WorldWideScience

Sample records for nicotiana benthamiana wrky8

  1. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Chu

    Full Text Available WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41 was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS scavenging and the expression of antioxidant genes.

  2. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea.

    Science.gov (United States)

    Adachi, Hiroaki; Ishihama, Nobuaki; Nakano, Takaaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2016-06-02

    MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.

  3. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  4. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana.

    Science.gov (United States)

    Liu, Xiufang; Song, Yunzhi; Xing, Fangyu; Wang, Ning; Wen, Fujiang; Zhu, Changxiang

    2016-09-01

    WRKY transcription factors are involved in various processes, ranging from plant growth to abiotic and biotic stress responses. Group I WRKY members have been rarely reported compared with group II or III members, particularly in cotton (Gossypium hirsutum). In this study, a group I WRKY gene, namely, GhWRKY25, was cloned from cotton and characterized. Expression analysis revealed that GhWRKY25 can be induced or deduced by the treatments of abiotic stresses and multiple defense-related signaling molecules. Overexpression of GhWRKY25 in Nicotiana benthamiana reduced plant tolerance to drought stress but enhanced tolerance to salt stress. Moreover, more MDA and ROS accumulated in transgenic plants after drought treatment with lower activities of SOD, POD, and CAT. Our study further demonstrated that GhWRKY25 overexpression in plants enhanced sensitivity to the fungal pathogen Botrytis cinerea by reducing the expression of SA or ET signaling related genes and inducing the expression of genes involved in the JA signaling pathway. These results indicated that GhWRKY25 plays negative or positive roles in response to abiotic stresses, and the reduced pathogen resistance may be related to the crosstalk of the SA and JA/ET signaling pathways.

  5. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Science.gov (United States)

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  6. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings.

    Science.gov (United States)

    Väisänen, Enni E; Smeds, Annika I; Fagerstedt, Kurt V; Teeri, Teemu H; Willför, Stefan M; Kärkönen, Anna

    2015-09-01

    Externally added coniferyl alcohol at high concentrations reduces the growth of Nicotiana cells and seedlings. Coniferyl alcohol is metabolized by BY-2 cells to several compounds. Coniferyl alcohol (CA) is a common monolignol and a building block of lignin. The toxicity of monolignol alcohols has been stated in the literature, but there are only few studies suggesting that this is true. We investigated the physiological effects of CA on living plant cells in more detail. Tobacco (Nicotiana tabacum) Bright yellow-2 cells (BY-2) and Nicotiana benthamiana seedlings both showed concentration-dependent growth retardation in response to 0.5-5 mM CA treatment. In some cases, CA addition caused cell death in BY-2 cultures, but this response was dependent on the growth stage of the cells. Based on LC-MS/MS analysis, BY-2 cells did not accumulate the externally supplemented CA, but metabolized it to ferulic acid, ferulic acid glycoside, coniferin, and to some other phenolic compounds. In addition to growth inhibition, CA caused the formation of a lignin-like compound detected by phloroglucinol staining in N. benthamiana roots and occasionally in BY-2 cells. To prevent this, we added potassium iodide (KI, at 5 mM) to overcome the peroxidase-mediated CA polymerization to lignin. KI had, however, toxic effects on its own: in N. benthamiana seedlings, it caused reduction in growth; in BY-2 cells, reduction in growth and cell viability. Surprisingly, CA restored the growth of KI-treated BY-2 cells and N. benthamiana seedlings. Our results suggest that CA at high concentrations is toxic to plant cells.

  7. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Luping Zheng

    2016-01-01

    Full Text Available Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana. Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP. The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2 protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain and a nuclear localization signal (NLS in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana.

  8. Stomatal Closure and SA-, JA/ET-Signaling Pathways Are Essential for Bacillus amyloliquefaciens FZB42 to Restrict Leaf Disease Caused by Phytophthora nicotianae in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Liming Wu

    2018-04-01

    Full Text Available Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacterium that induces resistance to a broad spectrum of pathogens. This study analyzed the mechanism by which FZB42 restricts leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana. The oomycete foliar pathogen P. nicotianae is able to reopen stomata which had been closed by the plant innate immune response to initiate penetration and infection. Here, we showed that root colonization by B. amyloliquefaciens FZB42 restricted pathogen-mediated stomatal reopening in N. benthamiana. Abscisic acid (ABA and salicylic acid (SA-regulated pathways mediated FZB42-induced stomatal closure after pathogen infection. Moreover, the defense-related genes PR-1a, LOX, and ERF1, involved in the SA and jasmonic acid (JA/ethylene (ET signaling pathways, respectively, were overexpressed, and levels of the hormones SA, JA, and ET increased in the leaves of B. amyloliquefaciens FZB42-treated wild type plants. Disruption of one of these three pathways in N. benthamiana plants increased susceptibility to the pathogen. These suggest that SA- and JA/ET-dependent signaling pathways were important in plant defenses against the pathogen. Our data thus explain a biocontrol mechanism of soil rhizobacteria in a plant.

  9. The activity and isoforms of NADP-malic enzyme in Nicotiana benthamiana plants under biotic stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová, V.; Jirásková, A.; Janošková, M.; Müller, Karel; Baťková, Petra; Synková, Helena; Čeřovská, Noemi; Ryšlavá, H.

    2007-01-01

    Roč. 26, č. 4 (2007), s. 281-289 ISSN 0231-5882 Institutional research plan: CEZ:AV0Z50380511 Keywords : NADP * malic enzyme isoforms * Nicotiana benthamiana Subject RIV: EF - Botanics Impact factor: 1.286, year: 2007 http://www.gpb.sav.sk/2007-4.htm

  10. Transient Expression and Purification of Horseradish Peroxidase C in Nicotiana benthamiana.

    Science.gov (United States)

    Huddy, Suzanne M; Hitzeroth, Inga I; Meyers, Ann E; Weber, Brandon; Rybicki, Edward P

    2018-01-01

    Horseradish peroxidase (HRP) is a commercially important reagent enzyme used in molecular biology and in the diagnostic product industry. It is typically purified from the roots of the horseradish ( Armoracia rusticana ); however, this crop is only available seasonally, yields are variable and often low, and the product is a mixture of isoenzymes. Engineering high-level expression in transiently transformed tobacco may offer a solution to these problems. In this study, a synthetic Nicotiana benthamiana codon-adapted full-length HRP isoenzyme gene as well as C-terminally truncated and both N- and C-terminally truncated versions of the HRP C gene were synthesized, and their expression in N. benthamiana was evaluated using an Agrobacterium tumefaciens -mediated transient expression system. The influence on HRP C expression levels of co-infiltration with a silencing suppressor (NSs) construct was also evaluated. Highest HRP C levels were consistently obtained using either the full length or C-terminally truncated HRP C constructs. HRP C purification by ion exchange chromatography gave an overall yield of 54% with a Reinheitszahl value of >3 and a specific activity of 458 U/mg. The high level of HRP C production in N. benthamiana in just five days offers an alternative, viable, and scalable system for production of this commercially significant enzyme.

  11. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  12. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana.

    Science.gov (United States)

    Phoolcharoen, Waranyoo; Bhoo, Seong H; Lai, Huafang; Ma, Julian; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2011-09-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development. The use of plant biotechnology is one possible way to cost-effectively produce subunit vaccines. In this work, a geminiviral replicon system was used to produce an Ebola immune complex (EIC) in Nicotiana benthamiana. Ebola glycoprotein (GP1) was fused at the C-terminus of the heavy chain of humanized 6D8 IgG monoclonal antibody, which specifically binds to a linear epitope on GP1. Co-expression of the GP1-heavy chain fusion and the 6D8 light chain using a geminiviral vector in leaves of N. benthamiana produced assembled immunoglobulin, which was purified by ammonium sulphate precipitation and protein G affinity chromatography. Immune complex formation was confirmed by assays to show that the recombinant protein bound the complement factor C1q. Size measurements of purified recombinant protein by dynamic light scattering and size-exclusion chromatography also indicated complex formation. Subcutaneous immunization of BALB/C mice with purified EIC resulted in anti-Ebola virus antibody production at levels comparable to those obtained with a GP1 virus-like particle. These results show excellent potential for a plant-expressed EIC as a human vaccine. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  14. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.

  15. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum.

    Science.gov (United States)

    Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen

    2018-06-01

    Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.

  16. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    Science.gov (United States)

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  17. Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana.

    Science.gov (United States)

    Pineda, M; Sajnani, C; Barón, M

    2010-01-01

    We have analyzed the chloroplast proteome of Nicotiana benthamiana using two-dimensional gel electrophoresis and mass spectrometry followed by a database search. In order to improve the resolution of the two-dimensional electrophoresis gels, we have made separate maps for the low and the high pH range. At least 200 spots were detected. We identified 72 polypeptides, some being isoforms of different multiprotein families. In addition, changes in this chloroplast proteome induced by the infection with the Spanish strain of the Pepper mild mottle virus were investigated. Viral infection induced the down-regulation of several chloroplastidic proteins involved in both the photosynthetic electron-transport chain and the Benson-Calvin cycle.

  18. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    Science.gov (United States)

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.

  19. Engineering and expression of a human rotavirus candidate vaccine in Nicotiana benthamiana.

    Science.gov (United States)

    Pêra, Francisco F P G; Mutepfa, David L R; Khan, Ayesha M; Els, Johann H; Mbewana, Sandiswa; van Dijk, Alberdina A A; Rybicki, Edward P; Hitzeroth, Inga I

    2015-12-02

    Human rotaviruses are the main cause of severe gastroenteritis in children and are responsible for over 500 000 deaths annually. There are two live rotavirus vaccines currently available, one based on human rotavirus serotype G1P[8], and the other a G1-G4 P[8] pentavalent vaccine. However, the recent emergence of the G9 and other novel rotavirus serotypes in Africa and Asia has prompted fears that current vaccines might not be fully effective against these new varieties. We report an effort to develop an affordable candidate rotavirus vaccine against the new emerging G9P[6] (RVA/Human-wt/ZAF/GR10924/1999/G9P[6]) strain. The vaccine is based on virus-like particles which are both highly immunogenic and safe. The vaccine candidate was produced in Nicotiana benthamiana by transient expression, as plants allow rapid production of antigens at lower costs, without the risk of contamination by animal pathogens. Western blot analysis of plant extracts confirmed the successful expression of two rotavirus capsid proteins, VP2 and VP6. These proteins assembled into VLPs resembling native rotavirus particles when analysed by transmission electron microscopy (TEM). Expression of the rotavirus glycoprotein VP7 and the spike protein VP4 was also tried. However, VP7 expression caused plant wilting during the course of the time trial and expression could never be detected for either protein. We therefore created three fusion proteins adding the antigenic part of VP4 (VP8*) to VP6 in an attempt to produce more appropriately immunogenic particles. Fusion protein expression in tobacco plants was detected by western blot using anti-VP6 and anti-VP4 antibodies, but no regular particles were observed by TEM, even when co-expressed with VP2. Our results suggest that the rotavirus proteins produced in N. benthamiana are candidates for a subunit vaccine specifically for the G9P[6] rotavirus strain. This could be more effective in developing countries, thereby possibly providing a higher

  20. Plum pox virus accumulates mutations in different genome parts during a long-term maintenance in Prunus host plants and passage in Nicotiana benthamiana.

    Science.gov (United States)

    Vozárová, Z; Kamencayová, M; Glasa, M; Subr, Z

    2013-01-01

    Plum pox virus (PPV) isolates of the strain PPV-M prevalently infect peaches under natural conditions in Middle Europe. Comparison of complete genome sequences obtained from subisolates of a PPV-M isolate maintained experimentally over a 6-year period in different Prunus host species and passaged in Nicotiana benthamiana was performed with the aim to highlight the mutations potentially connected with the virus-host adaptation. The results showed that the lowest number of non-silent mutations was accumulated in PPV-M maintained in peach (original host species), approximately two times higher diversity was recorded in plum, apricot and N. benthamiana, indicating the genetic determination of the PPV host preference. The sequence variability of Prunus subisolates was distributed more or less evenly along the PPV genome and no amino acid motif could be outlined as responsible for the host adaptation. In N. benthamiana the mutations were accumulated notably in the P1 and P3 genes indicating their non-essentiality in the infection of this experimental host plant.

  1. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-09-01

    Full Text Available RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3, was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3 is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6 silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  2. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Angela Chaparro-Garcia

    2011-01-01

    Full Text Available The filamentous oomycete plant pathogen Phytophthora infestans causes late blight, an economically important disease, on members of the nightshade family (Solanaceae, such as the crop plants potato and tomato. The related plant Nicotiana benthamiana is a model system to study plant-pathogen interactions, and the susceptibility of N. benthamiana to Phytophthora species varies from susceptible to resistant. Little is known about the extent to which plant basal immunity, mediated by membrane receptors that recognise conserved pathogen-associated molecular patterns (PAMPs, contributes to P. infestans resistance.We found that different species of Phytophthora have varying degrees of virulence on N. benthamiana ranging from avirulence (incompatible interaction to moderate virulence through to full aggressiveness. The leucine-rich repeat receptor-like kinase (LRR-RLK BAK1/SERK3 is a major modulator of PAMP-triggered immunity (PTI in Arabidopsis thaliana and N. benthamiana. We cloned two NbSerk3 homologs, NbSerk3A and NbSerk3B, from N. benthamiana based on sequence similarity to the A. thaliana gene. N. benthamiana plants silenced for NbSerk3 showed markedly enhanced susceptibility to P. infestans infection but were not altered in resistance to Phytophthora mirabilis, a sister species of P. infestans that specializes on a different host plant. Furthermore, silencing of NbSerk3 reduced the cell death response triggered by the INF1, a secreted P. infestans protein with features of PAMPs.We demonstrated that N. benthamiana NbSERK3 significantly contributes to resistance to P. infestans and regulates the immune responses triggered by the P. infestans PAMP protein INF1. In the future, the identification of novel surface receptors that associate with NbSERK3A and/or NbSERK3B should lead to the identification of new receptors that mediate recognition of oomycete PAMPs, such as INF1.

  3. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  4. Differentially expressed genes in healthy and plum pox virus-infected Nicotiana benthamiana plants.

    Science.gov (United States)

    Vozárová, Z; Žilová, M; Šubr, Z

    2015-12-01

    Viruses use both material and energy sources of their hosts and redirect the production of disposable compounds in order to make viral replication more efficient. Metabolism of infected organisms is modified by these enhanced requirements as well by their own defense response. Resulting complex story consists of many regulation events on various gene expression levels. Elucidating these processes may contribute to the knowledge on virus-host interactions and to evolving new antiviral strategies. In our work we applied a subtractive cloning technique to compare the transcriptomes of healthy and plum pox virus (PPV)-infected Nicotiana benthamiana plants. Several genes were found to be induced or repressed by the PPV infection. The induced genes were mainly related to general stress response or photosynthesis, several repressed genes could be connected with growth defects evoked by the infection. Interestingly, some genes usually up-regulated by fungal or bacterial infection were found repressed in PPV-infected plants. Potential involvement of particular differently expressed genes in the process of PPV infection is discussed.

  5. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade.

    Science.gov (United States)

    Wang, Chen; He, Xiaowen; Li, Yuzhen; Wang, Lijun; Guo, Xulei; Guo, Xingqi

    2017-11-02

    Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  6. Tracking the potyviral P1 protein in Nicotiana benthamiana plants during plum pox virus infection.

    Science.gov (United States)

    Vozárová, Z; Glasa, M; Šubr, Z W

    The P1 protein is derived from the N terminus of potyvirus-coded polyprotein. In addition to the proteolytic activity essential for its maturation, it probably participates in suppression of host defense and/or in virus replication. Clear validation of the P1 in vivo function(s), however, is not yet available. We applied an infectious cDNA clone of plum pox virus (PPV), where the P1 was N-fused with a hexahistidine tag, to trace this protein in Nicotiana benthamiana plants during the PPV infection. Immunoblot analysis with the anti-his antibody showed a diffuse band corresponding to the molecular weight about 70-80 kDa (about twice larger than expected) in the root samples from early stage of infection. This signal culminated on the sixth day post inoculation, later it rapidly disappeared. Sample denaturation by boiling in SDS before centrifugal clarification was essential, indicating strong affinity of P1-his to some plant compound sedimenting with the tissue and cell debris.

  7. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir; Eid, Ayman; Ali, Shawkat; Mahfouz, Magdy M.

    2017-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  8. Pea early-browning virus -mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis

    KAUST Repository

    Ali, Zahir

    2017-10-17

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system has enabled efficient genome engineering in diverse plant species. However, delivery of genome engineering reagents, such as the single guide RNA (sgRNA), into plant cells remains challenging. Here, we report the engineering of Tobacco rattle virus (TRV) and Pea early browning virus (PEBV) to deliver one or multiple sgRNAs into Nicotiana benthamiana and Arabidopsis thaliana (Col-0) plants that overexpress a nuclear localization signal containing Cas9. Our data showed that TRV and PEBV can deliver sgRNAs into inoculated and systemic leaves, and this resulted in mutagenesis of the targeted genomic loci. Moreover, in N. benthamiana, PEBV-based sgRNA delivery resulted in more targeted mutations than TRV-based delivery. Our data indicate that TRV and PEBV can facilitate plant genome engineering and can be used to produce targeted mutations for functional analysis and other biotechnological applications across diverse plant species.Key message: Delivery of genome engineering reagents into plant cells is challenging and inefficient and this limit the applications of this technology in many plant species. RNA viruses such as TRV and PEBV provide an efficient tool to systemically deliver sgRNAs for targeted genome modification.

  9. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.. TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L. resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes.

  10. Antimicrobial Activity of Bacteriophage Endolysin Produced in Nicotiana benthamiana Plants.

    Science.gov (United States)

    Kovalskaya, Natalia; Foster-Frey, Juli; Donovan, David M; Bauchan, Gary; Hammond, Rosemarie W

    2016-01-01

    The increasing spread of antibiotic-resistant pathogens has raised the interest in alternative antimicrobial treatments. In our study, the functionally active gram-negative bacterium bacteriophage CP933 endolysin was produced in Nicotiana benthamiana plants by a combination of transient expression and vacuole targeting strategies, and its antimicrobial activity was investigated. Expression of the cp933 gene in E. coli led to growth inhibition and lysis of the host cells or production of trace amounts of CP933. Cytoplasmic expression of the cp933 gene in plants using Potato virus X-based transient expression vectors (pP2C2S and pGR107) resulted in death of the apical portion of experimental plants. To protect plants against the toxic effects of the CP933 protein, the cp933 coding region was fused at its Nterminus to an N-terminal signal peptide from the potato proteinase inhibitor I to direct CP933 to the delta-type vacuoles. Plants producing the CP933 fusion protein did not exhibit the severe toxic effects seen with the unfused protein and the level of expression was 0.16 mg/g of plant tissue. Antimicrobial assays revealed that, in contrast to gram-negative bacterium E. coli (BL21(DE3)), the gram-positive plant pathogenic bacterium Clavibacter michiganensis was more susceptible to the plant-produced CP933, showing 18% growth inhibition. The results of our experiments demonstrate that the combination of transient expression and protein targeting to the delta vacuoles is a promising approach to produce functionally active proteins that exhibit toxicity when expressed in plant cells.

  11. Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    Directory of Open Access Journals (Sweden)

    Schwab Wilfried

    2011-03-01

    Full Text Available Abstract Background Plant lipoxygenases (LOXs have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in Nicotiana benthamiana was highly induced by agroinfiltration using a tobacco mosaic virus (TMV based vector system. Results A LOX gene which is expressed after treatment of the viral vectors was isolated from Nicotiana benthamiana. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as Nb-9-LOX. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml-1 cell cultures which can oxygenate linoleic acid resulting in high yields (18 μmol ml-1 cell cultures of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C9-aldehydes (3.3 μmol mg-1 crude protein. The yield of C9-aldehydes from linoleic acid was 64%. Conclusion The yeast expressed Nb-9-LOX can be used to produce C9-aldehydes on a large scale in combination with a HPL gene with 9-HPL function, or to effectively produce 9-hydroxy-10(E,12(Z-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent.

  12. Temporal and spatial resolution of activated plant defense responses in leaves of Nicotiana benthamiana infected with Dickeya dadantii

    Directory of Open Access Journals (Sweden)

    María Luisa ePérez-Bueno

    2016-01-01

    Full Text Available The necrotrophic bacteria Dickeya dadantii is the causal agent of soft-rot disease in a broad range of hosts. The model plant Nicotiana benthamiana, commonly used as experimental host for a very broad range of plant pathogens, is susceptible to infection by D. dadantii. The inoculation with D. dadantii at high dose seems to overcome the plant defense capacity, inducing maceration and death of the tissue, although restricted to the infiltrated area. By contrast, the output of the defense response to low dose inoculation is inhibition of maceration and limitation in the growth, or even eradication, of bacteria. Responses of tissue invaded by bacteria (neighbouring the infiltrated areas after 2-3 days post-inoculation included: i inhibition of photosynthesis in terms of photosystem II efficiency; ii activation of energy dissipation as non-photochemical quenching in photosystem II, which is related to the activation of plant defense mechanisms; and iii accumulation of secondary metabolites in cell walls of the epidermis (lignins and the apoplast of the mesophyll (phytoalexins. Infiltrated tissues showed an increase in the content of the main hormones regulating stress responses, including abscisic acid (ABA, jasmonic acid (JA and salicylic acid (SA. We propose a mechanism involving the three hormones by which N. benthamiana could activate an efficient defense response against D. dadantii.

  13. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Directory of Open Access Journals (Sweden)

    Tae-Kyun Oh

    2014-09-01

    Full Text Available A full-length phytase gene (phy of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR, and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5, an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F, the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.

  14. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    Science.gov (United States)

    Oh, Tae-Kyun; Oh, Sung; Kim, Seongdae; Park, Jae Sung; Vinod, Nagarajan; Jang, Kyung Min; Kim, Sei Chang; Choi, Chang Won; Ko, Suk-Min; Jeong, Dong Kee; Udayakumar, Rajangam

    2014-01-01

    A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs. PMID:25192284

  15. Potato virus X TGBp1 induces plasmodesmata gating and moves between cells in several host species whereas CP moves only in N. benthamiana leaves

    International Nuclear Information System (INIS)

    Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong; Krishnamurthy, Konduru; Payton, Mark E.; Verchot-Lubicz, Jeanmarie

    2004-01-01

    Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereas GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement

  16. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-03-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.

  17. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway.

    Science.gov (United States)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse; Staerk, Dan; Okkels, Finn Thyge; Mortensen, Uffe Hasbro; Lindberg Møller, Birger; Frandsen, Rasmus John Normand; Kannangara, Rubini

    2017-10-05

    Carminic acid is a C-glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane-bound enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7 in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Selvaraju Kanagarajan

    Full Text Available The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His tag, and an endoplasmic retention signal (SEKDEL. The construct was cloned into a Cowpea mosaic virus (CPMV-based vector (pEAQ-HT and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19 containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0, as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi. Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of

  19. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses.

    Science.gov (United States)

    Dardick, Christopher

    2007-08-01

    Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.

  20. The B cell death function of obinutuzumab-HDEL produced in plant (Nicotiana benthamiana L. is equivalent to obinutuzumab produced in CHO cells.

    Directory of Open Access Journals (Sweden)

    Jin Won Lee

    Full Text Available Plants have attracted attention as bio-drug production platforms because of their economical and safety benefits. The preliminary efficacy of ZMapp, a cocktail of antibodies produced in N. benthamiana (Nicotiana benthamiana L., suggested plants may serve as a platform for antibody production. However, because the amino acid sequences of the Fab fragment are diverse and differences in post-transcriptional processes between animals and plants remain to be elucidated, it is necessary to confirm functional equivalence of plant-produced antibodies to the original antibody. In this study, Obinutuzumab, a third generation anti-CD20 antibody, was produced in N. benthamiana leaves (plant-obinutuzumab and compared to the original antibody produced in glyco-engineered Chinese hamster ovary (CHO cells (CHO-obinutuzumab. Two forms (with or without an HDEL tag were generated and antibody yields were compared. The HDEL-tagged form was more highly expressed than the non-HDEL-tagged form which was cleaved in the N-terminus. To determine the equivalence in functions of the Fab region between the two forms, we compared the CD20 binding affinities and direct binding induced cell death of a CD20-positive B cells. Both forms showed similar CD20 binding affinities and direct cell death of B cell. The results suggested that plant-obinutuzumab was equivalent to CHO-obinutuzumab in CD20 binding, cell aggregation, and direct cell death via binding. Therefore, our findings suggest that Obinutuzumab is a promising biosimilar candidate that can be produced efficiently in plants.

  1. Transient expression of the influenza A virus PB1-F2 protein using a plum pox virus-based vector in Nicotiana benthamiana.

    Science.gov (United States)

    Kamencayová, M; Košík, I; Hunková, J; Subr, Z W

    2014-01-01

    PB1-F2 protein of influenza A virus (IAV) was cloned in a plum pox virus (PPV) genome-based vector and attempts to express it in biolistically transfected Nicotiana benthamiana plants were performed. The vector-insert construct replicated in infected plants properly and was stable during repeated passage by mechanical inoculation, as demonstrated by disease symptoms and immunoblot detection of PPV capsid protein, while PB1-F2-specific band was more faint. We showed that it was due its low solubility. Modification of sample preparation (denaturation/solubilization preceding the centrifugation of cell debris) led to substantial signal enhancement. Maximal level of PB1-F2 expression in plants was observed 12 days post inoculation (dpi). Only 1% SDS properly solubilized the protein, other detergents were much less efficient. Solubilization with 8M urea released approximately 50% of PB1-F2 from the plant tissues, thus the treatment with this removable chaotropic agent may be a good starting point for the purification of the protein for eventual functional studies in the future.

  2. Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer.

    Science.gov (United States)

    Jovel, Juan; Walker, Melanie; Sanfaçon, Hélène

    2007-11-01

    Recovery of plants from virus-induced symptoms is often described as a consequence of RNA silencing, an antiviral defense mechanism. For example, recovery of Nicotiana clevelandii from a nepovirus (tomato black ring virus) is associated with a decreased viral RNA concentration and sequence-specific resistance to further virus infection. In this study, we have characterized the interaction of another nepovirus, tomato ringspot virus (ToRSV), with host defense responses during symptom induction and subsequent recovery. Early in infection, ToRSV induced a necrotic phenotype in Nicotiana benthamiana that showed characteristics typical of a hypersensitive response. RNA silencing was also activated during ToRSV infection, as evidenced by the presence of ToRSV-derived small interfering RNAs (siRNAs) that could direct degradation of ToRSV sequences introduced into sensor constructs. Surprisingly, disappearance of symptoms was not accompanied by a commensurate reduction in viral RNA levels. The stability of ToRSV RNA after recovery was also observed in N. clevelandii and Cucumis sativus and in N. benthamiana plants carrying a functional RNA-dependent RNA polymerase 1 ortholog from Medicago truncatula. In experiments with a reporter transgene (green fluorescent protein), ToRSV did not suppress the initiation or maintenance of transgene silencing, although the movement of the silencing signal was partially hindered. Our results demonstrate that although RNA silencing is active during recovery, reduction of virus titer is not required for the initiation of this phenotype. This scenario adds an unforeseen layer of complexity to the interaction of nepoviruses with the host RNA silencing machinery. The possibility that viral proteins, viral RNAs, and/or virus-derived siRNAs inactivate host defense responses is discussed.

  3. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors

    NARCIS (Netherlands)

    van Verk, Marcel C|info:eu-repo/dai/nl/327618671; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of

  4. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  5. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    International Nuclear Information System (INIS)

    Lim, Hyoun-Sub; Nam, Jiryun; Seo, Eun-Young; Nam, Moon; Vaira, Anna Maria; Bae, Hanhong; Jang, Chan-Yong; Lee, Cheol Ho; Kim, Hong Gi; Roh, Mark; Hammond, John

    2014-01-01

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP SP ) with that from AltMV-Po (CP Po ) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP Po [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP SP but not CP Po interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP SP than CP Po in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein

  6. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana.

    Science.gov (United States)

    Bi, Huiping; Zhang, Peng

    2012-03-01

    Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.

  7. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    International Nuclear Information System (INIS)

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-01-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  8. The coat protein of Alternanthera mosaic virus is the elicitor of a temperature-sensitive systemic necrosis in Nicotiana benthamiana, and interacts with a host boron transporter protein

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyoun-Sub, E-mail: hyounlim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Jiryun, E-mail: jilyoon@naver.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Seo, Eun-Young, E-mail: sey22@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Moon, E-mail: moonlit51@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Vaira, Anna Maria, E-mail: a.vaira@ivv.cnr.it [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, Torino 10135 (Italy); Bae, Hanhong, E-mail: hanhongbae@ynu.ac.kr [School of Biotechnology, Yeungnam University, Geongsan 712-749 (Korea, Republic of); Jang, Chan-Yong, E-mail: sunbispirit@gmail.com [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Cheol Ho, E-mail: chlee1219@hanmail.net [Department of Chemical and Biological Engineering, Seokyoung University, Seoul 136-704 (Korea, Republic of); Kim, Hong Gi, E-mail: hgkim@cnu.ac.kr [Department of Applied Biology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Roh, Mark, E-mail: marksroh@gmail.com [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States); Laboratory of Floriculture and Plant Physiology, School of Bio-Resource Science, Dankook University, Cheonan, Chungnam 330-714 (Korea, Republic of); Hammond, John, E-mail: john.hammond@ars.usda.gov [Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, 10300 Baltimore Avenue B-010A, Beltsville, MD 20705 (United States)

    2014-03-15

    Different isolates of Alternanthera mosaic virus (AltMV; Potexvirus), including four infectious clones derived from AltMV-SP, induce distinct systemic symptoms in Nicotiana benthamiana. Virus accumulation was enhanced at 15 °C compared to 25 °C; severe clone AltMV 3-7 induced systemic necrosis (SN) and plant death at 15 °C. No interaction with potexvirus resistance gene Rx was detected, although SN was ablated by silencing of SGT1, as for other cases of potexvirus-induced necrosis. Substitution of AltMV 3-7 coat protein (CP{sub SP}) with that from AltMV-Po (CP{sub Po}) eliminated SN at 15 °C, and ameliorated symptoms in Alternanthera dentata and soybean. Substitution of only two residues from CP{sub Po} [either MN(13,14)ID or LA(76,77)IS] efficiently ablated SN in N. benthamiana. CP{sub SP} but not CP{sub Po} interacted with Arabidopsis boron transporter protein AtBOR1 by yeast two-hybrid assay; N. benthamiana homolog NbBOR1 interacted more strongly with CP{sub SP} than CP{sub Po} in bimolecular fluorescence complementation, and may affect recognition of CP as an elicitor of SN. - Highlights: • Alternanthera mosaic virus CP is an elicitor of systemic necrosis in N. benthamiana. • Virus-induced systemic necrosis is enhanced at 15 °C compared to 25 °C. • Induction of systemic necrosis is dependent on as few as two CP amino acid residues. • These residues are at subunit interfaces within the same turn of the virion helix. • Inducer/non-inducer CPs interact differentially with a boron transporter protein.

