mark G.

    2015-01-01

    Background The FDA is considering reducing the nicotine content in tobacco products as a population-based strategy to reduce tobacco addiction. Research is needed to determine the threshold level of nicotine needed to maintain smoking and the extent of compensatory smoking that could occur during nicotine reduction. Sources of variability in these measures across sub-populations also need to be identified so that policies can take into account the risks and benefits of nicotine reduction in vulnerable populations. Methods The present study examined these issues in a rodent nicotine self- administration model of nicotine reduction policy to characterize individual differences in nicotine reinforcement thresholds, degree of compensation, and elasticity of demand during progressive reduction of the unit nicotine dose. The ability of individual differences in baseline nicotine intake and nicotine pharmacokinetics to predict responses to dose reduction was also examined. Results Considerable variability in the reinforcement threshold, compensation, and elasticity of demand was evident. High baseline nicotine intake was not correlated with the reinforcement threshold, but predicted less compensation and less elastic demand. Higher nicotine clearance predicted low reinforcement thresholds, greater compensation, and less elastic demand. Less elastic demand also predicted lower reinforcement thresholds. Conclusions These findings suggest that baseline nicotine intake, nicotine clearance, and the essential value of nicotine (i.e. elasticity of demand) moderate the effects of progressive nicotine reduction in rats and warrant further study in humans. They also suggest that smokers with fast nicotine metabolism may be more vulnerable to the risks of nicotine reduction. PMID:25891231

  11. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  12. Secondhand Smoke Exposure and Smoke-free Policy in Philadelphia Public Housing.

    Science.gov (United States)

    Klassen, Ann C; Lee, Nora L; Pankiewicz, Aaron; Ward, Rikki; Shuster, Michelle; Ogbenna, Bethany Townsend; Wade, Anita; Boamah, Maxwell; Osayameh, Olufunlayo; Rule, Ana M; Szymkowiak, Dorota; Coffman, Ryan; Bragg, Virginius; Mallya, Giridhar

    2017-04-01

    Multi-unit housing environments remain significant sources of secondhand smoke (SHS) exposure, especially for vulnerable populations in subsidized housing. In Philadelphia, the largest US housing authority to implement smoke-free policies, we measured baseline resident smoking-related behaviors and attitudes, and longitudinal exposures to airborne nicotine, during policy development and implementation. In 4 communities, we collected data in 2013, 2014, and 2016, before and after introduction of comprehensive smoke-free policies, interviewing persons in 172 households, and monitoring air-borne nicotine in non-smoking homes and public areas. Average nicotine level differences across years were estimated with multi-level models. Fifty-six percent of respondents smoked. Only 37% of households were smoke-free, with another 41% restricting smoking by area or time of day. The number of locations with detectable nicotine did not differ before and after policy implementation, with approximately 20% of non-smoking homes and 70%-80% of public areas having detectable nicotine. However, public area nicotine levels were lower in 2016, after policy implementation, than in 2013 and 2014 (-0.19 μg/m 3 , p = .03). Findings suggest that initial policy implementation was associated with reduced SHS exposure in Philadelphia. As HUD strengthens smoke-free policies, SHS monitoring can be useful to educate stakeholders and build support for policy enforcement.

  13. Tobacco Use and Nicotine Dependence among Conflict-Affected Men in the Republic of Georgia

    Directory of Open Access Journals (Sweden)

    Vikram Patel

    2013-05-01

    Full Text Available Background: There is very little evidence globally on tobacco use and nicotine dependence among civilian populations affected by armed conflict, despite key vulnerability factors related to elevated mental disorders and socio-economic stressors. The study aim was to describe patterns of smoking and nicotine dependence among conflict-affected civilian men in the Republic of Georgia and associations with mental disorders. Methods: A cross-sectional household survey using multistage random sampling was conducted in late 2011 among conflict-affected populations in Georgia. Respondents included in this paper were 1,248 men aged ≥18 years who were internally displaced persons (IDPs and former IDPs who had returned in their home areas. Outcomes of current tobacco use, heavy use (≥20 cigarettes per day, and nicotine dependence (using the Fagerström Test for Nicotine Dependence were used. PTSD, depression, anxiety and hazardous alcohol use were also measured, along with exposure to traumatic events and a range of demographic and socio-economic characteristics. Results: Of 1,248 men, 592 (47.4% smoked and 70.9% of current smokers were heavy smokers. The mean nicotine dependence score was 5.0 and the proportion with high nicotine dependence (≥6 was 41.4%. In multivariate regression analyses, nicotine dependence was significantly associated with PTSD (β 0.74 and depression (β 0.85, along with older age (except 65+ years, and being a returnee (compared to IDPs. Conclusions: The study reveals very high levels of heavy smoking and nicotine dependence among conflict-affected persons in Georgia. The associations between nicotine dependence, PTSD and depression suggest interventions could yield synergistic benefits.

  14. Acute nicotine fails to alter event-related potential or behavioral performance indices of auditory distraction in cigarette smokers.

    Science.gov (United States)

    Knott, Verner J; Scherling, Carole S; Blais, Crystal M; Camarda, Jordan; Fisher, Derek J; Millar, Anne; McIntosh, Judy F

    2006-04-01

    Behavioral studies have shown that nicotine enhances performance in sustained attention tasks, but they have not shown convincing support for the effects of nicotine on tasks requiring selective attention or attentional control under conditions of distraction. We investigated distractibility in 14 smokers (7 females) with event-related brain potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, both with and without embedded deviants. Nicotine gum (4 mg), administered in a randomized, double-blind, placebo-controlled crossover design, failed to counter deviant-elicited behavioral distraction (i.e., slower reaction times and increased response errors), and it did not influence the distracter-elicited mismatch negativity, the P300a, or the reorienting negativity ERP components reflecting acoustic change detection, involuntary attentional switching, and attentional reorienting, respectively. Results are discussed in relation to a stimulus-filter model of smoking and in relation to future research directions.

  15. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine.

    Science.gov (United States)

    Grundey, Jessica; Amu, Rosa; Ambrus, Géza Gergely; Batsikadze, Georgi; Paulus, Walter; Nitsche, Michael A

    2015-07-01

    Nicotine has been shown to affect cortical excitability measured using transcranial magnetic stimulation in smoking and non-smoking subjects in different ways. In tobacco-deprived smokers, administration of nicotine restores compromised cortical facilitation while in non-smokers, it enhances cortical inhibition. As cortical excitability and activity are closely linked to cognitive processes, we aimed to explore whether nicotine-induced physiological alterations in non-smokers and smokers are associated with cognitive changes. Specifically, we assessed the impact of nicotine on working memory performance (n-back letter task) and on attentional processes (Stroop interference test) in healthy smokers and non-smokers. Both tasks have been shown to rely on prefrontal areas, and nicotinic receptors are relevantly involved in prefrontal function. Sixteen smoking and 16 non-smoking subjects participated in the 3-back letter task and 21 smoking and 21 non-smoking subjects in the Stroop test after the respective application of placebo or nicotine patches. The results show that working memory and attentional processes are compromised in nicotine-deprived smokers compared to non-smoking individuals. After administration of nicotine, working memory performance in smokers improved, while non-smoking subjects displayed decreased accuracy with increased number of errors. The effects have been shown to be more apparent for working memory performance than attentional processes. In summary, cognitive functions can be restored by nicotine in deprived smokers, whereas non-smokers do not gain additional benefit. The respective changes are in accordance with related effects of nicotine on cortical excitability in both groups.

  16. Toward a comprehensive long term nicotine policy.

    Science.gov (United States)

    Gray, N; Henningfield, J E; Benowitz, N L; Connolly, G N; Dresler, C; Fagerstrom, K; Jarvis, M J; Boyle, P

    2005-06-01

    Global tobacco deaths are high and rising. Tobacco use is primarily driven by nicotine addiction. Overall tobacco control policy is relatively well agreed upon but a long term nicotine policy has been less well considered and requires further debate. Reaching consensus is important because a nicotine policy is integral to the target of reducing tobacco caused disease, and the contentious issues need to be resolved before the necessary political changes can be sought. A long term and comprehensive nicotine policy is proposed here. It envisages both reducing the attractiveness and addictiveness of existing tobacco based nicotine delivery systems as well as providing alternative sources of acceptable clean nicotine as competition for tobacco. Clean nicotine is defined as nicotine free enough of tobacco toxicants to pass regulatory approval. A three phase policy is proposed. The initial phase requires regulatory capture of cigarette and smoke constituents liberalising the market for clean nicotine; regulating all nicotine sources from the same agency; and research into nicotine absorption and the role of tobacco additives in this process. The second phase anticipates clean nicotine overtaking tobacco as the primary source of the drug (facilitated by use of regulatory and taxation measures); simplification of tobacco products by limitation of additives which make tobacco attractive and easier to smoke (but tobacco would still be able to provide a satisfying dose of nicotine). The third phase includes a progressive reduction in the nicotine content of cigarettes, with clean nicotine freely available to take the place of tobacco as society's main nicotine source.

  17. The selectively bred high alcohol sensitivity (HAS) and low alcohol sensitivity (LAS) rats differ in sensitivity to nicotine.

    Science.gov (United States)

    de Fiebre, NancyEllen C; Dawson, Ralph; de Fiebre, Christopher M

    2002-06-01

    Studies in rodents selectively bred to differ in alcohol sensitivity have suggested that nicotine and ethanol sensitivities may cosegregate during selective breeding. This suggests that ethanol and nicotine sensitivities may in part be genetically correlated. Male and female high alcohol sensitivity (HAS), control alcohol sensitivity, and low alcohol sensitivity (LAS) rats were tested for nicotine-induced alterations in locomotor activity, body temperature, and seizure activity. Plasma and brain levels of nicotine and its primary metabolite, cotinine, were measured in these animals, as was the binding of [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin in eight brain regions. Both replicate HAS lines were more sensitive to nicotine-induced locomotor activity depression than the replicate LAS lines. No consistent HAS/LAS differences were seen on other measures of nicotine sensitivity; however, females were more susceptible to nicotine-induced seizures than males. No HAS/LAS differences in nicotine or cotinine levels were seen, nor were differences seen in the binding of nicotinic ligands. Females had higher levels of plasma cotinine and brain nicotine than males but had lower brain cotinine levels than males. Sensitivity to a specific action of nicotine cosegregates during selective breeding for differential sensitivity to a specific action of ethanol. The differential sensitivity of the HAS/LAS rats is due to differences in central nervous system sensitivity and not to pharmacokinetic differences. The differential central nervous system sensitivity cannot be explained by differences in the numbers of nicotinic receptors labeled in ligand-binding experiments. The apparent genetic correlation between ethanol and nicotine sensitivities suggests that common genes modulate, in part, the actions of both ethanol and nicotine and may explain the frequent coabuse of these agents.

  18. Regulation of nicotinic receptor subtypes following chronic nicotinic agonist exposure in M10 and SH-SY5Y neuroblastoma cells

    DEFF Research Database (Denmark)

    Warpman, U; Friberg, L; Gillespie, A

    1998-01-01

    investigated in human neuroblastoma SH-SY5Y cells (expressing alpha3, alpha5, beta2, and beta4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines...

  19. BIS impulsivity and acute nicotine exposure are associated with discounting global consequences in the Harvard game.

    Science.gov (United States)

    Hogarth, Lee; Stillwell, David J; Tunney, Richard J

    2013-01-01

    The Barratt Impulsivity Scale (BIS) provides a transdiagnostic marker for a number of psychiatric conditions and drug abuse, but the precise psychological trait(s) tapped by this questionnaire remain obscure. To address this, 51 smokers completed in counterbalanced order the BIS, a delay discounting task and a Harvard game that measured choice between a response that yielded a high immediate monetary payoff but decreased opportunity to earn money overall (local choice) versus a response that yielded a lower immediate payoff but afforded a greater opportunity to earn overall (global choice). Individual level of BIS impulsivity and self-elected smoking prior to the study were independently associated with increased preference for the local over the global choice in the Harvard game, but not delay discounting. BIS impulsivity and acute nicotine exposure reflect a bias in the governance of choice by immediate reward contingencies over global consequences, consistent with contemporary dual-process instrumental learning theories. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Surveillance of smokeless tobacco nicotine, pH, moisture, and unprotonated nicotine content.

    Science.gov (United States)

    Richter, Patricia; Spierto, Francis W

    2003-12-01

    Smokeless tobacco is a complex chemical mixture, including not only the components of the tobacco leaf but also chemicals added during the manufacturing process. Smokeless tobacco contains the addictive chemical nicotine and more than 20 cancer-causing chemicals, including the potent tobacco-specific nitrosamines. The National Toxicology Program of the National Institutes of Health has concluded that oral use of smokeless tobacco is a human carcinogen. Therefore, smokeless tobacco is not a safe alternative to cigarettes. In fact, smokeless tobacco use begins primarily during early adolescence and can lead to nicotine dependence and increased risk of becoming a cigarette smoker. Under the Comprehensive Smokeless Tobacco Health Education Act of 1986 (15 U.S.C. 4401 et seq., Pub. L. 99-252), tobacco manufacturers report annually to the Centers for Disease Control and Prevention (CDC) on the total nicotine, unprotonated nicotine, pH, and moisture content of their smokeless tobacco products. This information is considered "trade secret," or confidential, in accordance with 5 U.S.C. 552(b)(4) and 18 U.S.C. 1905 and cannot be released to the public. In an effort to provide consumers and researchers with information on the nicotine content of smokeless tobacco, CDC arranged for the analysis of popular brands of smokeless tobacco. The results of this CDC study show that pH is a primary factor in the amount of nicotine that is in the most readily absorbable, unprotonated form. Furthermore, this study found that the brands of moist snuff smokeless tobacco with the largest amount of unprotonated nicotine also are the most frequently sold brands.

  1. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.

  2. Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos

    International Nuclear Information System (INIS)

    Meyer, Armando; Seidler, Frederic J.; Aldridge, Justin E.; Slotkin, Theodore A.

    2005-01-01

    Exposure to apparently unrelated neurotoxicants can nevertheless converge on common neurodevelopmental events. We examined the long-term effects of developmental exposure of rats to terbutaline, a β-adrenoceptor agonist used to arrest preterm labor, and the organophosphorus insecticide chlorpyrifos (CPF) separately and together. Treatments mimicked the appropriate neurodevelopmental stages for human exposures: terbutaline on postnatal days (PN) 2-5 and CPF on PN11-14, with assessments conducted on PN45. Although neither treatment affected growth or viability, each elicited alterations in CNS cell signaling mediated by adenylyl cyclase (AC), a transduction pathway shared by numerous neuronal and hormonal signals. Terbutaline altered signaling in the brainstem and cerebellum, with gender differences particularly notable in the cerebellum (enhanced AC in males, suppressed in females). By itself, CPF exposure elicited deficits in AC signaling in the midbrain, brainstem, and striatum. However, sequential exposure to terbutaline followed by CPF produced larger alterations and involved a wider spectrum of brain regions than were obtained with either agent alone. In the cerebral cortex, adverse effects of the combined treatment intensified between PN45 and PN60, suggesting that exposures alter the long-term program for development of synaptic communication, leading to alterations in AC signaling that emerge even after adolescence. These findings indicate that terbutaline, like CPF, is a developmental neurotoxicant, and reinforce the idea that its use in preterm labor may create a subpopulation that is sensitized to long-term CNS effects of organophosphorus insecticides

  3. Multimodal Neuroimaging Differences in Nicotine Abstinent vs. Satiated Smokers.

    Science.gov (United States)

    Chaarani, Bader; Spechler, Philip A; Ivanciu, Alexandra; Snowe, Mitchell; Nickerson, Joshua P; Higgins, Stephen T; Garavan, Hugh

    2018-04-06

    Research on cigarette smokers suggests cognitive and behavioral impairments. However, much remains unclear how the functional neurobiology of smokers is influenced by nicotine state. Therefore, we sought to determine which state, be it acute nicotine abstinence or satiety, would yield the most robust differences compared to non-smokers when assessing neurobiological markers of nicotine dependence. Smokers(N=15) and sociodemographically matched non-smokers(N=15) were scanned twice using a repeated-measures design. Smokers were scanned after a 24-hour nicotine abstinence, and immediately after smoking their usual brand cigarette. The neuroimaging battery included a stop-signal task of response inhibition and pseudo-continuous arterial spin labeling to measure cerebral blood flow (CBF). Whole brain voxel-wise ANCOVAs were carried out on stop success and stop fail SST contrasts and CBF maps to assess differences among non-, abstinent and satiated smokers. Cluster-correction was performed using AFNI's 3dClustSim to achieve a significance of pSmokers exhibited higher brain activation in bilateral inferior frontal gyrus (IFG), a brain region known to be involved in inhibitory control, during successful response inhibitions relative to non-smokers. This effect was significantly higher during nicotine abstinence relative to satiety. Smokers also exhibited lower CBF in the bilateral IFG than non-smokers. These hypo-perfusions were not different between abstinence and satiety. These findings converge on alterations in smokers in prefrontal circuits known to be critical for inhibitory control. These effects are present, even when smokers are satiated, but the neural activity required to achieve performance equal to controls is increased when smokers are in acute abstinence. Our multi-modal neuroimaging study gives neurobiological insights into the cognitive demands of maintaining abstinence and suggest targets for assessing the efficacy of therapeutic interventions.

