WorldWideScience

Sample records for nicotiana tabacum nicotiana

  1. Sincronización de Células de Tabaco (Nicotiana tabacum) NT-1 Synchronization of tobacco cells (Nicotiana tabacum) NT-1

    OpenAIRE

    León F Ruiz; Ana E Higareda; Marco A Pardo

    2010-01-01

    Se ha evaluado la capacidad sincronizante de afidicolina e hidroxiurea en cultivos de células de tabaco (Nicotiana tabacum) NT-1. Los cultivos sincronizados son poderosas herramientas en estudios moleculares y bioquímicos relacionados al ciclo celular y comúnmente se utilizan químicos para bloquear el ciclo celular. La línea celular de tabaco (Nicotiana tabacum) NT-1 proviene de la línea celular TBY-2, caracterizándose NT-1 por su menor velocidad de crecimiento y tamaño celular heterogéneo. L...

  2. Sincronización de Células de Tabaco (Nicotiana tabacum) NT-1

    OpenAIRE

    Ruiz, León F; Higareda, Ana E; Pardo, Marco A

    2010-01-01

    Se ha evaluado la capacidad sincronizante de afidicolina e hidroxiurea en cultivos de células de tabaco (Nicotiana tabacum) NT-1. Los cultivos sincronizados son poderosas herramientas en estudios moleculares y bioquímicos relacionados al ciclo celular y comúnmente se utilizan químicos para bloquear el ciclo celular. La línea celular de tabaco (Nicotiana tabacum) NT-1 proviene de la línea celular TBY-2, caracterizándose NT-1 por su menor velocidad de crecimiento y tamaño celular heterogéneo. L...

  3. Omzettingen van koolhydraten in het blad van Nicotiana tabacum L.

    NARCIS (Netherlands)

    Tollenaar, D.

    1925-01-01

    Nicotiana tabacum L. was chosen as an experimental plant for several practical reasons. The plants were grown in large pots in a glasshouse at 22 °C and great humidity in February-March and September-October until 4 normal leaves were present. Each day at 16.00 h the plants were brought into

  4. Antinuclear human autoantibodies as markers in Nicotiana tabacum pollen tubes

    Directory of Open Access Journals (Sweden)

    C. Poggialini

    2014-01-01

    Full Text Available In the present paper we report on the use of antinuclear human autoantibodies as specific markers in Nicotiana tabacum pollen tubes. The antibodies have been tested by fluorescence techniques using a confocal laser scanning microscope. All the antibodies showed specifc labelling pattern and the results, although preliminary in nature, could open new perspectives of research.

  5. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units.

    Science.gov (United States)

    Lim, K Y; Kovarik, A; Matýăsek, R; Bezdĕk, M; Lichtenstein, C P; Leitch, A R

    2000-06-01

    We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nicotiana sylvestris (2n = 2x = 24) and N. tomentosiformis (2n = 2x = 24) and compared these with patterns in N. tabacum (tobacco, 2n = 4x = 48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N

  6. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Sant'Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa; Souza, Silvia R.

    2008-01-01

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R 2 = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R 2 = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil

  7. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sant' Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Souza, Silvia R. [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)], E-mail: souzasrd@terra.com.br

    2008-01-15

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R{sup 2} = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R{sup 2} = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil.

  8. An arabinoxyloglucan isolated from the midrib of the leaves of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Eda, S; Kato, K

    1978-01-01

    The structure of an arabinoxyloglucan, separated from the hemicellulosic polysaccharides of the midrib of the leaves of Nicotiana tabacum, was investigated by methylation analyses before and after mild acid hydrolysis, acetolysis and cellulase-degradation. The arabinoxyloglucan consists of L-arabinose, D-xylose and D-glucose in a molar ratio of 13:33:54, and has a backbone of ..beta..-(1..-->..4)-linked D-glucopyranosyl residues. Some of the glucopyranosyl residues are attached at the 6 position by single ..cap alpha..-D-xylopyranosyl and ..cap alpha..-L-arabinofuranosyl-(1..-->..2)-..cap alpha..-D-xylopyranosyl side chains.

  9. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls

    Czech Academy of Sciences Publication Activity Database

    Nováková, Martina; Macková, M.; Antošová, Z.; Viktorová, J.; Szekeres, M.; Demnerová, K.; Macek, Tomáš

    2010-01-01

    Roč. 1, č. 6 (2010), s. 419-423 ISSN 1949-1018 R&D Projects: GA MŠk 1M06030 Grant - others:GA MŠk(CZ) ME09024 Institutional research plan: CEZ:AV0Z40550506 Keywords : phytoremediation * transgenic plant * Nicotiana tabacum * bphC Subject RIV: EI - Biotechnology ; Bionics

  10. Effect of Radiation Dosage on Efficiency of Chloroplast Transfer by Protoplast Fusion in Nicotiana

    OpenAIRE

    Menczel, László; Galiba, Gábor; Nagy, Ferenc; Maliga, Pál

    1982-01-01

    Chloroplasts of Nicotiana tabacum SR1 were transferred into Nicotiana plumbaginifolia by protoplast fusion. The protoplasts of the organelle donor were irradiated with different lethal doses using a 60Co source, to facilitate the elimination of their nuclei from the fusion products. After fusion induction, clones derived from fusion products and containing streptomycin-resistant N. tabacum SR1 chloroplasts were selected by their ability to green on a selective medium. When N. tabacum protopla...

  11. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer (Hemiptera: Aphididae Reared on Tobacco (Nicotiana tabacum L. Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer (Hemiptera: Aphididae creados sobre tabaco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Marco A Cabrera-Brandt

    2010-12-01

    Full Text Available Myzus persicae (Sulzer is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae well adapted to tobacco (Nicotiana tabacum L.. We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one genotype belonging to M. persicae sensu stricto were reared on tobacco and pepper (Capsicum annuum L., respectively. M. persicae nicotianae showed a significantly higher intrinsic rate of increase (r m on pepper than on tobacco, and M. persicae s.s. performed similarly, but with no reproduction at all on tobacco. In order to evaluate the effect of tobacco on detoxification enzymes, esterases, glutathione S-transferases (GST and cytochrome P-450 monooxygenases (MO were determined in both selected aphid genotypes after 12, 24, 36, 48 and 72 h of rearing on tobacco and pepper. M. persicae nicotianae exhibited the higher total esterase activities when reared on tobacco than on pepper after 48 h of rearing, while the activities of GST and MO did not show any significant difference between host-plants and duration of treatment. For M. persicae s.s., no significant differences were observed among host-plants for the studied enzymes. These results suggest a participation of the esterases, on the ability of this M. persicae nicotianae to overcome the tobacco defences.Myzus persicae (Sulzer es un áfido polífago que incluye a Myzus persicae nicotianae, una subespecie altamente adaptada sobre tabaco (Nicotiana tabacum L.. Evaluamos el efecto del tabaco sobre el desempeño biológico y sobre determinadas enzimas de detoxificación en áfidos, para estudiar su participación en la capacidad de M. persicae nicotianae de superar las defensas químicas del tabaco. Dos

  12. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová-Hýsková, V.; Miedzińska, L.; Dobrá, Jana; Vaňková, Radomíra; Ryšlavá, H.

    2014-01-01

    Roč. 171, č. 5 (2014), s. 19-25 ISSN 0176-1617 R&D Projects: GA MŠk 1M0505 Institutional support: RVO:61389030 Keywords : Drought * NADP-malic enzyme * Nicotiana tabacum L. Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.557, year: 2014

  13. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.

    Science.gov (United States)

    Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi

    2007-01-01

    The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

  14. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  15. Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective

    Directory of Open Access Journals (Sweden)

    Bombarely Aureliano

    2012-08-01

    Full Text Available Abstract Background Polyploidization is an important mechanism in plant evolution. By analyzing the leaf transcriptomes taken from the allotetraploid Nicotiana tabacum (tobacco and parental genome donors, N. sylvesteris (S-Genome and N. tomentosiformis (T-Genome, a phylogenomic approach was taken to map the fate of homeologous gene pairs in this plant. Results A comparison between the genes present in the leaf transcriptomes of N. tabacum and modern day representatives of its progenitor species demonstrated that only 33% of assembled transcripts could be distinguished based on their sequences. A large majority of the genes (83.6% of the non parent distinguishable and 87.2% of the phylogenetic topology analyzed clusters expressed above background level (more than 5 reads showed similar overall expression levels. Homeologous sequences could be identified for 968 gene clusters, and 90% (6% of all genes of the set maintained expression of only one of the tobacco homeologs. When both homeologs were expressed, only 15% (0.5% of the total showed evidence of differential expression, providing limited evidence of subfunctionalization. Comparing the rate of synonymous nucleotide substitution (Ks and non-synonymous nucleotide substitution (Kn provided limited evidence for positive selection during the evolution of tobacco since the polyploidization event took place. Conclusions Polyploidization is a powerful mechanism for plant speciation that can occur during one generation; however millions of generations may be necessary for duplicate genes to acquire a new function. Analysis of the tobacco leaf transcriptome reveals that polyploidization, even in a young tetraploid such as tobacco, can lead to complex changes in gene expression. Gene loss and gene silencing, or subfunctionalization may explain why both homeologs are not expressed by the associated genes. With Whole Genome Duplication (WGD events, polyploid genomes usually maintain a high percentage of

  16. 210Pb and 210Po concentrations determined in Nicotiana tabacum L., Burley variety, cultivated in Brazil

    International Nuclear Information System (INIS)

    Damatto, Sandra R.; Rocha, Rique J.; Da Silva, Carolina F.; Frujuele, Jonatan V.

    2013-01-01

    Tobacco products are extensively used throughout the world and the most consumed are cigarettes cigars and narghile. The damaging effects that these products cause to human health are discussed worldwide and many researches are performed with the aim of relating the use of these products with various illnesses. Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop year 2009/2010 production. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation (compression, filter and paper) and the temperature variation resulting from the incomplete combustion of tobacco. There is lack of information about the chemical and radiological characterization of the tobacco plant both in international and Brazilian literature. Thus a project was established with the objectives of characterizing chemically and radiologically the three varieties most cultivate in Brazil of Nicotiana tabacum L.; this paper presents the preliminary results of 210 Pb and 210 Po concentration for the Burley variety. Plants from this variety cultivated in open air, both in pots with special soil and fertilizer; and in small farms in natural conditions. The whole plant was analyzed; root, steam, leaves and flowers. The results obtained presented higher values for 210 Pb in leaves when compared with the other parts of the plant. (author)

  17. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yanmei Shi

    2015-12-01

    Full Text Available Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.

  18. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum.

    Science.gov (United States)

    Chen, Ke; de Borne, François Dorlhac; Julio, Emilie; Obszynski, Julie; Pale, Patrick; Otten, Léon

    2016-08-01

    Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  19. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.

    Science.gov (United States)

    Zhou, Benguo; Wang, Fang; Zhang, Xuesong; Zhang, Lina; Lin, Huafeng

    2017-07-01

    The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.

  20. Characterization of cDNA for PMT: a Partial Nicotine Biosynthesis-Related Gene Isolated from Indonesian Local Tobacco (Nicotiana tabacum cv. Sindoro1

    Directory of Open Access Journals (Sweden)

    SESANTI BASUKI

    2013-12-01

    Full Text Available Nicotine is the major alkaloid compound in cultivated tobacco (Nicotiana tabacum that could potentially be converted into carcinogenic compound (nor-nicotine. The PMT gene encoding putrescine N-methyltransferase (PMT is one of the two key genes that play a prominent role in nicotine biosynthesis. The aimed of this study was to isolate and characterize the cDNA sequence originated from Indonesian local tobacco cv. Sindoro1 (Ntpmt_Sindoro1. The results showed that the Ntpmt_Sindoro1 was 1124 bp in length. This cDNA fragment encodes for 374 amino acid residues. The predicted polypeptide from the cDNA is a hidrophilic protein, and has a predicted molecular weight of 40.95 kDa. The predicted amino acids sequence also showed high similarity to the PMT gene product Nicotiana sp. available in the GenBank data base. The amino acid sequences also exert conserved residues specifically exhibited only by PMT gene originated from N. tabacum. Clustering analysis revealed that Ntpmt_Sindoro1 belongs to the same clade as the PMT3 gene, a member of the N. tabacum PMT gene family. The Ntpmt_Sindoro1 cDNA sequence covering exon1-exon8 of the PMT gene fragment has been registered in the GenBank data base, under the accession number JX978277.

  1. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2016-04-01

    Full Text Available Jasmonate (JA, as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L. are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.

  2. Effet comparé des poudres de Nicotiana tabacum L, Cymbopogon citratus (D.C. Stapf et de l'huile de Ricinus communis L sur la conservation des graines de Vigna unguiculata (L Walp

    Directory of Open Access Journals (Sweden)

    Gakuru, S.

    1995-01-01

    Full Text Available Compared Effect of Nicotiana tabacum L, Cymbopogon citratus (D.C. Stapf Powders and Castor Oil Ricinus communis L. on Conservation of Cowpea Vigna Unguiculata (L. Walp Grains. The effect of powder of tobacco Nicotiana tabacum L. and citronella grass Cymbopogon citratus (D.C. Stapf and castor oil Ricinus communis L. on conservation of cowpea Vigna unguiculata (L. Walp. grains was investigated in Kisangani, Zaire. After 5 months of conservation, infestation rates by bean weevil Acanthoscelides obtectus Say were 72.5 %, 74.5 %, 49.5 % and 5 % respectively for the check, the samples treated by 1 % of citronella grass and tobacco powder and 1 % of castor oil. The powder dose of 7.5 % did not give more interesting results.

  3. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling.

    Science.gov (United States)

    Giles, Courtney D; Richardson, Alan E; Cade-Menun, Barbara J; Mezeli, Malika M; Brown, Lawrie K; Menezes-Blackburn, Daniel; Darch, Tegan; Blackwell, Martin Sa; Shand, Charles A; Stutter, Marc I; Wendler, Renate; Cooper, Patricia; Lumsdon, David G; Wearing, Catherine; Zhang, Hao; Haygarth, Philip M; George, Timothy S

    2018-03-02

    Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time. This article is protected by copyright. All rights reserved.

  4. Assessment of 210Pb concentration in Nicotiana tabacum L., burley variety, cultivated in Brazil

    International Nuclear Information System (INIS)

    Rocha, Rique J.F.X.; Silva, Carolina F.; Frujuele, Jonatan V.; Bovolini, Raquel R.; Damatto, Sandra R.

    2013-01-01

    Tobacco products are extensively used throughout the world and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed worldwide and many researches are performed with the aim of relating the use of these products with various diseases. Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop year 2009/2010 production. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation and the temperature variations resulting from the tobacco incomplete combustion. There is lack of information about the chemical and radiological characterization of the tobacco plant both in international and Brazilian literature. Thus a project was established with the objectives of characterizing chemically and radiologically the three varieties most cultivated in Brazil of Nicotiana tobacum L., Virginia, Burley and Common; this paper presents the preliminary results of 210 Pb concentrations for the Burley variety. Plants from this variety were cultivated in pots with organic substrate and fertilizer and in a small farm in natural conditions. The entire plant was analyzed, the organic substrates, the fertilizers and the soil. The results obtained presented higher values for 210 Pb in leaves when compared with the other parts of the plant. Comparing the three study areas the highest results of 210 Pb concentration were obtained in the plants cultivated in the urban area probably due to its atmospheric deposition. (author)

  5. Ectopic expression of class 1 KNOX genes induce and adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L)

    Science.gov (United States)

    Transgenic plants of tobacco (Nicotiana tabacum L) and plum (Prunus domestica L) were produced by transforming with apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KN1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a tissue medium lacking cytoki...

  6. Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications.

    Science.gov (United States)

    Rice, J Hollis; Mundell, Richard E; Millwood, Reginald J; Chambers, Orlando D; Stewart, C Neal; Davies, H Maelor

    2013-08-06

    The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1Nicotiana hybrids (Nicotiana tabacum × Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturing. We genetically tagged hybrids with green fluorescent protein (GFP), which was used as a visual marker to enable gene flow tracking and quantification for field and greenhouse studies. GFP was used as a useful proxy for pharmaceutical transgenes. Analysis of DNA content revealed significant genomic downsizing of the hybrid relative to that of N. tabacum. Hybrid pollen was capable of germination in vitro, albeit with a very low frequency and with significant differences between plants. In two field experiments, one each in Tennessee and Kentucky, we detected outcrossing at only one location (Tennessee) at 1.4%. Additionally, from 50 hybrid plants at each field site, formation of 84 and 16 seed was observed, respectively. Similar conclusions about hybrid fertility were drawn from greenhouse crosses. In terms of above-ground biomass, the hybrid yield was not significantly different than that of N. tabacum in the field. N. tabacum × N. glauca hybrids show potential to contribute to a bioconfinement- and biomanufacturing host system. Hybrids exhibit extremely low fertility with no difference of green biomass yields relative to N. tabacum. In addition, hybrids are morphologically distinguishable from tobacco allowing for identity preservation. This hybrid system for biomanufacturing would optimally be used where N. glauca is not present and in physical isolation of N. tabacum production to provide total bioconfinement.

  7. SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases

    Science.gov (United States)

    Foerster, Hartmut; Bombarely, Aureliano; Battey, James N D; Sierro, Nicolas; Ivanov, Nikolai V; Mueller, Lukas A

    2018-01-01

    Abstract SolCyc is the entry portal to pathway/genome databases (PGDBs) for major species of the Solanaceae family hosted at the Sol Genomics Network. Currently, SolCyc comprises six organism-specific PGDBs for tomato, potato, pepper, petunia, tobacco and one Rubiaceae, coffee. The metabolic networks of those PGDBs have been computationally predicted by the pathologic component of the pathway tools software using the manually curated multi-domain database MetaCyc (http://www.metacyc.org/) as reference. SolCyc has been recently extended by taxon-specific databases, i.e. the family-specific SolanaCyc database, containing only curated data pertinent to species of the nightshade family, and NicotianaCyc, a genus-specific database that stores all relevant metabolic data of the Nicotiana genus. Through manual curation of the published literature, new metabolic pathways have been created in those databases, which are complemented by the continuously updated, relevant species-specific pathways from MetaCyc. At present, SolanaCyc comprises 199 pathways and 29 superpathways and NicotianaCyc accounts for 72 pathways and 13 superpathways. Curator-maintained, taxon-specific databases such as SolanaCyc and NicotianaCyc are characterized by an enrichment of data specific to these taxa and free of falsely predicted pathways. Both databases have been used to update recently created Nicotiana-specific databases for Nicotiana tabacum, Nicotiana benthamiana, Nicotiana sylvestris and Nicotiana tomentosiformis by propagating verifiable data into those PGDBs. In addition, in-depth curation of the pathways in N.tabacum has been carried out which resulted in the elimination of 156 pathways from the 569 pathways predicted by pathway tools. Together, in-depth curation of the predicted pathway network and the supplementation with curated data from taxon-specific databases has substantially improved the curation status of the species–specific N.tabacum PGDB. The implementation of this

  8. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    Science.gov (United States)

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  9. Assessment of {sup 210}Pb concentration in Nicotiana tabacum L., burley variety, cultivated in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Rique J.F.X.; Silva, Carolina F.; Frujuele, Jonatan V.; Bovolini, Raquel R.; Damatto, Sandra R., E-mail: rjrocha@ipen.br, E-mail: cfsilva@ipen.br, E-mail: jonatanfrujuele@hotmail.com, E-mail: ra_bovolini@yahoo.com.br, E-mail: damatto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Radiometria Ambiental

    2013-07-01

    Tobacco products are extensively used throughout the world and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed worldwide and many researches are performed with the aim of relating the use of these products with various diseases. Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop year 2009/2010 production. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation and the temperature variations resulting from the tobacco incomplete combustion. There is lack of information about the chemical and radiological characterization of the tobacco plant both in international and Brazilian literature. Thus a project was established with the objectives of characterizing chemically and radiologically the three varieties most cultivated in Brazil of Nicotiana tobacum L., Virginia, Burley and Common; this paper presents the preliminary results of {sup 210}Pb concentrations for the Burley variety. Plants from this variety were cultivated in pots with organic substrate and fertilizer and in a small farm in natural conditions. The entire plant was analyzed, the organic substrates, the fertilizers and the soil. The results obtained presented higher values for {sup 210}Pb in leaves when compared with the other parts of the plant. Comparing the three study areas the highest results of {sup 210}Pb concentration were obtained in the plants cultivated in the urban area probably due to its atmospheric deposition. (author)

  10. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine.

    Science.gov (United States)

    Bobik, Krzysztof; Duby, Geoffrey; Nizet, Yannick; Vandermeeren, Caroline; Stiernet, Patrick; Kanczewska, Justyna; Boutry, Marc

    2010-04-01

    The plasma membrane H(+)-ATPases PMA2 and PMA4 are the most widely expressed in Nicotiana plumbaginifolia, and belong to two different subfamilies. Both are activated by phosphorylation of a Thr at the penultimate position and the subsequent binding of 14-3-3 proteins. Their expression in Saccharomyces cerevisiae revealed functional and regulatory differences. To determine whether different regulatory properties between PMA2 and PMA4 exist in plants, we generated two monoclonal antibodies able to detect phosphorylation of the penultimate Thr of either PMA2 or PMA4 in a total protein extract. We also raised Nicotiana tabacum transgenic plants expressing 6-His-tagged PMA2 or PMA4, enabling their individual purification. Using these tools we showed that phosphorylation of the penultimate Thr of both PMAs was high during the early exponential growth phase of an N. tabacum cell culture, and then progressively declined. This decline correlated with decreased 14-3-3 binding and decreased plasma membrane ATPase activity. However, the rate and extent of the decrease differed between the two isoforms. Cold stress of culture cells or leaf tissues reduced the Thr phosphorylation of PMA2, whereas no significant changes in Thr phosphorylation of PMA4 were seen. These results strongly suggest that PMA2 and PMA4 are differentially regulated by phosphorylation. Analysis of the H(+)-ATPase phosphorylation status in leaf tissues indicated that no more than 44% (PMA2) or 32% (PMA4) was in the activated state under normal growth conditions. Purification of either isoform showed that, when activated, the two isoforms did not form hetero-oligomers, which is further support for these two H(+)-ATPase subfamilies having different properties.

  11. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Janina Zygadlo

    2016-01-01

    . For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble...... glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed...... compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons....

  12. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    DEFF Research Database (Denmark)

    Matic, S.; Geisler, D.A.; Møller, I.M.

    2005-01-01

    remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes...... concentrations. Possible uses and limitations of this method for plant cell research are discussed.......The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage...

  13. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    Science.gov (United States)

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.

  14. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    Science.gov (United States)

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  15. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.

    Science.gov (United States)

    Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon

    2006-08-01

    In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.

  16. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  17. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    Science.gov (United States)

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  18. [Induced expression of Serratia marcescens ribonuclease III gene in transgenic Nicotiana tabacum L. cv. SR1 tobacco plants].

    Science.gov (United States)

    Zhirnov, I V; Trifonova, E A; Romanova, A V; Filipenko, E A; Sapotsky, M V; Malinovsky, V I; Kochetov, A V; Shumny, V K

    2016-11-01

    Transgenic Nicotiana tabacum L. cv. SR1 plants, characterized by an increase in the level of dsRNA-specific hydrolytic activity after induction by wounding, were obtained. The Solanum lycopersicum anionic peroxidase gene promoter (new for plant genetic engineering) was for the first time used for the induced expression of the target Serratia marcescens RNase III gene. Upon infection with the tobacco mosaic virus (TMV), the transgenic plants of the obtained lines did not differ significantly from the control group in the level of TMV capsid protein accumulation. In general, no delay in the development of the infection symptoms was observed in transgenic plants as compared with the control group. The obtained transgenic plants represent a new model for the study of the biological role of endoribonucleases from the RNase III family, including in molecular mechanisms of resistance to pathogens.

  19. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR - plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After 14 CO 2 pulse and chase experiments. The total 14 C incorporation of the mutant leaves was approximately 20% of that of the control. The NR - leaves mainly accumulated 14 C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system

  20. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-04-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR/sup -/ plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After /sup 14/CO/sub 2/ pulse and chase experiments. The total /sup 14/C incorporation of the mutant leaves was approximately 20% of that of the control. The NR/sup -/ leaves mainly accumulated /sup 14/C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system.

  1. An Examination of the Plastid DNA of Hypohaploid Nicotiana plumbaginifolia Plants

    Science.gov (United States)

    Cannon, Gordon C.; Van, K. Tran Thanh; Heinhorst, Sabine; Trinh, T. H.; Weissbach, Arthur

    1989-01-01

    DNA was extracted from different morphological types of hypohaploid Nicotiana plumbaginifolia plants. The cellular levels of chloroplast DNA (expressed as percent of total DNA) were found to be approximately two- to threefold higher in two albino hypohaploids than in a green hypohaploid. The level of chloroplast DNA in the green hypohaploid was not significantly different from either in vitro or in vivo grown haploid N. plumbaginifolia plants. Molecular hybridization with DNA probes for the large subunit of ribulose bisphosphate carboxylase from spinach and with Pvull fragments representing the entire Nicotiana tabacum chloroplast genome revealed no gross qualitative differences in the chloroplast DNAs of hypohaploid plants. Based on these observations we have concluded that the lack of chloroplast function observed in the albino forms of hypohaploid N. plumbaginifolia plants is not due to changes in the chloroplast genome. Images Figure 1 Figure 2 PMID:16666781

  2. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    Science.gov (United States)

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the

  3. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase.

    Science.gov (United States)

    Navarre, Catherine; Smargiasso, Nicolas; Duvivier, Laurent; Nader, Joseph; Far, Johann; De Pauw, Edwin; Boutry, Marc

    2017-06-01

    Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.

  4. Chromosomal rearrangements in interspecific hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to helium ion beams or gamma-rays

    International Nuclear Information System (INIS)

    Kitamura, S.; Inoue, M.; Ohmido, N.; Fukui, K.; Tanaka, A.

    2003-01-01

    It is very difficult to obtain interspecific hybrids between Nicotiana tabacum L. (2n=48) and N. gossei Domin (2n=36), because of strong cross incompatibility. We had already obtained interspecific hybrids between these two species, crossing N. gossei flower with N. tabacum pollen exposed to He ions or gamma-rays. Here, we analyze chromosome constitution of these hybrids by genomic in situ hybridization. In root tip cells of the two hybrids obtained with He ion exposure, most mitotic cells contained 18 chromosomes of N. gossei and 24 chromosomes of N. tabacum. However, in some cells, translocations and insertions between parental genomes were observed. On the other hand, in a hybrid obtained by gamma-ray irradiation, intergenomic rearrangements were not observed, although mitotic cells showed 19 hybridization signals with N. gossei DNA in 41 chromosomes. Such chromosomal changes in structure or constitution may be related to overcoming cross incompatibility between these two species

  5. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Linus Gog

    2014-09-01

    Full Text Available The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie, underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L. plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses.

  6. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    Science.gov (United States)

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  7. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Jurečková, J.; Sýkorová, Eva; Hafidh, Said; Honys, David; Fajkus, Jiří; Fojtová, M.

    2017-01-01

    Roč. 245, č. 3 (2017), s. 549-561 ISSN 0032-0935 R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : male gametophyte development * tobacco male gametophyte * allotetraploid nicotiana Subject RIV: EF - Botanics; EF - Botanics (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 3.361, year: 2016

  8. In Vitro Assay of Ethanolic Heat Reflux Extract of Nicotiana tabacum L. var Virginia Against Nosocomial Bacteria Pathogen

    Science.gov (United States)

    Pramono, Andri; Fauzantoro, Ahmad; Rizki Hidayati, Irma; Hygea, Arina; Puspita, Oktaviani Sandra; Muktamiroh, Hikmah; Simanjuntak, Kristina; Gozan, Misri

    2018-03-01

    Tobacco plays an important role in international trade as one of the export commodities. Indonesia is one of the good quality export contributors of tobacco leaves in the world. Nevertheless, tobacco is used only as a raw material for the cigarette industries, and the rise on anti-cigarette regulations prompted the exploration of alternative product from tobacco plants. The content of alkaloids, flavonoids, terpenoids and steroids in tobacco leaves were reported in literatures as antibacterial. Therefore, this study proposed in vitro assay of the ethanolic heat reflux extract (EHRE) of Nicotiana tabacum var. Virginia against nosocomial bacteria pathogen ((Pseudomonas aeruginosa (ATCC 27853), Eschericia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212)). Kirby-bauer diffusion method was used for this assay. The concentration of the EHRE for Kirby-bauer assay were 20; 40; 60; 80; and 100%. The presence of clear zones on Kirby-bauer test, against the growth of each nosocomial bacteria pathogen show that tobacco extract has antibacterial effect. Statistical analysis result showed that each extract concentration had significant difference value (p steroids) of tobacco leaf extracts (N. tabacum) has potential as antibacterial against nosocomial bacteria pathogen. Nevertheless, optimization of tobacco leaf extract to obtain maximum active ingredient still needs to be done. This study is important for further development of the tobacco leaf extract as antibacterial

  9. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  10. Expression of a constitutively activated plasma membrane H+-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion.

    Science.gov (United States)

    Niczyj, Marta; Champagne, Antoine; Alam, Iftekhar; Nader, Joseph; Boutry, Marc

    2016-11-01

    Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H + -ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H + -ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H + -ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H + -ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.

  11. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  12. Characterization of secretory phospholipase A₂ with phospholipase A₁ activity in tobacco, Nicotiana tabacum (L.).

    Science.gov (United States)

    Fujikawa, Yukichi; Fujikawa, Ritsuko; Iijima, Noriaki; Esaka, Muneharu

    2012-03-01

    A cDNA encoding protein with homology to plant secretory phospholipase A₂ (sPLA₂), denoted as Nt1 PLA₂, was isolated from tobacco (Nicotiana tabacum). The cDNA encodes a mature protein of 118 amino acid residues with a putative signal peptide of 29 residues. The mature form of Nt1 PLA₂ has 12 cysteines, Ca²⁺ binding loop and catalytic site domain that are commonly conserved in plant sPLA₂s. The recombinant Nt1 PLA₂ was expressed as a fusion protein with thioredoxin in E. coli BL21 cells and was purified by an ion exchange chromatography after digestion of the fusion proteins by Factor Xa protease to obtain the mature form. Interestingly, Nt1 PLA₂ could hydrolyze the ester bond at the sn-1 position of glycerophospholipids as well as at the sn-2 position, when the activities were determined using mixed-micellar phospholipids with sodium cholate. Both activities for the sn-1 and -2 positions of glycerophospholipids required Ca²⁺ essentially, and maximal activities were found in an alkaline region when phosphatidylcholine, phosphatidylglycerol or phosphatidylethanolamine was used as a substrate. The level of Nt1 PLA₂ mRNA was detected at a higher level in tobacco flowers than stem, leaves and roots, and was induced by salicylic acid.

  13. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    Science.gov (United States)

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  14. Karyological and cytological effects of gamma rays on pollen ontogenesis and viability and on the tapetum of Nicotiana tabacum L. var. xanthi Dulieu

    Energy Technology Data Exchange (ETDEWEB)

    Muhanna, S.; Souvre, A.; Albertini, L. (Ecole Nationale Superieure Agronomique, 31 - Toulouse (France). Lab. de Cytologie et de Pathologie Vegetales)

    1991-03-01

    Gamma irradiation of seeds (100 to 1000 Gy) or inflorescences (3000 Gy) of Nicotiana tabacum L. var. xanthi Dulieu mainly induced chromatoclastic effects affecting the microspore mother cells (MMCs) during meiosis: chromosome fragmentation, chromosome stickiness promoting the formation of chiasmas even between non-homologous chromosomes, single or multiple chromosomal bridges during anaphases and telophases I and II and irregular chromosomal disjunction. In plants raised from irradiated seeds, the frequency of abnormal meiotic figures and the rate of pollen sterility were directly related to the gamma ray dose. Gamma irradiation also induced the early dysfunction of the tapetum (tapetal degeneration was already visible at pachytene) with nuclear pycnosis or an expanded and sticky chromatin network and this no doubt contributed to pollen sterility. (author).

  15. Purification and biochemical characterization of NpABCG5/NpPDR5, a plant pleiotropic drug resistance transporter expressed in Nicotiana tabacum BY-2 suspension cells.

    Science.gov (United States)

    Toussaint, Frédéric; Pierman, Baptiste; Bertin, Aurélie; Lévy, Daniel; Boutry, Marc

    2017-05-04

    Pleiotropic drug resistance (PDR) transporters belong to the ABCG subfamily of ATP-binding cassette (ABC) transporters and are involved in the transport of various molecules across plasma membranes. During evolution, PDR genes appeared independently in fungi and in plants from a duplication of a half-size ABC gene. The enzymatic properties of purified PDR transporters from yeast have been characterized. This is not the case for any plant PDR transporter, or, incidentally, for any purified plant ABC transporter. Yet, plant PDR transporters play important roles in plant physiology such as hormone signaling or resistance to pathogens or herbivores. Here, we describe the expression, purification, enzymatic characterization and 2D analysis by electron microscopy of NpABCG5/NpPDR5 from Nicotiana plumbaginifolia , which has been shown to be involved in the plant defense against herbivores. We constitutively expressed NpABCG5/NpPDR5, provided with a His-tag in a homologous system: suspension cells from Nicotiana tabacum (Bright Yellow 2 line). NpABCG5/NpPDR5 was targeted to the plasma membrane and was solubilized by dodecyl maltoside and purified by Ni-affinity chromatography. The ATP-hydrolyzing specific activity (27 nmol min -1  mg -1 ) was stimulated seven-fold in the presence of 0.1% asolectin. Electron microscopy analysis indicated that NpABCG5/NpPDR5 is monomeric and with dimensions shorter than those of known ABC transporters. Enzymatic data (optimal pH and sensitivity to inhibitors) confirmed that plant and fungal PDR transporters have different properties. These data also show that N. tabacum suspension cells are a convenient host for the purification and biochemical characterization of ABC transporters. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  17. Single-molecule diffusometry reveals the nucleotide-dependent oligomerization pathways of Nicotiana tabacum Rubisco activase

    Science.gov (United States)

    Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.

    2018-03-01

    Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.

  18. Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination.

    Science.gov (United States)

    Weterings, K; Reijnen, W; van Aarssen, R; Kortstee, A; Spijkers, J; van Herpen, M; Schrauwen, J; Wullems, G

    1992-04-01

    This report describes the isolation and characterization of a cDNA clone representing a gene specifically expressed in pollen. A cDNA library was constructed against mRNA from mature pollen of Nicotiana tabacum. It was screened differentially against cDNA from mRNA of leaf and of pollen. One clone, NTPc303, was further characterized. On northern blot this clone hybridizes to a transcript 2100 nucleotides in length. NTPc303 is abundant in pollen. Expression of the corresponding gene is restricted to pollen, because no other generative or vegetative tissue contains transcripts hybridizing to NTPc303. Expression of NTP303 is evolutionarily conserved: homologous transcripts are present in pollen from various plant species. The first NTP303 transcripts are detectable on northern blot at the early bi-nucleate stage and accumulate until the pollen has reached maturity. During germination and pollen tube growth in vitro new NTP303 transcripts appear. This transcription has been proved by northern blots as well as by pulse labelling experiments. Nucleotide sequence analysis revealed that NTPc303 has an open reading frame coding for a predicted protein of 62 kDa. This protein shares homology to ascorbate oxidase and other members of the blue copper oxidase family. A possible function for this clone during pollen germination is discussed.

  19. The effect of synchrotron radiation on nicotiana tabacum-roots in oxygen atmosphere

    International Nuclear Information System (INIS)

    Avakyan, Ts.M.; Karagezyan, A.S.; Danielyan, A.Kh.

    1977-01-01

    The question of mutual action of sVnchrotron radiation (SR) and living objects and the influence of powerful radiations on the peculiarities of their functioning is a major problem in all fields where SR in applied, as well as in medicobiological aspects of space flights. The present report summarizes new experimental findings concerning the action of magnetic-inhibiting radiation on Nicotiana tabacum - roots in oxygen and helium atmosphere. Comparative studies have been carried out on ''oxygen effect'' of SR and X-ray radiation by traditional radiobiological equipment. The experiments have been performed on the 2 synchrotron channel of Yerevan Physical Institute Electron Accelerator. The circular current of the accelerator equals 1 ma at a maximal energy of electrons in the ring 4.5 GeV. Nonmonochromatized SR coming out from the beryllium window of the current conductor entered a special maylar chamber which was filled with oxygen and helium. 4-day old roots of tobacco seeds were radiated in the chamber. The radiation dose in X-ray, as well as in SR equals 500 rad/min. X-ray radiation was carried out with the use of a RUP-200/20 equipment at a regime of J=15 ma, E=183 kV. In applying 500, 00 and 2500 rad in oxygen atmosphere a marked maximum of chromosome aberration frequency was noted at 2500 rad. Comparative investigations have shown that in radiating the roots by X-ray in oxygen atmosphere, the percentage of chromosome aberrations constitutes 4.5 at 2500 rad, while in SR it equals 24. The ''oxygen effect'' has been demonstrated, and the protective effect in helium atmosphere. The question of dosimetry is discussed, and basing on modern views a working hypothesis is presented which explains the marked damaging effect of SR action in oxygen atmosphere

  20. Biotechnological Reduction of Tobacco (Nicotiana Tabacum L. Toxicity

    Directory of Open Access Journals (Sweden)

    Samane Sattar

    2012-11-01

    Full Text Available Background: Nicotiana tobacco contains large amounts of alkaloid nicotine. Tobacco plant is used for smoking and causes many health problems since it is high in nicotine which is one of the widely-recognized toxic compounds with serious side effects for different body organs. Reducing nicotine content of this plant is a way to reduce its health hazards in cigarette smokers. Utilizing the new methods of genetic engineering can modify nicotine levels in the plant. In this study, through transferring the blocking gene, the pathway of nicotine biosynthesis was blocked to produce transgenic tobacco with low levels of nicotine. Methods: Transgenic plants carrying T DNA, and non-transgenic plants were grown on MS medium. Then their leaves were dried and powdered. The plants were extracted with alkali solution. Eventually, the nicotine content of the extract were analyzed using GC. Results: The analysis of extracts showed a reduction in the nicotine content of the transgenic plant (contain T-DNA in comparison with non-transgenic plants. Conclusion: Tobacco with lower nicotine reduction can reduce the toxic effects of smoking on smokers and can facilitate withdrawal from it.

  1. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum.

    Science.gov (United States)

    Melis, A; Thielen, A P

    1980-02-08

    In the present study we used three types of Nicotiana tabacum, cv John William's Broad Leaf (the wild type and two mutants, the yellow-green Su/su and the yellow Su/su var. Aurea) in order to correlat functional properties of Photosystem II and Photosystem I with the structural organization of their chloroplasts. The effective absorption cross-section of Photosystem II and Photosystem I centers was measured by means of the rate constant of their photoconversion under light-limiting conditions. In agreement with earlier results (Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60, 150--156) the photosynthetic unit size for both System II and System I in the two mutants was considerably smaller as compared to the wild type. We observed biphasic kinetics in the photoconversion of System II in all three types of N. tabacum. However, the photoconversion of System I occurred with monophasic and exponential kinetics. Under our experimental conditions, the effective cross-section of Photosystem I was comparable to that of the fast System II component (alpha centers). The relative amplitude of the slow System II component (beta centers) varied between 30% in the wild type to 70% in the Su/su var. Aurea mutant. The increased fraction of beta centers is correlated with the decreased fraction of appressed photosynthetic membranes in the chloroplasts of the two mutants. As a working hypothesis, it is suggested that beta centers are located on photosynthetic membranes directly exposed to the stroma medium.

  2. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen

    2018-06-01

    Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.

  3. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  4. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Science.gov (United States)

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar

    2017-09-01

    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H + exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl 2 and ZnSO 4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl 2 or 1-mM ZnSO 4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H + transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd 2+ or Zn 2+ /H + exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  5. Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human adiponectin.

    Science.gov (United States)

    Miele, Marco; Costantini, Susan; Colonna, Giovanni

    2011-02-02

    Osmotin, a plant protein, specifically binds a seven transmembrane domain receptor-like protein to exert its biological activity via a RAS2/cAMP signaling pathway. The receptor protein is encoded in the gene ORE20/PHO36 and the mammalian homolog of PHO36 is a receptor for the human hormone adiponectin (ADIPOR1). Moreover it is known that the osmotin domain I can be overlapped to the β-barrel domain of adiponectin. Therefore, these observations and some already existing structural and biological data open a window on a possible use of the osmotin or of its derivative as adiponectin agonist. We have modelled the three-dimensional structure of the adiponectin trimer (ADIPOQ), and two ADIPOR1 and PHO36 receptors. Moreover, we have also modelled the following complexes: ADIPOQ/ADIPOR1, osmotin/PHO36 and osmotin/ADIPOR1. We have then shown the structural determinants of these interactions and their physico-chemical features and analyzed the related interaction residues involved in the formation of the complexes. The stability of the modelled structures and their complexes was always evaluated and controlled by molecular dynamics. On the basis of these results a 9 residues osmotin peptide was selected and its interaction with ADIPOR1 and PHO36 was modelled and analysed in term of energetic stability by molecular dynamics. To confirm in vivo the molecular modelling data, osmotin has been purified from nicotiana tabacum seeds and its nine residues peptide synthesized. We have used cultured human synovial fibroblasts that respond to adiponectin by increasing the expression of IL-6, TNF-alpha and IL-1beta via ADIPOR1. The biological effect on fibroblasts of osmotin and its peptide derivative has been found similar to that of adiponectin confirming the results found in silico.

  6. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    OpenAIRE

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae a...

  7. Wild Nicotiana Species as a Source of Cytoplasmic Male Sterility in Nicotianatabacum

    Directory of Open Access Journals (Sweden)

    Nikova V

    2014-12-01

    Full Text Available The results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc, N. amplexicaulis (amp, N. rustica (rus, Nicotianaglauca (gla, N. velutina (vel, N. benthamiana (ben, N. maritima (mar, N. paniculata (pan, N. longiflora (lon and N. africana (afr were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless stamens in CMS (pan, (afr, some plants of (vel (mar through different degrees of malformations (shriveled anther on shortened filaments (lon, pinnate-like anthers on filaments of normal length (amp, petal - (ben, pistil- or stigma-like structures (rus, (gla to lack of male reproductive organs in (exc and in some plants of (vel, (mar, (rus and (gla. Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus, (exc and (ben causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that

  8. Genomes and virulence difference between two physiological races of Phytophthora nicotianae.

    Science.gov (United States)

    Liu, Hui; Ma, Xiao; Yu, Haiqin; Fang, Dunhuang; Li, Yongping; Wang, Xiao; Wang, Wen; Dong, Yang; Xiao, Bingguang

    2016-01-01

    Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive. We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome. These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.