  9. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana

    Science.gov (United States)

    Mei, Yuzhen; Yang, Xiuling; Huang, Changjun

    2018-01-01

    The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689

  10. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  11. Molecular Characterization of Two Lysophospholipid:acyl-CoA Acyltransferases Belonging to the MBOAT Family in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Donghui Zhang

    Full Text Available In the remodeling pathway for the synthesis of phosphatidylcholine (PC, acyl-CoA-dependent lysophosphatidylcholine (lysoPC acyltransferase (LPCAT catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2. Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△ disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA and α-linolenic acid (18:3n3, ALA into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3, while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid

  12. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease.

    Science.gov (United States)

    Kytidou, Kassiani; Beekwilder, Jules; Artola, Marta; van Meel, Eline; Wilbers, Ruud H P; Moolenaar, Geri F; Goosen, Nora; Ferraz, Maria J; Katzy, Rebecca; Voskamp, Patrick; Florea, Bogdan I; Hokke, Cornelis H; Overkleeft, Herman S; Schots, Arjen; Bosch, Dirk; Pannu, Navraj; Aerts, Johannes M F G

    2018-04-19

    α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lysoGb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-D-galactopyranoside substrate (Km = 0.17 mM) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lysoGb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lysoGb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Production of Complex Multiantennary N-Glycans in Nicotiana benthamiana Plants1[W][OA

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J.M.; Pabst, Martin; Callewaert, Nico; Weterings, Koen

    2011-01-01

    In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions. PMID:21233332

  14. Biologically active, magnICON®-expressed EPO-Fc from stably transformed Nicotiana benthamiana plants presenting tetra-antennary N-glycan structures.

    Science.gov (United States)

    Nagels, Bieke; Van Damme, Els J M; Callewaert, Nico; Zabeau, Lennart; Tavernier, Jan; Delanghe, Joris R; Boets, Annemie; Castilho, Alexandra; Weterings, Koen

    2012-08-31

    In the past two decades plants have emerged as a valuable alternative for the production of pharmaceutical proteins. Since N-glycosylation influences functionality and stability of therapeutic proteins, the plant N-glycosylation pathway should be humanized. Here, we report the transient magnICON(®) expression of the erythropoietin fusion protein (EPO-Fc) in Nicotiana benthamiana plants that produce multi-antennary N-glycans without the plant-specific β1,2-xylose and α1,3-fucose residues in a stable manner (Nagels et al., 2011). The EPO-Fc fusion protein consists of EPO with a C-terminal-linked IgG-Fc domain and is used for pulmonary delivery of recombinant EPO to patients (Bitonti et al., 2004). Plant expressed EPO-Fc was quantified using a paramagnetic-particle chemiluminescent immunoassay and shown to be active in vitro via receptor binding experiments in HEK293T cells. Mass spectrometry-based N-glycan analysis confirmed the presence of multi-antennary N-glycans on plant-expressed EPO-Fc. The described research is the next step towards the development of a production platform for pharmaceutical proteins in plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Immunity to potato mop-top virus in Nicotiana benthamiana plants expressing the coat protein gene is effective against fungal inoculation of the virus.

    Science.gov (United States)

    Reavy, B; Arif, M; Kashiwazaki, S; Webster, K D; Barker, H

    1995-01-01

    Nicotiana benthamiana stem tissue was transformed with Agrobacterium tumefaciens harboring a binary vector containing the potato mop-top virus (PMTV) coat protein (CP) gene. PMTV CP was expressed in large amounts in some of the primary transformants. The five transgenic lines which produced the most CP were selected for resistance testing. Flowers on transformed plants were allowed to self-fertilize. Transgenic seedlings selected from the T1 seed were mechanically inoculated with two strains of PMTV. Virus multiplication, assayed by infectivity, was detected in only one transgenic plant of 98 inoculated. T1 plants were also highly resistant to graft inoculation; PMTV multiplied in only one plant of 45 inoculated. Transgenic T1 seedlings were challenged in a bait test in which they were grown in soil containing viruliferous spores of the vector fungus Spongospora subterranea. In these tests only two plants out of 99 became infected. Of the five transgenic lines tested, plants of three lines were immune to infection following manual, graft, or fungal inoculation.

  16. Production of the main celiac disease autoantigen by transient expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Vanesa Soledad Marin Viegas

    2015-12-01

    Full Text Available Celiac Disease (CD is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2, is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion and vacuolar (C-terminal KISIA fusion TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9 to 16 fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB were induced by the ELP, with a consequent 2 fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant

  17. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Overexpression of NtWRKY50 Increases Resistance to Ralstonia solanacearum and Alters Salicylic Acid and Jasmonic Acid Production in Tobacco.

    Science.gov (United States)

    Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei

    2017-01-01

    WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco ( Nicotiana tabacum ) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum . Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica , hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50 .

  19. Tobacco Transcription Factor NtWRKY12 Interacts With TGA2.2 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Marcel evan Verk

    2011-07-01

    Full Text Available The promoter of the salicylic acid-inducible PR-1a gene of Nicotiana tabacum contains binding sites for transcription factor NtWRKY12 (WK-box at position -564 and TGA factors (as-1-like element at position -592. Transactivation experiments in Arabidopsis protoplasts derived from wild type, npr1-1, tga256 and tga2356 mutant plants revealed that NtWRKY12 alone was able to induce a PR-1a::β-glucuronidase (GUS reporter gene to high levels, independent of co-expressed tobacco NtNPR1, TGA2.1, TGA2.2 or endogenous Arabidopsis NPR1, TGA2/3/5/6. By in vitro pull-down assays with GST and Strep fusion proteins and by Fluorescence Resonance Energy Transfer assays with protein-CFP and protein-YFP fusions in transfected protoplasts, it was shown that NtWRKY12 and TGA2.2 could interact in vitro and in vivo. Interaction of NtWRKY12 with TGA1a or TGA2.1 was not detectable by these techniques. A possible mechanism for the role of NtWRKY12 and TGA2.2 in PR-1a gene expression is discussed.

  20. Rapid Transient Production of a Monoclonal Antibody Neutralizing the Porcine Epidemic Diarrhea Virus (PEDV) in Nicotiana benthamiana and Lactuca sativa.

    Science.gov (United States)

    Rattanapisit, Kaewta; Srijangwad, Anchalee; Chuanasa, Taksina; Sukrong, Suchada; Tantituvanont, Angkana; Mason, Hugh S; Nilubol, Dachrit; Phoolcharoen, Waranyoo

    2017-12-01

    Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, weight loss, and high mortality rate in neonatal piglets. Porcine epidemic diarrhea (PED) has been reported in Europe, America, and Asia including Thailand. The disease causes substantial losses to the swine industry in many countries. Presently, there is no effective PEDV vaccine available. In this study, we developed a plant-produced monoclonal antibody (mAb) 2C10 as a prophylactic candidate to prevent the PEDV infection. Recently, plant expression systems have gained interest as an alternative for the production of antibodies because of many advantages, such as low production cost, lack of human and animal pathogen, large scalability, etc. The 2C10 mAb was transiently expressed in Nicotiana benthamiana and lettuce using geminiviral vector. After purification by protein A affinity chromatography, the antibody was tested for the binding and neutralizing activity against PEDV. Our result showed that the plant produced 2C10 mAb can bind to the virus and also inhibit PEDV infection in vitro . These results show excellent potential for a plant-expressed 2C10 as a PEDV prophylaxis and a diagnostic for PEDV infection. Georg Thieme Verlag KG Stuttgart · New York.

  1. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana.

    Science.gov (United States)

    Zhu, Feng; Xi, De-Hui; Yuan, Shu; Xu, Fei; Zhang, Da-Wei; Lin, Hong-Hui

    2014-06-01

    Systemic resistance is induced by pathogens and confers protection against a broad range of pathogens. Recent studies have indicated that salicylic acid (SA) derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile systemic resistance signal in tobacco, Arabidopsis, and potato. However, other experiments indicate that jasmonic acid (JA) is a critical mobile signal. Here, we present evidence suggesting both MeSA and methyl jasmonate (MeJA) are essential for systemic resistance against Tobacco mosaic virus (TMV), possibly acting as the initiating signals for systemic resistance. Foliar application of JA followed by SA triggered the strongest systemic resistance against TMV. Furthermore, we use a virus-induced gene-silencing-based genetics approach to investigate the function of JA and SA biosynthesis or signaling genes in systemic response against TMV infection. Silencing of SA or JA biosynthetic and signaling genes in Nicotiana benthamiana plants increased susceptibility to TMV. Genetic experiments also proved the irreplaceable roles of MeSA and MeJA in systemic resistance response. Systemic resistance was compromised when SA methyl transferase or JA carboxyl methyltransferase, which are required for MeSA and MeJA formation, respectively, were silenced. Moreover, high-performance liquid chromatography-mass spectrometry analysis indicated that JA and MeJA accumulated in phloem exudates of leaves at early stages and SA and MeSA accumulated at later stages, after TMV infection. Our data also indicated that JA and MeJA could regulate MeSA and SA production. Taken together, our results demonstrate that (Me)JA and (Me)SA are required for systemic resistance response against TMV.

  2. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana.

    Science.gov (United States)

    Khakimov, Bekzod; Kuzina, Vera; Erthmann, Pernille Ø; Fukushima, Ery Odette; Augustin, Jörg M; Olsen, Carl Erik; Scholtalbers, Jelle; Volpin, Hanne; Andersen, Sven Bode; Hauser, Thure P; Muranaka, Toshiya; Bak, Søren

    2015-11-01

    The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces β-amyrin and α-amyrin, and is preferentially expressed in resistant plants; β-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs). © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons

  3. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    OpenAIRE

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  4. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana.

    Science.gov (United States)

    Seo, Eunyoung; Yeom, Seon-In; Jo, Sunghwan; Jeong, Heejin; Kang, Byoung-Cheorl; Choi, Doil

    2012-04-01

    Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

  6. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale.

    Science.gov (United States)

    Cui, Qi; Yan, Xiao; Gao, Xue; Zhang, Dong-Mei; He, Heng-Bin; Jia, Gui-Xia

    2018-06-01

    A major constraint in producing lilies is gray mold caused by Botrytis elliptica and B. cinerea. WRKY transcription factors play important roles in plant immune responses. However, limited information is available about the WRKY gene family in lily plants. In this study, 23 LrWRKY genes with complete WRKY domains were identified from the Botrytis-resistant species Lilium regale. The putative WRKY genes were divided into seven subgroups (Group I, IIa-e, and III) according to their structural features. Sequence alignment revealed that LrWRKY proteins have a highly conserved WRKYGQK domain and a variant, the WRKYGKK domain, and these proteins generally contained similar motif compositions throughout the same subgroup. Functional annotation predicted they might be involved in biological processes related to abiotic and biotic stresses. A qRT-PCR analysis confirmed that expression of six LrWRKY genes in L. regale or the susceptible Asian hybrid 'Yale' was induced by B. cinerea infection. Among these genes, LrWRKY4, LrWRKY8 and LrWRKY10 were expressed at a higher level in L. regale than 'Yale', while the expression of LrWRKY6 and LrWRKY12 was lower in L. regale. Furthermore, LrWRKY4 and LrWRKY12 genes, which also respond to salicylic acid (SA) and methyl jasmonate (MeJA) treatments, were isolated from L. regale. Subcellular localization analysis determined that they were targeted to the nucleus. Constitutive expression of LrWRKY4 and LrWRKY12 in Arabidopsis resulted in plants that were more resistant to B. cinerea than wild-type plants. This resistance was coupled with the transcriptional changes of SA and JA-responsive genes. Overall, our study provides valuable information about the structural and functional characterization of LrWRKY genes that will not only deepen our understanding of the molecular mechanisms underlying the defense of lily against B. cinerea but also offer potential targets for cultivar improvement via biotechnology. Copyright © 2018 Elsevier Masson

  7. CaWRKY22 Acts as a Positive Regulator in Pepper Response to Ralstonia Solanacearum by Constituting Networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58

    OpenAIRE

    Ansar Hussain; Xia Li; Yahong Weng; Zhiqin Liu; Muhammad Furqan Ashraf; Ali Noman; Sheng Yang; Muhammad Ifnan; Shanshan Qiu; Yingjie Yang; Deyi Guan; Shuilin He

    2018-01-01

    The WRKY web, which is comprised of a subset of WRKY transcription factors (TFs), plays a crucial role in the regulation of plant immunity, however, the mode of organization and operation of this network remains obscure, especially in non-model plants such as pepper (Capsicum annuum). Herein, CaWRKY22, a member of a subgroup of IIe WRKY proteins from pepper, was functionally characterized in pepper immunity against Ralstonia Solanacearum. CaWRKY22 was found to target the nuclei, and its trans...

  8. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts.

    Science.gov (United States)

    Notaguchi, Michitaka; Higashiyama, Tetsuya; Suzuki, Takamasa

    2015-02-01

    Phloem is a conductive tissue that allocates nutrients from mature source leaves to sinks such as young developing tissues. Phloem also delivers proteins and RNA species, such as small RNAs and mRNAs. Intensive studies on plant systemic signaling revealed the essential roles of proteins and RNA species. However, many of their functions are still largely unknown, with the roles of transported mRNAs being particularly poorly understood. A major difficulty is the absence of an accurate and comprehensive list of mobile transcripts. In this study, we used a hetero-graft system with Nicotiana benthamiana as the recipient scion and Arabidopsis as the donor stock, to identify transcripts that moved long distances across the graft union. We identified 138 Arabidopsis transcripts as mobile mRNAs, which we collectively termed the mRNA mobilome. Reverse transcription-PCR, quantitative real-time PCR and droplet digital PCR analyses confirmed the mobility. The transcripts included potential signaling factors and, unexpectedly, more general factors. In our investigations, we found no preferred transcript length, no previously known sequence motifs in promoter or transcript sequences and no similarities between the level of the transcripts and that in the source leaves. Grafting experiments regarding the function of ERECTA, an identified transcript, showed that no function of the transcript mobilized. To our knowledge, this is the first report identifying transcripts that move over long distances using a hetero-graft system between different plant taxa. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis.

    Science.gov (United States)

    He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2016-05-23

    Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

  11. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  12. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge.

    Science.gov (United States)

    Montes, Christian; Castro, Álvaro; Barba, Paola; Rubio, Julia; Sánchez, Evelyn; Carvajal, Denisse; Aguirre, Carlos; Tapia, Eduardo; DelÍ Orto, Paola; Decroocq, Veronique; Prieto, Humberto

    2014-10-01

    Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.

  13. Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure.

    Science.gov (United States)

    Strasser, Richard; Stadlmann, Johannes; Schähs, Matthias; Stiegler, Gabriela; Quendler, Heribert; Mach, Lukas; Glössl, Josef; Weterings, Koen; Pabst, Martin; Steinkellner, Herta

    2008-05-01

    A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N-glycosylation (i.e. the presence of beta1,2-xylosylation and core alpha1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous beta1,2-xylosyltransferase (XylT) and alpha1,3-fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core alpha1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core alpha1,3-fucose residues in their N-glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N-glycan species without detectable xylose and alpha1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N-glycan structure.

  14. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  15. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.

    Science.gov (United States)

    Dai, Xiaoyan; Wang, Yuanyuan; Zhang, Wen-Hao

    2016-02-01

    The WRKY transcription factor family has 109 members in the rice genome, and has been reported to be involved in the regulation of biotic and abiotic stress in plants. Here, we demonstrated that a rice OsWRKY74 belonging to group III of the WRKY transcription factor family was involved in tolerance to phosphate (Pi) starvation. OsWRKY74 was localized in the nucleus and mainly expressed in roots and leaves. Overexpression of OsWRKY74 significantly enhanced tolerance to Pi starvation, whereas transgenic lines with down-regulation of OsWRKY74 were sensitive to Pi starvation. Root and shoot biomass, and phosphorus (P) concentration in rice OsWRKY74-overexpressing plants were ~16% higher than those of wild-type (WT) plants in Pi-deficient hydroponic solution. In soil pot experiments, >24% increases in tiller number, grain weight and P concentration were observed in rice OsWRKY74-overexpressing plants compared to WT plants when grown in P-deficient medium. Furthermore, Pi starvation-induced changes in root system architecture were more profound in OsWRKY74-overexpressing plants than in WT plants. Expression patterns of a number of Pi-responsive genes were altered in the OsWRKY74-overexpressing and RNA interference lines. In addition, OsWRKY74 may also be involved in the response to deficiencies in iron (Fe) and nitrogen (N) as well as cold stress in rice. In Pi-deficient conditions, OsWRKY74-overexpressing plants exhibited greater accumulation of Fe and up-regulation of the cold-responsive genes than WT plants. These findings highlight the role of OsWRKY74 in modulation of Pi homeostasis and potential crosstalk between P starvation and Fe starvation, and cold stress in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici.

    Directory of Open Access Journals (Sweden)

    Junjuan Wang

    Full Text Available WRKY transcription factors (TFs play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst, is a destructive disease of wheat (Triticum aestivum worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA- and jasmonic acid (JA-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS-associated genes TaCAT and TaPOD; whereas the ethylene (ET-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate, hydrogen peroxide (H2O2 and abscisic acid (ABA treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.

  17. Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...

  18. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development

    OpenAIRE

    Yang, Yan; Chi, Yingjun; Wang, Ze; Zhou, Yuan; Fan, Baofang; Chen, Zhixiang

    2016-01-01

    WRKY transcription factors constitute a large protein superfamily with a predominant role in plant stress responses. In this study we report that two structurally related soybean WRKY proteins, GmWRKY58 and GmWRKY76, play a critical role in plant growth and flowering. GmWRKY58 and GmWRKY76 are both Group III WRKY proteins with a C2HC zinc finger domain and are close homologs of AtWRKY70 and AtWRKY54, two well-characterized Arabidopsis WRKY proteins with an important role in plant responses to...

  19. Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress

    OpenAIRE

    Chen Zhixiang; Xiao Yong; Shi Junwei; Lai Zhibing; Chen Han; Xu Xinping

    2010-01-01

    Abstract Background WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed. Results We report that the three WRKYs are involved in plant responses to abscisic acid (ABA) and abiotic stress. Through analysis of single, double, and triple muta...

  20. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  1. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  2. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum.

    Science.gov (United States)

    Liang, Qian-Yu; Wu, Yin-Huan; Wang, Ke; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Zhang, Lei; Jiang, Bei-Bei

    2017-07-06

    WRKY transcription factors play important roles in plant growth development, resistance and substance metabolism regulation. However, the exact function of the response to salt stress in plants with specific WRKY transcription factors remains unclear. In this research, we isolated a new WRKY transcription factor DgWRKY5 from chrysanthemum. DgWRKY5 contains two WRKY domains of WKKYGQK and two C 2 H 2 zinc fingers. The expression of DgWRKY5 in chrysanthemum was up-regulated under various treatments. Meanwhile, we observed higher expression levels in the leaves contrasted with other tissues. Under salt stress, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) enzymes in transgenic chrysanthemum were significantly higher than those in WT, whereas the accumulation of H 2 O 2 , O 2 - and malondialdehyde (MDA) was reduced in transgenic chrysanthemum. Several parameters including root length, root length, fresh weight, chlorophyll content and leaf gas exchange parameters in transgenic chrysanthemum were much better compared with WT under salt stress. Moreover, the expression of stress-related genes DgAPX, DgCAT, DgNCED3A, DgNCED3B, DgCuZnSOD, DgP5CS, DgCSD1 and DgCSD2 was up-regulated in DgWRKY5 transgenic chrysanthemum compared with that in WT. These results suggested that DgWRKY5 could function as a positive regulator of salt stress in chrysanthemum.

  3. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  4. Genome-wide identification and characterization of WRKY gene family in peanut

    Directory of Open Access Journals (Sweden)

    Hui eSong

    2016-04-01

    Full Text Available WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA and jasmonic acid (JA treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  5. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  6. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis.

    Science.gov (United States)

    Zhang, Meng; Chen, Ying; Nie, Lin; Jin, Xiaofei; Liao, Weifang; Zhao, Shengying; Fu, Chunhua; Yu, Longjiang

    2018-03-26

    WRKY, a plant-specific transcription factor family, plays important roles in pathogen defense, abiotic cues, phytohormone signaling, and regulation of plant secondary metabolism. However, little is known about the roles, functions, and mechanisms of WRKY in taxane biosynthesis in Taxus spp. In this study, 61 transcripts were identified from Taxus chinensis transcriptome datasets by using hidden Markov model search. All of these transcripts encoded proteins containing WRKY domains, which were designated as TcWRKY1-61. After phylogenetic analysis of the WRKY domains of TcWRKYs and AtWRKYs, 16, 8, 10, 14, 5, 7, and 1 TcWRKYs were cladded into Group I, IIa-IIe, and III, respectively. Then, six representative TcWRKYs were selected to classify their effects on taxol biosynthesis. After MeJA (methyl jasmonate acid) and SA (salicylic acid) treatments, all of the six TcWRKYs were upregulated by MeJA treatment. TcWRKY44 (IId) and TcWRKY47 (IIa) were upregulated, whereas TcWRKY8 (IIc), TcWRKY20 (III), TcWRKY26 (I), TcWRKY41 (IIe), and TcWRKY52 (IIb) were downregulated by SA treatment. Overexpression experiments showed that the six selected TcWRKYs exerted different effects on taxol biosynthesis. In specific, TcWRKY8 and TcWRKY47 significantly improved the expression levels of taxol-biosynthesis-related genes. Transcriptome-wide identification of WRKY factors in Taxus not only enhances our understanding of plant WRKY factors but also identifies candidate regulators of taxol biosynthesis.

  7. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  8. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Wu, Min; Liu, Huanlong; Han, Guomin; Cai, Ronghao; Pan, Feng; Xiang, Yan

    2017-09-15

    The WRKY family are transcription factors, involved in plant development, and response to biotic and abiotic stresses. Moso bamboo is an important bamboo that has high ecological, economic and cultural value and is widely distributed in the south of China. In this study, we performed a genome-wide identification of WRKY members in moso bamboo and identified 89 members. By comparative analysis in six grass genomes, we found the WRKY gene family may have experienced or be experiencing purifying selection. Based on relative expression levels among WRKY IIc members under three abiotic stresses, PeWRKY83 functioned as a transcription factor and was selected for detailed analysis. The transgenic Arabidopsis of PeWRKY83 showed superior physiological properties compared with the WT under salt stress. Overexpression plants were less sensitive to ABA at both germination and postgermination stages and accumulated more endogenous ABA under salt stress conditions. Further studies demonstrated that overexpression of PeWRKY83 could regulate the expression of some ABA biosynthesis genes (AtAAO3, AtNCED2, AtNCED3), signaling genes (AtABI1, AtPP2CA) and responsive genes (AtRD29A, AtRD29B, AtABF1) under salt stress. Together, these results suggested that PeWRKY83 functions as a novel WRKY-related TF which plays a positive role in salt tolerance by regulating stress-induced ABA synthesis.

  9. The evolution of WRKY transcription factors.

    Science.gov (United States)

    Rinerson, Charles I; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Rushton, Paul J

    2015-02-27

    The availability of increasing numbers of sequenced genomes has necessitated a re-evaluation of the evolution of the WRKY transcription factor family. Modern day plants descended from a charophyte green alga that colonized the land between 430 and 470 million years ago. The first charophyte genome sequence from Klebsormidium flaccidum filled a gap in the available genome sequences in the plant kingdom between unicellular green algae that typically have 1-3 WRKY genes and mosses that contain 30-40. WRKY genes have been previously found in non-plant species but their occurrence has been difficult to explain. Only two WRKY genes are present in the Klebsormidium flaccidum genome and the presence of a Group IIb gene was unexpected because it had previously been thought that Group IIb WRKY genes first appeared in mosses. We found WRKY transcription factor genes outside of the plant lineage in some diplomonads, social amoebae, fungi incertae sedis, and amoebozoa. This patchy distribution suggests that lateral gene transfer is responsible. These lateral gene transfer events appear to pre-date the formation of the WRKY groups in flowering plants. Flowering plants contain proteins with domains typical for both resistance (R) proteins and WRKY transcription factors. R protein-WRKY genes have evolved numerous times in flowering plants, each type being restricted to specific flowering plant lineages. These chimeric proteins contain not only novel combinations of protein domains but also novel combinations and numbers of WRKY domains. Once formed, R protein WRKY genes may combine different components of signalling pathways that may either create new diversity in signalling or accelerate signalling by short circuiting signalling pathways. We propose that the evolution of WRKY transcription factors includes early lateral gene transfers to non-plant organisms and the occurrence of algal WRKY genes that have no counterparts in flowering plants. We propose two alternative hypotheses

  10. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants.

    Science.gov (United States)

    Li, Peiling; Song, Aiping; Gao, Chunyan; Wang, Linxiao; Wang, Yinjie; Sun, Jing; Jiang, Jiafu; Chen, Fadi; Chen, Sumei

    2015-08-01

    CmWRKY17 was induced by salinity in chrysanthemum, and it might negatively regulate salt stress in transgenic plants as a transcriptional repressor. WRKY transcription factors play roles as positive or negative regulators in response to various stresses in plants. In this study, CmWRKY17 was isolated from chrysanthemum (Chrysanthemum morifolium). The gene encodes a 227-amino acid protein and belongs to the group II WRKY family, but has an atypical WRKY domain with the sequence WKKYGEK. Our data indicated that CmWRKY17 was localized to the nucleus in onion epidermal cells. CmWRKY17 showed no transcriptional activation in yeast; furthermore, luminescence assay clearly suggested that CmWRKY17 functions as a transcriptional repressor. DNA-binding assay showed that CmWRKY17 can bind to W-box. The expression of CmWRKY17 was induced by salinity in chrysanthemum, and a higher expression level was observed in the stem and leaf compared with that in the root, disk florets, and ray florets. Overexpression of CmWRKY17 in chrysanthemum and Arabidopsis increased the sensitivity to salinity stress. The activities of superoxide dismutase and peroxidase and proline content in the leaf were significantly lower in transgenic chrysanthemum than those in the wild type under salinity stress, whereas electrical conductivity was increased in transgenic plants. Expression of the stress-related genes AtRD29, AtDREB2B, AtSOS1, AtSOS2, AtSOS3, and AtNHX1 was reduced in the CmWRKY17 transgenic Arabidopsis compared with that in the wild-type Col-0. Collectively, these data suggest that CmWRKY17 may increase the salinity sensitivity in plants as a transcriptional repressor.

  11. Downstream targets of WRKY33

    DEFF Research Database (Denmark)

    Petersen, Klaus; Fiil, Berthe Katrine; Mundy, John

    2008-01-01

    Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. In a recent publication we show that MPK4 and its substrate MKS1 interact with WRKY33 in vivo, and that WRKY33 is released from complexes with MPK4 upon infection....... Transcriptome analysis of a wrky33 loss-of-function mutant identified a subset of defense-related genes as putative targets of WRKY33. These genes include PAD3 and CYP71A13, which encode cytochrome P450 monoxygenases required for synthesis of the antimicrobial phytoalexin camalexin. Chromatin...... immunoprecipitation confirmed that WRKY33 bound the promoter of PAD3 when plants were inoculated with pathogens. Here we further discuss the involvement of two other targets of WRKY33, NUDT6 and ROF2 in defense responses against invading pathogens....

  12. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  13. The WRKY Transcription Factor Genes in Lotus japonicus.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (LjWRKY) genes can be classified into three groups (I-III). Investigations of gene copy number and gene clusters indicate that only one gene duplication event occurred on chromosome 4 and no clustered genes were detected on chromosomes 3 or 6. Researchers previously believed that group II and III WRKY domains were derived from the C-terminal WRKY domain of group I. Our results suggest that some WRKY genes in group II originated from the N-terminal domain of group I WRKY genes. Additional evidence to support this hypothesis was obtained by Medicago truncatula WRKY (MtWRKY) protein motif analysis. We found that LjWRKY and MtWRKY group III genes are under purifying selection, suggesting that WRKY genes will become increasingly structured and functionally conserved.

  14. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  15. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  16. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances

    Directory of Open Access Journals (Sweden)

    Xiatian eWang

    2015-08-01

    Full Text Available The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled ten unigenes from expressed sequence tags (ESTs of wheat and designated them as TaWRKY44–TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA, H2O2 and gibberellin (GA. The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC, soluble sugar, proline and superoxide dismutase (SOD content, as well as higher activities of catalase (CAT and peroxidase (POD, but less ion leakage (IL, lower contents of malondialdehyde (MDA, and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression.

  17. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    Science.gov (United States)

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  18. Identification and characterization of the grape WRKY family.

    Science.gov (United States)

    Zhang, Ying; Feng, Jian Can

    2014-01-01

    WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grape WRKY genes were classified into three groups (groups 1-3). Analysis of WRKY genes expression profiles indicated that 28 WRKY genes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA). In that 16 WRKY genes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.

  19. Identification and Characterization of the Grape WRKY Family

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-01-01

    Full Text Available WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grape WRKY genes were classified into three groups (groups 1–3. Analysis of WRKY genes expression profiles indicated that 28 WRKY genes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA. In that 16 WRKY genes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.

  20. The WRKY Transcription Factor Genes in Lotus japonicus

    OpenAIRE

    Song, Hui; Wang, Pengfei; Nan, Zhibiao; Wang, Xingjun

    2014-01-01

    WRKY transcription factor genes play critical roles in plant growth and development, as well as stress responses. WRKY genes have been examined in various higher plants, but they have not been characterized in Lotus japonicus. The recent release of the L. japonicus whole genome sequence provides an opportunity for a genome wide analysis of WRKY genes in this species. In this study, we identified 61 WRKY genes in the L. japonicus genome. Based on the WRKY protein structure, L. japonicus WRKY (...

  1. The WRKY transcription factor family in Brachypodium distachyon.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Langum, Tanner J; Boken, Ashley K; Rushton, Deena L; Boomsma, Darius D; Rinerson, Charles I; Rabara, Jennifer; Reese, R Neil; Chen, Xianfeng; Rohila, Jai S; Rushton, Paul J

    2012-06-22

    A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. The description of the WRKY transcription factor

  2. Transcriptomics-based identification of WRKY genes and characterization of a salt and hormone-responsive PgWRKY1 gene in Panax ginseng.