  4. The effects of nicotine and non-nicotine smoking factors on working memory and associated brain function.

    Science.gov (United States)

    McClernon, Francis Joseph; Froeliger, Brett; Rose, Jed E; Kozink, Rachel V; Addicott, Merideth A; Sweitzer, Maggie M; Westman, Eric C; Van Wert, Dana M

    2016-07-01

    Smoking abstinence impairs executive function, which may promote continued smoking behavior and relapse. The differential influence of nicotine and non-nicotine (i.e. sensory, motor) smoking factors and related neural substrates is not known. In a fully factorial, within-subjects design, 33 smokers underwent fMRI scanning following 24 hours of wearing a nicotine or placebo patch while smoking very low nicotine content cigarettes or remaining abstinent from smoking. During scanning, blood oxygenation level-dependent (BOLD) signal was acquired while participants performed a verbal N-back task. Following 24-hour placebo (versus nicotine) administration, accuracy on the N-back task was significantly worse and task-related BOLD signal lower in dorsomedial frontal cortex. These effects were observed irrespective of smoking. Our data provide novel evidence that abstinence-induced deficits in working memory and changes in underlying brain function are due in large part to abstinence from nicotine compared with non-nicotine factors. This work has implications both for designing interventions that target abstinence-induced cognitive deficits and for nicotine-reduction policy. © 2015 Society for the Study of Addiction.

  5. Isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines

    International Nuclear Information System (INIS)

    Lukas, R.J.; Cullen, M.J.

    1988-01-01

    An isotopic rubidium ion efflux assay has been developed for the functional characterization of nicotinic acetylcholine receptors on cultured neurons. This assay first involves the intracellular sequestration of isotopic potassium ion analog by the ouabain-sensitive action of a sodium-potassium ATPase. Subsequently, the release of isotopic rubidium ion through nicotinic acetylcholine receptor-coupled monovalent cation channels is activated by application of nicotinic agonists. Specificity of receptor-mediated efflux is demonstrated by its sensitivity to blockade by nicotinic, but not muscarinic, antagonists. The time course of agonist-mediated efflux, within the temporal limitations of the assay, indicates a slow inactivation of receptor function on prolonged exposure to agonist. Dose-response profiles (i) have characteristic shapes for different nicotinic agonists, (ii) are described by three operationally defined parameters, and (iii) reflect different affinities of agonists for binding sites that control receptor activation and functional inhibition. The rubidium ion efflux assay provides fewer hazards but greater sensitivity and resolution than isotopic sodium or rubidium ion influx assays for functional nicotinic receptors

  6. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    Science.gov (United States)

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  7. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  8. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  9. Analysis of nicotine and cotinine in hair by on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry as biomarkers of exposure to tobacco smoke.

    Science.gov (United States)

    Inukai, Takehito; Kaji, Sanae; Kataoka, Hiroyuki

    2018-07-15

    Smoking not only increases the risk of lung cancer but is strongly related to the onset of cardiovascular disease. Particularly, passive smoking due to sidestream smoke is a critical public health problem. To assess active and passive exposure to tobacco smoke, we developed a simple and sensitive method, consisting of on-line in-tube solid phase microextraction (SPME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), to determine nicotine and its metabolite cotinine in hair samples. These compounds were separated within 5 min using a Polar-RP80A column and detected in the positive ion mode by multiple reaction monitoring. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample at a flow rate of 200 μL/min using a Carboxen 1006 capillary column as an extraction device. The extracted compounds in the stationary phase on the inner wall of the capillary could be dissolved easily into the mobile phase and transferred to an LC column. Using the in-tube SPME LC-MS/MS method, the calibration curves were linear in the 5-1000 pg/mL ranges for nicotine and cotinine, and the detection limits (signal to noise ratio of 3) were 0.45 and 0.13 pg/mL, respectively. The intra-day and inter-day precisions were below 3.4% and 6.0% (n = 5), respectively. This method was utilized successfully to analyze pg/mg levels of nicotine and cotinine in 1 mg of hairs without interference peaks, and good recoveries were obtained. The concentration of cotinine in hair was two orders of magnitude lower than that of nicotine, but a good positive correlation was found between the concentrations of these compounds. This method can automate the extraction, concentration and analysis of samples, and is useful for the assessment of long-term exposure to tobacco smoke. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Hurricane Sandy Exposure Alters the Development of Neural Reactivity to Negative Stimuli in Children.

    Science.gov (United States)

    Kessel, Ellen M; Nelson, Brady D; Kujawa, Autumn; Hajcak, Greg; Kotov, Roman; Bromet, Evelyn J; Carlson, Gabrielle A; Klein, Daniel N

    2018-03-01

    This study examined whether exposure to Hurricane Sandy-related stressors altered children's brain response to emotional information. An average of 8 months (M age  = 9.19) before and 9 months after (M age  = 10.95) Hurricane Sandy, 77 children experiencing high (n = 37) and low (n = 40) levels of hurricane-related stress exposure completed a task in which the late positive potential, a neural index of emotional reactivity, was measured in response to pleasant and unpleasant, compared to neutral, images. From pre- to post-Hurricane Sandy, children with high stress exposure failed to show the same decrease in emotional reactivity to unpleasant versus neutral stimuli as those with low stress exposure. Results provide compelling evidence that exposure to natural disaster-related stressors alters neural emotional reactivity to negatively valenced information. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  11. Low Nicotine Content Descriptors Reduce Perceived Health Risks and Positive Cigarette Ratings in Participants Using Very Low Nicotine Content Cigarettes.

    Science.gov (United States)

    Denlinger-Apte, Rachel L; Joel, Danielle L; Strasser, Andrew A; Donny, Eric C

    2017-10-01

    Understanding how smokers perceive reduced nicotine content cigarettes will be important if the FDA and global regulatory agencies implement reduced nicotine product standards for cigarettes. Prior research has shown that some smokers incorrectly believe "light" cigarettes are less harmful than regular cigarettes. Similar misunderstandings of health risk could also apply to reduced nicotine cigarettes. To date, most studies of reduced nicotine cigarettes have blinded subjects to the nicotine content. Therefore, little is known about how smokers experience reduced nicotine content cigarettes when they are aware of the reduced content, and how use may be impacted. The present study was a within-subjects experiment with 68 adult daily smokers who smoked two identical very low nicotine content Quest 3 (0.05 mg nicotine yield) cigarettes. Subjects were told that one cigarette contained "average" nicotine content, and the other contained "very low" nicotine content. After smoking each cigarette, subjects completed subjective measures about their smoking experience. Subjects rated the "very low" nicotine cigarette as less harmful to their health overall compared to the "average" nicotine cigarette; this effect held true for specific smoking-related diseases. Additionally, they rated the "very low" nicotine cigarette as having less desirable subjective effects than the "average" nicotine cigarette and predicted having greater interest in quitting smoking in the future if only the "very low" nicotine cigarette was available. Explicit knowledge of very low nicotine content changes smokers' perceptions of very low nicotine content cigarettes, resulting in reduced predicted harm, subjective ratings and predicted future use. Before a reduced nicotine product standard for cigarettes can be implemented, it is important to understand how product information impacts how smokers think about and experience very low nicotine content cigarettes. Prior research has shown that smokers

  12. The Association between Potential Exposure to Magazine Ads with Voluntary Health Warnings and the Perceived Harmfulness of Electronic Nicotine Delivery Systems (ENDS).

    Science.gov (United States)

    Shang, Ce; Weaver, Scott R; Zahra, Nahleen; Huang, Jidong; Cheng, Kai-Wen; Chaloupka, Frank J

    2018-03-23

    (1) Background: Several brands of electronic nicotine delivery systems (ENDS) carry voluntary health warning messages. This study examined how potential exposure to ENDS magazine ads with these voluntary health warnings were associated with the perceived harmfulness of ENDS. (2) Methods: Risk perception measures and self-reported exposure to ENDS ads were obtained from the 2014 Georgia State University (GSU) Tobacco Products and Risk Perceptions Survey of a nationally representative sample of U.S. adults. We examined the association between potential exposure to magazine ads with warnings and the perceived harms of ENDS relative to cigarettes, using binary logistic regressions and controlling for general ENDS ad exposure and socio-demographic characteristics. (3) Results: Potential exposure to ENDS magazine ads with warnings was associated with a lower probability of considering ENDS to be more or equally harmful compared to cigarettes, particularly among non-smokers (OR = 0.16; 95% CI: 0.04-0.77). In addition, ad exposure, ENDS use history, race/ethnicity, gender, education, and income were also associated with harm perceptions. (4) Conclusions: This study did not find evidence that magazine ads with warnings increased misperceptions that ENDS are equally or more harmful than cigarettes. With more ENDS advertisements carrying warnings, more research is needed to determine how the warnings in advertisements convey relative harm information to consumers and the public.

  13. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  14. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem

    International Nuclear Information System (INIS)

    Machaalani, Rita; Say, Meichien; Waters, Karen A.

    2011-01-01

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident. -- Highlights: ► The ‘normal’ response to smoke exposure is decreased α7 and β2 in certain nuclei. ► SIDS infants have decreased α7 in cNTS, Grac and Cun. ► SIDS infants have decreased β2 in cNTS and increased β2 in facial. ► The NTS is more sensitive to both α7 and β2 regulation in SIDS. ► Smoke exposure

  15. The effect of nicotine on the mechanical properties of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ruiz JP

    2012-03-01

    Full Text Available Juan P Ruiz1,2, Daniel Pelaez1,2, Janice Dias1, Noël M Ziebarth1, Herman S Cheung1,21Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, USA; 2Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, FL, USAPurpose: To measure the elasticity of the nucleus and cytoplasm of human mesenchymal stem cells (MSCs as well as changes brought about by exposure to nicotine in vitro.Methods: MSCs were synchronized to the G0 stage of the cell cycle through serum deprivation techniques. The cells were then treated with medium containing nicotine (0.1 µM, 0.5 µM, and 1 µM. Atomic force microscopy was then used to measure the Young’s modulus of both the nucleus and cytoplasm of these cells.Results: For both unsynchronized and synchronized cells, the nucleus was softer than the cytoplasm, although this difference was not found to be statistically significant. The nucleus of cells treated with nicotine was significantly stiffer than the control for all concentrations. The cytoplasm was significantly stiffer in nicotine-treated cells than in control cells for the 0.5 µM and 1.0 µM concentrations only.Conclusions: The results of this study could suggest that nicotine affects the biophysical properties of human MSCs in a dose-dependent manner, which may render the cells less responsive to mechanoinduction and other physical stimuli.Keywords: atomic force microscopy, elasticity, mesenchymal stem cells, nicotine

  16. Effects of nicotine versus placebo e-cigarette use on symptom relief during initial tobacco abstinence.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L; Michael, Valerie C

    2017-08-01

    Because electronic cigarettes (e-cigs) containing nicotine may relieve smoking abstinence symptoms similar to nicotine replacement therapy medication, we used within-subjects designs to test these effects with a first-generation e-cig in nonquitting and quitting smokers. In Study 1, 28 nontreatment-seeking smokers abstained overnight prior to each of 3 sessions. Minnesota Nicotine Withdrawal Scale (MNWS) withdrawal (and craving item) relief was assessed following 4 exposures (each 10 puffs) over 2 hr to e-cigs that either did (36 mg/ml) or did not (i.e., placebo, 0 mg/ml) contain nicotine or after no e-cig. Relief was greater after nicotine versus placebo e-cig (p < .05) but not after placebo versus no e-cig, showing relief was due to nicotine per se and not simple e-cig use behavior. Using a crossover design in Study 2, smokers preparing to quit soon engaged in 2 experimental 4-day quit periods on separate weeks. In weeks 1 and 3, all received a nicotine or placebo e-cig on Monday to use ad libitum while trying to abstain from smoking on Tuesday through Friday. (Week 2 involved resumption of ad libitum smoking.) MNWS and Questionnaire of Smoking Urges (QSU) craving were assessed at daily visits following 24-hr abstinence. Of 17 enrolled, 12 quit for ≥24 hr at least once, allowing test of relief because of e-cig use on quit days. Withdrawal and craving were reduced because of nicotine versus placebo e-cig use (both p < .05). In sum, compared with placebo e-cigs, nicotine e-cigs can relieve smoking abstinence symptoms, perhaps in a manner similar to Food and Drug Administration-approved nicotine replacement therapy products, although much more research with larger samples is needed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  18. Pharmacokinetics of nicotine following the controlled use of a prototype novel tobacco vapor product.

    Science.gov (United States)

    Yuki, Dai; Sakaguchi, Chikako; Kikuchi, Akira; Futamura, Yasuyuki

    2017-07-01

    The objective of this clinical study was to investigate the pharmacokinetics of nicotine following the use of a prototype novel tobacco vapor (PNTV) product in comparison to a conventional cigarette (CC1). The study was conducted in Japanese healthy adult male smokers, using an open-label, randomized, two-period crossover design, to assess the pharmacokinetics of nicotine after controlled use of a PNTV product or CC1. During the study period, blood samples were drawn from subjects for the measurement of plasma nicotine concentrations and nicotine intake was estimated from the mouth level exposure (MLE). The C max and AUC last following the use of PNTV product were 45.7% and 68.3%, respectively, of those obtained with CC1 and there were no significant differences in the tmax and t 1/2 between PNTV product and CC1. The estimated MLE following the use of PNTV product was approximately two-thirds of that obtained following the smoking of CC1, but the relative bioavailability of PNTV product to CC1 was approximately 104%. The differences in C max and AUC last between PNTV product and CC1 therefore are explained by differences in nicotine intake. These results suggest that the PNTV product shows a similar pharmacokinetic profile to CC1, while delivering less nicotine following controlled use. Copyright © 2017 Japan Tobacco Inc. Published by Elsevier Inc. All rights reserved.

  19. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  20. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes

    International Nuclear Information System (INIS)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem

    2015-01-01

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kg bw/day BPA for a period encompassing the first three reproductive cycles (12–15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. - Highlights: • Bisphenol A targets the fertilization ability of oocytes. • Bisphenol A does not alter ovulation. • Young adult females may be susceptible to the effects of bisphenol A on fertilization.

  1. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México (Mexico); Sánchez-Gutiérrez, Manuel [Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42000, México (Mexico); Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México D.F. 07360, México (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, México D.F. 07738, México (Mexico); and others

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kg bw/day BPA for a period encompassing the first three reproductive cycles (12–15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. - Highlights: • Bisphenol A targets the fertilization ability of oocytes. • Bisphenol A does not alter ovulation. • Young adult females may be susceptible to the effects of bisphenol A on fertilization.

  2. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    Directory of Open Access Journals (Sweden)

    Linzy M. Hendrickson

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  3. Effects of acute nicotine on event-related potential and performance indices of auditory distraction in nonsmokers.

    Science.gov (United States)

    Knott, Verner J; Bolton, Kiley; Heenan, Adam; Shah, Dhrasti; Fisher, Derek J; Villeneuve, Crystal

    2009-05-01

    Although nicotine has been purported to enhance attentional processes, this has been evidenced mostly in tasks of sustained attention, and its effects on selective attention and attentional control under conditions of distraction are less convincing. This study investigated the effects of nicotine on distractibility in 21 (11 males) nonsmokers with event-related potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, with and without imbedded deviants. Administered in a randomized, double-blind, placebo-controlled crossover design, nicotine gum (6 mg) failed to counter deviant-elicited behavioral distraction characterized by longer reaction times and increased response errors. Of the deviant-elicited ERP components, nicotine did not alter the P3a-indexed attentional switching to the deviant, but in females, it tended to diminish the automatic processing of the deviant as shown by a smaller mismatch negativity component, and it attenuated attentional reorienting following deviant-elicited distraction, as reflected by a reduced reorienting negativity ERP component. Results are discussed in relation to attentional models of nicotine and with respect to future research directions.

  4. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    Science.gov (United States)

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    Science.gov (United States)

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2013-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity—nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats. PMID:22326965

  6. Assessment of nicotine concentration in electronic nicotine delivery system (ENDS) liquids and precision of dosing to aerosol.

    Science.gov (United States)

    Kosmider, Leon; Sobczak, Andrzej; Szołtysek-Bołdys, Izabela; Prokopowicz, Adam; Skórka, Agnieszka; Abdulafeez, Oluyadi; Koszowski, Bartosz

    2015-01-01

    Global use of electronic nicotine delivery systems (ENDS; also called electronic cigarettes, e-cigarettes) has increased dramatically in recent years. However, due to the limited safety studies and growing concerns on the potential toxicity from long term use of ENDS, many national and international governments have employed regulatory measures to curtail its use. One of the most significant challenges regulators of ENDS encounter is the lack of quality standards to assess ENDS, e-liquid (solution used with ENDS which contain nicotine--a highly toxic and addictive substance), and amount of nicotine delivery to aerosol during ENDS use. Aims of the study were to (1) measure and compare nicotine concentration in e-liquids to values reported by manufacturers on packaging labels; (2) assess the precision of nicotine delivery from tank during aerosol formation. Methods: Nine popular Polish e-liquids (based on the market share data from October 2014) were purchased for the study. The labelled nicotine concentration for the selected e-liquids ranged between 11-25 mg/mL. All e-liquids were aerosolized in the laboratory using a smoking simulation machine (Palaczbot). Each e-liquid was aerosolized in a series of 6 consecutive bouts. A single bout consisted of 15 puffs with the following puff topography: 65 mL puff volume, 2.8 sec. puff duration, and 19 sec. interpuff interval. A total of 90 puffs were generated from each e-liquid. Nicotine content in the e-liquids and the aerosol generated were determined by gas chromatography with thermionic sensitive detection (GC-TSD). For seven of nine analyzed e-liquids, the difference between measured and manufacturer labeled nicotine concentration was less than 10%. Nicotine dose in aerosol per bout ranged between 0.77-1.49 mg (equivalent to one-half the nicotine a smoker inhales from a single combustible cigarette). Our analysis showed the high consistency between the labeled and measured nicotine concentration for popular on the

  7. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  8. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    Science.gov (United States)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC 50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl - channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm

    International Nuclear Information System (INIS)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F.; Sadek, Bassem; Oz, Murat

    2017-01-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100 μM)-induced currents with an IC 50 value of 24.7 μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl − channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25 mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.