  9. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    Science.gov (United States)

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  10. Effects of a petunia scaffold/matrix attachment region on copy number dependency and stability of transgene expression in Nicotiana tabacum.

    Science.gov (United States)

    Dietz-Pfeilstetter, Antje; Arndt, Nicola; Manske, Ulrike

    2016-04-01

    Transgenes in genetically modified plants are often not reliably expressed during development or in subsequent generations. Transcriptional gene silencing (TGS) as well as post-transcriptional gene silencing (PTGS) have been shown to occur in transgenic plants depending on integration pattern, copy number and integration site. In an effort to reduce position effects, to prevent read-through transcription and to provide a more accessible chromatin structure, a P35S-ß-glucuronidase (P35S-gus) transgene flanked by a scaffold/matrix attachment region from petunia (Petun-SAR), was introduced in Nicotiana tabacum plants by Agrobacterium tumefaciens mediated transformation. It was found that Petun-SAR mediates enhanced expression and copy number dependency up to 2 gene copies, but did not prevent gene silencing in transformants with multiple and rearranged gene copies. However, in contrast to the non-SAR transformants where silencing was irreversible and proceeded during long-term vegetative propagation and in progeny plants, gus expression in Petun-SAR plants was re-established in the course of development. Gene silencing was not necessarily accompanied by DNA methylation, while the gus transgene could still be expressed despite considerable CG methylation within the coding region.

  11. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes.

    Science.gov (United States)

    Raguso, Robert A; Schlumpberger, Boris O; Kaczorowski, Rainee L; Holtsford, Timothy P

    2006-09-01

    We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well

  12. Transient Expression of Lumbrokinase (PI239 in Tobacco (Nicotiana tabacum Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots

    Directory of Open Access Journals (Sweden)

    Alexia Dickey

    2017-01-01

    Full Text Available Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239 was produced from a plant system. Both wild-type (WT and plant codon-optimized (OP PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  13. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings.

    Science.gov (United States)

    Väisänen, Enni E; Smeds, Annika I; Fagerstedt, Kurt V; Teeri, Teemu H; Willför, Stefan M; Kärkönen, Anna

    2015-09-01

    Externally added coniferyl alcohol at high concentrations reduces the growth of Nicotiana cells and seedlings. Coniferyl alcohol is metabolized by BY-2 cells to several compounds. Coniferyl alcohol (CA) is a common monolignol and a building block of lignin. The toxicity of monolignol alcohols has been stated in the literature, but there are only few studies suggesting that this is true. We investigated the physiological effects of CA on living plant cells in more detail. Tobacco (Nicotiana tabacum) Bright yellow-2 cells (BY-2) and Nicotiana benthamiana seedlings both showed concentration-dependent growth retardation in response to 0.5-5 mM CA treatment. In some cases, CA addition caused cell death in BY-2 cultures, but this response was dependent on the growth stage of the cells. Based on LC-MS/MS analysis, BY-2 cells did not accumulate the externally supplemented CA, but metabolized it to ferulic acid, ferulic acid glycoside, coniferin, and to some other phenolic compounds. In addition to growth inhibition, CA caused the formation of a lignin-like compound detected by phloroglucinol staining in N. benthamiana roots and occasionally in BY-2 cells. To prevent this, we added potassium iodide (KI, at 5 mM) to overcome the peroxidase-mediated CA polymerization to lignin. KI had, however, toxic effects on its own: in N. benthamiana seedlings, it caused reduction in growth; in BY-2 cells, reduction in growth and cell viability. Surprisingly, CA restored the growth of KI-treated BY-2 cells and N. benthamiana seedlings. Our results suggest that CA at high concentrations is toxic to plant cells.

  14. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    Directory of Open Access Journals (Sweden)

    Sukumar Biswas

    2016-01-01

    Full Text Available Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR assay and the other loop-mediated isothermal amplification (LAMP assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS, and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise.

  15. Growth of nicotiana in response to atmospheric CO sub 2 enrichment and various light regimes

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.; Thomas, J.F. (North Carolina State Univ., Raleigh (USA))

    1989-04-01

    Nicotiana tabacum NCTG-22, N. tabacum Petite Havana and N. plumbaginifolia were grown in chambers (24 C, 12-h light) under daytime atmospheric CO{sub 2} levels of 340 ppm (ambient) or 1000 ppm (enriched). All 3 types of tobacco grew faster and had open flowers sooner under CO2 enrichment, but patterns of dry weight distribution varied with type of tobacco. In N. plumbaginifolia significant proportions of dry weight were allocated to stems and branches, while in tabacum types, less was allocated to stems and more to leaves and roots. Increases in dry weight due to CO2 enrichment were accompanied by increases in leaf area and thickness. Plants given a far-red low intensity night break exhibited few differences from controls except having thinner leaves under ambient CO2; but under enriched CO2, had greater total dry weight and thicker leaves containing a higher proportion of spongy mesophyll than controls. A 50% reduction in light intensity led to a comparable reduction in dry weight and leaf area across treatments.

  16. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  17. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  18. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode meloidogyne incognita on deli tobacco (nicotiana tabaccum l) cv. deli 4

    Science.gov (United States)

    Dwi Sri Hastuti, Liana; Faull, Jane

    2018-03-01

    A pot experiment was carried out to test the effectiveness of nematode-trapping fungi (NTF) isolated from Sumatera for controlling infection by the root-knot nematode (RKN) on Deli tobacco plant. Wheat bran soil containing 109 conidia of Arthrobotrys. oligospora, Candellabrella musiformis and Dactylella eudermata was added to the soil as a dry inoculum. Carbofuran was also applied as chemical agent and comparison treatment. Seedling tobacco (Nicotiana tabacum L.) cv. Deli 4 was inoculated with root knot (Meloidogyne incognita Chitwood.) seven days after the plant were transplanted to the pots. A. oligospora, C. musiformis and D. eudermata were found to be reliable as biocontrol agents, reducing the number of vermiform nematodes, swollen root, sausage shaped and galls in tobacco plant after 7, 15 and 30 days of infection with M. incognita. Treatment with NTF produced results that were comparable with Carbofuran® as a control agent in the reduction of the number of infections in tobacco plant caused by M. incognita in Nicotiana tabacum var. Deli 4. They also optimize the growth of the tobacco plants especially up to 15 days after infection.

  19. Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers

    Science.gov (United States)

    Two hundred thirty-one isolates of P. nicotianae representing 14 populations from different host genera, including agricultural crops (Citrus, Nicotiana, and Lycopersicon), potted ornamental species in nurseries (Lavandula, Convolvulus, Myrtus, Correa and Ruta) and other plant genera of lesser econo...

  20. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    Directory of Open Access Journals (Sweden)

    Msizi I Mhlongo

    Full Text Available Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP molecules, namely lipopolysaccharides (LPS, chitosan (CHT and flagellin-22 (FLG22. Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids, shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA, methyljasmonic acid (MJ and abscisic acid (ABA resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.

  1. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  2. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    Science.gov (United States)

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  3. Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Prachy Dixit

    Full Text Available BACKGROUND: Cadmium (Cd is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. RESULTS: Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. CONCLUSION: The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for

  4. Distribution and change patterns of free IAA, ABP 1 and PM H⁺-ATPase during ovary and ovule development of Nicotiana tabacum L.

    Science.gov (United States)

    Chen, Dan; Deng, Yingtian; Zhao, Jie

    2012-01-15

    Auxin plays key roles in flower induction, embryogenesis, seed formation and seedling development, but little is known about whether auxin regulates the development of ovaries and ovules before pollination. In the present report, we measured the content of free indole-3-acetic (IAA) in ovaries of Nicotiana tabacum L., and localized free IAA, auxin binding protein 1 (ABP1) and plasma membrane (PM) H⁺-ATPase in the ovaries and ovules. The level of free IAA in the developmental ovaries increased gradually from the stages of ovular primordium to the functional megaspore, but slightly decreased when the embryo sacs formed. Immunoenzyme labeling clearly showed that both IAA and ABP1 were distributed in the ovules, the edge of the placenta, vascular tissues and the ovary wall, while PM H⁺-ATPase was mainly localized in the ovules. By using immunogold labeling, the subcellular distributions of IAA, ABP1 and PM H⁺-ATPase in the ovules were also shown. The results suggest that IAA, ABP1 and PM H⁺-ATPase may play roles in the ovary and ovule initiation, formation and differentiation. Crown Copyright © 2011. Published by Elsevier GmbH. All rights reserved.

  5. Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.

    Science.gov (United States)

    Mandal, Manoj K; Fischer, Rainer; Schillberg, Stefan; Schiermeyer, Andreas

    2010-09-01

    A zinc-dependent matrix metalloproteinase (NtMMP1) found in the plasma membrane of Nicotiana tabacum cv. Bright Yellow 2 (BY-2) suspension cells is thought to be responsible for the degradation of recombinant proteins secreted into the culture supernatant. We have characterized the proteolytic activity of NtMMP1 by expressing a recombinant derivative lacking the C-terminal transmembrane domain in yeast. After purifying the protein by affinity chromatography, its autocatalytic activity was analyzed using monoclonal antibodies raised against its N-terminal and C-terminal portions. Both the unprocessed and processed forms of NtMMP1 displayed caseinolytic activity and N-terminal sequencing identified an autocatalytic cleavage site within the sequence motif HFSFFP, which is similar to the corresponding sequences of the human matrix metalloproteinases stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10). Unlike all other matrix metalloproteinases investigated so far, NtMMP1 contains a disulfide bond within its propeptide thus rendering the proenzyme catalytically active. Kinetic analysis of NtMMP1 with a synthetic substrate revealed a K(m) of 10.55 +/- 0.9 microM, a k(cat) of 0.6 +/- 0.01 s(-1) and maximum activity at pH 7.5. We found that NtMMP1 degrades Desmodus rotundus salivary plasminogen activator alpha 1 (DSPAalpha1), a biopharmaceutical protein, that has proven difficult to produce in tobacco BY-2 cells. This provides a likely explanation for the frequent instability of secreted recombinant biopharmaceuticals produced in plant suspension cell cultures. Our data suggest new avenues that can be explored to improve the production of pharmaceutical proteins in plants and plant cells.

  6. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, H.; Van Camp, W.; Van Montagu, M.; Inze, D. [Laboratoire Associe de l`Institut National de la Recherche Agronomique (France); Langebartels, C.; Sandermann, H. Jr. [Universiteit Gent (Belgium)]|[Institut fuer Biochemische Pflanzenpathologie, Oberschleissheim (Germany)

    1994-11-01

    We have studied the expression of antioxidant genes in response to near ambient conditions of O{sub 3}, SO{sub 2}, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O{sub 3}, SO{sub 2}, and UV-B on the antioxidant genes are very similar, although the response to SO{sub 2} is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O{sub 3}, SO{sub 2}, and UV-B in Nicotiana. 57 refs., 4 figs.

  7. Lupines, poison-hemlock and Nicotiana spp: toxicity and teratogenicity in livestock.

    Science.gov (United States)

    Panter, K E; James, L F; Gardner, D R

    1999-02-01

    Many species of lupines contain quinolizidine or piperidine alkaloids known to be toxic or teratogenic to livestock. Poison-hemlock (Conium maculatum) and Nicotiana spp. including N. tabacum and N. glauca contain toxic and teratogenic piperidine alkaloids. The toxic and teratogenic effects from these plant species have distinct similarities including maternal muscular weakness and ataxia and fetal contracture-type skeletal defects and cleft palate. It is believed that the mechanism of action of the piperidine and quinolizidine alkaloid-induced teratogenesis is the same; however, there are some differences in incidence, susceptible gestational periods, and severity between livestock species. Wildlife species have also been poisoned after eating poison-hemlock but no terata have been reported. The most widespread problem for livestock producers in recent times has been lupine-induced "crooked calf disease." Crooked calf disease is characterized as skeletal contracture-type malformations and occasional cleft palate in calves after maternal ingestion of lupines containing the quinolizidine alkaloid anagyrine during gestation days 40-100. Similar malformations have been induced in cattle and goats with lupines containing the piperidine alkaloids ammodendrine, N-methyl ammodendrine, and N-acetyl hystrine and in cattle, sheep, goats, and pigs with poison-hemlock containing predominantly coniine or gamma-coniceine and N. glauca containing anabasine. Toxic and teratogenic effects have been linked to structural aspects of these alkaloids, and the mechanism of action is believed to be associated with an alkaloid-induced inhibition of fetal movement during specific gestational periods. This review presents a historical perspective, description and distribution of lupines, poison-hemlock and Nicotiana spp., toxic and teratogenic effects and management information to reduce losses.

  8. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.

    Science.gov (United States)

    Xie, He; Yang, Da-Hai; Yao, Heng; Bai, Ge; Zhang, Yi-Han; Xiao, Bing-Guang

    2016-01-15

    Drought is one of the most severe forms of abiotic stresses that threaten the survival of plants, including crops. In turn, plants dramatically change their physiology to increase drought tolerance, including reconfiguration of proteomes. Here, we studied drought-induced proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum), a solanaceous plant, using the isobaric tags for relative and absolute quantitation (iTRAQ)-based protein labeling technology. Of identified 5570 proteins totally, drought treatment increased and decreased abundance of 260 and 206 proteins, respectively, compared with control condition. Most of these differentially regulated proteins are involved in photosynthesis, metabolism, and stress and defense. Although abscisic acid (ABA) levels greatly increased in drought-treated tobacco leaves, abundance of detected ABA biosynthetic enzymes showed no obvious changes. In contrast, heat shock proteins (HSPs), thioredoxins, ascorbate-, glutathione-, and hydrogen peroxide (H2O2)-related proteins were up- or down-regulated in drought-treated tobacco leaves, suggesting that chaperones and redox signaling are important for tobacco tolerance to drought, and it is likely that redox-induced posttranslational modifications play an important role in modulating protein activity. This study not only provides a comprehensive dataset on overall protein changes in drought-treated tobacco leaves, but also shed light on the mechanism by which solanaceous plants adapt to drought stress. Copyright © 2015 Yunnan Academy of Tobacco Agricultural Sciences. Published by Elsevier Inc. All rights reserved.

  9. Nicotiana glauca poisoning in ostriches (Struthio camelus)

    CSIR Research Space (South Africa)

    Botha, CJ

    2011-01-01

    Full Text Available Putative Nicotiana glauca (wild tobacco) poisoning was diagnosed in a flock of ostriches near Oudtshoorn, South Africa. Post mortem examinations (n = 7) were performed on ostriches (Struthio camelus) that had died. Suspicious leaf remnants (weighing...

  10. Microspores irradiation in anther culture: testing a new technique to obtain mutations immediatly detected and fixed (Application to Nicotiana tabacum)

    International Nuclear Information System (INIS)

    Mondeil, Fanja

    1974-01-01

    In order to consider the effects of microspores irradiation on embryo development, and in order to observe the morphological responses of haploid plantlets derived from androgenetic anthers to ionizing irradiation, 1000, 1500 and 2000r of gamma rays were delivered on anthers of Nicotiana tabacum (DL 50 range calculated: 1500r). The cytological studies of embryo development revealed an apparent increase in irradiated microspores: cell division is stimulated but followed by an early mortality. A sharp rise in lethality effects was observed when gamma rays were applied beyond the seventh day of culture, when the proembryo contains an average of 4 cells. Morphological aberrations and colour changes in the Mo progeny derived from irradiated microspores are diverse. But after chromosome doubling and mutation checking out, all the plants were not recorded to have transmitted their aberrant characters. Thus, heritable character 'mutations) and not heritable character (variations) were obtained. The variations characters include dwarfing, excessive branching, fasciation and dichotomy of the stems, altered flower form, especially of petals. As to the leaves, they usually show induced changes in their colour (chlorotic areas, mosaic-colour changes, or an over-all colour changes), in their form (irregularity in outline) and in their texture (thickening, hairless leaf). Among the mutants, a monster tobacco, with excrescences on the leaves and the flowers is certainly the most conspicuous. But mutants also include altered leaf colour (over-all pale green) and altered flower colour, (dark red, clear pink, white) [fr

  11. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    Energy Technology Data Exchange (ETDEWEB)

    Altabella, T.; Chrispeels, M.J. (Univ. of California, San Diego, La Jolla (USA))

    1990-06-01

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{sub r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.

  12. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lamotte, Olivier; Courtois, Cécile; Dobrowolska, Grazyna; Besson, Angélique; Pugin, Alain; Wendehenne, David

    2006-04-15

    In this study, we investigated a role for nitric oxide (NO) in mediating the elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in plants using Nicotiana plumbaginifolia cells expressing the Ca(2+) reporter apoaequorin. Hyperosmotic stress induced a fast increase of [Ca(2+)](cyt) which was strongly reduced by pretreating cell suspensions with the NO scavenger carboxy PTIO, indicating that NO mediates [Ca(2+)](cyt) changes in plant cells challenged by abiotic stress. Accordingly, treatment of transgenic N. plumbaginifolia cells with the NO donor diethylamine NONOate was followed by a transient increase of [Ca(2+)](cyt) sensitive to plasma membrane Ca(2+) channel inhibitors and antagonist of cyclic ADP ribose. We provided evidence that NO might activate plasma membrane Ca(2+) channels by inducing a rapid and transient plasma membrane depolarization. Furthermore, NO-induced elevation of [Ca(2+)](cyt) was suppressed by the kinase inhibitor staurosporine, suggesting that NO enhances [Ca(2+)](cyt) by promoting phosphorylation-dependent events. This result was further supported by the demonstration that the NO donor induced the activation of a 42-kDa protein kinase which belongs to SnRK2 families and corresponds to Nicotiana tabacum osmotic-stress-activated protein kinase (NtOSAK). Interestingly, NtOSAK was activated in response to hyperosmotic stress through a NO-dependent process, supporting the hypothesis that NO also promotes protein kinase activation during physiological processes.

  14. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum.

    Science.gov (United States)

    Evangelou, Michael W H; Bauer, Uwe; Ebel, Mathias; Schaeffer, Andreas

    2007-06-01

    Phytoextraction, the use of plants to extract contaminants from soils and groundwater, is a promising approach for cleaning up soils contaminated with heavy metals. In order to enhance phytoextraction the use of chelating agents has been proposed. This study aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposed, as an alternative to ethylene diamine tetraacetate (EDTA). EDDS revealed a higher toxicity to tobacco (Nicotiana tabacum) in comparison to EDTA, but no toxicity to microorganisms. The uptake of Cu was increased by the addition of EDTA and EDDS, while no increase was observed in the uptake of Cd. Both chelating agents showed a very low root to shoot translocation capability and the translocation factor was lower than the one of the control. Heavy metals where significantly more phytoavailable than in the control, even after harvesting, resulting in a high heavy metal leaching possibility, probably owing to a low biodegradation rate of EDDS. New seedlings which were transplanted into the EDDS treated pots 7d after the phytoextraction experiment, showed signs of necrosis and chlorosis, which resulted in a significantly lower biomass in comparison to the control. The seedlings on the EDTA treated pots showed no toxicity signs. Contrary to previous opinions the results of this study revealed the chelating agents EDTA and EDDS as unsuitable for enhanced phytoextraction using tobacco.

  15. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  16. Impact of herbicides on some agronomic and chemical characteristics of flue-cured virginia (FCV tobacco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Muhammad Azim Khan

    2006-09-01

    Full Text Available A field experiment was carried out at Tobacco Research Station Khan Ghari, Mardan, (NWFP- Pakistan during spring 2003 to study the impact of herbicides on some agronomic and chemical characteristics of flue-cured virginia (FCV tobacco (Nicotiana tabacum L.. The experiment was laid out in RCB design, replicated four times with ten treatments, comprising hand weeding, weedy check, pre-transplanting herbicides; S-metalocholar @ 1.92, pendimethalin (EC @ 1.00, pendimethalin (CS @ 1.00, and butralin @ 1.44 kg a.i ha-1 and the post-transplanting herbicides include; clodinafop @ 0.04, fenoxaprop-p-ethyl @ 1.00, acetochlor @ 0.125 and glyphosate @ 0.95 kg a.i ha-1. None of the herbicides except S-metalocholar had a phytotoxic effect on tobacco. All the parameters except the number of leaves plant-1 were significantly affected by different treatments. The highest (228.3 weeds density m-2 was observed in weedy check while minimum (69 was recorded in pendimethalin (EC treatment. The maximum grade index of 74.60% was recorded in acetochlor and minimum grade index of 53.88% was recorded in S-metalocholar treatments. Nicotine (% was higher in pendimethalin (EC treated plots with 2.362%; however it was comparable to all other treatments. The maximum percent reducing sugar of 18.22% was recorded in pendimethalin (CS treatment, while minimum of 12.42% reducing sugar was recorded in weedy check. Similarly maximum yield of 2465 kg ha-1 was recorded in pendimethalin (EC treatment and minimum yield of 1703 kg ha-1 was recorded in weedy check (control treatment. Thus it can be concluded from the experiment that herbicides proved effective against weeds and their growth and promoted tobacco quality and yield. Hence the use of herbicides not only increases the net income of the farmers but also will make the weed seed bank poorer.

  17. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise

    2015-02-01

    The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. © 2014 INRA New Phytologist © 2014 New Phytologist Trust.

  18. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum.

    Directory of Open Access Journals (Sweden)

    Caitlin E Burklew

    Full Text Available Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2O(3 nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum plants (an important cash crop as well as a model organism to 0%, 0.1%, 0.5%, and 1% Al(2O(3 nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2O(3 nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2O(3 nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2O(3 nanoparticles in the environment.

  19. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Burklew, Caitlin E; Ashlock, Jordan; Winfrey, William B; Zhang, Baohong

    2012-01-01

    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2)O(3) nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al(2)O(3) nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2)O(3) nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2)O(3) nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2)O(3) nanoparticles in the environment.

  20. Effect of vermicompost on some physiological attributes involved in carbon and nitrogen metabolism as well as nutrient status in leaves of tobacco (nicotiana tabacum L.)

    International Nuclear Information System (INIS)

    Qin, C.; Zheng, P.; Akram, N.A.

    2016-01-01

    A pot experiment was carried out to examine the influence of vermicompost application on some key enzymes and metabolites involved in carbon (C) and nitrogen (N) metabolism as well as nutrient status in the leaves of tobacco (Nicotiana tabacum L.). Two types of vermicompost with two application rates were used in this study. Regardless of application rate, both types of vermicompost significantly increased total N, phosphorus (P) and potassium (K) contents in the leaves. They also caused enhancements in contents of total soluble carbohydrates, reducing sugars, starch and total organic C as well as amylase and invertase activities involved in C metabolism, contents of soluble protein and nicotine in N metabolism in the leaves. With an increase in application rate, each vermicompost type had an increasing effect on almost all measured parameters except nitrate reductase activity. Regardless of vermicompost type, the high rate (50%) of application showed the best effects compared with controls. The effects of V1 type vermicompost were superior to those of V2 at the same application rate. Therefore, the above effects might appear to be dependent on both type and dose. Vermicompost could be considered as an effective organic matter for attaining improved plant nutrition as well as C and N metabolism. (author)

  1. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.

  2. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Meyer, C; Pouteau, S; Rouzé, P; Caboche, M

    1994-01-01

    By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.

  3. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  4. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    Science.gov (United States)

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  5. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.

    Science.gov (United States)

    Keadtidumrongkul, Pornthep; Suttangkakul, Anongpat; Pinmanee, Phitsanu; Pattana, Kanokwan; Kittiwongwattana, Chokchai; Apisitwanich, Somsak; Vuttipongchaikij, Supachai

    2017-08-01

    The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.

  6. Optimization of non-catalytic transesterification of tobacco (Nicotiana tabacum) seed oil using supercritical methanol to biodiesel production

    International Nuclear Information System (INIS)

    García-Martínez, Nuria; Andreo-Martínez, Pedro; Quesada-Medina, Joaquín; Pérez de los Ríos, Antonia Pérez; Chica, Antonio; Beneito-Ruiz, Rubén; Carratalá-Abril, Juan

    2017-01-01

    Highlights: • Biodiesel from tobacco oil was produced by non-catalytic supercritical methanolysis. • Maximum experimental yield of FAMEs (92.8%) was reached at 300 °C and 90 min. • Optimal conditions by RSM (303.4 °C and 90 min) predicted a maximum FAME yield of 91.1%. • Thermal decomposition of biodiesel was observed above 325 °C and 60 min of reaction. • Glycerol generated at 300 °C and 90 min was degraded and incorporated to the biodiesel. - Abstract: The biodiesel production from non-edible oils has high potential as renewable and ecological fuel. Few researches have been conducted to date on the production of biodiesel from tobacco (Nicotiana tabacum) seed oil. The aim of this study was to optimize the biodiesel production from this crude oil by non-catalytic supercritical methanolysis using response surface methodology (RSM). Triglyceride conversion, total and individual FAME yield, monoglyceride and diglyceride yield, and thermal decomposition degree of biodiesel were determined in the temperature and reaction time ranges of 250–350 °C (12–43 MPa) and 15–90 min, respectively, at a fixed methanol-to-oil molar ratio of 43:1. According to the RSM, the optimal conditions were 303.4 °C and 90 min, reaching a predicted maximum FAME yield of 91.1 ± 3.2 mol%. This maximum was very close to that obtained experimentally (92.8 ± 2.1 mol%) at 300 °C and 90 min. Decomposition of biodiesel became evident at 325 °C and 60 min of reaction due to the thermal instability of unsaturated methyl esters (methyl linoleate and oleate). The biodiesel obtained in the best experimental reaction conditions (300 °C and 90 min), where no thermal decomposition of FAMEs was observed, contained most of the byproduct glycerol generated, which was degraded and incorporated to the product. This biodiesel basically failed to meet the content of FAMEs as required by the standard EN 14214, the content of monoglycerides and total glycerol, and the acid value, being a

  7. Acute toxicity of tobacco ( Nicotiana tobaccum ) leaf dust on ...

    African Journals Online (AJOL)

    Experiments were conducted using dry tobacco (Nicotiana tobaccum) leaves aqueous extract to determine the acute toxicity and sub lethal effects on some haematological indices of Oreochromis niloticus using static renewable bioassay method. The extract was found to be toxic with a 48-h LC50 value of 109.6 mg/l.

  8. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR.

    Science.gov (United States)

    Li, Mingzhu; Inada, Minoru; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2013-01-01

    Phytophthora nicotianae and P. cactorum cause Phytophthora rot of strawberry. A duplex real-time PCR technique for simultaneous detection and quantification of the two pathogens was developed. Species-specific primers for P. nicotianae and P. cactorum were designed based on the internal transcribed spacer regions (ITS) of rDNA and the ras-related protein gene Ypt1, respectively. TaqMan probes were labeled with FAM for P. nicotianae and HEX for P. cactorum. Specificities were demonstrated using 52 isolates, including various soil-borne pathogens. Sensitivities for P. nicotianae and P. cactorum DNAs were 10 fg and 1 pg, respectively. The technique was applied to naturally infested soil and root samples; the two pathogens were detected and the target DNA concentrations were quantified. Significant correlations of DNA quantities in roots and the surrounding soils were found. The minimum soil DNA concentration predicting the development of disease symptoms was estimated as 20 pg (g soil)(-1). In three strawberry greenhouses examined, the target DNA concentrations ranged from 1 to 1,655 pg (g soil)(-1) for P. nicotianae and from 13 to 233 pg (g soil)(-1) for P. cactorum. The method proved fast and reliable, and provides a useful tool to monitor P. nicotianae and P. cactorum in plants or soils.

  9. Expressing foreign genes in the pistil: a comparison of S-RNase constructs in different Nicotiana backgrounds.

    Science.gov (United States)

    Murfett, J; McClure, B A

    1998-06-01

    Transgenic plant experiments have great potential for extending our understanding of the role of specific genes in controlling pollination. Often, the intent of such experiments is to over-express a gene and test for effects on pollination. We have examined the efficiency of six different S-RNase constructs in Nicotiana species and hybrids. Each construct contained the coding region, intron, and downstream sequences from the Nicotiana alata S(A2)-RNase gene. Among the six expression constructs, two utilized the cauliflower mosaic virus (CaMV) 35S promoter with duplicated enhancer, and four utilized promoters from genes expressed primarily in pistils. The latter included promoters from the tomato Chi2;1 and 9612 genes, a promoter from the N. alata S(A2)-RNase gene, and a promoter from the Brassica SLG-13 gene. Some or all of the constructs were tested in N. tabacum, N. plumbaginifolia, N. plumbaginifolia x SI N. alata S(C10)S(c10) hybrids, N. langsdorffii, and N. langsdorffii x SC N. alata hybrids. Stylar specific RNase activities and S(A2)-RNase transcript levels were determined in transformed plants. Constructs including the tomato Chi2;1 gene promoter or the Brassica SLG-13 promoter provided the highest levels of S(A2)-RNase expression. Transgene expression patterns were tightly regulated, the highest level of expression was observed in post-anthesis styles. Expression levels of the S(A2)-RNase transgenes was dependent on the genetic background of the host. Higher levels of S(A2)-RNase expression were observed in N. plumbaginifolia x SC N. alata hybrids than in N. plumbaginifolia.

  10. PET imaging of thin objects: measuring the effects of positron range and partial-volume averaging in the leaf of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Alexoff, David L., E-mail: alexoff@bnl.gov; Dewey, Stephen L.; Vaska, Paul; Krishnamoorthy, Srilalan; Ferrieri, Richard; Schueller, Michael; Schlyer, David J.; Fowler, Joanna S.

    2011-02-15

    Introduction: PET imaging in plants is receiving increased interest as a new strategy to measure plant responses to environmental stimuli and as a tool for phenotyping genetically engineered plants. PET imaging in plants, however, poses new challenges. In particular, the leaves of most plants are so thin that a large fraction of positrons emitted from PET isotopes ({sup 18}F, {sup 11}C, {sup 13}N) escape while even state-of-the-art PET cameras have significant partial-volume errors for such thin objects. Although these limitations are acknowledged by researchers, little data have been published on them. Methods: Here we measured the magnitude and distribution of escaping positrons from the leaf of Nicotiana tabacum for the radionuclides {sup 18}F, {sup 11}C and {sup 13}N using a commercial small-animal PET scanner. Imaging results were compared to radionuclide concentrations measured from dissection and counting and to a Monte Carlo simulation using GATE (Geant4 Application for Tomographic Emission). Results: Simulated and experimentally determined escape fractions were consistent. The fractions of positrons (mean{+-}S.D.) escaping the leaf parenchyma were measured to be 59{+-}1.1%, 64{+-}4.4% and 67{+-}1.9% for {sup 18}F, {sup 11}C and {sup 13}N, respectively. Escape fractions were lower in thicker leaf areas like the midrib. Partial-volume averaging underestimated activity concentrations in the leaf blade by a factor of 10 to 15. Conclusions: The foregoing effects combine to yield PET images whose contrast does not reflect the actual activity concentrations. These errors can be largely corrected by integrating activity along the PET axis perpendicular to the leaf surface, including detection of escaped positrons, and calculating concentration using a measured leaf thickness.

  11. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae attack all three species, and in N. attenuata attack is recognized when larval oral secretions are introduced to wounds during feeding, resulting in a jasmonate burst, a systemic amplification of trypsin inhibitor accumulation, and a release of volatile organic compounds, which function as a coordinated defense response that slows caterpillar growth and increases the probability of their being attacked. Most aspects of this recognition response are retained with modifications in one allotetraploid (N. bigelovii) but lost in the other (N. clevelandii). Differences between diploid and tetraploid species were apparent in delays (maximum 1 and 0.5 h, respectively) in the jasmonate burst, the elicitation of trypsin inhibitors and release of volatile organic compounds, and the constitutive levels of nicotine, trypsin inhibitors, diterpene glycosides, rutin, and caffeoylputrescine in the leaves. Resistance to M. sexta larvae attack was most strongly associated with diterpene glycosides, which were higher in the diploid than in the two allotetraploid species. Because M. sexta elicitors differentially regulate a large proportion of the N. attenuata transcriptome, we propose that these species are suited for the study of the evolution of adaptive responses requiring trans-activation mechanisms. PMID:14530394

  12. Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum

    NARCIS (Netherlands)

    Bonants, P.J.M.; Hagenaar-de Weerdt, M.; Man in 't Veld, W.A.; Baayen, R.P.

    2000-01-01

    Hybrid isolates of Phytophthora nicotianae x P. cactorum from five different hosts (Cyclamen, Lavandula, Lewisia, Primula, and Spathiphyllum spp.) were identified by their atypical morphology and their well-defined heterozygous isozyme patterns. The hybrid nature of these isolates was tested by

  13. Indoor and outdoor genotoxic load detected by the Comet assay in leaves of Nicotiana tabacum cultivars Bel B and Bel W3.

    Science.gov (United States)

    Restivo, Francesco Maria; Laccone, Maria Concetta; Buschini, Annamaria; Rossi, Carlo; Poli, Paola

    2002-03-01

    Environmental pollution assessment and control are priority issues for both developed and developing countries of the world. The use of plant material for a more complete picture of environmental health appears to be particularly appealing. Here we validate a previous plant-adapted Comet assay on leaf tissues of Nicotiana tabacum cultivars Bel B and Bel W3. The effects of H(2)O(2) on DNA damage in Bel B and Bel W3 agree with the hypothesis that some component of the machinery that protects DNA integrity from oxidative stress may be impaired in cv. Bel W3. Exposure in the field on sunny summer days (peak ozone concentration >80 p.p.b.) showed significantly higher DNA damage in cv. Bel W3 if plants were collected and subjected to the Comet assay when the air ozone concentration was reaching its peak value, but not when plants were sampled early in the morning and hence after a period of low ozone concentration. The different results suggest that Bel W3 possesses a less efficient recovery apparatus that requires a longer period of activity to be effective and/or is less protected against reactive oxygen species production during exposure to ozone. However, it cannot be excluded that the increase in mean DNA damage is the result of the presence of a genotoxic agent(s) other than ozone. Interestingly, Bel W3 also appears to be more responsive, compared with Bel B, when exposed to ambient indoor pollutants. The use of cv. Bel W3 increases the sensitivity of the assay under both indoor and field conditions. However, different classes of mutagens should be tested to define the range of profitable utilization of this tobacco cultivar for environmental genotoxicity detection.

  14. Genome-wide identification, subcellular localization and gene expression analysis of the members of CESA gene family in common tobacco (Nicotiana tabacum L.).

    Science.gov (United States)

    Xu, Zong-Chang; Kong, Yingzhen

    2017-06-20

    Cellulose-synthase proteins (CESAs) are membrane localized proteins and they form protein complexes to produce cellulose in the plasma membrane. CESA proteins play very important roles in cell wall construction during plant growth and development. In this study, a total of 21 NtCESA gene sequences were identified by using PF03552 conserved protein sequence and 10 AtCESA protein sequences of Arabidopsis thaliana to blast against the common tobacco (Nicotiana tabacum L.) genome database with TBLASTN protocol. We analyzed the physical and chemical properties of protein sequences based on some software or on-line analysis tools. The results showed that there were no significant variances in terms of the physical and chemical properties of the 21 NtCESA proteins. First, phylogenetic tree analysis showed that 21 NtCESA genes and 10 AtCESA genes were clustered into five groups, and the gene structures were similar among the genes that are clustered into the same group. Second, in all of the 21 NtCESA proteins the conserved zinc finger domain was identified in the N-terminus, transmembrane domains were identified in the C-terminus and the DDD-QXXRW conserved domains were also identified. Third, gene expression analysis results indicated that most NtCESA genes were expressed in roots and leaves of seedling or mature tissues of tobacco, seeds and callus tissues. The genes that clustered into the same group share similar expression patterns. Importantly, NtCESA proteins that are involved in secondary cell wall cellulose synthesis have two extra transmembrane domains compared with that involved in primary cell wall cellulose biosynthesis. In addition, subcellular localization results showed that NtCESA9 and NtCESA14 were two plasma membrane anchored proteins. This study will lay a foundation for further functional characterization of these NtCESA genes.

  15. Effect of lethal and sub-lethal concentrations of tobacco (Nicotiana ...

    African Journals Online (AJOL)

    Lethal and sub-lethal bioassays on Clarias gariepinus were conducted to evaluate the toxicity of tobacco (Nicotiana tobaccum) leaf dust on weight gain and haematological indices of Clarias gariepinus (mean weight 10.5±0.70g) in glass aquaria with aeration system. The concentrations used during the lethal exposure are: ...

  16. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  17. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  18. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana.

    Science.gov (United States)

    Hancock, C Nathan; Kent, Lia; McClure, Bruce A

    2005-09-01

    S-RNase participates in at least three mechanisms of pollen rejection. It functions in S-specific pollen rejection (self-incompatibility) and in at least two distinct interspecific mechanisms of pollen rejection in Nicotiana. S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia also require additional stylar proteins. Transmitting-tract-specific (TTS) protein, 120 kDa glycoprotein (120K) and pistil extensin-like protein III (PELP III) are stylar glycoproteins that bind S-RNase in vitro and are also known to interact with pollen. Here we tested whether these glycoproteins have a direct role in pollen rejection. 120K shows the most polymorphism in size between Nicotiana species. Larger 120K-like proteins are often correlated with S-specific pollen rejection. Sequencing results suggest that the polymorphism primarily reflects differences in glycosylation, although indels also occur in the predicted polypeptides. Using RNA interference (RNAi), we suppressed expression of 120K to determine if it is required for S-specific pollen rejection. Transgenic SC N. plumbaginifolia x SI Nicotiana alata (S105S105 or SC10SC10) hybrids with no detectable 120K were unable to perform S-specific pollen rejection. Thus, 120K has a direct role in S-specific pollen rejection. However, suppression of 120K had no effect on rejection of N. plumbaginifolia pollen. In contrast, suppression of HT-B, a factor previously implicated in S-specific pollen rejection, disrupts rejection of N. plumbaginifolia pollen. Thus, S-specific pollen rejection and rejection of N. plumbaginifolia pollen are mechanistically distinct, because they require different non-S-RNase factors.

  19. Synchronous high-resolution phenotyping of leaf and root growth in Nicotiana tabacum over 24-h periods with GROWMAP-plant

    Directory of Open Access Journals (Sweden)

    Ruts Tom

    2013-01-01

    Full Text Available Abstract Background Root growth is highly responsive to temporal changes in the environment. On the contrary, diel (24 h leaf expansion in dicot plants is governed by endogenous control and therefore its temporal pattern does not strictly follow diel changes in the environment. Nevertheless, root and shoot are connected with each other through resource partitioning and changing environments for one organ could affect growth of the other organ, and hence overall plant growth. Results We developed a new technique, GROWMAP-plant, to monitor growth processes synchronously in leaf and root of the same plant with a high resolution over the diel period. This allowed us to quantify treatment effects on the growth rates of the treated and non-treated organ and the possible interaction between them. We subjected the root system of Nicotiana tabacum seedlings to three different conditions: constant darkness at 22°C (control, constant darkness at 10°C (root cooling, and 12 h/12 h light–dark cycles at 22°C (root illumination. In all treatments the shoot was kept under the same 12 h/12 h light–dark cycles at 22°C. Root growth rates were found to be constant when the root-zone environment was kept constant, although the root cooling treatment significantly reduced root growth. Root velocity was decreased after light-on and light-off events of the root illumination treatment, resulting in diel root growth rhythmicity. Despite these changes in root growth, leaf growth was not affected substantially by the root-zone treatments, persistently showing up to three times higher nocturnal growth than diurnal growth. Conclusion GROWMAP-plant allows detailed synchronous growth phenotyping of leaf and root in the same plant. Root growth was very responsive to the root cooling and root illumination, while these treatments altered neither relative growth rate nor diel growth pattern in the seedling leaf. Our results that were obtained simultaneously in growing

  20. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  1. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    Science.gov (United States)

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  2. Screening and characterization a RAPD marker of tobacco brown ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... Random amplified DNA polymorphism of Nicotiana tabacum L. cultivars. Biologia Plantarum. 49: 605-607. Zhang HY, Liu XZ, Li TS, Yang YM (2006). Genetic diversity among flue- cured tobacco (Nicotiana tabacum L.) revealed by amplified fragment length polymorphism. Botanical Studies. 47: 223-229.

  3. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2018-01-01

    Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco ( Nicotiana ) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar

  4. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents

    CSIR Research Space (South Africa)

    Mhlongo, MI

    2016-10-01

    Full Text Available tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid...

  5. Population structure and genetic diversity of Phytophthora nicotianae from tobacco in Georgia

    Science.gov (United States)

    Black shank caused by Phytophthora nicotianae occurs worldwide and is responsible for significant yield loss in tobacco production in Georgia. Management of the disease has primarily relied on utilization of tobacco cultivars with resistance to race 0 of the pathogen and application of the fungicide...

  6. Spicing Up the N Gene: F. O. Holmes and Tobacco mosaic virus Resistance in Capsicum and Nicotiana Plants.

    Science.gov (United States)

    Scholthof, Karen-Beth G

    2017-02-01

    One of the seminal events in plant pathology was the discovery by Francis O. Holmes that necrotic local lesions induced on certain species of Nicotiana following rub-inoculation of Tobacco mosaic virus (TMV) was due to a specific interaction involving a dominant host gene (N). From this, Holmes had an idea that if the N gene from N. glutinosa was introgressed into susceptible tobacco, the greatly reduced titer of TMV would, by extension, prevent subsequent infection of tomato and pepper plants by field workers whose hands were contaminated with TMV from their use of chewing and smoking tobacco. The ultimate outcome has many surprising twists and turns, including Holmes' failure to obtain fertile crosses of N. glutinosa × N. tabacum after 3 years of intensive work. Progress was made with N. digluta, a rare amphidiploid that was readily crossed with N. tabacum. And, importantly, the first demonstration by Holmes of the utility of interspecies hybridization for virus resistance was made with Capsicum (pepper) species with the identification of the L gene in Tabasco pepper, that he introgressed into commercial bell pepper varieties. Holmes' findings are important as they predate Flor's gene-for-gene hypothesis, show the use of interspecies hybridization for control of plant pathogens, and the use of the local lesion as a bioassay to monitor resistance events in crop plants.