    Science.gov (United States)

    Nuruzzaman, Mohammed; Cao, Hongzhe; Xiu, Hao; Luo, Tiao; Li, Jijia; Chen, Xianghui; Luo, Junli; Luo, Zhiyong

    2016-02-01

    WRKY proteins belong to a transcription factor (TF) family and play dynamic roles in many plant processes, including plant responses to abiotic and biotic stresses, as well as secondary metabolism. However, no WRKY gene in Panax ginseng C.A. Meyer has been reported to date. In this study, a number of WRKY unigenes from methyl jasmonate (MeJA)-treated adventitious root transcriptome of this species were identified using next-generation sequencing technology. A total of 48 promising WRKY unigenes encoding WRKY proteins were obtained by eliminating wrong and incomplete open reading frame (ORF). Phylogenetic analysis reveals 48 WRKY TFs, including 11 Group I, 36 Group II, and 1 Group III. Moreover, one MeJA-responsive unigene designated as PgWRKY1 was cloned and characterized. It contains an entire ORF of 1077 bp and encodes a polypeptide of 358 amino acid residues. The PgWRKY1 protein contains a single WRKY domain consisting of a conserved amino acid sequence motif WRKYGQK and a C2H2-type zinc-finger motif belonging to WRKY subgroup II-d. Subcellular localization of PgWRKY1-GFP fusion protein in onion and tobacco epidermis cells revealed that PgWRKY1 was exclusively present in the nucleus. Quantitative real-time polymerase chain reaction analysis demonstrated that the expression of PgWRKY1 was relatively higher in roots and lateral roots compared with leaves, stems, and seeds. Importantly, PgWRKY1 expression was significantly induced by salicylic acid, abscisic acid, and NaCl, but downregulated by MeJA treatment. These results suggested that PgWRKY1 might be a multiple stress-inducible gene responding to hormones and salt stresses. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  3. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong

    2018-07-01

    PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.

  4. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants.

    Science.gov (United States)

    Zhou, Li; Wang, Na-Na; Gong, Si-Ying; Lu, Rui; Li, Yang; Li, Xue-Bao

    2015-11-01

    Soil salinity is one of the most serious threats in world agriculture, and often influences cotton growth and development, resulting in a significant loss in cotton crop yield. WRKY transcription factors are involved in plant response to high salinity stress, but little is known about the role of WRKY transcription factors in cotton so far. In this study, a member (GhWRKY34) of cotton WRKY family was functionally characterized. This protein containing a WRKY domain and a zinc-finger motif belongs to group III of cotton WRKY family. Subcellular localization assay indicated that GhWRKY34 is localized to the cell nucleus. Overexpression of GhWRKY34 in Arabidopsis enhanced the transgenic plant tolerance to salt stress. Several parameters (such as seed germination, green cotyledons, root length and chlorophyll content) in the GhWRKY34 transgenic lines were significantly higher than those in wild type under NaCl treatment. On the contrary, the GhWRKY34 transgenic plants exhibited a substantially lower ratio of Na(+)/K(+) in leaves and roots dealing with salt stress, compared with wild type. Growth status of the GhWRKY34 transgenic plants was much better than that of wild type under salt stress. Expressions of the stress-related genes were remarkably up-regulated in the transgenic plants under salt stress, compared with those in wild type. Based on the data presented in this study, we hypothesize that GhWRKY34 as a positive transcription regulator may function in plant response to high salinity stress through maintaining the Na(+)/K(+) homeostasis as well as activating the salt stress-related genes in cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    OpenAIRE

    Li Yang; Xin Zhao; Fan Yang; Di Fan; Yuanzhong Jiang; Keming Luo

    2016-01-01

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY...

  6. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy.

    Science.gov (United States)

    Chen, Min; Tan, Qiuping; Sun, Mingyue; Li, Dongmei; Fu, Xiling; Chen, Xiude; Xiao, Wei; Li, Ling; Gao, Dongsheng

    2016-06-01

    Bud dormancy in deciduous fruit trees is an important adaptive mechanism for their survival in cold climates. The WRKY genes participate in several developmental and physiological processes, including dormancy. However, the dormancy mechanisms of WRKY genes have not been studied in detail. We conducted a genome-wide analysis and identified 58 WRKY genes in peach. These putative genes were located on all eight chromosomes. In bioinformatics analyses, we compared the sequences of WRKY genes from peach, rice, and Arabidopsis. In a cluster analysis, the gene sequences formed three groups, of which group II was further divided into five subgroups. Gene structure was highly conserved within each group, especially in groups IId and III. Gene expression analyses by qRT-PCR showed that WRKY genes showed different expression patterns in peach buds during dormancy. The mean expression levels of six WRKY genes (Prupe.6G286000, Prupe.1G393000, Prupe.1G114800, Prupe.1G071400, Prupe.2G185100, and Prupe.2G307400) increased during endodormancy and decreased during ecodormancy, indicating that these six WRKY genes may play a role in dormancy in a perennial fruit tree. This information will be useful for selecting fruit trees with desirable dormancy characteristics or for manipulating dormancy in genetic engineering programs.

  7. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function.

    Science.gov (United States)

    Lei, Rihua; Li, Xiaoli; Ma, Zhenbing; Lv, Yan; Hu, Yanru; Yu, Diqiu

    2017-09-01

    Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata S; Khandelwal, Rohit; Jaishankar, Jananee; Shweta, Shweta; Nawaz, Kashif; Prasad, Manoj

    2015-01-01

    Transcription factors (TFs) are major players in stress signaling and constitute an integral part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analyzed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II, and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity) and hormone treatments (abscisic acid, salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signaling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signaling.

  9. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Directory of Open Access Journals (Sweden)

    Imène Hichri

    2017-07-01

    Full Text Available Salinity threatens productivity of economically important crops such as tomato (Solanum lycopersicum L.. WRKY transcription factors appear, from a growing body of knowledge, as important regulators of abiotic stresses tolerance. Tomato SlWRKY3 is a nuclear protein binding to the consensus CGTTGACC/T W box. SlWRKY3 is preferentially expressed in aged organs, and is rapidly induced by NaCl, KCl, and drought. In addition, SlWRKY3 responds to salicylic acid, and 35S::SlWRKY3 tomatoes showed under salt treatment reduced contents of salicylic acid. In tomato, overexpression of SlWRKY3 impacted multiple aspects of salinity tolerance. Indeed, salinized (125 mM NaCl, 20 days 35S::SlWRKY3 tomato plants displayed reduced oxidative stress and proline contents compared to WT. Physiological parameters related to plant growth (shoot and root biomass and photosynthesis (stomatal conductance and chlorophyll a content were retained in transgenic plants, together with lower Na+ contents in leaves, and higher accumulation of K+ and Ca2+. Microarray analysis confirmed that many stress-related genes were already up-regulated in transgenic tomatoes under optimal conditions of growth, including genes coding for antioxidant enzymes, ion and water transporters, or plant defense proteins. Together, these results indicate that SlWRKY3 is an important regulator of salinity tolerance in tomato.

  10. HvWRKY10, HvWRKY19, and HvWRKY28 positively regulate Mla-triggered immunity and basal defense to barley powdery mildew

    Science.gov (United States)

    WRKY proteins represent a large family of transcription factors (TFs), involved in plant development and defense responses. So far, fifty-five unique barley TFs have been annotated that contain the WRKY domain; twenty-six of these are present on the Barley1 GeneChip. We analyzed time-course expres...

  11. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    Science.gov (United States)

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  12. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signalling

    Directory of Open Access Journals (Sweden)

    Mehanathan eMuthamilarasan

    2015-10-01

    Full Text Available Transcription factors (TFs are major players in stress signalling and constitute an integral part of signalling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4 model plants, Setaria italica (SiWRKY and S. viridis (SvWRKY, respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analysed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY, followed by group III (39 SiWRKY and 11 SvWRKY and group I (10 SiWRKY and 6 SvWRKY. Group II proteins were further classified into 5 subgroups (IIa to IIe based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity and hormone treatments (abscisic acid, salicylic acid and methyl jasmonate suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signalling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signalling.

  13. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata S.; Khandelwal, Rohit; Jaishankar, Jananee; Shweta, Shweta; Nawaz, Kashif; Prasad, Manoj

    2015-01-01

    Transcription factors (TFs) are major players in stress signaling and constitute an integral part of signaling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins that were computationally analyzed for their physicochemical properties. Sequence alignment and phylogenetic analysis classified these proteins into three major groups, namely I, II, and III with majority of WRKY proteins belonging to group II (53 SiWRKY and 23 SvWRKY), followed by group III (39 SiWRKY and 11 SvWRKY) and group I (10 SiWRKY and 6 SvWRKY). Group II proteins were further classified into 5 subgroups (IIa to IIe) based on their phylogeny. Domain analysis showed the presence of WRKY motif and zinc finger-like structures in these proteins along with additional domains in a few proteins. All SiWRKY genes were physically mapped on the S. italica genome and their duplication analysis revealed that 10 and 8 gene pairs underwent tandem and segmental duplications, respectively. Comparative mapping of SiWRKY and SvWRKY genes in related C4 panicoid genomes demonstrated the orthologous relationships between these genomes. In silico expression analysis of SiWRKY and SvWRKY genes showed their differential expression patterns in different tissues and stress conditions. Expression profiling of candidate SiWRKY genes in response to stress (dehydration and salinity) and hormone treatments (abscisic acid, salicylic acid, and methyl jasmonate) suggested the putative involvement of SiWRKY066 and SiWRKY082 in stress and hormone signaling. These genes could be potential candidates for further characterization to delineate their functional roles in abiotic stress signaling. PMID:26635818

  14. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  15. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    Science.gov (United States)

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  16. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava.

    Science.gov (United States)

    Wei, Yunxie; Liu, Guoyin; Bai, Yujing; Xia, Feiyu; He, Chaozu; Shi, Haitao; Foyer, Christine

    2017-10-13

    Similar to the situation in animals, melatonin biosynthesis is regulated by four sequential enzymatic steps in plants. Although the melatonin synthesis genes have been identified in various plants, the upstream transcription factors of them remain unknown. In this study on cassava (Manihot esculenta), we found that MeWRKY79 and heat-shock transcription factor 20 (MeHsf20) targeted the W-box and the heat-stress elements (HSEs) in the promoter of N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively. The interaction between MeWRKY79, MeHsf20, and the MeASMT2 promoter was evidenced by the activation of promoter activity and chromatin immunoprecipitation (ChIP) in cassava protoplasts, and by an in vitro electrophoretic mobility shift assay (EMSA). The transcripts of MeWRKY79, MeHsf20, and MeASMT2 were all regulated by a 22-amino acid flagellin peptide (flg22) and by Xanthomonas axonopodis pv manihotis (Xam). In common with the phenotype of MeASMT2, transient expression of MeWRKY79 and MeHsf20 in Nicotiana benthamiana leaves conferred improved disease resistance. Through virus-induced gene silencing (VIGS) in cassava, we found that MeWRKY79- and MeHsf20-silenced plants showed lower transcripts of MeASMT2 and less accumulation of melatonin, which resulted in disease sensitivity that could be reversed by exogenous melatonin. Taken together, these results indicate that MeASMT2 is a target of MeWRKY79 and MeHsf20 in plant disease resistance. This study identifies novel upstream transcription factors of melatonin synthesis genes in cassava, thus extending our knowledge of the complex modulation of melatonin synthesis in plant defense. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Molecular characterization and functional analysis of plant WRKY ...

    African Journals Online (AJOL)

    ajl6

    2012-09-06

    Sep 6, 2012 ... the senescence, the morphological architecture and the evolution. It shows that WRKY ... CLASSIFICATION AND CHARACTERISTICS OF WRKY. GENES. WRKY TFs ..... under normal conditions and early flowering, reduces.

  18. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    Science.gov (United States)

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  19. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  20. The WRKY transcription factor family and senescence in switchgrass.

    Science.gov (United States)

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  1. WRKY transcription factors: key components in abscisic acid signalling.

    Science.gov (United States)

    Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J

    2012-01-01

    WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  3. Genome-Wide Investigation of WRKY Transcription Factors Involved in Terminal Drought Stress Response in Common Bean.

    Science.gov (United States)

    Wu, Jing; Chen, Jibao; Wang, Lanfen; Wang, Shumin

    2017-01-01

    WRKY transcription factor plays a key role in drought stress. However, the characteristics of the WRKY gene family in the common bean ( Phaseolus vulgaris L.) are unknown. In this study, we identified 88 complete WRKY proteins from the draft genome sequence of the "G19833" common bean. The predicted genes were non-randomly distributed in all chromosomes. Basic information, amino acid motifs, phylogenetic tree and the expression patterns of PvWRKY genes were analyzed, and the proteins were classified into groups 1, 2, and 3. Group 2 was further divided into five subgroups: 2a, 2b, 2c, 2d, and 2e. Finally, we detected 19 WRKY genes that were responsive to drought stress using qRT-PCR; 11 were down-regulated, and 8 were up-regulated under drought stress. This study comprehensively examines WRKY proteins in the common bean, a model food legume, and it provides a foundation for the functional characterization of the WRKY family and opportunities for understanding the mechanisms of drought stress tolerance in this plant.

  4. Transcriptome analysis of WRKY gene family in Oryza officinalis Wall ex Watt and WRKY genes involved in responses to Xanthomonas oryzae pv. oryzae stress.

    Science.gov (United States)

    Jiang, Chunmiao; Shen, Qingxi J; Wang, Bo; He, Bin; Xiao, Suqin; Chen, Ling; Yu, Tengqiong; Ke, Xue; Zhong, Qiaofang; Fu, Jian; Chen, Yue; Wang, Lingxian; Yin, Fuyou; Zhang, Dunyu; Ghidan, Walid; Huang, Xingqi; Cheng, Zaiquan

    2017-01-01

    Oryza officinalis Wall ex Watt, a very important and special wild rice species, shows abundant genetic diversity and disease resistance features, especially high resistance to bacterial blight. The molecular mechanisms of bacterial blight resistance in O. officinalis have not yet been elucidated. The WRKY transcription factor family is one of the largest gene families involved in plant growth, development and stress response. However, little is known about the numbers, structure, molecular phylogenetics, and expression of the WRKY genes under Xanthomonas oryzae pv. oryzae (Xoo) stress in O. officinalis due to lacking of O. officinalis genome. Therefore, based on the RNA-sequencing data of O. officinalis, we performed a comprehensive study of WRKY genes in O. officinalis and identified 89 OoWRKY genes. Then 89 OoWRKY genes were classified into three groups based on the WRKY domains and zinc finger motifs. Phylogenetic analysis strongly supported that the evolution of OoWRKY genes were consistent with previous studies of WRKYs, and subgroup IIc OoWRKY genes were the original ancestors of some group II and group III OoWRKYs. Among the 89 OoWRKY genes, eight OoWRKYs displayed significantly different expression (>2-fold, pWRKY family of transcription factors in O.officinalis. Insight was gained into the classification, evolution, and function of the OoWRKY genes, revealing the putative roles of eight significantly different expression OoWRKYs in Xoo strains PXO99 and C5 stress responses in O.officinalis. This study provided a better understanding of the evolution and functions of O. officinalis WRKY genes, and suggested that manipulating eight significantly different expression OoWRKYs would enhance resistance to bacterial blight.

  5. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Directory of Open Access Journals (Sweden)

    Bianco Linda

    2009-11-01

    Full Text Available Abstract Background In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein. In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef. Results The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19 gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue. Conclusion We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor

  6. WRKY transcription factors

    Science.gov (United States)

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  7. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses.

    Science.gov (United States)

    Li, Donghua; Liu, Pan; Yu, Jingyin; Wang, Linhai; Dossa, Komivi; Zhang, Yanxin; Zhou, Rong; Wei, Xin; Zhang, Xiurong

    2017-09-11

    Sesame (Sesamum indicum L.) is one of the world's most important oil crops. However, it is susceptible to abiotic stresses in general, and to waterlogging and drought stresses in particular. The molecular mechanisms of abiotic stress tolerance in sesame have not yet been elucidated. The WRKY domain transcription factors play significant roles in plant growth, development, and responses to stresses. However, little is known about the number, location, structure, molecular phylogenetics, and expression of the WRKY genes in sesame. We performed a comprehensive study of the WRKY gene family in sesame and identified 71 SiWRKYs. In total, 65 of these genes were mapped to 15 linkage groups within the sesame genome. A phylogenetic analysis was performed using a related species (Arabidopsis thaliana) to investigate the evolution of the sesame WRKY genes. Tissue expression profiles of the WRKY genes demonstrated that six SiWRKY genes were highly expressed in all organs, suggesting that these genes may be important for plant growth and organ development in sesame. Analysis of the SiWRKY gene expression patterns revealed that 33 and 26 SiWRKYs respond strongly to waterlogging and drought stresses, respectively. Changes in the expression of 12 SiWRKY genes were observed at different times after the waterlogging and drought treatments had begun, demonstrating that sesame gene expression patterns vary in response to abiotic stresses. In this study, we analyzed the WRKY family of transcription factors encoded by the sesame genome. Insight was gained into the classification, evolution, and function of the SiWRKY genes, revealing their putative roles in a variety of tissues. Responses to abiotic stresses in different sesame cultivars were also investigated. The results of our study provide a better understanding of the structures and functions of sesame WRKY genes and suggest that manipulating these WRKYs could enhance resistance to waterlogging and drought.

  8. Regulation of Specialized Metabolism by WRKY Transcription Factors

    Science.gov (United States)

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  9. Genome-wide identification of the potato WRKY transcription factor family.

    Science.gov (United States)

    Zhang, Chao; Wang, Dongdong; Yang, Chenghui; Kong, Nana; Shi, Zheng; Zhao, Peng; Nan, Yunyou; Nie, Tengkun; Wang, Ruoqiu; Ma, Haoli; Chen, Qin

    2017-01-01

    WRKY transcription factors play pivotal roles in regulation of stress responses. This study identified 79 WRKY genes in potato (Solanum tuberosum). Based on multiple sequence alignment and phylogenetic relationships, WRKY genes were classified into three major groups. The majority of WRKY genes belonged to Group II (52 StWRKYs), Group III had 14 and Group I consisted of 13. The phylogenetic tree further classified Group II into five sub-groups. All StWRKY genes except StWRKY79 were mapped on potato chromosomes, with eight tandem duplication gene pairs and seven segmental duplication gene pairs found from StWRKY family genes. The expression analysis of 22 StWRKYs showed their differential expression levels under various stress conditions. Cis-element prediction showed that a large number of elements related to drought, heat and salicylic acid were present in the promotor regions of StWRKY genes. The expression analysis indicated that seven StWRKYs seemed to respond to stress (heat, drought and salinity) and salicylic acid treatment. These genes are candidates for abiotic stress signaling for further research.

  10. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc. Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L. Plants

    Directory of Open Access Journals (Sweden)

    Kurnool Kiranmai

    2018-03-01

    Full Text Available Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram (Macrotyloma uniflorum Lam. Verdc.. Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut (Arachis hypogaea L. showed increased tolerance to drought stress compared to wild-type (WT plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2∙-, accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD, and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  12. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants.

    Science.gov (United States)

    Kiranmai, Kurnool; Lokanadha Rao, Gunupuru; Pandurangaiah, Merum; Nareshkumar, Ambekar; Amaranatha Reddy, Vennapusa; Lokesh, Uppala; Venkatesh, Boya; Anthony Johnson, A M; Sudhakar, Chinta

    2018-01-01

    Drought stress has adverse effects on growth, water relations, photosynthesis and yield of groundnut. WRKY transcription factors (TFs) are the plant-specific TFs which regulate several down-stream stress-responsive genes and play an essential role in plant biotic and abiotic stress responses. We found that WRKY3 gene is highly up-regulated under drought stress conditions and therefore isolated a new WRKY3TF gene from a drought-adapted horsegram ( Macrotyloma uniflorum Lam. Verdc.). Conserved domain studies revealed that protein encoded by this gene contains highly conserved regions of two WRKY domains and two C2H2 zinc-finger motifs. The fusion protein localization studies of transient MuWRKY 3-YFP revealed its nuclear localization. Overexpression of MuWRKY3 TF gene in groundnut ( Arachis hypogaea L.) showed increased tolerance to drought stress compared to wild-type (WT) plants. MuWRKY3 groundnut transgenics displayed lesser and delayed wilting symptoms than WT plants after 10-days of drought stress imposition. The transgenic groundnut plants expressing MuWRKY3 showed less accumulation of malondialdehyde, hydrogen peroxide (H 2 O 2 ), and superoxide anion (O 2 ∙- ), accompanied by more free proline, total soluble sugar content, and activities of antioxidant enzymes than WT plants under drought stress. Moreover, a series of stress-related LEA, HSP, MIPS, APX, SOD , and CAT genes found up-regulated in the transgenic groundnut plants. The study demonstrates that nuclear-localized MuWRKY3 TF regulates the expression of stress-responsive genes and the activity of ROS scavenging enzymes which results in improved drought tolerance in groundnut. We conclude that MuWRKY3 may serve as a new putative candidate gene for the improvement of stress resistance in plants.

  13. Unraveling the WRKY transcription factors network in Arabidopsis Thaliana by integrative approach

    Directory of Open Access Journals (Sweden)

    Mouna Choura

    2015-06-01

    Full Text Available The WRKY transcription factors superfamily are involved in diverse biological processes in plants including response to biotic and abiotic stresses and plant immunity. Protein-protein interaction network is a useful approach for understanding these complex processes. The availability of Arabidopsis Thaliana interactome offers a good opportunity to do get a global view of protein network. In this work, we have constructed the WRKY transcription factor network by combining different sources of evidence and we characterized its topological features using computational tools. We found that WRKY network is a hub-based network involving multifunctional proteins denoted as hubs such as WRKY 70, WRKY40, WRKY 53, WRKY 60, WRKY 33 and WRKY 51. Functional annotation showed seven functional modules particularly involved in biotic stress and defense responses. Furthermore, the gene ontology and pathway enrichment analysis revealed that WRKY proteins are mainly involved in plant-pathogen interaction pathways and their functions are directly related to the stress response and immune system process.

  14. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY–DNA (W-Box Complex Interaction in Tomato (Solanum lycopersicum L.. A Computational Approach

    Directory of Open Access Journals (Sweden)

    Mohd Aamir

    2017-05-01

    Full Text Available The WRKY transcription factors (TFs, play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3, and WRKY4 (SlWRKY4 using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433 and WRKY4 (AtWRKY4: NP_172849 protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2 and AtWRKY1 (PDBID:2AYD as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates. The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the

  15. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY–DNA (W-Box) Complex Interaction in Tomato (Solanum lycopersicum L.). A Computational Approach

    Science.gov (United States)

    Aamir, Mohd; Singh, Vinay K.; Meena, Mukesh; Upadhyay, Ram S.; Gupta, Vijai K.; Singh, Surendra

    2017-01-01

    The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial

  16. SolCyc: a database hub at the Sol Genomics Network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases

    Science.gov (United States)

    Foerster, Hartmut; Bombarely, Aureliano; Battey, James N D; Sierro, Nicolas; Ivanov, Nikolai V; Mueller, Lukas A

    2018-01-01

    Abstract SolCyc is the entry portal to pathway/genome databases (PGDBs) for major species of the Solanaceae family hosted at the Sol Genomics Network. Currently, SolCyc comprises six organism-specific PGDBs for tomato, potato, pepper, petunia, tobacco and one Rubiaceae, coffee. The metabolic networks of those PGDBs have been computationally predicted by the pathologic component of the pathway tools software using the manually curated multi-domain database MetaCyc (http://www.metacyc.org/) as reference. SolCyc has been recently extended by taxon-specific databases, i.e. the family-specific SolanaCyc database, containing only curated data pertinent to species of the nightshade family, and NicotianaCyc, a genus-specific database that stores all relevant metabolic data of the Nicotiana genus. Through manual curation of the published literature, new metabolic pathways have been created in those databases, which are complemented by the continuously updated, relevant species-specific pathways from MetaCyc. At present, SolanaCyc comprises 199 pathways and 29 superpathways and NicotianaCyc accounts for 72 pathways and 13 superpathways. Curator-maintained, taxon-specific databases such as SolanaCyc and NicotianaCyc are characterized by an enrichment of data specific to these taxa and free of falsely predicted pathways. Both databases have been used to update recently created Nicotiana-specific databases for Nicotiana tabacum, Nicotiana benthamiana, Nicotiana sylvestris and Nicotiana tomentosiformis by propagating verifiable data into those PGDBs. In addition, in-depth curation of the pathways in N.tabacum has been carried out which resulted in the elimination of 156 pathways from the 569 pathways predicted by pathway tools. Together, in-depth curation of the predicted pathway network and the supplementation with curated data from taxon-specific databases has substantially improved the curation status of the species–specific N.tabacum PGDB. The implementation of this

  17. WRKY transcription factors in plant responses to stresses.

    Science.gov (United States)

    Jiang, Jingjing; Ma, Shenghui; Ye, Nenghui; Jiang, Ming; Cao, Jiashu; Zhang, Jianhua

    2017-02-01

    The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. © 2016 Institute of Botany, Chinese Academy of Sciences.

  18. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  19. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    Science.gov (United States)

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  20. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage.

    Science.gov (United States)

    Mohanta, Tapan Kumar; Park, Yong-Hwan; Bae, Hanhong

    2016-11-17

    The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.

  1. Role of WRKY Transcription Factors in Arabidopsis Development and Stress Responses

    OpenAIRE

    Li, Jing

    2014-01-01

    It has been well established that environmentally induced alterations in gene expression are mediated by transcription factors (TFs). One of the important plant-specific TF groups is the WRKY (TFs containing a highly conserved WRKY domain) family, which is involved in regulation of various physiological programs including biotic and abiotic defenses, senescence and trichome development. Two members of WRKY group III in Arabidopsis thaliana, WRKY54 and WRKY70, are demonstrated in this study to...

  2. Cloning and characterization of a novel stress-responsive WRKY transcription factor gene (MusaWRKY71) from Musa spp. cv. Karibale Monthan (ABB group) using transformed banana cells.

    Science.gov (United States)

    Shekhawat, Upendra K Singh; Ganapathi, Thumballi R; Srinivas, Lingam

    2011-08-01

    WRKY transcription factor proteins play significant roles in plant stress responses. Here, we report the cloning and characterization of a novel WRKY gene, MusaWRKY71 isolated from an edible banana cultivar Musa spp. Karibale Monthan (ABB group). MusaWRKY71, initially identified using in silico approaches from an abiotic stress-related EST library, was later extended towards the 3' end using rapid amplification of cDNA ends technique. The 1299-bp long cDNA of MusaWRKY71 encodes a protein with 280 amino acids and contains a characteristic WRKY domain in the C-terminal half. Although MusaWRKY71 shares good similarity with other monocot WRKY proteins the substantial size difference makes it a unique member of the WRKY family in higher plants. The 918-bp long 5' proximal region determined using thermal asymmetric interlaced-polymerase chain reaction has many putative cis-acting elements and transcription factor binding motifs. Subcellular localization assay of MusaWRKY71 performed using a GFP-fusion platform confirmed its nuclear targeting in transformed banana suspension cells. Importantly, MusaWRKY71 expression in banana plantlets was up-regulated manifold by cold, dehydration, salt, ABA, H2O2, ethylene, salicylic acid and methyl jasmonate treatment indicating its involvement in response to a variety of stress conditions in banana. Further, transient overexpression of MusaWRKY71 in transformed banana cells led to the induction of several genes, homologues of which have been proven to be involved in diverse stress responses in other important plants. The present study is the first report on characterization of a banana stress-related transcription factor using transformed banana cells.

  3. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    Science.gov (United States)

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars.

  4. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum.

    Science.gov (United States)

    Huang, Shengxiong; Gao, Yongfeng; Liu, Jikai; Peng, Xiaoli; Niu, Xiangli; Fei, Zhangjun; Cao, Shuqing; Liu, Yongsheng

    2012-06-01

    The WRKY transcription factors have been implicated in multiple biological processes in plants, especially in regulating defense against biotic and abiotic stresses. However, little information is available about the WRKYs in tomato (Solanum lycopersicum). The recent release of the whole-genome sequence of tomato allowed us to perform a genome-wide investigation for tomato WRKY proteins, and to compare these positively identified proteins with their orthologs in model plants, such as Arabidopsis and rice. In the present study, based on the recently released tomato whole-genome sequences, we identified 81 SlWRKY genes that were classified into three main groups, with the second group further divided into five subgroups. Depending on WRKY domains' sequences derived from tomato, Arabidopsis and rice, construction of a phylogenetic tree demonstrated distinct clustering and unique gene expansion of WRKY genes among the three species. Genome mapping analysis revealed that tomato WRKY genes were enriched on several chromosomes, especially on chromosome 5, and 16 % of the family members were tandemly duplicated genes. The tomato WRKYs from each group were shown to share similar motif compositions. Furthermore, tomato WRKY genes showed distinct temporal and spatial expression patterns in different developmental processes and in response to various biotic and abiotic stresses. The expression of 18 selected tomato WRKY genes in response to drought and salt stresses and Pseudomonas syringae invasion, respectively, was validated by quantitative RT-PCR. Our results will provide a platform for functional identification and molecular breeding study of WRKY genes in tomato and probably other Solanaceae plants.

  5. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    Science.gov (United States)

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    Science.gov (United States)

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  7. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Characterization of WRKY co-regulatory networks in rice and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kikuchi Shoshi

    2009-09-01

    Full Text Available Abstract Background The WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa. This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data. Results The presented results suggested that 24 members of the rice WRKY gene family (22% of the total were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B and two smaller ones (COR-C and COR-D, all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes. Conclusion In this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co

  9. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    Science.gov (United States)

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  10. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  11. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress

    International Nuclear Information System (INIS)

    Hong, Changyong; Cheng, Dan; Zhang, Guoqiang; Zhu, Dandan; Chen, Yahua; Tan, Mingpu

    2017-01-01

    WRKY transcription factors act as positive regulators in abiotic stress responses by activation of the cellular antioxidant systems. However, there are few reports on the response of WRKY genes to cadmium (Cd) stress. In this study, the role of maize ZmWRKY4 in regulating antioxidant enzymes in Cd stress was investigated. The results indicated that Cd induced up-regulation of the expression and the activities of ZmWRKY4 and superoxide dismutase (SOD) and ascorbate peroxidase (APX). Transient expression and RNA interference (RNAi) silencing of ZmWRKY4 in maize mesophyll protoplasts further revealed that ZmWRKY4 was required for the abscisic acid (ABA)-induced increase in expression and activity of SOD and APX. Overexpression of ZmWRKY4 in protoplasts upregulated the expression and the activities of antioxidant enzymes, whereas ABA induced increases in the expression and the activities of antioxidant enzymes were blocked by the RNAi silencing of ZmWRKY4. Bioinformatic analysis indicated that ZmSOD4 and ZmcAPX both harbored two W-boxes, binding motif for WRKY transcription factors, in their promoter region. Intriguingly, ZmWRKY4 belongs to group I WRKYs with two WRKY domains. Moreover, the synchronized expression patterns indicate that ZmWRKY4 might play a critical role in either regulating the ZmSOD4 and ZmcAPX expression or cooperating with them in response to stress and phytohormone. - Highlights: • Cd induced the expression of ZmWRKY4, ZmSOD4 and ZmcAPX. • Maize transcription factor ZmWRKY4 was localized in nucleus. • Overexpression of ZmWRKY4 upregulated the expression of ZmSOD4 and ZmcAPX and the activities of antioxidant enzymes.