  10. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization.

    Science.gov (United States)

    Zhao, Zongmin; Hu, Yun; Harmon, Theresa; Pentel, Paul; Ehrich, Marion; Zhang, Chenming

    2017-09-01

    A lipid-polymeric hybrid nanoparticle-based next-generation nicotine nanovaccine was rationalized in this study to combat nicotine addiction. A series of nanovaccines, which had nicotine-haptens localized on carrier protein (LPKN), nanoparticle surface (LPNK), or both (LPNKN), were designed to study the impact of hapten localization on their immunological efficacy. All three nanovaccines were efficiently taken up and processed by dendritic cells. LPNKN induced a significantly higher immunogenicity against nicotine and a significantly lower anti-carrier protein antibody level compared to LPKN and LPNK. Meanwhile, it was found that the anti-nicotine antibodies elicited by LPKN and LPNKN bind nicotine stronger than those elicited by LPKN, and LPNK and LPNKN resulted in a more balanced Th1-Th2 immunity than LPKN. Moreover, LPNKN exhibited the best ability to block nicotine from entering the brain of mice. Collectively, the results demonstrated that the immunological efficacy of the hybrid nanoparticle-based nicotine vaccine could be enhanced by modulating hapten localization, providing a promising strategy to combatting nicotine addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J

    2018-03-01

    Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.

  12. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Renal transport and metabolism of nicotinic acid

    International Nuclear Information System (INIS)

    Schuette, S.; Rose, R.C.

    1986-01-01

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [ 3 H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [ 14 C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14 C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  14. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    Science.gov (United States)

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  15. Sleep quality during exam stress: the role of alcohol, caffeine and nicotine.

    Science.gov (United States)

    Zunhammer, Matthias; Eichhammer, Peter; Busch, Volker

    2014-01-01

    Academic exam stress is known to compromise sleep quality and alter drug consumption in university students. Here we evaluated if sleeping problems and changes in legal drug consumption during exam stress are interrelated. We used the Pittsburgh Sleep Quality Index (PSQI) to survey sleep quality before, during, and after an academic exam period in 150 university students in a longitudinal questionnaire study. Self-reports of alcohol, caffeine, and nicotine consumption were obtained. The Perceived Stress Questionnaire (PSQ-20) was used as a measure of stress. Sleep quality and alcohol consumption significantly decreased, while perceived stress and caffeine consumption significantly increased during the exam period. No significant change in nicotine consumption was observed. In particular, students shortened their time in bed and showed symptoms of insomnia. Mixed model analysis indicated that sex, age, health status, as well as the amounts of alcohol and caffeine consumed had no significant influence on global sleep quality. The amount of nicotine consumed and perceived stress were identified as significant predictors of diminished sleep quality. Nicotine consumption had a small-to-very-small effect on sleep quality; perceived stress had a small-to-moderate effect. In conclusion, diminished sleep quality during exam periods was mainly predicted by perceived stress, while legal drug consumption played a minor role. Exam periods may pose an interesting model for the study of stress-induced sleeping problems and their mechanisms.

  16. Interaction between Harmane and Nicotinic in the Passive Avoidance Test

    Directory of Open Access Journals (Sweden)

    M Piri

    2011-01-01

    Full Text Available Introduction & Objective: A number of β-carboline alkaloids such as harmane are naturally present in the human food chain. Furthermore, some plants which contain β-carboline have behavioral effects such as hallucination. In the present study, the effect of intra-dorsal hippocampus injection of nicotinic receptor agonist on memory impairment induced by harmane was examined in mice. Materials & Methods: This study was conducted at Shahid Beheshti University in 2009. Two hundred and forty mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride, plus xylazine which afterwards were placed in a stereotaxic apparatus. Two cannuale were placed in the CA1 regions of the dorsal hippocampus. All animals were allowed to recover for a total week before beginning of the behavioral testing. After that, the animals were trained in a step-down type inhibitory avoidance task and tested 24 hours after training to measure step-down latency as a scale of memory. Results: Pre-training and post-training, intra-peritoneal injection of harmane impairs inhibitory avoidance memory, but pre-testing injection of harmane did not alter memory retrieval. Pre-testing administration of high dose of nicotine (0.5 µg/mice, intra-CA1 decreased memory retrieval. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 2.5 µg/mice fully reversed harmane induced impairment of memory. Conclusion: The present results indicated that complex interaction exists between nicotinic receptor of dorsal hippocampus and the impairment of inhibitory avoidance memory induced by harmane.

  17. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  18. Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse.

    Science.gov (United States)

    Holliday, Erica; Gould, Thomas J

    2016-06-01

    In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Adolescents' understanding and use of nicotine in e-cigarettes.

    Science.gov (United States)

    Pepper, Jessica K; Farrelly, Matthew C; Watson, Kimberly A

    2018-07-01

    Nicotine harms adolescent brain development and contributes to addiction. Some adolescents report using nicotine-free e-cigarettes, but the accuracy of their reporting is unclear. We explored adolescents' use of nicotine-free e-cigarettes and understanding of chemicals in e-cigarettes, including nicotine. Using social media, we recruited 1589 US adolescents (aged 15-17) who reported past 30-day use of e-cigarettes in 2016. We assessed perceptions of the nicotine source in e-liquid and whether e-cigarette aerosol is just "water vapor." We explored differences among adolescents who usually used e-cigarettes with nicotine (n = 473) and without nicotine (n = 452). We used weights to calibrate our sample to the Youth Risk Behavior Survey. Twenty-nine percent usually used e-cigarettes without nicotine, 28% with nicotine, 39% with "both," and 5% were "not sure." Few participants (17% of non-nicotine users vs. 34% of nicotine users, p e-cigarette aerosol was just water vapor were more likely to usually use without nicotine. Older adolescents and current tobacco users were less likely to usually use without nicotine. The adolescents who reported usually using e-cigarettes without nicotine had poorer knowledge of e-cigarettes. This lack of understanding could contribute to inaccurate reporting of nicotine use. Most youth thought the nicotine in e-cigarettes was artificial, potentially indicating a belief that this nicotine is "safer." The US Food & Drug Administration will require nicotine warnings on e-cigarettes in 2018; a complementary educational campaign could address youths' misperceptions about nicotine and other chemicals in e-cigarette aerosol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Vitamin E Nicotinate

    Directory of Open Access Journals (Sweden)

    Kimbell R. Duncan

    2017-03-01

    Full Text Available Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate.

  1. Determination of nicotine content in teeth submitted to prophylaxis and in-office bleaching by gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    de Geus, Juliana L; Beltrame, Flávio L; Wang, Mei; Avula, Bharathi; Khan, Ikhlas A; Loguercio, Alessandro D; Kossatz, Stella; Reis, Alessandra

    2018-02-21

    The objective of this study was to evaluate the dental color exposed to acute cigarette smoke treatment and quantify the amount of nicotine in samples exposed to cigarette smoke, after dental prophylaxis and after in-office bleaching. Sixty-nine healthy human molars were subjected to cigarette smoke in a cigarette machine. The teeth were divided into three groups: positive control, prophylaxis, and bleaching. Forty cycles of smoke exposition with duration of 15 min each were performed using 10 cigarettes (positive control). Dental prophylaxis was performed with a rotating brush and prophylaxis paste; in-office bleaching was performed with 35% hydrogen peroxide, in two sessions of three 15-min applications, with a 1-week interval between sessions. The color was evaluated at the baseline, after exposure to cigarette smoke, after dental prophylaxis, and after in-office bleaching. Teeth from each group were powdered and analyzed by gas chromatography-mass spectrometry in order to measure the amount of nicotine present in each group. Data from quantification of nicotine and color change were analyzed by one-way ANOVA and Tukey's test (α = 0.05). Data for subjective and objective color evaluation, a perceptible dental darkening occurred in teeth after exposure to cigarette smoke. Dental prophylaxis was able to recover the original color of teeth however, only after bleaching teeth became whiter than at the baseline (p bleaching group (0.8 ± 0.3 μg/g) (p bleaching with 35% hydrogen peroxide can partially remove the nicotine from tobacco smoke. However, when in-office bleaching was applied, a more significant nicotine removal was achieved. Dental prophylaxis could remove most of the external nicotine-staining on the tooth surfaces while bleaching could further reduce the external and internal nicotine-staining of teeth.

  2. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  3. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value.

    Science.gov (United States)

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-08-21

    To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a

  4. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...... in diseases such as schizophrenia and Alzheimer's disease. Furthermore, α7 nAChR agonists and allosteric modulators differentially alter expression and functionality of the α7 nAChR with repeated administration, which suggests that there may be fundamentally different outcomes of long-term administration...... with these different types of compounds. Finally, we describe the special case of Aβ1-42 binding to the α7 nAChR, which may pose a unique challenge to drug development of α7 nAChR-specific ligands for Alzheimer's disease. Hopefully, a greater knowledge of the many factors influencing α7 nAChR function as well...

  5. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  6. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  7. Association of nicotine metabolism and sex with relapse following varenicline and nicotine replacement therapy.

    Science.gov (United States)

    Glatard, Anaïs; Dobrinas, Maria; Gholamrezaee, Mehdi; Lubomirov, Rubin; Cornuz, Jacques; Csajka, Chantal; Eap, Chin B

    2017-10-01

    Nicotine is metabolized into cotinine and then into trans-3'-hydroxycotinine, mainly by cytochrome P450 2A6. Recent studies reported better effectiveness of varenicline in women and in nicotine normal metabolizers phenotypically determined by nicotine-metabolite ratio. Our objective was to study the influence of nicotine-metabolite ratio, CYP2A6 genotype and sex on the response to nicotine replacement therapy and varenicline. Data were extracted from a longitudinal study which included smokers participating in a smoking cessation program. Response to treatment was defined by the absence of relapse when a set threshold of reduction in cigarettes per day relative to the week before the study was no more reached. The analysis considered total and partial reduction defined by a diminution of 100% and of 90% in cigarettes per day, respectively. The hazard ratio of relapsing was estimated in multivariate Cox regression models including the sex and the nicotine metabolism determined by the phenotype or by CYP2A6 genotyping (rs1801272 and rs28399433). In the normal metabolizers determined by phenotyping and in women, the hazard ratio for relapsing was significantly lower with varenicline for a partial decrease (HR = 0.33, 95% CI [0.12, 0.89] and HR = 0.20, 95% CI [0.04, 0.91], respectively) and nonsignificantly lower for a total cessation (HR = 0.45, 95% CI [0.20, 1.0] and HR = 0.38, 95% CI [0.14, 1.0]). When compared with the normal metabolizers determined by phenotyping, the hazard ratio for a partial decrease was similar in the normal metabolizers determined by genotyping (HR = 0.42, 95% CI [0.18, 0.94]) while it was significantly lower with varenicline for a total cessation (HR = 0.50, 95% CI [0.26, 0.98]). Women and normal nicotine metabolizers may benefit more from varenicline over nicotine replacement therapy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Nicotine promotes proliferation and collagen synthesis of chondrocytes isolated from normal human and osteoarthritis patients.

    Science.gov (United States)

    Ying, Xiaozhou; Cheng, Shaowen; Shen, Yue; Cheng, Xiaojie; An Rompis, Ferdinand; Wang, Wei; Lin, Zhongqin; Chen, Qingyu; Zhang, Wei; Kou, Dongquan; Peng, Lei; Tian, Xin Qiao; Lu, Chuan Zhu

    2012-01-01

    The aims of the study were to show the direct effect of nicotine with different concentrations (0, 25, 50, and 100 ng/ml) on chondrocytes isolated from normal human and osteoarthritis patients, respectively. Microscopic observation was performed during the culture with an inverted microscope. Methyl thiazolyl tetrazolium (MTT) assay method was adopted to observe the influence of nicotine on the proliferation of chondrocytes, and real-time PCR and ELISA were used to assay the mRNA and protein expression of type II collagen and aggrecan, respectively. We discovered that the OA chondrocytes were similar to fibroblasts in shape and grow slower than normal chondrocytes. The proliferation of the two kinds of chondrocytes was increased in a concentration-dependent manner and in a time-dependent manner (P<0.05). Also, we found that the mRNA level of type II collagen were upregulated under 25-100 ng/ml nicotine doses both in the two kinds of chondrocytes compared with control. The expression of protein levels of type II collagen were synthesized in line with the increase in mRNA. No effect was observed on aggrecan synthesis with any nicotine dose. We concluded that nicotine has the same effect on both chondrocytes, obtained either from osteoarthritis patients or from normal human, and the positive effect of smoking in OA may relate to the alteration in metabolism of chondrocytes.

  9. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Science.gov (United States)

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  10. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Directory of Open Access Journals (Sweden)

    Dana E. Lauterstein

    2016-04-01

    Full Text Available Electronic cigarettes (e-cigarettes, battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation throughout gestation (3 h/day; 5 days/week to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq. Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  11. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    Science.gov (United States)

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  12. Guidance to employers on integrating e-cigarettes/electronic nicotine delivery systems into tobacco worksite policy.

    Science.gov (United States)

    Whitsel, Laurie P; Benowitz, Neal; Bhatnagar, Aruni; Bullen, Chris; Goldstein, Fred; Matthias-Gray, Lena; Grossmeier, Jessica; Harris, John; Isaac, Fikry; Loeppke, Ron; Manley, Marc; Moseley, Karen; Niemiec, Ted; OʼBrien, Vince; Palma-Davis, LaVaughn; Pronk, Nico; Pshock, Jim; Stave, Gregg M; Terry, Paul

    2015-03-01

    In recent years, new products have entered the marketplace that complicate decisions about tobacco control policies and prevention in the workplace. These products, called electronic cigarettes (e-cigarettes) or electronic nicotine delivery systems, most often deliver nicotine as an aerosol for inhalation, without combustion of tobacco. This new mode of nicotine delivery raises several questions about the safety of the product for the user, the effects of secondhand exposure, how the public use of these products should be handled within tobacco-free and smoke-free air policies, and how their use affects tobacco cessation programs, wellness incentives, and other initiatives to prevent and control tobacco use. In this article, we provide a background on e-cigarettes and then outline key policy recommendations for employers on how the use of these new devices should be managed within worksite tobacco prevention programs and control policies.

  13. Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice.

    Science.gov (United States)

    Caruso, M J; Reiss, D E; Caulfield, J I; Thomas, J L; Baker, A N; Cavigelli, S A; Kamens, H M

    2018-04-01

    suggest that the altered nicotine responses observed in CVSS males may be associated with HPA dysregulation. Taken together, adolescent social stress influences later-life nicotine responses and exploratory behavior. However, there is little evidence of an association between nicotine responses and prototypical anxiety-like behavior or social avoidance in BALB/cJ mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    Science.gov (United States)

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  15. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking.

    Directory of Open Access Journals (Sweden)

    Islam Gamaleddin

    Full Text Available Over the last decade there have been significant advances in the discovery and understanding of the cannabinoid system along with the development of pharmacologic tools that modulate its function. Characterization of the crosstalk between nicotine addiction and the cannabinoid system may have significant implications on our understanding of the neurobiological mechanisms underlying nicotine dependence. Two types of cannabinoid receptors (CB1 and CB2 have been identified. CB1 receptors are expressed in the brain and modulate drug taking and drug seeking for various drugs of abuse, including nicotine. CB2 receptors have been recently identified in the brain and have been proposed to play a functional role in mental disorders and drug addiction. Our objective was to explore the role of CB2 receptors on intravenous nicotine self administration under two schedules of reinforcement (fixed and progressive ratio and on nicotine seeking induced by nicotine priming or by nicotine associated cues. For this, we evaluated the effects of various doses of the selective CB2 antagonist AM630 (1.25 to 5 mg/kg and CB2 agonist AM1241 (1 to 10 mg/kg on these behavioral responses in rats. Different groups of male Long Evans rats were trained to lever press for nicotine at a unit dose of 30 µg/kg/infusion. Subsequently, animals were randomized using a Latin-square design and injected with either AM1241 or AM630 using a counterbalanced within subject design. Administration of the CB2 ligands did not affect either nicotine-taking nicotine-seeking behavior. Our results do not support the involvement of CB2 receptors in nicotine-taking or nicotine-seeking behavior.

  16. Self-generated visual imagery alters the mere exposure effect.

    Science.gov (United States)

    Craver-Lemley, Catherine; Bornstein, Robert F

    2006-12-01

    To determine whether self-generated visual imagery alters liking ratings of merely exposed stimuli, 79 college students were repeatedly exposed to the ambiguous duck-rabbit figure. Half the participants were told to picture the image as a duck and half to picture it as a rabbit. When participants made liking ratings of both disambiguated versions of the figure, they rated the version consistent with earlier encoding more positively than the alternate version. Implications of these findings for theoretical models of the exposure effect are discussed.

  17. Exposure to low doses of 137cesium and nicotine during postnatal development modifies anxiety levels, learning, and spatial memory performance in mice.