  7. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    Science.gov (United States)

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  8. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans.

    Science.gov (United States)

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N -glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker ( bar ), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

  9. Ontwikkeling en demonstratie van een geintegreerd bestrijdingssysteem voor de rode luis Myzus nicotianae

    NARCIS (Netherlands)

    Dijken, van M.J.

    1998-01-01

    De geïntegreerde plaagbestrijding van de paprikateelt onder glas, wordt sinds 1993 verstoord door de opkomst van de rode luis, Myzus nicotianae. Deze luis is namelijk resistent tegen het selectieve chemische correctiemiddel pirimicarb en een effectieve biologische bestrijding was onvoldoende

  10. Inter Simple Sequence Repeat DNA (ISSR) Polymorphism Utility in Haploid Nicotiana Alata Irradiated Plants for Finding Markers Associated with Gamma Irradiation and Salinity

    International Nuclear Information System (INIS)

    El-Fiki, A.; Adly, M.; El-Metabteb, G.

    2017-01-01

    Nicotiana alata is an ornamental plant. It is a member of family Solanasea. Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. Wild Nicotiana species, as a store house of genes for several diseases and pests, in addition to genes for several important phytochemicals and quality traits which are not present in cultivated varieties. Inter simple sequence repeat DNA (ISSR) analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different treated haploid plant lets were amplified using five specific primers. All primers were polymorphic. A total of 209 bands were amplified of which 135 (59.47%) polymorphic across the radiation treatments. Whilst, the level of polymorphism among the salinity treatments were 181 (85.6 %). Whereas, the polymorphism among the combined effects between gamma radiation doses and salinity concentrations were 283 ( 73.95% ). Treatments relationships were estimated through cluster analysis (UPGMA) based on ISSR data

  11. Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae)

    OpenAIRE

    Md. Shafiullah Shajib; Bidyut Kanti Datta; Md. Hossain Sohrab; Mohammad Abdur Rashid; Lutfun Nahar; Satyajit Dey Sarker

    2017-01-01

    Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh . This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3' ,5,6,7,8-hexamethoxy- 4...

  12. Histological Studies Of The Pancreas Of Wistar Rats Following ...

    African Journals Online (AJOL)

    This study was to find the probable effect of Nicotiana tabacum (snuff) on the histological features of the pancreas of adult wistar rats. Nicotiana tabacum is a product of smokeless tobacco which contains many toxins and high levels of nicotine. Twenty male wistar rats weighing 200-210g were used for this study. The control ...

  13. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  14. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper

    Science.gov (United States)

    Phytophthora nicotianae is the principal causal agent of root and crown rot disease of pepper plants in Extremadura (western Spain), a spring-summer crop in this region. Preplant soil treatment by anaerobic soil disinfestation (ASD) may effectively control plant pathogens in many crop production sys...

  15. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata

    NARCIS (Netherlands)

    Glawe, G.A.; Zavala, J.A.; Kessler, A.; Van Dam, N.M.; Baldwin, I.T.

    2003-01-01

    Genotypes of the wild tobacco Nicotiana attenuata from different geographic regions in North America vary considerably in the level of constitutive and inducible trypsin protease inhibitors (TrypPIs), a potent direct defense, as well as in the production of herbivore-induced volatiles that function

  16. Chlorogenic acid in a Nicotiana plumbaginifolia cell suspension.

    Science.gov (United States)

    Gillet; Mesnard; Fliniaux; Monti; Fliniaux

    1999-11-01

    A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid.

  17. Ecotoxicity of natural insecticide based on tobacco plant extract and hematological effects on the Nile tilapia (Oreochromis niloticus. Ecotoxicity and hematological effects of a natural insecticide based on tobacco (Nicotiana tabacum extract on Nile tilapia (Oreochromis niloticus - doi: 10.4025/actascibiolsci.v35i2.14131

    Directory of Open Access Journals (Sweden)

    Marisa Narciso Fernandes

    2013-05-01

    Full Text Available Natural insecticides derived from plant extracts have been used as an alternative to synthetic products in order to reduce environmental contamination. The present study aimed to examine the effects of Fumydro®, a natural insecticide based in the tobacco plant Nicotiana tabacum, on the Nile tilapia (Oreochromis niloticus by determining the 48-h LC50 and evaluating their effects on hematological variables. Adult specimens of O. niloticus were exposed to four Fumydro® concentrations (200, 300, 400 and 500 μL L-1. The 48-h LC50 of Fumydro® was determined as 370 ± 50 μL L-1. Surviving fish showed increasing in the red blood cells, hemoglobin concentration, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The thrombocytes did not change but the percentage of neutrophils increased. These results indicated that the insecticide Fumydro® is toxic to Nile tilapia and the changes of the erythrocyte variables suggested hypoxemia induction with low effect on the immune system.Natural insecticides from plant extracts represent an alternative to the highly toxic synthetic products in order to reduce environmental contamination; however some might also be toxic for non-target organisms. The present study determined the 50% lethal concentration (48h; LC50 for adults Nile tilapia (Oreochromis niloticus exposed to the natural insecticide Fumydro®, based on the tobacco plant (Nicotiana tabacum, and evaluated its effect on hematological variables. After preliminary tests, adult specimens of O. niloticus were exposed to four Fumydro® concentrations (200, 300, 400 and 500 μL L-1. The 48h; LC50 of Fumydro® was determined at 370 ± 50 μL L-1. The surviving fish after exposure to Fumydro® showed an increase in the number of red blood cells, hemoglobin concentration, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration. The number of thrombocytes and leukocytes has not changed, unlike the differential leukocyte

  18. Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae by grafting onto resistant rootstock

    Directory of Open Access Journals (Sweden)

    Mourad SAADOUN

    2013-05-01

    Full Text Available Root rot and plant wilting caused by Phytophthora nicotianae is a severe disease of chili pepper (Capsicum annuum L. in open fields and under greenhouse production in Tunisia. Chili pepper grafting for disease manage- ment is attracting increased interest in recent years. Using the tube grafting technique, different compatible scion/rootstock combinations were obtained with the wild-type pepper SCM334 and the local chili pepper cultivars ‘Beldi’ and ‘Baker’. SCM334 was resistant to P. nicotianae, while the cultivars Beldi and Baker were susceptible. Plant inoculations were performed with P. nicotianae zoospores, and severity of root rot was rated 30 days post- inoculation using a 0 (healthy plant to 5 (dead plant severity score. On SCM334 rootstock and with ‘Beldi’ or ‘Baker’ scions, the intensity of root rot was very low (mean score 0.1–0.2 and plants were healthy. However, with Baker or Beldi rootstocks and SCM334 scions, root rot was severe (mean score 3.1–4.6, leading to high numbers of wilting and dead plants. This severe root rot was similar to that observed on non-grafted plants of ‘Baker’ and ‘Beldi’ inoculated with the pathogen. Under greenhouse conditions, measurements of agronomic characters indicated non-consistent improvement of these features on the scion cultivar when SCM334 was the rootstock. Since plant foliage is not attacked by this pathogen, these results show that susceptible chili pepper scions grafted onto SCM334 rootstocks could be used for root rot management and improvement of pepper yields in P. nicotianae infested soils.

  19. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  20. The role of Nicotiana gluca Graham (paraguayan herbs) as an adjuvant in immunomodulation of Newcastle disease vaccine for broilers Estudo da ação de Nicotiana glauca Graham (erva paraguaia) como coadjuvante em vacina contra a doença de Newcastle em frangos de corte

    OpenAIRE

    Fabiane Pereira Gentilini; Telmo Vidor; Rogério Freitag; Marcos Antônio Anciuti; Caren Gularte Quincozes; Marlete Brum Cleff; Geferson Fischer; Carlos Eduardo Nogueira

    2008-01-01

    The Nicotiana glauca is a native plant species from Argentina, but found all over South América, being used against headaches, rheumatism, injuries, ulcers, and so on. Researchers have considered it as having immunomodulation effect. This study was conducted to investigate the use of a aqueous extract of Nicotiana glauca Graham as an immunomodulator (adjuvant) of a Newcastle disease vaccine.. A total of 56 broilers were distributed into 4 ...

  1. OBSERVATIONS ON THE SUSCEPTIBILITY OF SOME WILD SPECIES OF THE GENUS NICOTINA AND OF SOME VARIETIES OF NICOTIANA TABACUM L. AND N. RUSTICA L. TO BLUE MOULD (PERONOSPORA TABACINA ADAM) -- PULAWY 1962

    Science.gov (United States)

    Nicotiana , no manifestations of the mould were observed on the species of N. debneyi and N. exigua. Very weak symptoms appeared in N. paniculata and N... plumbaginifolia . In the group of cigarette-tobacco varieties only the Hicks Resistant and Hicks fixed A2 (varieties of Australian origin, obtained by

  2. An orange fluorescent protein tagging system for real-time pollen tracking.

    Science.gov (United States)

    Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal

    2013-09-27

    Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.

  3. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  4. A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene.

    Science.gov (United States)

    Pasternak, Taras; Haser, Thomas; Falk, Thorsten; Ronneberger, Olaf; Palme, Klaus; Otten, Léon

    2017-10-01

    Using the intrinsic Root Coordinate System (iRoCS) Toolbox, a digital atlas at cellular resolution has been constructed for Nicotiana tabacum roots. Mitotic cells and cells labeled for DNA replication with 5-ethynyl-2'-deoxyuridine (EdU) were mapped. The results demonstrate that iRoCS analysis can be applied to roots that are thicker than those of Arabidopsis thaliana without histological sectioning. A three-dimensional (3-D) analysis of the root tip showed that tobacco roots undergo several irregular periclinal and tangential divisions. Irrespective of cell type, rapid cell elongation starts at the same distance from the quiescent center, however, boundaries between cell proliferation and transition domains are cell-type specific. The data support the existence of a transition domain in tobacco roots. Cell endoreduplication starts in the transition domain and continues into the elongation zone. The tobacco root map was subsequently used to analyse root organization changes caused by the inducible expression of the Agrobacterium 6b oncogene. In tobacco roots that express the 6b gene, the root apical meristem was shorter and radial cell growth was reduced, but the mitotic and DNA replication indexes were not affected. The epidermis of 6b-expressing roots produced less files and underwent abnormal periclinal divisions. The periclinal division leading to mature endodermis and cortex3 cell files was delayed. These findings define additional targets for future studies on the mode of action of the Agrobacterium 6b oncogene. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Synthesis of 'cineole cassette' monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis.

    Science.gov (United States)

    Fähnrich, Anke; Brosemann, Anne; Teske, Laura; Neumann, Madeleine; Piechulla, Birgit

    2012-08-01

    The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.

  6. [Molecular and structural-biological analysis of Nicotiana plumbaginifolia mutants for identification of the site of beta-tubulins interaction with dinitroanilines and phosphorotioamidates].

    Science.gov (United States)

    Emets, A I; Baiard, U V; Nyporko, A Iu; Swire-Clark, G A; Blium, Ia B

    2009-01-01

    The identification of point mutation locations on beta-tubulin molecules of amiprophosmethyl- and trifluralin-resistant Nicotiana plumbaginifolia lines have described in the work. It was shown that in the first case this mutation is connected with the substitution ofserine residue on proline in position 248; in the second case--with the substitution of phenilalanine on serine in position 317 of beta-tubulin amino acid sequence. Three-dimensional models of beta-tubulin molecule from Chlamydomonas with well-known location of mutations conferring dinitroaniline- and phosphorotioamidate resistance (substitution of lysine residue to methionine on position 350), and beta-tubulin from Nicotiana plumbaginifolia have been reconstructed. On the basis of analysis of site of interaction with dinitroanilines and phosphorotioamides on Chlamydomonas beta-tubulin molecule it was concluded that the revealed mutations on Nicotiana plumbaginifolia beta-tubulin affect amino acid residues participating in formation of this site.

  7. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  8. Molecular identification of catalases from Nicotiana plumbaginifolia (L.).

    Science.gov (United States)

    Willekens, H; Villarroel, R; Van Montagu, M; Inzé, D; Van Camp, W

    1994-09-19

    We have isolated three different catalase cDNAs from Nicotiana plumbaginifolia (cat1, cat2, and cat3) and a partial sequence of a fourth catalase gene (cat4) that shows no discernible expression based on Northern analysis. The catalase sequences were used to determine the similarity with other plant catalases and to study the transcriptional response to paraquat, 3-aminotriazole, and salicylic acid. 3-Aminotriazole induces mRNA levels of cat1, cat2 and cat3, indicating that a reduction in catalase activity positively affects catalase mRNA abundance. Salicylic acid that binds catalase in vitro, had no effect on catalase transcript levels at physiological concentrations. Paraquat resulted in the induction of cat1.

  9. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová, V.; Jirásková, A.; Janošková, M.; Müller, Karel; Baťková, Petra; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2007-01-01

    Roč. 26, č. 4 (2007), s. 281-289 ISSN 0231-5882 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP * malic enzyme isoforms * Nicotiana benthamiana Subject RIV: EF - Botanics Impact factor: 1.286, year: 2007 http://www.gpb.sav.sk/2007-4.htm

  10. A 5′P degradation hot spot influences molecular farming of anticancerogenic nuclease TBN1 in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Týcová, Anna; Piernikarczyk, R.J.J.; Kugler, M.; Lipovová, P.; Podzimek, T.; Steger, G.; Matoušek, Jaroslav

    2016-01-01

    Roč. 127, č. 2 (2016), s. 347-358 ISSN 0167-6857 Institutional support: RVO:60077344 Keywords : mRNA quantification * Nicotiana benthamiana * Nicotiana tabacum * Post-transcriptional gene silencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.002, year: 2016

  11. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)

    Czech Academy of Sciences Publication Activity Database

    Leitch, I.J.; Hanson, L.; Lim, K.Y.; Kovařík, Aleš; Chase, M.W.; Clarkson, J.J.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 805-814 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genome size * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  12. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years

    Czech Academy of Sciences Publication Activity Database

    Koukalová, Blažena; Moraes, A.P.; Renny-Byfield, S.; Matyášek, Roman; Leitch, A.R.; Kovařík, Aleš

    2010-01-01

    Roč. 186, č. 1 (2010), s. 148-160 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : concerted evolution * interlocus homogenization * Nicotiana Subject RIV: BO - Biophysics Impact factor: 6.516, year: 2010

  13. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    1 in Nicotiana tabacum cv. Xanthi. Jun-Shan ... Here, we isolated a member of the AP2/ERF transcription factors, NtERF1-1, from Nicotiana tabcum cv. Xanthi NN carrying the N gene, which is resistant to Tobacco mosaic virus (TMV). NtERF1-1 ...

  14. UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana plumbaginifolia and Lycopersicon esculentum

    International Nuclear Information System (INIS)

    Vlahova, M.; Hinnisdaels, S.; Frulleux, F.; Claeys, M.; Atanassov, A.; Jacobs, M.

    1997-01-01

    UV-irradiated kanamycin-resistant Lycopersicon esculentum leaf protoplasts were fused with wild-type Nicotiana plumbaginifolia leaf protoplasts. Hybrid calli were recovered after selection in kanamycin-containing medium and subsequently regenerated. Cytological analysis of these regenerants showed that several (2–4) tomato chromosomes, or chromosome fragments, were present in addition to a polyploid Nicotiana genome complement. All lines tested had neomycin phosphotransferase (NPTII) activity and the presence of the kanamycin gene was shown by Southern blotting. In two cases a different hybridization profile for the kanamycin gene, compared to the tomato donor partner, was observed, suggesting the occurence of intergenomic recombination events. The hybrid nature of the regenerants was further confirmed by Southernblotting experiments using either a ribosomal DNA sequence or a tomato-specific repeat as probes. The hybrids were partially fertile and some progeny could be obtained. Our results demonstrate that UV irradiation is a valuable alternative for asymmetric cell-hybridization experiments. (author)

  15. Truncated presequences of mitochondrial F1-ATPase beta subunit from Nicotiana plumbaginifolia transport CAT and GUS proteins into mitochondria of transgenic tobacco.

    Science.gov (United States)

    Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M

    1994-02-01

    The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.

  16. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes.

    Science.gov (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  17. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants.

    Directory of Open Access Journals (Sweden)

    Youngjoo Oh

    Full Text Available Jasmonic acid is an important regulator of plant growth, development and defense. The jasmonate-ZIM domain (JAZ proteins are key regulators in jasmonate signaling ubiquitously present in flowering plants but their functional annotation remains largely incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana attenuata, and initiated systematic functional characterization of these proteins by reverse genetic approaches. In this report, Nicotiana attenuata plants silenced in the expression of NaJAZd (irJAZd by RNA interference were used to characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe strong defense-related phenotypes, such as altered herbivore performance or the constitutive accumulation of defense-related secondary metabolites in irJAZd plants compared to wild type plants, both in the glasshouse and the native habitat of Nicotiana attenuata in the Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules than did wild type plants as a result of increased flower abscission in later stages of flower development. The early- and mid-developmental stages of irJAZd flowers had reduced levels of jasmonic acid and jasmonoyl-L-isoleucine, while fully open flowers had normal levels, but these were impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants were shown to have strong flower abscission phenotypes and contained lower NECTARIN 1 transcript levels, phenotypes which are copied in irJAZd plants. We propose that the NaJAZd protein is required to counteract flower abscission, possibly by regulating jasmonic acid and jasmonoyl-L-isoleucine levels and/or expression of NaMYB305 gene in Nicotiana attenuata flowers. This novel insight into the function of JAZ proteins in flower and seed development highlights the diversity of functions

  18. Identification of a Nicotiana plumbaginifolia plasma membrane H(+)-ATPase gene expressed in the pollen tube.

    Science.gov (United States)

    Lefebvre, Benoit; Arango, Miguel; Oufattole, Mohammed; Crouzet, Jérôme; Purnelle, Bénédicte; Boutry, Marc

    2005-08-01

    In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.

  19. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  20. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  1. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue.

    Science.gov (United States)

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.

  2. Assessment of natural radionuclides concentration from 238U and 232Th series in Virginia and Burley varieties of Nicotiana tabacum L

    International Nuclear Information System (INIS)

    Silva, Carolina Fernanda da

    2015-01-01

    Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop production of 2013/2014. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco products varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation (compression, filter and paper) and the temperature variations resulting from the incomplete combustion of tobacco. Tobacco products are extensively used throughout the world, and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed globally, and many surveys are performed with the aim of relating the use of these products with various illnesses. There is a lack of information about the radiological characterization of the tobacco plant both in international and Brazilian literature. The objective of this study was to determine the concentration of radionuclides 238 U, 234 U, 230 Th, 22 '6Ra, 210 Pb and 210 Po, members from the 238 U decay series, and the radionuclides 232 Th and 228 Ra members of the 232 Th decay series in the varieties Burley and Virginia, which are the most cultivated in Brazil. Plants from these varieties were cultivated in pots with organic substrate and fertilizer and also acquired from the producers and analyzed by alpha spectrometry for U and Th isotopes and 210 Po determination, and gross alpha and beta counting, 228 Ra, 226 Ra and 210 Pb determination. The whole plant, from both places, was analyzed; root, stem, leaves, as well as the organic substrate, the fertilizers, and the soil. The results for U and Th isotopes presented values below the detection limits of the methods to the leaves and stems of all plants analyzed, with measurable results only in roots, soil, and substrate. The radionuclides 226 Ra, 228 Ra, 210 Pb, and 210 Po, were determined in most

  3. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  4. Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNa homogenization and epigenetics

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Nešpor Dadejová, Martina; Lim, Y.K.; Chase, M.W.; Clarkson, J.J.; Knapp, S.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 815-823 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : rDNA * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  5. Assessment of natural radionuclides concentration from {sup 238}U and {sup 232}Th series in Virginia and Burley varieties of Nicotiana tabacum L; Avaliacao da concentracao dos radionuclideos naturais das series do {sup 238}U e {sup 232}Th nas variedades Burley e Virginia da Nicotiana tabacum L.

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carolina Fernanda da

    2015-07-01

    Brazil is the largest exporter and second largest producer of tobacco worldwide, according to the crop production of 2013/2014. The tobacco plant (Nicotiana tabacum L.) is used to manufacture all derivatives and the chemical composition of the resulting tobacco products varies with the type of tobacco leaves, how they are grown, the region where they are cultivated, the characteristics of preparation (compression, filter and paper) and the temperature variations resulting from the incomplete combustion of tobacco. Tobacco products are extensively used throughout the world, and the most consumed are cigarettes, cigars and narghile. The damaging effects that these products cause to human health are discussed globally, and many surveys are performed with the aim of relating the use of these products with various illnesses. There is a lack of information about the radiological characterization of the tobacco plant both in international and Brazilian literature. The objective of this study was to determine the concentration of radionuclides {sup 238}U, {sup 234}U, {sup 230}Th, {sup 22}'6Ra, {sup 210}Pb and {sup 210}Po, members from the {sup 238}U decay series, and the radionuclides {sup 232}Th and {sup 228}Ra members of the {sup 232}Th decay series in the varieties Burley and Virginia, which are the most cultivated in Brazil. Plants from these varieties were cultivated in pots with organic substrate and fertilizer and also acquired from the producers and analyzed by alpha spectrometry for U and Th isotopes and {sup 210}Po determination, and gross alpha and beta counting, {sup 228}Ra, {sup 226}Ra and {sup 210}Pb determination. The whole plant, from both places, was analyzed; root, stem, leaves, as well as the organic substrate, the fertilizers, and the soil. The results for U and Th isotopes presented values below the detection limits of the methods to the leaves and stems of all plants analyzed, with measurable results only in roots, soil, and substrate. The

  6. Host-Pathogen Interactions : XXXII. A Fungal Glucan Preparation Protects Nicotianae against Infection by Viruses.

    Science.gov (United States)

    Kopp, M; Rouster, J; Fritig, B; Darvill, A; Albersheim, P

    1989-05-01

    A glucan preparation obtained from the mycelial walls of the fungus Phytophthora megasperma f.sp. glycinea and known as an elicitor of phytoalexins in soybean was shown to be a very efficient inducer of resistance against viruses in tobacco. The glucan preparation protected against mechanically transmitted viral infections on the upper and lower leaf surfaces. Whether the glucan preparation was applied by injection, inoculation, or spraying, it protected the plants if applied before, at the same time as, or not later than 8 hours after virus inoculation. At concentrations ranging from 0.1 to 10 micrograms per milliliter, the glucan preparation induced protection ranging from 50 to 100% against both symptom production (necrotic local lesions, necrotic rings, or systemic mosaic) and virus accumulation in all Nicotiana-virus combinations examined. However, no significant protection against some of the same viruses was observed in bean or turnip. The host plants successfully protected included N. tabacum (9 different cultivars), N. sylvestris, N. glutinosa, and N. clevelandii. The viruses belonged to several taxonomic groups including tobacco mosaic virus, alfalfa mosaic virus, and tomato black ring virus. The glucan preparation did not act directly on the virus and did not interfere with virus disassembly; rather, it appeared to induce changes in the host plant that prevented infections from being initiated or recently established infections from enlarging. The induced resistance does not depend on induction of pathogenesis-related proteins, the phenylpropanoid pathway, lignin-like substances, or callose-like materials. We believe the induced resistance results from a mechanism that has yet to be described.

  7. De invloed van auxine, tryptofaan en enige anorganische zouten op de infectie van Nicotiana glutinosa met tabaksmozaiekvirus

    NARCIS (Netherlands)

    Liem, A.S.N.

    1963-01-01

    The number of necrotic spots arising on leaves of Nicotiana glutinosa after inoculation with tobacco mosaic virus was less than in controls without additives, if the water in which the leaves floated hadβ-indoleacetic acid (IAA),α-naphthylacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D)

  8. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae.

    Science.gov (United States)

    Jing, Changliang; Gou, Jianyu; Han, Xiaobin; Wu, Qian; Zhang, Chengsheng

    2017-10-01

    Phytophthora nicotianae causes serious black shank disease in tobacco. Syringa oblata essential oil and its main components were evaluated to develop an effective and environmentally friendly biocontrol agent. Eugenol, which exhibited the strongest activity, was intensively investigated in vitro and in vivo. The mycelial growth of P. nicotianae was inhibited by eugenol at a minimum inhibitory concentration of 200μgmL -1 , and inhibition occurred in a dose-dependent manner. Extracellular pH and extracellular conductivity results indicated that eugenol increased membrane permeability. Flow cytometry and fluorescent staining results further showed that eugenol disrupted mycelial membranes but did not affect spore membrane integrity. The in vivo results confirmed that treatment of tobacco with various concentrations of eugenol formulations reduced disease incidence and better controlled against the disease. Our results suggested that the ability of eugenol to control tobacco black shank depended on its ability to damage mycelial membranes and that eugenol formulations have potential as an eco-friendly antifungal agent for controlling tobacco blank shank. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta

    NARCIS (Netherlands)

    Voelckel, C.; Krugel, T.; Gase, K.; Heidrich, N.; Van Dam, N.M.; Winz, R.; Baldwin, I.T.

    2001-01-01

    Several lines of evidence support the defensive function of nicotine production in the Nicotiana genus against a range of herbivores, but the evidence is largely correlative. To suppress nicotine production in planta and to test its defensive function, we expressed DNA of putrescine N-methyl

  10. Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants

    NARCIS (Netherlands)

    Moravcikova, J.; Matusikova, I.; Libantova, J.; Bauer, M.; Mlynarova, L.

    2004-01-01

    The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) breeding line 116/86 using Agrobacterium tumefaciens. For both transgenes the number of integrated copies and level of RNA expression

  11. Spontaneous and induced loss of chromosomes in slow-growing somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia

    NARCIS (Netherlands)

    Tempelaar, MJ; Drenth - Diephuis, L.J.; SAAT, TAWM; Jacobsen, E.

    Rate and extent of spontaneous and induced chromosome loss have been determined at the callus level of somatic hybrids of mutants of Solanum tuberosum and Nicotiana plumbaginifolia. AEC (amino ethyl cystein) resistance in potato and Nitrate-Reductase deficiency in N. plumbaginifolia have been used

  12. Acidic α-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum)

    Science.gov (United States)

    Zha, Hong-Guang; Flowers, V. Lynn; Yang, Min; Chen, Ling-Yang; Sun, Hang

    2012-01-01

    Background and Aims To date, most floral nectarins (nectar proteins) are reported to function in nectar defence, particularly for insect-pollinated outcrossing species. We compared nectarin composition and abundance in selfing common tobacco (Nicotiana tobaccum) with outcrossing ornamental tobacco plants to elucidate the functional difference of nectarins in different reproductive systems. Methods Common tobacco (CT) nectarins were separated by SDS-PAGE and the N terminus of the most abundant nectarin was sequenced via Edman degradation. The full-length nectarin gene was amplified and cloned from genomic DNA and mRNA with hiTail-PCR and RACE (rapid amplification of cDNA ends), and expression patterns were then investigated in different tissues using semi-quantitative reverse transcriptase PCR. Additionally, high-performance liquid chromatography and enzymatic analyses of nectar sugar composition, and other biochemical traits and functions of the novel nectarin were studied. Key Results The most abundant nectarin in CT nectar is an acidic α-galactosidase, here designated NTα-Gal. This compound has a molecular mass of 40 013 Da and a theoretical pI of 5·33. NTα-Gal has a conserved α-Gal characteristic signature, encodes a mature protein of 364 amino acids and is expressed in different organs. Compared with 27 other melliferous plant species from different families, CT floral nectar demonstrated the highest α-Gal activity, which is inhibited by d-galactose. Raffinose family oligosaccharides were not detected in CT nectar, indicating that NTα-Gal does not function in post-secretory hydrolysis. Moreover, tobacco plant fruits did not develop intact skin with galactose inhibition of NTα-Gal activity in nectar, suggesting that NTα-Gal induces cell-wall surface restructuring during the initial stages of fruit development. Conclusions α-Gal was the most abundant nectarin in selfing CT plants, but was not detected in the nectar of strictly outcrossing sister tobacco

  13. Oral Vaccination Against Anthrax Using a Transgenic Plant Expressing Protective Antigen.

    Science.gov (United States)

    1996-09-01

    Nicotiana plumbaginifolia )" Science 223:496-498. 15. Jefferson, R.A. (1987), "Assaying chimeric genes in plants: The GUS gene fusion system" Plant Mol.Biol...interest. Tobacco ( Nicotiana tabacum cv BY-2) cells were grown in Murashige and Skoog (MS; 1962) media containing 0.2 [tg/ml 2,4-D with shaking at 8

  14. NaStEP: A Proteinase Inhibitor Essential to Self-Incompatibility and a Positive Regulator of HT-B Stability in Nicotiana alata Pollen Tubes1[W][OA

    Science.gov (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown. PMID:23150644

  15. Mutability of the self-incompatibility locus and identification of the S-bearing chromosome in Nicotiana alata

    International Nuclear Information System (INIS)

    Gastel, A.J.G. van.

    1976-01-01

    γ rays, X rays, fast neutrons and ethyl methanesulfonate (EMS) were used for inducing mutations at the self-incompatibility locus of Nicotiana alata. Chronic gamma irradiation and EMS treatment neither induced self-compatability mutations nor led to changes from one S allele to another. X rays and fast neutrons induced many self-compatibility mutations, but did not generate new self-incompatibility alleles. (Auth.)

  16. The role of Nicotiana gluca Graham (paraguayan herbs as an adjuvant in immunomodulation of Newcastle disease vaccine for broilers Estudo da ação de Nicotiana glauca Graham (erva paraguaia como coadjuvante em vacina contra a doença de Newcastle em frangos de corte

    Directory of Open Access Journals (Sweden)

    Fabiane Pereira Gentilini

    2008-07-01

    Full Text Available The Nicotiana glauca is a native plant species from Argentina, but found all over South América, being used against headaches, rheumatism, injuries, ulcers, and so on. Researchers have considered it as having immunomodulation effect. This study was conducted to investigate the use of a aqueous extract of Nicotiana glauca Graham as an immunomodulator (adjuvant of a Newcastle disease vaccine.. A total of 56 broilers were distributed into 4 experimental groups. Each one of them received 3 dosages of this vaccine with or without the addition of different concentrations of the extract Using hemmoaglutination inhibition techniques , the results have shown differences (P<0.05 in the third sera collection. An increase in the antibody titer with the inclusion of 5 mg/dosage of the extract (Treatment 3 as compared to 1 mg/dosage (Treatment 2 and 10 mg/dosage of the extract (Treatment 4 was observed, However, birds from Treatment 3 did not differ (P> 0.05 from Treatment 1. These results indicated that further investigations are required, including the use of cytotoxicity tests in vitro, to evaluate the immunomodulation effect of this extract.

     

    KEY WORDS: Immunomodulation effect, Nicotiana glauca Graham, vaccine.

    A Nicotiana glauca Graham é uma espécie nativa da Argentina, bem distribuída na América do Sul, sendo empregada, popularmente, contra dores de cabeça, dores reumáticas, cicatrização de feridas e úlceras, entre outros. Pesquisas têm avaliado a sua ação na potencialização da resposta imune. Assim, com este estudo, buscou-se avaliar a ação de um extrato aquoso de Nicotiana glauca Graham como coadjuvante imunológico em uma vacina contra a doença de Newcastle (DNC. Utilizaram-se 56 frangos de corte, distribuídos em quatro grupos experimentais, que receberam tr

  17. Effect of gamma-radiation on callus initiation and oraganogenesis in the tissue culture of Nicotiana tabaccum L

    International Nuclear Information System (INIS)

    Shin, S. H.; Kim, J. G.; Song, H. S.

    2004-01-01

    It is generally agreed that ionizing radiations stimulate cell division, growth and development in various organisms including animals and plants. Differentiating tissues are the most sensitive to radiation. The present experiment was carried out to investigate the effects of ionizing radiation on callus initiation and organogenesis from the stem in the culture of Nicotiana tabaccum L. cv. When the stem segments were cultured on a Murashige and Skoog (MS) medium with 2 mg/L kinetin, with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), with 2 mg/L kinetin and 1 mg/L 2,4-D, the shoots and callus were differentiated 14 days after cultivation. Callus was especially formed on the MS medium with 2,4-D and/or kinetin and the formation was promoted by 1 Gy and 5 Gy of gamma radiation. The formation of the shoot clusters on the MS medium with 2 mg/L kinetin were prominent in the 5 Gy-irradiated groups. It is concluded that that gamma radiation enhanced the callus initiation and organogenesis in the tissue culture of Nicotiana tabaccum L

  18. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA. However, the existence of geminivirus related DNA (GRD integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported date for the split is between 20 and 30 MYA--a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.

  19. The potato virus x TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement

    International Nuclear Information System (INIS)

    Mitra, Ruchira; Krishnamurthy, Konduru; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie

    2003-01-01

    Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N. tabacum, indicating that TGBp2 requires TGBp1 to promote its movement in N. tabacum. In this study, GFP:TGBp2 was detected in a polygonal pattern that resembles the endoplasmic reticulum (ER) network. Amino acid sequence analysis revealed TGBp2 has two putative transmembrane domains. Two mutations separately introduced into the coding sequences encompassing the putative transmembrane domains within the GFP:TGBp2 plasmids and PVX genome, disrupted membrane binding of GFP:TGBp2, inhibited GFP:TGBp2 movement in N. benthamiana and TGBp1-expressing N. tabacum, and inhibited PVX movement. A third mutation, lying outside the transmembrane domains, had no effect on GFP:TGBp2 ER association or movement in N. benthamiana but inhibited GFP:TGBp2 movement in TGBp1-expressing N. tabacum and PVX movement in either Nicotiana species. Thus, ER association of TGBp2 may be required but not be sufficient for virus movement. TGBp2 likely provides an activity for PVX movement beyond ER association

  20. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata

    Czech Academy of Sciences Publication Activity Database

    Bruetting, C.; Schaefer, N.; Vaňková, Radomíra; Gase, K.; Baldwin, I.T.; Meldau, S.

    2017-01-01

    Roč. 89, č. 1 (2017), s. 15-30 ISSN 0960-7412 R&D Projects: GA MŠk LD14120 Institutional support: RVO:61389030 Keywords : proteinase-inhibitor production * plant defense * arabidopsis-thaliana * leaf senescence * insect interactions * tobacco plants * jasmonic acid * manduca-sexta * cis-zeatin * responses * cytokinins * optimal defense * herbivores * inducible defense * Nicotiana attenuata * Manduca sexta * plant development * immunosenescence * phytohormones Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  1. Biological Control of Anthracnose Disease of Tomato Using Ethanolic Extracts of Azadirachta Indica and Nicotiana Tabacum

    OpenAIRE

    Opeyemi, Bankole Samuel; Temidayo, Bankole Ruth; Babalola, Yetunde Oyinkansade; Emmanuel, Ilerioluwa Busayo; Ojubolamo, Motunrayo Temitope; Folake, Awotedu Bolakale

    2018-01-01

    Tomato is a commercially important vegetable throughout the whole world and its availability all the year is grossly affected by anthracnose disease, hence, the need for an effective bio-control that is affordable and user friendly. This study therefore investigated the inhibitory effect of ethanol extracts of Azadirachta indica and Tabacum nicotianaon the mycelium growth of fungi associated with anthracnose disease of tomato. Tomatoes that showed black circular lesions with concentric ring a...

  2. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.).

    Science.gov (United States)

    Willekens, H; Langebartels, C; Tiré, C; Van Montagu, M; Inzé, D; Van Camp, W

    1994-10-25

    We have analyzed the expression of three catalase (Cat; EC 1.11.1.6) genes from Nicotiana plumbaginifolia by means of RNA blot and in situ hybridizations. Our data demonstrate that the expression of each catalase is associated with a particular H2O2-producing process. Cat1 appears to be specifically involved in the scavenging of photorespiratory H2O2 and is under control of a circadian rhythm, Cat2 is uniformly expressed in different organs with a cellular preference for vascular tissues, and the expression profile of Cat3 points to a role in glyoxysomal processes. Differential expression of these catalases is also manifested in response to temperature changes. DNA sequence comparison with other dicotyledonous catalases led to the identification of at least three distinct classes, which indicates that the functional organization of catalases is generally conserved in dicotyledonous plants.

  3. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana.

    Science.gov (United States)

    McClure, B; Mou, B; Canevascini, S; Bernatzky, R

    1999-11-09

    Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind S(C10)-RNase in SI N. alata S(C10)S(C10) and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia x SI N. alata S(C10)S(C10)) hybrids with reduced levels of HT-protein continued to express S(C10)-RNase but failed to reject S(C10)-pollen. Control hybrids expressing both S(C10)-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

  4. Selective Somatic Elimination of NICOTIANA GLUTINOSA Chromosomes in the F(1) Hybrids of N. SUAVEOLENS and N. GLUTINOSA.

    Science.gov (United States)

    Gupta, S B; Gupta, P

    1973-04-01

    The F(1) hybrids of Nicotiana suaveolens (subgenus Petunioides, 2n = 32) and N. glutinosa (subgenus Tabacum, 2n = 24), were examined during their development, from seedlings to mature plants. It was observed that in the hybrids, there was a progressive change of dominant N. glutinosa morphological characteristics towards those of N. suaveolens, in leaf shape, stem, flower color and branching pattern. A study of mitotic chromosomes in the root-tips and in very young anthers of the mature plants indicated a significantly high average frequency of aberrant mitotic anaphases (bridges and fragments, 12% and 11% respectively). As a consequence of this phenomenon, variability in the number and size of chromosomes was observed in the PMC's and in mitotic metaphases (29-24 chromosomes). In order to establish whether the N. glutinosa chromosomes were preferentially lost, a karyological study of the parents and their F(1) hybrids was carried out and it was established that the F(1) hybrids were losing N. glutinosa chromosomes preferentially. A mechanism was suggested for the loss of these chromosomes by means of a chromatid type of breakage-fusion-bridge cycle (b-f-b cycle) and initiation of the b-f-b cycle in the hybrid due to an interaction of the regulatory mechanism of DNA replication in the haploid genomes of the parental species. However, loss of these chromosomes owing to interaction of certain genes from the two parental species cannot be ruled out.

  5. Demonstration of site-dependent dynamics of ozone effects in tobacco (Nicotina tabacum L. Bel W3) in Greater Rostock; Nachweis einer standoertlich differenzierten Dynamik der Ozonwirkung an Tabak (Nicotina tabacum L. Bel W3) im Grossraum Rostock

    Energy Technology Data Exchange (ETDEWEB)

    Odya, S.; Stuedemann, O.; Eckert, S. [Rostock Univ. (Germany). Inst. fuer Landschaftsplanung und Landschaftsoekologie

    1999-07-01

    The goal of the present study was to describe the genesis of a geographic pattern of phytotoxic ozone effects in the case of a mesoscale climate sequence. For this purpose the ''Applied Meteorology and Climatology'' working group carried out an active biomonitoring field trial with different bioindicator plants (Nicotina Tabacum L. Bel W3 and Bel B, bush bean, darnel, wheat and common nettle) over 4 vegetation periods. The trial was designed on the basis of existing knowledge on the spatially heterogeneous occurrence of ozone episodes and site-dependent phytotoxic ozone effects. [German] Das Ziel unserer Untersuchungen ist die Beschreibung der Genese des geographischen Musters phytotoxischer Ozonwirkungen im Bereich einer mesoskalen Klimasequenz in Nordost-Deutschland. Dazu wurde in Kenntnis des arealheterogenen Auftretens der Ozonepisoden und der standortabhaengigen phytotoxischen Ozonwirkung von der AG 'Angewandte Meteorologie und Klimatologie' ein aktives Biomonitoring mit verschiedenen Bioindikatorpflanzen (Nicotiana tabacum L. Bel W3 und Bel B, Buschbohne, Weidelgras, Weizen, Grosse Brennessel) ueber 4 Vegetationsperioden (1995-1998) im Freiland durchgefuehrt. (orig.)

  6. Back-transmission of a virus associated with apple stem pitting and pear vein yellows from Nicotiana occidentalis to apple and pear indicators

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Jongedijk, G.; Meer, van der F.

    1995-01-01

    The successful back-transmission of the mechanically transmissible virus associated with apple stem pitting and pear vein yellows, from Nicotiana occidentalis to apple seedlings "Golden Delicious" under greenhouse conditions is reported. This result enabled a field experiment where isolates of apple

  7. Lista de hospedeiras do virus de vira-cabeça

    Directory of Open Access Journals (Sweden)

    A. S. Costa

    1942-03-01

    Full Text Available Forty-five plants including an hybrid of N. tabacum L. x N. glutinosa L., were tested as to the susceptibility to "vira-cabeça". Of all the plants tested Nicotiana paniculata L. proved to be the best for the study of local lesions, these being very clear-cut 4 days post-inoculation. Petunia sp., Nicandra physaloides Gaertn., Nicotiana glutinosa L., come next as good indicator plants also.

  8. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Chu

    Full Text Available WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41 was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS scavenging and the expression of antioxidant genes.

  9. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges

    Directory of Open Access Journals (Sweden)

    Jeff Ollerton

    2012-10-01

    Full Text Available Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species. Using published and unpublished data we assessed the floral biology and pollination ecology of the South American native Nicotiana glauca (Solanaceae which has become a significant invasive of semi-arid parts of the world. In regions where specialised bird pollinators are available, for example hummingbirds in California and sunbirds in South Africa and Israel, N. glauca interacts with these local pollinators and sets seed by both out-crossing and selfing. In areas where there are no such birds, such as the Canary Islands and Greece, abundant viable seed is set by selfing, facilitated by the shorter stigma-anther distance compared to plants in native populations. Surprisingly, in these areas without pollinating birds, the considerable nectar resources are only rarely exploited by other flower visitors such as bees or butterflies, either legitimately or by nectar robbing. We conclude that Nicotiana glauca is a successful invasive species outside of its native range, despite its functionally specialised hummingbird pollination system, because it has evolved to become more frequently self pollinating in areas where it is introduced. Its invasion success is not predictable from what is known of its interactions with pollinators in its home range.

  10. Propuesta de medio de cultivo para el estudio de Phytophthora Nicotianae Breda de Haan

    OpenAIRE

    Vaillant Flores, Daymara I; González García, Marleny; Ramírez Ochoa, Rebeca

    2013-01-01

    El género Phytophthora representa un grupo difícil de aislar y conservar. Por lo que se han desarrollado varios medios de cultivo para su estudio. Se propone al medio Agar-tabaco como alternativa para el crecimiento y desarrollo de P. nicotianae. Para realizar este trabajo se emplearon dos cepas: Pp1 y Pp6 aislados de tabaco y piña respectivamente. Ambas se sembraron en discos en agar-tabaco, y se comparó con agar tomate y agar harina de maíz. Se determinó el crecimiento lineal del hongo, las...