  12. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  13. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    Science.gov (United States)

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  14. [Genome-wide identification and analysis of WRKY transcription factors in Medicago truncatula].

    Science.gov (United States)

    Song, Hui; Nan, Zhibiao

    2014-02-01

    WRKY gene family plays important roles in plant by involving in transcriptional regulations during various physiologically processes such as development, metabolism and responses to biotic and abiotic stresses. WRKY genes have been identified in various plants. However, only few WRKY genes in Medicago truncatula have been identified with systematic analysis and comparison. In this study, we identified 93 WRKY genes through analyses of M. truncatula genome. These genes include 19 type-I genes, 49 type II genes and 13 type-III genes, and 12 non-regular type genes. All of these genes were characterized through analyses of gene duplication, chromosomal locations, structural diversity, conserved protein motifs and phylogenetic relations. The results showed that 11 times of gene duplication event occurred in WRKY gene family involving 24 genes. WRKY genes, containing 6 gene clusters, are unevenly distributed into chromosome 1 to 6, and there is the purifying selection pressure in WRKY group III genes.

  15. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    Science.gov (United States)

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

  16. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    Science.gov (United States)

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. © 2015 S. Karger AG, Basel.

  17. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice.

    Directory of Open Access Journals (Sweden)

    Tetsuya Chujo

    Full Text Available WRKY transcription factors and mitogen-activated protein kinase (MAPK cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster. When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants.

  18. Overexpression of Phosphomimic Mutated OsWRKY53 Leads to Enhanced Blast Resistance in Rice

    Science.gov (United States)

    Ogawa, Satoshi; Masuda, Yuka; Shimizu, Takafumi; Kishi-Kaboshi, Mitsuko; Takahashi, Akira; Nishizawa, Yoko; Minami, Eiichi; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2014-01-01

    WRKY transcription factors and mitogen-activated protein kinase (MAPK) cascades have been shown to play pivotal roles in the regulation of plant defense responses. We previously reported that OsWRKY53-overexpressing rice plants showed enhanced resistance to the rice blast fungus. In this study, we identified OsWRKY53 as a substrate of OsMPK3/OsMPK6, components of a fungal PAMP-responsive MAPK cascade in rice, and analyzed the effect of OsWRKY53 phosphorylation on the regulation of basal defense responses to a virulence race of rice blast fungus Magnaporthe oryzae strain Ina86-137. An in vitro phosphorylation assay revealed that the OsMPK3/OsMPK6 activated by OsMKK4 phosphorylated OsWRKY53 recombinant protein at its multiple clustered serine-proline residues (SP cluster). When OsWRKY53 was coexpressed with a constitutively active mutant of OsMKK4 in a transient reporter gene assay, the enhanced transactivation activity of OsWRKY53 was found to be dependent on phosphorylation of the SP cluster. Transgenic rice plants overexpressing a phospho-mimic mutant of OsWRKY53 (OsWRKY53SD) showed further-enhanced disease resistance to the blast fungus compared to native OsWRKY53-overexpressing rice plants, and a substantial number of defense-related genes, including pathogenesis-related protein genes, were more upregulated in the OsWRKY53SD-overexpressing plants compared to the OsWRKY53-overexpressing plants. These results strongly suggest that the OsMKK4-OsMPK3/OsMPK6 cascade regulates transactivation activity of OsWRKY53, and overexpression of the phospho-mimic mutant of OsWRKY53 results in a major change to the rice transcriptome at steady state that leads to activation of a defense response against the blast fungus in rice plants. PMID:24892523

  19. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yanjuan Jiang; Gang Liang; Diqiu Yu

    2012-01-01

    Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide.However,the mechanism underlying drought tolerance in plants is unclear.WRKY transcription factors are known to function in adaptation to abiotic stresses.By screening a pool of WRKY-associated T-DNA insertion mutants,we isolated a gain-of-function mutant,acquired drought tolerance (adt),showing improved drought tolerance.Under drought stress conditions,adt accumulated higher levels of ABA than wild-type plants.Stomatal aperture analysis indicated that adt was more sensitive to ABA than wild-type plants.Molecular genetic analysis revealed that a T-DNA insertion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein.Constitutive expression of WRKY57 also conferred similar drought tolerance.Consistently with the high ABA content and enhanced drought tolerance,three stress-responsive genes (RD29A,NCED3,and ABA3) were up-regulated in adt.ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences.In addition,during ABA treatment,seed germination and early seedling growth of adt were inhibited,whereas,under high osmotic conditions,adt showed a higher seed germination frequency.In summary,our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels.Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.

  20. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    Science.gov (United States)

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling.

    Science.gov (United States)

    Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Yuan, Ling

    2014-06-20

    To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the Catharanthus WRKY transcription factors (TFs) in regulating TIA biosynthesis. In Arabidopsis and other plants, the WRKY TF family is also shown to play important role in controlling tolerance to biotic and abiotic stresses, as well as secondary metabolism. Here, we describe the WRKY TF families in response to jasmonate in Arabidopsis and Catharanthus. Publically available Arabidopsis microarrays revealed at least 30% (22 of 72) of WRKY TFs respond to jasmonate treatments. Microarray analysis identified at least six jasmonate responsive Arabidopsis WRKY genes (AtWRKY7, AtWRKY20, AtWRKY26, AtWRKY45, AtWRKY48, and AtWRKY72) that have not been previously reported. The Catharanthus WRKY TF family is comprised of at least 48 members. Phylogenetic clustering reveals 11 group I, 32 group II, and 5 group III WRKY TFs. Furthermore, we found that at least 25% (12 of 48) were jasmonate responsive, and 75% (9 of 12) of the jasmonate responsive CrWRKYs are orthologs of AtWRKYs known to be regulated by jasmonate. Overall, the CrWRKY family, ascertained from transcriptome sequences, contains approximately 75% of the number of WRKYs found in other sequenced asterid species (pepper, tomato, potato, and bladderwort). Microarray and transcriptomic data indicate that expression of WRKY TFs in Arabidopsis and Catharanthus are under tight spatio-temporal and developmental control, and potentially have a significant role in jasmonate signaling. Profiling of CrWRKY expression in response to jasmonate treatment

  2. Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis

    NARCIS (Netherlands)

    Poietti, S.; Bertini, L.; Ent, S. van der; Leon Reyes, H.A.; Pieterse, C.M.J.; Tucci, M.; Caporale, C.; Caruso, C.

    2011-01-01

    WRKY proteins are transcription factors involved in many plant processes including plant responses to pathogens. Here, the cross activity of TaWRKY78 from the monocot wheat and AtWRKY20 from the dicot Arabidopsis on the cognate promoters of the orthologous PR4-type genes wPR4e and AtHEL of wheat and

  3. The Solanum lycopersicum WRKY3 Transcription Factor SlWRKY3 Is Involved in Salt Stress Tolerance in Tomato

    Czech Academy of Sciences Publication Activity Database

    Hichri, I.; Muhovski, Y.; Žižková, Eva; Dobrev, Petre; Gharbi, E.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Clippe, A.; Errachid, A.; Motyka, Václav; Lutts, S.

    2017-01-01

    Roč. 8, JUL 31 (2017), č. článku 1343. ISSN 1664-462X R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : agrobacterium-mediated transformation * transgenic arabidopsis plants * dna-binding * salinity tolerance * defense responses * drought tolerance * abiotic stresses * water-stress * genes * tobacco * Solanum lycopersicum * SlWRKY3 * transcription factor * salinity tolerance * plant physiology Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  4. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family.

    Science.gov (United States)

    Guo, Chunlei; Guo, Rongrong; Xu, Xiaozhao; Gao, Min; Li, Xiaoqin; Song, Junyang; Zheng, Yi; Wang, Xiping

    2014-04-01

    WRKY proteins comprise a large family of transcription factors that play important roles in plant defence regulatory networks, including responses to various biotic and abiotic stresses. To date, no large-scale study of WRKY genes has been undertaken in grape (Vitis vinifera L.). In this study, a total of 59 putative grape WRKY genes (VvWRKY) were identified and renamed on the basis of their respective chromosome distribution. A multiple sequence alignment analysis using all predicted grape WRKY genes coding sequences, together with those from Arabidopsis thaliana and tomato (Solanum lycopersicum), indicated that the 59 VvWRKY genes can be classified into three main groups (I-III). An evaluation of the duplication events suggested that several WRKY genes arose before the divergence of the grape and Arabidopsis lineages. Moreover, expression profiles derived from semiquantitative PCR and real-time quantitative PCR analyses showed distinct expression patterns in various tissues and in response to different treatments. Four VvWRKY genes showed a significantly higher expression in roots or leaves, 55 responded to varying degrees to at least one abiotic stress treatment, and the expression of 38 were altered following powdery mildew (Erysiphe necator) infection. Most VvWRKY genes were downregulated in response to abscisic acid or salicylic acid treatments, while the expression of a subset was upregulated by methyl jasmonate or ethylene treatments.

  5. Overexpression of DgWRKY4 Enhances Salt Tolerance in Chrysanthemum Seedlings

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-09-01

    Full Text Available High salinity seriously affects the production of chrysanthemum, so improving the salt tolerance of chrysanthemum becomes the focus and purpose of our research. The WRKY transcription factor (TF family is highly associated with a number of processes of abiotic stress responses. We isolated DgWRKY4 from Dendranthema grandiflorum, and a protein encoded by this new gene contains two highly conserved WRKY domains and two C2H2 zinc-finger motifs. Then, we functionally characterized that DgWRKY4 was induced by salt, and DgWRKY4 overexpression in chrysanthemum resulted in increased tolerance to high salt stress compared to wild-type (WT. Under salt stress, the transgenic chrysanthemum accumulated less malondialdehyde, hydrogen peroxide (H2O2, and superoxide anion (O2− than WT, accompanied by more proline, soluble sugar, and activities of antioxidant enzymes than WT; in addition, a stronger photosynthetic capacity and a series of up-regulated stress-related genes were also found in transgenic chrysanthemum. All results demonstrated that DgWRKY4 is a positive regulatory gene responding to salt stress, via advancing photosynthetic capacity, promoting the operation of reactive oxygen species-scavenging system, maintaining membrane stability, enhancing the osmotic adjustment, and up-regulating transcript levels of stress-related genes. So, DgWRKY4 can serve as a new candidate gene for salt-tolerant plant breeding.

  6. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  7. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J

    2015-07-01

    Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Yong-Ling Liao

    2015-01-01

    Full Text Available WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.

  9. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum.

    Science.gov (United States)

    Chen, Ke; de Borne, François Dorlhac; Julio, Emilie; Obszynski, Julie; Pale, Patrick; Otten, Léon

    2016-08-01

    Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.

    Science.gov (United States)

    He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan

    2012-07-01

    WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.

  11. Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice

    Directory of Open Access Journals (Sweden)

    Li Xianghua

    2009-06-01

    Full Text Available Abstract Background Rice transcription regulator OsWRKY13 influences the functioning of more than 500 genes in multiple signalling pathways, with roles in disease resistance, redox homeostasis, abiotic stress responses, and development. Results To determine the putative transcriptional regulation mechanism of OsWRKY13, the putative cis-acting elements of OsWRKY13-influenced genes were analyzed using the whole genome expression profiling of OsWRKY13-activated plants generated with the Affymetrix GeneChip Rice Genome Array. At least 39 transcription factor genes were influenced by OsWRKY13, and 30 of them were downregulated. The promoters of OsWRKY13-upregulated genes were overrepresented with W-boxes for WRKY protein binding, whereas the promoters of OsWRKY13-downregulated genes were enriched with cis-elements putatively for binding of MYB and AP2/EREBP types of transcription factors. Consistent with the distinctive distribution of these cis-elements in up- and downregulated genes, nine WRKY genes were influenced by OsWRKY13 and the promoters of five of them were bound by OsWRKY13 in vitro; all seven differentially expressed AP2/EREBP genes and six of the seven differentially expressed MYB genes were suppressed by in OsWRKY13-activated plants. A subset of OsWRKY13-influenced WRKY genes were involved in host-pathogen interactions. Conclusion These results suggest that OsWRKY13-mediated signalling pathways are partitioned by different transcription factors. WRKY proteins may play important roles in the monitoring of OsWRKY13-upregulated genes and genes involved in pathogen-induced defence responses, whereas MYB and AP2/EREBP proteins may contribute most to the control of OsWRKY13-downregulated genes.

  12. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  13. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    Science.gov (United States)

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  14. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  15. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes.

    Science.gov (United States)

    Raguso, Robert A; Schlumpberger, Boris O; Kaczorowski, Rainee L; Holtsford, Timothy P

    2006-09-01

    We analyzed floral volatiles from eight tobacco species (Nicotiana; Solanaceae) including newly discovered Brazilian taxa (Nicotiana mutabilis and "Rastroensis") in section Alatae. Eighty-four compounds were found, including mono- and sesquiterpenoids, nitrogenous compounds, benzenoid and aliphatic alcohols, aldehydes and esters. Floral scent from recent accessions of Nicotiana alata, Nicotiana bonariensis and Nicotiana langsdorffii differed from previously published data, suggesting intraspecific variation in scent composition at the level of biosynthetic class. Newly discovered taxa in Alatae, like their relatives, emit large amounts of 1,8-cineole and smaller amounts of monoterpenes on a nocturnal rhythm, constituting a chemical synapomorphy for this lineage. Fragrance data from three species of Nicotiana sect. Suaveolentes, the sister group of Alatae, (two Australian species: N. cavicola, N. ingulba; one African species: N. africana), were compared to previously reported data from their close relative, N. suaveolens. Like N. suaveolens, N. cavicola and N. ingulba emit fragrances dominated by benzenoids and phenylpropanoids, whereas the flowers of N. africana lacked a distinct floral scent and instead emitted only small amounts of an aliphatic methyl ester from foliage. Interestingly, this ester also is emitted from foliage of N. longiflora and N. plumbaginifolia (both in section Alatae s.l.), which share a common ancestor with N. africana. This result, combined with the synapomorphic pattern of 1,8 cineole emission in Alatae s.s., suggests that phylogenetic signal explains a major component of fragrance composition among tobacco species in sections Alatae and Suaveolentes. At the intraspecific level, interpopulational scent variation is widespread in sect. Alatae, and may reflect edaphic specialization, introgression, local pollinator shifts, genetic drift or artificial selection in cultivation. Further studies with genetically and geographically well

  16. WRKY71 and TGA1a physically interact and synergistically regulate the activity of a novel promoter isolated from Petunia vein-clearing virus.

    Science.gov (United States)

    Shrestha, Ankita; Khan, Ahamed; Mishra, Dipti Ranjan; Bhuyan, Kashyap; Sahoo, Bhabani; Maiti, Indu B; Dey, Nrisingha

    2018-02-01

    Caulimoviral promoters have become excellent tools for efficient transgene expression in plants. However, the transcriptional framework controlling their systematic regulation is poorly understood. To understand this regulatory mechanism, we extensively studied a novel caulimoviral promoter, PV8 (-163 to +138, 301 bp), isolated from Petunia vein-clearing virus (PVCV). PVCV was found to be Salicylic acid (SA)-inducible and 2.5-3.0 times stronger than the widely used CaMV35S promoter. In silico analysis of the PV8 sequence revealed a unique clustering of two stress-responsive cis-elements, namely, as-1 1 and W-box 1-2 , located within a span of 31 bp (-74 to -47) that bound to the TGA1a and WRKY71 plant transcription factors (TFs), respectively. We found that as-1 (TTACG) and W-box (TGAC) elements occupied both TGA1a and WRKY71 on the PV8 backbone. Mutational studies demonstrated that the combinatorial influence of as-1 (-57) and W-box 1-2 (-74 and -47) on the PV8 promoter sequence largely modulated its activity. TGA1a and WRKY71 physically interacted and cooperatively enhanced the transcriptional activity of the PV8 promoter. Biotic stress stimuli induced PV8 promoter activity by ~1.5 times. We also established the possible pathogen-elicitor function of AtWRKY71 and NtabWRKY71 TFs. Altogether, this study elucidates the interplay between TFs, biotic stress and caulimoviral promoter function. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia.

    Science.gov (United States)

    Wan, Yongqing; Mao, Mingzhu; Wan, Dongli; Yang, Qi; Yang, Feiyun; Mandlaa; Li, Guojing; Wang, Ruigang

    2018-02-09

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, play important roles in plant development and various stress responses. The WRKYs of Caragana intermedia are still not well characterized, although many WRKYs have been identified in various plant species. We identified 53 CiWRKY genes from C. intermedia transcriptome data, 28 of which exhibited complete open reading frames (ORFs). These CiWRKYs were divided into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. Conserved domain analysis showed that the CiWRKY proteins contain a highly conserved WRKYGQK motif and two variant motifs (WRKYGKK and WKKYEEK). The subcellular localization of CiWRKY26 and CiWRKY28-1 indicated that these two proteins localized exclusively to nuclei, supporting their role as transcription factors. The expression patterns of the 28 CiWRKYs with complete ORFs were examined through quantitative real-time PCR (qRT-PCR) in various tissues and under different abiotic stresses (drought, cold, salt, high-pH and abscisic acid (ABA)). The results showed that each CiWRKY responded to at least one stress treatment. Furthermore, overexpression of CiWRKY75-1 and CiWRKY40-4 in Arabidopsis thaliana suppressed the drought stress tolerance of the plants and delayed leaf senescence, respectively. Fifty-three CiWRKY genes from the C. intermedia transcriptome were identified and divided into three groups via phylogenetic analysis. The expression patterns of the 28 CiWRKYs under different abiotic stresses suggested that each CiWRKY responded to at least one stress treatment. Overexpression of CiWRKY75-1 and CiWRKY40-4 suppressed the drought stress tolerance of Arabidopsis and delayed leaf senescence, respectively. These results provide a basis for the molecular mechanism through which CiWRKYs mediate stress tolerance.

  18. Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity.

    Science.gov (United States)

    Birkenbihl, Rainer P; Kracher, Barbara; Somssich, Imre E

    2017-01-01

    During microbial-associated molecular pattern-triggered immunity (MTI), molecules derived from microbes are perceived by cell surface receptors and upon signaling to the nucleus initiate a massive transcriptional reprogramming critical to mount an appropriate host defense response. WRKY transcription factors play an important role in regulating these transcriptional processes. Here, we determined on a genome-wide scale the flg22-induced in vivo DNA binding dynamics of three of the most prominent WRKY factors, WRKY18, WRKY40, and WRKY33. The three WRKY factors each bound to more than 1000 gene loci predominantly at W-box elements, the known WRKY binding motif. Binding occurred mainly in the 500-bp promoter regions of these genes. Many of the targeted genes are involved in signal perception and transduction not only during MTI but also upon damage-associated molecular pattern-triggered immunity, providing a mechanistic link between these functionally interconnected basal defense pathways. Among the additional targets were genes involved in the production of indolic secondary metabolites and in modulating distinct plant hormone pathways. Importantly, among the targeted genes were numerous transcription factors, encoding predominantly ethylene response factors, active during early MTI, and WRKY factors, supporting the previously hypothesized existence of a WRKY subregulatory network. Transcriptional analysis revealed that WRKY18 and WRKY40 function redundantly as negative regulators of flg22-induced genes often to prevent exaggerated defense responses. © 2016 American Society of Plant Biologists. All rights reserved.

  19. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.

  20. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses

    Directory of Open Access Journals (Sweden)

    Liuqiang Wang

    2015-11-01

    Full Text Available WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein–protein interactions is still fragmentary, and such protein–protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA. Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.

  1. ThWRKY4 from Tamarix hispida Can Form Homodimers and Heterodimers and Is Involved in Abiotic Stress Responses.

    Science.gov (United States)

    Wang, Liuqiang; Zheng, Lei; Zhang, Chunrui; Wang, Yucheng; Lu, Mengzhu; Gao, Caiqiu

    2015-11-13

    WRKY proteins are a large family of transcription factors that are involved in diverse developmental processes and abiotic stress responses in plants. However, our knowledge of the regulatory mechanisms of WRKYs participation in protein-protein interactions is still fragmentary, and such protein-protein interactions are fundamental in understanding biological networks and the functions of proteins. In this study, we report that a WRKY protein from Tamarix hispida, ThWRKY4, can form both homodimers and heterodimers with ThWRKY2 and ThWRKY3. In addition, ThWRKY2 and ThWRKY3 can both bind to W-box motif with binding affinities similar to that of ThWRKY4. Further, the expression patterns of ThWRKY2 and ThWRKY3 are similar to that of ThWRKY4 when plants are exposed to abscisic acid (ABA). Subcellular localization shows that these three ThWRKY proteins are nuclear proteins. Taken together, these results demonstrate that ThWRKY4 is a dimeric protein that can form functional homodimers or heterodimers that are involved in abiotic stress responses.

  2. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    Science.gov (United States)

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information

  3. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  4. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Qian, W; Yu, C; Qin, H

    2007-01-01

    , soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces...... was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral......-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM...

  5. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    Science.gov (United States)

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  6. A 5′P degradation hot spot influences molecular farming of anticancerogenic nuclease TBN1 in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Týcová, Anna; Piernikarczyk, R.J.J.; Kugler, M.; Lipovová, P.; Podzimek, T.; Steger, G.; Matoušek, Jaroslav

    2016-01-01

    Roč. 127, č. 2 (2016), s. 347-358 ISSN 0167-6857 Institutional support: RVO:60077344 Keywords : mRNA quantification * Nicotiana benthamiana * Nicotiana tabacum * Post-transcriptional gene silencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.002, year: 2016

  7. Transcription Factor SmWRKY1 Positively Promotes the Biosynthesis of Tanshinones in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Wenzhi Cao

    2018-04-01

    Full Text Available Tanshinones, one group of bioactive diterpenes, were widely used in the treatment of cardiovascular diseases. WRKYs play important roles in plant metabolism, but their regulation mechanism in Salvia miltiorrhiza remains elusive. In this study, one WRKY transcription factor SmWRKY1 was isolated and functionally characterized from S. miltiorrhiza. Multiple sequence alignment and phylogenetic tree analysis showed SmWRKY1 shared high homology with other plant WRKYs such as CrWRKY1. SmWRKY1 was found predominantly expressed in leaves and stems, and was responsive to salicylic acid (SA, methyl jasmonate (MeJA, and nitric oxide (NO treatment. Subcellular localization analysis found that SmWRKY1 was localized in the nucleus. Over-expression of SmWRKY1 significantly elevated the transcripts of genes coding for enzymes in the MEP pathway especially 1-deoxy-D-xylulose-5-phosphate synthase (SmDXS and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (SmDXR, resulted in over fivefold increase in tanshinones production in transgenic lines (up to 13.7 mg/g DW compared with the control lines. A dual-luciferase (Dual-LUC assay showed that SmWRKY1 can positively regulate SmDXR expression by binding to its promoter. Our work revealed that SmWRKY1 participated in the regulation of tanshinones biosynthesis and acted as a positive regulator through activating SmDXR in the MEP pathway, thus provided a new insight to further explore the regulation mechanism of tanshinones biosynthesis.

  8. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    Full Text Available Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG. Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time.

  9. Ectopic Expression of a WRKY Homolog from Glycine soja Alters Flowering Time in Arabidopsis

    Science.gov (United States)

    Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time. PMID:23991184

  10. The WRKY Transcription Factor Family in Citrus: Valuable and Useful Candidate Genes for Citrus Breeding.

    Science.gov (United States)

    Ayadi, M; Hanana, M; Kharrat, N; Merchaoui, H; Marzoug, R Ben; Lauvergeat, V; Rebaï, A; Mzid, R

    2016-10-01

    WRKY transcription factors belong to a large family of plant transcriptional regulators whose members have been reported to be involved in a wide range of biological roles including plant development, adaptation to environmental constraints and response to several diseases. However, little or poor information is available about WRKY's in Citrus. The recent release of completely assembled genomes sequences of Citrus sinensis and Citrus clementina and the availability of ESTs sequences from other citrus species allowed us to perform a genome survey for Citrus WRKY proteins. In the present study, we identified 100 WRKY members from C. sinensis (51), C. clementina (48) and Citrus unshiu (1), and analyzed their chromosomal distribution, gene structure, gene duplication, syntenic relation and phylogenetic analysis. A phylogenetic tree of 100 Citrus WRKY sequences with their orthologs from Arabidopsis has distinguished seven groups. The CsWRKY genes were distributed across all ten sweet orange chromosomes. A comprehensive approach and an integrative analysis of Citrus WRKY gene expression revealed variable profiles of expression within tissues and stress conditions indicating functional diversification. Thus, candidate Citrus WRKY genes have been proposed as potentially involved in fruit acidification, essential oil biosynthesis and abiotic/biotic stress tolerance. Our results provided essential prerequisites for further WRKY genes cloning and functional analysis with an aim of citrus crop improvement.

  11. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    Science.gov (United States)

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressalis. We investigated the performance of a piecing-sucking herbivore, the brown planthopper (BPH) Nilaparvata lugens, on transgenic plants that silence or overexpress OsWRKY53, and found that OsWRKY53 activates rice defenses against BPH by activating an H2O2 burst and suppressing ethylene biosynthesis. These findings suggest that OsWRKY53 functions not only as a regulator of plants' investment in specific defenses, but also as a switch to initiate new defenses against other stresses, highlighting the versatility and importance of OsWRKY53 in herbivore-induced plant defenses. PMID:27031005

  12. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling

    OpenAIRE

    Muthamilarasan, Mehanathan; Bonthala, Venkata S.; Khandelwal, Rohit; Jaishankar, Jananee; Shweta, Shweta; Nawaz, Kashif; Prasad, Manoj

    2015-01-01

    Transcription factors (TFs) are major players in stress signalling and constitute an integral part of signalling networks. Among the major TFs, WRKY proteins play pivotal roles in regulation of transcriptional reprogramming associated with stress responses. In view of this, genome- and transcriptome-wide identification of WRKY TF family was performed in the C4 model plants, Setaria italica (SiWRKY) and S. viridis (SvWRKY), respectively. The study identified 105 SiWRKY and 44 SvWRKY proteins t...

  13. Potential roles of WRKY transcription factors in resistance to Aspergillus flavus colonization of immature maize kernels

    Science.gov (United States)

    Resistance to Aspergillus flavus by maize (Zea mays L.) is mediated by several defense proteins; however the mechanism regulating the expression of these defenses is poorly understood. This study examined the potential roles of six maize WRKY transcription factors, ZmWRKY19, ZmWRKY21, ZmWRKY53, ZmW...

  14. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Huang, Ying; Li, Meng-Yao; Wu, Peng; Xu, Zhi-Sheng; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2016-10-07

    Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time-polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato-TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression.

  15. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.

    Science.gov (United States)

    Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin

    2018-03-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.

  16. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Science.gov (United States)

    He, Yajun; Mao, Shaoshuai; Gao, Yulong; Zhu, Liying; Wu, Daoming; Cui, Yixin; Li, Jiana; Qian, Wei

    2016-01-01

    WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions

  17. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related

  18. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Science.gov (United States)

    Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian

    2015-01-01

    WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  19. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum.

    Directory of Open Access Journals (Sweden)

    Xinqi Fan

    Full Text Available WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III, as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.

  20. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Molecular Characterization of a Leaf Senescence-Related Transcription Factor BrWRKY75 of Chinese Flowering Cabbage

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2016-09-01

    Full Text Available WRKY is a plant-specific transcription factor (TF involved in the regulation of many biological processes; however, its role in leaf senescence of leafy vegetables remains unknown. In the present work, a WRKY TF, termed BrWRKY75 was isolated from Chinese flowering cabbage [Brassica rapa L. ssp. chinensis (L. Mokino var. utilis Tsen et Lee]. Analysis of deduced amino acid sequence and the phylogenetic tree showed that BrWRKY75 has high homology with WRKY75 from Brassica oleracea and Arabidopsis thaliana, and belongs to the II c sub-group. Sub-cellular localization and transcriptional activity analysis revealed that BrWRKY75 is a nuclear protein with transcriptional repression activity, and was up-regulated during leaf senescence. Electrophoretic mobility shift assay confirmed that BrWRKY75 directly bound to the W-box (TTGAC cis-element. Collectively, these results provide a basis for further investigation of the transcriptional regulation of Chinese flowering cabbage leaf senescence.

  2. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  3. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  4. The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Rongrong Guo

    2018-04-01

    Full Text Available WRKY transcription factors are known to play important roles in plant responses to various abiotic and biotic stresses. The grape WRKY gene, WRKY3 was previously reported to respond to salt and drought stress, as well as methyl jasmonate and ethylene treatments in Vitis labrusca × V. vinifera cv. ‘Kyoho.’ In the current study, WRKY3 from the ‘Kyoho’ grape cultivar was constitutively expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter. The 35S::VlWRKY3 transgenic A. thaliana plants showed improved salt and drought stress tolerance during the germination, seedling and the mature plant stages. Various physiological traits related to abiotic stress responses were evaluated to gain further insight into the role of VlWRKY3, and it was found that abiotic stress caused less damage to the transgenic seedlings than to the wild-type (WT plants. VlWRKY3 over-expression also resulted in altered expression levels of abiotic stress-responsive genes. Moreover, the 35S::VlWRKY3 transgenic A. thaliana lines showed improved resistance to Golovinomyces cichoracearum, but increased susceptibility to Botrytis cinerea, compared with the WT plants. Collectively, these results indicate that VlWRKY3 plays important roles in responses to both abiotic and biotic stress, and modification of its expression may represent a strategy to enhance stress tolerance in crops.

  5. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens.