    Science.gov (United States)

    Bellés, Montserrat; Heredia, Luis; Serra, Noemí; Domingo, José L; Linares, Victoria

    2016-11-01

    Radiation therapy is a major cause of long-term complications observed in survivors of pediatric brain tumors. However, the effects of low-doses of ionizing radiation (IR) to the brain are less studied. On the other hand, tobacco is one of the most heavily abused drugs in the world. Tobacco is not only a health concern for adults. It has also shown to exert deleterious effects on fetuses, newborns, children and adolescents. Exposure to nicotine (Nic) from smoking may potentiate the toxic effects induced by IR on brain development. In this study, we evaluated in mice the cognitive effects of concomitant exposure to low doses of internal radiation ( 137 Cs) and Nic during neonatal brain development. On postnatal day 10 (PND10), two groups of C57BL/6J mice were subcutaneously exposed to 137-Cesium ( 137 Cs) (4000 and 8000 Bq/kg) and/or Nic (100 μg/ml). At the age of two months, neurobehavior of mice was assessed. Results showed that exposure to IR-alone or in combination with Nic-increased the anxiety-like of the animals without changing the activity levels. Moreover, exposure to IR impaired learning and spatial memory. However, Nic administration was able to reverse this effect, but only at the low dose of 137 Cs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nicotine delivery, tolerability and reduction of smoking urge in smokers following short-term use of one brand of electronic cigarettes.

    Science.gov (United States)

    D'Ruiz, Carl D; Graff, Donald W; Yan, X Sherwin

    2015-09-30

    This randomized, partially single-blinded, 6-period crossover clinical study of adult smokers compared the nicotine pharmacokinetics, impacts on smoking urge and tolerability of various formulations of one brand of e-cigarettes with that of a tobacco cigarette. Five e-cigarettes with different e-liquid formulations containing 1.6 % and 2.4 % nicotine and a conventional tobacco cigarette were randomized among 24 subjects under two exposure sessions consisting of a 30-min controlled and a one-hour ad lib use period to assess plasma nicotine levels, impacts on smoking urge and adverse events. The 30-min controlled use session comprised an intensive use of the e-cigarettes with a total of 50 puffs taken every 30 s for comparison to a single conventional cigarette having a typical machine-measured nicotine yield (~0.8 mg). Ad lib product use conditions provided insight into more naturalistic product use behaviors and their accompanying smoking urge reductions. Adverse events (AEs) were assessed by the Principal Investigator. Significant (p e-cigarette use and significant (p E-cigarette and cigarette nicotine plasma levels were comparable for up to one hour of use. After both sessions (90 min), nicotine exposure was the highest for the cigarette, with all e-cigarettes showing 23 % to 53 % lower plasma concentrations. During controlled use, peak reduction in smoking urge for e-cigs occurred later than for the cigarette. After completion of both sessions, significant smoking urge reduction persisted for most of the tested e-cigarettes, albeit at levels lower than that provided by the tobacco cigarette. Nicotine content, vehicle differences, and the presence of menthol did not significantly affect smoking urge reduction by the e-cigarettes. No subjects were discontinued due to AEs. The most frequently reported AEs events included cough, throat irritation, headache, and dizziness. Blood plasma nicotine levels obtained from short-term use of e-cigarettes containing 1

  20. Minimal Effects of Age and Exposure to a Noisy Environment on Hearing in Alpha9 Nicotinic Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Amanda M. Lauer

    2017-06-01

    Full Text Available Studies have suggested a role of weakened medial olivocochlear (OC efferent feedback in accelerated hearing loss and increased susceptibility to noise. The present study investigated the progression of hearing loss with age and exposure to a noisy environment in medial OC-deficient mice. Alpha9 nicotinic acetylcholine receptor knockout (α9KO and wild types were screened for hearing loss using auditory brainstem responses. α9KO mice housed in a quiet environment did not show increased hearing loss compared to wild types in young adulthood and middle age. Challenging the medial OC system by housing in a noisy environment did not increase hearing loss in α9KO mice compared to wild types. ABR wave 1 amplitudes also did not show differences between α9KO mice and wild types. These data suggest that deficient medial OC feedback does not result in early onset of hearing loss.

  1. Nicotine transport in lung and non-lung epithelial cells.

    Science.gov (United States)

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors

    DEFF Research Database (Denmark)

    Wieskopf, Jeffrey S; Mathur, Jayanti; Limapichat, Walrati

    2015-01-01

    expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated...... with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross...

  3. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes.

    Science.gov (United States)

    Peterson, Daniel J; Gill, W Drew; Dose, John M; Hoover, Donald B; Pauly, James R; Cummins, Elizabeth D; Burgess, Katherine C; Brown, Russell W

    2017-05-15

    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. Copyright © 2017. Published by Elsevier B.V.

  4. Association between lead exposure from electronic waste recycling and child temperament alterations.

    Science.gov (United States)

    Liu, Junxiao; Xu, Xijin; Wu, Kusheng; Piao, Zhongxian; Huang, Jinrong; Guo, Yongyong; Li, Weiqiu; Zhang, Yuling; Chen, Aimin; Huo, Xia

    2011-08-01

    We aimed to evaluate the dose-dependent effects of lead exposure on temperament alterations in children from a primitive e-waste (obsolete electrical and electronic devices) recycling area in Guiyu of China and a control area (Chendian, China). Blood lead levels (BLL) might be correlated with temperament, health, and relevant factors that were evaluated through Parent Temperament Questionnaire (PTQ), physical examination, and residential questionnaires. We collected venipuncture blood samples from 303 children (aged 3-7 years old) between January and February 2008. Child BLL were higher in Guiyu than in Chendian (median 13.2 μg/dL, range 4.0-48.5 μg/dL vs. 8.2 μg/dL, 0-21.3 μg/dL) (Pchildren (all Pchildren with low BLL (BLLchildren by increasing BLL and altering children temperament, although the exposure to other toxicants needs to be examined in future studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Exposure to secondhand smoke and associated factors among non-smoking pregnant women with smoking husbands in Sichuan province, China.

    Science.gov (United States)

    Yang, Lian; Tong, Elisa K; Mao, Zhengzhong; Hu, Teh-wei

    2010-01-01

    Secondhand smoke (SHS) exposure harms pregnant women and the fetus. China has the world's largest number of smokers and a high male smoking prevalence rate. To compare exposure to SHS among rural and urban Chinese non-smoking pregnant women with smoking husbands, and analyze factors associated with the level of SHS exposure and hair nicotine concentration. Sichuan province, China. In all 1,181 non-smoking pregnant women with smoking husbands recruited from eight district/county Women and Children's hospitals. The women completed a questionnaire in April and May 2008. Based on systematic sampling, 186 pregnant women were selected for sampling the nicotine concentration in their hair. Ordinal logistic regression analysis was conducted to examine correlates with self-reported SHS exposure (total and at home); linear regression was conducted for the sub-sample of hair nicotine concentrations. Secondhand smoking exposure rates, hair nicotine levels. About 75.1% of the non-smoking pregnant women with smoking husbands reported regular SHS exposure. The major source of exposure was through their husband. In the multivariate analysis, the risk of greater SHS exposure (total and at home) and hair nicotine concentration was increased for women who were rural, had a husband with greater cigarette consumption, less knowledge about SHS, less negative attitudes about SHS, and no smoke-free home rules. The high prevalence rate of SHS exposure suggests that it is important for non-smoking pregnant women, especially rural women, to establish smoke-free home rules and increase knowledge and negative attitudes towards SHS.

  6. Compound list: nicotinic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Hum...an/in_vitro/nicotinic_acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/R...at/in_vitro/nicotinic_acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat.../in_vivo/Liver/Single/nicotinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc

  7. Discriminating nicotine and non-nicotine containing e-liquids using infrared spectroscopy.

    Science.gov (United States)

    Deconinck, E; Bothy, J L; Barhdadi, S; Courselle, P

    2016-02-20

    In a few countries, including Belgium, nicotine-containing e-cigarettes and e-liquids are considered medicines, and therefore cannot freely be sold, but should be distributed in a pharmacy. The fact that in the neighbouring countries these products are freely available, poses a problem for custom personnel, the more the nicotine content of the products is not always labelled, especially when they are bought through internet. Therefore there is a need for easy-to-use equipment and methods to perform a first on site screening of intercepted samples, both for border control as to check label compliance of the sample. The use of attenuated total reflectance-infrared spectroscopy (ATR-IR) and near infrared spectroscopy (NIR), combined with chemometrics was evaluated for the discrimination between nicotine containing and non-nicotine containing samples. It could be concluded that both ATR-IR and NIR could be used for the discrimination when combined with the appropriate chemometric techniques. The presented techniques do not need sample preparation and result in models with a minimum of false negative samples. If a large enough training set can be established the interpretation can be fully automated, making the presented approach suitable for on-site screening of e-liquid samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hippocampal changes produced by overexpression of the human CHRNA5/A3/B4 gene cluster may underlie cognitive deficits rescued by nicotine in transgenic mice.

    Science.gov (United States)

    Molas, Susanna; Gener, Thomas; Güell, Jofre; Martín, Mairena; Ballesteros-Yáñez, Inmaculada; Sanchez-Vives, Maria V; Dierssen, Mara

    2014-11-11

    Addiction involves long-lasting maladaptive changes including development of disruptive drug-stimuli associations. Nicotine-induced neuroplasticity underlies the development of tobacco addiction but also, in regions such as the hippocampus, the ability of this drug to enhance cognitive capabilities. Here, we propose that the genetic locus of susceptibility to nicotine addiction, the CHRNA5/A3/B4 gene cluster, encoding the α5, α3 and β4 subunits of the nicotinic acetylcholine receptors (nAChRs), may influence nicotine-induced neuroadaptations. We have used transgenic mice overexpressing the human cluster (TgCHRNA5/A3/B4) to investigate hippocampal structure and function in genetically susceptible individuals. TgCHRNA5/A3/B4 mice presented a marked reduction in the dendrite complexity of CA1 hippocampal pyramidal neurons along with an increased dendritic spine density. In addition, TgCHRNA5/A3/B4 exhibited increased VGLUT1/VGAT ratio in the CA1 region, suggesting an excitatory/inhibitory imbalance. These hippocampal alterations were accompanied by a significant impairment in short-term novelty recognition memory. Interestingly, chronic infusion of nicotine (3.25 mg/kg/d for 7 d) was able to rescue the reduced dendritic complexity, the excitatory/inhibitory imbalance and the cognitive impairment in TgCHRNA5/A3/B4. Our results suggest that chronic nicotine treatment may represent a compensatory strategy in individuals with altered expression of the CHRNA5/A3/B4 region.

  9. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions.

    Science.gov (United States)

    Guo, Xiaoling; Wang, Huang; Wu, Xiaolong; Chen, Xianwu; Chen, Yong; Guo, Jingjing; Li, Xiaoheng; Lian, Qingquan; Ge, Ren-Shan

    2017-12-01

    Nicotine is consumed largely as a component of cigarettes and has a potential effect on pubertal development of Leydig cells in males. To investigate its effects, 49-day-old male Sprague Dawley rats received intraperitoneal injections of nicotine (0.5 or 1 mg/kg/day) for 2 weeks and immature Leydig cells were isolated from the testes of 35-day-old rats and treated with nicotine (0.05-50 μM). Serum hormones, Leydig cell number and related gene expression levels after in vivo treatment were determined and medium androgen levels were measured and cell cycle, apoptosis, mitochondrial membrane potential (△Ψm), and reactive oxygen species (ROS) of Leydig cells after in vitro treatment were measured. In vivo exposure to nicotine lowered serum luteinizing hormone, follicle stimulating hormone, and testosterone levels and reduced Leydig cell number and gene expression levels. Nicotine in vitro inhibited androgen production in Leydig cells by downregulating the expression levels of P450 cholesterol side cleavage enzyme, 3β-hydroxysteroid dehydrogenase 1, and steroidogenic factor 1 at different concentration ranges. In conclusion, nicotine disrupts Leydig cell steroidogenesis during puberty possibly via down-regulating some key steroidogenic enzyme expressions. Copyright © 2017. Published by Elsevier Ltd.

  10. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT

    International Nuclear Information System (INIS)

    Kassiou, Michael; Eberl, Stefan; Meikle, Steven R.; Birrell, Alex; Constable, Chris; Fulham, Michael J.; Wong, Dean F.; Musachio, John L.

    2001-01-01

    To quantify changes in neuronal nAChR binding in vivo, quantitative dynamic SPECT studies were performed with 5-[ 123 I]-iodo-A-85380 in baboons pre and post chronic treatment with (-)-nicotine or saline control. Infusion of (-)-nicotine at a dose of 2.0 mg/kg/24h for 14 days resulted in plasma (-)-nicotine levels of 27.3 ng/mL. This is equivalent to that found in an average human smoker (20 cigarettes a day). In the baboon brain the regional distribution of 5-[ 123 I]-iodo-A-85380 was consistent with the known densities of nAChRs (thalamus > frontal cortex > cerebellum). Changes in nAChR binding were estimated from the volume of distribution (V d ) and binding potential (BP) derived from 3-compartment model fits. In the (-)-nicotine treated animal V d was significantly increased in the thalamus (52%) and cerebellum (50%) seven days post cessation of (-)-nicotine treatment, suggesting upregulation of nAChRs. The observed 33% increase in the frontal cortex failed to reach significance. A significant increase in BP was seen in the thalamus. In the saline control animal no changes were observed in V d or BP under any experimental conditions. In this preliminary study, we have demonstrated for the first time in vivo upregulation of neuronal nAChR binding following chronic (-)-nicotine treatment

  11. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  12. Sleep quality during exam stress: the role of alcohol, caffeine and nicotine.

    Directory of Open Access Journals (Sweden)

    Matthias Zunhammer

    Full Text Available Academic exam stress is known to compromise sleep quality and alter drug consumption in university students. Here we evaluated if sleeping problems and changes in legal drug consumption during exam stress are interrelated. We used the Pittsburgh Sleep Quality Index (PSQI to survey sleep quality before, during, and after an academic exam period in 150 university students in a longitudinal questionnaire study. Self-reports of alcohol, caffeine, and nicotine consumption were obtained. The Perceived Stress Questionnaire (PSQ-20 was used as a measure of stress. Sleep quality and alcohol consumption significantly decreased, while perceived stress and caffeine consumption significantly increased during the exam period. No significant change in nicotine consumption was observed. In particular, students shortened their time in bed and showed symptoms of insomnia. Mixed model analysis indicated that sex, age, health status, as well as the amounts of alcohol and caffeine consumed had no significant influence on global sleep quality. The amount of nicotine consumed and perceived stress were identified as significant predictors of diminished sleep quality. Nicotine consumption had a small-to-very-small effect on sleep quality; perceived stress had a small-to-moderate effect. In conclusion, diminished sleep quality during exam periods was mainly predicted by perceived stress, while legal drug consumption played a minor role. Exam periods may pose an interesting model for the study of stress-induced sleeping problems and their mechanisms.

  13. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  14. Bioelectronic sniffer for nicotine using enzyme inhibition.

    Science.gov (United States)

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  15. Nicotine adsorption on single wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  16. The role of alpha-7 nicotinic receptors in food intake behaviors

    Directory of Open Access Journals (Sweden)

    Kristina L. McFadden

    2014-06-01

    Full Text Available Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin (POMC and neuropeptide Y (NPY. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.

  17. Adverse effects of e-cigarette exposures.

    Science.gov (United States)

    Cantrell, F Lee

    2014-06-01

    In 2007, a new source of nicotine exposure was introduced to the United States market, the electronic cigarette (ECIG) or "e-cigarette". Since then, the USA ECIG market has been doubling annually. Despite their widespread popularity, there is a paucity of existing data regarding ECIG toxicity. We report the experience of a statewide poison system. The database of a statewide poison system was queried for human ECIG exposures from 2010 (when Poisindex code first generated) through 2012. Year, age, manner and route of exposure, estimate exposure amount, product concentration, if evaluated at healthcare facility and symptoms were recorded. A total of 35 cases were identified--4 in 2010, 12 in 2011, 19 in 2012. Age range 8 months-60 years. Reported symptoms were mild and transient. Five patients were evaluated in an emergency department and none were admitted. Product concentrations ranged from 4 to 30 mg of nicotine per ml. Poison centers are likely to see an increase in exposures to ECIG given their growing popularity. Our modest results suggest that adverse effects and accidental exposures to ECIG cartridges are unlikely to result in serious toxicity.

  18. Effects of Electronic Cigarette Liquid Nicotine Concentration on Plasma Nicotine and Puff Topography in Tobacco Cigarette Smokers: A Preliminary Report.