  11. Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Shajib

    2017-11-01

    Full Text Available Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh . This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3' ,5,6,7,8-hexamethoxy- 4',5'-methylenedioxyflavone (1, 3,3' ,4' ,5',5,6,7,8-octamethoxyflavone (2, exoticin, 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3 and ( 3,3' ,4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4 from the leaves of N. plumbaginifolia . All these flavonoids are rather rare natural products, and only found in a few genera, e.g.,Polygonum and Murraya. The structures of the isolated flavonoids were elucidated by comprehensive spectroscopic analyses, e.g., UV, 1H, 13C NMR, DEPT, HSQC, HMBC and MS.

  12. Genetic and Biochemical Analysis of Intragenic Complementation Events among Nitrate Reductase Apoenzyme-Deficient Mutants of Nicotiana Plumbaginifolia

    OpenAIRE

    Pelsy, F.; Gonneau, M.

    1991-01-01

    Intragenic complementation has been observed between apoenzyme nitrate reductase-deficient mutants (nia) of Nicotiana plumbaginifolia. In vivo as in vitro, the NADH-nitrate reductase (NR) activity in plants heterozygous for two different nia alleles was lower than in the wild type plant, but the plants were able to grow on nitrate as a sole nitrogen source. NR activity, absent in extracts of homozygous nia mutants was restored by mixing extracts from two complementing nia mutants. These obser...

  13. Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae.

    Science.gov (United States)

    Lim, K Yoong; Kovarik, Ales; Matyasek, Roman; Chase, Mark W; Knapp, Sandra; McCarthy, Elizabeth; Clarkson, James J; Leitch, Andrew R

    2006-12-01

    Combining phylogenetic reconstructions of species relationships with comparative genomic approaches is a powerful way to decipher evolutionary events associated with genome divergence. Here, we reconstruct the history of karyotype and tandem repeat evolution in species of diploid Nicotiana section Alatae. By analysis of plastid DNA, we resolved two clades with high bootstrap support, one containing N. alata, N. langsdorffii, N. forgetiana and N. bonariensis (called the n = 9 group) and another containing N. plumbaginifolia and N. longiflora (called the n = 10 group). Despite little plastid DNA sequence divergence, we observed, via fluorescent in situ hybridization, substantial chromosomal repatterning, including altered chromosome numbers, structure and distribution of repeats. Effort was focussed on 35S and 5S nuclear ribosomal DNA (rDNA) and the HRS60 satellite family of tandem repeats comprising the elements HRS60, NP3R and NP4R. We compared divergence of these repeats in diploids and polyploids of Nicotiana. There are dramatic shifts in the distribution of the satellite repeats and complete replacement of intergenic spacers (IGSs) of 35S rDNA associated with divergence of the species in section Alatae. We suggest that sequence homogenization has replaced HRS60 family repeats at sub-telomeric regions, but that this process may not occur, or occurs more slowly, when the repeats are found at intercalary locations. Sequence homogenization acts more rapidly (at least two orders of magnitude) on 35S rDNA than 5S rDNA and sub-telomeric satellite sequences. This rapid rate of divergence is analogous to that found in polyploid species, and is therefore, in plants, not only associated with polyploidy.

  14. Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics

    Science.gov (United States)

    Kovarik, Ales; Dadejova, Martina; Lim, Yoong K.; Chase, Mark W.; Clarkson, James J.; Knapp, Sandra; Leitch, Andrew R.

    2008-01-01

    Background The evolution and biology of rDNA have interested biologists for many years, in part, because of two intriguing processes: (1) nucleolar dominance and (2) sequence homogenization. We review patterns of evolution in rDNA in the angiosperm genus Nicotiana to determine consequences of allopolyploidy on these processes. Scope Allopolyploid species of Nicotiana are ideal for studying rDNA evolution because phylogenetic reconstruction of DNA sequences has revealed patterns of species divergence and their parents. From these studies we also know that polyploids formed over widely different timeframes (thousands to millions of years), enabling comparative and temporal studies of rDNA structure, activity and chromosomal distribution. In addition studies on synthetic polyploids enable the consequences of de novo polyploidy on rDNA activity to be determined. Conclusions We propose that rDNA epigenetic expression patterns established even in F1 hybrids have a material influence on the likely patterns of divergence of rDNA. It is the active rDNA units that are vulnerable to homogenization, which probably acts to reduce mutational load across the active array. Those rDNA units that are epigenetically silenced may be less vulnerable to sequence homogenization. Selection cannot act on these silenced genes, and they are likely to accumulate mutations and eventually be eliminated from the genome. It is likely that whole silenced arrays will be deleted in polyploids of 1 million years of age and older. PMID:18310159

  15. An investigation of gene action on different traits of tobacco under ...

    African Journals Online (AJOL)

    enoh

    2012-03-13

    Nicotiana tabacum). Information Bulletin Coresta Congress japan. 183. SHoaei DM, Honarnejad R (2003). Gene effects and Combining ability of quantitative and qualitative characteristics of Burley Tobacco. Information Bulletin ...

  16. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea.

    Science.gov (United States)

    Adachi, Hiroaki; Ishihama, Nobuaki; Nakano, Takaaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2016-06-02

    MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.

  17. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  18. Pengaruh Pemberian Fungi Mikoriza Arbuskular (Fma) Terhadap Pertumbuhan Dan Produksi Beberapa Varietas Tembakau (Nicotiana Tabaccum L.) Di Lapangan

    OpenAIRE

    Sinaga, Parulian; Purba, Edison; Ginting, Jonis

    2014-01-01

    The growth and yield of a selected tobacco varieties (Nicotiana tabaccum L) treated withmycorhiza fungi arbuskular were evaluated in a field experiment. The aimed of the research was todetermine the effect of mycorhiza fungi on the growth and yield of several varieties of tobacco. Theresearch was conducted outdoor in the field at Balai Benih Penelitian Tembakau Deli Medan withaltitude of about 25 meters above sea level at the beginning of February until May 2012, with twotreatment factors. Th...

  19. Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Majerová, E.; Fojtová, M.; Mozgová, I.; Bittová, M.; Fajkus, Jiří

    2011-01-01

    Roč. 77, 4-5 (2011), s. 371-380 ISSN 0167-4412 Institutional support: RVO:68081707 Keywords : Nicotiana tabacum * Cell culture * Telomere Subject RIV: BO - Biophysics Impact factor: 4.150, year: 2011

  20. Radiosensitivity of Nicotiana protoplasts. Action on cell; cycle effects of low dose and fractionated irradiations; biological repair

    International Nuclear Information System (INIS)

    Magnien, E.

    1981-10-01

    Leaf protoplasts of Nicotiana plumbaginifolia and Nicotiana sylvestris demonstrate five main qualities: they can be maintained as haploid lines; they constitute starting populations with a remarkable cytological homogeneity; they show a transient initial lag-phase; they yield very high plating efficiencies and retain permanently a complete differentiation capacity; being derived of a cell wall, they appear well adapted for fusion experiments or enzymatic dosages. The resumption of mitotic activity was followed by cytophotometric measurements, labelling experiments, nuclear sizing and enzymatic assays. The action of 5 Gy gamma-ray irradiations delayed entrance in the S-phase, provoked an otherwise not verified dependency between transcription, translation and protein synthesis, increased nuclear volumes in the G2-phase, and slightly stimulated the activity of a repair enzyme. The plating efficiency was a sensitive end-point which allowed the evaluation of the biological effectiveness of low to medium radiation-doses after gamma-ray and fast neutron irradiations. The neutron dose-RBE relationship increased from 3 to 25 when the dose decreased from 5 Gy to 5 mGy. When fractionated into low single doses only, a neutron dose of 300 mGy markedly increased its biological effectiveness: this phenomenon could not be explained by cell progression, and necessitated additional hypotheses involving other mechanisms in the specific action of low radiation doses. Radiation-induced UDS was measured in presence of aphidicolin. A beta-like DNA-polymerase was shown to be definitely involved in nuclear repair synthesis [fr

  1. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    International Nuclear Information System (INIS)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong; Krishnamurthy, Konduru; Payton, Mark E.; Verchot-Lubicz, Jeanmarie

    2004-01-01

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement

  2. Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana.

    Science.gov (United States)

    Pineda, M; Sajnani, C; Barón, M

    2010-01-01

    We have analyzed the chloroplast proteome of Nicotiana benthamiana using two-dimensional gel electrophoresis and mass spectrometry followed by a database search. In order to improve the resolution of the two-dimensional electrophoresis gels, we have made separate maps for the low and the high pH range. At least 200 spots were detected. We identified 72 polypeptides, some being isoforms of different multiprotein families. In addition, changes in this chloroplast proteome induced by the infection with the Spanish strain of the Pepper mild mottle virus were investigated. Viral infection induced the down-regulation of several chloroplastidic proteins involved in both the photosynthetic electron-transport chain and the Benson-Calvin cycle.

  3. Characterization and cloning of TMV resistance gene N homologues ...

    African Journals Online (AJOL)

    Tobacco cultivars Nicotiana tabacum cv. Samsun NN plants carrying the N gene contain a multitude of N-related genes. We cloned a few N homologues and isolated two full-length cDNAs of NL-C26 and NL-B69 genes from N. tabacum cv. Samsun NN. Nucleotide sequence analysis showed that the coding regions of ...

  4. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Ederli, L.; Pasqualini, S. [Department of Applied Biology, University of Perugia, I-06121 (Italy); Monarca, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Moretti, M., E-mail: massimo.moretti@unipg.i [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy)

    2009-12-15

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  5. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    International Nuclear Information System (INIS)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S.; Ederli, L.; Pasqualini, S.; Monarca, S.; Moretti, M.

    2009-01-01

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  6. Symptoms on apple and pear indicators after back-transmission from Nicotiana occidentalis confirm the identity of apple stem pitting virus with pear vein yellows virus

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Meer, van der F.A.; Schoen, C.D.; Jongedijk, G.

    1998-01-01

    Isolates of apple stem pitting virus (ASPV) from diseased apple trees were maintained in Nicotiana occidentalis then back-transmitted mechanically from the herbaceous host to apple seedlings and indexed by double budding on apple and pear indicators for the following syndromes: apple stem pitting,

  7. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 104, č. 12 (2015), s. 1283-1288 ISSN 0031-949X Institutional support: RVO:67179843 Keywords : Nicotiana tabacum * plant-pathogen interaction Subject RIV: EH - Ecology, Behaviour Impact factor: 3.011, year: 2015

  8. Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae) by grafting onto resistant rootstock

    OpenAIRE

    Mourad SAADOUN; Mohamed Bechir ALLAGUI

    2013-01-01

    Root rot and plant wilting caused by Phytophthora nicotianae is a severe disease of chili pepper (Capsicum annuum L.) in open fields and under greenhouse production in Tunisia. Chili pepper grafting for disease manage- ment is attracting increased interest in recent years. Using the tube grafting technique, different compatible scion/rootstock combinations were obtained with the wild-type pepper SCM334 and the local chili pepper cultivars ‘Beldi’ and ‘Baker’. SCM334 was resistant to P. nicoti...

  9. MORFOMETRÍA COMPARADA DE SEMILLAS DE NICOTIANA (SOLANACEAE E IDENTIFICACIÓN DE SEMILLAS CARBONIZADAS PROVENIENTES DE UN SITIO ARQUEOLÓGICO EN CHILE CENTRAL

    Directory of Open Access Journals (Sweden)

    M. Teresa Planella

    2012-01-01

    Full Text Available La presencia frecuente de pipas para fumar en sitios arqueológicos del Período Alfarero Temprano deChile central y las evidencias en relación con la costumbre de fumar especies de Nicotiana halladas en sitios prehispánicos de otros lugares de las Américas, muestran la necesidad de contar con una metodología para identificar las especies de este género usadas en Chile. En este trabajo se ha realizado un estudio morfométrico en semillas de especies de Nicotiana que sirve de referencia para comparaciones con semillas de origen arqueológico. La forma y tamaño de la semilla, el patrón de ornamentación dado por las células epidérmicas y la ubicación del hilum resultaron ser caracteres relevantes para identificaciones confiables. Utilizando estos caracteres, se determinaron como N. corymbosa a las semillas recuperadas en el sitio arqueológico Las Morrenas 1, ubicado en Chile central.

  10. Involvement of the putative Ca²⁺-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca²⁺ uptake, Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells.

    Science.gov (United States)

    Kurusu, Takamitsu; Yamanaka, Takuya; Nakano, Masataka; Takiguchi, Akiko; Ogasawara, Yoko; Hayashi, Teruyuki; Iida, Kazuko; Hanamata, Shigeru; Shinozaki, Kazuo; Iida, Hidetoshi; Kuchitsu, Kazuyuki

    2012-07-01

    To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca²⁺-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca²⁺ uptake defects of yeast mutants lacking mechanosensitive Ca²⁺ channel components. Furthermore, in yeast cells overexpressing NtMCA1 and NtMCA2, the hypo-osmotic shock-induced Ca²⁺ influx was enhanced. Overexpression of NtMCA1 or NtMCA2 in BY-2 cells enhanced Ca²⁺ uptake, and significantly alleviated growth inhibition under Ca²⁺ limitation. NtMCA1-overexpressing BY-2 cells showed higher sensitivity to hypo-osmotic shock than control cells, and induced the expression of the touch-inducible gene, NtERF4. We found that both NtMCA1-GFP and NtMCA2-GFP were localized at the plasma membrane and its interface with the cell wall, Hechtian strands, and at the cell plate and perinuclear vesicles of dividing cells. NtMCA2 transcript levels fluctuated during the cell cycle and were highest at the G1 phase. These results suggest that NtMCA1 and NtMCA2 play roles in Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in BY-2 cells, by regulating the Ca²⁺ influx through the plasma membrane.

  11. In vitro growth response of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to antibiotics and fungicides.

    Science.gov (United States)

    Pánek, M; Tomšovský, M

    2017-07-01

    The reactions of isolates of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to metalaxyl, mancozeb, dimethomorph, streptomycin and chloramphenicol were tested to obtain information about the variability of resistance in these pathogens. Distinct genetic groups showed significant differences in resistance to all tested substances except streptomycin. In response to streptomycin, the growth inhibition rates of distinct groups did not differ significantly. The most remarkable differences were detected in the reactions to chloramphenicol and metalaxyl. Discriminant analysis evaluating the effect of all substances confirmed the differences among the groups, which are in agreement with the differences revealed by earlier DNA analyses.

  12. Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression.

    Science.gov (United States)

    Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V

    2010-01-01

    Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.

  13. Biotransformation of isonitrosoacetophenone (2-keto-2-phenyl-acetaldoxime) in tobacco cell suspensions

    CSIR Research Space (South Africa)

    Madala, NE

    2012-07-01

    Full Text Available Nicotiana tabacum cell suspensions, 2g wet wt/ml, rapidly took up 1 mM isonitrosoacetophenone (INAP), a plant-derived stress metabolite with anti-oxidative and anti-fungal properties, producing 40-hexopyranosyloxy-30-methoxyisonitrosoacetophenone...

  14. Polymethoxyflavones from Nicotiana plumbaginifolia (Solanaceae) Exert Antinociceptive and Neuropharmacological Effects in Mice.

    Science.gov (United States)

    Shajib, Md Shafiullah; Rashid, Ridwan B; Ming, Long C; Islam, Shanta; Sarker, Md Moklesur R; Nahar, Lutfun; Sarker, Satyajit D; Datta, Bidyut K; Rashid, Mohammad A

    2018-01-01

    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties. Nicotiana plumbaginifolia , an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone ( 1 ), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) ( 2 ), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone ( 3 ), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone ( 4 ), isolated and identified from N. plumbaginifolia . Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds 1 , 3 , and 4 (12.5-25 mg/kg b.w.) exhibited dose-dependent and significant ( p Plumbaginifolia could be considered as suitable candidates for the development of analgesic and anxiolytic agents.

  15. Involvement of ethylene in lesion development and systemic acquired resistance in tobacco during the hypersensitive reaction to tobacco mosaic virus

    NARCIS (Netherlands)

    Knoester, M.; Linthorst, H.J.M.; Bol, J.F.; Loon, L.C. van

    2001-01-01

    Different approaches were taken to investigate the significance of ethylene in lesion development and systemic acquired resistance (SAR) in tobacco (Nicotiana tabacum) reacting hypersensitively to tobacco mosaic virus (TMV). Gaseous ethylene, the ethylene precursor 1-aminocyclopropane-1-carboxylic

  16. Transgenic tobacco plants carrying the non-structural P3 gene of potato virus A

    Czech Academy of Sciences Publication Activity Database

    Nováková, S.; Mazúrová, Ľ.; Čeřovská, Noemi; šubr, Z. W.

    2005-01-01

    Roč. 49, č. 4 (2005), s. 593-598 ISSN 0006-3134 Institutional research plan: CEZ:AV0Z5038910 Keywords : potyvirus * Agrobacterium tumefaciens * Nicotiana tabacum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.792, year: 2005

  17. Isolation of pathogenesis-related proteins from TMV-Infected tobacco and their influence on infectivity of TMV

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Milada; Šindelář, Luděk

    2005-01-01

    Roč. 41, - (2005), s. 52-57 ISSN 1212-2580 R&D Projects: GA ČR GA522/02/0708 Institutional research plan: CEZ:AV0Z50380511 Keywords : Nicotiana tabacum * PR-proteins * PAGE Subject RIV: CE - Biochemistry

  18. Complementation of a threonine dehydratase-deficient Nicotiana plumbaginifolia mutant after Agrobacterium tumefaciens-mediated transfer of the Saccharomyces cerevisiae ILV1 gene.

    OpenAIRE

    Colau, D; Negrutiu, I; Van Montagu, M; Hernalsteens, J P

    1987-01-01

    The Saccharomyces cerevisiae ILV1 gene, encoding threonine dehydratase (EC 4.2.1.16) was fused to the transferred DNA nopaline synthase promoter and the 3' noncoding region of the octopine synthase gene. It was introduced, by Agrobacterium tumefaciens-mediated gene transfer, into an isoleucine-requiring Nicotiana plumbaginifolia auxotroph deficient in threonine dehydratase. Functional complementation by the ILV1 gene product was demonstrated by the selection of several transformed lines on a ...

  19. The regulation and catalytic mechanism of the NADP-malic enzyme from tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Doubnerová, V.; Potůčková, L.; Müller, Karel; Ryšlavá, H.

    2009-01-01

    Roč. 14, 8-9 (2009), s. 893-906 ISSN 0352-5139 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP-malic enzyme * macroergic compounds * Nicotiana tabacum L. Subject RIV: ED - Physiology Impact factor: 0.820, year: 2009

  20. Effect of virus infection on symplastic transport of fluorescent tracers in Nicotiana clevelandii leaf epidermis.

    Science.gov (United States)

    Derrick, P M; Barker, H; Oparka, K J

    1990-07-01

    The molecular weight exclusion limit of plasmodesmata in subveinal epidermal cells of Nicotiana clevelandii (Gray) leaves was estimated by microinjection and fluorescence microscopy using fluorescein isothiocyanate-peptide conjugates, carboxyfluorescein and Lucifer Yellow CH. The largest fluorochrome which moved symplastically between cells had a molecular weight of 749, although movement did not appear to depend purely on molecular weight parameters. Systemic infection of plants by tobacco rattle tobravirus, tomato black ring nepovirus or potato Y potyvirus did not alter the limits of plasmodesmatal conductance of the fluorochromes. However, carrot mottle umbravirus and groundnut rosette umbravirus diminished the symplastic mobility of some fluorescent tracers. These results imply that intercellular movement of these viruses does not involve a long-lasting increase in the plasmodesmatal molecular size exclusion limit.

  1. Gene transfer in Nicotiana rustica by means of irradiated pollen II. Cytogenetical consequences

    International Nuclear Information System (INIS)

    Werner, C.P.; Dunkin, I.M.; Cornish, M.A.; Jones, G.H.

    1984-01-01

    Pollen from Nicotiana paniculata and the V12 variety of N. rustica was irradiated with a range of high doses of gamma-rays up to 100 Krads. Both kinds of pollen were used to pollinate the V27 variety of N. rustica. Radiation treatments above 30 Krads gave no viable seed. A cytological examination of the M 1 progeny from the 20 Krad treatments of both crosses revealed conventional radiation damage in the form of losses of whole chromosomes and parts of chromosomes, and rearrangements. The plants possessed hybrid or aberrantly hybrid phenotypes. It was concluded that they were the products of a conventional fertilisation mechanism rather than the gene transfer mechanism proposed by Pandey (1980). The expression of mutational damage can probably account for most of the maternal trends observed in the intervarietal M 2 of N. rustica examined previously, although post-meiotic selection may also play a role. (author)

  2. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  3. Multiple, concentration-dependent effects of sucrose, auxins and cytokinins in explant cultures of kale and tobacco

    Czech Academy of Sciences Publication Activity Database

    Luštinec, Jiří; Cvrčková, F.; Čížková, Jana; Doležel, Jaroslav; Kamínek, Miroslav; Žárský, Viktor

    2014-01-01

    Roč. 36, č. 8 (2014), s. 1981-1991 ISSN 0137-5881 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassica oleracea * Nicotiana tabacum * Absorption Subject RIV: ED - Physiology Impact factor: 1.584, year: 2014

  4. Comparative Genomics of Ten Solanaceous Plastomes

    Directory of Open Access Journals (Sweden)

    Harpreet Kaur

    2014-01-01

    Full Text Available Availability of complete plastid genomes of ten solanaceous species, Atropa belladonna, Capsicum annuum, Datura stramonium, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana tomentosiformis, Nicotiana undulata, Solanum bulbocastanum, Solanum lycopersicum, and Solanum tuberosum provided us with an opportunity to conduct their in silico comparative analysis in depth. The size of complete chloroplast genomes and LSC and SSC regions of three species of Solanum is comparatively smaller than that of any other species studied till date (exception: SSC region of A. belladonna. AT content of coding regions was found to be less than noncoding regions. A duplicate copy of trnH gene in C. annuum and two alternative tRNA genes for proline in D. stramonium were observed for the first time in this analysis. Further, homology search revealed the presence of rps19 pseudogene and infA genes in A. belladonna and D. stramonium, a region identical to rps19 pseudogene in C. annum and orthologues of sprA gene in another six species. Among the eighteen intron-containing genes, 3 genes have two introns and 15 genes have one intron. The longest insertion was found in accD gene in C. annuum. Phylogenetic analysis using concatenated protein coding sequences gave two clades, one for Nicotiana species and another for Solanum, Capsicum, Atropa, and Datura.

  5. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  6. Nematicidal activity of plant extracts against the root-knot nematode, Meloidogyne incognita

    NARCIS (Netherlands)

    Wiratno,; Taniwiryono, D.; Berg, van den J.H.J.; Riksen, J.A.G.; Rietjens, I.; Djiwanti, S.R.; Kammenga, J.E.; Murk, A.J.

    2009-01-01

    Nematicidal activity of extracts from plants was assayed against Meloidogyne incognita. In laboratory assays extracts from tobacco (Nicotiana tabacum L), clove (Syzygium aromaticum L), betelvine (Piper betle L), and sweet flag (Acorus calamus L) were most effective in killing the nematode, with an

  7. Transgenic tobacco expressing a modified spider peptide inhibits the growth of plant pathogens and insect larvae

    Science.gov (United States)

    The gene encoding lycotoxin I, an amphipathic pore-forming peptide, was modified to increase oral toxicity to insects. One of the most active modified genes was then constitutively expressed in tobacco (Nicotiana tabacum) and transformants were evaluated for insect and disease resistance. Pathogenic...

  8. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions.

    Science.gov (United States)

    Seo, Pil Joon; Wielsch, Natalie; Kessler, Danny; Svatos, Ales; Park, Chung-Mo; Baldwin, Ian T; Kim, Sang-Gyu

    2013-07-13

    Floral nectar (FN) contains not only energy-rich compounds to attract pollinators, but also defense chemicals and several proteins. However, proteomic analysis of FN has been hampered by the lack of publically available sequence information from nectar-producing plants. Here we used next-generation sequencing and advanced proteomics to profile FN proteins in the opportunistic outcrossing wild tobacco, Nicotiana attenuata. We constructed a transcriptome database of N. attenuata and characterized its nectar proteome using LC-MS/MS. The FN proteins of N. attenuata included nectarins, sugar-cleaving enzymes (glucosidase, galactosidase, and xylosidase), RNases, pathogen-related proteins, and lipid transfer proteins. Natural variation in FN proteins of eleven N. attenuata accessions revealed a negative relationship between the accumulation of two abundant proteins, nectarin1b and nectarin5. In addition, microarray analysis of nectary tissues revealed that protein accumulation in FN is not simply correlated with the accumulation of transcripts encoding FN proteins and identified a group of genes that were specifically expressed in the nectary. Natural variation of identified FN proteins in the ecological model plant N. attenuata suggests that nectar chemistry may have a complex function in plant-pollinator-microbe interactions.

  9. Pollination with heavily irradiated pollen in Nicotiana: induced parthenogenesis and embryological study

    International Nuclear Information System (INIS)

    Musial, K.; Przywara, L.

    1999-01-01

    Nicotiana crosses were pollinated in situ and in vitro with heavily irradiated pollen (500, 700, 1000 Gy) to induce parthenogenesis and to study the development of embryo and endosperm. Haploids were obtained after in situ pollination only; however, parthenogenetic proembryos occurred also after in vitro pollination. It was demonstrated that ovule culture following pollination offers a better chance to produce haploids than undisturbed pollination does. Pollination with irradiated pollen (PwIP) stron gly decreased the number of endosperm cells and the size of embryo sacs, and it affected the development of embryos; no significant differences between applied irradiation doses were found. Ovules with endosperm only, embryo only, and with both embryo and endosperm were observed. The most frequent were the ovules with endosperm only, the rarest with embryo only. A small amount of storage products occurred in the endosperm cells. The diploid chromosome number counted in the endosperm produced after PwIP points to their origin without fertilization. An interesting phenomenon observed after PwIP was vigorous growth of endothelium. (author)

  10. Analyzing diversification possibilities on specialized tobacco farms in Argentina using a bio-economic farm model

    NARCIS (Netherlands)

    Chavez, M.D.; Berentsen, P.B.M.; Oude Lansink, A.G.J.M.

    2014-01-01

    Tobacco (Nicotiana tabacum L.) is the non-food crop with the largest acreage in the world. Tobacco is criticized because it causes health problems to its consumers and because production causes environmental damage such as soil degradation, deforestation and water pollution. Diversification has been

  11. Shine-dalgarno sequences play an essential role in the translation of plastid mRNAs in tobacco

    DEFF Research Database (Denmark)

    Scharff, Lars; Ehrnthaler, Miriam; Janowski, Marcin

    2017-01-01

    SD]). Although many chloroplast mRNAs harbor putative SDs in their 5' untranslated regions and the aSD displays strong conservation, the functional relevance of SD-aSD interactions in plastid translation is unclear. Here, by generating transplastomic tobacco (Nicotiana tabacum) mutants with point mutations...

  12. Tobacco plants respond to the constitutive expression of the tospovirus movement protein Nsm with a heat-reversible sealing of plasmodesmata that impairs development

    NARCIS (Netherlands)

    Rinne, P.L.H.; Boogaard, van den R.; Mensink, G.J.; Kopperud, C.; Kormelink, R.J.M.; Goldbach, R.W.; Schoot, van der C.

    2005-01-01

    Viral infection often results in typical symptoms, the biological background of which has remained elusive. We show that constitutive expression of the NSM viral movement protein (MP) of tomato spotted wilt virus in Nicotiana tabacum is sufficient to induce severe, infection-like symptoms, including

  13. Lactoferrin derived resistance against plant pathogen in transgenic plants

    Science.gov (United States)

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein and it is known to exert a broad-spectrum primary defense activity against bacteria, fungi, protozoa and viruses in mammals. The Bovine lactoferrin gene was introduced to tobacco (Nicotiana tabacum var Xanthi), Arabidopsis (A. ...

  14. Nicotiana plumbaginifolia: A Rich Antimicrobial and Antioxidant Source

    International Nuclear Information System (INIS)

    Ajaib, M.; Perveen, S.

    2016-01-01

    Antimicrobial and antioxidant activities of plant Nicotiana plumbaginifolia Viv. Were carried out using various techniques. The petroleum ether, chloroform, methanol and aqueous extracts of the N. plumbaginifolia were obtained by maceration technique. The maximum antibacterial potential was exhibited by chloroform leaves extract (76.3 ± 0.3 mm), methanolic root extract (69 ± 0.8 mm) and petroleum ether root extract (67 ± 1.7 mm) against P. aureginosa. Methanolic root extract possessed 64 ± 2.3 mm zone of inhibition against E. coli, whereas chloroform root extract displayed 49 ± 0.8 mm against B. subtilis. Chloroform root extract showed 48 ±1.2 against S. aureus. The maximum zone of inhibition of antifungal potential was displayed by methanolic extracts of leaves against A. niger (43 ± 0.8 mm) and F. solani (43 ± 1.6 mm). The MIC assay was determine for further analysis which showed the MIC value of methanolic root extract (0.04 ± 0.1 mg/mL) against E. coli and the MIC value was noticed (0.108 ± 0.04 mg/mL) against A. niger by methanolic root extract. Antioxidant potential was determined using four methods i.e. (1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, total antioxidant activity (TAA), total phenolic contents (TPC) and metal chelating activity. The highest value of percent DPPH was observed 90.56 at 1000 microL concentration in petroleum ether extract. The maximum values of TAA, TPC, FRAP and FTC were 1.352 ± 0.01, 1.683 ± 0.09 and 80.66 ± 0.08, respectively. (author)

  15. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  16. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  17. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    Full Text Available Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold. As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context

  18. Expression studies of the zeaxanthin epoxidase gene in nicotiana plumbaginifolia

    Science.gov (United States)

    Audran; Borel; Frey; Sotta; Meyer; Simonneau; Marion-Poll

    1998-11-01

    Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.

  19. Comparison of gene expression profiles in Bacillus megaterium ...

    African Journals Online (AJOL)

    Abstract. The MP agent, prepared from Bacillus megaterium isolated from the soil near tobacco fields, can improve metabolic products, and hence the aroma, of tobacco (Nicotiana tabacum) leaf. To explore genes regulating metabolic responses in tobacco leaf, we used microarrays to analyze differentially expressed genes ...

  20. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon

    NARCIS (Netherlands)

    Lücker, J.; Schwab, W.; Hautum, van B.; Blaas, J.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one

  1. o-Phenylenediamine-induced DNA damage and mutagenicity in tobacco seedlinigs is light-dependent

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš; Stavreva, Diana; Breusegem, F.

    2001-01-01

    Roč. 495, - (2001), s. 117-125 ISSN 0027-5107 R&D Projects: GA ČR GA521/99/0532 Institutional research plan: CEZ:AV0Z5038910 Keywords : Comet assay * Ethyl methanesulphonate * Nicotiana tabacum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.545, year: 2001

  2. Influence of decreased level of endogenous cytokinins on antioxidative mechanisms in tobacco leaves during ageing

    Czech Academy of Sciences Publication Activity Database

    Mýtinová, Zuzana; Wilhelmová, Naděžda; Haisel, Daniel; Motyka, Václav

    2005-01-01

    Roč. 49, Supplement 1 (2005), S24-S24 ISSN 0006-3134 R&D Projects: GA ČR GA522/03/0312 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * senescence * Nicotiana tabacum L. Subject RIV: CE - Biochemistry Impact factor: 0.792, year: 2005

  3. Download this PDF file

    African Journals Online (AJOL)

    bmayekiso

    2012-05-10

    May 10, 2012 ... industries have changed their focus of research from synthetic products to natural or traditional use of medicinal plants. These companies and related industries make use of ... toxic alkaloid nicotine, tobacco (Nicotiana tabacum) is .... extracts that completely inhibited bacterial growth, that is, the clear wells.

  4. Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Diopan, V.; Shestivska, V.; Adam, V.; Macek, Tomáš; Macková, M.; Havel, L.; Kizek, R.

    2008-01-01

    Roč. 94, č. 3 (2008), s. 291-298 ISSN 0167-6857 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z40550506 Keywords : metallothionein * Nicotiana tabacum * thiols * phytoremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.017, year: 2008

  5. Metabolic Engineering of the Moss Physcomitrella patens as a Green Cell Factory to Produce Terpenoids

    DEFF Research Database (Denmark)

    Zhan, Xin

    ) from Nicotiana tabacum and germacrene A oxidase (GAO) from Lactuca sativa, were also tested, but they showed no catalytic activity towards β-santalene based on the preliminary HS-SPME-GCMS analysis and further investigations such as liquid extraction by ethyl acetate are needed to draw a solid...

  6. Stereoselectivity of the demethylation of nicotine piperidine homologues by Nicotiana plumbaginifolia cell suspension cultures.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Molinié, Roland; Roscher, Albrecht; Felpin, François-Xavier; Gillet, Françoise; Lebreton, Jacques; Mesnard, François; Robins, Richard J

    2005-08-01

    The metabolism of (R,S)-N-methylanabasine and (R,S)-N-methylanatabine has been studied in a cell suspension culture of Nicotiana plumbaginifolia. Both substrates are effectively demethylated, anabasine or anatabine, respectively, accumulating in the medium. Similarly, there is strong stereoselectivity for the (R)-isomers of both substrates. The kinetics of metabolism of (R,S)-N-methylanabasine differ significantly from those of nicotine in that no further degradation of the initial demethylation product occurs. (R,S)-N-Methylanatabine, however, shows kinetics closer to those of nicotine, with loss of alkaloid from the system. Further more, (R,S)-N-methylanabasine does not diminish (S)-nicotine demethylation, indicating a lack of competition. However, the metabolism of (S)-nicotine is affected by the presence of (R,S)-N-methylanabasine. Hence, the demethylation of the piperidine homologues of nicotine is seen to be similar but not identical to that of the pyridine analogues. The implications of these different metabolic profiles in relation to the demethylation activity are discussed.

  7. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants.

    Science.gov (United States)

    Vincentz, M; Caboche, M

    1991-01-01

    A nitrate reductase (NR) deficient mutant of Nicotiana plumbaginifolia totally impaired in the production of NR transcript and protein was restored for NR activity by transformation with a chimaeric NR gene. This gene was composed of a full-length tobacco NR cDNA fused to the CaMV 35S promoter and to termination signals from the tobacco NR gene. The transgenic plants we obtained were viable and fertile and expressed from one-fifth to three times the wild-type NR activity in their leaves. The analysis of chimeric NR gene expression in these plants showed, by comparison with wild-type plants, that the regulation of NR gene expression by light, nitrate and circadian rhythm takes place at the transcriptional level. However, unlike nitrate, light was required for the accumulation of NR protein in transgenic plants, suggesting that NR expression is also controlled at the translational and/or post-translational level. Images PMID:2022181

  8. Comparison of UV irradiation and p-fluorphenylaline as selective agents for production of aromatic compounds in plant cell culture

    International Nuclear Information System (INIS)

    Quesnel, A.A.; Ellis, B.E.

    1989-01-01

    Resistance to UV irradiation, and to the toxicity of p-fluorophenylalanine, can both be mediateted in plants by enhanced synthesis of aromatic compounds. These selective agents were applied to cell cultures of Nicotiana tabacum, Anchusa officinalis and Catharanthus roseur, and the production of aromatic metabolites in the resulting resistant lines of each species was compared. While Nicotiana and Anchusa cultures responded to each selective agent ith an enhanced accumulation of aromatic compounds, the Catharanthus cultures acquired resistance through other, unknown, mechanisms. Some degree of cross-resistance was observed between cultures selected individually for resistance to each agent (author). 26 refs.; 2 figs.; 1 tab

  9. Nicotiana plumbaginifolia hlg mutants have a mutation in a PHYB-type phytochrome gene: they have elongated hypocotyls in red light, but are not elongated as adult plants.

    Science.gov (United States)

    Hudson, M; Robson, P R; Kraepiel, Y; Caboche, M; Smith, H

    1997-11-01

    Two new allelic mutants of Nicotiana plumbaginifolia have been isolated which display a hypocotyl which is long (hlg) when seedlings are grown in continuous white light (W). This can be accounted for by the decreased response to red light (R) of the hypocotyl elongation rate in these mutants. Responses to other wavelengths are unaffected in the mutants. When grown in white light, mature hlg mutants are not elongated with respect to the wild-type; they also bolt and flower later. The shade-avoidance responses to red/far red ratio (R:FR) are intact in these mutants. Both mutants are deficient in phyB-like polypeptide that is immunodetectable in the wild-type; both have wild-type levels of a phyA-like polypeptide. These alleles are inherited in a partially dominant manner, and correspond to single-base missense mutations in a gene highly homologous to N. tabacum PHYB, which codes for a phytochrome B-type photoreceptor. One allele, hlg-1, has an introduced amino acid substitution; this may define a residue essential for phytochrome protein stability. The other allele, hlg-2, has a stop codon introduced C-terminal to the chromophore binding domain. As these phyB mutants are unaffected in shade-avoidance responses, but deficient in perception of R, it is concluded that the phyB absent in these mutants is responsible for R perception in the N. plumbaginifolia seedling, but is not a R:FR sensor in light-grown plants.

  10. Transient Expression and Purification of Horseradish Peroxidase C in Nicotiana benthamiana.

    Science.gov (United States)

    Huddy, Suzanne M; Hitzeroth, Inga I; Meyers, Ann E; Weber, Brandon; Rybicki, Edward P

    2018-01-01

    Horseradish peroxidase (HRP) is a commercially important reagent enzyme used in molecular biology and in the diagnostic product industry. It is typically purified from the roots of the horseradish ( Armoracia rusticana ); however, this crop is only available seasonally, yields are variable and often low, and the product is a mixture of isoenzymes. Engineering high-level expression in transiently transformed tobacco may offer a solution to these problems. In this study, a synthetic Nicotiana benthamiana codon-adapted full-length HRP isoenzyme gene as well as C-terminally truncated and both N- and C-terminally truncated versions of the HRP C gene were synthesized, and their expression in N. benthamiana was evaluated using an Agrobacterium tumefaciens -mediated transient expression system. The influence on HRP C expression levels of co-infiltration with a silencing suppressor (NSs) construct was also evaluated. Highest HRP C levels were consistently obtained using either the full length or C-terminally truncated HRP C constructs. HRP C purification by ion exchange chromatography gave an overall yield of 54% with a Reinheitszahl value of >3 and a specific activity of 458 U/mg. The high level of HRP C production in N. benthamiana in just five days offers an alternative, viable, and scalable system for production of this commercially significant enzyme.

  11. Silencing Nicotiana attenuata LHY and ZTL alters circadian rhythms in flowers.

    Science.gov (United States)

    Yon, Felipe; Joo, Youngsung; Cortés Llorca, Lucas; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2016-02-01

    The rhythmic opening/closing and volatile emissions of flowers are known to attract pollinators at specific times. That these rhythms are maintained under constant light or dark conditions suggests a circadian clock involvement. Although a forward and reverse genetic approach has led to the identification of core circadian clock components in Arabidopsis thaliana, the involvement of these clock components in floral rhythms has remained untested, probably because of the weak diurnal rhythms in A. thaliana flowers. Here, we addressed the role of these core clock components in the flowers of the wild tobacco Nicotiana attenuata, whose flowers open at night, emit benzyl acetone (BA) scents and move vertically through a 140° arc. We first measured N. attenuata floral rhythms under constant light conditions. The results suggest that the circadian clock controls flower opening, BA emission and pedicel movement, but not flower closing. We generated transgenic N. attenuata lines silenced in the homologous genes of Arabidopsis LATE ELONGATED HYPOCOTYL (LHY) and ZEITLUPE (ZTL), which are known to be core clock components. Silencing NaLHY and NaZTL strongly altered floral rhythms in different ways, indicating that conserved clock components in N. attenuata coordinate these floral rhythms. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Congenital skeletal malformations and cleft palate induced in goats by ingestion of Lupinus, Conium and Nicotiana species.

    Science.gov (United States)

    Panter, K E; Keeler, R F; Bunch, T D; Callan, R J

    1990-01-01

    Three piperidine alkaloid containing plants, Conium maculatum (poison-hemlock), Nicotiana glauca (tree tobacco) and Lupinus formosus (lunara lupine), induced multiple congenital contractures (MCC) and palatoschisis in goat kids when their dams were gavaged with the plant during gestation days 30-60. The skeletal abnormalities included fixed extension or flexure of the carpal, tarsal, and fetlock joints, scoliosis, lordosis, torticollis and rib cage abnormalities. Clinical signs of toxicity included those reported in sheep, cattle and pigs--ataxia, incoordination, muscular weakness, prostration and death. One quinolizidine alkaloid containing plant, Lupinus caudatus (tailcup lupine), on the other hand, which is also known to cause MCC in cows, caused only slight signs of toxicity in pregnant goats and no teratogenic effects in their offspring.

  13. Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Fernández, Aurora Piñas; Gil, Patricia; Valkai, Ildiko; Nagy, Ferenc; Schäfer, Eberhard

    2005-05-01

    To investigate the mechanism of phytochrome action in vivo, NtPHYB, AtPHYB and phyD:green fluorescent protein (GFP) were overexpressed in Nicotiana plumbaginifolia and Arabidopsis thaliana. The expression of 35S:NtPHYB:GFP and 35S:AtPHYB:GFP complemented the tobacco hgl2 and Arabidopsis phyB-9 mutations, whereas the 35S:AtPHYD:GFP only rescued the hgl2 mutant. All three fusion proteins are transported into the nucleus in all genetic backgrounds. These data indicate that AtPHYD:GFP is biologically active and functions as the main red light receptor in transgenic tobacco, and establish an experimental system for the functional analysis of this elusive photoreceptor in vivo.

  14. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  15. Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.

    Science.gov (United States)

    Vozárová, Z; Žilová, M; Šubr, Z

    2015-12-01

    Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.

  16. Uridine 5'-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia

    Science.gov (United States)

    Santoso; Thornburg

    1998-02-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5'-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells.

  17. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion.