    Science.gov (United States)

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-05-31

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H₂O₂ and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  6. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  7. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    Science.gov (United States)

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salicylic acid (SA). The antisense expression of OsWRKY45 (as-wrky) enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT) plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani) but higher susceptibility to rice blast (caused by Magnaporthe oryzae) than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice. PMID:27258255

  8. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    Directory of Open Access Journals (Sweden)

    Jiayi Huangfu

    2016-05-01

    Full Text Available WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens and by treatment with jasmonic acid (JA or salicylic acid (SA. The antisense expression of OsWRKY45 (as-wrky enhanced BPH-induced levels of H2O2 and ethylene, reduced feeding and oviposition preference as well as the survival rate of BPH, and delayed the development of BPH nymphs. Consistently, lower population densities of BPH on as-wrky lines, compared to those on wild-type (WT plants, were observed in field experiments. On the other hand, as-wrky lines in the field had lower susceptibility to sheath blight (caused by Rhizoctonia solani but higher susceptibility to rice blast (caused by Magnaporthe oryzae than did WT plants. These findings suggest that OsWRKY45 plays important but contrasting roles in regulating the resistance of rice to pathogens and herbivores, and attention should be paid if OsWRKY45 is used to develop disease or herbivore-resistant rice.

  9. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  10. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  11. Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum.

    Science.gov (United States)

    Yousfi, Fatma-Ezzahra; Makhloufi, Emna; Marande, William; Ghorbel, Abdel W; Bouzayen, Mondher; Bergès, Hélène

    2016-01-01

    WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat ( Triticum turgidum L . ssp. durum ). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum . The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis -regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots

  12. Genomic identification of WRKY transcription factors in carrot (Daucus carota) and analysis of evolution and homologous groups for plants.

    Science.gov (United States)

    Li, Meng-Yao; Xu, Zhi-Sheng; Tian, Chang; Huang, Ying; Wang, Feng; Xiong, Ai-Sheng

    2016-03-15

    WRKY transcription factors belong to one of the largest transcription factor families. These factors possess functions in plant growth and development, signal transduction, and stress response. Here, we identified 95 DcWRKY genes in carrot based on the carrot genomic and transcriptomic data, and divided them into three groups. Phylogenetic analysis of WRKY proteins from carrot and Arabidopsis divided these proteins into seven subgroups. To elucidate the evolution and distribution of WRKY transcription factors in different species, we constructed a schematic of the phylogenetic tree and compared the WRKY family factors among 22 species, which including plants, slime mold and protozoan. An in-depth study was performed to clarify the homologous factor groups of nine divergent taxa in lower and higher plants. Based on the orthologous factors between carrot and Arabidopsis, 38 DcWRKY proteins were calculated to interact with other proteins in the carrot genome. Yeast two-hybrid assay showed that DcWRKY20 can interact with DcMAPK1 and DcMAPK4. The expression patterns of the selected DcWRKY genes based on transcriptome data and qRT-PCR suggested that those selected DcWRKY genes are involved in root development, biotic and abiotic stress response. This comprehensive analysis provides a basis for investigating the evolution and function of WRKY genes.

  13. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  15. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    Directory of Open Access Journals (Sweden)

    Yuling Bai

    2018-06-01

    Full Text Available In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  16. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Shaowei; Wang, Jianjun; Gao, Chenhao; Jin, Changyu; Li, Dong; Peng, Danshuai; Du, Guomei; Li, Yiqian; Chen, Mingxun

    2018-03-01

    Previous studies have shown that a plant WRKY transcription factor, WRKY41, has multiple functions, and regulates seed dormancy, hormone signaling pathways, and both biotic and abiotic stress responses. However, it is not known about the roles of AtWRKY41 from the model plant, Arabidopsis thaliana, and its ortholog, BnWRKY41, from the closely related and important oil-producing crop, Brassica napus, in the regulation of anthocyanin biosynthesis. Here, we found that the wrky41 mutation in A. thaliana resulted in a significant increase in anthocyanin levels in rosette leaves, indicating that AtWRKY41 acts as repressor of anthocyanin biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed increased expression of three regulatory genes AtMYB75, AtMYB111, and AtMYBD, and two structural genes, AT1G68440 and AtGSTF12, all of which contribute to anthocyanin biosynthesis, in the sixth rosette leaves of wrky41-2 plants at 20 days after germination. We cloned the full length complementary DNA of BnWRKY41-1 from the C2 subgenome of the B. napus genotype Westar and observed that, when overexpressed in tobacco leaves as a fusion protein with green fluorescent protein, BnWRKY41-1 is localized to the nucleus. We further showed that overexpression of BnWRKY41-1 in the A. thaliana wrky41-2 mutant rescued the higher anthocyanin content phenotype in rosette leaves of the mutant. Moreover, the elevated expression levels in wrky41-2 rosette leaves of several important regulatory and structural genes regulating anthocyanin biosynthesis were not observed in the BnWRKY41-1 overexpressing lines. These results reveal that BnWRKY41-1 has a similar role with AtWRKY41 in regulating anthocyanin biosynthesis when overexpressed in A. thaliana. This gene represents a promising target for genetically manipulating B. napus to increase the amounts of anthocyanins in rosette leaves. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.

    Science.gov (United States)

    Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang

    2016-01-01

    The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.

  18. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.

    Science.gov (United States)

    Xu, Li; Jin, Li; Long, Lu; Liu, Linlin; He, Xin; Gao, Wei; Zhu, Longfu; Zhang, Xianlong

    2012-12-01

    Overexpression of a cotton defense-related gene GbWRKY1 in Arabidopsis resulted in modification of the root system by enhanced auxin sensitivity to positively regulate the Pi starvation response. GbWRKY1 was a cloned WRKY transcription factor from Gossypium barbadense, which was firstly identified as a defense-related gene and showed moderate similarity with AtWRKY75 from Arabidopsis thaliana. Overexpression of GbWRKY1 in Arabidopsis resulted in attenuated Pi starvation stress symptoms, including reduced accumulation of anthocyanin and impaired density of lateral roots (LR) in low Pi stress. The study also indicated that overexpression of GbWRKY1 caused plants constitutively exhibited Pi starvation response including increased development of LR, relatively high level of total P and Pi, high expression level of some high-affinity Pi transporters and phosphatases as well as enhanced accumulation of acid phosphatases activity during Pi-sufficient. It was speculated that GbWRKY1 may act as a positive regulator in the Pi starvation response as well as AtWRKY75. GbWRKY1 probably involves in the modulation of Pi homeostasis and participates in the Pi allocation and remobilization but do not accumulate more Pi in Pi-deficient condition, which was different from the fact that AtWRKY75 influenced the Pi status of the plant during Pi deprivation by increasing root surface area and accumulation of more Pi. Otherwise, further study suggested that the overexpression plants were more sensitive to auxin than wild-type and GbWRKY1 may partly influence the LPR1-dependent (low phosphate response 1) Pi starvation signaling pathway and was putatively independent of SUMO E3 ligase SIZ1 and PHR1 (phosphate starvation response 1) in response to Pi starvation.

  19. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    Science.gov (United States)

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease.

    Science.gov (United States)

    Silva Monteiro de Almeida, Dayanne; Oliveira Jordão do Amaral, Daniel; Del-Bem, Luiz-Eduardo; Bronze Dos Santos, Emily; Santana Silva, Raner José; Peres Gramacho, Karina; Vincentz, Michel; Micheli, Fabienne

    2017-01-01

    Transcriptional regulation, led by transcription factors (TFs) such as those of the WRKY family, is a mechanism used by the organism to enhance or repress gene expression in response to stimuli. Here, we report on the genome-wide analysis of the Theobroma cacao WRKY TF family and also investigate the expression of WRKY genes in cacao infected by the fungus Moniliophthora perniciosa. In the cacao genome, 61 non-redundant WRKY sequences were found and classified in three groups (I to III) according to the WRKY and zinc-finger motif types. The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes and 24 of them came from duplication events. The sequences were phylogenetically organized according to the general WRKY groups. The phylogenetic analysis revealed that subgroups IIa and IIb are sister groups and share a common ancestor, as well as subgroups IId and IIe. The most divergent groups according to the plant origin were IIc and III. According to the phylogenetic analysis, 7 TcWRKY genes were selected and analyzed by RT-qPCR in susceptible and resistant cacao plants infected (or not) with M. perniciosa. Some TcWRKY genes presented interesting responses to M. perniciosa such as Tc01_p014750/Tc06_p013130/AtWRKY28, Tc09_p001530/Tc06_p004420/AtWRKY40, Tc04_p016130/AtWRKY54 and Tc10_p016570/ AtWRKY70. Our results can help to select appropriate candidate genes for further characterization in cacao or in other Theobroma species.

  1. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease

    Science.gov (United States)

    Silva Monteiro de Almeida, Dayanne; Oliveira Jordão do Amaral, Daniel; Del-Bem, Luiz-Eduardo; Bronze dos Santos, Emily; Santana Silva, Raner José; Peres Gramacho, Karina; Vincentz, Michel

    2017-01-01

    Transcriptional regulation, led by transcription factors (TFs) such as those of the WRKY family, is a mechanism used by the organism to enhance or repress gene expression in response to stimuli. Here, we report on the genome-wide analysis of the Theobroma cacao WRKY TF family and also investigate the expression of WRKY genes in cacao infected by the fungus Moniliophthora perniciosa. In the cacao genome, 61 non-redundant WRKY sequences were found and classified in three groups (I to III) according to the WRKY and zinc-finger motif types. The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes and 24 of them came from duplication events. The sequences were phylogenetically organized according to the general WRKY groups. The phylogenetic analysis revealed that subgroups IIa and IIb are sister groups and share a common ancestor, as well as subgroups IId and IIe. The most divergent groups according to the plant origin were IIc and III. According to the phylogenetic analysis, 7 TcWRKY genes were selected and analyzed by RT-qPCR in susceptible and resistant cacao plants infected (or not) with M. perniciosa. Some TcWRKY genes presented interesting responses to M. perniciosa such as Tc01_p014750/Tc06_p013130/AtWRKY28, Tc09_p001530/Tc06_p004420/AtWRKY40, Tc04_p016130/AtWRKY54 and Tc10_p016570/ AtWRKY70. Our results can help to select appropriate candidate genes for further characterization in cacao or in other Theobroma species. PMID:29084273

  2. OsWRKY53, a versatile switch in regulating herbivore-induced defense responses in rice

    OpenAIRE

    Hu, Lingfei; Ye, Meng; Li, Ran; Lou, Yonggen

    2016-01-01

    ABSTRACT WRKY proteins, which belong to a large family of plant-specific transcription factors, play important roles in plant defenses against pathogens and herbivores by regulating defense-related signaling pathways. Recently, a rice WRKY transcription factor OsWRKY53 has been reported to function as a negative feedback modulator of OsMPK3/OsMPK6 and thereby to control the size of the investment a rice plant makes to defend against a chewing herbivore, the striped stem borer Chilo suppressal...

  3. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  4. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  5. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  6. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses.

    Science.gov (United States)

    Wei, Wei; Hu, Yang; Han, Yong-Tao; Zhang, Kai; Zhao, Feng-Li; Feng, Jia-Yue

    2016-08-01

    WRKY proteins comprise a large family of transcription factors that play important roles in response to biotic and abiotic stresses and in plant growth and development. To date, little is known about the WRKY gene family in strawberry. In this study, we identified 62 WRKY genes (FvWRKYs) in the wild diploid woodland strawberry (Fragaria vesca, 2n = 2x = 14) accession Heilongjiang-3. According to the phylogenetic analysis and structural features, these identified strawberry FvWRKY genes were classified into three main groups. In addition, eight FvWRKY-GFP fusion proteins showed distinct subcellular localizations in Arabidopsis mesophyll protoplasts. Furthermore, we examined the expression of the 62 FvWRKY genes in 'Heilongjiang-3' under various conditions, including biotic stress (Podosphaera aphanis), abiotic stresses (drought, salt, cold, and heat), and hormone treatments (abscisic acid, ethephon, methyl jasmonate, and salicylic acid). The expression levels of 33 FvWRKY genes were upregulated, while 12 FvWRKY genes were downregulated during powdery mildew infection. FvWRKY genes responded to drought and salt treatment to a greater extent than to temperature stress. Expression profiles derived from quantitative real-time PCR suggested that 11 FvWRKY genes responded dramatically to various stimuli at the transcriptional level, indicating versatile roles in responses to biotic and abiotic stresses. Interaction networks revealed that the crucial pathways controlled by WRKY proteins may be involved in the differential response to biotic stress. Taken together, the present work may provide the basis for future studies of the genetic modification of WRKY genes for pathogen resistance and stress tolerance in strawberry. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis.

    Science.gov (United States)

    Du, Chao; Zhao, Pingping; Zhang, Huirong; Li, Ningning; Zheng, Linlin; Wang, Yingchun

    2017-08-01

    Reaumuria trigyna (R. trigyna) is an endangered small shrub endemic to the Eastern Alxa-Western Ordos area in Inner Mongolia, China. Based on R. trigyna transcriptome data, the Group I WRKY transcription factor gene RtWRKY1 was cloned from R. trigyna. The full-length RtWRKY1 gene was 2100bp, including a 1261-bp open reading frame (ORF) encoding 573 amino acids. RtWRKY1 was mainly expressed in the stem and was induced by salt, cold stress, and ABA treatment. Overexpression of RtWRKY1 in Arabidopsis significantly enhanced the chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. RtWRKY1 transgenic Arabidopsis exhibited higher proline content, GSH-PX, POD, SOD, and CAT activities, and lower MDA content, Na + content, and Na + /K + ratio than wild-type Arabidopsis under salt stress conditions. Salt stress affected the expression of ion transport, proline biosynthesis, and antioxidant related genes, including AtAPX1, AtCAT1, AtSOD1, AtP5CS1, AtP5CS2, AtPRODH1, AtPRODH2, and AtSOS1 in transgenic lines. RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis by regulating plant growth, osmotic balance, Na + /K + homeostasis, and the antioxidant system. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. TaWRKY68 responses to biotic stresses are revealed by the orthologous genes from major cereals

    Directory of Open Access Journals (Sweden)

    Bo Ding

    2014-01-01

    Full Text Available WRKY transcription factors have been extensively characterized in the past 20 years, but in wheat, studies onWRKY genes and their function are lagging behind many other species. To explore the function of wheat WRKY genes, we identified a TaWRKY68 gene from a common wheat cultivar. It encodes a protein comprising 313 amino acids which harbors 19 conserved motifs or active sites. Gene expression patterns were determined by analyzing microarray data of TaWRKY68 in wheat and of orthologous genes from maize, rice and barley using Genevestigator. TaWRKY68 orthologs were identified and clustered using DELTA-BLAST and COBALT programs available at NCBI. The results showed that these genes, which are expressed in all tissues tested, had relatively higher levels in the roots and were up-regulated in response to biotic stresses. Bioinformatics results were confirmed by RT-PCR experiments using wheat plants infected by Agrobacterium tumefaciens and Blumeria graminis, or treated with Deoxynivalenol, a Fusarium graminearum-induced mycotoxin in wheat or barley. In summary,TaWRKY68 functions differ during plant developmental stages and might be representing a hub gene function in wheat responses to various biotic stresses. It was also found that including data from major cereal genes in the bioinformatics analysis gave more accurate and comprehensive predictions of wheat gene functions.

  9. Heterologous Expression of Moss Light-harvesting Complex Stress-related 1 (LHCSR1), the Chlorophyll a-Xanthophyll Pigment-protein Complex Catalyzing Non-photochemical Quenching, in Nicotiana sp.*

    Science.gov (United States)

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-01-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  10. Rice Gene Network Inferred from Expression Profiling of Plants Overexpressing OsWRKY13,a Positive Regulator of Disease Resistance

    Institute of Scientific and Technical Information of China (English)

    Deyun Qiu; Jun Xiao; Weibo Xie; Hongbo Liu; Xianghua Li; Lizhong Xiong; Shiping Wang

    2008-01-01

    Accumulating information indicates that plant disease resistance signaling pathways frequently interact with other pathways regulating developmental processes or abiotic stress responses. However, the molecular mechanisms of these types of crosstalk remain poorly understood in most cases. Here we report that OsWRKY13, an activator of rice resistance to both bacterial and fungal pathogens, appears to function as a convergent point for crosstalk among the pathogen-induced salicylate-dependent defense pathway and five other physiologic pathways. Genome-wide analysis of the expression profiles of OsWRKY13-overexpressing lines suggests that OsWRKY13 directly or indirectly regulates the expression of more than 500 genes that are potentially involved in different physiologic processes according to the classification of the Gene Ontology database. By comparing the expression patterns of genes functioning in known pathways or cellular processes of pathogen infection and the phenotypes between OsWRKY13-overexpressing and wildtype plants, our data suggest that OsWRKY13 is also a regulator of other physiologic processes during pathogen infection. The OsWRKY13-associated disease resistance pathway synergistically interacts via OsWRKY13 with the glutathione/glutaredoxin system and flavonoid biosynthesis pathway to monitor redox homeostasis and to putatively enhance the biosynthesis of antimicrobial flavonoid phytoalexins, respectively, in OsWRKY13-overexpressing lines. Meanwhile, the OsWRKY13-associated disease resistance pathway appears to interact antagonistically with the SNAC1-mediated abiotic stress defense pathway, jasmonic acid signaling pathway, and terpenoid metabolism pathway via OsWRKY13 to suppress salt and cold defense responses as well as to putatively retard rice growth and development.

  11. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress.

    Science.gov (United States)

    Huang, Xiaosan; Li, Kongqing; Xu, Xiaoyong; Yao, Zhenghong; Jin, Cong; Zhang, Shaoling

    2015-12-24

    WRKY transcription factors (TFs) constitute one of the largest protein families in higher plants, and its members contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. WRKY proteins play significant roles in plant development, and in responses to biotic and abiotic stresses. Pear (Pyrus bretschneideri) is one of the most important fruit crops in the world and is frequently threatened by abiotic stress, such as drought, affecting growth, development and productivity. Although the pear genome sequence has been released, little is known about the WRKY TFs in pear, especially in respond to drought stress at the genome-wide level. We identified a total of 103 WRKY TFs in the pear genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the pear WRKY (PbWRKY) family was classified into seven groups (Groups 1, 2a-e, and 3). The microsyteny analysis indicated that 33 (32%) PbWRKY genes were tandemly duplicated and 57 genes (55.3%) were segmentally duplicated. RNA-seq experiment data and quantitative real-time reverse transcription PCR revealed that PbWRKY genes in different groups were induced by drought stress, and Group 2a and 3 were mainly involved in the biological pathways in response to drought stress. Furthermore, adaptive evolution analysis detected a significant positive selection for Pbr001425 in Group 3, and its expression pattern differed from that of other members in this group. The present study provides a solid foundation for further functional dissection and molecular evolution of WRKY TFs in pear, especially for improving the water-deficient resistance of pear through manipulation of the PbWRKYs.

  12. The Transcription Factor OsWRKY45 Negatively Modulates the Resistance of Rice to the Brown Planthopper Nilaparvata lugens

    OpenAIRE

    Huangfu, Jiayi; Li, Jiancai; Li, Ran; Ye, Meng; Kuai, Peng; Zhang, Tongfang; Lou, Yonggen

    2016-01-01

    WRKY transcription factors play a central role not only in plant growth and development but also in plant stress responses. However, the role of WRKY transcription factors in herbivore-induced plant defenses and their underlying mechanisms, especially in rice, remains largely unclear. Here, we cloned a rice WRKY gene OsWRKY45, whose expression was induced by mechanical wounding, by infestation of the brown planthopper (BPH, Nilaparvata lugens) and by treatment with jasmonic acid (JA) or salic...

  13. Genome-Wide Analysis of the Musa WRKY Gene Family: Evolution and Differential Expression during Development and Stress.

    Science.gov (United States)

    Goel, Ridhi; Pandey, Ashutosh; Trivedi, Prabodh K; Asif, Mehar H

    2016-01-01

    The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana, respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD) events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/development including fruit ripening process respectively.

  14. Genome-wide analysis of the Musa WRKY gene family: evolution and differential expression during development and stress

    Directory of Open Access Journals (Sweden)

    Ridhi eGoel

    2016-03-01

    Full Text Available The WRKY gene family plays an important role in the development and stress responses in plants. As information is not available on the WRKY gene family in Musa species, genome-wide analysis has been carried out in this study using available genomic information from two species, Musa acuminata and Musa balbisiana. Analysis identified 147 and 132 members of the WRKY gene family in M. acuminata and M. balbisiana respectively. Evolutionary analysis suggests that the WRKY gene family expanded much before the speciation in both the species. Most of the orthologs retained in two species were from the γ duplication event which occurred prior to α and β genome-wide duplication (GWD events. Analysis also suggests that subtle changes in nucleotide sequences during the course of evolution have led to the development of new motifs which might be involved in neo-functionalization of different WRKY members in two species. Expression and cis-regulatory motif analysis suggest possible involvement of Group II and Group III WRKY members during various stresses and growth/ development including fruit ripening process respectively.

  15. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    Science.gov (United States)

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  16. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  17. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  18. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.).

    Science.gov (United States)

    Yang, Xu; Deng, Cao; Zhang, Yu; Cheng, Yufu; Huo, Qiuyue; Xue, Linbao

    2015-04-07

    WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I-III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.

  19. Wild Nicotiana Species as a Source of Cytoplasmic Male Sterility in Nicotianatabacum

    Directory of Open Access Journals (Sweden)

    Nikova V

    2014-12-01

    Full Text Available The results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc, N. amplexicaulis (amp, N. rustica (rus, Nicotianaglauca (gla, N. velutina (vel, N. benthamiana (ben, N. maritima (mar, N. paniculata (pan, N. longiflora (lon and N. africana (afr were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless stamens in CMS (pan, (afr, some plants of (vel (mar through different degrees of malformations (shriveled anther on shortened filaments (lon, pinnate-like anthers on filaments of normal length (amp, petal - (ben, pistil- or stigma-like structures (rus, (gla to lack of male reproductive organs in (exc and in some plants of (vel, (mar, (rus and (gla. Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus, (exc and (ben causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that

  20. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Rushton, Paul J

    2014-02-01

    Drought is one of the major challenges affecting crop productivity and yield. However, water stress responses are notoriously multigenic and quantitative with strong environmental effects on phenotypes. It is also clear that water stress often does not occur alone under field conditions but rather in conjunction with other abiotic stresses such as high temperature and high light intensities. A multidisciplinary approach with successful integration of a whole range of -omics technologies will not only define the system, but also provide new gene targets for both transgenic approaches and marker-assisted selection. Transcription factors are major players in water stress signaling and some constitute major hubs in the signaling webs. The main transcription factors in this network include MYB, bHLH, bZIP, ERF, NAC, and WRKY transcription factors. The role of WRKY transcription factors in abiotic stress signaling networks is just becoming apparent and systems biology approaches are starting to define their places in the signaling network. Using systems biology approaches, there are now many transcriptomic analyses and promoter analyses that concern WRKY transcription factors. In addition, reports on nuclear proteomics have identified WRKY proteins that are up-regulated at the protein level by water stress. Interactomics has started to identify different classes of WRKY-interacting proteins. What are often lacking are connections between metabolomics, WRKY transcription factors, promoters, biosynthetic pathways, fluxes and downstream responses. As more levels of the system are characterized, a more detailed understanding of the roles of WRKY transcription factors in drought responses in crops will be obtained.

  1. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Shim, Jae Sung; Jung, Choonkyun; Lee, Sangjoon; Min, Kyunghun; Lee, Yin-Won; Choi, Yeonhee; Lee, Jong Seob; Song, Jong Tae; Kim, Ju-Kon; Choi, Yang Do

    2013-02-01

    The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  2. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici.

    Directory of Open Access Journals (Sweden)

    Mohd Aamir

    Full Text Available The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37 were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold followed by SolyWRKY37 (1.93 fold gene was found at 24 hrs which further increased at 48 hrs (5.0 fold. In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs. However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein

  3. Structural and functional dissection of differentially expressed tomato WRKY transcripts in host defense response against the vascular wilt pathogen (Fusarium oxysporum f. sp. lycopersici).

    Science.gov (United States)

    Aamir, Mohd; Singh, Vinay Kumar; Dubey, Manish Kumar; Kashyap, Sarvesh Pratap; Zehra, Andleeb; Upadhyay, Ram Sanmukh; Singh, Surendra

    2018-01-01

    The WRKY transcription factors have indispensable role in plant growth, development and defense responses. The differential expression of WRKY genes following the stress conditions has been well demonstrated. We investigated the temporal and tissue-specific (root and leaf tissues) differential expression of plant defense-related WRKY genes, following the infection of Fusarium oxysporum f. sp. lycopersici (Fol) in tomato. The genome-wide computational analysis revealed that during the Fol infection in tomato, 16 different members of WRKY gene superfamily were found to be involved, of which only three WRKYs (SolyWRKY4, SolyWRKY33, and SolyWRKY37) were shown to have clear-cut differential gene expression. The quantitative real time PCR (qRT-PCR) studies revealed different gene expression profile changes in tomato root and leaf tissues. In root tissues, infected with Fol, an increased expression for SolyWRKY33 (2.76 fold) followed by SolyWRKY37 (1.93 fold) gene was found at 24 hrs which further increased at 48 hrs (5.0 fold). In contrast, the leaf tissues, the expression was more pronounced at an earlier stage of infection (24 hrs). However, in both cases, we found repression of SolyWRKY4 gene, which further decreased at an increased time interval. The biochemical defense programming against Fol pathogenesis was characterized by the highest accumulation of H2O2 (at 48 hrs) and enhanced lignification. The functional diversity across the characterized WRKYs was explored through motif scanning using MEME suite, and the WRKYs specific gene regulation was assessed through the DNA protein docking studies The functional WRKY domain modeled had β sheets like topology with coil and turns. The DNA-protein interaction results revealed the importance of core residues (Tyr, Arg, and Lys) in a feasible WRKY-W-box DNA interaction. The protein interaction network analysis revealed that the SolyWRKY33 could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK

  4. WRKY2/34–VQ20 Modules in Arabidopsis thaliana Negatively Regulate Expression of a Trio of Related MYB Transcription Factors During Pollen Development

    Directory of Open Access Journals (Sweden)

    Rihua Lei

    2018-03-01

    Full Text Available Male gametogenesis in plants is tightly controlled and involves the complex and precise regulation of transcriptional reprogramming. Interactions between WRKY proteins and VQ motif-containing proteins are required to control these complicated transcriptional networks. However, our understanding of the mechanisms by which these complexes affect downstream gene expression is quite limited. In this study, we found that WRKY2 and WKRY34 repress MYB97, MYB101, and MYB120 expression during male gametogenesis. MYB expression was up-regulated in the wrky2-1 wrky34-1 vq20-1 triple mutant during male gametogenesis. The expression levels of six potential targets of the three MYBs increased the most in the wrky2-1 wrky34-1 vq20-1 triple mutant, followed by the wrky2-1 wrky34-1 double mutant, compared with in wild-type. Yeast one-hybrid and dual luciferase reporter assays indicated that WRKY2 and WRKY34 recognized the MYB97 promoter by binding to its W-boxes. MYB97 overexpression caused defects in pollen germination and pollen tube length, which impacted male fertility. Thus, WRKY2/34–VQ20 complexes appear to negatively regulate the expression of certain MYBs during plant male gametogenesis.

  5. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    Science.gov (United States)

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  6. RNA sequencing on Amomum villosum Lour. induced by MeJA identifies the genes of WRKY and terpene synthases involved in terpene biosynthesis.

    Science.gov (United States)

    He, Xueying; Wang, Huan; Yang, Jinfen; Deng, Ke; Wang, Teng

    2018-02-01

    Amomum villosum Lour. is an important Chinese medicinal plant that has diverse medicinal functions, and mainly contains volatile terpenes. This study aims to explore the WRKY transcription factors (TFs) and terpene synthase (TPS) unigenes that might be involved in terpene biosynthesis in A. villosum, and thus providing some new information on the regulation of terpenes in plants. RNA sequencing of A. villosum induced by methyl jasmonate (MeJA) revealed that the WRKY family was the second largest TF family in the transcriptome. Thirty-six complete WRKY domain sequences were expressed in response to MeJA. Further, six WRKY unigenes were highly correlated with eight deduced TPS unigenes. Ultimately, we combined the terpene abundance with the expression of candidate WRKY TFs and TPS unigenes to presume a possible model wherein AvWRKY61, AvWRKY28, and AvWRKY40 might coordinately trans-activate the AvNeoD promoter. We propose an approach to further investigate TF unigenes that might be involved in terpenoid biosynthesis, and identified four unigenes for further analyses.

  7. Molecular cloning and expression analysis of jasmonic acid dependent but salicylic acid independent LeWRKY1.

    Science.gov (United States)

    Lu, M; Wang, L F; Du, X H; Yu, Y K; Pan, J B; Nan, Z J; Han, J; Wang, W X; Zhang, Q Z; Sun, Q P

    2015-11-30

    Various plant genes can be activated or inhibited by phytohormones under conditions of biotic and abiotic stress, especially in response to jasmonic acid (JA) and salicylic acid (SA). Interactions between JA and SA may be synergistic or antagonistic, depending on the stress condition. In this study, we cloned a full-length cDNA (LeWRKY1, GenBank accession No. FJ654265) from Lycopersicon esculentum by rapid amplification of cDNA ends. Sequence analysis showed that this gene is a group II WRKY transcription factor. Analysis of LeWRKY1 mRNA expression in various tissues by qRT-PCR showed that the highest and lowest expression occurred in the leaves and stems, respectively. In addition, LeWRKY1 expression was induced by JA and Botrytis cinerea Pers., but not by SA.

  8. The potato virus x TGBp2 protein association with the endoplasmic reticulum plays a role in but is not sufficient for viral cell-to-cell movement

    International Nuclear Information System (INIS)

    Mitra, Ruchira; Krishnamurthy, Konduru; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie

    2003-01-01

    Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N. tabacum, indicating that TGBp2 requires TGBp1 to promote its movement in N. tabacum. In this study, GFP:TGBp2 was detected in a polygonal pattern that resembles the endoplasmic reticulum (ER) network. Amino acid sequence analysis revealed TGBp2 has two putative transmembrane domains. Two mutations separately introduced into the coding sequences encompassing the putative transmembrane domains within the GFP:TGBp2 plasmids and PVX genome, disrupted membrane binding of GFP:TGBp2, inhibited GFP:TGBp2 movement in N. benthamiana and TGBp1-expressing N. tabacum, and inhibited PVX movement. A third mutation, lying outside the transmembrane domains, had no effect on GFP:TGBp2 ER association or movement in N. benthamiana but inhibited GFP:TGBp2 movement in TGBp1-expressing N. tabacum and PVX movement in either Nicotiana species. Thus, ER association of TGBp2 may be required but not be sufficient for virus movement. TGBp2 likely provides an activity for PVX movement beyond ER association

  9. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  10. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  11. Genome-Wide Analysis of the Expression of WRKY Family Genes in Different Developmental Stages of Wild Strawberry (Fragaria vesca Fruit.