    Science.gov (United States)

    Lopez, Alexa A; Hiler, Marzena M; Soule, Eric K; Ramôa, Carolina P; Karaoghlanian, Nareg V; Lipato, Thokozeni; Breland, Alison B; Shihadeh, Alan L; Eissenberg, Thomas

    2016-05-01

    Electronic cigarettes (ECIGs) aerosolize a liquid that usually contains propylene glycol and/or vegetable glycerin, flavorants, and the dependence-producing drug nicotine in various concentrations. This study examined the extent to which ECIG liquid nicotine concentration is related to user plasma nicotine concentration in ECIG-naïve tobacco cigarette smokers. Sixteen ECIG-naïve cigarette smokers completed four laboratory sessions that differed by the nicotine concentration of the liquid (0, 8, 18, or 36 mg/ml) that was placed into a 1.5 Ohm, dual coil "cartomizer" powered by a 3.3V battery. In each session, participants completed two, 10-puff ECIG use bouts with a 30-second inter-puff interval; bouts were separated by 60 minutes. Venous blood was sampled before and after bouts for later analysis of plasma nicotine concentration; puff duration, volume, and average flow rate were measured during each bout. In bout 1, relative to the 0mg/ml nicotine condition (mean = 3.8 ng/ml, SD = 3.3), plasma nicotine concentration increased significantly immediately after the bout for the 8 (mean = 8.8 ng/ml, SD = 6.3), 18 (mean = 13.2 ng/ml, SD = 13.2), and 36 mg/ml (mean = 17.0 ng/ml, SD = 17.9) liquid concentration. A similar pattern was observed after bout 2. Average puff duration in the 36 mg/ml condition was significantly shorter compared to the 0mg/ml nicotine condition. Puff volume increased during the second bout for 8 and 18 mg/ml conditions. For a given ECIG device, nicotine delivery may be directly related to liquid concentration. ECIG-naïve cigarette smokers can, from their first use bout, attain cigarette-like nicotine delivery profiles with some currently available ECIG products. Liquid nicotine concentration can influence plasma nicotine concentration in ECIG-naïve cigarette smokers, and, at some concentrations, the nicotine delivery profile of a 3.3V ECIG with a dual coil, 1.5-Ohm cartomizer approaches that of a combustible tobacco cigarette in this

  19. Phenobarbital increases monkey in vivo nicotine disposition and induces liver and brain CYP2B6 protein

    Science.gov (United States)

    Lee, Anna M; Miksys, Sharon; Tyndale, Rachel F

    2006-01-01

    CYP2B6 is a drug-metabolizing enzyme expressed in the liver and brain that can metabolize bupropion (Zyban®, a smoking cessation drug), activate tobacco-smoke nitrosamines, and inactivate nicotine. Hepatic CYP2B6 is induced by phenobarbital and induction may affect in vivo nicotine disposition, while brain CYP2B6 induction may affect local levels of centrally acting substrates. We investigated the effect of chronic phenobarbital treatment on induction of in vivo nicotine disposition and CYP2B6 expression in the liver and brain of African Green (Vervet) monkeys. Monkeys were split into two groups (n=6 each) and given oral saccharin daily for 22 days; one group was supplemented with 20 mg kg−1 phenobarbital. Monkeys were given a 0.1 mg kg−1 nicotine dose subcutaneously before and after treatment. Phenobarbital treatment resulted in a significant, 56%, decrease (P=0.04) in the maximum nicotine plasma concentration and a 46% decrease (P=0.003) in the area under the concentration–time curve. Phenobarbital also increased hepatic CYP2B6 protein expression. In monkey brain, significant induction (Pphenobarbital treatment in monkeys resulted in increased in vivo nicotine disposition, and induced hepatic and brain CYP2B6 protein levels and cellular expression. This induction may alter the metabolism of CYP2B6 substrates including peripherally acting drugs such as cyclophosphamide and centrally acting drugs such as bupropion, ecstasy and phencyclidine. PMID:16751792

  20. Stable isotope studies of nicotine kinetics and bioavailability

    International Nuclear Information System (INIS)

    Benowitz, N.L.; Jacob, P. III; Denaro, C.; Jenkins, R.

    1991-01-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine

  1. Transgenerational Exposure to Environmental Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    2014-07-01

    Full Text Available Traditionally, nicotine from second hand smoke (SHS, active or passive, has been considered the most prevalent substance of abuse used during pregnancy in industrialized countries. Exposure to environmental tobacco smoke (ETS is associated with a variety of health effects, including lung cancer and cardiovascular diseases. Tobacco is also a major burden to people who do not smoke. As developing individuals, newborns and children are particularly vulnerable to the negative effects of SHS. In particular, prenatal ETS has adverse consequences during the entire childhood causing an increased risk of abortion, low birth weight, prematurity and/or nicotine withdrawal syndrome. Over the last years, a decreasing trend in smoking habits during pregnancy has occurred, along with the implementation of laws requiring smoke free public and working places. The decrease in the incidence of prenatal tobacco exposure has usually been assessed using maternal questionnaires. In order to diminish bias in self-reporting, objective biomarkers have been developed to evaluate this exposure. The measurement of nicotine and its main metabolite, cotinine, in non-conventional matrices such as cord blood, breast milk, hair or meconium can be used as a non-invasive measurement of prenatal SMS in newborns. The aim of this review is to highlight the prevalence of ETS (prenatal and postnatal using biomarkers in non-conventional matrices before and after the implementation of smoke free policies and health effects related to this exposure during foetal and/or postnatal life.

  2. Characterization and Genome Analysis of a Nicotine and Nicotinic Acid-Degrading Strain Pseudomonas putida JQ581 Isolated from Marine.

    Science.gov (United States)

    Li, Aiwen; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Wang, Yuhong; Tong, Lu; Jiang, Jiandong; Chen, Jianmeng

    2017-05-31

    The presence of nicotine and nicotinic acid (NA) in the marine environment has caused great harm to human health and the natural environment. Therefore, there is an urgent need to use efficient and economical methods to remove such pollutants from the environment. In this study, a nicotine and NA-degrading bacterium-strain JQ581-was isolated from sediment from the East China Sea and identified as a member of Pseudomonas putida based on morphology, physio-biochemical characteristics, and 16S rDNA gene analysis. The relationship between growth and nicotine/NA degradation suggested that strain JQ581 was a good candidate for applications in the bioaugmentation treatment of nicotine/NA contamination. The degradation intermediates of nicotine are pseudooxynicotine (PN) and 3-succinoyl-pyridine (SP) based on UV, high performance liquid chromatography, and liquid chromatography-mass spectrometry analyses. However, 6-hydroxy-3-succinoyl-pyridine (HSP) was not detected. NA degradation intermediates were identified as 6-hydroxynicotinic acid (6HNA). The whole genome of strain JQ581 was sequenced and analyzed. Genome sequence analysis revealed that strain JQ581 contained the gene clusters for nicotine and NA degradation. This is the first report where a marine-derived Pseudomonas strain had the ability to degrade nicotine and NA simultaneously.

  3. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    Science.gov (United States)

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenming, E-mail: chzhang2@vt.edu

    2016-09-15

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  5. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    International Nuclear Information System (INIS)

    Saylor, Kyle; Zhang, Chenming

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  6. Detoxification and elimination of nicotine by nectar-feeding birds.

    Science.gov (United States)

    Lerch-Henning, S; Du Rand, E E; Nicolson, S W

    2017-05-01

    Many dilute nectars consumed by bird pollinators contain secondary metabolites, potentially toxic chemicals produced by plants as defences against herbivores. Consequently, nectar-feeding birds are challenged not only by frequent water excess, but also by the toxin content of their diet. High water turnover, however, could be advantageous to nectar consumers by enabling them to excrete secondary metabolites or their transformation products more easily. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences osmoregulation in white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens. We also examined the metabolic fate of nicotine in these two species to shed more light on the post-ingestive mechanisms that allow nectar-feeding birds to tolerate nectar nicotine. A high concentration of nicotine (50 µM) decreased cloacal fluid output and increased its osmolality in both species, due to reduced food intake that led to dehydration. White-eyes excreted a higher proportion of the ingested nicotine-containing diet than sunbirds. However, sugar concentration did not affect nicotine detoxification and elimination. Both species metabolised nicotine, excreting very little unchanged nicotine. Cape white-eyes mainly metabolised nicotine through the cotinine metabolic pathway, with norcotinine being the most abundant metabolite in the excreta, while white-bellied sunbirds excreted mainly nornicotine. Both species also utilized phase II conjugation reactions to detoxify nicotine, with Cape white-eyes depending more on the mercapturic acid pathway to detoxify nicotine than white-bellied sunbirds. We found that sunbirds and white-eyes, despite having a similar nicotine tolerance, responded differently and used different nicotine-derived metabolites to excrete nicotine.

  7. A Role for the DRD4 Exon III VNTR in Modifying the Association Between Nicotine Dependence and Neuroticism

    NARCIS (Netherlands)

    Ellis, J.A.; Olssen, C.A.; Moore, E.; Greenwood, P.A.; Ven, M.O.M. van de; Patton, G.C.

    2011-01-01

    Introduction: Neurotic psychopathology has been extensively examined as a risk factor for nicotine dependence (ND). Genetic stratification may partially explain variability in risk estimates. Genetic variants that compromise dopaminergic neurotransmission may motivate exposure to

  8. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function.

    Science.gov (United States)

    Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A

    2014-05-01

    Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.

  9. Gas-phase organics in environmental tobacco smoke: 2. Exposure-relevant emission factors and indirect exposures from habitual smoking

    Science.gov (United States)

    Singer, Brett C.; Hodgson, Alfred T.; Nazaroff, William W.

    Sorption of emitted gas-phase organic compounds onto material surfaces affects environmental tobacco smoke (ETS) composition and exposures indoors. We have introduced a new metric, the exposure relevant emission factor (EREF) that accounts for sorptive uptake and reemission to give the mass of individual ETS constituents available for exposure over a day in which smoking occurs. This paper describes month-long experiments to investigate sorption effects on EREFs and potential ETS exposures under habitual smoking conditions. Cigarettes were smoked in a 50-m 3 furnished room over a 3-h period 6-7 days per week, with continuous ventilation at 0.3, 0.6, or 2.1 h -1. Organic gas concentrations were measured every few days over 4-h "smoking", 10-h "post-smoking" and 10-h "background" periods. Concentration patterns of volatile ETS components including 1,3-butadiene, benzene and acrolein were similar to those calculated for a theoretical non-sorbing tracer, indicating limited sorption. Concentrations of ETS tracers, e.g. 3-ethenylpyridine (3-EP) and nicotine, and lower volatility toxic air contaminants including phenol, cresols, and naphthalene increased as experiments progressed, indicating mass accumulation on surfaces and higher desorption rates. Daily patterns stabilized after week 2, yielding a steady daily cycle of ETS concentrations associated with habitual smoking. EREFs for sorbing compounds were higher under steady cycle versus single-day smoking conditions by ˜50% for 3-EP, and by 2-3 times for nicotine, phenol, cresols, naphthalene, and methylnaphthalenes. Our results provide relevant information about potential indirect exposures from residual ETS (non-smoker enters room shortly after smoker finishes) and from reemission, and their importance relative to direct exposures (non-smoker present during smoking). Under the conditions examined, indirect exposures accounted for a larger fraction of total potential exposures for sorbing versus non-sorbing compounds

  10. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    Science.gov (United States)

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  11. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    Science.gov (United States)

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.

  12. Nicotine withdrawal and stress-induced changes in pain sensitivity: a cross-sectional investigation between abstinent smokers and nonsmokers.

    Science.gov (United States)

    Nakajima, Motohiro; Al'Absi, Mustafa

    2014-10-01

    Chronic smoking has been linked with alterations in endogenous pain regulation. These alterations may be pronounced when individuals quit smoking because nicotine withdrawal produces a variety of psychological and physiological symptoms. Smokers interested in quitting (n = 98) and nonsmokers (n = 37) completed a laboratory session including cold pressor test (CPT) and heat thermal pain. Smokers set a quit date and completed the session after 48 h of abstinence. Participants completed the pain assessments once after rest and once after stress. Cardiovascular and nicotine withdrawal measures were collected. Smokers showed blunted cardiovascular responses to stress relative to nonsmokers. Only nonsmokers had greater pain tolerance to CPT after stress than after rest. Lower systolic blood pressure was related to lower pain tolerance. These findings suggest that smoking withdrawal is associated with blunted stress response and increased pain sensitivity. Copyright © 2014 Society for Psychophysiological Research.

  13. Endogenous opioids inhibit oxytocin release during nicotine-stimulated secretion of vasopressin in man.

    Science.gov (United States)

    Seckl, J R; Johnson, M; Shakespear, C; Lightman, S L

    1988-05-01

    The effects of the opioid antagonist naloxone on the vasopressin (AVP) and oxytocin (OT) responses to nicotine were studied in male non-smokers (21-30 years old). Either saline (n = 6) or naloxone (4 mg bolus + 6 mg/h, n = 6) was infused i.v. during the study. After 60 min infusion the subjects smoked one high-nicotine content cigarette. Naloxone infusion for 60 min did not alter basal plasma AVP or OT levels. Smoking led to a significant rise in plasma vasopressin in both saline and naloxone-infused subjects (P less than 0.05). There was no significant difference in the plasma AVP response to smoking between the two groups. Saline-infused subjects did not show any change in plasma OT in response to smoking. Naloxone infusion was associated with a significant rise in OT from 1.3 +/- 0.1 pmol/l to 4.3 +/- 2.4 pmol/l 5 min after smoking (P less than 0.05). We conclude that there is endogenous opioid-mediated inhibition of OT which prevents its release when AVP is secreted in response to nicotine in man.

  14. Alteration of gene expression by alcohol exposure at early neurulation.

    Science.gov (United States)

    Zhou, Feng C; Zhao, Qianqian; Liu, Yunlong; Goodlett, Charles R; Liang, Tiebing; McClintick, Jeanette N; Edenberg, Howard J; Li, Lang

    2011-02-21

    We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545), adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA) informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22), neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg), and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1), and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1). Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin) were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO) and a closed neural tube (ALC-NTC). Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. This study revealed a set of genes vulnerable to alcohol exposure and genes that were associated with neural tube

  15. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value

    Science.gov (United States)

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-01-01

    AIM To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. METHODS We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. RESULTS CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with

  16. Nicotine pharmacokinetics and its application to intake from smoking.

    Science.gov (United States)

    Feyerabend, C; Ings, R M; Russel, M A

    1985-01-01

    Five subjects were given 25 micrograms/kg nicotine intravenously over 1 min, before and after a loading period involving the smoking of six cigarettes. Plasma nicotine concentrations declined in a biphasic manner, the half-lives of the initial and terminal phases averaging 9 min and 133 min respectively. Terminal half-lives before and after the loading period were essentially the same suggesting the absence of saturation kinetics at nicotine concentrations that build up during smoking. The plasma clearance of nicotine and the volume of distribution were very high averaging 915 ml/min and 1731, respectively. Two approaches were used to calculate the nicotine intake from smoking. The average dose of nicotine absorbed from one cigarette was 1.06 mg which was 82% of the standard machine-smoked yield of 1.3 mg. To illustrate their potential use in 'nicotine titration' studies, these approaches were used to compare nicotine intake from smoking a high (2.4 mg) and low (0.6 mg) nicotine cigarette. The dose of nicotine absorbed averaged 1.14 mg and 0.86 mg per cigarette respectively, being 48% and 143% of the machine-smoked yields. PMID:3986082

  17. Effect of nicotine on negative affect among more impulsive smokers.

    Science.gov (United States)

    Doran, Neal; McChargue, Dennis; Spring, Bonnie; VanderVeen, Joe; Cook, Jessica Werth; Richmond, Malia

    2006-08-01

    In the present study, the authors tested the hypothesis that nicotine would provide greater relief from negative affect for more impulsive smokers than for less impulsive smokers. Euthymic adult smokers (N=70) participated in 2 laboratory sessions, during which they underwent a negative mood induction (music + autobiographical memory), then smoked either a nicotinized or de-nicotinized cigarette. Mixed-effects regression yielded a significant Impulsivity x Condition (nicotinized vs. de-nicotinized) x Time interaction. Simple effects analyses showed that heightened impulsivity predicted greater negative affect relief after smoking a nicotinized cigarette but not after smoking a de-nicotinized cigarette. These data suggest that nicotine may be a disproportionately powerful negative reinforcer for highly impulsive smokers, promoting higher levels of nicotine dependence and inhibiting smoking cessation.

  18. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  19. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin

    International Nuclear Information System (INIS)

    Clarke, P.B.; Schwartz, R.D.; Paul, S.M.; Pert, C.B.; Pert, A.

    1985-01-01

    Three radioligands have been commonly used to label putative nicotinic cholinoceptors in the mammalian central nervous system: the agonists [ 3 H]nicotine and [ 3 H]acetylcholine ([ 3 H]ACh--in the presence of atropine to block muscarinic receptors), and the snake venom extract, [ 125 I]-alpha-bungarotoxin([ 125 I]BTX), which acts as a nicotinic antagonist at the neuromuscular junction. Binding studies employing brain homogenates indicate that the regional distributions of both [ 3 H]nicotine and [ 3 H]ACh differ from that of [ 125 I]BTX. The possible relationship between brain sites bound by [ 3 H]nicotine and [ 3 H]ACh has not been examined directly. The authors have used the technique of autoradiography to produce detailed maps of [ 3 H]nicotine, [ 3 H]ACh, and [ 125 I]BTX labeling; near-adjacent tissue sections were compared at many levels of the rat brain. The maps of high affinity agonist labeling are strikingly concordant, with highest densities in the interpeduncular nucleus, most thalamic nuclei, superior colliculus, medial habenula, presubiculum, cerebral cortex (layers I and III/IV), and the substantia nigra pars compacta/ventral tegmental area. The pattern of [ 125 I]BTX binding is strikingly different, the only notable overlap with agonist binding being the cerebral cortex (layer I) and superior colliculus. [ 125 I]BTX binding is also dense in the inferior colliculus, cerebral cortex (layer VI), hypothalamus, and hippocampus, but is virtually absent in thalamus. Various lines of evidence suggest that the high affinity agonist-binding sites in brain correspond to nicotinic cholinergic receptors similar to those found at autonomic ganglia; BTX-binding sites may also serve as receptors for nicotine and are possibly related to neuromuscular nicotinic cholinoceptors

  20. Nicotine Reduction Revisited: Science and Future Directions

    Science.gov (United States)

    Hatsukami, Dorothy K.; Perkins, Kenneth A.; LeSage, Mark G.; Ashley, David L.; Henningfield, Jack E.; Benowitz, Neal L.; Backinger, Cathy; Zeller, Mitch

    2015-01-01

    Regulation of nicotine levels in cigarettes and other tobacco products is now possible with the passage of the Family Smoking Prevention and Tobacco Control Act (FSPTCA) in 2009 giving the U.S. Food and Drug Administration authority to regulate tobacco products, and with Articles 9-11 of the World Health Organization Framework Convention on Tobacco Control.[1-2] Both regulatory approaches allow establishing product standards for tobacco constituents, including nicotine. The FSPTCA does not allow nicotine levels to be decreased to zero, although FDA has the authority to reduce nicotine yields to very low, presumably non-addicting levels. The proposal to reduce levels of nicotine to a level that is non-addicting was originally suggested in 1994.[3] Reduction of nicotine in tobacco products could potentially have a profound impact on reducing tobacco-related morbidity and mortality. To examine this issue, two meetings were convened in the United States with non-tobacco-industry scientists of varied disciplines, tobacco control policy-makers and representatives of government agencies. This article provides an overview of the current science in the area of reduced nicotine content cigarettes and key conclusions and recommendations for research and policy that emerged from the deliberations of the meeting members. PMID:20876072

  1. Thirdhand smoke and exposure in California hotels: non-smoking rooms fail to protect non-smoking hotel guests from tobacco smoke exposure.