    Science.gov (United States)

    Leprinc, A S; Grandbastien, M A; Christian, M

    2001-11-01

    Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate-resistant mutants selected from protoplast-derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tntl elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non-conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tntl subfamilies and that only one active Tntl subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

  18. The effect of intermittent dosing of Nicotiana glauca on teratogenesis in goats.

    Science.gov (United States)

    Welch, K D; Panter, K E; Lee, S T; Gardner, D R

    2015-01-01

    Sustained inhibition of fetal movement in livestock species, induced by several poisonous plants, can result in numerous skeletal-contracture malformations. Lupines are responsible for a condition in cattle referred to as "crooked calf syndrome" that occurs when pregnant cattle graze teratogenic lupines. Similar malformations are also seen in animals poisoned by Conium maculatum (coniine) and Nicotiana glauca (anabasine). A proposed management strategy to limit these types of birth defects includes utilizing an intermittent grazing schedule to allow short durations of grazing lupine-infested areas interrupted by movement to a lupine-free pasture. The objective of this study was to use a goat model to determine if an intermittent schedule of five continuous days on treatment followed by two days off treatment would be sufficient to decrease, or prevent, the incidence of anabasine-induced malformations. The data from this study suggest that, for N. glauca in goats, the intermittent grazing program of five days exposure with two days of non-exposure is insufficient to prevent significant skeletal malformations from occurring. However, this study did demonstrate an inverse relationship between the amount of serum anabasine in the dam and the extent of fetal movement. Published by Elsevier Ltd.

  19. Nicotine demethylation in Nicotiana cell suspension cultures: N'-formylnornicotine is not involved.

    Science.gov (United States)

    Bartholomeusz, Trixie Ann; Bhogal, Ramneek K; Molinié, Roland; Felpin, François-Xavier; Mathé-Allainmat, Monique; Meier, Anna-Carolin; Dräger, Birgit; Lebreton, Jacques; Roscher, Albrecht; Robins, Richard J; Mesnard, François

    2005-10-01

    Nicotine or nornicotine enriched with stable isotopes in either the N'-methyl group or the pyrrolidine-N were fed to Nicotiana plumbaginifolia suspension cell cultures that do not form endogenous nicotine. The metabolism of these compounds was investigated by analysing the incorporation of isotope into other alkaloids using gas chromatography-mass spectroscopy (GC-MS). Nicotine metabolism primarily resulted in the accumulation of nornicotine, the N'-demethylation product. In addition, six minor metabolites appeared during the course of nicotine metabolism, four of which were identified as cotinine, myosmine, N'-formylnornicotine and N'-carboethoxynornicotine. While cotinine was formed from [(13)C,(2)H(3)-methyl]nicotine without dilution of label, N'-formylnornicotine was labelled at only about 6% of the level of nicotine and N'-carboethoxynornicotine was unlabelled. Feeding with [1'-(15)N]nornicotine resulted in incorporation without dilution of label into both N'-formylnornicotine and N'-carboethoxynornicotine. This pattern strongly indicates that, while nornicotine and cotinine are derived directly from nicotine, N'-formylnornicotine and N'-carboethoxynornicotine are metabolites of nornicotine. Thus, it is directly demonstrated that N'-formylnornicotine is not an intermediate in nicotine demethylation.

  20. Zinc induces DNA damage in tobacco roots

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Wilhelmová, Naděžda; Pavlíková, D.; Száková, J.; Gichner, Tomáš

    2013-01-01

    Roč. 57, č. 4 (2013), s. 783-787 ISSN 0006-3134 R&D Projects: GA ČR(CZ) GAP501/11/1239 Institutional research plan: CEZ:AV0Z50380511 Keywords : comet assay * ethyl methanesulphonate * Nicotiana tabacum Subject RIV: EF - Botanics Impact factor: 1.740, year: 2013

  1. DNA damage induced by indirect and direct acting mutagens in catalase-deficient transgenic tobacco Cellular and acellular Comet assays

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš

    2003-01-01

    Roč. 535, - (2003), s. 187-193 ISSN 1383-5718 R&D Projects: GA ČR GA521/02/0400 Institutional research plan: CEZ:AV0Z5038910 Keywords : Hydrogen peroxide * Single-cell gel electrophoresis * Nicotiana tabacum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.748, year: 2003

  2. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, E.; Vroomen, de M.J.; Roelofs, D.; Smit, J.; Gennip, van F.; Hersmus, B.J.M.; Nijkamp, H.J.J.; Haaren, van M.J.

    2003-01-01

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  3. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, Eric R; de Vroomen, Marianne J; Roelofs, Dick; Smit, Jaap; van Gennip, Femke; Hersmus, Bart J M; Nijkamp, H John J; van Haaren, Mark J J

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  4. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Haisel, Daniel; Wilhelmová, Naděžda

    2008-01-01

    Roč. 26, č. 5 (2008), s. 582-590 ISSN 0263-6484 R&D Projects: GA ČR GP522/05/P558 Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinins * Nicotiana tabacum * reactive oxygen species Subject RIV: ED - Physiology Impact factor: 1.333, year: 2008

  5. Real-Time PCR Detection and QUantification of Soilborne Fungal Pathogens : the Case of Rosellinia necatrix, Phytophthora nicotianae, P. citrophthora and Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    L. Schena

    2004-08-01

    Full Text Available Conventional and Scorpion primers were designed from the ITS regions to identify Rosellinia necatrix, Phytophthora nicotianae, and P. citrophthora and from the IGS regions to identify Verticillium dahliae and V. alboatrum. Specificity of primers and probes was assessed using genomic DNA from a large number of fungi from several hosts and by means of BLAST analyses, to exclude the presence of similar sequences in other micro-organisms among available DNA databases (GenBank. Simple and rapid procedures for DNA extraction from naturally infected matrices (soils, roots, bark, and/or woody tissues were utilised to yield DNA of a purity and quality suitable for PCR assays. Combining these protocols with a double amplification (nested Scorpion-PCR, the real-time detection of these pathogens was possible from naturally infested soils and from infected citrus roots (P. nicotianae and P. citrophthora, from the roots and bark of stone fruits and olive (R. necatrix and from olive branches (V. dahliae. For target pathogens, the limit of detection was 1 pg µl-1 in Scorpion-PCR and 1 fg µl-1 in nested Scorpion-PCR. High and significant correlations between pathogen propagule concentrations and real-time PCR cycle thresholds (Ct were obtained. Moreover, specific tests with R. necatrix seem to indicate that its DNA is quite rapidly degraded in the soil, excluding the risk of false positives due to the presence of dead cells.

  6. Evaluation of some bioagents and botanicals in in vitro control of ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    Apr 3, 2008 ... culture with the pathogen to monitor antagonistic effect. In another experiment, botanicals of tobacco. (Nicotiana tabacum) and castor plant (Ricinus communis) were incorporated as poison in a growth media. Of all the four bio-agents used, only P. fluorescens was able to inhibit the growth of the pathogen.

  7. Response of Green Peach Aphids and Other Arthropods to Garlic Intercropped with Tobacco

    NARCIS (Netherlands)

    Lai, R.; You, M.; Lotz, L.A.P.; Vasseur, L.

    2011-01-01

    The green peach aphid, Myzus persicae (Sulzer), is an insect pest that causes extensive damage to tobacco (Nicotiana tabacum L.) in China. Field trials were conducted in 2008 and 2009 at Longyan in the Fujian Province (China) to evaluate the effects of garlic (Allium sativum L.) as a deterrent to

  8. Induction and repair of DNA damage as measured by the Comet assay and the yield of somatic mutations in gamma-irradiated tobacco seedlings

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Ondřej; Stavreva, Diana; Kim, J.; Gichner, Tomáš

    2001-01-01

    Roč. 491, č. 1 (2001), s. 17-23 ISSN 0027-5107 R&D Projects: GA ČR GA521/99/0532 Institutional research plan: CEZ:AV0Z5038910 Keywords : Single cell gel electrophoresis * Nicotiana tabacum var. xanthi Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.545, year: 2001

  9. DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš; Mukherjee, A.; Velemínský, Jiří

    2006-01-01

    Roč. 605, 1-2 (2006), s. 17-21 ISSN 1383-5718 R&D Projects: GA ČR GA521/05/0500 Institutional research plan: CEZ:AV0Z50380511 Keywords : DNA migration * Nicotiana tabacum * Single-cell gel electrophoresis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2006

  10. Proteomic analysis of cold stress responses in tobacco seedlings ...

    African Journals Online (AJOL)

    Cold stress is one of the major abiotic stresses limiting the productivity and the geographical distribution of many important crops. To gain a better understanding of cold stress responses in tobacco (Nicotiana tabacum), we carried out a comparative proteomic analysis. Five-week-old tobacco seedlings were treated at 4°C ...

  11. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a ...

  12. The efficiency of tobacco Bel-W3 and native species for ozone biomonitoring in subtropical climate, as revealed by histo-cytochemical techniques

    International Nuclear Information System (INIS)

    Alves, Edenise S.; Moura, Barbara B.; Pedroso, Andrea N.V.; Tresmondi, Fernanda; Domingos, Marisa

    2011-01-01

    We aimed to verify whether hydrogen peroxide (H 2 O 2 ) accumulation and cell death are detected early in three bioindicators of ozone (O 3 ), Nicotiana tabacum 'Bel-W3', Ipomoea nil 'Scarlet O'Hara' and Psidium guajava 'Paluma', and whether environmental factors also affect those microscopic markers. The three species were exposed to chronic levels of O 3 in a subtropical area and a histo-cytochemical technique that combines 3,3'-diaminobenzidine (DAB) with Evans blue staining was used in the assessments. The three species accumulated H 2 O 2 , but a positive correlation with O 3 concentration was only observed in N. tabacum. A positive correlation between O 3 and cellular death was also observed in N. tabacum. In I. nil and P. guajava, environmental factors were responsible for symptoms at the microscopic level, especially in P. guajava. We conclude that the most appropriate and least appropriate bioindicator plant for O 3 monitoring in the subtropics are N. tabacum 'Bel-W3' and P. guajava 'Paluma', respectively. - Highlights: → H 2 O 2 and cell death occur in response to O 3 and other stressful factors. → H 2 O 2 can be detected by DAB and cell death by Evans blue staining. → These techniques contribute for analysis of susceptible bioindicator species. → H 2 O 2 and cell death were explained by high levels of O 3 in N. tabacum 'Bel-W3'. → N. tabacum is the most appropriate plant for monitoring in subtropics. - Nicotiana tabacum 'Bel-W3' is better than native species for O 3 biomonitoring in the subtropics, as revealed by histo-cytochemical techniques.

  13. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa.

    Science.gov (United States)

    da Silva, Fernanda R; Erdtmann, Bernardo; Dalpiaz, Tiago; Nunes, Emilene; Ferraz, Alexandre; Martins, Tales L C; Dias, Johny F; da Rosa, Darlan P; Porawskie, Marilene; Bona, Silvia; da Silva, Juliana

    2013-07-01

    Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  14. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa

    Directory of Open Access Journals (Sweden)

    Fernanda R. da Silva

    2013-01-01

    Full Text Available Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L leaves (control group. All of the snails received leaves (tobacco and lettuce leaves were the only food provided and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant.

  15. Identifying Growth Conditions for Nicotiana benthimiana Resulting in Predictable Gene Expression of Promoter-Gus Fusion

    Science.gov (United States)

    Sandoval, V.; Barton, K.; Longhurst, A.

    2012-12-01

    Revoluta (Rev) is a transcription factor that establishes leaf polarity inArabidopsis thaliana. Through previous work in Dr. Barton's Lab, it is known that Revoluta binds to the ZPR3 promoter, thus activating the ZPR3 gene product inArabidopsis thaliana. Using this knowledge, two separate DNA constructs were made, one carrying revgene and in the other, the ZPR3 promoter fussed with the GUS gene. When inoculated in Nicotiana benthimiana (tobacco), the pMDC32 plasmid produces the Rev protein. Rev binds to the ZPR3 promoter thereby activating the transcription of the GUS gene, which can only be expressed in the presence of Rev. When GUS protein comes in contact with X-Gluc it produce the blue stain seen (See Figure 1). In the past, variability has been seen of GUS expression on tobacco therefore we hypothesized that changing the growing conditions and leaf age might improve how well it's expressed.

  16. Tracking the potyviral P1 protein in Nicotiana benthamiana plants during plum pox virus infection.

    Science.gov (United States)

    Vozárová, Z; Glasa, M; Šubr, Z W

    The P1 protein is derived from the N terminus of potyvirus-coded polyprotein. In addition to the proteolytic activity essential for its maturation, it probably participates in suppression of host defense and/or in virus replication. Clear validation of the P1 in vivo function(s), however, is not yet available. We applied an infectious cDNA clone of plum pox virus (PPV), where the P1 was N-fused with a hexahistidine tag, to trace this protein in Nicotiana benthamiana plants during the PPV infection. Immunoblot analysis with the anti-his antibody showed a diffuse band corresponding to the molecular weight about 70-80 kDa (about twice larger than expected) in the root samples from early stage of infection. This signal culminated on the sixth day post inoculation, later it rapidly disappeared. Sample denaturation by boiling in SDS before centrifugal clarification was essential, indicating strong affinity of P1-his to some plant compound sedimenting with the tissue and cell debris.

  17. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance.

    Science.gov (United States)

    Grappin, P; Bouinot, D; Sotta, B; Miginiac, E; Jullien, M

    2000-01-01

    The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA(3)) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA(3) in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA(3) inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds.

  18. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  19. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Luping Zheng

    2016-01-01

    Full Text Available Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana. Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP. The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2 protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain and a nuclear localization signal (NLS in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana.

  20. Expression Studies of the Zeaxanthin Epoxidase Gene in Nicotiana plumbaginifolia1

    Science.gov (United States)

    Audran, Corinne; Borel, Charlotte; Frey, Anne; Sotta, Bruno; Meyer, Christian; Simonneau, Thierry; Marion-Poll, Annie

    1998-01-01

    Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors. PMID:9808747

  1. The impact of trans-zeatin O-glucosyltransferase gene over-expression

    Czech Academy of Sciences Publication Activity Database

    Haisel, Daniel; Vaňková, Radomíra; Synková, Helena; Pospíšilová, Jana

    2008-01-01

    Roč. 52, č. 1 (2008), s. 49-58 ISSN 0006-3134 R&D Projects: GA ČR GA522/04/0549; GA MŠk ME 868 Institutional research plan: CEZ:AV0Z50380511 Keywords : carotenoids * chlorophylls * net photosynthetic rate * Nicotiana tabacum Subject RIV: ED - Physiology Impact factor: 1.426, year: 2008

  2. Structural characterisation of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Sims, I M; Craik, D J; Bacic, A

    1997-08-25

    Galactoglucomannan (GGM) from cultures of Nicotiana plumbaginifolia has Man:Glc:Gal:Ara:Xyl in 1.0:1.1:1.0:0.1:0.04 ratio. Linkage analysis contained 4- and 4,6-Manp, 4-Glcp, terminal Galp and 2-Galp, small amounts and terminal Arap and terminal Xylp, and approximately 0.03 mol acetyl per mol of glucosyl residue. Treatment with alpha- and beta-D-galactosidases showed that the majority of the side-chains were either single Galp-alpha-(1-->residues or the disaccharide Galp-beta-(1-->2)-Galp-alpha-(1-->linked to O-6 of the 4-Manp residues of the glucomannan backbone. Analysis of the oligosaccharides generated by endo-(1-->4)-beta-mannanase digestion confirmed that the GGM comprises a backbone of predominantly alternating-->4)-D-Manp-beta-(1-->and-->4)-D-Glcp-beta-(1-->branch ed at O-6 of 65% of the 4-Manp residues. The major oligosaccharide identified was D-Glcp-beta-(1-->4)-[D-Galp-beta-(1-->2)-D-Galp-alpha-(1-->6)]-D-Man p-beta-(1-->4)-D-Glcp-beta-(1-->4)-[D-Galp-alpha-(1-->6)]-D-Manp -beta-(1-->(27%), and most of the other oligosaccharides produced in significant quantities were based on this structure.

  3. Efecto de la temperatura y de la luz sobre la germinación de Nicotiana longiflora Cavaniles y Oenothera indecora Camb. Effect of temperature and the light on germination of Nicotiana longiflora Cavaniles and Oenothera indecora Camb.

    Directory of Open Access Journals (Sweden)

    D. Faccini

    2006-06-01

    Full Text Available Nicotiana longiflora y Oenothera indecora son especies de reciente difusión en lotes agrícolas de la región pampeana argentina y se desconocen los factores ambientales que afectan su germinación. El objetivo de este trabajo fue determinar la influencia de la temperatura y de la luz sobre la germinación de ambas especies. Con temperaturas constantes la germinación fue mayor con luz entre los 20 y 35 °C para N. longiflora y entre 10 y 20 °C para O. indecora. Con temperaturas alternadas, N. longiflora presentó mayor germinación en un rango amplio rango con luz, y en oscuridad fue mayor sólo con 10-20 °C. O. indecora germinó sólo con luz en un amplio rango de temperaturas alternadas. La temperatura base en luz y en oscuridad fue de aproximadamente 14 °C para N. longiflora y de aproximadamente 6 °C para O. indecora. A partir de la temperatura base se puede inferir que N. longiflora es una especie con un ciclo de crecimiento primavero-estival y O. indecora otoño-primavero-estival.Nicotiana longiflora and Oenothera indecora are species of recent appearance in croplands in the Argentine humid pampa zone and there is a lack of knowledge about the environmental factors affecting their germination. The temperature and light requirements for germination and the base temperature of both species were determined. Under constant temperatures, germination was higher between 20 and 35 °C for N. longiflora and between 10 and 20 °C for O. indecora. Under fluctuating temperatures, N. longiflora showed higher germination rates in a wide range of temperatures with light. In darkness, germination was higher only between 10-20 °C for N. longiflora, whereas O. indecora germinated only with light, within a wide range of fluctuating temperatures. Base temperature under light and darkness conditions was approximately 14 °C for N. longiflora and approximately 6 °C for O. indecora. Base temperature indicates that N. longiflora is a species with a spring

  4. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme.

    Science.gov (United States)

    Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M

    1999-07-01

    The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.

  5. Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    Directory of Open Access Journals (Sweden)

    Schwab Wilfried

    2011-03-01

    Full Text Available Abstract Background Plant lipoxygenases (LOXs have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in Nicotiana benthamiana was highly induced by agroinfiltration using a tobacco mosaic virus (TMV based vector system. Results A LOX gene which is expressed after treatment of the viral vectors was isolated from Nicotiana benthamiana. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as Nb-9-LOX. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml-1 cell cultures which can oxygenate linoleic acid resulting in high yields (18 μmol ml-1 cell cultures of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C9-aldehydes (3.3 μmol mg-1 crude protein. The yield of C9-aldehydes from linoleic acid was 64%. Conclusion The yeast expressed Nb-9-LOX can be used to produce C9-aldehydes on a large scale in combination with a HPL gene with 9-HPL function, or to effectively produce 9-hydroxy-10(E,12(Z-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent.

  6. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  7. Arabidopsis CDS blastp result: AK241762 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 9e-17 ...

  8. Arabidopsis CDS blastp result: AK242393 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 3e-13 ...

  9. Arabidopsis CDS blastp result: AK242986 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-13 ...

  10. Arabidopsis CDS blastp result: AK241281 [KOME

    Lifescience Database Archive (English)

    Full Text Available ctor, putative / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum a...nd contains PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-12 ...

  11. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    Science.gov (United States)

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  12. Molecular Cloning and Sequence Analysis of a Phenylalanine Ammonia-Lyase Gene from Dendrobium

    Science.gov (United States)

    Cai, Yongping; Lin, Yi

    2013-01-01

    In this study, a phenylalanine ammonia-lyase (PAL) gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748) has 2,458 bps and contains a complete open reading frame (ORF) of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum. PMID:23638048

  13. The efficiency of tobacco Bel-W3 and native species for ozone biomonitoring in subtropical climate, as revealed by histo-cytochemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Edenise S., E-mail: ealves@ibot.sp.gov.br [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Moura, Barbara B., E-mail: bmourabio@gmail.com [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Pedroso, Andrea N.V., E-mail: andreanvpedroso@gmail.com [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Tresmondi, Fernanda, E-mail: ftresmondi@gmail.com [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Domingos, Marisa, E-mail: mmingos@superig.com.br [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)

    2011-12-15

    We aimed to verify whether hydrogen peroxide (H{sub 2}O{sub 2}) accumulation and cell death are detected early in three bioindicators of ozone (O{sub 3}), Nicotiana tabacum 'Bel-W3', Ipomoea nil 'Scarlet O'Hara' and Psidium guajava 'Paluma', and whether environmental factors also affect those microscopic markers. The three species were exposed to chronic levels of O{sub 3} in a subtropical area and a histo-cytochemical technique that combines 3,3'-diaminobenzidine (DAB) with Evans blue staining was used in the assessments. The three species accumulated H{sub 2}O{sub 2}, but a positive correlation with O{sub 3} concentration was only observed in N. tabacum. A positive correlation between O{sub 3} and cellular death was also observed in N. tabacum. In I. nil and P. guajava, environmental factors were responsible for symptoms at the microscopic level, especially in P. guajava. We conclude that the most appropriate and least appropriate bioindicator plant for O{sub 3} monitoring in the subtropics are N. tabacum 'Bel-W3' and P. guajava 'Paluma', respectively. - Highlights: > H{sub 2}O{sub 2} and cell death occur in response to O{sub 3} and other stressful factors. > H{sub 2}O{sub 2} can be detected by DAB and cell death by Evans blue staining. > These techniques contribute for analysis of susceptible bioindicator species. > H{sub 2}O{sub 2} and cell death were explained by high levels of O{sub 3} in N. tabacum 'Bel-W3'. > N. tabacum is the most appropriate plant for monitoring in subtropics. - Nicotiana tabacum 'Bel-W3' is better than native species for O{sub 3} biomonitoring in the subtropics, as revealed by histo-cytochemical techniques.

  14. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    Science.gov (United States)

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  15. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata.

    Science.gov (United States)

    Kessler, Danny; Bhattacharya, Samik; Diezel, Celia; Rothe, Eva; Gase, Klaus; Schöttner, Matthias; Baldwin, Ian T

    2012-08-01

    Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high-nicotine nectar but prefer low-nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine-free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer-like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  16. The effect of water saturation deficit on the volume of intercellular space in laeves

    Directory of Open Access Journals (Sweden)

    J. Czerski

    2015-01-01

    Full Text Available The volume of intercellular spaces in leaves at various stages of water saturation was determined by method of Czerski (1964, 1968. The investigation were performed with the following plant species: Vicia faba L., Nicotiana tabacum L. var. rustica, Solarium tuberosum L. var. Flisak, Helichrysum bracteatum Wild., Bmssica napus L. var. oleifera, Beta vulgaris L. var. saccharifera.

  17. Differential genotoxicity of ethyl methanesulphonate, N-ethyl-N-nitrosourea and maleic hydrazide in tobacco seedlings based on data of the Comet assay and two recombination assays

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš

    2003-01-01

    Roč. 538, - (2003), s. 171-179 ISSN 1383-5718 R&D Projects: GA ČR GA521/02/0400; GA MŠk LN00B030 Institutional research plan: CEZ:AV0Z5038910 Keywords : DNA damage * Nicotiana tabacum * Single cell gel electrophoresis (SCGE) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.748, year: 2003

  18. Revealing phosphoproteins playing role in tobacco pollen activated in vitro

    Czech Academy of Sciences Publication Activity Database

    Fíla, Jan; Matros, A.; Radau, S.; Zahedi, R. P.; Čapková, Věra; Mock, H. P.; Honys, David

    2012-01-01

    Roč. 12, č. 21 (2012), s. 3229-3250 ISSN 1615-9853 R&D Project s: GA ČR(CZ) GAP501/11/1462; GA ČR(CZ) GAP305/12/2611 Institutional research plan: CEZ:AV0Z50380511 Keywords : Male gametophyte * Metal oxide affinity chromatography * Nicotiana tabacum Subject RIV: ED - Physiology Impact factor: 4.132, year: 2012

  19. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors

    NARCIS (Netherlands)

    van Verk, Marcel C|info:eu-repo/dai/nl/327618671; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of

  20. Uridine 5′-Monophosphate Synthase Is Transcriptionally Regulated by Pyrimidine Levels in Nicotiana plumbaginifolia1

    Science.gov (United States)

    Santoso, Djoko; Thornburg, Robert

    1998-01-01

    To understand the regulation and expression of pyrimidine biosynthesis in plants, we have examined the effect of the metabolic inhibitor 5-fluoroorotic acid (FOA) on uridine-5′-monophosphate synthase (UMPSase) expression in cell cultures of Nicotiana plumbaginifolia. UMPSase is the rate-limiting step of pyrimidine biosynthesis in plants. Addition of FOA causes an up-regulation of UMPSase enzyme activity in cell cultures after a lag phase of several days. Western-blot analysis demonstrated that the up-regulation in enzyme activity was caused by increased expression of the UMPSase protein. Northern-blot analysis demonstrated a higher level of UMPSase mRNA in the FOA-induced tissues than in control tissues. Run-on transcriptional assays showed that the UMPSase gene was transcriptionally activated after FOA treatment. The mechanism of toxicity of FOA is through thymine starvation. We found that addition of thymine abrogated the FOA-mediated up-regulation of UMPSase. In addition, methotrexate and aminopterin, which affect thymine levels by inhibiting dihydrofolate reductase, also up-regulate UMPSase in N. plumbaginifolia cells. PMID:9490773

  1. Genetic Diversity in Haploid Nicotiana alata Induced by Gamma Irradiation, Salt Tolerance and Detection of These Differences by RAPD

    Directory of Open Access Journals (Sweden)

    Ayman EL-FIKI

    2016-03-01

    Full Text Available Haploid plants of Nicotiana alata were cultured in vitro on MS medium with IAA + KIN. The resulting plantlets were irradiated using gamma radiation doses of 10, 15, 20 and 25 Gy. Single node pieces were cut and transferred onto fresh MS medium. Gamma radiation doses caused the death of 9% and up to 28% of explants. NaCl concentrations caused the death of 8% up to 36% of explants, while the combined effect between gamma radiation doses and salinity had an impact suffused on the percentage of survival. The combined effect of gamma radiation doses 20 Gy and 25 Gy on NaCl concentrations of 100, 150 and 200 mM were deadly. Even more, the combined effect of gamma radiation doses and salinity had a severe negative impact on both the proline content and total soluble protein. Random amplified polymorphic DNA (RAPD analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different haploid plantlets treated were amplified using five arbitrary primers. Two hundred and seventy bands were detected from plantlets irradiated with doses of 15, 20 and 25 Gy, with polymorphic band number 226 (83.7%. The total number of bands resulted from plant grew on 150 mM and 200 mM NaCl were 260 bands with polymorphic bands 185 (85.6%. However, the total number of bands produced from combined effects between gamma rays and salinity (20 Gy X 50 mM NaCl, 20 Gy X 100 mM NaCl and 25 Gy X 50 mM NaCl were 270, with polymorphic band number 231 (85.5%. High similarity between treatments was revealed. Treatments relationships were estimated through cluster analysis (UPGMA based on RAPD data.

  2. Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana.

    Science.gov (United States)

    Huang, L; Cao, H; Yang, L; Yu, Yu; Wang, Yu

    2013-08-01

    PIP (Potential Intron Polymorphism) and SSR (Simple Sequence Repeats) were used in many species, but large-scale development and combined use of these two markers have not been reported in tobacco. In this study, a total of 12,388 PIP and 76,848 SSR markers were designed and uploaded to a web-accessible database (http://yancao.sdau.edu.cn/tgb/). E-PCR analysis showed that PIP and SSR rarely overlapped and were strongly complementary in the tobacco genome. The density was 3.07 PIP and 1.72 SSR markers per 10 kb of the known sequences. A total of 153 and 166 alleles were detectedby 22 PIP and 22 SSR markers in 64 Nicotiana accessions. SSR produced higher PIC (polymorphism information content) values and identified more alleles than PIP, whereas PIP could identify larger numbers of rare alleles. Mantel testing demonstrated a high correlation coefficient (r = 0.949, P SSR. The UPGMA dendrogram created from the combined PIP and SSR markers was clearer and more reliable than the individual PIP or SSR dendrograms. It suggested that PIP and SSR can make up the deficiency of molecular markers not only in tobacco but other plant.

  3. Sequence of the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the gene family.

    Science.gov (United States)

    Habenicht, A; Quesada, A; Cerff, R

    1997-10-01

    A cDNA-library has been constructed from Nicotiana plumbaginifolia seedlings, and the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GapN, EC 1.2.1.9) was isolated by plaque hybridization using the cDNA from pea as a heterologous probe. The cDNA comprises the entire GapN coding region. A putative polyadenylation signal is identified. Phylogenetic analysis based on the deduced amino acid sequences revealed that the GapN gene family represents a separate ancient branch within the aldehyde dehydrogenase superfamily. It can be shown that the GapN gene family and other distinct branches of the superfamily have its phylogenetic origin before the separation of primary life-forms. This further demonstrates that already very early in evolution, a broad diversification of the aldehyde dehydrogenases led to the formation of the superfamily.

  4. Synthesis of viral DNA forms in Nicotiana plumbaginifolia protoplasts inoculated with cassava latent virus (CLV); evidence for the independent replication of one component of the CLV genome.

    OpenAIRE

    Townsend, R; Watts, J; Stanley, J

    1986-01-01

    Totipotent leaf mesophyll protoplasts of Nicotiana plumbaginifolia, Viviani were inoculated with cassava latent virus (CLV) or with full length copies of CLV genomic DNAs 1 and 2 excised from replicative forms of M13 clones. Virus specific DNAs began to appear 48-72h after inoculation with virus or cloned DNAs, coincident with the onset of host cell division. Infected cells accumulated supercoiled forms of DNAs 1 and 2 as well as progeny single-stranded (ss) virion (+) sense DNAs representing...

  5. Effects of abscisic acid or benzyladenine on pigment contents, chlorophyll fluorescence, and chloroplast ultrastructure during water stress and after rehydration

    Czech Academy of Sciences Publication Activity Database

    Haisel, Daniel; Pospíšilová, Jana; Synková, Helena; Schnablová, Renáta; Baťková, Petra

    2006-01-01

    Roč. 44, č. 4 (2006), s. 606-614 ISSN 0300-3604 R&D Projects: GA ČR GA522/04/0549 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Beta vulgaris * Nicotiana tabacum * Phaseolus vulgaris * starch content * Zea mays Subject RIV: ED - Physiology Impact factor: 0.782, year: 2006

  6. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  7. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.

    Science.gov (United States)

    Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2011-09-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  8. Transcriptome profiling of male gametophyte development in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Bokvaj, Pavel; Hafidh, Said; Honys, David

    2015-01-01

    Roč. 3, MAR (2015), s. 106-111 ISSN 2213-5960 R&D Projects: GA ČR(CZ) GAP501/11/1462; GA ČR(CZ) GAP305/12/2611; GA MŠk(CZ) LD14109; GA ČR(CZ) GA13-06943S; GA MŠk(CZ) LD13049 Institutional support: RVO:61389030 Keywords : Pollen development transcriptome * Tobacco * Reproduction Subject RIV: EB - Genetics ; Molecular Biology

  9. Management of broomrape (Orobanche cernua) in tobacco (Nicotiana tabacum)

    NARCIS (Netherlands)

    Dhanapal, G.N.

    1996-01-01


    Tobacco is an important commercial crop in India. India is the third largest tobacco producing country in the world. Tobacco is cultivated in an area of 0.428 million ha. Non- Virginia tobaccos such as bidi tobacco constitute about 65% of the total tobacco area in the

  10. Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Sims, I M; Munro, S L; Currie, G; Craik, D; Bacic, A

    1996-10-31

    Linkage analysis of a xyloglucan from the extracellular medium of suspension cultures of Nicotiana plumbaginifolia showed mostly 4-Glcp and 4,6-Glcp, terminal Xylp and 2-Xylp, and terminal Araf, along with approximately 10% (w/w) O-acetyl groups, equivalent to approximately 0.28 mol acetyl per mol of glycosyl residue. Methylation with methyl trifluoromethanesulfonate under neutral conditions, followed by re-methylation with CD3I under basic conditions, and conversion into partially methylated alditol acetates showed that O-acetyl groups were primarily attached to C-6 of approximately 44% of the 4-Glcp backbone not substituted with Xylp residues and to C-5 of approximately 15% of the terminal Araf residues. These positions of the O-acetyl groups were confirmed by 1H-NMR. Oligosaccharides generated by digestion of native xyloglucan with endo-(1-->4)-beta-glucanase were separated by a combination of gel-filtration chromatography and anion-exchange HPLC, and analysed by glycosyl linkage analysis and by electrospray ionisation-mass spectrometry (ESI-MS). The major oligosaccharide subunits were Glc4Xyl2 and Glc5Xyl2, of which 50-60% are substituted with one terminal Araf residue attached to O-2 of a Xylp residue, and a further 20-25% are substituted with two terminal Araf residues attached to O-2 of the Xylp residues. ESI-MS showed that many of the oligosaccharide subunits carried one, two, and, occasionally three O-acetyl groups.

  11. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lecourieux, David; Mazars, Christian; Pauly, Nicolas; Ranjeva, Raoul; Pugin, Alain

    2002-10-01

    Cell suspensions obtained from Nicotiana plumbaginifolia plants stably expressing the apoaequorin gene were used to analyze changes in cytosolic free calcium concentrations ([Ca(2+)](cyt)) in response to elicitors of plant defenses, particularly cryptogein and oligogalacturonides. The calcium signatures differ in lag time, peak time, intensity, and duration. The intensities of both signatures depend on elicitor concentration and extracellular calcium concentration. Cryptogein signature is characterized by a long-sustained [Ca(2+)](cyt) increase that should be responsible for sustained mitogen-activated protein kinase activation, microtubule depolymerization, defense gene activation, and cell death. The [Ca(2+)](cyt) increase in elicitor-treated cells first results from a calcium influx, which in turns leads to calcium release from internal stores and additional Ca(2+) influx. H(2)O(2) resulting from the calcium-dependent activation of the NADPH oxidase also participates in [Ca(2+)](cyt) increase and may activate calcium channels from the plasma membrane. Competition assays with different elicitins demonstrate that [Ca(2+)](cyt) increase is mediated by cryptogein-receptor interaction.

  12. Seedling lethality in Nicotiana plumbaginifolia conferred by Ds transposable element insertion into a plant-specific gene.

    Science.gov (United States)

    Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole

    2002-10-01

    A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.

  13. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway.

    Science.gov (United States)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse; Staerk, Dan; Okkels, Finn Thyge; Mortensen, Uffe Hasbro; Lindberg Møller, Birger; Frandsen, Rasmus John Normand; Kannangara, Rubini

    2017-10-05

    Carminic acid is a C-glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane-bound enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Piperidine alkaloids: human and food animal teratogens.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Brown, David R

    2012-06-01

    Piperidine alkaloids are acutely toxic to adult livestock species and produce musculoskeletal deformities in neonatal animals. These teratogenic effects include multiple congenital contracture (MCC) deformities and cleft palate in cattle, pigs, sheep, and goats. Poisonous plants containing teratogenic piperidine alkaloids include poison hemlock (Conium maculatum), lupine (Lupinus spp.), and tobacco (Nicotiana tabacum) [including wild tree tobacco (Nicotiana glauca)]. There is abundant epidemiological evidence in humans that link maternal tobacco use with a high incidence of oral clefting in newborns; this association may be partly attributable to the presence of piperidine alkaloids in tobacco products. In this review, we summarize the evidence for piperidine alkaloids that act as teratogens in livestock, piperidine alkaloid structure-activity relationships and their potential implications for human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Molecular cloning and sequence analysis of a phenylalanine ammonia-lyase gene from dendrobium.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available In this study, a phenylalanine ammonia-lyase (PAL gene was cloned from Dendrobium candidum using homology cloning and RACE. The full-length sequence and catalytic active sites that appear in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum are also found: PAL cDNA of D. candidum (designated Dc-PAL1, GenBank No. JQ765748 has 2,458 bps and contains a complete open reading frame (ORF of 2,142 bps, which encodes 713 amino acid residues. The amino acid sequence of DcPAL1 has more than 80% sequence identity with the PAL genes of other plants, as indicated by multiple alignments. The dominant sites and catalytic active sites, which are similar to that showing in PAL proteins of Arabidopsis thaliana and Nicotiana tabacum, are also found in DcPAL1. Phylogenetic tree analysis revealed that DcPAL is more closely related to PALs from orchidaceae plants than to those of other plants. The differential expression patterns of PAL in protocorm-like body, leaf, stem, and root, suggest that the PAL gene performs multiple physiological functions in Dendrobium candidum.

  16. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  17. NMR solution structure of the mitochondrial F1beta presequence from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Moberg, Per; Nilsson, Stefan; Ståhl, Annelie; Eriksson, Anna-Carin; Glaser, Elzbieta; Mäler, Lena

    2004-03-05

    We have isolated, characterized and determined the three-dimensional NMR solution structure of the presequence of ATPsynthase F1beta subunit from Nicotiana plumbaginifolia. A general method for purification of presequences is presented. The method is based on overexpression of a mutant precursor containing a methionine residue introduced at the processing site, followed by CNBr-cleavage and purification of the presequence on a cation-exchange column. The F1beta presequence, 53 amino acid residues long, retained its native properties as evidenced by inhibition of in vitro mitochondrial import and processing at micromolar concentrations. CD spectroscopy revealed that the F1beta presequence formed an alpha-helical structure in membrane mimetic environments such as SDS and DPC micelles (approximately 50% alpha-helix), and in acidic phospholipid bicelles (approximately 60% alpha-helix). The NMR solution structure of the F1beta presequence in SDS micelles was determined on the basis of 518 distance and 21 torsion angle constraints. The structure was found to contain two helices, an N-terminal amphipathic alpha-helix (residues 4-15) and a C-terminal alpha-helix (residues 43-53), separated by a largely unstructured 27 residue long internal domain. The N-terminal amphipathic alpha-helix forms the putative Tom20 receptor binding site, whereas the C-terminal alpha-helix is located upstream of the mitochondrial processing peptidase cleavage site.

  18. Physiological and biochemical aspects of flower development and senescence in Nicotiana plumbaginifolia Viv.

    Directory of Open Access Journals (Sweden)

    Nisar Shaziya

    2017-06-01

    Full Text Available Healthy buds of Nicotiana plumbaginifolia growing in the Kashmir University Botanic Garden were selected for the present study. Flower development and senescence was divided into seven stages, viz., tight bud stage (I, mature bud stage (II, pencil stage (III, partially open stage (IV, open stage (V, partially senescent stage (VI and senescent stage (VII. Various physiological and biochemical changes were recorded at each stage of flower development and senescence. Floral diameter, fresh mass, dry mass and water content showed an increase up to flower opening (stage V and thereafter a significant decrease was recorded as the flower development progressed towards senescence through stages VI and VII. An increase in α-amino acids, total phenols and sugars was registered towards anthesis (stage V and a decrease in these parameters was recorded with senescence. Protease activity showed a significant increase towards senescence with a concomitant decrease in soluble proteins. Based on the quantitative analysis of various biochemical parameters, the flower opening in N. plumbaginifolia seems to be accompanied by an increase in the water content, soluble proteins, α‑amino acids and phenols. A decrease in these parameters, besides an increase in protease activity induces senescence in the beautiful flowers of N. plumbaginifolia. Understanding flower senescence may help in improving the postharvest performance of this beautiful ornamental flower to make it a potential material for the floriculture industry.

  19. Properties of purified cytosolic isoenzyme I of Cu,Zn-superoxide dismutase from Nicotiana plumbaginifolia leaves.

    Science.gov (United States)

    Ragusa, S; Cambria, M T; Scarpa, M; Di Paolo, M L; Falconi, M; Rigo, A; Cambria, A

    2001-11-01

    The isoenzyme I of cytosolic Cu,Zn-superoxide dismutase (SOD) from Nicotiana plumbaginifolia (tobacco) leaves has been purified to apparent homogeneity. The relative molecular mass of the native isoenzyme, determined by gel filtration chromatography, is about 33.2 kDa. SDS-polyacrylamide gel electrophoresis shows that the enzyme is composed of two equal subunits of 16.6 kDa The isolectric point, assayed by isoelectric focusing, in the pH range of 3.5-6.5, is 4.3. The enzyme stability was tested at different temperatures, pH, and concentration of inhibitors (KCN and H(2)O(2)). The catalytic constant (k(cat)) was 1.17 +/- 0.14 x 10(9) M(-1) s(-1) at pH 9.9 and 0.1 M ionic strength. The activation energy of the thermal denaturation process is 263 kJ mol(-1). The electrostatic surface potential of the modeled tobacco Cu,Zn-SOD I was calculated showing that the functional spatial network of charges on the protein surface has been maintained, independently of the amino acid substitution around the active sites. Copyright 2001 Academic Press.

  20. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses.

    Science.gov (United States)

    Dardick, Christopher

    2007-08-01

    Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.

  1. LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.

    Science.gov (United States)

    McHale, NA

    1993-01-01

    Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096

  2. Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer.

    Science.gov (United States)

    Jovel, Juan; Walker, Melanie; Sanfaçon, Hélène

    2007-11-01

    Recovery of plants from virus-induced symptoms is often described as a consequence of RNA silencing, an antiviral defense mechanism. For example, recovery of Nicotiana clevelandii from a nepovirus (tomato black ring virus) is associated with a decreased viral RNA concentration and sequence-specific resistance to further virus infection. In this study, we have characterized the interaction of another nepovirus, tomato ringspot virus (ToRSV), with host defense responses during symptom induction and subsequent recovery. Early in infection, ToRSV induced a necrotic phenotype in Nicotiana benthamiana that showed characteristics typical of a hypersensitive response. RNA silencing was also activated during ToRSV infection, as evidenced by the presence of ToRSV-derived small interfering RNAs (siRNAs) that could direct degradation of ToRSV sequences introduced into sensor constructs. Surprisingly, disappearance of symptoms was not accompanied by a commensurate reduction in viral RNA levels. The stability of ToRSV RNA after recovery was also observed in N. clevelandii and Cucumis sativus and in N. benthamiana plants carrying a functional RNA-dependent RNA polymerase 1 ortholog from Medicago truncatula. In experiments with a reporter transgene (green fluorescent protein), ToRSV did not suppress the initiation or maintenance of transgene silencing, although the movement of the silencing signal was partially hindered. Our results demonstrate that although RNA silencing is active during recovery, reduction of virus titer is not required for the initiation of this phenotype. This scenario adds an unforeseen layer of complexity to the interaction of nepoviruses with the host RNA silencing machinery. The possibility that viral proteins, viral RNAs, and/or virus-derived siRNAs inactivate host defense responses is discussed.