    Directory of Open Access Journals (Sweden)

    Heying Zhou

    Full Text Available WRKY proteins play important regulatory roles in plant developmental processes such as senescence, trichome initiation and embryo morphogenesis. In strawberry, only FaWRKY1 (Fragaria × ananassa has been characterized, leaving numerous WRKY genes to be identified and their function characterized. The publication of the draft genome sequence of the strawberry genome allowed us to conduct a genome-wide search for WRKY proteins in Fragaria vesca, and to compare the identified proteins with their homologs in model plants. Fifty-nine FvWRKY genes were identified and annotated from the F. vesca genome. Detailed analysis, including gene classification, annotation, phylogenetic evaluation, conserved motif determination and expression profiling, based on RNA-seq data, were performed on all members of the family. Additionally, the expression patterns of the WRKY genes in different fruit developmental stages were further investigated using qRT-PCR, to provide a foundation for further comparative genomics and functional studies of this important class of transcriptional regulators in strawberry.

  12. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots.

    Directory of Open Access Journals (Sweden)

    Muhammad Amjad Ali

    Full Text Available Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is the only source of nutrients throughout their life. A recent transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that thousands of genes are up-regulated or down-regulated in syncytia as compared to root segments from uninfected plants. Among the down-regulated genes are many which code for WRKY transcription factors. Arabidopsis contains 66 WRKY genes with 59 represented by the ATH1 GeneChip. Of these, 28 were significantly down-regulated and 6 up-regulated in syncytia as compared to control root segments. We have studied here the down-regulated genes WRKY6, WRKY11, WRKY17 and WRKY33 in detail. We confirmed the down-regulation in syncytia with promoter::GUS lines. Using various overexpression lines and mutants it was shown that the down-regulation of these WRKY genes is important for nematode development, probably through interfering with plant defense reactions. In case of WRKY33, this might involve the production of the phytoalexin camalexin.

  13. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    Science.gov (United States)

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato

    KAUST Repository

    Mahfouz, Magdy M.; Tashkandi, Manal; Ali, Zahir; Aljedaani, Fatimah R.; Shami, Ashwag

    2017-01-01

    CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato

  15. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    Science.gov (United States)

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis ( Arabidopsis thaliana ) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACID INDUCTION DEFICIENT2 ( SID2 ), NON-RACE-SPECIFIC DISEASE RESISTANCE1 ( NDR1 ), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 ( NPR1 ), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2 , NDR1 , or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40 , WRKY46 , WRKY51 , WRKY60 , WRKY63 , and WRKY75 ; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection.

    Science.gov (United States)

    Huh, Sung Un; Choi, La Mee; Lee, Gil-Je; Kim, Young Jin; Paek, Kyung-Hee

    2012-12-01

    WRKY transcription factors regulate biotic, abiotic, and developmental processes. In terms of plant defense, WRKY factors have important roles as positive and negative regulators via transcriptional regulation or protein-protein interaction. Here, we report the characterization of the gene encoding Capsicum annuum WRKY transcription factor d (CaWRKYd) isolated from microarray analysis in the Tobacco mosaic virus (TMV)-P(0)-inoculated hot pepper plants. CaWRKYd belongs to the WRKY IIa group, a very small clade in the WRKY subfamily, and WRKY IIa group has positive/negative regulatory roles in Arabidopsis and rice. CaWRKYd transcripts were induced by various plant defense-related hormone treatments and TMV-P(0) inoculation. Silencing of CaWRKYd affected TMV-P(0)-mediated hypersensitive response (HR) cell death and accumulation of TMV-P(0) coat protein in local and systemic leaves. Furthermore, expression of some pathogenesis-related (PR) genes and HR-related genes was reduced in the CaWRKYd-silenced plants compared with TRV2 vector control plants upon TMV-P(0) inoculation. CaWRKYd was confirmed to bind to the W-box. Thus CaWRKYd is a newly identified Capsicum annuum WRKY transcription factor that appears to be involved in TMV-P(0)-mediated HR cell death by regulating downstream gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae

    Science.gov (United States)

    Suthanthiram, Backiyarani; Subbaraya, Uma; Marimuthu Somasundram, Saraswathi; Muthu, Mayilvaganan

    2016-01-01

    The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1) MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2) MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3) MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4) cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or repressors in a

  18. Evolutionary Expansion of WRKY Gene Family in Banana and Its Expression Profile during the Infection of Root Lesion Nematode, Pratylenchus coffeae.

    Directory of Open Access Journals (Sweden)

    Raja Kaliyappan

    Full Text Available The WRKY family of transcription factors orchestrate the reprogrammed expression of the complex network of defense genes at various biotic and abiotic stresses. Within the last 96 million years, three rounds of Musa polyploidization events had occurred from selective pressure causing duplication of MusaWRKYs with new activities. Here, we identified a total of 153 WRKY transcription factors available from the DH Pahang genome. Based on their phylogenetic relationship, the MusaWRKYs available with complete gene sequence were classified into the seven common WRKY sub-groups. Synteny analyses data revealed paralogous relationships, with 17 MusaWRKY gene pairs originating from the duplication events that had occurred within the Musa lineage. We also found 15 other MusaWRKY gene pairs originating from much older duplication events that had occurred along Arecales and Poales lineage of commelinids. Based on the synonymous and nonsynonymous substitution rates, the fate of duplicated MusaWRKY genes was predicted to have undergone sub-functionalization in which the duplicated gene copies retain a subset of the ancestral gene function. Also, to understand the regulatory roles of MusaWRKY during a biotic stress, Illumina sequencing was performed on resistant and susceptible cultivars during the infection of root lesion nematode, Pratylenchus coffeae. The differential WRKY gene expression analysis in nematode resistant and susceptible cultivars during challenged and unchallenged conditions had distinguished: 1 MusaWRKYs participating in general banana defense mechanism against P.coffeae common to both susceptible and resistant cultivars, 2 MusaWRKYs that may aid in the pathogen survival as suppressors of plant triggered immunity, 3 MusaWRKYs that may aid in the host defense as activators of plant triggered immunity and 4 cultivar specific MusaWRKY regulation. Mainly, MusaWRKY52, -69 and -92 are found to be P.coffeae specific and can act as activators or

  19. Supplementary data: Roles and contribution of tomato WRKY genes to salt stress and powdery mildew resistance

    NARCIS (Netherlands)

    Kissoudis, C.; Gao, D.; Pramanik, Dewi; Birhanu, Mengistu; Wiel, van de C.C.M.; Visser, R.G.F.; Bai, Y.; Linden, van der C.G.

    2016-01-01

    WRKY is a transcription factor family unique to plants with diverse functions in defense pathways, abiotic stress tolerance and developmental programs. Family members are characterized by the conserved WRKY domain and significant sequence variation in the remainder of the protein, which is

  20. WRKY transcription factor superfamily: Structure, origin and functions

    African Journals Online (AJOL)

    terminal ends contain the WRKYGQR amino acid sequence and a zinc-finger motif. WRKY transcription factors can regulate the expression of target genes that contain the W-box elements (C/T)TGAC(C/T) in the promoter regions by specifically ...

  1. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera

    Science.gov (United States)

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants. WRKY genes are not only found to play significant roles in biotic and abiotic stress response, but also regulate growth and development. Grapevine (Vitis vinifera) production is largely limited by str...

  2. Cloning and characterization of WRKY gene homologs in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How) and their expression in response to fusaric acid treatment.

    Science.gov (United States)

    Mao, Yizhou; Jiang, Biao; Peng, Qingwu; Liu, Wenrui; Lin, Yue; Xie, Dasen; He, Xiaoming; Li, Shaoshan

    2017-05-01

    The WRKY transcription factors play an important role in plant resistance for biotic and abiotic stresses. In the present study, we cloned 10 WRKY gene homologs (CqWRKY) in Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua) using the rapid-amplification of cDNA ends (RACE) or homology-based cloning methods. We characterized the structure of these CqWRKY genes. Phylogenetic analysis of these sequences with cucumber homologs suggested possible structural conservation of these genes among cucurbit crops. We examined the expression levels of these genes in response to fusaric acid (FA) treatment between resistant and susceptible Chieh-qua lines with quantitative real-time PCR. All genes could be upregulated upon FA treatment, but four CqWRKY genes exhibited differential expression between resistant and susceptible lines before and after FA application. CqWRKY31 seemed to be a positive regulator while CqWRKY1, CqWRKY23 and CqWRKY53 were negative regulators of fusaric resistance. This is the first report of characterization of WRKY family genes in Chieh-qua. The results may also be useful in breeding Chieh-qua for Fusarium wilt resistance.

  3. Activity and specificity of TRV-mediated gene editing in plants

    KAUST Repository

    Ali, Zahir; Abulfaraj, Aala A.; Piatek, Marek J.; Mahfouz, Magdy M.

    2015-01-01

    editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system

  4. Genome-wide identification of soybean WRKY transcription factors in response to salt stress.

    Science.gov (United States)

    Yu, Yanchong; Wang, Nan; Hu, Ruibo; Xiang, Fengning

    2016-01-01

    Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance.

  5. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    OpenAIRE

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae a...

  6. Evaluation of 5P12-RANTES analogue expression in Nicotiana benthamiana

    CSIR Research Space (South Africa)

    Mawela, KG

    2012-10-10

    Full Text Available 100 200 300 400 500 600 700 Apoplast Cytosol pICH11599 (-ve control) 5P 12 (? g /k g F W ) 3 dpi 6 dpi 9 dpi (B) Bacterial vector system 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Cytosol ER Chloroplast pICH11599 (-ve... MTS tetrazolium compound, {3-(4,5-dimethyl-2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium} Efficacy testing Table 1 Summary of IC50 values of the HIV-1 pseudovirions screened. Sample identification ZM53 (targets CCR5) IC50 (?g...

  7. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  8. Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew.

    Directory of Open Access Journals (Sweden)

    Chloé Marchive

    Full Text Available Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway.

  9. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups.

    Science.gov (United States)

    Yin, Guangjun; Xu, Hongliang; Xiao, Shuyang; Qin, Yajuan; Li, Yaxuan; Yan, Yueming; Hu, Yingkao

    2013-10-03

    WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates

  10. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses

    KAUST Repository

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bé lair, Guy; Moffett, Peter

    2015-01-01

    in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic

  11. Genome-wide Identification of WRKY Genes in the Desert Poplar Populus euphratica and Adaptive Evolution of the Genes in Response to Salt Stress.

    Science.gov (United States)

    Ma, Jianchao; Lu, Jing; Xu, Jianmei; Duan, Bingbing; He, Xiaodong; Liu, Jianquan

    2015-01-01

    WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species Populus euphratica, which is highly tolerant of salt stress. In this study, we identified 107 PeWRKY genes from the P. euphratica genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener Populus trichocarpa. Ten PeWRKY genes are specific to P. euphratica, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios>1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the WRKY gene family may have played an important role in the acquisition of high salt tolerance by P. euphratica.

  12. Genomes and virulence difference between two physiological races of Phytophthora nicotianae.

    Science.gov (United States)

    Liu, Hui; Ma, Xiao; Yu, Haiqin; Fang, Dunhuang; Li, Yongping; Wang, Xiao; Wang, Wen; Dong, Yang; Xiao, Bingguang

    2016-01-01

    Black shank is a severe plant disease caused by the soil-borne pathogen Phytophthora nicotianae. Two physiological races of P. nicotianae, races 0 and 1, are predominantly observed in cultivated tobacco fields around the world. Race 0 has been reported to be more aggressive, having a shorter incubation period, and causing worse root rot symptoms, while race 1 causes more severe necrosis. The molecular mechanisms underlying the difference in virulence between race 0 and 1 remain elusive. We assembled and annotated the genomes of P. nicotianae races 0 and 1, which were obtained by a combination of PacBio single-molecular real-time sequencing and second-generation sequencing (both HiSeq and MiSeq platforms). Gene family analysis revealed a highly expanded ATP-binding cassette transporter gene family in P. nicotianae. Specifically, more RxLR effector genes were found in the genome of race 0 than in that of race 1. In addition, RxLR effector genes were found to be mainly distributed in gene-sparse, repeat-rich regions of the P. nicotianae genome. These results provide not only high quality reference genomes of P. nicotianae, but also insights into the infection mechanisms of P. nicotianae and its co-evolution with the host plant. They also reveal insights into the difference in virulence between the two physiological races.

  13. Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses.

    Science.gov (United States)

    Pan, Lin-Jie; Jiang, Ling

    2014-03-01

    The WRKY transcription factor (TF) plays a very important role in the response of plants to various abiotic and biotic stresses. A local papaya database was built according to the GenBank expressed sequence tag database using the BioEdit software. Fifty-two coding sequences of Carica papaya WRKY TFs were predicted using the tBLASTn tool. The phylogenetic tree of the WRKY proteins was classified. The expression profiles of 13 selected C. papaya WRKY TF genes under stress induction were constructed by quantitative real-time polymerase chain reaction. The expression levels of these WRKY genes in response to 3 abiotic and 2 biotic stresses were evaluated. TF807.3 and TF72.14 are upregulated by low temperature; TF807.3, TF43.76, TF12.199 and TF12.62 are involved in the response to drought stress; TF9.35, TF18.51, TF72.14 and TF12.199 is involved in response to wound; TF12.199, TF807.3, TF21.156 and TF18.51 was induced by PRSV pathogen; TF72.14 and TF43.76 are upregulated by SA. The regulated expression levels of above eight genes normalized against housekeeping gene actin were significant at probability of 0.01 levels. These WRKY TFs could be related to corresponding stress resistance and selected as the candidate genes, especially, the two genes TF807.3 and TF12.199, which were regulated notably by four stresses respectively. This study may provide useful information and candidate genes for the development of transgenic stress tolerant papaya varieties.

  14. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants.

    Science.gov (United States)

    Marchive, Chloé; Mzid, Rim; Deluc, Laurent; Barrieu, François; Pirrello, Julien; Gauthier, Adrien; Corio-Costet, Marie-France; Regad, Farid; Cailleteau, Bernard; Hamdi, Saïd; Lauvergeat, Virginie

    2007-01-01

    Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in grape is regulated in a developmental manner in berries and leaves and by various signal molecules involved in defence such as salicylic acid, ethylene, and hydrogen peroxide. Biochemical analysis indicates that VvWRKY1 specifically interacts with the W-box in various nucleotidic contexts. Functional analysis of VvWRKY1 was performed by overexpression in tobacco, and transgenic plants exhibited reduced susceptibility to various fungi but not to viruses. These results are consistent with a possible role for VvWRKY1 in grapevine defence against fungal pathogens.

  15. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  16. Live cell CRISPR-imaging in plants reveals dynamic telomere movements

    KAUST Repository

    Dreissig, Steven; Schiml, Simon; Schindele, Patrick; Weiss, Oda; Rutten, Twan; Schubert, Veit; Gladilin, Evgeny; Mette, Michael F.; Puchta, Holger; Houben, Andreas

    2017-01-01

    of the bacterial CRISPR-Cas9 system. By fusing eGFP/mRuby2 to the catalytically inactive version of Streptococcus pyogenes and Staphylococcus aureus Cas9, we show robust visualization of telomere repeats in live leaf cells of Nicotiana benthamiana. By tracking

  17. RNAi-mediated transgenic tospovirus resistance broken by intraspecies NSs complementation

    NARCIS (Netherlands)

    Hassani-Mehraban, A.; Brenkman, A.B.; Broek, N.F.J.; Goldbach, R.W.; Kormelink, R.J.M.

    2009-01-01

    Extension of an inverted repeat transgene cassette, containing partial nucleoprotein (N) gene sequences from four different tomato-infecting Tospovirus spp. with a partial N gene sequence from the tomato strain of Tomato yellow ring virus (TYRV-t), renders transgenic Nicotiana benthamiana plants

  18. Interactions with the actin cytoskeleton are required for cell wall localization of barley stripe mosaic virus TGB proteins

    Science.gov (United States)

    The host cytoskeleton and membrane system are the main routes by which plant viruses move within or between cells. Barley stripe mosaic virus (BSMV) -induced actin filament thickening was visualized in the cytoskeleton of agroinfiltrated Nicotiana benthamiana epidermal cells expressing DsRed:Talin. ...

  19. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Yuanzhong Jiang

    Full Text Available The plant hormones jasmonic acid (JA and salicylic acid (SA play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89 was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  20. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Science.gov (United States)

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  1. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  2. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease.

    Science.gov (United States)

    Zhang, Qiulei; Li, Yang; Zhang, Yi; Wu, Chuanbao; Wang, Shengnan; Hao, Li; Wang, Shengyuan; Li, Tianzhong

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple ( Malus × domestica ). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1 , and MdPR10-2 . In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26 . In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.

  3. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    Science.gov (United States)

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  4. Functional and DNA-protein binding studies of WRKY transcription factors and their expression analysis in response to biotic and abiotic stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Satapathy, Lopamudra; Kumar, Dhananjay; Kumar, Manish; Mukhopadhyay, Kunal

    2018-01-01

    WRKY, a plant-specific transcription factor family, plays vital roles in pathogen defense, abiotic stress, and phytohormone signalling. Little is known about the roles and function of WRKY transcription factors in response to rust diseases in wheat. In the present study, three TaWRKY genes encoding complete protein sequences were cloned. They belonged to class II and III WRKY based on the number of WRKY domains and the pattern of zinc finger structures. Twenty-two DNA-protein binding docking complexes predicted stable interactions of WRKY domain with W-box. Quantitative real-time-PCR using wheat near-isogenic lines with or without Lr28 gene revealed differential up- or down-regulation in response to biotic and abiotic stress treatments which could be responsible for their functional divergence in wheat. TaWRKY62 was found to be induced upon treatment with JA, MJ, and SA and reduced after ABA treatments. Maximum induction of six out of seven genes occurred at 48 h post inoculation due to pathogen inoculation. Hence, TaWRKY (49, 50 , 52 , 55 , 57, and 62 ) can be considered as potential candidate genes for further functional validation as well as for crop improvement programs for stress resistance. The results of the present study will enhance knowledge towards understanding the molecular basis of mode of action of WRKY transcription factor genes in wheat and their role during leaf rust pathogenesis in particular.

  5. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum.

    Directory of Open Access Journals (Sweden)

    Sonal Mishra

    Full Text Available Wounding is required to be made in the walls of the green seed pod of Opium poppy prior exudation of latex. To withstand this kind of trauma plants regulate expression of some metabolites through an induced transcript level. 167 unique wound-inducible ESTs were identified by a repetitive round of cDNA subtraction after 5 hours of wounding in Papaver somniferum seedlings. Further repetitive reverse northern analysis of these ESTs revealed 80 transcripts showing more than two fold induction, validated through semi-quantitative RT-PCR & real time expression analysis. One of the major classified categories among identified ESTs belonged to benzylisoquinoline transcripts. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs in response to wounding revealed increased accumulation of narcotine and papaverine. Promoter analysis of seven transcripts of BIAs pathway showed the presence of W-box cis-element with the consensus sequence of TGAC, which is the proposed binding site for WRKY type transcription factors. One of the Wound inducible 'WRKY' EST isolated from our subtracted library was made full-length and named as 'PsWRKY'. Bacterially expressed PsWRKY interacted with the W-box element having consensus sequence TTGACT/C present in the promoter region of BIAs biosynthetic pathway genes. PsWRKY further activated the TYDC promoter in yeast and transiently in tobacco BY2 cells. Preferential expression of PsWRKY in straw and capsule and its interaction with consensus W-box element present in BIAs pathway gene transcripts suggest its possible involvement in the wound induced regulation of BIAs pathway.

  6. and C-terminus of

    Indian Academy of Sciences (India)

    amino acids 108–120) was expressed from Potato virus X (PVX)-based vector pGR106 as N- or C-terminal fusion with the PVX coat protein (PVX CP) in transgenic Nicotiana benthamiana plants. The fusion protein L2108-120-PVX CP was ...

  7. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    DEFF Research Database (Denmark)

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan

    2016-01-01

    rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole...

  8. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Yang, Xiaozhen; Li, Hao; Yang, Yongchao; Wang, Yongqi; Mo, Yanling; Zhang, Ruimin; Zhang, Yong; Ma, Jianxiang; Wei, Chunhua; Zhang, Xian

    2018-01-01

    Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III) and five subgroups (IIa-IIe) in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  10. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon (Citrullus lanatus.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Yang

    Full Text Available Despite identification of WRKY family genes in numerous plant species, a little is known about WRKY genes in watermelon, one of the most economically important fruit crops around the world. Here, we identified a total of 63 putative WRKY genes in watermelon and classified them into three major groups (I-III and five subgroups (IIa-IIe in group II. The structure analysis indicated that ClWRKYs with different WRKY domains or motifs may play different roles by regulating respective target genes. The expressions of ClWRKYs in different tissues indicate that they are involved in various tissue growth and development. Furthermore, the diverse responses of ClWRKYs to drought, salt, or cold stress suggest that they positively or negatively affect plant tolerance to various abiotic stresses. In addition, the altered expression patterns of ClWRKYs in response to phytohormones such as, ABA, SA, MeJA, and ETH, imply the occurrence of complex cross-talks between ClWRKYs and plant hormone signals in regulating plant physiological and biological processes. Taken together, our findings provide valuable clues to further explore the function and regulatory mechanisms of ClWRKY genes in watermelon growth, development, and adaption to environmental stresses.

  11. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress.

    Science.gov (United States)

    Meng, Dong; Li, Yuanyuan; Bai, Yang; Li, Mingjun; Cheng, Lailiang

    2016-06-01

    As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Transcriptional Profiles of SmWRKY Family Genes and Their Putative Roles in the Biosynthesis of Tanshinone and Phenolic Acids in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Haizheng Yu

    2018-05-01

    Full Text Available Salvia miltiorrhiza Bunge is a Chinese traditional herb for treating cardiovascular and cerebrovascular diseases, and tanshinones and phenolic acids are the dominated medicinal and secondary metabolism constituents of this plant. WRKY transcription factors (TFs can function as regulators of secondary metabolites biosynthesis in many plants. However, studies on the WRKY that regulate tanshinones and phenolics biosynthesis are limited. In this study, 69 SmWRKYs were identified in the transcriptome database of S. miltiorrhiza, and phylogenetic analysis indicated that some SmWRKYs had closer genetic relationships with other plant WRKYs, which were involved in secondary metabolism. Hairy roots of S. miltiorrhiza were treated by methyl jasmonate (MeJA to detect the dynamic change trend of SmWRKY, biosynthetic genes, and medicinal ingredients accumulation. Base on those date, a correlation analysis using Pearson’s correlation coefficient was performed to construct gene-to-metabolite network and identify 9 SmWRKYs (SmWRKY1, 7, 19, 29, 45, 52, 56, 58, and 68, which were most likely to be involved in tanshinones and phenolic acids biosynthesis. Taken together, this study has provided a significant resource that could be used for further research on SmWRKY in S. miltiorrhiza and especially could be used as a cue for further investigating SmWRKY functions in secondary metabolite accumulation.

  13. Synthesis of 'cineole cassette' monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis.

    Science.gov (United States)

    Fähnrich, Anke; Brosemann, Anne; Teske, Laura; Neumann, Madeleine; Piechulla, Birgit

    2012-08-01

    The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.

  14. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  15. Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil

    Directory of Open Access Journals (Sweden)

    Sheila Conceição Maciel

    2011-12-01

    Full Text Available Catharanthus roseus is a perennial, evergreen herb in the family Apocynaceae, which is used as ornamental and for popular medicine to treat a wide assortment of human diseases. This paper describes a new potyvirus found causing mosaic symptom, foliar malformation and flower variegation in C. roseus. Of 28 test-plants inoculated mechanically with this potyvirus, only C. roseus and Nicotiana benthamiana developed systemic mosaic, whereas Chenopodium amaranticolor and C. quinoa exhibited chlorotic local lesions. The virus was transmitted by Aphis gossypii and Myzus nicotianae. When the nucleotide sequence of the CP gene (768nt was compared with other members of the Potyviridae family, the highest identities varied from 67 to 76 %. For the 3' UTR (286nt, identities varied from 16.8 to 28.6 %. The name Catharanthus mosaic virus (CatMV is proposed for this new potyvirus.

  16. Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae)

    OpenAIRE

    Md. Shafiullah Shajib; Bidyut Kanti Datta; Md. Hossain Sohrab; Mohammad Abdur Rashid; Lutfun Nahar; Satyajit Dey Sarker

    2017-01-01

    Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh . This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3' ,5,6,7,8-hexamethoxy- 4...

  17. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways.

    Science.gov (United States)

    Singh, Anup Kumar; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Shasany, Ajit K; Nagegowda, Dinesh A

    2017-08-01

    Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3.

    Science.gov (United States)

    Li, Shao-Jia; Yin, Xue-Ren; Wang, Wen-Li; Liu, Xiao-Fen; Zhang, Bo; Chen, Kun-Song

    2017-06-15

    Citric acid is the predominant organic acid of citrus fruit. Degradation of citric acid occurs during fruit development, influencing fruit acidity. Associations of CitAco3 transcripts and citric acid degradation have been reported for citrus fruit. Here, transient overexpression of CitAco3 significantly reduced the citric acid content of citrus leaves and fruits. Using dual luciferase assays, it was shown that CitNAC62 and CitWRKY1 could transactivate the promoter of CitAco3. Subcellular localization results showed that CitWRKY1 was located in the nucleus and CitNAC62 was not. Yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays indicated that the two differently located transcription factors could interact with each other. Furthermore, BiFC showed that the protein-protein interaction occurred only in the nucleus, indicating the potential mobility of CitNAC62 in plant cells. A synergistic effect on citrate content was observed between CitNAC62 and CitWRKY1. Transient overexpression of CitNAC62 or CitWRKY1 led to significantly lower citrate content in citrus fruit. The combined expression of CitNAC62 and CitWRKY1 resulted in lower citrate content compared with the expression of CitNAC62 or CitWRKY1 alone. The transcript abundance of CitAco3 was consistent with the citrate content. Thus, we propose that a complex of CitWRKY1 and CitNAC62 contributes to citric acid degradation in citrus fruit, potentially via modulation of CitAco3. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Identification and characterization of two RNA silencing suppressors encoded by ophioviruses

    NARCIS (Netherlands)

    Robles Luna, Gabriel; Reyes, Carina A.; Peña, Eduardo J.; Ocolotobiche, Eliana; Baeza, Cecilia; Borniego, Maria Belén; Kormelink, Richard; García, María Laura

    2017-01-01

    Citrus psorosis virus and Mirafiori lettuce big-vein virus are two members of the genus Ophiovirus, family Ophioviridae. So far, how these viruses can interfere in the antiviral RNA silencing pathway is not known. In this study, using a local GFP silencing assay on Nicotiana benthamiana, the

  20. Browse Title Index

    African Journals Online (AJOL)

    Items 301 - 333 of 333 ... Vol 29, No 1 (2006), The undifferentiated afromontane forest of Denkoro in the central highland of Ethiopia: a floristic and structural analysis, Abstract PDF. Abate Ayalew, Tamrat Bekele, Sebsebe Demissew. Vol 36, No 1 (2013), Tobacco (Nicotiana benthamiana Domin) Plant Transformation With and ...

  1. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  2. Sincronización de Células de Tabaco (Nicotiana tabacum) NT-1 Synchronization of tobacco cells (Nicotiana tabacum) NT-1

    OpenAIRE

    León F Ruiz; Ana E Higareda; Marco A Pardo

    2010-01-01

    Se ha evaluado la capacidad sincronizante de afidicolina e hidroxiurea en cultivos de células de tabaco (Nicotiana tabacum) NT-1. Los cultivos sincronizados son poderosas herramientas en estudios moleculares y bioquímicos relacionados al ciclo celular y comúnmente se utilizan químicos para bloquear el ciclo celular. La línea celular de tabaco (Nicotiana tabacum) NT-1 proviene de la línea celular TBY-2, caracterizándose NT-1 por su menor velocidad de crecimiento y tamaño celular heterogéneo. L...

  3. Optimum storage conditions for product of transiently expressed epitopes of Human papillomavirus using Potato virus X -based vector

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Hoffmeisterová, Hana; Moravec, Tomáš; Plchová, Helena; Kmoníčková, Jitka; Hadámková, Renata

    2008-01-01

    Roč. 52, č. 1 (2008), s. 184-186 ISSN 0006-3134 R&D Projects: GA ČR GA521/06/0973 Institutional research plan: CEZ:AV0Z50380511 Keywords : edible vaccination * heterologous proteins * Nicotiana benthamiana * serological activity Subject RIV: EE - Microbiology, Virology Impact factor: 1.426, year: 2008

  4. The influence of the N- and C- terminal modifications of Potato virus X coat protein on virus properties

    Czech Academy of Sciences Publication Activity Database

    Hoffmeisterová, Hana; Moravec, Tomáš; Plchová, Helena; Folwarczna, Jitka; Čeřovská, Noemi

    2012-01-01

    Roč. 56, č. 4 (2012), s. 775-779 ISSN 0006-3134 R&D Projects: GA ČR GA521/09/1525 Institutional research plan: CEZ:AV0Z50380511 Keywords : chimeric coat protein * expression of recombinant protein * Nicotiana benthamiana Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.692, year: 2012

  5. Cross Kingdom Glyco Protein Engineering

    DEFF Research Database (Denmark)

    Möller, Svenning Rune

    delivered CRISPR/Cas9’, describes the use of viral replicons to deliver the CRISPR/Cas9 components to leaves of Nicotiana benthamiana, which we have optimized by fusing a Gfp marker to the Cas9 protein combined with FACS mediated cell sorting of Cas9-Gfp expressing protoplast cells....

  6. Effects of the mutation of selected genes of cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of cotton leaf curl Multan betasatellite

    NARCIS (Netherlands)

    Iqbal, Z.; Sattar, M.N.; Kvarnheden, A.; Mansoor, S.; Briddon, R.W.

    2012-01-01

    Cotton leaf curl Kokhran virus (CLCuKoV) is a cotton-infecting monopartite begomovirus (family Geminiviridae). The effects of mutation of the coat protein (CP), V2, C2 and C4 genes of CLCuKoV on infectivity and symptoms in Nicotiana benthamiana were investigated. Each mutation introduced a premature

  7. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing.

    Science.gov (United States)

    Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo

    2014-10-01

    Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.