    Science.gov (United States)

    Matt, Georg E; Quintana, Penelope J E; Fortmann, Addie L; Zakarian, Joy M; Galaviz, Vanessa E; Chatfield, Dale A; Hoh, Eunha; Hovell, Melbourne F; Winston, Carl

    2014-05-01

    This study examined tobacco smoke pollution (also known as thirdhand smoke, THS) in hotels with and without complete smoking bans and investigated whether non-smoking guests staying overnight in these hotels were exposed to tobacco smoke pollutants. A stratified random sample of hotels with (n=10) and without (n=30) complete smoking bans was examined. Surfaces and air were analysed for tobacco smoke pollutants (ie, nicotine and 3-ethynylpyridine, 3EP). Non-smoking confederates who stayed overnight in guestrooms provided urine and finger wipe samples to determine exposure to nicotine and the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone as measured by their metabolites cotinine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), respectively. Compared with hotels with complete smoking bans, surface nicotine and air 3EP were elevated in non-smoking and smoking rooms of hotels that allowed smoking. Air nicotine levels in smoking rooms were significantly higher than those in non-smoking rooms of hotels with and without complete smoking bans. Hallway surfaces outside of smoking rooms also showed higher levels of nicotine than those outside of non-smoking rooms. Non-smoking confederates staying in hotels without complete smoking bans showed higher levels of finger nicotine and urine cotinine than those staying in hotels with complete smoking bans. Confederates showed significant elevations in urinary NNAL after staying in the 10 most polluted rooms. Partial smoking bans in hotels do not protect non-smoking guests from exposure to tobacco smoke and tobacco-specific carcinogens. Non-smokers are advised to stay in hotels with complete smoking bans. Existing policies exempting hotels from complete smoking bans are ineffective.

  2. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; Fouda, Mohamed A.; El-gowilly, Sahar M.; Saad, Evan I.

    2012-01-01

    We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE 2 ) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS PE and BRS SNP ). Nicotine (100 μg/kg i.v.) reduced BRS SNP in OVX rats but not in proestrus or OVXE 2 rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS PE was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS SNP interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS SNP attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E 2 against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.

  3. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells

    Directory of Open Access Journals (Sweden)

    Pai-Chi Tsai

    2014-07-01

    Full Text Available Ethanol exposure during pregnancy is an established cause of birth defects, including neurodevelopmental defects. Most adult neurons are produced during the second trimester-equivalent period. The fetal neural stem cells (NSCs that generate these neurons are an important but poorly understood target for teratogenesis. A cohort of miRNAs, including miR-153, may serve as mediators of teratogenesis. We previously showed that ethanol decreased, while nicotine increased miR-153 expression in NSCs. To understand the role of miR-153 in the etiology of teratology, we first screened fetal cortical NSCs cultured ex vivo, by microarray and quantitative RT-PCR analyses, to identify cell-signaling mRNAs and gene networks as important miR-153 targets. Moreover, miR-153 over-expression prevented neuronal differentiation without altering neuroepithelial cell survival or proliferation. Analysis of 3′UTRs and in utero over-expression of pre-miR-153 in fetal mouse brain identified Nfia (nuclear factor-1A and its paralog, Nfib, as direct targets of miR-153. In utero ethanol exposure resulted in a predicted expansion of Nfia and Nfib expression in the fetal telencephalon. In turn, miR-153 over-expression prevented, and partly reversed, the effects of ethanol exposure on miR-153 target transcripts. Varenicline, a partial nicotinic acetylcholine receptor agonist that, like nicotine, induces miR-153 expression, also prevented and reversed the effects of ethanol exposure. These data collectively provide evidence for a role for miR-153 in preventing premature NSC differentiation. Moreover, they provide the first evidence in a preclinical model that direct or pharmacological manipulation of miRNAs have the potential to prevent or even reverse effects of a teratogen like ethanol on fetal development.

  5. Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels

    International Nuclear Information System (INIS)

    Saraydin, D.; Karadag, E.; Caldiran, Y.; Gueven, O.

    2001-01-01

    Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive. (author)

  6. Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio Swimming Performance Parameters

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2011-01-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria (blue-green algae, primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501. MC-LR exposure (100 μg/L decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93% in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.

  7. CHRONIC DIETARY EXPOSURE WITH INTERMITTENT SPIKE DOSES OF CHLORPYRIFOS FAILS TO ALTER FLASH OR PATTERN REVERSAL EVOKED POTENTIALS IN RATS.

    Science.gov (United States)

    Human exposure to pesticides is often characterized by chronic low level exposure with intermittent spiked higher exposures. Visual disturbances are often reported following exposure to xenobiotics, and cholinesterase-inhibiting compounds have been reported to alter visual functi...

  8. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    Science.gov (United States)

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    NARCIS (Netherlands)

    de Kloet, S.F.; Mansvelder, H.D.; de Vries, T.J.

    2015-01-01

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are

  10. The metabolic fate of nectar nicotine in worker honey bees.

    Science.gov (United States)

    du Rand, Esther E; Pirk, Christian W W; Nicolson, Susan W; Apostolides, Zeno

    2017-04-01

    Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance. We examined the metabolic fate of nicotine in newly emerged worker bees using radiolabeled nicotine and LC-MS/MS analysis to determine the kinetic distribution profile of nicotine as well as the absence or presence and identity of any nicotine-derived metabolites. Nicotine metabolism was extensive; virtually no unmetabolised nicotine were recovered from the rectum. The major metabolite found was 4-hydroxy-4-(3-pyridyl) butanoic acid, the end product of 2'C-oxidation of nicotine. It is the first time that 4-hydroxy-4-(3-pyridyl) butanoic acid has been identified in an insect as a catabolite of nicotine. Lower levels of cotinine, cotinine N-oxide, 3'hydroxy-cotinine, nicotine N-oxide and norcotinine were also detected. Our results demonstrated that formation of 4-hydroxy-4-(3-pyridyl) butanoic acid is quantitatively the most significant pathway of nicotine metabolism in honey bees and that the rapid excretion of unmetabolised nicotine does not contribute significantly to nicotine tolerance in honey bees. In nicotine-tolerant insects that do not rely on the rapid excretion of nicotine like the Lepidoptera, it is possible that the 2'C-oxidation of nicotine is the conserved metabolic pathway instead of the generally assumed 5'C-oxidation pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Slower nicotine metabolism among postmenopausal Polish smokers.

    Science.gov (United States)

    Kosmider, Leon; Delijewski, Marcin; Koszowski, Bartosz; Sobczak, Andrzej; Benowitz, Neal L; Goniewicz, Maciej L

    2018-06-01

    A non-invasive phenotypic indicator of the rate of nicotine metabolism is nicotine metabolite ratio (NMR) defined as a ratio of two major metabolites of nicotine - trans-3'-hydroxycotinine/cotinine. The rate of nicotine metabolism has important clinical implications for the likelihood of successful quitting with nicotine replacement therapy (NRT). We conducted a study to measure NMR among Polish smokers. In a cross-sectional study of 180 daily cigarette smokers (42% men; average age 34.6±13.0), we collected spot urine samples and measured trans-3'-hydroxycotinine (3-HC) and cotinine levels with LC-MS/MS method. We calculated NMR (molar ratio) and analyzed variations in NMR among groups of smokers. In the whole study group, an average NMR was 4.8 (IQR 3.4-7.3). The group of women below 51 years had significantly greater NMR compared to the rest of the population (6.4; IQR 4.1-8.8 vs. 4.3; IQR 2.8-6.4). No differences were found among group ages of male smokers. This is a first study to describe variations in nicotine metabolism among Polish smokers. Our findings indicate that young women metabolize nicotine faster than the rest of population. This finding is consistent with the known effects of estrogen to induce CYP2A6 activity. Young women may require higher doses of NRT or non-nicotine medications for most effective smoking cessation treatment. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    Science.gov (United States)

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  14. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  15. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  16. What Are Tobacco, Nicotine, and E-Cigarette Products?

    Science.gov (United States)

    ... Drug Facts / Tobacco, Nicotine, & E-Cigarettes Tobacco, Nicotine, & E-Cigarettes Street names: Chew, Dip, Snuff Print Expand All Revised July 2017 What are tobacco, nicotine, and e-cigarette products? ©Shutterstock/ CatherineL-Prod Also known as: Cigarettes: ...

  17. Counterfeit Electronic Cigarette Products with Mislabeled Nicotine Concentrations.

    Science.gov (United States)

    Omaiye, Esther E; Cordova, Iliana; Davis, Barbara; Talbot, Prue

    2017-07-01

    We compared nicotine concentrations in one brand of refill fluids that were purchased in 4 countries and labeled 0 mg of nicotine/mL. We then identified counterfeit e-cigarette products from these countries. Overall, 125 e-cigarette refill fluids were purchased in Nigeria, the United States (US), England, and China. Nicotine concentrations were measured using high performance liquid chromatography and compared to labeled concentrations. Refill fluids were examined to identify physical differences and grouped into authentic and counterfeit products. Whereas nicotine was in 51.7% (15/29) of the Nigerian, 3.7% (1/27) of the Chinese and 1.6% (1/61) of the American refill fluids (range = 0.4 - 20.4 mg/mL), 8 British products did not contain nicotine. Products from China, the US, and Nigeria with trace amounts of nicotine (0.4 to 0.6 mg/mL) were authentic; however, all products from Nigeria with more than 3.7 mg/mL were counterfeit. We introduce 2 novel issues in the e-cigarette industry, the production of counterfeit refill fluids under a brandjacked label and inclusion of nicotine in 81.3% of the counterfeit products labeled 0 mg/mL. This study emphasizes the need for better control and monitoring of nicotine containing products and sales outlets.

  18. α-4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    Background: Smoking behavior is influenced by both genetic and environmental factors. Nicotine is the major addictive substance in cigarettes. Nicotinic acetylcholine receptors (nAChRs) are thought to play an important role in nicotine addiction of smokers. One of the genes, α-4 subunit of nicotinic acetylcholine receptor ...

  19. Neural Signatures of Cognitive Flexibility and Reward Sensitivity Following Nicotinic Receptor Stimulation in Dependent Smokers: A Randomized Trial.

    Science.gov (United States)

    Lesage, Elise; Aronson, Sarah E; Sutherland, Matthew T; Ross, Thomas J; Salmeron, Betty Jo; Stein, Elliot A

    2017-06-01

    Withdrawal from nicotine is an important contributor to smoking relapse. Understanding how reward-based decision making is affected by abstinence and by pharmacotherapies such as nicotine replacement therapy and varenicline tartrate may aid cessation treatment. To independently assess the effects of nicotine dependence and stimulation of the nicotinic acetylcholine receptor on the ability to interpret valence information (reward sensitivity) and subsequently alter behavior as reward contingencies change (cognitive flexibility) in a probabilistic reversal learning task. Nicotine-dependent smokers and nonsmokers completed a probabilistic reversal learning task during acquisition of functional magnetic resonance imaging (fMRI) in a 2-drug, double-blind placebo-controlled crossover design conducted from January 21, 2009, to September 29, 2011. Smokers were abstinent from cigarette smoking for 12 hours for all sessions. In a fully Latin square fashion, participants in both groups underwent MRI twice while receiving varenicline and twice while receiving a placebo pill, wearing either a nicotine or a placebo patch. Imaging analysis was performed from June 15, 2015, to August 10, 2016. A well-established computational model captured effects of smoking status and administration of nicotine and varenicline on probabilistic reversal learning choice behavior. Neural effects of smoking status, nicotine, and varenicline were tested for on MRI contrasts that captured reward sensitivity and cognitive flexibility. The study included 24 nicotine-dependent smokers (12 women and 12 men; mean [SD] age, 35.8 [9.9] years) and 20 nonsmokers (10 women and 10 men; mean [SD] age, 30.4 [7.2] years). Computational modeling indicated that abstinent smokers were biased toward response shifting and that their decisions were less sensitive to the available evidence, suggesting increased impulsivity during withdrawal. These behavioral impairments were mitigated with nicotine and varenicline

  20. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Zaidi, I.M.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  1. Looking for boomerang effects: a pre-post experimental study of the effects of exposure of youth to television advertising for nicotine replacement therapy and Zyban.

    Science.gov (United States)

    Durkin, Sarah; Wakefield, Melanie; Spittal, Matt

    2006-12-01

    In the context of concerns about unintended "boomerang" influences of advertising, this study aimed to examine effects of nicotine replacement therapy (NRT) and Zyban advertising on youth perceptions of the ease of quitting, health risks of smoking and future intentions to smoke. 718 youth aged 14-16years were randomly allocated to view four television ads promoting either: NRT; Zyban; non-pharmaceutical cessation services (telephone Quitline); or non-cessation messages on sun protection. Questionnaire measures were administered before and after viewing ads. There were no effects of advertising exposure on perceived health effects of smoking or intentions to smoke. Compared with the sun protection ads, but not the Quitline ads, those exposed to NRT ads reported stronger perceptions about the ease of quitting, but non-susceptible non-smokers primarily drove this difference. This study suggests that exposure to NRT and Zyban advertising in an experimental context does not reliably influence youth smoking-related beliefs, especially those vulnerable to becoming regular smokers.

  2. Opname van nicotine door kippen en overdracht naar eieren bij toepassing van nicotine tegen bloedluis

    NARCIS (Netherlands)

    Traag, W.A.; Rijk, de T.C.; Zomer, P.; Vos Van Avezathe, A.; Kan, C.A.; Zeilmaker, M.; Hoogenboom, L.A.P.

    2005-01-01

    Uit onderzoek van de AID blijkt nicotine gebruikt te worden voor de bestrijding van bloedluis bij kippen. Dit levert mogelijk gezondheidsrisico's op voor de consument van het kippenvlees of de eieren. Omdat niet duidelijk is of het nicotine na de bestrijding van bloedluis in het vlees of eieren

  3. Design, formulation and evaluation of nicotine chewing gum

    OpenAIRE

    Abolfazl Aslani; Sahar Rafiei

    2012-01-01

    Background: Nicotine replacement therapy (NRT) can help smokers to quit smoking. Nicotine chewing gum has attracted the attention from pharmaceutical industries to offer it to consumers as an easily accessible NRT product. However, the bitter taste of such gums may compromise their acceptability by patients. This study was, therefore, designed to develop 2 and 4 mg nicotine chewing gums of pleasant taste, which satisfy the consumers the most. Materials and Methods: Nicotine, sugar, liquid...

  4. A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats.

    Science.gov (United States)

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2018-04-09

    Reinforcement value enhancement by nicotine of non-nicotine rewards is believed to partially motivate smoking behavior. Recently, we showed that the value-enhancing effects of nicotine are well characterized by reinforcer demand models and that the value-enhancing effects of the smoking-cessation aid bupropion (Zyban) are distinct from those of nicotine and differ between the sexes. The present study evaluated potential sex differences in the enhancement effects of nicotine and varenicline (Chantix) using a reinforcer demand methodology. The role of α4β2* and α7 nicotinic acetylcholine receptors (nAChRs) in the enhancing effects of nicotine and varenicline is also evaluated. Male and female rats (n=12/sex) were trained to lever press maintained by sensory reinforcement by visual stimulus (VS) presentations. Changes in the VS value following nicotine and varenicline administration were assessed using an established reinforcer demand approach. Subsequently, the effects of antagonism of α4β2* and α7 nAChRs on varenicline and nicotine-induced enhancement active lever-pressing were assessed using a progressive ratio schedule. Nicotine and varenicline enhanced VS demand equivalently between the sexes as evaluated by reinforcer demand. However, α4β2* receptor antagonism attenuated value enhancement by nicotine and varenicline in females, but only of nicotine in males.

  5. Electronic Cigarettes and Indoor Air Quality: A Simple Approach to Modeling Potential Bystander Exposures to Nicotine

    Science.gov (United States)

    Colard, Stéphane; O’Connell, Grant; Verron, Thomas; Cahours, Xavier; Pritchard, John D.

    2014-01-01

    There has been rapid growth in the use of electronic cigarettes (“vaping”) in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents. PMID:25547398

  6. Electronic Cigarettes and Indoor Air Quality: A Simple Approach to Modeling Potential Bystander Exposures to Nicotine

    Directory of Open Access Journals (Sweden)

    Stéphane Colard

    2014-12-01

    Full Text Available There has been rapid growth in the use of electronic cigarettes (“vaping” in Europe, North America and elsewhere. With such increased prevalence, there is currently a debate on whether the aerosol exhaled following the use of e-cigarettes has implications for the quality of air breathed by bystanders. Conducting chemical analysis of the indoor environment can be costly and resource intensive, limiting the number of studies which can be conducted. However, this can be modelled reasonably accurately based on empirical emissions data and using some basic assumptions. Here, we present a simplified model, based on physical principles, which considers aerosol propagation, dilution and extraction to determine the potential contribution of a single puff from an e-cigarette to indoor air. From this, it was then possible to simulate the cumulative effect of vaping over time. The model was applied to a virtual, but plausible, scenario considering an e-cigarette user and a non-user working in the same office space. The model was also used to reproduce published experimental studies and showed good agreement with the published values of indoor air nicotine concentration. With some additional refinements, such an approach may be a cost-effective and rapid way of assessing the potential exposure of bystanders to exhaled e-cigarette aerosol constituents.