  3. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  4. Identification and Quantification of Several Mammalian Steroid Hormones in Plants by UPLC-MS/MS

    Czech Academy of Sciences Publication Activity Database

    Simerský, Radim; Novák, Ondřej; Morris, David; Pouzar, Vladimír; Strnad, Miroslav

    2009-01-01

    Roč. 28, č. 2 (2009), s. 125-136 ISSN 0721-7595 R&D Projects: GA AV ČR KAN200380801 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : Ultra-performance liquid chromatography (UPLC) * Tandem mass spectrometry (MS/MS) * Immunoaffinity purification * Steroids * Plant extracts * Digitalis purpurea * Nicotiana tabacum * Inula helenium Subject RIV: EC - Immunology Impact factor: 2.438, year: 2009

  5. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge

    Czech Academy of Sciences Publication Activity Database

    Vrkoslavová, J.; Demnerová, K.; Macková, M.; Zemanová, T.; Macek, Tomáš; Hajšlová, J.; Pulkrabová, J.; Hrádková, P.; Stiborová, H.

    2010-01-01

    Roč. 81, č. 3 (2010), s. 381-386 ISSN 0045-6535 R&D Projects: GA MŠk 2B06151 Grant - others:GA ČR(CZ) GP104/08/P188 Institutional research plan: CEZ:AV0Z40550506 Keywords : polybrominated diphenyl ethers * contaminated sewage sludge * plant uptake * bioconcentration factors * Nicotiana tabacum Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.155, year: 2010

  6. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš; Žnidar, I.; Száková, J.

    2008-01-01

    Roč. 652, č. 2 (2008), s. 186-190 ISSN 1383-5718 R&D Projects: GA ČR GA521/05/0500 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Comet assay * Nicotiana tabacum L. var. xanthi * Single-cell gel electrophoresis * Somatic mutations Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.363, year: 2008

  7. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells.

    Science.gov (United States)

    Houba-Hérin, N; Domin, M; Pédron, J

    1994-07-01

    Nicotiana plumbaginifolia haploid protoplasts were co-transformed with two plasmids, one with a NPT-II/Ds element and one with a gene encoding an amino-terminal truncated Ac transposase. It is shown that Ds can efficiently transpose from extrachromosomal DNA to N. plumbaginifolia chromosomes when the Ac transposase gene is present in trans. Ds has been shown to have transposed into the plant genome in a limited number of copies (1.9 copies per genome), for 21/32 transgenic lines tested. The flanking sequences present in the original plasmid are missing in these 21 plants. In only two of 21 plants was part of the transposase construct integrated. By segregation analysis of transgenic progeny, Ds was shown to be present in the heterozygous state in 10 lines even though haploid protoplasts had been originally transformed. This observation could indicate that integration occurred after or during DNA replication that leads to protoplast diploidization.

  8. Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco.

    Science.gov (United States)

    Hérouart, D; Van Montagu, M; Inzé, D

    1994-03-01

    Superoxide dismutases (SODs) play a key role in the cellular defense against reactive oxygen species. To study the transcriptional regulation at the cellular level, the promoter of the Nicotiana plumbaginifolia cytosolic gene encoding Cu/ZnSOD (SODCc) was fused to the beta-glucuronidase (GUS) reporter gene (gusA) and analyzed in transgenic tobacco plants. The promoter was highly active in vascular bundles of leaves and stems, where it is confined to phloem cells. In flowers, GUS activity was detected in ovules and pollen grains, in pigmented tissues of petals, and in vascular tissue of ovaries and anthers. In response to treatment with the superoxide-generating herbicide paraquat, very strong GUS staining was observed in photosynthetically active cells of leaves and in some epidermal root cells of seedlings. The expression of the SODCc-gusA was also induced in seedlings after heat shock and chilling and after treatment with sulfhydryl antioxidants such as reduced glutathione and cysteine. It is postulated that SODCc expression is directly linked to a cell-specific production of excess superoxide radicals in the cytosol.

  9. Identification and expression analyses of two genes encoding putative low-affinity nitrate transporters from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Fraisier, V; Dorbe, M F; Daniel-Vedele, F

    2001-01-01

    Higher plants have both high- and low-affinity nitrate uptake systems (HATS and LATS respectively). Here we report the isolation and characterization of two genes, NpNRT1.1 and NpNRT1.2, from Nicotiana plumbaginifolia whose structural features suggest that they both belong to the NRT1 gene family, which is involved in the LATS. Amino acid sequence alignment showed that the N. plumbaginifolia proteins have greater similarity to their corresponding tomato homologues than to each other. Genomic Southern blot analysis indicates that there are probably more than two members of this family in N. plumbaginifolia. Northern blot analysis shows that NpNRT1.2 expression is restricted strictly to roots, whereas NpNRT1.1, in addition to roots, is expressed at a basal level in all other plant organs. Likewise, differential expression in response to external treatments with various N sources was observed for these two genes: NpNRT1.1 can be considered as a constitutively expressed gene whereas NpNRT1.2 expression is dependent strictly on high nitrate concentrations. Finally, over-expression of a gene involved in the HATS does not lead to any modification of LATS gene expression.

  10. Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Klahre, U; Hemmings-Mieszczak, M; Filipowicz, W

    1995-06-01

    We have previously characterized nuclear cDNA clones encoding two RNA binding proteins, CP-RBP30 and CP-RBP-31, which are targeted to chloroplasts in Nicotiana plumbaginifolia. In this report we describe the analysis of the 3'-untranslated regions (3'-UTRs) in 22 CP-RBP30 and 8 CP-RBP31 clones which reveals that mRNAs encoding both proteins have a very complex polyadenylation pattern. Fourteen distinct poly(A) sites were identified among CP-RBP30 clones and four sites among the CP-RBP31 clones. The authenticity of the sites was confirmed by RNase A/T1 mapping of N. plumbaginifolia RNA. CP-RBP30 provides an extreme example of the heterogeneity known to be a feature of mRNA polyadenylation in higher plants. Using PCR we have demonstrated that CP-RBP genes in N. plumbaginifolia and N. sylvestris, in addition to the previously described introns interrupting the coding region, contain an intron located in the 3' non-coding part of the gene. In the case of the CP-RBP31, we have identified one polyadenylation event occurring in this intron.

  11. Hepatoprotective role of Nicotiana plumbaginifolia Linn. against carbon tetrachloride-induced injuries.

    Science.gov (United States)

    Shah, Abdus Saboor; Khan, Rahmat Ali; Ahmed, Mushtaq; Muhammad, Nawshad

    2016-02-01

    Nicotiana plumbignifolia (Linn) is used as folk medicine in the treatment of liver dysfunction in Pakistan. The present study was designed to investigate the hepatoprotective role of N. plumbignifolia methanolice extract (NPME) against carbon tetrachloride (CCl4)-induced oxidative damage in liver of chicks. Methanolic extract of N. plumbignifolia was obtained and was further evaluated as a hepatoprotective agent against CCl4-induced oxidative damage in liver of chicks. For this study, 60-day-old 50 male chicks were divided into five groups. Chicks of group 1 (control) had free access to food and water. Group II received 1 mL/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route thrice a week for 4 weeks. Group III received 100 mg/kg body weight (b.w.) of silymarin via gavage after 48 h of CCl4 treatment, whereas group IV were given 200 mg/kg b.w. NPME after 48 h of CCl4 treatment. Hepatoprotective activity was assessed by measuring the activities of the antioxidant enzymes: catalase, peroxidase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and lipid peroxidation (thiobarbituric acid reactive substances (TBARS)). Serum was analyzed for various biochemical parameters. The results revealed that CCl4 induced oxidative stress as evidenced by the significant decrease in the activity levels of antioxidant enzymes, while an increase in the levels of TBARS in liver samples is compared with the control group. Serum levels lactate dehydrogenase, triglycerides, total cholesterol, and low-density lipoprotein was elevated while reducing high-density lipoprotein compared to controls. Cotreatment of NPME treatment reversed these alterations, which seems likely that NPME can protect the liver tissues against CCl4-mediated oxidative damage. © The Author(s) 2013.

  12. Tissue-specific and pathogen-induced regulation of a Nicotiana plumbaginifolia beta-1,3-glucanase gene.

    Science.gov (United States)

    Castresana, C; de Carvalho, F; Gheysen, G; Habets, M; Inzé, D; Van Montagu, M

    1990-01-01

    The Nicotiana plumbaginifolia gn1 gene encoding a beta-1,3-glucanase isoform has been characterized. The gn1 product represents an isoform distinct from the previously identified tobacco beta-1,3-glucanases. By expressing gn1 in Escherichia coli, we have determined directly that the encoded protein does, indeed, correspond to a beta-1,3-glucanase. In N. plumbaginifolia, gn1 was found to be expressed in roots and older leaves. Transgenic tobacco plants containing the 5'-noncoding region of gn1 fused to the beta-glucuronidase (GUS) reporter gene also showed maximum levels of GUS activity in roots and older leaves. No detectable activity was present in the upper part of the transgenic plants with the exception of stem cells at the bases of emerging shoots. The expression conferred by the gn1 promoter was differentially induced in response to specific plant stress treatments. Studies of three plant-bacteria interactions showed high levels of GUS activity when infection resulted in a hypersensitive reaction. Increased gene expression was confined to cells surrounding the necrotic lesions. The observed expression pattern suggests that the characterized beta-1,3-glucanase plays a role both in plant development and in the defense response against pathogen infection. PMID:2152158

  13. Absorption coefficient measurrement of monochromatized synchrotron radiation at 0.65 - 1.3 A interval for some biological objects

    International Nuclear Information System (INIS)

    Avakian, Ts.M.; Karabekov, I.P.; Martirossian, M.A.

    1977-01-01

    The results of the measurement of absorption coefficients for some biological objects such as pea (Pissum sativum), wheat (Triticum aestivum), tobacco (Nicotiana-tabacum-α) seeds, as well as the distilled water are presented. The measurement has been carried out on the Erevan Physical Institute Electron Accelerator synchrotron radiation beam. The good agreement of experimental and calculated data for water confirms the accuracy of the results related to other objects

  14. Retargeting a maize beta-glucosidase to the vacuole - Evidence from intact plants that zeatin-O-glucoside is stored in the vacuole

    Czech Academy of Sciences Publication Activity Database

    Kiran, N.S.; Benková, Eva; Reková, A.; Dubová, J.; Malbeck, Jiří; Palme, K.; Brzobohatý, B.

    2012-01-01

    Roč. 79, JUL 2012 (2012), s. 67-77 ISSN 0031-9422 R&D Projects: GA MŠk(CZ) LC06034; GA MŠk(CZ) 1M06030; GA AV ČR(CZ) IAA600380507 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040702; CEZ:AV0Z50040507 Keywords : Nicotiana tabacum * tobacco * beta-glucosidase Subject RIV: BO - Biophysics Impact factor: 3.050, year: 2012

  15. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance

    OpenAIRE

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-01-01

    Background Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. Results In tobacco (Nicotiana tabacum ?Xanthi?), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines display...

  16. Transformed tobacco plants with increased tolerance to drought

    Czech Academy of Sciences Publication Activity Database

    Gubiš, J.; Vaňková, Radomíra; Červená, V.; Dragúňová, M.; Hudcovicová, M.; Lichtnerová, H.; Dokupil, T.; Jureková, Z.

    2007-01-01

    Roč. 73, č. 4 (2007), s. 505-511 ISSN 0254-6299 Grant - others:Slovenské Ministerstvo zemědělství(SK) 2003 SP 27/028 0D 01/028 0D 01 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Nicotiana tabacum L * pigment * proline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.444, year: 2007

  17. Arabidopsis CDS blastp result: AK119645 [KOME

    Lifescience Database Archive (English)

    Full Text Available PF|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...ve / enhancer of shoot regeneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains ...AK119645 002-130-G05 At1g12980.1 AP2 domain-containing transcription factor, putati

  18. Arabidopsis CDS blastp result: AK101133 [KOME

    Lifescience Database Archive (English)

    Full Text Available F|00847 AP2 domain; identical to cDNA enhancer of shoot regeneration ESR1 GI:18028939, enhancer of shoot regeneration ESR1 [Arabidopsis thaliana] GI:18028940 1e-10 ... ...eneration (ESR1) similar to gb|D38124 EREBP-3 from Nicotiana tabacum and contains P...AK101133 J033026F23 At1g12980.1 AP2 domain-containing transcription factor, putative / enhancer of shoot reg

  19. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  20. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana.

    Science.gov (United States)

    Bi, Huiping; Zhang, Peng

    2012-03-01

    Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.

  1. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    Science.gov (United States)

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  2. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    International Nuclear Information System (INIS)

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-01-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  3. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  4. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.

    2010-02-26

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  5. Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties

    KAUST Repository

    Lee, H.; Damsz, B.; Woloshuk, C. P.; Bressan, R. A.; Narasimhan, Meena L.

    2010-01-01

    Fusarium oxysporum is the causative agent of fungal wilt disease in a variety of crops. The capacity of a fungal pathogen such as F. oxysporum f. sp. nicotianae to establish infection on its tobacco (Nicotiana tabacum) host depends in part on its capacity to evade the toxicity of tobacco defense proteins, such as osmotin. Fusarium genes that control resistance to osmotin would therefore reflect coevolutionary pressures and include genes that control mutual recognition, avoidance, and detoxification. We identified FOR (Fusarium Osmotin Resistance) genes on the basis of their ability to confer osmotin resistance to an osmotin-sensitive strain of Saccharomyces cerevisiae. FOR1 encodes a putative cell wall glycoprotein. FOR2 encodes the structural gene for glutamine:fructose-6-phosphate amidotransferase, the first and rate-limiting step in the biosynthesis of hexosamine and cell wall chitin. FOR3 encodes a homolog of SSD1, which controls cell wall composition, longevity, and virulence in S. cerevisiae. A for3 null mutation increased osmotin sensitivity of conidia and hyphae of F. oxysporum f. sp. nicotianae and also reduced cell wall β-1,3-glucan content. Together our findings show that conserved fungal genes that determine cell wall properties play a crucial role in regulating fungal susceptibility to the plant defense protein osmotin.

  6. Application of terahertz spectroscopy for characterization of biologically active organic molecules in natural environment

    Science.gov (United States)

    Karaliūnas, Mindaugas; Jakštas, Vytautas; Nasser, Kinan E.; Venckevičius, Rimvydas; Urbanowicz, Andrzej; Kašalynas, Irmantas; Valušis, Gintaras

    2016-09-01

    In this work, a comparative research of biologically active organic molecules in its natural environment using the terahertz (THz) time domain spectroscopy (TDS) and Fourier transform spectroscopy (FTS) systems is carried out. Absorption coefficient and refractive index of Nicotiana tabacum L. leaves containing nicotine, Cannabis sativa L. leaves containing tetrahydrocannabinol, and Humulu lupulus L. leaves containing α-acids, active organic molecules that obtain in natural environment, were measured in broad frequency range from 0.1 to 13 THz at room temperature. In the spectra of absorption coefficient the features were found to be unique for N. tabacum, C. sativa and H. lupulus. Moreover, those features can be exploited for identification of C. sativa sex and N. tabacum origin. The refractive index can be also used to characterize different species.

  7. Post-pollination mechanisms in Nicotiana longiflora and N. plumbaginifolia: pollen tube growth rate, offspring paternity and hybridization.

    Science.gov (United States)

    Figueroa-Castro, Dulce M; Holtsford, Timothy P

    2009-09-01

    In natural populations where interfertile species coexist, conspecific and heterospecific pollen can be delivered to the stigmas. Post-pollination mechanisms might determine the seed siring success of different pollen donors within species as well as the chances for hybridization between species. Nicotiana longiflora and N. plumbaginifolia occur in sympatry in Northwest Argentina, where they have overlapping flowering seasons and share floral visitors. We explored (1) pollen tube growth rates for outcross versus self pollen in single-donor pollinations; (2) siring success of self versus outcross pollen donors in competitive pollinations, and (3) possibilities for hybridization by performing two- (outcross conspecific vs. heterospecific) and three-pollen donor (self vs. outcross vs. heterospecific) crosses. In N. longiflora, both pollen tube growth rate and siring success favored outcross pollen over self pollen and strong rejection of heterospecific pollen. In N. plumbaginifolia, pollen tube growth rate was similar for self and outcross pollen, self pollen sired similar numbers of offspring than outcross pollen and heterospecific pollen sired roughly the same number of progeny than self pollen. Results suggest that in natural sympatric populations, interspecific crosses would likely lead to unidirectional hybridization with N. plumbaginifolia as the seed parent.

  8. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor

    Czech Academy of Sciences Publication Activity Database

    Potocký, Martin; Pleskot, Roman; Pejchar, Přemysl; Vitale, N.; Kost, B.; Žárský, Viktor

    2014-01-01

    Roč. 203, č. 2 (2014), s. 483-494 ISSN 0028-646X R&D Projects: GA ČR GA13-19073S Institutional support: RVO:61389030 Keywords : live-cell microscopy * Nicotiana tabacum (tobacco) * phosphatidic acid (PA) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000337639800015

  9. AcEST: BP917498 [AcEST

    Lifescience Database Archive (English)

    Full Text Available rome B OS=Nicotiana tabacum GN=PHYB ... 78 2e-21 sp|P33529|PHY_MOUSC Phytochrome OS=Mougeotia scalaris GN=PH...+EG+GLS+ +K++KLMN Sbjct: 1065 GEGLPPELVQDMFHSSRWVTKEGLGLSMCRKILKLMN 1101 >sp|P33529|PHY_MOUSC Phytochrome OS=Mougeotia scala...TVI Chromosome chr12 scaffold_47, whole genom... 73 9e-21 tr|Q3V8G6|Q3V8G6_MOUSC Phytochrome OS=Mougeotia scala

  10. Thorium impact on tobacco root transcriptome

    Czech Academy of Sciences Publication Activity Database

    Mazari, Kateřina; Landa, Přemysl; Přerostová, Sylva; Müller, Karel; Vaňková, Radomíra; Soudek, Petr; Vaněk, Tomáš

    2017-01-01

    Roč. 325, MAR 5 (2017), s. 163-169 ISSN 0304-3894 R&D Projects: GA MŠk(CZ) LD11073; GA MŠk(CZ) LD13029 Institutional support: RVO:61389030 Keywords : arabidopsis-thaliana roots * juncea var. foliosa * cadmium accumulation * deficiency responses * mineral- nutrition * gene-expression * plant transfer * iron uptake * uranium * soil * Microarray * Thorium * Gene expression * Toxicity * Nicotiana tabacum Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 6.065, year: 2016

  11. Characterization of three Agrobacterium tumefaciens avirulent mutants with chromosomal mutations that affect induction of vir genes.

    OpenAIRE

    Metts, J; West, J; Doares, S H; Matthysse, A G

    1991-01-01

    Three Agrobacterium tumefaciens mutants with chromosomal mutations that affect bacterial virulence were isolated by transposon mutagenesis. Two of the mutants were avirulent on all hosts tested. The third mutant, Ivr-211, was a host range mutant which was avirulent on Bryophyllum diagremontiana, Nicotiana tabacum, N. debneyi, N. glauca, and Daucus carota but was virulent on Zinnia elegans and Lycopersicon esculentum (tomato). That the mutant phenotype was due to the transposon insertion was d...

  12. Dicty_cDB: Contig-U00762-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available s nodule library 5 and... 42 0.012 2 ( BI417355 ) LjNEST38c2r Lotus japonicus nodule library...KT7B.103O19F.060124T7 KT7 Nicotiana tabacum cDNA ... 36 0.012 2 ( CK417989 ) AUF_IpInt_57_n24 Intestine cDNA library Ictalur...3' end. 42 0.012 2 ( FG637668 ) TT-33_B14 Samsun trichome library Nicotiana tabac... 36 0.012 2 ( CX557480 ) yda37e04.y2 Sea ur...( CX552206 ) ydb21c02.y2 Sea urchin EST Lib1 Strongylocentrotu... 42 9e-04 2 ( DN149991 ) 5218_B03_C06 Switchgrass callus cDNA librar...10F Mouse 10kb plasmid UUGC1M library Mus ... 42 0.003 2 ( BQ858872 ) QGC11H15.yg.ab1 QG_ABCDI lettuce salinas Lactu

  13. Characterization of PhPRP1, a histidine domain arabinogalactan protein from Petunia hybrida pistils.

    Science.gov (United States)

    Twomey, Megan C; Brooks, Jenna K; Corey, Jillaine M; Singh-Cundy, Anu

    2013-10-15

    An arabinogalactan protein, PhPRP1, was purified from Petunia hybrida pistils and shown to be orthologous to TTS-1 and TTS-2 from Nicotiana tabacum and NaTTS from Nicotiana alata. Sequence comparisons among these proteins, and CaPRP1 from Capsicum annuum, reveal a conserved histidine-rich domain and two hypervariable domains. Immunoblots show that TTS-1 and PhPRP1 are also expressed in vegetative tissues of tobacco and petunia respectively. In contrast to the molecular mass heterogeneity displayed by the pistil proteins, the different isoforms found in seedlings, roots, and leaves each has a discrete size (37, 80, 160, and 200 kDa) on SDS-PAGE gels. On the basis of their chemistry, distinctive domain architecture, and the unique pattern of expression, we have named this group of proteins HD-AGPs (histidine domain-arabinogalactan proteins). Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M

    1999-07-01

    Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.

  15. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance.

    Science.gov (United States)

    Fragoso, Variluska; Rothe, Eva; Baldwin, Ian T; Kim, Sang-Gyu

    2014-06-01

    While jasmonic acid (JA) signaling is widely accepted as mediating plant resistance to herbivores, and the importance of the roots in plant defenses is recently being recognized, the role of root JA in the defense of above-ground parts remains unstudied. To restrict JA impairment to the roots, we micrografted wildtype Nicotiana attenuata shoots to the roots of transgenic plants impaired in JA signaling and evaluated ecologically relevant traits in the glasshouse and in nature. Root JA synthesis and perception are involved in regulating nicotine production in roots. Strikingly, systemic root JA regulated local leaf JA and abscisic acid (ABA) concentrations, which were associated with differences in nicotine transport from roots to leaves via the transpiration stream. Root JA signaling also regulated the accumulation of other shoot metabolites; together these account for differences in resistance against a generalist, Spodoptera littoralis, and a specialist herbivore, Manduca sexta. In N. attenuata's native habitat, silencing root JA synthesis increased the shoot damage inflicted by Empoasca leafhoppers, which are able to select natural jasmonate mutants. Silencing JA perception in roots also increased damage by Tupiocoris notatus. We conclude that attack from above-ground herbivores recruits root JA signaling to launch the full complement of plant defense responses. © 2014 Max Planck Society. New Phytologist © 2014 New Phytologist Trust.

  16. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  17. Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection.

    Science.gov (United States)

    Yi, S Y; Yu, S H; Choi, D

    1999-06-30

    Recent reports revealed that catalase has a role in the plant defense mechanism against a broad range of pathogens through being inhibited by salicylic acid (SA). During an effort to clone disease resistance-responsive genes, a cDNA encoding catalase (Ngcat1; Nicotiana glutinosa cat1) was isolated from a tobacco cDNA library. In N. glutinosa, catalase is encoded by a small gene family. The deduced amino acid sequence of the Ngcat1 cDNA has 98% homology with the cat1 gene of N. plumbaginifolia. The Ngcat1 expression is controlled by the circadian clock, and its mRNA level is the most abundant in leaves. Both the expression of Ngcat1 mRNA and its enzyme activity in the tobacco plant undergoing a hypersensitive response (HR) to TMV infection were repressed. The repression of the mRNA level was also observed following treatment with SA. These results imply that SA may act as an inhibitor of catalase transcription during the HR of tobacco. Cloning and expression of the Ngcat1 in tobacco following pathogen infection and SA treatment are presented.

  18. タバコ バイヨウ サイボウ BY-2 ノ エリシター ユウドウセイ プログラム サイボウシ ニオケル シンキ ショクブツ サイボウシ セイギョ コウホ インシ NtILP1 ノ サヨウ ニ ツイテ ノ ケンキュウ

    OpenAIRE

    平野, 祐毅; 東, 克己; Yuuki , HIRANO; Katsumi , HIGASHI; 帝京科学大学理工学研究科バイオサイエンス専攻; 帝京科学大学理工学研究科バイオサイエンス専攻

    2013-01-01

    IAP like proteins (ILPs) are newly found paralogs of inhibitor of apoptosis proteins (IAPs) from wide variety of eukaryotesincluding fission yeast, mammals and higher plants. Because a human ILP (HsILP1) function as a cell death inhibitor inseveral human cells likes IAPs, there is a possibility that plant ILPs also have the same function. To assess the possibility,we tested plant ILP function using an established cell death assay systems with tobacco (Nicotiana tabacum ) cultured cells,BY-2. ...

  19. A fundamental research of growth, metabolism and product formation of tobacco suspension cells at different scales

    OpenAIRE

    Ullisch, David

    2012-01-01

    For over two decades, plant cell cultures have been promising hosts for the expression of recombinant proteins such as hormones, growth factors, full-size antibodies and antigens. So far, over 700 different plant cell cultures are stored in the German Collection of Microorganisms and Cell Cultures (DSMZ) in Braunschweig. Among these plant cell cultures, the tobacco cell line Nicotiana tabacum Bright Yellow 2 (BY-2) was chosen as a good host cell line for the production of recombinant proteins...

  20. Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion

    Czech Academy of Sciences Publication Activity Database

    Motyka, Václav; Vaňková, Radomíra; Čapková, Věra; Petrášek, Jan; Kamínek, Miroslav; Schmülling, T.

    2003-01-01

    Roč. 117, č. 1 (2003), s. 11-21 ISSN 0031-9317 R&D Projects: GA ČR GA522/00/1346; GA ČR GA206/02/0967; GA ČR GA522/99/1130; GA AV ČR IAA6038002 Grant - others:Volkswagen Stiftung(DE) I/72076 Institutional research plan: CEZ:AV0Z5038910 Keywords : cytokinin oxidase * Nicotiana tabacum * N6-benzylaminopurine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.767, year: 2003

  1. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Honys, David

    2017-01-01

    Roč. 12, č. 11 (2017), č. článku e0187331. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA15-16050S; GA ČR(CZ) GA17-23183S Institutional support: RVO:61389030 Keywords : exine pattern-formation * pollen wall pattern * arabidopsis-thaliana * nicotiana-tabacum * gene-expression * transcriptome analysis * male-fertility * udp-glucose * family * diversification Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  2. Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns

    OpenAIRE

    Brown, Robert T

    2018-01-01

    Evaluating the use of renewable fuel sources to heat flue-cured tobacco barns Robert Taylor Brown ABSTRACT The curing of flue-cured tobacco (Nicotiana tabacum L.) is an energy intensive process and represents a significant portion of the overall cost of production. Given the goal of the industry to reduce the environmental footprint of tobacco production and the energy demand of curing, attention has been directed to explore options for the use of renewable fuels for heating to...

  3. Molecular Characterization of Tomato Yellow Leaf Curl Virus in Korea and the Construction of an Infectious Clone

    Directory of Open Access Journals (Sweden)

    Bong Choon Lee

    2015-06-01

    Full Text Available Several tomato production regions in Korea were surveyed for tomato yellow leaf curl disease (TYLCD. Tomato leaf samples showing TYLCD-like symptoms were collected from Tongyeong (To, Geoje (Gi, and Gimhae (Gh cities of the southern part of Korea. Tomato yellow leaf curl virus (TYLCV was detected and the full-length genomes of the isolates were sequenced. The TYLCV isolates found in Korea shared high sequence identity (> 99% with TYLCV-IL [JR:Omu:Ng] (AB110217. Phylogenetic relationship analysis revealed that they formed two groups (with little genetic variability, and the To, Gj, and Gh isolates belonged to the TYLCV-IL group. An infectious clone of TYLCV-To (JQ013089 was constructed and agroinoculated into Nicotiana benthamiana, Nicotiana tabacum var. Xanthi, Petunia hybrida, Capsicum annuum, and Lycopersicon esculentum cv. Hausumomotaro. Agroinfection with a dimeric infectious clone of TYLCV-To induced severe leaf curling and stunting symptoms in these plants, excluding C. annuum. Tomato plants then developed typical yellow leaf curl symptoms.

  4. Introgression of a Tombusvirus Resistance Locus from Nicotiana edwardsonii var. Columbia to N. clevelandii.

    Science.gov (United States)

    Schoelz, James E; Wiggins, B Elizabeth; Wintermantel, William M; Ross, Kathleen

    2006-05-01

    ABSTRACT A new variety of Nicotiana, N. edwardsonii var. Columbia, was evaluated for its capacity to serve as a new source for virus resistance genes. Columbia was developed from a hybridization between N. glutinosa and N. clevelandii, the same parents used for the formation of the original N. edwardsonii. However, in contrast to the original N. edwardsonii, crosses between Columbia and either of its parents are fertile. Thus, the inheritance of virus resistance genes present in N. glutinosa could be characterized by using Columbia as a bridge plant in crosses with the susceptible parent, N. clevelandii. To determine how virus resistance genes would segregate in interspecific crosses between Columbia and N. clevelandii, we followed the fate of the N gene, a single dominant gene that specifies resistance to Tobacco mosaic virus (TMV). Our genetic evidence indicated that the entire chromosome containing the N gene was introgressed into N. clevelandii to create an addition line, designated N. clevelandii line 19. Although line 19 was homozygous for resistance to TMV, it remained susceptible to Tomato bushy stunt virus (TBSV) and Cauliflower mosaic virus (CaMV) strain W260, indicating that resistance to these viruses must reside on other N. glutinosa chromosomes. We also developed a second addition line, N. clevelandii line 36, which was homozygous for resistance to TBSV. Line 36 was susceptible to TMV and CaMV strain W260, but was resistant to other tombusviruses, including Cucumber necrosis virus, Cymbidium ringspot virus, Lettuce necrotic stunt virus, and Carnation Italian ringspot virus.

  5. Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)

    International Nuclear Information System (INIS)

    Rosén, K.; Eriksson, J.; Vinichuk, M.

    2012-01-01

    The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants were compared. 109 Cd was added to soil in two treatments, A (0.25 MBq kg soil −1 DW) and B (eight-fold dose): stable Cd was measured in both treatments. Both the added and the stable Cd were higher in leaves and reproductive structures of the plant than in stalks and roots. The uptake of 109 Cd was 5.3 kBq plant −1 for treatment A and 36.7 kBq plant −1 for treatment B, and about 26 μg plant −1 for stable Cd. Leaves of the tobacco plants accumulated 40–45% of the total 109 Cd and about 50% of total stable Cd taken up by the plant. Cadmium concentration in the plant was three times higher than in roots and two times higher than the concentration in soil: the concentration in roots was lower than in the soil. - Capsule: The availability, uptake, and translocation of recently added ( 109 Cd) and naturally occurring (stable) soil Cd within tobacco plants (Nicotiana sylvestris) were investigated. - Highlights: ► We compared uptake recently added and naturally occurring soil Cd by tobacco plant. ► Both added and stable Cd display similar uptake and translocation within the plant. ► Leaves of tobacco plants accumulate half of the total Cd taken up by the plant. ► Recently added 109 Cd to soil is more available than naturally occurring cadmium.

  6. Identification of a cluster IV pleiotropic drug resistance transporter gene expressed in the style of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Trombik, Tomasz; Jasinski, Michal; Crouzet, Jérome; Boutry, Marc

    2008-01-01

    ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.

  7. Molecular characterization and expression study of a histidine auxotrophic mutant (his1-) of Nicotiana plumbaginifolia.

    Science.gov (United States)

    El Malki, F; Jacobs, M

    2001-01-01

    The histidine auxotroph mutant his 1(-) isolated from Nicotiana plumbaginifolia haploid protoplasts was first characterized to be deficient for the enzyme histidinol phosphate aminotransferase that is responsible for one of the last steps of histidine biosynthesis. Expression of the mutated gene at the RNA level was assessed by northern analysis of various tissues. Transcriptional activity was unimpaired by the mutation and, in contrast, a higher level of expression was obtained when compared to the wild-type. The cDNA sequence encoding the mutated gene was isolated by RT-PCR and compared to the wild-type gene. A single point mutation corresponding to the substitution of a G nucleotide by A was identified at position 1212 starting from the translation site. The alignment of the deduced amino acid sequences from the mutated and wild-type gene showed that this mutation resulted in the substitution of an Arg by a His residue at position 381. This Arg residue is a conserved amino acid for histidinol phosphate aminotransferase of many species. These results indicate that the identified mutation results in an altered histidinol phosphate aminotransferase enzyme that is unable to convert the substrate imidazole acetol phosphate to histidinol phosphate and thereby leads to the blockage of histidine biosynthesis. Possible consequences of this blockage on the expression of other amino acid biosynthesis genes were evaluated by analysing the expression of the dhdps gene encoding dihydrodipicolinate synthase, the first key enzyme of the lysine pathway.

  8. RNaseI from Escherichia coli cannot substitute for S-RNase in rejection of Nicotiana plumbaginifolia pollen.

    Science.gov (United States)

    Beecher, B; Murfett, J; McClure, B A

    1998-03-01

    Unilateral incompatibility often occurs between self-incompatible (SI) species and their self-compatible (SC) relatives. For example, SI Nicotiana alata rejects pollen from SC N. plumbaginifolia, but the reciprocal pollination is compatible. This interspecific pollen rejection system closely resembles intraspecific S-allele-specific pollen rejection. However, the two systems differ in degree of specificity. In SI, rejection is S-allele-specific, meaning that only a single S-RNase causes rejection of pollen with a specific S genotype. Rejection of N. plumbaginifolia pollen is less specific, occurring in response to almost any S-RNase. Here, we have tested whether a non-S-RNase can cause rejection of N. plumbaginifolia pollen. The Escherichia coli rna gene encoding RNAseI was engineered for expression in transgenic (N. plumbaginifolia x SC N. alata) hybrids. Expression levels and pollination behavior of hybrids expressing E. coli RNaseI were compared to controls expressing SA2-RNase from N. alata. Immunoblot analysis and RNase activity assays showed that RNaseI and SA2-RNase were expressed at comparable levels. However, expression of SA2-RNase caused rejection of N. plumbaginifolia pollen, whereas expression of RNaseI did not. Thus, in this system, RNase activity alone is not sufficient for rejection of N. plumbaginifolia pollen. The results suggest that S-RNases may be specially adapted to function in pollen rejection.

  9. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  10. Fluoroorotic acid-selected Nicotiana plumbaginifolia cell lines with a stable thymine starvation phenotype have lost the thymine-regulated transcriptional program.

    Science.gov (United States)

    Santoso, D; Thornburg, R

    2000-08-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.

  11. Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Bove, Jérôme; Lucas, Philippe; Godin, Béatrice; Ogé, Laurent; Jullien, Marc; Grappin, Philippe

    2005-03-01

    Seed dormancy in Nicotiana plumbaginifolia is characterized by an abscisic acid accumulation linked to a pronounced germination delay. Dormancy can be released by 1 year after-ripening treatment. Using a cDNA-amplified fragment length polymorphism (cDNA-AFLP) approach we compared the gene expression patterns of dormant and after-ripened seeds, air-dry or during one day imbibition and analyzed 15,000 cDNA fragments. Among them 1020 were found to be differentially regulated by dormancy. Of 412 sequenced cDNA fragments, 83 were assigned to a known function by search similarities to public databases. The functional categories of the identified dormancy maintenance and breaking responsive genes, give evidence that after-ripening turns in the air-dry seed to a new developmental program that modulates, at the RNA level, components of translational control, signaling networks, transcriptional control and regulated proteolysis.

  12. The chloroplast and mitochondrial DNA type are correlated with the nuclear composition of somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia.

    Science.gov (United States)

    Wolters, A M; Koornneef, M; Gilissen, L J

    1993-09-01

    This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.

  13. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  14. Comportamiento de las variables meteorológicas para el monitoreo del moho azul del tabaco durante las campañas 1999-2000, 2000-2001, 2001-2002, en la Provincia de Matanzas

    OpenAIRE

    Nilián Fernández Rosado; Milagros Alfonso Cabrera

    2010-01-01

    La provincia de Matanzas, al igual que muchos lugares del país, tiene poca  experiencia en el manejo del cultivo del tabaco (Nicotiana tabacum L.), por lo que la incorporación de todos los sectores, a su manejo integrado es decisiva, especialmente ante la presencia  de plagas y enfermedades en las que su aparición, establecimiento y diseminación se relacionan directamente con el comportamiento  de las variables meteorológicas;  tal es el ...

  15. Enhanced poly(3-hydroxybutyrate) production in transgenic tobacco BY-2 cells using engineered acetoacetyl-CoA reductase.

    Science.gov (United States)

    Yokoo, Toshinori; Matsumoto, Ken'ichiro; Ooba, Takashi; Morimoto, Kenjiro; Taguchi, Seiichi

    2015-01-01

    Highly active mutant of NADPH-dependent acetoacetyl-CoA reductase (PhaB) was expressed in Nicotiana tabacum cv. Bright Yellow-2 cultured cells to produce poly(3-hydroxybutyrate) [P(3HB)]. The mutated PhaB increased P(3HB) content by three-fold over the control, indicating that the mutant was a versatile tool for P(3HB) production. Additionally, the PhaB-catalyzed reaction was suggested to be a rate-limiting step of P(3HB) biosynthesis in tobacco BY-2 cells.

  16. Isolation and expression analysis of a tobacco AINTEGUMENTA ortholog (NtANTL).

    Science.gov (United States)

    Rieu, Ivo; Bots, Marc; Mariani, Celestina; Weterings, Koen A P

    2005-05-01

    The Arabidopsis AINTEGUMENTA (ANT) protein is essential for proper ovule development, but functions in cell proliferation and organ growth throughout the plant. Here we report the isolation of a full-length cDNA clone from tobacco (Nicotiana tabacum L.) that encodes a protein with high similarity to ANT and is preferentially expressed in the pistil. In situ hybridization analysis on the tobacco ovary shows that the expression pattern of the corresponding gene is different from that of ANT in Arabidopsis.

  17. 工業規模装置によるタバコ植物細胞の連続培養

    OpenAIRE

    畦地, 昭二; 橋本, 壽夫; 湯山, 二男; 永塚, 敏; 中静, 素子; 西山, 告; 村田, 章; SHONI, AZECHI; TOSHIO, HASHIMOTO; TSUGIO, YUYAMA; SATOSHI, NAGATSUKA; MOTOKO, NAKASHIZUKA; TSUGURU, NISHIYAMA; AKIRA, MURATA; (現)日本専売公社中央研究所

    1983-01-01

    To develop the technique of industrial biomass production of tobacco cells by continuous cultivation, many experiments were carried out in 200l and 2,000l fermentors, using the strain of Nicotiana tabacum L. cv. Bright Yellow-2. In this study, the cultivation conditions indicated by the above experimental results were applied to a 20 kl fermentor and the validity of the conditions for stabilizing the continuous culture for a long time was confirmed.The residual sugar content in the culture wo...

  18. Biologically active, magnICON®-expressed EPO-Fc from stably transformed Nicotiana benthamiana plants presenting tetra-antennary N-glycan structures.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Callewaert, Nico; Zabeau, Lennart; Tavernier, Jan; Delanghe, Joris R; Boets, Annemie; Castilho, Alexandra; Weterings, Koen

    2012-08-31

    In the past two decades plants have emerged as a valuable alternative for the production of pharmaceutical proteins. Since N-glycosylation influences functionality and stability of therapeutic proteins, the plant N-glycosylation pathway should be humanized. Here, we report the transient magnICON(®) expression of the erythropoietin fusion protein (EPO-Fc) in Nicotiana benthamiana plants that produce multi-antennary N-glycans without the plant-specific β1,2-xylose and α1,3-fucose residues in a stable manner (Nagels et al., 2011). The EPO-Fc fusion protein consists of EPO with a C-terminal-linked IgG-Fc domain and is used for pulmonary delivery of recombinant EPO to patients (Bitonti et al., 2004). Plant expressed EPO-Fc was quantified using a paramagnetic-particle chemiluminescent immunoassay and shown to be active in vitro via receptor binding experiments in HEK293T cells. Mass spectrometry-based N-glycan analysis confirmed the presence of multi-antennary N-glycans on plant-expressed EPO-Fc. The described research is the next step towards the development of a production platform for pharmaceutical proteins in plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Polymethoxyflavones from Nicotiana plumbaginifolia (Solanaceae Exert Antinociceptive and Neuropharmacological Effects in Mice

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Shajib

    2018-02-01

    Full Text Available Polymethoxylavones (PMFs are known to exhibit significant anti-inflammatory and neuroprotective properties. Nicotiana plumbaginifolia, an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3′,5,6,7,8-hexamethoxy-4′,5′-methylenedioxyflavone (1, 3,3′,4′,5′,5,6,7,8-octamethoxyflavone (exoticin (2, 6,7,4′,5′-dimethylenedioxy-3,5,3′-trimethoxyflavone (3, and 3,3′,4′,5,5′,8-hexamethoxy-6,7-methylenedioxyflavone (4, isolated and identified from N. plumbaginifolia. Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds 1, 3, and 4 (12.5–25 mg/kg b.w. exhibited dose-dependent and significant (p < 0.01 antinociceptive activity in the acetic-acid, formalin, carrageenan, and thermal (hot plate-induced pain models. The association of ATP-sensitive K+ channel and opioid systems in their antinociceptive effect was obvious from the antagonist effect of glibenclamide and naloxone, respectively. These findings suggested central and peripheral antinociceptive activities of the compounds. Compound 1, 3, and 4 (12.5 mg/kg b.w. demonstrated significant (p < 0.05 anxiolytic-like activity in the elevated plus-maze test, while the involvement of GABAA receptor in the action of compound 3 and 4 was evident from the reversal effects of flumazenil. In addition, compounds 1 and 4 (12.5–25 mg/kg b.w exhibited anxiolytic activity without altering the locomotor responses. The present study suggested that the polymethoxyflavones (1–4 from N. Plumbaginifolia could be considered as suitable candidates for the development

  20. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir; Eid, Ayman; Ali, Shawkat; Mahfouz, Magdy M.