  8. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  9. Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers

    Science.gov (United States)

    Two hundred thirty-one isolates of P. nicotianae representing 14 populations from different host genera, including agricultural crops (Citrus, Nicotiana, and Lycopersicon), potted ornamental species in nurseries (Lavandula, Convolvulus, Myrtus, Correa and Ruta) and other plant genera of lesser econo...

  10. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production.

    Science.gov (United States)

    Jones, Richard W

    2016-01-01

    When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana) after Agrobacterium infiltration, difficulties arise due to the thin leaf structure. Thick leaved succulents, Kalanchoe blossfeldiana and Hylotelephium telephium, were tested as alternatives. A xyloglucanase, as well as a xyloglucanase inhibitor protein was successfully produced. Published by Elsevier B.V.

  11. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume

    DEFF Research Database (Denmark)

    Heckmann, Anne Birgitte Lau; Lombardo, Fabien; Miwa, Hiroki

    2006-01-01

    and then increased following infection by M. loti. In hairy root transformations, LjNSP1 and MtNSP1 complemented both Mtnsp1-1 and Ljnsp1-1 mutants, demonstrating that these orthologous proteins have a conserved biochemical function. A Nicotiana benthamiana NSP1-like gene (NbNSP1) was shown to restore nodule...

  12. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice.

    Directory of Open Access Journals (Sweden)

    Yuhui Cai

    Full Text Available Flowering time and plant height are important agronomic traits for crop production. In this study, we characterized a semi-dwarf and late flowering (dlf1 mutation of rice that has pleiotropic effects on these traits. The dlf1 mutation was caused by a T-DNA insertion and the cloned Dlf1 gene was found to encode a WRKY transcription factor (OsWRKY11. The dlf1 mutant contains a T-DNA insertion at the promoter region, leading to enhanced accumulation of Dlf1 transcripts, resulting in a semidominant mutation. The dlf1 mutation suppressed the transcription of Ehd2/RID1/OsId1 and its downstream flowering-time genes including Hd1, Ehd1 and Hd3a under both long-day (LD and short-day (SD conditions. Knock-down of Dlf1 expression exhibited early flowering at LD condition related to the wild-type plants. Accumulation of Dlf1 mRNA was observed in most tissues, and two splicing forms of Dlf1 cDNAs were obtained (OsWRKY11.1 and OsWRKY11.2. These two proteins showed transactivation activity in yeast cells. Dlf1 protein was found to be localized in the nucleus. Enhanced expression of OsWRKY11.2 or its 5' truncated gene showed similar phenotypes to the dlf1 mutant, suggesting that it might function as a negative regulator. We conclude that Dlf1 acts as a transactivator to downregulate Ehd2/RID1/OsId1 in the signal transduction pathway of flowering and plays an important role in the regulation of plant height in rice.

  13. WRKY Transcription Factors: Key Components in Abscisic Acid Signaling

    Science.gov (United States)

    2011-01-01

    networks that take inputs from numerous stimuli and that they are involved in mediating responses to numerous phytohormones including salicylic acid ... jasmonic acid , ABA and GA. These roles in multiple signalling pathways may in turn partly explain the pleiotropic effects commonly seen when TF genes are...Review article WRKY transcription factors: key components in abscisic acid signalling Deena L. Rushton1, Prateek Tripathi1, Roel C. Rabara1, Jun Lin1

  14. Activity and specificity of TRV-mediated gene editing in plants

    KAUST Repository

    Ali, Zahir

    2015-06-03

    © 2015 Taylor and Francis Group, LLC. Plant trait engineering requires efficient targeted genome-editing technologies. Clustered regularly interspaced palindromic repeats (CRISPRs)/ CRISPR associated (Cas) type II system is used for targeted genome-editing applications across eukaryotic species including plants. Delivery of genome engineering reagents and recovery of mutants remain challenging tasks for in planta applications. Recently, we reported the development of Tobacco rattle virus (TRV)-mediated genome editing in Nicotiana benthamiana. TRV infects the growing points and possesses small genome size; which facilitate cloning, multiplexing, and agroinfections. Here, we report on the persistent activity and specificity of the TRV-mediated CRISPR/Cas9 system for targeted modification of the Nicotiana benthamiana genome. Our data reveal the persistence of the TRVmediated Cas9 activity for up to 30 d post-agroinefection. Further, our data indicate that TRV-mediated genome editing exhibited no off-target activities at potential off-targets indicating the precision of the system for plant genome engineering. Taken together, our data establish the feasibility and exciting possibilities of using virus-mediated CRISPR/Cas9 for targeted engineering of plant genomes.

  15. Evolutionary history of Arecaccea tribe Cocoseae inferred from seven WRKY transcription factors

    Science.gov (United States)

    The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera, the coconut, and African oil palm (Elaeis guineensis). Using seven single copy WRKY transcription factor gen...

  16. Molecular identification of GAPDHs in cassava highlights the antagonism of MeGAPCs and MeATG8s in plant disease resistance against cassava bacterial blight.

    Science.gov (United States)

    Zeng, Hongqiu; Xie, Yanwei; Liu, Guoyin; Lin, Daozhe; He, Chaozu; Shi, Haitao

    2018-06-01

    MeGAPCs were identified as negative regulators of plant disease resistance, and the interaction of MeGAPCs and MeATG8s was highlighted in plant defense response. As an important enzyme of glycolysis metabolic pathway, glyceraldehyde-3-P dehydrogenase (GAPDH) plays important roles in plant development, abiotic stress and immune responses. Cassava (Manihot esculenta) is most important tropical crop and one of the major food crops, however, no information is available about GAPDH gene family in cassava. In this study, 14 MeGAPDHs including 6 cytosol GAPDHs (MeGAPCs) were identified from cassava, and the transcripts of 14 MeGAPDHs in response to Xanthomonas axonopodis pv manihotis (Xam) indicated their possible involvement in immune responses. Further investigation showed that MeGAPCs are negative regulators of disease resistance against Xam. Through transient expression in Nicotiana benthamiana, we found that overexpression of MeGAPCs led to decreased disease resistance against Xam. On the contrary, MeGAPCs-silenced cassava plants through virus-induced gene silencing (VIGS) conferred improved disease resistance. Notably, MeGAPCs physically interacted with autophagy-related protein 8b (MeATG8b) and MeATG8e and inhibited autophagic activity. Moreover, MeATG8b and MeATG8e negatively regulated the activities of NAD-dependent MeGAPDHs, and are involved in MeGAPCs-mediated disease resistance. Taken together, this study highlights the involvement of MeGAPCs in plant disease resistance, through interacting with MeATG8b and MeATG8e.

  17. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L. P. Beauv.].

    Directory of Open Access Journals (Sweden)

    Jishan Xiang

    Full Text Available Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1, which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II. A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  18. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin

    2017-01-01

    Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  19. Nicotiana glauca poisoning in ostriches (Struthio camelus)

    CSIR Research Space (South Africa)

    Botha, CJ

    2011-01-01

    Full Text Available Putative Nicotiana glauca (wild tobacco) poisoning was diagnosed in a flock of ostriches near Oudtshoorn, South Africa. Post mortem examinations (n = 7) were performed on ostriches (Struthio camelus) that had died. Suspicious leaf remnants (weighing...

  20. Potato virus X displaying the E7 peptide derived from human papillomavirus type 16: a novel position for epitope presentation

    Czech Academy of Sciences Publication Activity Database

    Vaculík, Petr; Plchová, Helena; Moravec, Tomáš; Hoffmeisterová, Hana; Čeřovská, Noemi; Šmahel, M.

    2015-01-01

    Roč. 120, č. 2 (2015), s. 671-680 ISSN 0167-6857 R&D Projects: GA ČR(CZ) GAP501/12/1761 Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : Potato virus X * Human papillomavirus * Nicotiana benthamiana Subject RIV: EE - Microbiology, Virology Impact factor: 2.390, year: 2015

  1. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

    Science.gov (United States)

    Wei, Yunxie; Liu, Wen; Hu, Wei; Liu, Guoyin; Wu, Chunjie; Liu, Wei; Zeng, Hongqiu; He, Chaozu; Shi, Haitao

    2017-08-01

    MaATG8s play important roles in hypersensitive-like cell death and immune response, and autophagy is essential for disease resistance against Foc in banana. Autophagy is responsible for the degradation of damaged cytoplasmic constituents in the lysosomes or vacuoles. Although the effects of autophagy have been extensively revealed in model plants, the possible roles of autophagy-related gene in banana remain unknown. In this study, 32 MaATGs were identified in the draft genome, and the profiles of several MaATGs in response to fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) were also revealled. We found that seven MaATG8s were commonly regulated by Foc. Through transient expression in Nicotiana benthamiana leaves, we highlight the novel roles of MaATG8s in conferring hypersensitive-like cell death, and MaATG8s-mediated hypersensitive response-like cell death is dependent on autophagy. Notablly, autophagy inhibitor 3-methyladenine (3-MA) treatment resulted in decreased disease resistance in response to Foc4, and the effect of 3-MA treatment could be rescued by exogenous salicylic acid, jasmonic acid and ethylene, indicating the involvement of autophagy-mediated plant hormones in banana resistance to Fusarium wilt. Taken together, this study may extend our understanding the putative role of MaATG8s in hypersensitive-like cell death and the essential role of autophagy in immune response against Foc in banana.

  3. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato

    KAUST Repository

    Mahfouz, Magdy M.

    2017-12-22

    CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with the CRISPR/Cas9 system to confer immunity against the Tomato yellow leaf curl virus (TYLCV). Targeting the TYLCV genome with Cas9-single guide RNA at the sequences encoding the coat protein (CP) or replicase (Rep) resulted in efficient virus interference, as evidenced by low accumulation of the TYLCV DNA genome in the transgenic plants. The CRISPR/Cas9-based immunity remained active across multiple generations in the N. benthamiana and tomato plants. Together, our results confirmed the efficiency of the CRISPR/Cas9 system for stable engineering of TYLCV resistance in N. benthamiana and tomato, and opens the possibilities of engineering virus resistance against single and multiple infectious viruses in other crops.

  4. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  5. Highly Oxygenated Flavonoids from the Leaves of Nicotiana plumbaginifolia (Solanaceae

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Shajib

    2017-11-01

    Full Text Available Nicotiana plumbaginifolia Viv. is an annual herb of the family Solanaceae, which grows abundantly in the weedy lands of Bangladesh . This plant possesses analgesic, antibacterial, anti-anxiety and hepatoprotective properties, and produces various phenolic compounds including flavonoids. The present study afforded determination of total phenolic and flavonoid contents, and for the first time, the isolation and characterization of highly oxygenated flavonoids, e.g., 3,3' ,5,6,7,8-hexamethoxy- 4',5'-methylenedioxyflavone (1, 3,3' ,4' ,5',5,6,7,8-octamethoxyflavone (2, exoticin, 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone (3 and ( 3,3' ,4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone (4 from the leaves of N. plumbaginifolia . All these flavonoids are rather rare natural products, and only found in a few genera, e.g.,Polygonum and Murraya. The structures of the isolated flavonoids were elucidated by comprehensive spectroscopic analyses, e.g., UV, 1H, 13C NMR, DEPT, HSQC, HMBC and MS.

  6. Cloning and Molecular Analysis of HlbZip1 and HlbZip2 Transcription Factors Putatively Involved in the Regulation of the Lupulin Metabolome in Hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Kocábek, Tomáš; Patzak, J.; Stehlík, Jan; Füssy, Zoltán; Krofta, K.; Heyerick, A.; Roldán-Ruiz, I.; Maloukh, L.; De Keukeleire, D.

    2010-01-01

    Roč. 58, č. 2 (2010), s. 902-912 ISSN 0021-8561 R&D Projects: GA ČR GA521/08/0740; GA MZe QH81052; GA MŠk ME 940 Institutional research plan: CEZ:AV0Z50510513 Keywords : secondary metabolites transcriptional regulation * cDNA-AFLP analysis * hop cDNA library screening * Nicotiana benthamiana * Petunia hybrida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.816, year: 2010

  7. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions

    Czech Academy of Sciences Publication Activity Database

    Dziurka, M.; Janeczko, A.; Juhasz, C.; Gullner, G.; Oklešťková, Jana; Novák, Ondřej; Saja, D.; Skoczowski, A.; Tobias, I.; Barna, B.

    2016-01-01

    Roč. 109, DEC (2016), s. 355-364 ISSN 0981-9428 R&D Projects: GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : tobacco-mosaic-virus * pathogenesis-related proteins * salicylic-acid * abscisic-acid * acquired- resistance * disease resistance * nicotiana-benthamiana * arabidopsis-thaliana * defense response * immune-responses * Brassinosteroids * Ethylene * Hormone * Pepper * Phenylalanine ammonia lyase * Progesterone * Salicylic acid * Tobamovirus Subject RIV: EF - Botanics Impact factor: 2.724, year: 2016

  8. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana

    OpenAIRE

    Bhoo, Seong Hee; Lai, Huafang; Ma, Julian; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.

    2011-01-01

    Filoviruses (Ebola and Marburg viruses) cause severe and often fatal hemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identify Ebola and Marburg viruses as “category A” pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their dev...

  9. Sincronización de Células de Tabaco (Nicotiana tabacum) NT-1

    OpenAIRE

    Ruiz, León F; Higareda, Ana E; Pardo, Marco A

    2010-01-01

    Se ha evaluado la capacidad sincronizante de afidicolina e hidroxiurea en cultivos de células de tabaco (Nicotiana tabacum) NT-1. Los cultivos sincronizados son poderosas herramientas en estudios moleculares y bioquímicos relacionados al ciclo celular y comúnmente se utilizan químicos para bloquear el ciclo celular. La línea celular de tabaco (Nicotiana tabacum) NT-1 proviene de la línea celular TBY-2, caracterizándose NT-1 por su menor velocidad de crecimiento y tamaño celular heterogéneo. L...

  10. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host.

    Science.gov (United States)

    Calvo, María; Malinowski, Tadeusz; García, Juan Antonio

    2014-02-01

    Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.

  11. Digestion of chrysanthemum stunt viroid by leaf extracts of Capsicum chinense indicates strong RNA-digesting activity.

    Science.gov (United States)

    Iraklis, Boubourakas; Kanda, Hiroko; Nabeshima, Tomoyuki; Onda, Mayu; Ota, Nao; Koeda, Sota; Hosokawa, Munetaka

    2016-08-01

    CSVd could not infect Nicotiana benthamiana when the plants were pretreated with crude leaf extract of Capsicum chinense 'Sy-2'. C. chinense leaves were revealed to contain strong RNA-digesting activity. Several studies have identified active antiviral and antiviroid agents in plants. Capsicum plants are known to contain antiviral agents, but the mechanism of their activity has not been determined. We aimed to elucidate the mechanism of Capsicum extract's antiviroid activity. Chrysanthemum stunt viroid (CSVd) was inoculated into Nicotiana benthamiana plants before or after treating the plants with a leaf extract of Capsicum chinense 'Sy-2'. CSVd infection was determined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 3 weeks after inoculation. When Capsicum extract was sprayed or painted onto N. benthamiana before inoculation, it was effective in preventing infection by CSVd. To evaluate CSVd digestion activity in leaf extracts, CSVd was mixed with leaf extracts of Mirabilis, Phytolacca, Pelargonium and Capsicum. CSVd-digesting activities were examined by quantifying undigested CSVd using qRT-PCR, and RNA gel blotting permitted visualization of the digested CSVd. Only Capsicum leaf extract digested CSVd, and in the Capsicum treatment, small digested CSVd products were detected by RNA gel blot analysis. When the digesting experiment was performed for various cultivars and species of Capsicum, only cultivars of C. chinense showed strong CSVd-digesting activity. Our observations indicated that Capsicum extract contains strong RNA-digesting activity, leading to the conclusion that this activity is the main mechanism for protection from infection by CSVd through spraying or painting before inoculation. To our knowledge, this is the first report of a strong RNA-digesting activity by a plant extract.

  12. Effect of Radiation Dosage on Efficiency of Chloroplast Transfer by Protoplast Fusion in Nicotiana

    OpenAIRE

    Menczel, László; Galiba, Gábor; Nagy, Ferenc; Maliga, Pál

    1982-01-01

    Chloroplasts of Nicotiana tabacum SR1 were transferred into Nicotiana plumbaginifolia by protoplast fusion. The protoplasts of the organelle donor were irradiated with different lethal doses using a 60Co source, to facilitate the elimination of their nuclei from the fusion products. After fusion induction, clones derived from fusion products and containing streptomycin-resistant N. tabacum SR1 chloroplasts were selected by their ability to green on a selective medium. When N. tabacum protopla...

  13. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium

    OpenAIRE

    Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou

    2009-01-01

    One of the most important themes in agricultural science is the identification of virulence factors involved in plant disease. Here, we show that a single virulence factor, tengu-su inducer (TENGU), induces witches' broom and dwarfism and is a small secreted protein of the plant-pathogenic bacterium, phytoplasma. When tengu was expressed in Nicotiana benthamiana plants, these plants showed symptoms of witches' broom and dwarfism, which are typical of phytoplasma infection. Transgenic Arabidop...

  14. Characterization of Phytophthora nicotianae isolates in southeast Spain and their detection and quantification through a real-time TaqMan PCR.

    Science.gov (United States)

    Blaya, Josefa; Lacasa, Carmen; Lacasa, Alfredo; Martínez, Victoriano; Santísima-Trinidad, Ana B; Pascual, Jose A; Ros, Margarita

    2015-04-01

    The soil-borne pathogens Phytophthora nicotianae and P. capsici are the causal agents of root and stem rot of many plant species. Although P. capsici was considered the causal agent in one of the main pepper production areas of Spain to date, evidence of the presence of P. nicotianae was found. We aimed to survey the presence of P. nicotianae and study the variability in its populations in this area in order to improve the management of Tristeza disease. A new specific primer and a TaqMan probe were designed based on the internal transcribed spacer regions of ribosomal DNA to detect and quantify P. nicotianae. Both morphological and molecular analysis showed its presence and confirmed it to be the causal agent of the Phytophthora disease symptoms in the studied area. The genetic characterization among P. nicotianae populations showed a low variability of genetic diversity among the isolates. Only isolates of the A2 mating type were detected. Not only is a specific and early detection of P. nicotianae essential but also the study of genetic variability among isolates for the appropriate management of the disease, above all, in producing areas with favorable conditions for the advance of the disease. © 2014 Society of Chemical Industry.

  15. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    Science.gov (United States)

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  16. Polymethoxyflavones from Nicotiana plumbaginifolia (Solanaceae) Exert Antinociceptive and Neuropharmacological Effects in Mice.

    Science.gov (United States)

    Shajib, Md Shafiullah; Rashid, Ridwan B; Ming, Long C; Islam, Shanta; Sarker, Md Moklesur R; Nahar, Lutfun; Sarker, Satyajit D; Datta, Bidyut K; Rashid, Mohammad A

    2018-01-01

    Polymethoxylavones (PMFs) are known to exhibit significant anti-inflammatory and neuroprotective properties. Nicotiana plumbaginifolia , an annual Bangladeshi herb, is rich in polymethoxyflavones that possess significant analgesic and anxiolytic activities. The present study aimed to determine the antinociceptive and neuropharmacological activities of polyoxygenated flavonoids namely- 3,3',5,6,7,8-hexamethoxy-4',5'-methylenedioxyflavone ( 1 ), 3,3',4',5',5,6,7,8-octamethoxyflavone (exoticin) ( 2 ), 6,7,4',5'-dimethylenedioxy-3,5,3'-trimethoxyflavone ( 3 ), and 3,3',4',5,5',8-hexamethoxy-6,7-methylenedioxyflavone ( 4 ), isolated and identified from N. plumbaginifolia . Antinociceptive activity was assessed using the acetic-acid induced writhing, hot plate, tail immersion, formalin and carrageenan-induced paw edema tests, whereas neuropharmacological effects were evaluated in the hole cross, open field and elevated plus maze test. Oral treatment of compounds 1 , 3 , and 4 (12.5-25 mg/kg b.w.) exhibited dose-dependent and significant ( p Plumbaginifolia could be considered as suitable candidates for the development of analgesic and anxiolytic agents.

  17. Transient expression of human papillomavirus type 16 virus-like particles in tobacco and tomato using a tobacco rattle virus expression vector

    Czech Academy of Sciences Publication Activity Database

    Šmídková, Markéta; Müller, M.; Thönes, N.; Piuko, K.; Angelisová, Pavla; Velemínský, Jiří; Angelis, Karel

    2010-01-01

    Roč. 54, č. 3 (2010), s. 451-460 ISSN 0006-3134 R&D Projects: GA ČR GA521/01/1418; GA ČR GA521/04/0971; GA AV ČR IAA6038201; GA AV ČR IBS5038304; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50520514 Keywords : ELISA * Lycopersicon esculentum * Nicotiana benthamiana Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.582, year: 2010

  18. Acute toxicity of tobacco ( Nicotiana tobaccum ) leaf dust on ...

    African Journals Online (AJOL)

    Experiments were conducted using dry tobacco (Nicotiana tobaccum) leaves aqueous extract to determine the acute toxicity and sub lethal effects on some haematological indices of Oreochromis niloticus using static renewable bioassay method. The extract was found to be toxic with a 48-h LC50 value of 109.6 mg/l.

  19. Simultaneous detection and quantification of Phytophthora nicotianae and P. cactorum, and distribution analyses in strawberry greenhouses by duplex real-time PCR.

    Science.gov (United States)

    Li, Mingzhu; Inada, Minoru; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2013-01-01

    Phytophthora nicotianae and P. cactorum cause Phytophthora rot of strawberry. A duplex real-time PCR technique for simultaneous detection and quantification of the two pathogens was developed. Species-specific primers for P. nicotianae and P. cactorum were designed based on the internal transcribed spacer regions (ITS) of rDNA and the ras-related protein gene Ypt1, respectively. TaqMan probes were labeled with FAM for P. nicotianae and HEX for P. cactorum. Specificities were demonstrated using 52 isolates, including various soil-borne pathogens. Sensitivities for P. nicotianae and P. cactorum DNAs were 10 fg and 1 pg, respectively. The technique was applied to naturally infested soil and root samples; the two pathogens were detected and the target DNA concentrations were quantified. Significant correlations of DNA quantities in roots and the surrounding soils were found. The minimum soil DNA concentration predicting the development of disease symptoms was estimated as 20 pg (g soil)(-1). In three strawberry greenhouses examined, the target DNA concentrations ranged from 1 to 1,655 pg (g soil)(-1) for P. nicotianae and from 13 to 233 pg (g soil)(-1) for P. cactorum. The method proved fast and reliable, and provides a useful tool to monitor P. nicotianae and P. cactorum in plants or soils.

  20. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  1. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    Science.gov (United States)

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae attack all three species, and in N. attenuata attack is recognized when larval oral secretions are introduced to wounds during feeding, resulting in a jasmonate burst, a systemic amplification of trypsin inhibitor accumulation, and a release of volatile organic compounds, which function as a coordinated defense response that slows caterpillar growth and increases the probability of their being attacked. Most aspects of this recognition response are retained with modifications in one allotetraploid (N. bigelovii) but lost in the other (N. clevelandii). Differences between diploid and tetraploid species were apparent in delays (maximum 1 and 0.5 h, respectively) in the jasmonate burst, the elicitation of trypsin inhibitors and release of volatile organic compounds, and the constitutive levels of nicotine, trypsin inhibitors, diterpene glycosides, rutin, and caffeoylputrescine in the leaves. Resistance to M. sexta larvae attack was most strongly associated with diterpene glycosides, which were higher in the diploid than in the two allotetraploid species. Because M. sexta elicitors differentially regulate a large proportion of the N. attenuata transcriptome, we propose that these species are suited for the study of the evolution of adaptive responses requiring trans-activation mechanisms. PMID:14530394

  2. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Gronenborn, Bruno [Institut des Sciences du Végétal, CNRS, 91198 Gif-sur-Yvette (France); Jeske, Holger, E-mail: holger.jeske@bio.uni-stuttgart.de [Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)

    2014-08-15

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.

  3. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    International Nuclear Information System (INIS)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin; Gronenborn, Bruno; Jeske, Holger

    2014-01-01

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clones prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis

  4. Differences in the Detoxification Metabolism between Two clonal Lineages of the Aphid Myzus persicae (Sulzer (Hemiptera: Aphididae Reared on Tobacco (Nicotiana tabacum L. Diferencias en el Metabolismo de Detoxificación entre dos Linajes Clonales del Áfido Myzus persicae (Sulzer (Hemiptera: Aphididae creados sobre tabaco (Nicotiana tabacum L.

    Directory of Open Access Journals (Sweden)

    Marco A Cabrera-Brandt

    2010-12-01

    Full Text Available Myzus persicae (Sulzer is a highly polyphagous aphid species, with a subspecies (M. persicae nicotianae well adapted to tobacco (Nicotiana tabacum L.. We evaluated the effect of this host plant on the aphid performance and detoxification enzymes, in order to test the participation of xenobiotic metabolism on the ability of this aphid to overcome the tobacco chemical defences. Two genotypes, one corresponding to the only M. persicae nicotianae genotype reported in Chile on tobacco, and one genotype belonging to M. persicae sensu stricto were reared on tobacco and pepper (Capsicum annuum L., respectively. M. persicae nicotianae showed a significantly higher intrinsic rate of increase (r m on pepper than on tobacco, and M. persicae s.s. performed similarly, but with no reproduction at all on tobacco. In order to evaluate the effect of tobacco on detoxification enzymes, esterases, glutathione S-transferases (GST and cytochrome P-450 monooxygenases (MO were determined in both selected aphid genotypes after 12, 24, 36, 48 and 72 h of rearing on tobacco and pepper. M. persicae nicotianae exhibited the higher total esterase activities when reared on tobacco than on pepper after 48 h of rearing, while the activities of GST and MO did not show any significant difference between host-plants and duration of treatment. For M. persicae s.s., no significant differences were observed among host-plants for the studied enzymes. These results suggest a participation of the esterases, on the ability of this M. persicae nicotianae to overcome the tobacco defences.Myzus persicae (Sulzer es un áfido polífago que incluye a Myzus persicae nicotianae, una subespecie altamente adaptada sobre tabaco (Nicotiana tabacum L.. Evaluamos el efecto del tabaco sobre el desempeño biológico y sobre determinadas enzimas de detoxificación en áfidos, para estudiar su participación en la capacidad de M. persicae nicotianae de superar las defensas químicas del tabaco. Dos

  5. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR - plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After 14 CO 2 pulse and chase experiments. The total 14 C incorporation of the mutant leaves was approximately 20% of that of the control. The NR - leaves mainly accumulated 14 C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system

  6. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-04-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR/sup -/ plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After /sup 14/CO/sub 2/ pulse and chase experiments. The total /sup 14/C incorporation of the mutant leaves was approximately 20% of that of the control. The NR/sup -/ leaves mainly accumulated /sup 14/C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system.

  7. Cloning and Functional Analysis of the Promoter of an Ascorbate Oxidase Gene from Gossypium hirsutum

    OpenAIRE

    Xin, Shan; Tao, Chengcheng; Li, Hongbin

    2016-01-01

    Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibite...

  8. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis.

    Science.gov (United States)

    Wei, Hai-Lei; Zhang, Wei; Collmer, Alan

    2018-05-08

    The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E) proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum

    NARCIS (Netherlands)

    Bonants, P.J.M.; Hagenaar-de Weerdt, M.; Man in 't Veld, W.A.; Baayen, R.P.

    2000-01-01

    Hybrid isolates of Phytophthora nicotianae x P. cactorum from five different hosts (Cyclamen, Lavandula, Lewisia, Primula, and Spathiphyllum spp.) were identified by their atypical morphology and their well-defined heterozygous isozyme patterns. The hybrid nature of these isolates was tested by

  10. Genome-Wide Identification and Analysis of Drought-Responsive Genes and MicroRNAs in Tobacco

    Directory of Open Access Journals (Sweden)

    Fuqiang Yin

    2015-03-01

    Full Text Available Drought stress response is a complex trait regulated at transcriptional and post-transcriptional levels in tobacco. Since the 1990s, many studies have shown that miRNAs act in many ways to regulate target expression in plant growth, development and stress response. The recent draft genome sequence of Nicotiana benthamiana has provided a framework for Digital Gene Expression (DGE and small RNA sequencing to understand patterns of transcription in the context of plant response to environmental stress. We sequenced and analyzed three Digital Gene Expression (DGE libraries from roots of normal and drought-stressed tobacco plants, and four small RNA populations from roots, stems and leaves of control or drought-treated tobacco plants, respectively. We identified 276 candidate drought responsive genes (DRGs with sequence similarities to 64 known DRGs from other model plant crops, 82 were transcription factors (TFs including WRKY, NAC, ERF and bZIP families. Of these tobacco DRGs, 54 differentially expressed DRGs included 21 TFs, which belonged to 4 TF families such as NAC (6, MYB (4, ERF (10, and bZIP (1. Additionally, we confirmed expression of 39 known miRNA families (122 members and five conserved miRNA families, which showed differential regulation under drought stress. Targets of miRNAs were further surveyed based on a recently published study, of which ten targets were DRGs. An integrated gene regulatory network is proposed for the molecular mechanisms of tobacco root response to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and their target transcripts. This network analysis serves as a reference for future studies on tobacco response stresses such as drought, cold and heavy metals.

  11. An Examination of the Plastid DNA of Hypohaploid Nicotiana plumbaginifolia Plants

    Science.gov (United States)

    Cannon, Gordon C.; Van, K. Tran Thanh; Heinhorst, Sabine; Trinh, T. H.; Weissbach, Arthur

    1989-01-01

    DNA was extracted from different morphological types of hypohaploid Nicotiana plumbaginifolia plants. The cellular levels of chloroplast DNA (expressed as percent of total DNA) were found to be approximately two- to threefold higher in two albino hypohaploids than in a green hypohaploid. The level of chloroplast DNA in the green hypohaploid was not significantly different from either in vitro or in vivo grown haploid N. plumbaginifolia plants. Molecular hybridization with DNA probes for the large subunit of ribulose bisphosphate carboxylase from spinach and with Pvull fragments representing the entire Nicotiana tabacum chloroplast genome revealed no gross qualitative differences in the chloroplast DNAs of hypohaploid plants. Based on these observations we have concluded that the lack of chloroplast function observed in the albino forms of hypohaploid N. plumbaginifolia plants is not due to changes in the chloroplast genome. Images Figure 1 Figure 2 PMID:16666781

  12. Susceptibility of peach GF 305 seedlings and selected herbaceous plants to plum pox virus isolates from western Slovakia.