  7. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA......). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...

  8. Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use.

    Science.gov (United States)

    Brody, Arthur L; Hubert, Robert; Mamoun, Michael S; Enoki, Ryutaro; Garcia, Lizette Y; Abraham, Paul; Young, Paulina; Mandelkern, Mark A

    2016-09-01

    Upregulation of α4β2* nicotinic acetylcholine receptors (nAChRs) is one of the most well-established effects of chronic cigarette smoking on the brain. Prior research by our group gave a preliminary indication that cigarette smokers with concomitant use of caffeine or marijuana have altered nAChR availability. We sought to determine if smokers with heavy caffeine or marijuana use have different levels of α4β2* nAChRs than smokers without these drug usages. One hundred and one positron emission tomography (PET) scans, using the radiotracer 2-FA (a ligand for β2*-containing nAChRs), were obtained from four groups of males: non-smokers without heavy caffeine or marijuana use, smokers without heavy caffeine or marijuana use, smokers with heavy caffeine use (mean four coffee cups per day), and smokers with heavy marijuana use (mean 22 days of use per month). Total distribution volume (Vt/fp) was determined for the brainstem, prefrontal cortex, and thalamus, as a measure of nAChR availability. A significant between-group effect was found, resulting from the heavy caffeine and marijuana groups having the highest Vt/fp values (especially for the brainstem and prefrontal cortex), followed by smokers without such use, followed by non-smokers. Direct between-group comparisons revealed significant differences for Vt/fp values between the smoker groups with and without heavy caffeine or marijuana use. Smokers with heavy caffeine or marijuana use have higher α4β2* nAChR availability than smokers without these drug usages. These findings are likely due to increased nicotine exposure but could also be due to an interaction on a cellular/molecular level.

  9. Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure.

    Science.gov (United States)

    Jacobsen, Leslie K; Picciotto, Marina R; Heath, Christopher J; Frost, Stephen J; Tsou, Kristen A; Dwan, Rita A; Jackowski, Marcel P; Constable, Robert T; Mencl, W Einar

    2007-12-05

    Prenatal exposure to maternal smoking has been linked to cognitive and auditory processing deficits in offspring. Preclinical studies have demonstrated that exposure to nicotine disrupts neurodevelopment during gestation and adolescence, possibly by disrupting the trophic effects of acetylcholine. Given recent clinical and preclinical work suggesting that neurocircuits that support auditory processing may be particularly vulnerable to developmental disruption by nicotine, we examined white matter microstructure in 67 adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. The groups did not differ in age, educational attainment, IQ, years of parent education, or symptoms of inattention. Diffusion tensor anisotropy and anatomical magnetic resonance images were acquired, and auditory attention was assessed, in all subjects. Both prenatal exposure and adolescent exposure to tobacco smoke was associated with increased fractional anisotropy (FA) in anterior cortical white matter. Adolescent smoking was also associated with increased FA of regions of the internal capsule that contain auditory thalamocortical and corticofugal fibers. FA of the posterior limb of the left internal capsule was positively correlated with reaction time during performance of an auditory attention task in smokers but not in nonsmokers. Development of anterior cortical and internal capsule fibers may be particularly vulnerable to disruption in cholinergic signaling induced by nicotine in tobacco smoke. Nicotine-induced disruption of the development of auditory corticofugal fibers may interfere with the ability of these fibers to modulate ascending auditory signals, leading to greater noise and reduced efficiency of neurocircuitry that supports auditory processing.

  10. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  11. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    Science.gov (United States)

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  12. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    Science.gov (United States)

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p nicotine dependence (p Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and

  13. New trends in the treatment of nicotine addiction.

    Science.gov (United States)

    Sliwińska-Mossoń, Mariola; Zieleń, Iwona; Milnerowicz, Halina

    2014-01-01

    The aim of this study was to discuss the therapeutic substances used to treat nicotine addiction, not registered in Poland. This paper presents the results of the latest clinical trials and the possibility of their use in the treatment of nicotine addiction. The first two discussed drugs clonidine and nortriptyline are recommended by clinical practice guidelines AHRQ (Agency for Healthcare Research and Quality) as the substance of the second line in the fight against addiction. Nortriptyline belongs to tricyclic antidepressants. Its mechanism of action is the inhibition of the reuptake of norepinephrine. It is suggested as the antagonist of activity of nicotinic receptors. The results confirm its efficacy in the treatment of nicotine addiction, but many side effects limit its use. Clonidine acts presumably by inhibition of sympathetic hyperactivity characteristic of symptoms associated with nicotine rehab. The remaining compounds under discussion, such as: venlafaxine, fluoxetine, moclobemide and rimonabant, are not registered in any country with an indication to use in the treatment of nicotine addiction, however, due to the mechanism in which they act, the possibility of their use in the treatment of this disease is considered. The possibility of using anxiolytics such as: buspirone, diazepam, meprobamate and beta-blockers: metoprolol and oxprenolol is also considered in order to treat the anxiety appearing as one of the symptoms of abstinence. An interesting proposal to combat nicotine addiction are vaccines--NicVAX, CYT002-NicQb and TA-NIC. Currently, they are in clinical phase I and II of their development. Their operation would be based on the induction of specific antibodies that bind nicotine in the plasma, thus prevent it reaching the nicotinic receptors. Preliminary results confirm the possible positive effects in the prevention and treatment of nicotine addiction.

  14. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  15. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Directory of Open Access Journals (Sweden)

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  16. Nicotinic and iso nicotinic acids: interactions with gamma radiation and acid-base equilibrium

    International Nuclear Information System (INIS)

    Ribeiro, Z.A.

    1984-01-01

    The values of pKa 1 and pKa 2 for nicotinic and iso nicotinic acids in aqueous medium were determined. The effects of gamma radiation about these acids by infrared and ultraviolet spectrophotometry and thermal gravimetric analysis were also studied. It was verified that the radiolysis of acids occurred by the two process of first order, determining the degradation constant and the degradation factors for each one of the solutions. (C.G.C.)

  17. Reduced Nicotine Content Expectancies Affect Initial Responses to Smoking.

    Science.gov (United States)

    Mercincavage, Melissa; Smyth, Joshua M; Strasser, Andrew A; Branstetter, Steven A

    2016-10-01

    We sought to determine if negative responses to reduced nicotine content (RNC) cigarettes during open-label trials result from smokers' (negative) expectancies. We examined the effects of nicotine content description - independent of actual nicotine content - on subjective responses (craving reduction, withdrawal suppression, mood changes, and sensory ratings) and smoking behaviors (topography measures and carbon monoxide [CO] boost). Thirty-six 12-hour-abstinent daily smokers completed a 3-session crossover trial. During each session, participants smoked their preferred brand cigarette - blinded and described as containing "usual," "low," and "very low" nicotine content - through a topography device and completed CO and subjective response assessments. Although nicotine content was identical, compared to the "usual" content cigarette, participants experienced less craving reduction after smoking the "very low" nicotine cigarette, and rated its smoke as weaker (p marketing and labeling are likely important considerations if a federal nicotine reduction policy is initiated.

  18. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    Science.gov (United States)

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  19. Serotonergic modulation of nicotine-induced kinetic tremor in mice

    Directory of Open Access Journals (Sweden)

    Naofumi Kunisawa

    2017-06-01

    Full Text Available We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT, significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist. In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist. The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist or SB-258585 (5-HT6 antagonist. These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.

  20. Sulphur depletion altered somatic embryogenesis in Theobroma ...

    African Journals Online (AJOL)

    USER

    2010-08-30

    Aug 30, 2010 ... embryo) occur in response to alteration of genes expression patterns ... the proteins synthesis and the rate with which all amino ... thiamine-HCl, 1 mgml-1 nicotinic acid and 2 mgml-1 glycine), 20 gL-1 ... Amino acids and soluble sugar extraction .... 0.1% (v/v) Triton X-100, 0.1 % (w/v) dithiothreitol, and 0.2%.

  1. Modulation of Intestinal Barrier and Bacterial Endotoxin Production Contributes to the Beneficial Effect of Nicotinic Acid on Alcohol-Induced Endotoxemia and Hepatic Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2015-10-01

    Full Text Available Alcohol consumption causes nicotinic acid deficiency. The present study was undertaken to determine whether dietary nicotinic acid supplementation provides beneficial effects on alcohol-induced endotoxin signaling and the possible mechanisms at the gut-liver axis. Male Sprague-Dawley rats were pair-fed the Lieber-DeCarli liquid diets containing ethanol or isocaloric maltose dextrin for eight weeks, with or without dietary supplementation with 750 mg/liter nicotinic acid. Chronic alcohol feeding elevated the plasma endotoxin level and activated hepatic endotoxin signaling cascade, which were attenuated by nicotinic acid supplementation. Alcohol consumption remarkably decreased the mRNA levels of claudin-1, claudin-5, and ZO-1 in the distal intestine, whereas nicotinic acid significantly up-regulated these genes. The concentrations of endotoxin, ethanol, and acetaldehyde in the intestinal contents were increased by alcohol exposure, and niacin supplementation reduced the intestinal endotoxin and acetaldehyde levels. Nicotinic acid supplementation upregulated the intestinal genes involved in aldehyde detoxification via transcriptional regulation. These results demonstrate that modulation of the intestinal barrier function and bacterial endotoxin production accounts for the inhibitory effects of nicotinic acid on alcohol-induced endotoxemia and hepatic inflammation.

  2. Nighttime dim light exposure alters the responses of the circadian system.

    Science.gov (United States)

    Shuboni, D; Yan, L

    2010-11-10

    The daily light dark cycle is the most salient entraining factor for the circadian system. However, in modern society, darkness at night is vanishing as light pollution steadily increases. The impact of brighter nights on wild life ecology and human physiology is just now being recognized. In the present study, we tested the possible detrimental effects of dim light exposure on the regulation of circadian rhythms, using CD1 mice housed in light/dim light (LdimL, 300 lux:20 lux) or light/dark (LD, 300 lux:1 lux) conditions. We first examined the expression of clock genes in the suprachiasmatic nucleus (SCN), the locus of the principal brain clock, in the animals of the LD and LdimL groups. Under the entrained condition, there was no difference in PER1 peak expression between the two groups, but at the trough of the PER 1 rhythm, there was an increase in PER1 in the LdimL group, indicating a decrease in the amplitude of the PER1 rhythm. After a brief light exposure (30 min, 300 lux) at night, the light-induced expression of mPer1 and mPer2 genes was attenuated in the SCN of LdimL group. Next, we examined the behavioral rhythms by monitoring wheel-running activity to determine whether the altered responses in the SCN of LdimL group have behavioral consequence. Compared to the LD controls, the LdimL group showed increased daytime activity. After being released into constant darkness, the LdimL group displayed shorter free-running periods. Furthermore, following the light exposure, the phase shifting responses were smaller in the LdimL group. The results indicate that nighttime dim light exposure can cause functional changes of the circadian system, and suggest that altered circadian function could be one of the mechanisms underlying the adverse effects of light pollution on wild life ecology and human physiology. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Nicotine Gum

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavioral change techniques. Nicotine gum ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  4. Animal Research on Nicotine Reduction: Current Evidence and Research Gaps.

    Science.gov (United States)

    Smith, Tracy T; Rupprecht, Laura E; Denlinger-Apte, Rachel L; Weeks, Jillian J; Panas, Rachel S; Donny, Eric C; Sved, Alan F

    2017-09-01

    A mandated reduction in the nicotine content of cigarettes may improve public health by reducing the prevalence of smoking. Animal self-administration research is an important complement to clinical research on nicotine reduction. It can fill research gaps that may be difficult to address with clinical research, guide clinical researchers about variables that are likely to be important in their own research, and provide policy makers with converging evidence between clinical and preclinical studies about the potential impact of a nicotine reduction policy. Convergence between clinical and preclinical research is important, given the ease with which clinical trial participants can access nonstudy tobacco products in the current marketplace. Herein, we review contributions of preclinical animal research, with a focus on rodent self-administration, to the science of nicotine reduction. Throughout this review, we highlight areas where clinical and preclinical research converge and areas where the two differ. Preclinical research has provided data on many important topics such as the threshold for nicotine reinforcement, the likelihood of compensation, moderators of the impact of nicotine reduction, the impact of environmental stimuli on nicotine reduction, the impact of nonnicotine cigarette smoke constituents on nicotine reduction, and the impact of nicotine reduction on vulnerable populations. Special attention is paid to current research gaps including the dramatic rise in alternative tobacco products, including electronic nicotine delivery systems (ie, e-cigarettes). The evidence reviewed here will be critical for policy makers as well as clinical researchers interested in nicotine reduction. This review will provide policy makers and clinical researchers interested in nicotine reduction with an overview of the preclinical animal research conducted on nicotine reduction and the regulatory implications of that research. The review also highlights the utility of

  5. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  6. Knowledge and Perceptions about Nicotine, Nicotine Replacement Therapies and Electronic Cigarettes among Healthcare Professionals in Greece

    Directory of Open Access Journals (Sweden)

    Anastasia Moysidou

    2016-05-01

    Full Text Available Introduction. The purpose of this study was to evaluate the knowledge and perceptions of Greek healthcare professionals about nicotine, nicotine replacement therapies and electronic cigarettes. Methods. An online survey was performed, in which physicians and nurses working in private and public healthcare sectors in Athens-Greece were asked to participate through email invitations. A knowledge score was calculated by scoring the correct answers to specific questions with 1 point. Results. A total of 262 healthcare professionals were included to the analysis. Most had daily contact with smokers in their working environment. About half of them considered that nicotine has an extremely or very important contribution to smoking-related disease. More than 30% considered nicotine replacement therapies equally or more addictive than smoking, 76.7% overestimated their smoking cessation efficacy and only 21.0% would recommend them as long-term smoking substitutes. For electronic cigarettes, 45.0% considered them equally or more addictive than smoking and 24.4% equally or more harmful than tobacco cigarettes. Additionally, 35.5% thought they involve combustion while the majority responded that nicotine in electronic cigarettes is synthetically produced. Only 14.5% knew about the pending European regulation, but 33.2% have recommended them to smokers in the past. Still, more than 40% would not recommend electronic cigarettes to smokers unwilling or unable to quit smoking with currently approved medications. Cardiologists and respiratory physicians, who are responsible for smoking cessation therapy in Greece, were even more reluctant to recommend electronic cigarettes to this subpopulation of smokers compared to all other participants. The knowledge score of the whole study sample was 7.7 (SD: 2.4 out of a maximum score of 16. Higher score was associated with specific physician specialties. Conclusions. Greek healthcare professionals appear to overestimate

  7. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  8. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan; Li, Ruisheng; Jia, Ying; Zhao, Yun; Xiao, Dongjie; Dang, Ningning; Wang, Yunshan

    2014-01-01

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  9. Lipid-drug-conjugate (LDC) solid lipid nanoparticles (SLN) for the delivery of nicotine to the oral cavity - optimization of nicotine loading efficiency.

    Science.gov (United States)

    Ding, Yuan; Nielsen, Kent A; Nielsen, Bruno P; Bøje, Niels W; Müller, Rainer H; Pyo, Sung Min

    2018-03-12

    Nicotine, obtained from tobacco leaves, has been used to promote the cessation of smoking and reduce the risk of COPD and lung cancer. Incorporating the active in lipid nanoparticles is an effective tool to minimize its irritation potential and to use the particles as intermediate to produce final products. However, as a hydrophilic active, it is a challenge to prepare nicotine loaded lipid nanoparticles with high drug loading. In this study, lipid-drug-conjugates (LDC) were formed by nicotine and different fatty acids to enable the production of sufficiently loaded nicotine lipid nanoparticles. The encapsulation efficiency of nicotine in LDC-containing SLN was about 50%, which increased at least fourfold compared to the non-LDC formulations (around 10%) due to the increased lipophilicity of nicotine by strong interactions between positively charged nicotine and negatively charged fatty acids (formation of LDCs). The z-average of all formulations (150 to 350 nm) proved to be in the required submicron size range with a narrow size distribution. In summary, nicotine loaded LDC lipid nanoparticles with high drug loading were successfully developed with Kolliwax® S and stearic acid as counter-ion forming the LDC and hydrogenated sunflower oil (HSO) as lipid particle matrix. Copyright © 2018. Published by Elsevier B.V.

  10. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization

    Directory of Open Access Journals (Sweden)

    Zago W.M.

    1999-01-01

    Full Text Available Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

  11. Epidemiology, radiology, and genetics of nicotine dependence in COPD

    Directory of Open Access Journals (Sweden)

    Hokanson John E

    2011-01-01

    Full Text Available Abstract Background Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers. Methods Current smokers with COPD (GOLD stage ≥ 2 or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND. Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung Results Among 842 currently smoking subjects (335 COPD cases and 507 controls, 329 subjects (39.1% showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p Conclusions Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes. Trial registration ClinicalTrials (NCT: NCT00608764

  12. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring.