    2017-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  1. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir

    2017-10-17

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  2. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles.

    Science.gov (United States)

    Rasmussen, J L; Kikkert, J R; Roy, M K; Sanford, J C

    1994-01-01

    We have used both Escherichia coli cells and Agrobacterium tumefaciens cells as microprojectiles to deliver DNA into suspension-cultured tobacco (Nicotiana tabacum L. line NT1) cells using a helium powered biolistic device. In addition, E. coli cells were used as microprojectiles for the transformation of suspension-cultured maize (Zea mays cv. Black Mexican Sweet) cells. Pretreating the bacterial cells with phenol at a concentration of 1.0%, and combining the bacterial cells with tungsten particles increased the rates of transformation. In N. tabacum, we obtained hundreds of transient transformants per bombardment, but were unable to recover any stable transformants. In Z. mays we obtained thousands of transient transformants and an average of six stable transformants per bombardment. This difference is discussed.

  3. Fluoroorotic Acid-Selected Nicotiana plumbaginifolia Cell Lines with a Stable Thymine Starvation Phenotype Have Lost the Thymine-Regulated Transcriptional Program1

    Science.gov (United States)

    Santoso, Djoko; Thornburg, Robert

    2000-01-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367

  4. Plum pox virus accumulates mutations in different genome parts during a long-term maintenance in Prunus host plants and passage in Nicotiana benthamiana.

    Science.gov (United States)

    Vozárová, Z; Kamencayová, M; Glasa, M; Subr, Z

    2013-01-01

    Plum pox virus (PPV) isolates of the strain PPV-M prevalently infect peaches under natural conditions in Middle Europe. Comparison of complete genome sequences obtained from subisolates of a PPV-M isolate maintained experimentally over a 6-year period in different Prunus host species and passaged in Nicotiana benthamiana was performed with the aim to highlight the mutations potentially connected with the virus-host adaptation. The results showed that the lowest number of non-silent mutations was accumulated in PPV-M maintained in peach (original host species), approximately two times higher diversity was recorded in plum, apricot and N. benthamiana, indicating the genetic determination of the PPV host preference. The sequence variability of Prunus subisolates was distributed more or less evenly along the PPV genome and no amino acid motif could be outlined as responsible for the host adaptation. In N. benthamiana the mutations were accumulated notably in the P1 and P3 genes indicating their non-essentiality in the infection of this experimental host plant.

  5. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  6. Development of an unconventional method to control the ectoparasites in backyard poultry

    International Nuclear Information System (INIS)

    Shanta, I.S.; Begum, N.; Anisuzzaman; Karim, M.J.; Majumder, S.

    2008-01-01

    Dust of Nicotiana tabacum, Azadirachta indica and Polygonum hydropiper when applied in the poultry sheds as bedding for control of six species of lice, one species of fly and two species of mites, highest efficacy (96.67%) was shown by tobacco at 15% concentration followed by neem at the same concentration (efficacy, 77.52%) and tobacco at 10% concentration. Tobacco at 15% concentration significantly (p<0.05) reduced the ectoparasitic burden within 12 days with maximum mean body weight gain by poultry being 232.30 g. (author)

  7. The BnALMT1 Protein That is an Aluminum-Activated Malate Transporter is Localized in the Plasma Membrane

    OpenAIRE

    Ligaba, Ayalew; Katsuhara, Maki; Sakamoto, Wataru; Matsumoto, Hideaki

    2007-01-01

    We have previously reported that Al-induces citrate and malate efflux from P-sufficient and P-deficient plants of rape (Brassica napus L.) and that P-deficiency alone could not induce this response. Further investigation showed that the transcript of two genes designated BnALMT1 and BnALMT2 is accumulated in roots by Al-treatment. Transgenic tobacco cells (Nicotiana tabacum) and Xenopus laevis oocytes expressing the BnALMT1 and BnALMT2 proteins released more malate than control cells in the p...

  8. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Targeting of a Nicotiana plumbaginifolia H+ -ATPase to the plasma membrane is not by default and requires cytosolic structural determinants.

    Science.gov (United States)

    Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc

    2004-07-01

    The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.

  10. [Effect of metalaxyl on the synthesis of RNA, DNA and protein in Phytophthora nicotianae].

    Science.gov (United States)

    Wollgiehn, R; Bräutigam, E; Schumann, B; Erge, D

    1984-01-01

    Metalaxyl is used to control diseases caused by fungi of the order of the Perenosporales. We investigated the action of this fungicid eon nucleic acid and protein synthesis in liquid cultures of Phytophthora nicotianae. The uptake of 32P, 3H-uridine, 3H-thymidine and 14C-leucine as precursors of nuclei acid and protein synthesis by the mycelium was not inhibited by metalaxyl. RNA synthesis as indicated by 3H-uridine incorporation was strongly inhibited (about 80%) by 0.5 micrograms/ml of metalaxyl. The inhibition was visible already few minutes after addition of the toxicant. Since the inhibition of incorporation of 3H-thymidine into DNA and of 14C-leucine into protein became significant 2-3 hours later, we conclude that metalaxyl primarily interfers with RNA synthesis. Synthesis of ribosomal RNA is more affected (more than 90%) than that of tRNA (about 55%) and poly(A)-containing RNA. Since in the presence of actinomycin, in contrast to metalaxyl, protein synthesis is inhibited immediately as a consequence of complete inhibition of RNA synthesis and of the short life-time of mRNA, it is also evident that mRNA synthesis is less strongly inhibited, at least during the early period of metalaxyl action. The molecular mechanism of metalaxyl inhibition of the transcription process remains open. The fungicide did not inhibit the activity of a partially purified RNA polymerase isolated from the fungus. On the other hand, the RNA synthesis (14C-UTP-incorporation) by a cell homogenate and by isolated nuclear fractions was inhibited significantly. Possibilities of the molecular action of metalaxyl are discussed. The RNA synthesis of some plant systems (cell cultures of Lycopersicon peruvianum, isolated nuclei from the same cell cultures, purified RNA polymerase from Spinacia oleracea chloroplasts) was not inhibited by metalaxyl, not even at high concentrations.

  11. Transient expression of the influenza A virus PB1-F2 protein using a plum pox virus-based vector in Nicotiana benthamiana.

    Science.gov (United States)

    Kamencayová, M; Košík, I; Hunková, J; Subr, Z W

    2014-01-01

    PB1-F2 protein of influenza A virus (IAV) was cloned in a plum pox virus (PPV) genome-based vector and attempts to express it in biolistically transfected Nicotiana benthamiana plants were performed. The vector-insert construct replicated in infected plants properly and was stable during repeated passage by mechanical inoculation, as demonstrated by disease symptoms and immunoblot detection of PPV capsid protein, while PB1-F2-specific band was more faint. We showed that it was due its low solubility. Modification of sample preparation (denaturation/solubilization preceding the centrifugation of cell debris) led to substantial signal enhancement. Maximal level of PB1-F2 expression in plants was observed 12 days post inoculation (dpi). Only 1% SDS properly solubilized the protein, other detergents were much less efficient. Solubilization with 8M urea released approximately 50% of PB1-F2 from the plant tissues, thus the treatment with this removable chaotropic agent may be a good starting point for the purification of the protein for eventual functional studies in the future.

  12. Esta que "é uma das delícias, e mimos desta terra...": o uso indígena do tabaco (N. rustica e N. tabacum nos relatos de cronistas, viajantes e filósofos naturais dos séculos XVI e XVII

    Directory of Open Access Journals (Sweden)

    Christian Fausto Moraes dos Santos

    Full Text Available O tabaco (Nicotiana sp. foi um dos elementos botânicos do Novo Mundo que mais aguçaram a curiosidade de diversos viajantes, eruditos, médicos e filósofos naturais em ambos os lados do Atlântico. As plantas do gênero Nicotiana rapidamente ganharam notoriedade entre homens de letras. O hiato entre as primeiras descrições sobre os diversos predicados do tabaco e sua introdução na Europa foi consideravelmente curto. É provável que os rumores a respeito das propriedades das plantas de Nicotiana tenham chegado à Europa concomitantente às primeiras folhas ou sementes. Muitos destes relatos incluíam informações a respeito de seu uso pelos povos indígenas. Sua relevância, em meio aos ameríndios, suscitou nos europeus, mesmo com todas as barreiras culturais, um considerável interesse por suas possíveis aplicações e uma irresistível disposição em justificar seu uso.

  13. [The role of Cd-binding proteins and phytochelatins in the formation of cadmium resistance in Nicotiana plumbaginifolia cell lines].

    Science.gov (United States)

    Fenik, S I; Solodushko, V G; Kaliniak, T B; Blium, Ia B

    2007-01-01

    Nicotiana plumbaginifolia callus lines with the equal resistance to cadmium have been produced under different selective conditions--either without inhibition of the phytochelatin synthesis (line Cd-R) or in the presence of the inhibitor butionine sulfoximine (line Cd-Ri). The level of phytochelatin synthesis in the line Cd-R five-fold exceeded the control value and in the line Cd-Ri it was twice as much as in the control. It was shown that in the control line mainly three cadmium-binding proteins are expressed of the molecular weihgts 41, 34 and 19 kD. The common feature of the both resistant lines is the expression of the cadmium-binding proteins of 40, 37 and 19 kD. The resistant lines differ with respect to the synthesis of relatively low-molecular cadmium-binding proteins. The proteins of the molecular weights 12.5, 11.5 and 9 kD are expressed in the line Cd-R, while the proteins of 13 and 10 kD are expressed in the line Cd-Ri. It was supposed that both the phytochelatins and the Cd-binding proteins contribute to the resisitance of N. plumbaginifolia callus lines to cadmium and the lack of the phytochelatins can be equilibrated by the changes in the low-molecular Cd-binding protein synthesis.

  14. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii

    Directory of Open Access Journals (Sweden)

    María Luisa ePérez-Bueno

    2016-01-01

    Full Text Available The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighbouring the infiltrated areas after 2-3 days post-inoculation included: i inhibition of photosynthesis in terms of photosystem II efficiency; ii activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and iii accumulation of secondary metabolites in cell walls of the epidermis (lignins and the apoplast of the mesophyll (phytoalexins. Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.

  15. Seed-borne viruses detected on farm-retained seeds from smallholder farmers in Zimbabwe, Burkina Faso, Bangladesh and Vietnam

    DEFF Research Database (Denmark)

    Manyangarirwa, W.; Sibiya, J.; Mortensen, C A Nieves Paulino

    2010-01-01

    The smallholder farming sector in much of the developing world relies on the use of farm-retained seed. The availability of good quality disease free seed is important in enhancing food security but seed-borne viruses can be a major problem on farm-retained seed. Seeds of tomato (Lycopersicon...... electron microscopy, Enzyme Linked Immunosorbent Assay (ELISA) and biological assays. Tomato mosaic virus (ToMV) was detected in 36% of tomato samples and in 8% of paprika samples using indicator Nicotiana tabacum cultivars Xanthinc and White Burley. Some 43% of cowpea samples were infected with Cowpea...

  16. Diseño grafico: espejo socio-cultural mediante el lenguaje visual. Evolución del packaging en la empresa tabacalera

    OpenAIRE

    Peña Cáceres, María Inmaculada

    2016-01-01

    Falta palabras claves se muestra el aspecto creativo de la Nicotiana Tabacum desde el prisma de la estética, ya que hasta hoy, los estudios realizados se han proyectado sobre aspectos que han aportado riqueza y notoriedad para la historia económica de este país y, particularmente de sevilla. el hecho de que esta ciudad acogiese a este producto y en la que se construyó el primer edificio fabril para tabacos de europa, hoy sede de la universidad, ha sido uno de los aspectos importante que me...

  17. Silencing of a Germin-Like Gene in Nicotiana attenuata Improves Performance of Native Herbivores1[W

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2006-01-01

    Germins and germin-like proteins (GLPs) are known to function in pathogen resistance, but their involvement in defense against insect herbivores is poorly understood. In the native tobacco Nicotiana attenuata, attack from the specialist herbivore Manduca sexta or elicitation by adding larval oral secretions (OS) to wounds up-regulates transcripts of a GLP. To understand the function of this gene, which occurs as a single copy, we cloned the full-length NaGLP and silenced its expression in N. attenuata by expressing a 250-bp fragment in an antisense orientation with an Agrobacterium-based transformation system and by virus-induced gene silencing (VIGS). Homozygous lines harboring a single insert and VIGS plants had significantly reduced constitutive (measured in roots) and elicited NaGLP transcript levels (in leaves). Silencing NaGLP improved M. sexta larval performance and Tupiocoris notatus preference, two native herbivores of N. attenuata. Silencing NaGLP also attenuated the OS-induced hydrogen peroxide (H2O2), diterpene glycosides, and trypsin proteinase inhibitor responses, which may explain the observed susceptibility of antisense or VIGS plants to herbivore attack and increased nicotine contents, but did not influence the OS-elicited jasmonate and salicylate bursts, or the release of the volatile organic compounds (limonene, cis-α-bergamotene, and germacrene-A) that function as an indirect defense. This suggests that NaGLP is involved in H2O2 production and might also be related to ethylene production and/or perception, which in turn influences the defense responses of N. attenuata via H2O2 and ethylene-signaling pathways. PMID:16461381

  18. Both positive and negative regulatory elements mediate expression of a photoregulated CAB gene from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R

    1988-01-01

    We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343

  19. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris.

    Science.gov (United States)

    Pellny, Till K; Van Aken, Olivier; Dutilleul, Christelle; Wolff, Tonja; Groten, Karin; Bor, Melike; De Paepe, Rosine; Reyss, Agnès; Van Breusegem, Frank; Noctor, Graham; Foyer, Christine H

    2008-06-01

    Mitochondrial electron transport pathways exert effects on carbon-nitrogen (C/N) relationships. To examine whether mitochondria-N interactions also influence plant growth and development, we explored the responses of roots and shoots to external N supply in wild-type (WT) Nicotiana sylvestris and the cytoplasmic male sterile II (CMSII) mutant, which has a N-rich phenotype. Root architecture in N. sylvestris seedlings showed classic responses to nitrate and sucrose availability. In contrast, CMSII showed an altered 'nitrate-sensing' phenotype with decreased sensitivity to C and N metabolites. The WT growth phenotype was restored in CMSII seedling roots by high nitrate plus sugars and in shoots by gibberellic acid (GA). Genome-wide cDNA-amplified fragment length polymorphism (AFLP) analysis of leaves from mature plants revealed that only a small subset of transcripts was altered in CMSII. Tissue abscisic acid content was similar in CMSII and WT roots and shoots, and growth responses to zeatin were comparable. However, the abundance of key transcripts associated with GA synthesis was modified both by the availability of N and by the CMSII mutation. The CMSII mutant maintained a much higher shoot/root ratio at low N than WT, whereas no difference was observed at high N. Shoot/root ratios were strikingly correlated with root amines/nitrate ratios, values of <1 being characteristic of high N status. We propose a model in which the amine/nitrate ratio interacts with GA signalling and respiratory pathways to regulate the partitioning of biomass between shoots and roots.

  20. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  1. Evidence for the involvement of tetrahydrofolate in the demethylation of nicotine by Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, François; Roscher, Albrecht; Garlick, Andrew P; Girard, Sandrine; Baguet, Evelyne; Arroo, Randolf R J; Lebreton, Jacques; Robins, Richard J; Ratcliffe, GeorgeR

    2002-04-01

    The conversion of nicotine to nornicotine by Nicotiana plumbaginifolia Viv. cells was investigated by analysing the redistribution of label during feeding experiments with (R,S)-[2H- methyl]nicotine, (R,S)-[13C- methyl]nicotine and (R,S)-[14C- methyl]nicotine, and the results show that the N-methyl group of nicotine can be recycled into primary metabolism. Nuclear magnetic resonance (NMR) analysis of ethanolic extracts of cells grown in the presence of (R,S)-[13C- methyl]nicotine, using 1H-13C correlation spectroscopy (HMQC, HMBC), revealed the presence of [3-13C]serine and [13C- methyl]methionine. Label was also identified in a cysteinyl derivative and in several methoxylated compounds, but no evidence was obtained with either NMR or ion-trap mass spectrometry for the presence of any intermediate between nicotine and nornicotine. However, experiments with (R,S)-[14C- methyl]nicotine indicated that 70-75% of the metabolised label was released as carbon dioxide. These results are consistent with a pathway in which the oxidative hydrolysis of the nicotine methyl produces an unstable intermediate, N'-hydroxymethylnornicotine, that breaks down spontaneously to nornicotine and formaldehyde, with the formaldehyde being metabolised either directly to formate and carbon dioxide, or through the tetrahydrofolate-mediated pathways of one-carbon metabolism. However since the key intermediate, N-hydroxymethylnornicotine, could not be detected, the possibility of a direct methyl group transfer to tetrahydrofolate cannot be excluded.

  2. Potential of plant materials for the management of cowpea bruchid callosobruchus analis (coleoptera: bruchidae) in gram cicer arietinum during storage

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Tofique, M.

    2012-01-01

    Present research was carried out to identify alternatives to synthetic insecticides to control cowpea weevil Callosobruchus analis (F.) population in gram seed (Cicer arietinum L.), during storage. The efficacies of three plant materials such as Nicotiana tabacum, Citrullus colocythis and Aloe vera were assessed to determine their insecticidal activities against survival of bruchid C. analis on seeds of gram varieties viz., CM-98 and Jubiha-1. These plant materials tested reduced weevil infestation and emergence as compared with untreated control seeds. Seeds treatment with A. vera followed by N. tabacum reduced maximum pest damage over C. colocythis, which proved least effective to control C. analis population. Consequently, the tested plant materials should be given due consideration for effective gram protection as a component of integrated pest management approach in storage. (author)

  3. Silencing ribulose-1,5-bisphosphate carboxylase/oxygenase expression does not disrupt nitrogen allocation to defense after simulated herbivory in Nicotiana attenuata.

    Science.gov (United States)

    Stanton, Mariana A; Ullmann-Zeunert, Lynn; Wielsch, Natalie; Bartram, Stefan; Svatoš, Aleš; Baldwin, Ian T; Groten, Karin

    2013-01-01

    Ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) is the most abundant protein on the planet and in addition to its central role in photosynthesis it is thought to function as a nitrogen (N)-storage protein and a potential source of N for defense biosynthesis in plants. In a recent study in the wild tobacco Nicotiana attenuata, we showed that the decrease in absolute N invested in soluble proteins and RuBisCO elicited by simulated herbivory was much larger than the N-requirements of nicotine and phenolamide biosynthesis; (15)N flux studies revealed that N for defensive phenolamide synthesis originates from recently assimilated N rather than from RuBisCO turnover. Here we show that a transgenic line of N. attenuata silenced in the expression of RuBisCO (asRUB) invests similar or even larger amounts of N into phenolamide biosynthesis compared with wild type plants, consistent with our previous conclusion that recently assimilated N is channeled into phenolamide synthesis after elicitation. We suggest that the decrease in leaf proteins after simulated herbivory is a tolerance mechanism, rather than a consequence of N-demand for defense biosynthesis.

  4. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  5. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Crété, P; Caboche, M; Meyer, C

    1997-04-01

    Higher plant nitrite reductase (NiR) is a monomeric chloroplastic protein catalysing the reduction of nitrite, the product of nitrate reduction, to ammonium. The expression of this enzyme is controlled at the transcriptional level by light and by the nitrogen source. In order to study the post-transcriptional regulation of NiR, Nicotiana plumbaginifolia and Arabidopsis thaliana were transformed with a chimaeric NiR construct containing the tobacco leaf NiR1 coding sequence driven by the CaMV 35S RNA promoter. Transformed plants did not show any phenotypic difference when compared with the wild-type, although they overexpressed NiR activity in the leaves. When these plants were grown in vitro on media containing either nitrate or ammonium as sole nitrogen source, NiR mRNA derived from transgene expression was constitutively expressed, whereas NiR activity and protein level were strongly reduced on ammonium-containing medium. These results suggest that, together with transcriptional control, post-transcriptional regulation by the nitrogen source is operating on NiR expression. This post-transcriptional regulation of tobacco leaf NiR1 expression was observed not only in the closely related species N. plumbaginifolia but also in the more distant species A. thaliana.

  6. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    Science.gov (United States)

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  7. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-09-01

    Full Text Available RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3, was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3 is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6 silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  8. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Oh

    2014-09-01

    Full Text Available A full-length phytase gene (phy of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR, and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5, an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F, the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.

  9. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Science.gov (United States)

    Oh, Tae-Kyun; Oh, Sung; Kim, Seongdae; Park, Jae Sung; Vinod, Nagarajan; Jang, Kyung Min; Kim, Sei Chang; Choi, Chang Won; Ko, Suk-Min; Jeong, Dong Kee; Udayakumar, Rajangam

    2014-01-01

    A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs. PMID:25192284

  10. Immediate effects of nectar robbing by Palestine sunbirds (Nectarinia osea) on nectar alkaloid concentrations in tree tobacco (Nicotiana glauca).

    Science.gov (United States)

    Kaczorowski, Rainee L; Koplovich, Avi; Sporer, Frank; Wink, Michael; Markman, Shai

    2014-04-01

    Plant secondary metabolites (PSMs), such as alkaloids, are often found in many parts of a plant, including flowers, providing protection to the plant from various types of herbivores or microbes. PSMs are also present in the floral nectar of many species, but typically at lower concentrations than in other parts of the plant. Nectar robbers often damage floral tissue to access the nectar. By doing so, these nectar robbers may initiate an increase of PSMs in the floral nectar. It is often assumed that it takes at least a few hours before the plant demonstrates an increase in PSMs. Here, we addressed the question of whether PSMs in the floral tissue are immediately being released into the floral nectar following nectar robbing. To address this research question, we investigated whether there was an immediate effect of nectar robbing by the Palestine Sunbird (Nectarinia osea) on the concentration of nectar alkaloids, nicotine and anabasine, in Tree Tobacco (Nicotiana glauca). We found that the concentration of anabasine, but not nicotine, significantly increased in floral nectar immediately following simulated nectar robbing. These findings suggest that nectar robbers could be ingesting greater amounts of PSMs than they would if they visit flowers legitimately. As a consequence, increased consumption of neurotoxic nectar alkaloids or other PSMs could have negative effects on the nectar robber.

  11. Nitrogen Supply Influences Herbivore-Induced Direct and Indirect Defenses and Transcriptional Responses in Nicotiana attenuata[w

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2004-01-01

    Although nitrogen (N) availability is known to alter constitutive resistance against herbivores, its influence on herbivore-induced responses, including signaling pathways, transcriptional signatures, and the subsequently elicited chemical defenses is poorly understood. We used the native tobacco, Nicotiana attenuata, which germinates in the postfire environment and copes with large changes in soil N during postfire succession, to compare a suite of Manduca sexta- and elicitor-induced responses in plants grown under high- and low-N (LN) supply rates. LN supply decreased relative growth rates and biomass by 35% at 40 d compared to high-N plants; furthermore, it also attenuated (by 39 and 60%) the elicitor-induced jasmonate and salicylate bursts, two N-intensive direct defenses (nicotine and trypsin proteinase inhibitors, albeit by different mechanisms), and carbon-containing nonvolatile defenses (rutin, chlorogenic acid, and diterpene glycosides), but did not affect the induced release of volatiles (cis-α-bergamotene and germacrene A), which function as indirect defenses. M. sexta and methyl jasmonate-induced transcriptional responses measured with a microarray enriched in herbivore-induced genes were also substantially reduced in plants grown under LN supply rates. In M. sexta-attacked LN plants, only 36 (45%) up-regulated and 46 (58%) down-regulated genes showed the same regulation as those in attacked high-N plants. However, transcriptional responses frequently directly countered the observed metabolic changes. Changes in a leaf's sensitivity to elicitation, an attacked leaf's waning ability to export oxylipin wound signals, and/or resource limitations in LN plants can account for the observed results, underscoring the conclusion that defense activation is a resource-intensive response. PMID:15133153

  12. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  13. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  14. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana.

    Science.gov (United States)

    Liu, Xiufang; Song, Yunzhi; Xing, Fangyu; Wang, Ning; Wen, Fujiang; Zhu, Changxiang

    2016-09-01

    WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.

  15. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.

    Directory of Open Access Journals (Sweden)

    Alessandra Moscatelli

    2015-02-01

    Full Text Available Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.

  16. Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging

    Science.gov (United States)

    Nurhidayati, Tutik; Wardhani, Selfrina Puri; Purnobasuki, Hery; Hariyanto, Sucipto; Jadid, Nurul; Nurcahyani, Desy Dwi

    2017-11-01

    This study has conducted research on morphological and anatomical responses of some varieties of tobacco plants to waterlogging stress. Parameters measured were morphology, anatomy, and plants sensitivity index. Results were analyzed using two-way ANOVA followed by the Tukey test. The results show that waterlogging stress can reduce the growth of tobacco plants, including a decrease in plant height with the lowest value of 15.6 cm, root length reduction to the lowest value of 4.6 cm and plant dry weight reduction to the lowest value of 0.26 gr. But waterlogging stress can increase the number of adventitious roots with the highest value of 18.33. In addition, waterlogging stress can lead to the formation of aerenchyma tissue. The sensitivity index showed that plant varieties that are resistant to waterlogging stress are the varieties Kemloko 3 (index value of 0.03), varieties of Paiton 2 (index value of 0.18), and the varieties Kemloko 2 (index value of 0.42).

  17. Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus

    Czech Academy of Sciences Publication Activity Database

    Wilhelmová, Naděžda; Procházková, Dagmar; Šindelářová, Milada; Šindelář, Luděk

    2005-01-01

    Roč. 43, č. 4 (2005), s. 597-602 ISSN 0300-3604 R&D Projects: GA ČR GA522/02/0708 Institutional research plan: CEZ:AV0Z50380511 Keywords : carotenoids * chlorophyll * chlorophyll fluorescence Subject RIV: CE - Biochemistry Impact factor: 0.810, year: 2005

  18. Use of Nicotiana tabacum L extract for anti-Aedes Aegypti mosquito paint

    Science.gov (United States)

    Sandralintang, Trisiana Chrysanthi; Fauzantoro, Ahmad; Hermansyah, Heri; Jufri, Mahdi; Gozan, Misri

    2018-02-01

    This study intended to formulate mosquito repellent paints based tobacco leaf extracts-free pyrethroid substance which is safe for users. The active substance which was added to the paint as a mosquito repellent was an extract of tobacco leaves. The result of Anti-mosquito paint formulation produced was according to the Indonesia National Standard (SNI). The results of anti-Aedes Aegypti mosquito paint effectiveness test showed that 5% concentration of tobacco extract could kill half of the mosquito population (LC50) for 2 hours, the concentration of tobacco extract between 3-5% killed half the mosquito population (LC50) during 4 hours, while 1-3% and 0-1% concentration of tobacco extract killed half the mosquito population (LC50) for 6 and 24 hours, respectively.

  19. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  20. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    Science.gov (United States)

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr

  1. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    Science.gov (United States)

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-05-15

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.

  2. In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species

    Directory of Open Access Journals (Sweden)

    Evandro Vagner Tambarussi

    2009-01-01

    Full Text Available The availability of chloroplast genome (cpDNA sequences of Atropa belladonna, Nicotiana sylvestris, N.tabacum, N. tomentosiformis, Solanum bulbocastanum, S. lycopersicum and S. tuberosum, which are Solanaceae species,allowed us to analyze the organization of cpSSRs in their genic and intergenic regions. In general, the number of cpSSRs incpDNA ranged from 161 in S. tuberosum to 226 in N. tabacum, and the number of intergenic cpSSRs was higher than geniccpSSRs. The mononucleotide repeats were the most frequent in studied species, but we also identified di-, tri-, tetra-, pentaandhexanucleotide repeats. Multiple alignments of all cpSSRs sequences from Solanaceae species made the identification ofnucleotide variability possible and the phylogeny was estimated by maximum parsimony. Our study showed that the plastomedatabase can be exploited for phylogenetic analysis and biotechnological approaches.

  3. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    Science.gov (United States)

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  4. NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants[C][W][OA

    Science.gov (United States)

    Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan

    2012-01-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510

  5. Molecular methods (digital PCR and real-time PCR) for the quantification of low copy DNA of Phytophthora nicotianae in environmental samples.

    Science.gov (United States)

    Blaya, Josefa; Lloret, Eva; Santísima-Trinidad, Ana B; Ros, Margarita; Pascual, Jose A

    2016-04-01

    Currently, real-time polymerase chain reaction (qPCR) is the technique most often used to quantify pathogen presence. Digital PCR (dPCR) is a new technique with the potential to have a substantial impact on plant pathology research owing to its reproducibility, sensitivity and low susceptibility to inhibitors. In this study, we evaluated the feasibility of using dPCR and qPCR to quantify Phytophthora nicotianae in several background matrices, including host tissues (stems and roots) and soil samples. In spite of the low dynamic range of dPCR (3 logs compared with 7 logs for qPCR), this technique proved to have very high precision applicable at very low copy numbers. The dPCR was able to detect accurately the pathogen in all type of samples in a broad concentration range. Moreover, dPCR seems to be less susceptible to inhibitors than qPCR in plant samples. Linear regression analysis showed a high correlation between the results obtained with the two techniques in soil, stem and root samples, with R(2) = 0.873, 0.999 and 0.995 respectively. These results suggest that dPCR is a promising alternative for quantifying soil-borne pathogens in environmental samples, even in early stages of the disease. © 2015 Society of Chemical Industry.

  6. Evaluating phytoextraction efficiency of two high-biomass crops after soil amendment and inoculation with rhizobacterial strains.

    Science.gov (United States)

    Vanessa, Álvarez-López; Ángeles, Prieto-Fernández; Sergio, Roiloa; Beatriz, Rodríguez-Garrido; Rolf, Herzig; Markus, Puschenreiter; Susan, Kidd Petra

    2017-03-01

    We evaluated the effect of compost amendment and/or bacterial inoculants on the growth and metal accumulation of Salix caprea (clone BOKU 01 AT-004) and Nicotiana tabacum (in vitro-bred clone NBCu10-8). Soil was collected from an abandoned Pb/Zn mine and rhizobacterial inoculants were previously isolated from plants growing at the same site. Plants were grown in untreated or compost-amended (5% w/w) soil and were inoculated with five rhizobacterial strains. Non-inoculated plants were also established as a control. Compost addition increased the shoot DW yield of N. tabacum but not S. caprea, while it decreased soil metal availability and lowered shoot Cd/Zn concentrations in tobacco plants. Compost amendment enhanced the shoot Cd/Zn removal due to the growth promotion of N. tabacum or to the increase in metal concentration in S. caprea leaves. Bacterial inoculants increased photosynthetic efficiency (particularly in N. tabacum) and sometimes modified soil metal availability, but this did not lead to a significant increase in Cd/Zn removal. Compost amendment was more effective in improving the Cd and Zn phytoextraction efficiency than bioaugmentation.

  7. AcEST: BP912120 [AcEST

    Lifescience Database Archive (English)

    Full Text Available YMU001_000015_D01 500 Adiantum capillus-veneris mRNA. clone: YMU001_000015_D01. BP912120 - Show BP91212...is mRNA. clone: YMU001_000015_D01. Accession BP912120 Tissue type prothallium Developmental stage - Contig I...elated Pol polyprotein from transposon TNT 1-94 OS=Nicotiana tabacum Align length 130 Score (bit) 124.0 E-va...: a new generation of protein database search programs, Nucleic Acids Res. 25:3389-3402. Query= BP91212...0|Adiantum capillus-veneris mRNA, clone: YMU001_000015_D01. (500 letters) Database: uniprot_sprot.fasta 412

  8. Dicty_cDB: Contig-U06686-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 477 |pid:none) Methanosaeta thermophila PT, com... 37 0.22 EF175614_1( EF175614 |pid:none) Yersinia intermed...CHO_OF382xn20r1.ab1 CHO_OF Nicotiana tabacum geno... 48 0.16 1 ( EJ323709 ) 1095403525209 Global-Ocean-Sampli...br... 48 0.16 1 ( CX574665 ) TTE00035304 Amplicon Express - Conjugative Form T... 48 0.16 1 ( AC09...ar... 40 1.1 2 ( DQ102703 ) Coreana raphaelis mitochondrion, complete genome. 30 1.1 4 ( AC095058 ) Homo sapie.... 36 2.1 2 ( CP000263 ) Buchnera aphidicola str. Cc (Cinara cedri), compl... 42 2

  9. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  10. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone

    DEFF Research Database (Denmark)

    Sanmartin, Maite; Drogoudi, Pavlina D.; Lyons, Tom

    2003-01-01

    overexpressing plants exposed to 100 nmol mol-1 ozone for 7 h day-1 exhibited a substantial increase in foliar injury, and a greater pollutant-induced reduction in both the light-saturated rate of CO2 assimilation and the maximum in vivo rate of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation......Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing cucumber ascorbate oxidase (EC.1.10.3.3) were used to examine the role of extracellular ascorbic acid in mediating tolerance to the ubiquitous air pollutant, ozone (O3). Three homozygous transgenic lines, chosen on the basis...

  11. Etnobotánica del "coro" (Nicotiana paa, Solanaceae: Un tabaco silvestre poco conocido del extremo sur de Sudamérica

    Directory of Open Access Journals (Sweden)

    Gustavo F. Scarpa

    2011-07-01

    Full Text Available El "coro" es un tabaco silvestre de Argentina y Chile cuyas raíces son empleadas como fumatorio y mascatorio desde tiempos inmemoriales por grupos indígenas. Si bien existen noticias sobre su empleo desde la época colonial, en la actualidad no hay consenso sobre su identidad botánica a la par que sus modalidades de obtención, procesado y consumo han sido escasamente descriptas. Se efectuaron campañas etnobotánicas al sudoeste de la provincia del Chaco donde se colectaron ejemplares que responden a dicho nombre vernáculo en compañía de indígenas y se analizaron fuentes bibliográficas históricas disponibles. Se comprobó in situ que los mocovíes actualmente fuman sus raíces mezcladas con tabaco tanto en contextos ceremoniales como extra-ceremoniales. Como resultado del análisis bibliográfico se infiere que también lo emplearon en el pasado de manera homóloga indígenas vilelas, qom (tobas; wichi y abipones. Se descarta la correspondencia del "coro" con especies de Trichocline por la inexistencia de registros etnobotánicos al respecto. Se confirma que este fumatorio corresponde a Nicotiana paa Mart. rov. y se presentan y discuten nuevos datos sobre su obtención, procesamiento y consumo.

  12. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family.

    Science.gov (United States)

    Quesada, A; Krapp, A; Trueman, L J; Daniel-Vedele, F; Fernández, E; Forde, B G; Caboche, M

    1997-05-01

    A family of high-affinity nitrate transporters has been identified in Aspergillus nidulans and Chlamydomonas reinhardtii, and recently homologues of this family have been cloned from a higher plant (barley). Based on six of the peptide sequences most strongly conserved between the barley and C. reinhardtii polypeptides, a set of degenerate primers was designed to permit amplification of the corresponding genes from other plant species. The utility of these primers was demonstrated by RT-PCR with cDNA made from poly(A)+ RNA from barley, C. reinhardtii and Nicotiana plumbaginifolia. A PCR fragment amplified from N. plumbaginifolia was used as probe to isolate a full-length cDNA clone which encodes a protein, NRT2;1Np, that is closely related to the previously isolated crnA homologue from barley. Genomic Southern blots indicated that there are only 1 or 2 members of the Nrt2 gene family in N. plumbaginifolia. Northern blotting showed that the Nrt2 transcripts are most strongly expressed in roots. The effects of external treatments with different N sources showed that the regulation of the Nrt2 gene(s) is very similar to that reported for nitrate reductase and nitrite reductase genes: their expression was strongly induced by nitrate but was repressed when reduced forms of N were supplied to the roots.

  14. Bromodeoxyuridine combined with UV light and gamma irradiation promotes the production of asymmetric somatic hybrid calli

    International Nuclear Information System (INIS)

    Trick, H.N.; Bates, G.W.

    1996-01-01

    The degree of gamma‐ or X‐ray‐induced donor chromosome elimination in asymmetric somatic hybrids is highly variable. Here the beneficial use of bromodeoxyuridine and UV light as additional chromosome destabilizing agents is described. Protoplasts of Nicotiana tabacum were fused with protoplasts of Nicotiana plumbaginifolia (Np) that carried the kanamycin‐resistance and glucuronidase (GUS) genes on separate chromosomes. Prior to fusion, the Np donor protoplasts were pretreated with bromodeoxyuridine and then were inactivated by treatment with iodoacetate ± UV light ± 200 Gy gamma irradiation. Hybrids were selected on medium containing kanamycin. The elimination of Np DNA was assessed by scoring of the fraction of hybrid calli that expressed GUS and by dot‐blot analysis using a Np‐specific probe. gamma irradiation alone resulted in elimination of 50% of Np DNA. Pretreatment with bromodeoxyuridine (10 μM) followed by 2.5 to 5 min UV light resulted in the elimination of 35–45% of the donor genome, but incorporation of bromodeoxyuridine (10 μM) followed by 2,5 to 5 min UV light and 200 Gy gamma irradiation resulted in 85 to 90% elimination of Np DNA

  15. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation.

    Science.gov (United States)

    Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H

    1992-01-01

    Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603

  16. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv.

    Science.gov (United States)

    Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R

    2000-04-25

    We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.

  17. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    Science.gov (United States)

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  18. How the redox state of tobacco 'Bel-W3' is modified in response to ozone and other environmental factors in a sub-tropical area?

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ana P.L.; Dafre, Marcelle; Rinaldi, Mirian C.S. [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Domingos, Marisa, E-mail: mmingos@superig.com.b [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)

    2011-02-15

    This study intended to determine whether the redox state in plants of Nicotiana tabacum 'Bel-W3' fluctuates in response to the environmental factors in a sub-tropical area contaminated by ozone (Sao Paulo, SE - Brazil) and which environmental factors are related to this fluctuation, discussing their biomonitoring efficiency. We comparatively evaluated the indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and leaf injury in 17 field experiments performed in 2008. The redox state was explained by the combined effects of chronic levels of O{sub 3} and meteorological variables 4-6 days prior to the plant sampling. Moderate leaf injury was observed in most cases. The redox state of tobacco decreases few days after their placement in the sub-tropical environment, causing them to become susceptible to oxidative stress imposed by chronic doses of O{sub 3}. Its bioindicator efficiency would not be diminished in such levels of atmospheric contamination. - Research highlights: Nicotiana tabacum 'Bel-W3' is potentially a bioindicator of O{sub 3} in the sub-tropics. However, it is unknown if its redox state would affect its bioindicator performance under sub-tropical environmental conditions. This study revealed that the redox state of tobacco decreases few days after their placement in the sub-tropical environment, causing them to become susceptible to oxidative stress imposed by chronic doses of O{sub 3}. Therefore, its bioindicator efficiency would not be diminished in such levels of atmospheric contamination. However, the bioindicator efficiency N. tabacum 'Bel-W3' for biomonitoring O{sub 3} should be regionally modeled in the sub-tropics, based on both its redox state and on the flux of O{sub 3} through stomata, in response to the varying micro-meteorological conditions that govern both physiological processes. - The bioindicator efficiency of tobacco plants is not

  19. How the redox state of tobacco 'Bel-W3' is modified in response to ozone and other environmental factors in a sub-tropical area?

    International Nuclear Information System (INIS)

    Dias, Ana P.L.; Dafre, Marcelle; Rinaldi, Mirian C.S.; Domingos, Marisa

    2011-01-01

    This study intended to determine whether the redox state in plants of Nicotiana tabacum 'Bel-W3' fluctuates in response to the environmental factors in a sub-tropical area contaminated by ozone (Sao Paulo, SE - Brazil) and which environmental factors are related to this fluctuation, discussing their biomonitoring efficiency. We comparatively evaluated the indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) and leaf injury in 17 field experiments performed in 2008. The redox state was explained by the combined effects of chronic levels of O 3 and meteorological variables 4-6 days prior to the plant sampling. Moderate leaf injury was observed in most cases. The redox state of tobacco decreases few days after their placement in the sub-tropical environment, causing them to become susceptible to oxidative stress imposed by chronic doses of O 3 . Its bioindicator efficiency would not be diminished in such levels of atmospheric contamination. - Research highlights: → Nicotiana tabacum 'Bel-W3' is potentially a bioindicator of O 3 in the sub-tropics. → However, it is unknown if its redox state would affect its bioindicator performance under sub-tropical environmental conditions. → This study revealed that the redox state of tobacco decreases few days after their placement in the sub-tropical environment, causing them to become susceptible to oxidative stress imposed by chronic doses of O 3 . → Therefore, its bioindicator efficiency would not be diminished in such levels of atmospheric contamination. → However, the bioindicator efficiency N. tabacum 'Bel-W3' for biomonitoring O 3 should be regionally modeled in the sub-tropics, based on both its redox state and on the flux of O 3 through stomata, in response to the varying micro-meteorological conditions that govern both physiological processes. - The bioindicator efficiency of tobacco plants is not restrained under chronic doses of O 3 in

  20. Production of the main celiac disease autoantigen by transient expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Vanesa Soledad Marin Viegas

    2015-12-01

    Full Text Available Celiac Disease (CD is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2, is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion and vacuolar (C-terminal KISIA fusion TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9 to 16 fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB were induced by the ELP, with a consequent 2 fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant

  1. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts.

    Science.gov (United States)

    Notaguchi, Michitaka; Higashiyama, Tetsuya; Suzuki, Takamasa

    2015-02-01

    Phloem is a conductive tissue that allocates nutrients from mature source leaves to sinks such as young developing tissues. Phloem also delivers proteins and RNA species, such as small RNAs and mRNAs. Intensive studies on plant systemic signaling revealed the essential roles of proteins and RNA species. However, many of their functions are still largely unknown, with the roles of transported mRNAs being particularly poorly understood. A major difficulty is the absence of an accurate and comprehensive list of mobile transcripts. In this study, we used a hetero-graft system with Nicotiana benthamiana as the recipient scion and Arabidopsis as the donor stock, to identify transcripts that moved long distances across the graft union. We identified 138 Arabidopsis transcripts as mobile mRNAs, which we collectively termed the mRNA mobilome. Reverse transcription-PCR, quantitative real-time PCR and droplet digital PCR analyses confirmed the mobility. The transcripts included potential signaling factors and, unexpectedly, more general factors. In our investigations, we found no preferred transcript length, no previously known sequence motifs in promoter or transcript sequences and no similarities between the level of the transcripts and that in the source leaves. Grafting experiments regarding the function of ERECTA, an identified transcript, showed that no function of the transcript mobilized. To our knowledge, this is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Recovery of tobacco BY-2 cells after high hydrostatic pressure treatment.

    Science.gov (United States)

    Kusube, Masataka; Nishino, Takumi; Nishikawa, Yuki; Goto, Masaki; Matsuki, Hitoshi; Iwahashi, Hitoshi

    2010-02-01

    The recovery of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells in Linsmaire and Skoog medium after treatment at high hydrostatic pressure was investigated using an Evans Blue staining method to discriminate live from dead cells. The survival of BY-2 cells just after the high-pressure treatment at 5 degrees C and 25 degrees C decreased abruptly at pressures higher than 50 MPa and 100 MPa, respectively. Furthermore, almost all of the BY-2 cells treated at 5 degrees C and 25 degrees C recovered pressures below 25 MPa and 75 MPa, respectively. However, no BY-2 cells recovered at pressures above 100 MPa at either temperature.

  3. A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis

    DEFF Research Database (Denmark)

    Ohnuma, Takayuki; Numata, Tomoyuki; Osawa, Takuo

    2011-01-01

    Expression of a class V chitinase gene (At4g19810, AtChiC) in Arabidopsis thaliana was examined by quantitative real-time PCR and by analyzing microarray data available at Genevestigator. The gene expression was induced by the plant stress-related hormones abscisic acid (ABA) and jasmonic acid (JA......, the amino acid residues responsible for substrate binding were found to be well conserved when compared with those of the class V chitinase from Nicotiana tabacum (NtChiV). All of the structural and functional properties of AtChiC are quite similar to those obtained for NtChiV, and seem to be common...

  4. Mise en evidence du Tomato Black Ring Virus (TBRV) chez l'artichaut en France

    OpenAIRE

    Migliori, A.; Marzin, H.; Rana, G.L.

    1984-01-01

    Le Tomato Black Ring Virus (TBRV) a été isolé en France de l’artichaut (Cynara scolymus L.) et de Veronica persica Poir. (Scrophulariacées) naturellement infectés. L’isolat artichaut, dénommé TBRV-A, a été identifié au TBRV d’après les réactions des plantes-hôtes et les propriétés sérologiques. La transmission du virus au niveau du sol, la présence du nématode Longidorus attenuatus Hooper dans la rhizosphère des plantes infectées et la contamination de C..scolymus, Nicotiana tabacum L. v...

  5. Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells

    CSIR Research Space (South Africa)

    Madala, NE

    2013-10-01

    Full Text Available Plants have developed biochemical and molecular responses to adapt to different stress environments. One of the characteristics of the multi-component defence response is the production of defence-related metabolites. Plant defences can be triggered...

  6. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.

    Science.gov (United States)

    Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju

    2014-08-01

    Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.

  7. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro

    Czech Academy of Sciences Publication Activity Database

    Uzelac, B.; Janošević, D.; Simonović, A.; Motyka, Václav; Dobrev, Petre; Budimir, S.

    2016-01-01

    Roč. 253, č. 2 (2016), s. 259-275 ISSN 0033-183X R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : Leaf senescence * Mesophyll ultrastructure * Phytohormones Subject RIV: EF - Botanics Impact factor: 2.870, year: 2016

  8. Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells

    CSIR Research Space (South Africa)

    Tugizimana, F

    2014-01-01

    Full Text Available , lubimin and rishitin) and other metabolites (abscisic acid and phytosterols) putatively identified. In addition, various phenylpropanoid precursors, cinnamic acid derivatives and - conjugates, coumarins and lignin monomers were annotated. These annotated...

  9. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    Science.gov (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  11. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source.

    Science.gov (United States)

    Fraisier, V; Gojon, A; Tillard, P; Daniel-Vedele, F

    2000-08-01

    The NpNRT2.1 gene encodes a putative inducible component of the high-affinity nitrate (NO3-) uptake system in Nicotiana plumbaginifolia. Here we report functional and physiological analyses of transgenic plants expressing the NpNRT2.1 coding sequence fused to the CaMV 35S or rolD promoters. Irrespective of the level of NO3- supplied, NO3- contents were found to be remarkably similar in wild-type and transgenic plants. Under specific conditions (growth on 10 mM NO3-), the steady-state NpNRT2. 1 mRNA level resulting from the deregulated transgene expression was accompanied by an increase in 15NO3- influx measured in the low concentration range. This demonstrates for the first time that the NRT2.1 sequence codes a limiting element of the inducible high-affinity transport system. Both 15NO3- influx and mRNA levels decreased in the wild type after exposure to ammonium, in agreement with previous results from many species. Surprisingly, however, influx was also markedly decreased in transgenic plants, despite stable levels of transgene expression in independent transformants after ammonium addition. We conclude that the conditions associated with the supply of a reduced nitrogen source such as ammonium, or with the generation of a further downstream metabolite, probably exert a repressive effect on NO3- influx at both transcriptional and post-transcriptional levels.

  12. Use of 15N reverse gradient two-dimensional nuclear magnetic resonance spectroscopy to follow metabolic activity in Nicotiana plumbaginifolia cell-suspension cultures.

    Science.gov (United States)

    Mesnard, F; Azaroual, N; Marty, D; Fliniaux, M A; Robins, R J; Vermeersch, G; Monti, J P

    2000-02-01

    Nitrogen metabolism was monitored in suspension cultured cells of Nicotiana plumbaginifolia Viv. using nuclear magnetic resonance (NMR) spectroscopy following the feeding of (15NH4)2SO4 and K15NO3. By using two-dimensional 15N-1H NMR with heteronuclear single-quantum-coherence spectroscopy and heteronuclear multiple-bond-coherence spectroscopy sequences, an enhanced resolution of the incorporation of 15N label into a range of compounds could be detected. Thus, in addition to the amino acids normally observed in one-dimensional 15N NMR (glutamine, aspartate, alanine), several other amino acids could be resolved, notably serine, glycine and proline. Furthermore, it was found that the peak normally assigned to the non-protein amino-acid gamma-aminobutyric acid in the one-dimensional 15N NMR spectrum was resolved into a several components. A peak of N-acetylated compounds was resolved, probably composed of the intermediates in arginine biosynthesis, N-acetylglutamate and N-acetylornithine and, possibly, the intermediate of putrescine degradation into gamma-aminobutyric acid, N-acetylputrescine. The occurrence of 15N-label in agmatine and the low detection of labelled putrescine indicate that crucial intermediates of the pathway from glutamate to polyamines and/or the tobacco alkaloids could be monitored. For the first time, labelling of the peptide glutathione and of the nucleotide uridine could be seen.

  13. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    Science.gov (United States)

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  14. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.-M. [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China); Lin, T.-H. [Department of Statistics, National Taipei University, Taiwan (China); Chiou, J.-M. [Institute of Statistical Science, Academia Sinica, Taiwan (China); Yeh, K.-C., E-mail: kcyeh@gate.sinica.edu.t [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China)

    2009-06-15

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  15. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.

    Science.gov (United States)

    Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen

    2009-06-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.

  16. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    International Nuclear Information System (INIS)

    Liang, H.-M.; Lin, T.-H.; Chiou, J.-M.; Yeh, K.-C.

    2009-01-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  17. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata)[C][W][OPEN

    Science.gov (United States)

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T.; Gaquerel, Emmanuel

    2014-01-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-l-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. PMID:25326292

  18. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  19. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge.

    Science.gov (United States)

    Montes, Christian; Castro, Álvaro; Barba, Paola; Rubio, Julia; Sánchez, Evelyn; Carvajal, Denisse; Aguirre, Carlos; Tapia, Eduardo; DelÍ Orto, Paola; Decroocq, Veronique; Prieto, Humberto

    2014-10-01

    Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.

  20. Differences in Nicotine Metabolism of Two Nicotiana attenuata Herbivores Render Them Differentially Susceptible to a Common Native Predator

    Science.gov (United States)

    Kumar, Pavan; Rathi, Preeti; Schöttner, Matthias; Baldwin, Ian T.; Pandit, Sagar

    2014-01-01

    Background Nicotiana attenuata is attacked by larvae of both specialist (Manduca sexta) and generalist (Spodoptera exigua) lepidopteran herbivores in its native habitat. Nicotine is one of N. attenuata's important defenses. M. sexta is highly nicotine tolerant; whether cytochrome P450 (CYP)-mediated oxidative detoxification and/or rapid excretion is responsible for its exceptional tolerance remains unknown despite five decades of study. Recently, we demonstrated that M. sexta uses its nicotine-induced CYP6B46 to efflux midgut-nicotine into the hemolymph, facilitating nicotine exhalation that deters predatory wolf spiders (Camptocosa parallela). S. exigua's nicotine metabolism is uninvestigated. Methodology/Principal Findings We compared the ability of these two herbivores to metabolize, tolerate and co-opt ingested nicotine for defense against the wolf spider. In addition, we analyzed the spider's excretion to gain insights into its nicotine metabolism. Contrary to previous reports, we found that M. sexta larvae neither accumulate the common nicotine oxides (cotinine, cotinine N-oxide and nicotine N-oxide) nor excrete them faster than nicotine. In M. sexta larvae, ingestion of nicotine as well as its oxides increases the accumulation of CYP6B46 transcripts. In contrast, S. exigua accumulates nicotine oxides and exhales less (66%) nicotine than does M. sexta. Spiders prefer nicotine-fed S. exigua over M. sexta, a preference reversed by topical or headspace nicotine supplementation, but not ingested or topically-coated nicotine oxides, suggesting that externalized nicotine but not the nicotine detoxification products deter spider predation. The spiders also do not accumulate nicotine oxides. Conclusions Nicotine oxidation reduces S. exigua's headspace-nicotine and renders it more susceptible to predation by spiders than M. sexta, which exhales unmetabolized nicotine. These results are consistent with the hypothesis that generalist herbivores incur costs of

  1. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  2. Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli.

    Science.gov (United States)

    Blume, B; Grierson, D

    1997-10-01

    The enzyme ACC oxidase, catalysing the last step in the biosynthesis of the plant hormone ethylene, is encoded by a small multigene family in tomato, comprising three members, LEACO1, LEACO2 and LEACO3. LEACO1 is the major gene expressed during ripening, leaf senescence, and wounding (Barry et al., 1996). To investigate the transcriptional regulation of ACC oxidase gene expression, chimeric fusions between the beta-glucuronidase reporter gene and 97 bp of 5' UTR plus 124, 396 and 1825 bp, respectively, of 5' untranscribed LEACO1 sequence were constructed and introduced into Lycopersicon esculentum (Mill cv. Ailsa Craig) and Nicotiana plumbaginifolia. Analysis of transgenic tomatoes indicated that the region containing nucleotides -124 to +97 of the LEACO1 gene is sufficient to confer a marked increase in GUS activity during fruit ripening, albeit at very low levels. Fusion of 396 and 1825 bp of LEACO1 upstream sequence resulted in strong and specific induction of GUS expression in situations known to be accompanied by enhanced ethylene production. Reporter gene expression was similar to that of the endogenous LEACO1 gene, with major increases especially during fruit ripening, senescence and abscission of leaves and, to a lesser extent, of flowers. Analysis of transgenic N. plumbaginifolia plants confirmed the pattern of LEACO1 promoter activity detected in tomato leaves and flowers. Reporter gene expression was also induced following wounding, treatment with ethylene, and pathogen infection. Histochemical analysis illustrated localized GUS activity in the pericarp of ripening fruit, abscission zones of senescent petioles and unfertilized flowers, and at wound sites. These results demonstrate that ACC oxidase is regulated at the transcriptional level in a wide range of cell types at different developmental stages and in response to several external stimuli.

  3. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses.

    Science.gov (United States)

    Wang, Ken-Der; Empleo, Roman; Nguyen, Tan Tri V; Moffett, Peter; Sacco, Melanie Ann

    2015-06-01

    Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  4. The Lettuce infectious yellows virus (LIYV)-encoded P26 is associated with plasmalemma deposits within LIYV-infected cells

    International Nuclear Information System (INIS)

    Medina, V.; Sudarshana, M.R.; Tian, T.; Ralston, K.S.; Yeh, H.-H.; Falk, B.W.

    2005-01-01

    Cytological, immunological, and mutagenesis approaches were used to identify the viral factors associated with the formation of plasmalemma deposits (PLDs) in whole plants and protoplasts infected by Lettuce infectious yellows virus (LIYV). Transmission electron microscopy and immunogold labeling using polyclonal antibodies to four of the five LIYV RNA 2-encoded large proteins, capsid protein (CP), minor capsid protein (CPm), HSP70 homolog (HSP70h), and P59, showed specific labeling of LIYV virions or virion aggregates around the vesiculated membranous inclusions, but not PLDs in LIYV-infected Nicotiana benthamiana, Nicotiana clevelandii, Lactuca sativa, and Chenopodium murale plants, and Nicotiana tabacum protoplasts. In contrast, antibodies to the RNA 2-encoded P26 showed specific labeling of PLDs but not virions in both LIYV-infected plants and protoplasts. Virion-like particles (VLPs) were seen in protoplasts infected by all LIYV RNA 2 mutants except for the CP (major capsid protein) mutant. PLDs were more difficult to find in protoplasts, but were seen in protoplasts infected by the CP and CPm mutants, but not in protoplasts infected by the P26, HSP70h, or P59 mutants. Interestingly, although the CPm mutant showed VLPs and PLDs, the PLDs did not show associated virions/virion-like particles as was always observed for PLDs seen in protoplasts infected by wild-type LIYV. Immunoblot analyses performed on purified LIYV virions showed that P26 was not detected with purified virions, but was detected in the cell wall, 1000 g and 30,000 g pellet fractions of LIYV-infected plants. These data suggest that P26 is associated with the LIYV-induced PLDs, and in contrast to the other RNA 2-encoded large proteins, P26 is not a virion protein

  5. Control of the synthesis and subcellular targeting of the two GDH genes products in leaves and stems of Nicotiana plumbaginifolia and Arabidopsis thaliana.

    Science.gov (United States)

    Fontaine, Jean-Xavier; Saladino, Francesca; Agrimonti, Caterina; Bedu, Magali; Tercé-Laforgue, Thérèse; Tétu, Thierry; Hirel, Bertrand; Restivo, Francesco M; Dubois, Frédéric

    2006-03-01

    Although the physiological role of the enzyme glutamate dehydrogenase which catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate remains to be elucidated, it is now well established that in higher plants the enzyme preferentially occurs in the mitochondria of phloem companion cells. The Nicotiana plumbaginifolia and Arabidopis thaliana enzyme is encoded by two distinct genes encoding either an alpha- or a beta-subunit. Using antisense plants and mutants impaired in the expression of either of the two genes, we showed that in leaves and stems both the alpha- and beta-subunits are targeted to the mitochondria of the companion cells. In addition, we found in both species that there is a compensatory mechanism up-regulating the expression of the alpha-subunit in the stems when the expression of the beta-subunit is impaired in the leaves, and of the beta-subunit in the leaves when the expression of the alpha-subunit is impaired in the stems. When one of the two genes encoding glutamate dehydrogenase is ectopically expressed, the corresponding protein is targeted to the mitochondria of both leaf and stem parenchyma cells and its production is increased in the companion cells. These results are discussed in relation to the possible signalling and/or physiological function of the enzyme which appears to be coordinated in leaves and stems.

  6. Suppressed phenylalanine ammonia-lyase activity after heat shock in transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2-parsley PAL2 chimera gene.

    Science.gov (United States)

    Moriwaki, M; Yamakawa, T; Washino, T; Kodama, T; Igarashi, Y

    1999-01-01

    The activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) after heat shock (HS) in leaves and buds of transgenic Nicotiana plumbaginifolia containing an Arabidopsis HSP18.2 promoter-parsley phenylalanine ammonia-lyase 2 (HSP18.2-PAL2) chimera gene was examined. Immediately after HS treatment at 44 degrees C for 5 h, the PAL activity in both transgenic and normal (untransformed) plants was 35-38% lower than that before HS. At normal temperature (25-26 degrees C), the PAL activity recovered within 5 h of ending the HS treatment in normal plants, but not until 12-24 h in transgenic plants containing the HSP18.2-PAL2 gene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of parsley PAL2 mRNA in transgenic plants, which remained for 8-12 h following 5-h HS at 44 degrees C; the mRNA was not observed before HS. The content of chlorogenic acid (CGA; 3-caffeoylquinic acid) decreased drastically 8-12 h after HS in transgenic plants, but only slightly in normal plants. Thus, the decrease in PAL activity accompanied by expression of the parsley PAL2 gene after HS treatment corresponded to the decrease in CGA synthesis. These results might be attributed to post-transcriptional degradation of endogenous PAL mRNA triggered by transcription of the transgene.

  7. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense.

    Science.gov (United States)

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-09-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.

  8. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    Science.gov (United States)

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.

  9. Endogenous recipes for controlling arthropod ectoparasites of domestic poultry Receitas caseiras para o controle do ectoparasita artrópode nas aves domésticas

    Directory of Open Access Journals (Sweden)

    Sahidou Salifou

    2013-03-01

    Full Text Available This study is a contribution to the inventory of medicinal plants and other methods used in controlling external parasitic diseases of backyard poultry in the localities of Djougou and Ouaké (department of Donga, Benin. It consists of a survey undertaken from December 2010 to March 2011 through visits and interviews with 210 poultry famers. The results indicate that 13 species of medicinal plants are used in controlling ectoparasites. Annona senegalensis, Tectona grandis, Securidaca longepedunculata, Indigofera hirsuta, Lophira lanceolata, Hyptis spicigera, Steganotaenia araliacea, Oxytenanthera abyssinica, Nicotiana tabacum, Jatropha curcas, Ficus exasperata, Azadirachta indica and Parkia biglobosa are believed to treat external parasitic diseases in the area of this study. Annona senegalensis was the most frequently cited plant (18%, p Este estudo é uma contribuição ao inventário de plantas curativas e outros métodos endógenos usados no combate aos ectoparasitos de pássaros de currais nas aldeias de Djougou e Ouaké (departamento do Donga, em Benin. A pesquisa foi conduzida entre dezembro de 2010 e março de 2011, durante visitas e entrevistas com 210 criadores de aves. Os resultados indicam que 13 espécies de plantas curativas são utilizadas no combate aos ectoparasitos. Annona senegalensis, Tectona grandis, Securidaca longepedunculata, Indigofera hirsuta, Lophira lanceolata, Hyptis spicigera, Steganotaenia araliacea, Oxytenanthera abyssinica, Nicotiana tabacum, Jatropha curcas, Ficus exasperata, Azadirachta indica e Parkia biglobosa, são usadas para tratar uma doença parasitária externa na área de estudo. Annona senegalensis foi a planta mais frequentemente usada (18%, p < 0.05 como medicação contra os parasitas externos das aves. Outras receitas tradicionais como o óleo de palma e a cinza tem sido comunicadas.

  10. Changes in Air CO2 Concentration Differentially Alter Transcript Levels of NtAQP1 and NtPIP2;1 Aquaporin Genes in Tobacco Leaves

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2016-04-01

    Full Text Available The aquaporin specific control on water versus carbon pathways in leaves is pivotal in controlling gas exchange and leaf hydraulics. We investigated whether Nicotiana tabacum aquaporin 1 (NtAQP1 and Nicotiana tabacum plasma membrane intrinsic protein 2;1 (NtPIP2;1 gene expression varies in tobacco leaves subjected to treatments with different CO2 concentrations (ranging from 0 to 800 ppm, inducing changes in photosynthesis, stomatal regulation and water evaporation from the leaf. Changes in air CO2 concentration ([CO2] affected net photosynthesis (Pn and leaf substomatal [CO2] (Ci. Pn was slightly negative at 0 ppm air CO2; it was one-third that of ambient controls at 200 ppm, and not different from controls at 800 ppm. Leaves fed with 800 ppm [CO2] showed one-third reduced stomatal conductance (gs and transpiration (E, and their gs was in turn slightly lower than in 200 ppm– and in 0 ppm–treated leaves. The 800 ppm air [CO2] strongly impaired both NtAQP1 and NtPIP2;1 gene expression, whereas 0 ppm air [CO2], a concentration below any in vivo possible conditions and specifically chosen to maximize the gene expression alteration, increased only the NtAQP1 transcript level. We propose that NtAQP1 expression, an aquaporin devoted to CO2 transport, positively responds to CO2 scarcity in the air in the whole range 0–800 ppm. On the contrary, expression of NtPIP2;1, an aquaporin not devoted to CO2 transport, is related to water balance in the leaf, and changes in parallel with gs. These observations fit in a model where upregulation of leaf aquaporins is activated at low Ci, while downregulation occurs when high Ci saturates photosynthesis and causes stomatal closure.

  11. Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5' but not the 3' splice site inhibit intron processing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Liu, H X; Goodall, G J; Kole, R; Filipowicz, W

    1995-01-16

    We have performed a systematic study of the effect of artificial hairpins on pre-mRNA splicing in protoplasts of a dicot plant, Nicotiana plumbaginifolia. Hairpins with a potential to form 18 or 24 bp stems strongly inhibit splicing when they sequester the 5' splice site or are placed in the middle of short introns. However, similar 24 bp hairpins sequestering the 3' splice site do not prevent this site from being used as an acceptor. Utilization of the stem-located 3' site requires that the base of the stem is separated from the upstream 5' splice site by a minimum of approximately 45 nucleotides and that another 'helper' 3' splice site is present downstream of the stem. The results indicate that the spliceosome or factors associated with it may have a potential to unfold secondary structure present in the downstream portion of the intron, prior to or at the step of the 3' splice site selection. The finding that the helper 3' site is required for utilization of the stem-located acceptor confirms and extends previous observations, obtained with HeLa cell in vitro splicing systems, indicating that the 3' splice site may be recognized at least twice during spliceosome assembly.

  12. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation?

    Science.gov (United States)

    Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume

    2009-01-01

    While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during

  13. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    Full Text Available In the remodeling pathway for the synthesis of phosphatidylcholine (PC, acyl-CoA-dependent lysophosphatidylcholine (lysoPC acyltransferase (LPCAT catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2. Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△ disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA and α-linolenic acid (18:3n3, ALA into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3, while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid

  14. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  15. PENGARUH STRES PELAPARAN DAN SUHU TINGGI TERHADAP INDUKSI EMBRIOGENESIS MIKROSPORA TEMBAKAU

    Directory of Open Access Journals (Sweden)

    Baiq Farhatul Wahidah

    2010-06-01

    Full Text Available The effect of treatment combination of starvation and heat shock (34oC towards embryogenesis induction of microspores on three cultivars of Nicotiana tabacum L. cv. Petit havana SR-1, N. tabacum L. cv. Vorstenlanden, and N.tabacum L. cv. Virginia had been examined. The microspores were isolated aseptically from anthers by maceration and centrifugation. The culture was conducted in a starvation medium (B- Medium without sugar and nitrogen source for 4, 6, 8 days at 34oC. Then, they were subcultured on embryogenesis medium (A2 medium and were incubated at 25oC in dark. The development of cultivated microspores was relatively homogenous in which they contained of late uninucleate stage. The viability and microspores development were observed. The stain of nucleus was done using DAPI (4,6-diamindino-2-phenylindole then the colored microspores were observed under the fluorescent microscope. During the starvation stress and heat shock (34oC, the structure of microspores changed into 3 types of embryogenic microspore. Type 1 was indentical with late uninucleate stage; in type 2 the vacuole of microspore was fragmented in periphery position with the nucleus; and type 3 the nucleus found in a cytoplasmic pocket was shifted into centre position..The simetrical division was the first division occurred in embryogenesis stage of microspores. It was occurred on the three cultivars after the incubation period. Then it will form a multicellular structure in the fourth week of N. tabacum L. cv. Vorstenlanden and N. tabacum L. cv. Virginia. Meanwhile, for N.tabacum L. cv Petit havana SR-1 the multicellular structure was formed in the second week. In the next phase, the multicellular structure developed into callus for N. tabacum L. cv. Vorstenlanden and N. tabacum L. cv. Virginia. While, for N. tabacum L. cv. Petit havana SR-1 the multicellular structure developed into globular structure.

  16. The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Suzuki, Masashi; Seki, Hikaru; Muranaka, Toshiya; Mano, Yoshihiro

    2009-01-22

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells can be grown in medium containing indole-3-acetamide (IAM). Based on this finding, the NtAMI1 gene, whose product is functionally equivalent to the AtAMI1 gene of Arabidopsis thaliana and the aux2 gene of Agrobacterium rhizogenes, was isolated from BY-2 cells. Overexpression of the NtAMI1 gene allowed BY-2 cells to proliferate at lower concentrations of IAM, whereas suppression of the NtAMI1 gene by RNA interference (RNAi) caused severe growth inhibition in the medium containing IAM. These results suggest that IAM is incorporated into plant cells and converted to the auxin, indole-3-acetic acid, by NtAMI1.

  17. Influence of hydroxyurea on nucleic acids content and 3H-uridine incorporation in callus and tumorous tobacco tissues cultured in vitro

    Directory of Open Access Journals (Sweden)

    A. Bielecka

    2015-01-01

    Full Text Available In callus and tumor tissues of Nicotiana tabacum cultured for 39 days in media supplemented with various concentrations of hydroxyurea (1.3 x 10-4 M - 1.3 x 10-3 M a decrease of DNA content (ca. 24 per cent in callus tissue and ca. 23 per cent in tumour tissue and a decrease of RNA content (over 10 per cent and ca. 9 per cent in callus and tumour tissue, respectively was observed. The autoradiographic method showed that a long-lasting action of this com-pound inhibits RNA synthesis. A stronger inhibitory influence of hydroxyurea upon incorporation of 3H-uridine from the incubation medium was revealed.

  18. Dicty_cDB: Contig-U15609-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available H641784 ) CHO_OF4972xp21r1.ab1 CHO_OF4 Nicotiana tabacum ge... 54 0.002 2 ( DY336731 ) OB_SEa04L12.r OB_SEa Ocimum basil...nt WO2007093776. 38 0.029 3 ( DQ508732 ) Perkinsus marinus delta9-elongating activity prot... 38 0.029 3 ( D...Y036171 ) CAIY2568.fwd CAIY Artemisia annua leaf Artemisia ... 42 0.33 2 ( AW6512...9 2 ( EY042621 ) CAIY6316.fwd CAIY Artemisia annua leaf Artemisia ... 42 0.39 2 ( EH069644 ) PMDAD81TO Perki...nsus marinus small insert cDNA lib... 38 0.41 2 ( EY042620 ) CAIY6316.rev CAIY Artemisia annua leaf Artemi

  19. Isolation of plant Photosystem II complexes by fractional solubilization

    Directory of Open Access Journals (Sweden)

    Patrycja eHaniewicz

    2015-12-01

    Full Text Available PSII occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield.

  20. Dicty_cDB: Contig-U16300-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 632 ) 95999.1 Cold Sweetening C Solanum tuberosum cDNA ... 62 2e-14 3 ( CK280013 ) EST726091 potato abiotic stress cDNA library...(Normalize... 72 6e-18 4 ( CK277106 ) EST723184 potato abiotic stress cDNA library Sola... 56 7e-18 4 ( CK25...na cDNA 5', ... 74 5e-14 4 ( CX082679 ) EHAB017TR E. histolytica Normalized cDNA library ... 52...( CX089904 ) EHAE563TR E. histolytica Normalized cDNA library ... 52 7e-14 4 ( EB...a strain T4 cDNA library. 56 1e-12 4 ( AB077052 ) Nicotiana tabacum NtCK2a3 mRNA for casein kina

  1. Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells.

    Science.gov (United States)

    Laureys, F; Dewitte, W; Witters, E; Van Montagu, M; Inzé, D; Van Onckelen, H

    1998-04-10

    The importance of N6-isoprenoid cytokinins in the G2-M transition of Nicotiana tabacum BY-2 cells was investigated. Both cytokinin biosynthesis and entry in mitosis were partially blocked by application at early or late G2 of lovastatin (10 microM), an inhibitor of mevalonic acid synthesis. LC-MS/MS quantification of endogenous cytokinins proved that lovastatin affects cytokinin biosynthesis by inhibiting HMG-CoA reductase. Out of eight different aminopurines and a synthetic auxin tested for their ability to override lovastatin inhibition of mitosis, only zeatin was active. Our data point to a key role for a well-defined cytokinin (here, zeatin) in the G2-M transition of tobacco BY-2 cells.

  2. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    Science.gov (United States)

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Dicty_cDB: Contig-U14908-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available id:none) Oryza sativa (japonica cultivar... 86 2e-15 FJ787361_1( FJ787361 |pid:none) Nicotiana repanda prote...|pid:none) Oryza sativa (japonica cultivar-gr... 84 8e-15 FJ787374_1( FJ787374 |pid:none) Nicotiana repanda ...15 FJ787369_1( FJ787369 |pid:none) Nicotiana repanda protein kinase-c... 84 8e-15 EU722820_1( EU722820 |pid:... 1e-14 AB016885_14( AB016885 |pid:none) Arabidopsis thaliana genomic DNA,... 83 1e-14 FJ787371_1( FJ787371 |pid:none) Nicotiana repan...da protein kinase-c... 83 1e-14 A84518( A84518 ) probable receptor-like protein kin

  4. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies.

    Science.gov (United States)

    Kaur, Harleen; Shaker, Kamel; Heinzel, Nicolas; Ralph, John; Gális, Ivan; Baldwin, Ian T

    2012-08-01

    The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.

  5. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease.

    Science.gov (United States)

    Kytidou, Kassiani; Beekwilder, Jules; Artola, Marta; van Meel, Eline; Wilbers, Ruud H P; Moolenaar, Geri F; Goosen, Nora; Ferraz, Maria J; Katzy, Rebecca; Voskamp, Patrick; Florea, Bogdan I; Hokke, Cornelis H; Overkleeft, Herman S; Schots, Arjen; Bosch, Dirk; Pannu, Navraj; Aerts, Johannes M F G

    2018-04-19

    α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-D-galactopyranoside substrate (Km = 0.17 mM) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lysoGb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lysoGb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Multivariate optimization of a headspace solid-phase microextraction method followed by gas chromatography with mass spectrometry for the determination of terpenes in Nicotiana langsdorffii.

    Science.gov (United States)

    Ardini, Francisco; Carro, Marina Di; Abelmoschi, Maria Luisa; Grotti, Marco; Magi, Emanuele

    2014-07-01

    A simple and sensitive procedure based on headspace solid-phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α-pinene, limonene, linalool, α-terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α-pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α-terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α-pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10-17% and 9-13%, respectively. Finally, the procedure was applied to in vitro wild-type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75-374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. NpPDR1, a Pleiotropic Drug Resistance-Type ATP-Binding Cassette Transporter from Nicotiana plumbaginifolia, Plays a Major Role in Plant Pathogen Defense1

    Science.gov (United States)

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-01-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family. PMID:16126865

  8. Metabolic aspects of growth in HU-treated crown-gall tissue cultures. I. Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Aldona Rennert

    2015-01-01

    Full Text Available An influence of hydroxyurea (HU on the growth, DNA and RNA contents and protein synthesis in the tobacco tumour tissue culture was studied in comparison with a homologous callus tissue. In conformity with expectations considerable decrease of DNA level in both tissues is a primary effect of HU activity. This results in the growth inhibition and in the secondary metabolic effects; these effects depend not only on the concentration of inhibitor but also on the age of tissue. In spite of some common features the character of these changes shows a distinct differentiation depending on the tissue type. TMs points to specific modifications of the biochemical regulation of growth in a tumour.

  9. Dicty_cDB: Contig-U14112-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available Oryza sativa Japonica Group genom... 77 8e-14 FJ787374_1( FJ787374 |pid:none) Nicotiana repanda protein kin..._1( FJ787369 |pid:none) Nicotiana repanda protein kinase-c... 79 1e-13 AC004260_13( AC004260 |pid:none) Arab...8... 72 2e-12 FJ787371_1( FJ787371 |pid:none) Nicotiana repanda protein kinase-c... 75 2e-12 FB875947_1( FB8

  10. Transcript and metabolite profiling for the evaluation of tobacco tree and poplar as feedstock for the bio-based industry.

    Science.gov (United States)

    Ruprecht, Colin; Tohge, Takayuki; Fernie, Alisdair; Mortimer, Cara L; Kozlo, Amanda; Fraser, Paul D; Funke, Norma; Cesarino, Igor; Vanholme, Ruben; Boerjan, Wout; Morreel, Kris; Burgert, Ingo; Gierlinger, Notburga; Bulone, Vincent; Schneider, Vera; Stockero, Andrea; Navarro-Aviñó, Juan; Pudel, Frank; Tambuyser, Bart; Hygate, James; Bumstead, Jon; Notley, Louis; Persson, Staffan

    2014-05-16

    The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.

  11. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Fongying; Coruzzi, G. (Rockefeller Univ., New York, NY (United States))

    1991-10-01

    Asparagine synthetase (AS) mRNA in Pisum sativum accumulates preferentially in plants grown in the dark. Nuclear run-on experiments demonstrate that expression of both the AS1 and AS2 genes is negatively regulated by light at the level of transcription. A decrease in the transcriptional rate of the AS1 gene can be detected as early as 20 min after exposure to light. Time course experiments reveal that the levels of AS mRNA fluctuate dramatically during a normal light/dark cycle. This is due to a direct effect of light and not to changes associated with circadian rhythm. A novel finding is that the light-repressed expression of the AS1 gene is as dramatic nonphotosynthetic organs such as roots as it is in leaves. Experiments demonstrate that the small amount of light which passes through the soil is sufficient to repress AS1 expression in roots, indicating that light has a direct effect on AS1 gene expression in roots. The negative regulation of AS gene expression by light was shown to be a general phenomenon in plants which also occurs in nonlegumes such as Nicotiana plumbaginifolia and Nicotiana tabacum. Thus, the AS genes can serve as a model with which to dissect the molecular basis for light-regulated transcriptional repression in plants.

  12. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. DNA repair in mutagen-injured higher plants

    International Nuclear Information System (INIS)

    Veleminsky, J.; Gichner, T.

    1978-01-01

    Data are summarized proving the occurrence of photoreactivation of UV-induced pyrimidine dimers in cells of Nicotiana tabucum, Gingko and carrot, the excision of dimers in cells of Nicotiana tabacum, Gingko and carrot, the excision of dimers in protoplasts of carrot and in embryos of Lathyrus sativus, and the repair of DNA single-strand breaks induced in carrot protoplasts and barley embryonic cells by ionizing radiation. In irradiated barley embryos the unscheduled DNA synthesis and higher accessibility of induced primers to DNA polymerase I of E. coli were observed preferentially in G 1 cells with diffused chromatin. These reactions were inhibited by caffeine and EDTA. Unscheduled DNA synthesis was also observed in synchronized irradiated root cuttings of Vicia faba and in barley embryos treated with 4-nitroquinoline oxide, the latter being inhibited by caffeine and hydroxyurea. Repair synthesis was also established in barley embryos treated with mutagenic N-methyl-N-nitrosourea under conditions that postponed the onset of germination after the treatment. The same conditions enhanced the repair of DNA single-strand breaks induced by this mutagen and several other monofunctional alkylating compounds. From tissues of barley and of Phaseolus multiflorus, endonucleases for apurinic sites were isolated and characterized. Some of them are located in chromatin, others in chloroplasts. The relation between DNA repair and genetic effects of mutagens in higher plants is also discussed. (Auth.)

  14. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7 in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Selvaraju Kanagarajan

    Full Text Available The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His tag, and an endoplasmic retention signal (SEKDEL. The construct was cloned into a Cowpea mosaic virus (CPMV-based vector (pEAQ-HT and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19 containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0, as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi. Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of

  15. Dicty_cDB: Contig-U14348-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 71_1( FJ787371 |pid:none) Nicotiana repanda protein kinase-c... 94 3e-18 AC124968_9( AC124968 |pid:none) Med... 5e-17 FJ787374_1( FJ787374 |pid:none) Nicotiana repanda protein kinase-c... 90 5e-17 AE014298_1862( AE01429...08048_1( AY708048 |pid:none) Zea mays salt-inducible putative p... 90 5e-17 FJ787369_1( FJ787369 |pid:none) Nicotiana repanda

  16. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  17. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance.

    Science.gov (United States)

    Qin, Xiaoqiong; Zeevaart, Jan A D

    2002-02-01

    The plant hormone abscisic acid (ABA) plays important roles in seed maturation and dormancy and in adaptation to a variety of environmental stresses. An effort to engineer plants with elevated ABA levels and subsequent stress tolerance is focused on the genetic manipulation of the cleavage reaction. It has been shown in bean (Phaseolus vulgaris) that the gene encoding the cleavage enzyme (PvNCED1) is up-regulated by water stress, preceding accumulation of ABA. Transgenic wild tobacco (Nicotiana plumbaginifolia Viv.) plants were produced that overexpress the PvNCED1 gene either constitutively or in an inducible manner. The constitutive expression of PvNCED1 resulted in an increase in ABA and its catabolite, phaseic acid (PA). When the PvNCED1 gene was driven by the dexamethasone (DEX)-inducible promoter, a transient induction of PvNCED1 message and accumulation of ABA and PA were observed in different lines after application of DEX. Accumulation of ABA started to level off after 6 h, whereas the PA level continued to increase. In the presence of DEX, seeds from homozygous transgenic line TN1 showed a 4-d delay in germination. After spraying with DEX, the detached leaves from line TN1 had a drastic decrease in their water loss relative to control leaves. These plants also showed a marked increase in their tolerance to drought stress. These results indicate that it is possible to manipulate ABA levels in plants by overexpressing the key regulatory gene in ABA biosynthesis and that stress tolerance can be improved by increasing ABA levels.

  18. Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress.

    Science.gov (United States)

    Ancillotti, Claudia; Bogani, Patrizia; Biricolti, Stefano; Calistri, Elisa; Checchini, Leonardo; Ciofi, Lorenzo; Gonnelli, Cristina; Del Bubba, Massimo

    2015-12-01

    In this study wild type Nicotiana langsdorffii plants were genetically transformed by the insertion of the rat gene (gr) encoding the glucocorticoid receptor or the rolC gene and exposed to water and heat stress. Water stress was induced for 15 days by adding 20% PEG 6000 in the growth medium, whereas the heat treatment was performed at 50 °C for 2 h, after that a re-growing capability study was carried out. The plant response to stress was investigated by determining electrolyte leakage, dry weight biomass production and water content. These data were evaluated in relation to antiradical activity and concentrations of total polyphenols, selected phenolic compounds and some soluble sugars, as biochemical indicators of metabolic changes due to gene insertion and/or stress treatments. As regards the water stress, the measured physiological parameters evidenced an increasing stress level in the order rolC < gr < WT plants (e.g. about 100% and 50% electrolyte leakage increase in WT and gr samples, respectively) and complied with the biochemical pattern, which consisted in a general decrease of antiradical activity and phenolics, together with an increase in sugars. As regard heat stress, electrolyte leakage data were only in partial agreement with the re-growing capability study. In fact, according to this latter evaluation, gr was the genotype less affected by the heat shock. In this regard, sugars and especially phenolic compounds are informative of the long-term effects due to heat shock treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. In-vitro antimicrobial activity screening of some ethnoveterinary medicinal plants traditionally used against mastitis, wound and gastrointestinal tract complication in Tigray Region, Ethiopia.

    Science.gov (United States)

    Kalayou, Shewit; Haileselassie, Mekonnen; Gebre-Egziabher, Gebremedhin; Tiku'e, Tsegay; Sahle, Samson; Taddele, Habtamu; Ghezu, Mussie

    2012-07-01

    To screen the antibacterial activity of nine ethnoveterinary plants traditionally used for the treatment of mastitis, wound and gastrointestinal complications. Hydroalcoholic exctracts of medicinal plants namely, Achyranthes aspera (A. aspera) L. (Family Asparagaceae), Ficus caria (F. caria) (Family Moraceae), Malvi parviflora (M. parviflora) (Family Malvaceae), Vernonia species (V. species) (local name Alakit, Family Asteraceae), Solanum hastifolium (S. hastifolium) (Family Solanaceae), Calpurinia aurea (C. aurea) (Ait) Benth (Family Fabaceae), Nicotiana tabacum (N. tabacum) L. (Family Solanaceae), Ziziphus spina-christi (Z. spina-christi) (Family Rhamnaceae), Croton macrostachys (C. macrostachys) (Family Euphorbiaceae), were screened against clinical bacterial isolates of veterinary importance from October 2007 to April 2009. The antibacterial activity was tested using disc diffusion at two concentrations (200 mg/mL and 100 mg/mL) and broth dilution methods using 70% methanol macerated leaf extracts. With the exception of S. hastifolium all plant extracts exhibited antibacterial activity. Among the medicinal plants tested C. aurea, C. macrostachyus, A. aspera, N. tabacum and vernonia species (Alakit) showed the most promising antimicrobial properties. It can be concluded that many of the tested plants have antibacterial activity and supports the traditional usage of the plants for mastitis, wound and gastrointestinal complications treatment. Further studies into their toxicity and phytochemistry is advocated.

  20. Tackling heterogeneity: a leaf disc-based assay for the high-throughput screening of transient gene expression in tobacco.

    Directory of Open Access Journals (Sweden)

    Natalia Piotrzkowski

    Full Text Available Transient Agrobacterium-mediated gene expression assays for Nicotiana tabacum (N. tabacum are frequently used because they facilitate the comparison of multiple expression constructs regarding their capacity for maximum recombinant protein production. However, for three model proteins, we found that recombinant protein accumulation (rpa was significantly influenced by leaf age and leaf position effects. The ratio between the highest and lowest amount of protein accumulation (max/min ratio was found to be as high as 11. Therefore, construct-based impacts on the rpa level that are less than 11-fold will be masked by background noise. To address this problem, we developed a leaf disc-based screening assay and infiltration device that allows the rpa level in a whole tobacco plant to be reliably and reproducibly determined. The prototype of the leaf disc infiltration device allows 14 Agrobacterium-mediated infiltration events to be conducted in parallel. As shown for three model proteins, the average max/min rpa ratio was reduced to 1.4 using this method, which allows for a sensitive comparison of different genetic elements affecting recombinant protein expression.