    Science.gov (United States)

    Dembele, Korami; Yao, Xing-Hai; Chen, Li; Nyomba, B L Grégoire

    2006-09-01

    Prenatal ethanol (EtOH) exposure is associated with low birth weight, followed by increased appetite, catch-up growth, insulin resistance, and impaired glucose tolerance in the rat offspring. Because EtOH can induce oxidative stress, which is a putative mechanism of insulin resistance, and because of the central role of the hypothalamus in the regulation of energy homeostasis and insulin action, we investigated whether prenatal EtOH exposure causes oxidative damage to the hypothalamus, which may alter its function. Female rats were given EtOH by gavage throughout pregnancy. At birth, their offspring were smaller than those of non-EtOH rats. Markers of oxidative stress and expression of neuropeptide Y and proopiomelanocortin (POMC) were determined in hypothalami of postnatal day 7 (PD7) and 3-mo-old (adult) rat offspring. In both PD7 and adult rats, prenatal EtOH exposure was associated with decreased levels of glutathione and increased expression of MnSOD. The concentrations of lipid peroxides and protein carbonyls were normal in PD7 EtOH-exposed offspring, but were increased in adult EtOH-exposed offspring. Both PD7 and adult EtOH-exposed offspring had normal neuropeptide Y and POMC mRNA levels, but the adult offspring had reduced POMC protein concentration. Thus only adult offspring preexposed to EtOH had increased hypothalamic tissue damage and decreased levels of POMC, which could impair melanocortin signaling. We conclude that prenatal EtOH exposure causes hypothalamic oxidative stress, which persists into adult life and alters melanocortin action during adulthood. These neuroendocrine alterations may explain weight gain and insulin resistance in rats exposed to EtOH early in life.

  13. Nasal nicotine solution: a potential aid to giving up smoking?

    Science.gov (United States)

    Russell, M A; Jarvis, M J; Feyerabend, C; Fernö, O

    1983-01-01

    A nasal solution was developed containing 2 mg nicotine for use as a kind of liquid snuff. Its absorption was studied in three subjects. An average peak of plasma nicotine concentrations of 86.9 nmol/l (14.1 ng/ml) was reached seven and a half minutes after taking the solution. This compared with an average peak of 158.4 nmol/l (25.7 ng/ml) one and a half minutes after completing (but seven and a half minutes after starting) a middle tar cigarette (1.4 mg nicotine) and an average peak of 52.4 nmol/l (8.5 ng/ml) after chewing nicotine gum (2 mg nicotine) for 30 minutes. The more rapid and efficient absorption of nicotine from the nasal nicotine solution than from nicotine chewing gum suggests that it might prove a useful aid to giving up smoking. Nasal nicotine solution might be particularly useful in smokers for whom the gum is less suitable on account of dentures or peptic ulcers or who experience nausea and dyspeptic symptoms from the gum. PMID:6402202

  14. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells.

    Science.gov (United States)

    Wang, Yan Yan; Liu, Yao; Ni, Xiao Yan; Bai, Zhen Huan; Chen, Qiong Yun; Zhang, Ye; Gao, Feng Guang

    2014-03-01

    Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.

  15. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    Science.gov (United States)

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  16. Predictors of the Nicotine Dependence Behavior Time to the First Cigarette in a Multiracial Cohort.

    Science.gov (United States)

    Branstetter, Steven A; Mercincavage, Melissa; Muscat, Joshua E

    2015-07-01

    The time to first cigarette of the day (TTFC) is a strong indicator of nicotine dependence behaviors such as nicotine uptake and quit success in young and older smokers. There are substantial differences in levels of nicotine dependence by race and ethnic group. Data from Wave III of the multiracial National Longitudinal Study of Adolescent Health were analyzed for young smokers between the ages of 21 and 28 (N = 1,425). Time to first cigarette data was compared between Hispanic, White, Black, Native American, and Asian smokers. Black smokers were significantly more likely to smoke within 5min of waking than White, Hispanic, and Asian smokers. Lower personal income predicted smoking within 5min of waking for both White and Black smokers. For White smokers, increased number of cigarettes per day and increased years of smoking also predicted smoking within 5min of waking. The number of days smoked or number of cigarettes per day did not predict smoking within 5min of waking among smokers. The higher prevalence of early TTFC among Blacks indicates increased nicotine and carcinogen exposure, and may help explain the increased lung cancer rates and failed cessation attempts among Black smokers. TTFC may be an important screening item, independent of cigarettes per day, for clinicians and interventions to identify those at highest risk for cessation failure and disease risk. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. GLP-1 acts on habenular avoidance circuits to control nicotine intake.

    Science.gov (United States)

    Tuesta, Luis M; Chen, Zuxin; Duncan, Alexander; Fowler, Christie D; Ishikawa, Masago; Lee, Brian R; Liu, Xin-An; Lu, Qun; Cameron, Michael; Hayes, Matthew R; Kamenecka, Theodore M; Pletcher, Matthew; Kenny, Paul J

    2017-05-01

    Tobacco smokers titrate their nicotine intake to avoid its noxious effects, sensitivity to which may influence vulnerability to tobacco dependence, yet mechanisms of nicotine avoidance are poorly understood. Here we show that nicotine activates glucagon-like peptide-1 (GLP-1) neurons in the nucleus tractus solitarius (NTS). The antidiabetic drugs sitagliptin and exenatide, which inhibit GLP-1 breakdown and stimulate GLP-1 receptors, respectively, decreased nicotine intake in mice. Chemogenetic activation of GLP-1 neurons in NTS similarly decreased nicotine intake. Conversely, Glp1r knockout mice consumed greater quantities of nicotine than wild-type mice. Using optogenetic stimulation, we show that GLP-1 excites medial habenular (MHb) projections to the interpeduncular nucleus (IPN). Activation of GLP-1 receptors in the MHb-IPN circuit abolished nicotine reward and decreased nicotine intake, whereas their knockdown or pharmacological blockade increased intake. GLP-1 neurons may therefore serve as 'satiety sensors' for nicotine that stimulate habenular systems to promote nicotine avoidance before its aversive effects are encountered.

  18. Resistance to cycloxaprid in Laodelphax striatellus is associated with altered expression of nicotinic acetylcholine receptor subunits.

    Science.gov (United States)

    Zhang, Yueliang; Han, Yangchun; Yang, Qiong; Wang, Lihua; He, Peng; Liu, Zewen; Li, Zhong; Guo, Huifang; Fang, Jichao

    2018-04-01

    Cycloxaprid is a new oxabridged cis-configuration neonicotinoid insecticide, the resistance development potential and underlying resistance mechanism of which were investigated in the small brown planthopper, Laodelphax striatellus (Fallén), an important agricultural pest of rice. A cycloxaprid-resistant strain (YN-CPD) only achieved 10-fold higher resistance, in contrast to 106-fold higher resistance to buprofezin and 332-fold higher resistance to chlorpyrifos achieved after exposure to similar selection pressure, and the cycloxaprid selected line showed no cross-resistance to the buprofezin and chlorpyrifos-selected resistance strains. Moreover, we identified 10 nicotinic acetylcholine receptor (nAChR) subunits from the transcriptome of L. striatellus, and six segments had open reading frames (ORFs). While we did not find mutations in the nAChR genes of L. striatellus, subunits Lsα1 and Lsβ1 exhibited, respectively, 9.60-fold and 3.36-fold higher expression in the resistant strain, while Lsα8 exhibited 0.44-fold lower expression. Suppression of Lsα1 through ingestion of dsLsα1 led to an increase in susceptibility to cycloxaprid. The findings indicate that resistance to cycloxaprid develops slowly compared with resistance to other chemicals and without cross-resistance to chlorpyrifos or buprofezin; over-expressed Lsα1 is associated with low cycloxaprid resistance levels, but the importance of over-expressed Lsβ1 and reduced expression of Lsα8 could not be excluded. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Altered White Matter Integrity in Smokers Is Associated with Smoking Cessation Outcomes

    OpenAIRE

    Huang, Peiyu; Shen, Zhujing; Wang, Chao; Qian, Wei; Zhang, Huan; Yang, Yihong; Zhang, Minming

    2017-01-01

    Smoking is a significant cause of preventable mortality worldwide. Understanding the neural mechanisms of nicotine addiction and smoking cessation may provide effective targets for developing treatment strategies. In the present study, we explored whether smokers have white matter alterations and whether these alterations are related to cessation outcomes and smoking behaviors. Sixty-six smokers and thirty-seven healthy non-smokers were enrolled. The participants underwent magnetic resonance ...

  20. The effect of coniine on presynaptic nicotinic receptors.

    Science.gov (United States)

    Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa

    2016-01-01

    Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.

  1. Neuronal effects of nicotine during auditory selective attention.

    Science.gov (United States)

    Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R

    2015-06-01

    Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.

  2. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thophon, S.; Kruatrachue, M.; Upatham, E.S.; Pokethitiyook, P.; Sahaphong, S.; Jaritkhuan, S

    2003-03-01

    White seabass responded differently to cadmium at chronic and subchronic levels. - Histopathological alterations to white seabass, Lates calcarifer aged 3 months in acute and subchronic cadmium exposure were studied by light and scanning electron microscopy. The 96-h LC{sub 50} values of cadmium to L. calcarifer was found to be 20.12{+-}0.61 mg/l and the maximum acceptable toxicant concentration (MATC) was 7.79 mg/l. Fish were exposed to 10 and 0.8 mg/l of Cd (as CdCl{sub 2}H{sub 2}O) for 96 h and 90 days, respectively. The study showed that gill lamellae and kidney tubules were the primary target organs for the acute toxic effect of cadmium while in the subchronic exposure, the toxic effect to gills was less than that of kidney and liver. Gill alterations included edema of the epithelial cells with the breakdown of pillar cell system, aneurisms with some ruptures, hypertrophy and hyperplasia of epithelial and chloride cells. The liver showed blood congestion in sinusoids and hydropic swelling of hepatocytes, vacuolation and dark granule accumulation. Lipid droplets and glycogen content were observed in hepatocytes at the second and third month of subchronic exposure. The kidney showed hydropic swelling of tubular cell vacuolation and numerous dark granule accumulation in many tubules. Tubular degeneration and necrosis were seen in some areas.

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  4. The effects of Nicotinic Acid and Xanthinol Nicotinate on human memory in different categories of age

    NARCIS (Netherlands)

    Loriaux, S.M.; Deijen, J.B.; Orlebeke, J.F.; de Swart, J.H.

    1985-01-01

    The treatment effect of nicotinic acid and xanthinol nicotinate on human memory was compared with placebo in 96 healthy subjects. Forty-three subjects were young (35-45 years), 30 subjects middle aged (55-65 years) and 23 subjects were old aged (75-85 years). Pre- and post-treatment scores were

  5. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  6. VOLTAMMETRIC DETERMINATION OF NICOTINE IN CIGARETTE ...

    African Journals Online (AJOL)

    Preferred Customer

    determination of nicotine in two brands of commercial cigarettes and ... to disruption of arteries and cardiovascular risk factors [8, 9]. Smoking .... e d. Figure 2. Cyclic voltammetric response (scan rate of 100 mV/s) of 1.0 mM nicotine at AGCE in.

  7. Chronic oral nicotine increases brain [3H]epibatidine binding and responsiveness to antidepressant drugs, but not nicotine, in the mouse forced swim test

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Nielsen, Elsebet O; Redrobe, John P

    2009-01-01

    Smoking rates among depressed individuals is higher than among healthy subjects, and nicotine alleviates depressive symptoms. Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. In mice, acute nicotine administration enhances...... the activity of antidepressants in the mouse forced swim (mFST) and tail suspension tests. Here, we investigated if this action of nicotine is also reflected in a chronic treatment regimen....

  8. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  9. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  10. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

    Energy Technology Data Exchange (ETDEWEB)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Fouda, Mohamed A.; El-gowilly, Sahar M.; Saad, Evan I.

    2012-02-01

    We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE{sub 2}) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS{sub PE} and BRS{sub SNP}). Nicotine (100 μg/kg i.v.) reduced BRS{sub SNP} in OVX rats but not in proestrus or OVXE{sub 2} rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS{sub PE} was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS{sub SNP} interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS{sub SNP} attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E{sub 2} against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.

  11. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A.L.C.S. do; Caires, F.J., E-mail: caires.flavio@yahoo.com.br; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-10

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L){sub 2}·nH{sub 2}O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, Co{sub 3}O{sub 4}, NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds.

  12. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions

    International Nuclear Information System (INIS)

    Nascimento, A.L.C.S. do; Caires, F.J.; Gomes, D.J.C.; Gigante, A.C.; Ionashiro, M.

    2014-01-01

    Graphical abstract: - Highlights: • The transition metal ion nicotinates were synthesized. • The TG–DTA curves provided previously unreported information about thermal behaviour. • The gaseous products released were detected by TG–DSC coupled to FTIR. - Abstract: Solid-state M(L) 2 ·nH 2 O compounds, where M stands for bivalent transition metals (Mn, Fe, Co, Ni, Cu and Zn), L is nicotinate and n = 0–4.5, have been synthesized. Characterization and thermal behaviour of these compounds were investigated employing elemental analysis based on the mass losses observed in the TG–DTA curves, complexometry, X-ray diffractometry, infrared spectroscopy (FTIR), simultaneous thermogravimetric and differential thermal analysis (TG–DTA) and TG–DSC coupled to FTIR. The thermal behaviour of nicotinic acid and its sodium salt was also investigated. For the hydrated transition metal compounds, the dehydration and thermal decomposition of the anhydrous compounds occur in a single step. For the sodium nicotinate, the final residue up to 765 °C is sodium carbonate and for the transition metal nicotinates, the final residues are Mn 3 O 4 , Fe 2 O 3 , Co 3 O 4 , NiO, CuO and ZnO. The results also provided information concerning the thermal stability, thermal decomposition and identification of the gaseous products evolved during the thermal decomposition of the compounds

  13. Design, formulation and evaluation of nicotine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Rafiei, Sahar

    2012-01-01

    Nicotine replacement therapy (NRT) can help smokers to quit smoking. Nicotine chewing gum has attracted the attention from pharmaceutical industries to offer it to consumers as an easily accessible NRT product. However, the bitter taste of such gums may compromise their acceptability by patients. This study was, therefore, designed to develop 2 and 4 mg nicotine chewing gums of pleasant taste, which satisfy the consumers the most. Nicotine, sugar, liquid glucose, glycerin, different sweetening and taste-masking agents, and a flavoring agent were added to the gum bases at appropriate temperature. The medicated gums were cut into pieces of suitable size and coated by acacia aqueous solution (2% w/v), sugar dusting, followed by acacia-sugar-calcium carbonate until a smooth surface was produced. The gums' weight variation and content uniformity were determined. The release of nicotine was studied in pH 6.8 phosphate buffer using a mastication device which simulated the mastication of chewing gum in human. The Latin Square design was used for the evaluation of organoleptic characteristics of the formulations at different stages of development. Most formulations released 79-83% of their nicotine content within 20 min. Nicotine-containing sugar-coated gums in which aspartame as sweetener and cherry and eucalyptus as flavoring agents were incorporated (i.e. formulations F(19-SC) and F(20-SC), respectively) had optimal chewing hardness, adhering to teeth, and plumpness characteristics, as well as the most pleasant taste and highest acceptability to smokers. Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  14. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  15. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  16. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  17. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann

    2014-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved...... in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7–P15), nicotine induced larger...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  18. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    facilitated burst emergence in non-burster cells. Furthermore, nicotine inhibited excitatory transmission and enhanced synaptic inhibition. Strong neuroprotection by nicotine prevented the HM loss observed after 4 h of TBOA exposure. This neuroprotective action was due to suppression of downstream effectors of neurotoxicity such as increased intracellular levels of reactive oxygen species, impaired energy metabolism and upregulated genes involved in endoplasmic reticulum (ER) stress. In addition, HMs surviving TBOA toxicity often expressed UDP-glucose glycoprotein glucosyltransferase, a key element in repair of misfolded proteins: this phenomenon was absent after nicotine application, indicative of ER stress prevention. Our results suggest nAChRs to be potential targets for inhibiting excitotoxic damage of motoneurons at an early stage of the neurodegenerative process. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Sex differences in nicotine intravenous self-administration: A meta-analytic review.

    Science.gov (United States)

    Flores, Rodolfo J; Uribe, Kevin P; Swalve, Natashia; O'Dell, Laura E

    2017-11-21

    This report reflects a meta-analysis that systematically reviewed the literature on intravenous self-administration (IVSA) of nicotine in female and male rats. The goal was to determine if sex differences in nicotine IVSA exist, estimate the magnitude of the effect, and identify potential moderators of the relationship between sex differences and nicotine consumption. Extensive search procedures identified 20 studies that met the inclusion criteria of employing both female and male rats in nicotine IVSA procedures. The meta-analysis was conducted on effect size values that were calculated from mean total intake or nicotine deliveries using the Hedges' unbiased g u statistic. A random effects analysis revealed that overall females self-administered more nicotine than males (weighted g u =0.18, 95% CI [0.003, 0.34]). Subsequent moderator variable analyses revealed that certain procedural conditions influenced the magnitude of sex differences in nicotine IVSA. Specifically, higher reinforcement requirements (>FR1) and extended-access sessions (23h) were associated with greater nicotine IVSA in females versus males. Females also displayed higher nicotine intake than males when the experiment included a light cue that signaled nicotine delivery. Sex differences were not influenced by the diurnal phase of testing, dose of nicotine, or prior operant training. Overall, the results revealed that female rats display higher levels of nicotine IVSA than males, suggesting that the strong reinforcing effects of nicotine promote tobacco use in women. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory.

    Science.gov (United States)

    Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J

    2014-03-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. Copyright © 2014 Elsevier Inc. All rights reserved.