    Science.gov (United States)

    Glasa, M; Matisová, J; Hricovský, I; Kúdela, O

    1997-12-01

    The susceptibility of peach GF 305 seedlings and herbaceous plants to five plum pox virus (PPV) isolates from orchards of western Slovakia was investigated. PPV was isolated from diseased plum, apricot and peach trees, and transmitted by chip-budding to peach GF 305. The herbaceous plants were infected by mechanical inoculation. The transmission was analysed by symptomatology and double sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Infected peaches developed leaf distortion, tissue clearing along the veins and small chlorotic spots (isolate BOR-3). With exception of BOR-3, the PPV isolates transmitted from peach caused local chlorotic spots on Chenopodium foetidum. The character of symptoms changed when a sap from PPV-infected Nicotiana benthamiana was used as virus inoculum. From N. benthamiana, the PPV isolates could be transmitted to Pisum sativum, cv. Colmo (light green mosaic), N. clevelandii and N. clevelandii x N. glutinosa hybrid (latent infection or chlorotic spots).

  13. Effect of lethal and sub-lethal concentrations of tobacco (Nicotiana ...

    African Journals Online (AJOL)

    Lethal and sub-lethal bioassays on Clarias gariepinus were conducted to evaluate the toxicity of tobacco (Nicotiana tobaccum) leaf dust on weight gain and haematological indices of Clarias gariepinus (mean weight 10.5±0.70g) in glass aquaria with aeration system. The concentrations used during the lethal exposure are: ...

  14. Omzettingen van koolhydraten in het blad van Nicotiana tabacum L.

    NARCIS (Netherlands)

    Tollenaar, D.

    1925-01-01

    Nicotiana tabacum L. was chosen as an experimental plant for several practical reasons. The plants were grown in large pots in a glasshouse at 22 °C and great humidity in February-March and September-October until 4 normal leaves were present. Each day at 16.00 h the plants were brought into

  15. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    Science.gov (United States)

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  16. The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana.

    Science.gov (United States)

    Hancock, C Nathan; Kent, Lia; McClure, Bruce A

    2005-09-01

    S-RNase participates in at least three mechanisms of pollen rejection. It functions in S-specific pollen rejection (self-incompatibility) and in at least two distinct interspecific mechanisms of pollen rejection in Nicotiana. S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia also require additional stylar proteins. Transmitting-tract-specific (TTS) protein, 120 kDa glycoprotein (120K) and pistil extensin-like protein III (PELP III) are stylar glycoproteins that bind S-RNase in vitro and are also known to interact with pollen. Here we tested whether these glycoproteins have a direct role in pollen rejection. 120K shows the most polymorphism in size between Nicotiana species. Larger 120K-like proteins are often correlated with S-specific pollen rejection. Sequencing results suggest that the polymorphism primarily reflects differences in glycosylation, although indels also occur in the predicted polypeptides. Using RNA interference (RNAi), we suppressed expression of 120K to determine if it is required for S-specific pollen rejection. Transgenic SC N. plumbaginifolia x SI Nicotiana alata (S105S105 or SC10SC10) hybrids with no detectable 120K were unable to perform S-specific pollen rejection. Thus, 120K has a direct role in S-specific pollen rejection. However, suppression of 120K had no effect on rejection of N. plumbaginifolia pollen. In contrast, suppression of HT-B, a factor previously implicated in S-specific pollen rejection, disrupts rejection of N. plumbaginifolia pollen. Thus, S-specific pollen rejection and rejection of N. plumbaginifolia pollen are mechanistically distinct, because they require different non-S-RNase factors.

  17. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units.

    Science.gov (United States)

    Lim, K Y; Kovarik, A; Matýăsek, R; Bezdĕk, M; Lichtenstein, C P; Leitch, A R

    2000-06-01

    We examined the structure, intranuclear distribution and activity of ribosomal DNA (rDNA) in Nicotiana sylvestris (2n = 2x = 24) and N. tomentosiformis (2n = 2x = 24) and compared these with patterns in N. tabacum (tobacco, 2n = 4x = 48). We also examined a long-established N. tabacum culture, TBY-2. Nicotiana tabacum is an allotetraploid thought to be derived from ancestors of N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). Nicotiana sylvestris has three rDNA loci, one locus each on chromosomes 10, 11, and 12. In root-tip meristematic interphase cells, the site on chromosome 12 remains condensed and inactive, while the sites on chromosomes 10 and 11 show activity at the proximal end of the locus only. Nicotiana tomentosiformis has one major locus on chromosome 3 showing activity and a minor, inactive locus on chromosome 11. In N. tabacum cv. 095-55, there are four rDNA loci on T3, S10, S11/t and S12 (S11/t carries a small T-genome translocation). The locus on S12 remains condensed and inactive in root-tip meristematic cells while the others show activity, including decondensation at interphase and secondary constrictions at metaphase. Nicotiana tabacum DNA digested with methylcytosine-sensitive enzymes revealed a hybridisation pattern for rDNA that resembled that of N. tomentosiformis and not N. sylvestris. The data indicate that active, undermethylated genes are of the N. tomentosiformis type. Since S-genome chromosomes of N. tabacum show rDNA expression, the result indicates rDNA gene conversion of the active rDNA units on these chromosomes. Gene conversion in N. tabacum is consistent with the results of previous work. However, using primers specific for the S-genome rDNA intergenic sequences (IGS) in the polymerase chain reaction (PCR) show that rDNA gene conversion has not gone to completion in N. tabacum. Furthermore, using methylation-insensitive restriction enzymes we demonstrate that about 8% of the rDNA units remain of the N

  18. Antinuclear human autoantibodies as markers in Nicotiana tabacum pollen tubes

    Directory of Open Access Journals (Sweden)

    C. Poggialini

    2014-01-01

    Full Text Available In the present paper we report on the use of antinuclear human autoantibodies as specific markers in Nicotiana tabacum pollen tubes. The antibodies have been tested by fluorescence techniques using a confocal laser scanning microscope. All the antibodies showed specifc labelling pattern and the results, although preliminary in nature, could open new perspectives of research.

  19. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2018-01-01

    Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco ( Nicotiana ) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar

  20. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Phylogeny and historical biogeography of the cocosoid palms (Arecaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci

    Science.gov (United States)

    Arecaceae tribe Cocoseae is the most economically important tribe of palms, including both coconut and African oil palm. It is mostly represented in the Neotropics, with one and two genera endemic to South Africa and Madagascar, respectively. Using primers for six single copy WRKY gene family loci...

  2. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells

    DEFF Research Database (Denmark)

    Reuter, Lauri J.; Shahbazi, Mohammad-Ali; Makila, Ermei M.

    2017-01-01

    can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration...... to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of concept for the functionalization...

  3. Molecular and biological characterization of Potato mop-top virus (PMTV, Pomovirus) isolates from potato-growing regions in Colombia

    DEFF Research Database (Denmark)

    Gil, José; Adams, Ian; Boonham, Neil

    2016-01-01

    Potato mop-top virus (PMTV) causes necrotic flecks inside and on tubers in temperate countries. In South America, these symptoms have not been observed, although the presence of the virus has been confirmed in the Andes and in Central America. To characterize PMTV isolates from the Andes, soil...... samples were taken from the main potato-producing regions in Colombia and virus was recovered by planting Nicotiana benthamiana as bait plants. The complete genomes of five isolates were sequenced and three of the isolates were inoculated to four different indicator plants. Based on sequence comparisons...

  4. Localization and in-vivo characterization of thapsia garganica CYP76AE2 indicates a role in thapsigargin biosynthesis

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Martinez-Swatson, Karen Agatha; Rasmussen, Silas Anselm

    2017-01-01

    The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase calcium pump in mammals and is of industrial importance as the active...... in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts...

  5. Cowpea mosaic virus RNA-1 acts as an amplicon whose effects can be counteracted by a RNA-2-encoded suppressor of silencing

    International Nuclear Information System (INIS)

    Liu Li; Grainger, Jef; Canizares, M. Carmen; Angell, Susan M.; Lomonossoff, George P.

    2004-01-01

    Lines of Nicotiana benthamiana transgenic for full-length copies of both Cowpea mosaic virus (CPMV) genomic RNAs, either singly or together, have been produced. Plants transgenic for both RNAs developed symptoms characteristic of a CPMV infection. When plants transgenic for RNA-1 were agro-inoculated with RNA-2, no infection developed and the plants were also resistant to challenge with CPMV. By contrast, plants transgenic for RNA-2 became infected when agro-inoculated with RNA-1 and were fully susceptible to CPMV infection. The resistance of RNA-1 transgenic plants was shown to be related to the ability of RNA-1 to self-replicate and act as an amplicon. The ability of transgenically expressed RNA-2 to counteract the amplicon effect suggested that it encodes a suppressor of posttranscriptional gene silencing (PTGS). By examining the ability of portions of RNA-2 to reverse PTGS in N. benthamiana, we have identified the small (S) coat protein as the CPMV RNA-2-encoded suppressor of PTGS

  6. An antiviral RISC isolated from Tobacco rattle virus-infected plants.

    Science.gov (United States)

    Ciomperlik, Jessica J; Omarov, Rustem T; Scholthof, Herman B

    2011-03-30

    The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be reprogrammed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici

    Science.gov (United States)

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling-plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have proven to play important roles in ...

  8. Population structure and genetic diversity of Phytophthora nicotianae from tobacco in Georgia

    Science.gov (United States)

    Black shank caused by Phytophthora nicotianae occurs worldwide and is responsible for significant yield loss in tobacco production in Georgia. Management of the disease has primarily relied on utilization of tobacco cultivars with resistance to race 0 of the pathogen and application of the fungicide...

  9. Production of human interferon alfa 2b in plants of Nicotiana excelsior by Agrobacterium-mediated transient expression.

    Science.gov (United States)

    Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V

    2010-01-01

    Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.

  10. Nicotiana plumbaginifolia: A Rich Antimicrobial and Antioxidant Source

    International Nuclear Information System (INIS)

    Ajaib, M.; Perveen, S.

    2016-01-01

    Antimicrobial and antioxidant activities of plant Nicotiana plumbaginifolia Viv. Were carried out using various techniques. The petroleum ether, chloroform, methanol and aqueous extracts of the N. plumbaginifolia were obtained by maceration technique. The maximum antibacterial potential was exhibited by chloroform leaves extract (76.3 ± 0.3 mm), methanolic root extract (69 ± 0.8 mm) and petroleum ether root extract (67 ± 1.7 mm) against P. aureginosa. Methanolic root extract possessed 64 ± 2.3 mm zone of inhibition against E. coli, whereas chloroform root extract displayed 49 ± 0.8 mm against B. subtilis. Chloroform root extract showed 48 ±1.2 against S. aureus. The maximum zone of inhibition of antifungal potential was displayed by methanolic extracts of leaves against A. niger (43 ± 0.8 mm) and F. solani (43 ± 1.6 mm). The MIC assay was determine for further analysis which showed the MIC value of methanolic root extract (0.04 ± 0.1 mg/mL) against E. coli and the MIC value was noticed (0.108 ± 0.04 mg/mL) against A. niger by methanolic root extract. Antioxidant potential was determined using four methods i.e. (1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, total antioxidant activity (TAA), total phenolic contents (TPC) and metal chelating activity. The highest value of percent DPPH was observed 90.56 at 1000 microL concentration in petroleum ether extract. The maximum values of TAA, TPC, FRAP and FTC were 1.352 ± 0.01, 1.683 ± 0.09 and 80.66 ± 0.08, respectively. (author)

  11. Pollination in Nicotiana alata stimulates synthesis and transfer to the stigmatic surface of NaStEP, a vacuolar Kunitz proteinase inhibitor homologue.

    Science.gov (United States)

    Busot, Grethel Yanet; McClure, Bruce; Ibarra-Sánchez, Claudia Patricia; Jiménez-Durán, Karina; Vázquez-Santana, Sonia; Cruz-García, Felipe

    2008-01-01

    After landing on a wet stigma, pollen grains hydrate and germination generally occurs. However, there is no certainty of the pollen tube growth through the style to reach the ovary. The pistil is a gatekeeper that evolved in many species to recognize and reject the self-pollen, avoiding endogamy and encouraging cross-pollination. However, recognition is a complex process, and specific factors are needed. Here the isolation and characterization of a stigma-specific protein from N. alata, NaStEP (N. alata Stigma Expressed Protein), that is homologous to Kunitz-type proteinase inhibitors, are reported. Activity gel assays showed that NaStEP is not a functional serine proteinase inhibitor. Immunohistochemical and protein blot analyses revealed that NaStEP is detectable in stigmas of self-incompatible (SI) species N. alata, N. forgetiana, and N. bonariensis, but not in self-compatible (SC) species N. tabacum, N. plumbaginifolia, N. benthamiana, N. longiflora, and N. glauca. NaStEP contains the vacuolar targeting sequence NPIVL, and immunocytochemistry experiments showed vacuolar localization in unpollinated stigmas. After self-pollination or pollination with pollen from the SC species N. tabacum or N. plumbaginifolia, NaStEP was also found in the stigmatic exudate. The synthesis and presence in the stigmatic exudate of this protein was strongly induced in N. alata following incompatible pollination with N. tabacum pollen. The transfer of NaStEP to the stigmatic exudate was accompanied by perforation of the stigmatic cell wall, which appeared to release the vacuolar contents to the apoplastic space. The increase in NaStEP synthesis after pollination and its presence in the stigmatic exudates suggest that this protein may play a role in the early pollen-stigma interactions that regulate pollen tube growth in Nicotiana.

  12. Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Lin, Jun; Rushton, Paul J

    2013-02-15

    Drought is one of the important environmental factors affecting crop production worldwide and therefore understanding the molecular response of plant to stress is an important step in crop improvement. WRKY transcription factors are one of the 10 largest transcription factor families across the green lineage. In this study, highly upregulated dehydration-induced WRKY and enzyme-coding genes from tobacco and soybean were selected from microarray data for promoter analyses. Putative stress-related cis-regulatory elements such as TGACG motif, ABRE-like elements; W and G-like sequences were identified by an in silico analyses of promoter region of the selected genes. GFP quantification of transgenic BY-2 cell culture showed these promoters direct higher expression in-response to 100 μM JA treatment compared to 100 μM ABA, 10% PEG and 85 mM NaCl treatments. Thus promoter activity upon JA treatment and enrichment of MeJA-responsive elements in the promoter of the selected genes provides insights for these genes to be jasmonic acid responsive with potential of mediating cross-talk during dehydration responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ontwikkeling en demonstratie van een geintegreerd bestrijdingssysteem voor de rode luis Myzus nicotianae

    NARCIS (Netherlands)

    Dijken, van M.J.

    1998-01-01

    De geïntegreerde plaagbestrijding van de paprikateelt onder glas, wordt sinds 1993 verstoord door de opkomst van de rode luis, Myzus nicotianae. Deze luis is namelijk resistent tegen het selectieve chemische correctiemiddel pirimicarb en een effectieve biologische bestrijding was onvoldoende

  14. Inter Simple Sequence Repeat DNA (ISSR) Polymorphism Utility in Haploid Nicotiana Alata Irradiated Plants for Finding Markers Associated with Gamma Irradiation and Salinity

    International Nuclear Information System (INIS)

    El-Fiki, A.; Adly, M.; El-Metabteb, G.

    2017-01-01

    Nicotiana alata is an ornamental plant. It is a member of family Solanasea. Tobacco (Nicotiana spp.) is one of the most important commercial crops in the world. Wild Nicotiana species, as a store house of genes for several diseases and pests, in addition to genes for several important phytochemicals and quality traits which are not present in cultivated varieties. Inter simple sequence repeat DNA (ISSR) analysis was used to determine the degree of genetic variation in treated haploid Nicotiana alata plants. Total genomic DNAs from different treated haploid plant lets were amplified using five specific primers. All primers were polymorphic. A total of 209 bands were amplified of which 135 (59.47%) polymorphic across the radiation treatments. Whilst, the level of polymorphism among the salinity treatments were 181 (85.6 %). Whereas, the polymorphism among the combined effects between gamma radiation doses and salinity concentrations were 283 ( 73.95% ). Treatments relationships were estimated through cluster analysis (UPGMA) based on ISSR data

  15. An ANNEXIN-like protein from the cereal cyst nematode Heterodera avenae suppresses plant defense.

    Directory of Open Access Journals (Sweden)

    Changlong Chen

    Full Text Available Parasitism genes encoding secreted effector proteins of plant-parasitic nematodes play important roles in facilitating parasitism. An annexin-like gene was isolated from the cereal cyst nematode Heterodera avenae (termed Ha-annexin and had high similarity to annexin 2, which encodes a secreted protein of Globodera pallida. Ha-annexin encodes a predicted 326 amino acid protein containing four conserved annexin domains. Southern blotting revealed that there are at least two homologies in the H. avenae genome. Ha-annexin transcripts were expressed within the subventral gland cells of the pre-parasitic second-stage juveniles by in situ hybridization. Additionally, expression of these transcripts were relatively higher in the parasitic second-stage juveniles by quantitative real-time RT-PCR analysis, coinciding with the time when feeding cell formation is initiated. Knockdown of Ha-annexin by method of barley stripe mosaic virus-based host-induced gene silencing (BSMV-HIGS caused impaired nematode infections at 7 dpi and reduced females at 40 dpi, indicating important roles of the gene in parasitism at least in early stage in vivo. Transiently expression of Ha-ANNEXIN in onion epidermal cells and Nicotiana benthamiana leaf cells showed the whole cell-localization. Using transient expression assays in N. benthamiana, we found that Ha-ANNEXIN could suppress programmed cell death triggered by the pro-apoptotic mouse protein BAX and the induction of marker genes of PAMP-triggered immunity (PTI in N. benthamiana. In addition, Ha-ANNEXIN targeted a point in the mitogen-activated protein kinase (MAPK signaling pathway downstream of two kinases MKK1 and NPK1 in N. benthamiana.

  16. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  17. Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper

    Science.gov (United States)

    Phytophthora nicotianae is the principal causal agent of root and crown rot disease of pepper plants in Extremadura (western Spain), a spring-summer crop in this region. Preplant soil treatment by anaerobic soil disinfestation (ASD) may effectively control plant pathogens in many crop production sys...

  18. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuata

    NARCIS (Netherlands)

    Glawe, G.A.; Zavala, J.A.; Kessler, A.; Van Dam, N.M.; Baldwin, I.T.

    2003-01-01

    Genotypes of the wild tobacco Nicotiana attenuata from different geographic regions in North America vary considerably in the level of constitutive and inducible trypsin protease inhibitors (TrypPIs), a potent direct defense, as well as in the production of herbivore-induced volatiles that function

  19. Chlorogenic acid in a Nicotiana plumbaginifolia cell suspension.

    Science.gov (United States)

    Gillet; Mesnard; Fliniaux; Monti; Fliniaux

    1999-11-01

    A phenylpropanoid compound has been characterized in a Nicotiana plumbaginifolia cell suspension. This compound has been isolated and purified by semi-preparative reverse phase-high performance liquid chromatography. Its structure has been identified by NMR spectroscopy as 5-O-caffeoylquinic acid, which is chlorogenic acid (CA). The influence of culture conditions on the accumulation of this metabolite by N. plumbaginifolia cell suspensions has been studied. Darkness strongly inhibits the CA accumulation. Moreover, it has been shown that feeding experiments with caffeic acid had a deleterious effect upon the CA content. This one was not influenced by a supplementation with quinic acid.

  20. Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts

    International Nuclear Information System (INIS)

    Khelifa, Mounia; Masse, Delphine; Blanc, Stephane; Drucker, Martin

    2010-01-01

    Though the duration of a single round of replication is an important biological parameter, it has been determined for only few viruses. Here, this parameter was determined for Cauliflower mosaic virus (CaMV) in transfected protoplasts from different hosts: the highly susceptible Arabidopsis and turnip, and Nicotiana benthamiana, where CaMV accumulates only slowly. Four methods of differing sensitivity were employed: labelling of (1) progeny DNA and (2) capsid protein, (3) immunocapture PCR,, and (4) progeny-specific PCR. The first progeny virus was detected about 21 h after transfection. This value was confirmed by all methods, indicating that our estimate was not biased by the sensitivity of the detection method, and approximated the actual time required for one round of CaMV replication. Unexpectedly, the replication kinetics were similar in the three hosts; suggesting that slow accumulation of CaMV in Nicotiana plants is determined by non-optimal interactions in other steps of the infection cycle.

  1. Molecular Characterization of Tomato Yellow Leaf Curl Virus in Korea and the Construction of an Infectious Clone

    Directory of Open Access Journals (Sweden)

    Bong Choon Lee

    2015-06-01

    Full Text Available Several tomato production regions in Korea were surveyed for tomato yellow leaf curl disease (TYLCD. Tomato leaf samples showing TYLCD-like symptoms were collected from Tongyeong (To, Geoje (Gi, and Gimhae (Gh cities of the southern part of Korea. Tomato yellow leaf curl virus (TYLCV was detected and the full-length genomes of the isolates were sequenced. The TYLCV isolates found in Korea shared high sequence identity (> 99% with TYLCV-IL [JR:Omu:Ng] (AB110217. Phylogenetic relationship analysis revealed that they formed two groups (with little genetic variability, and the To, Gj, and Gh isolates belonged to the TYLCV-IL group. An infectious clone of TYLCV-To (JQ013089 was constructed and agroinoculated into Nicotiana benthamiana, Nicotiana tabacum var. Xanthi, Petunia hybrida, Capsicum annuum, and Lycopersicon esculentum cv. Hausumomotaro. Agroinfection with a dimeric infectious clone of TYLCV-To induced severe leaf curling and stunting symptoms in these plants, excluding C. annuum. Tomato plants then developed typical yellow leaf curl symptoms.

  2. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles.

    Science.gov (United States)

    Santi, Luca; Batchelor, Lance; Huang, Zhong; Hjelm, Brooke; Kilbourne, Jacquelyn; Arntzen, Charles J; Chen, Qiang; Mason, Hugh S

    2008-03-28

    Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation. We now overcome these constraints with an efficient tobacco mosaic virus (TMV)-derived transient expression system using leaves of Nicotiana benthamiana. We produced properly assembled rNV at 0.8 mg/g leaf 12 days post-infection (dpi). Oral immunization of CD1 mice with 100 or 250 microg/dose of partially purified rNV elicited systemic and mucosal immune responses. We conclude that the plant viral transient expression system provides a robust research tool to generate abundant quantities of rNV as enriched, concentrated VLP preparations that are orally immunogenic.

  3. Management of chili pepper root rot and wilt (caused by Phytophthora nicotianae by grafting onto resistant rootstock

    Directory of Open Access Journals (Sweden)

    Mourad SAADOUN

    2013-05-01

    Full Text Available Root rot and plant wilting caused by Phytophthora nicotianae is a severe disease of chili pepper (Capsicum annuum L. in open fields and under greenhouse production in Tunisia. Chili pepper grafting for disease manage- ment is attracting increased interest in recent years. Using the tube grafting technique, different compatible scion/rootstock combinations were obtained with the wild-type pepper SCM334 and the local chili pepper cultivars ‘Beldi’ and ‘Baker’. SCM334 was resistant to P. nicotianae, while the cultivars Beldi and Baker were susceptible. Plant inoculations were performed with P. nicotianae zoospores, and severity of root rot was rated 30 days post- inoculation using a 0 (healthy plant to 5 (dead plant severity score. On SCM334 rootstock and with ‘Beldi’ or ‘Baker’ scions, the intensity of root rot was very low (mean score 0.1–0.2 and plants were healthy. However, with Baker or Beldi rootstocks and SCM334 scions, root rot was severe (mean score 3.1–4.6, leading to high numbers of wilting and dead plants. This severe root rot was similar to that observed on non-grafted plants of ‘Baker’ and ‘Beldi’ inoculated with the pathogen. Under greenhouse conditions, measurements of agronomic characters indicated non-consistent improvement of these features on the scion cultivar when SCM334 was the rootstock. Since plant foliage is not attacked by this pathogen, these results show that susceptible chili pepper scions grafted onto SCM334 rootstocks could be used for root rot management and improvement of pepper yields in P. nicotianae infested soils.

  4. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  5. The role of Nicotiana gluca Graham (paraguayan herbs) as an adjuvant in immunomodulation of Newcastle disease vaccine for broilers Estudo da ação de Nicotiana glauca Graham (erva paraguaia) como coadjuvante em vacina contra a doença de Newcastle em frangos de corte

    OpenAIRE

    Fabiane Pereira Gentilini; Telmo Vidor; Rogério Freitag; Marcos Antônio Anciuti; Caren Gularte Quincozes; Marlete Brum Cleff; Geferson Fischer; Carlos Eduardo Nogueira

    2008-01-01

    The Nicotiana glauca is a native plant species from Argentina, but found all over South América, being used against headaches, rheumatism, injuries, ulcers, and so on. Researchers have considered it as having immunomodulation effect. This study was conducted to investigate the use of a aqueous extract of Nicotiana glauca Graham as an immunomodulator (adjuvant) of a Newcastle disease vaccine.. A total of 56 broilers were distributed into 4 ...

  6. Plant viruses as scaffolds for the presentation of vaccine epitopes

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Čeřovská, Noemi; Vaculík, Petr; Moravec, Tomáš

    2017-01-01

    Roč. 61, č. 1 (2017), s. 1-12 ISSN 0006-3134 R&D Projects: GA ČR(CZ) GA15-10768S; GA ČR(CZ) GAP501/12/1761 Grant - others:European Regional Development Fund(XE) CZ.2.16/3.1.00/24014 Institutional support: RVO:61389030 Keywords : tobacco-mosaic-virus * x coat protein * human-papillomavirus type-16 * green fluorescent protein * n-terminal segment * triple gene block * cell-to-cell * transient expression * nicotiana-benthamiana * viral vector * transient expression * plant viral expression vectors Subject RIV: GE - Plant Breeding OBOR OECD: Virology Impact factor: 1.551, year: 2016

  7. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5

    DEFF Research Database (Denmark)

    Madsen, Esben B; Antolín-Llovera, Meritxell; Grossmann, Christina

    2011-01-01

    and cloning of downstream components, little is known about the activation and signalling mechanisms of the Nod-factor receptors themselves. Here we show that both receptor proteins localize to the plasma membrane, and present evidence for heterocomplex formation initiating downstream signalling. Expression...... of NFR1 and NFR5 in Nicotiana benthamiana and Allium ampeloprasum (leek) cells caused a rapid cell-death response. The signalling leading to cell death was abrogated using a kinase-inactive variant of NFR1. In these surviving cells, a clear interaction between NFR1 and NFR5 was detected in vivo through...

  8. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  9. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  10. Isolation and molecular characterization of dTnp1, a mobile and defective transposable element of Nicotiana plumbaginifolia.

    Science.gov (United States)

    Meyer, C; Pouteau, S; Rouzé, P; Caboche, M

    1994-01-01

    By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.

  11. [Molecular and structural-biological analysis of Nicotiana plumbaginifolia mutants for identification of the site of beta-tubulins interaction with dinitroanilines and phosphorotioamidates].

    Science.gov (United States)

    Emets, A I; Baiard, U V; Nyporko, A Iu; Swire-Clark, G A; Blium, Ia B

    2009-01-01

    The identification of point mutation locations on beta-tubulin molecules of amiprophosmethyl- and trifluralin-resistant Nicotiana plumbaginifolia lines have described in the work. It was shown that in the first case this mutation is connected with the substitution ofserine residue on proline in position 248; in the second case--with the substitution of phenilalanine on serine in position 317 of beta-tubulin amino acid sequence. Three-dimensional models of beta-tubulin molecule from Chlamydomonas with well-known location of mutations conferring dinitroaniline- and phosphorotioamidate resistance (substitution of lysine residue to methionine on position 350), and beta-tubulin from Nicotiana plumbaginifolia have been reconstructed. On the basis of analysis of site of interaction with dinitroanilines and phosphorotioamides on Chlamydomonas beta-tubulin molecule it was concluded that the revealed mutations on Nicotiana plumbaginifolia beta-tubulin affect amino acid residues participating in formation of this site.

  12. The Heterologous Expression of the p22 RNA Silencing Suppressor of the Crinivirus Tomato Chlorosis Virus from Tobacco Rattle Virus and Potato Virus X Enhances Disease Severity but Does Not Complement Suppressor-Defective Mutant Viruses.

    Science.gov (United States)

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M. Carmen

    2017-11-24

    To counteract host antiviral RNA silencing, plant viruses express suppressor proteins that function as pathogenicity enhancers. The genome of the Tomato chlorosis virus (ToCV) (genus Crinivirus , family Closteroviridae ) encodes an RNA silencing suppressor, the protein p22, that has been described as having one of the longest lasting local suppressor activities when assayed in Nicotiana benthamiana . Since suppression of RNA silencing and the ability to enhance disease severity are closely associated, we analyzed the effect of expressing p22 in heterologous viral contexts. Thus, we studied the effect of the expression of ToCV p22 from viral vectors Tobacco rattle virus (TRV) and Potato virus X (PVX), and from attenuated suppressor mutants in N. benthamiana plants. Our results show that although an exacerbation of disease symptoms leading to plant death was observed in the heterologous expression of ToCV p22 from both viruses, only in the case of TRV did increased viral accumulation occur. The heterologous expression of ToCV p22 could not complement suppressor-defective mutant viruses.

  13. Pollen transmission of asparagus virus 2 (AV-2) may facilitate mixed infection by two AV-2 isolates in asparagus plants.

    Science.gov (United States)

    Kawamura, Ryusuke; Shimura, Hanako; Mochizuki, Tomofumi; Ohki, Satoshi T; Masuta, Chikara

    2014-09-01

    Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.

  14. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Sant'Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa; Souza, Silvia R.

    2008-01-01

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R 2 = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R 2 = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil

  15. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R.

  16. Tissue-specific expression of telomerase reverse transcriptase gene variants in Nicotiana tabacum

    Czech Academy of Sciences Publication Activity Database

    Jurečková, J.; Sýkorová, Eva; Hafidh, Said; Honys, David; Fajkus, Jiří; Fojtová, M.

    2017-01-01

    Roč. 245, č. 3 (2017), s. 549-561 ISSN 0032-0935 R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : male gametophyte development * tobacco male gametophyte * allotetraploid nicotiana Subject RIV: EF - Botanics; EF - Botanics (UEB-Q) OBOR OECD: Plant sciences, botany; Plant sciences, botany (UEB-Q) Impact factor: 3.361, year: 2016

  17. Molecular identification of catalases from Nicotiana plumbaginifolia (L.).

    Science.gov (United States)

    Willekens, H; Villarroel, R; Van Montagu, M; Inzé, D; Van Camp, W

    1994-09-19

    We have isolated three different catalase cDNAs from Nicotiana plumbaginifolia (cat1, cat2, and cat3) and a partial sequence of a fourth catalase gene (cat4) that shows no discernible expression based on Northern analysis. The catalase sequences were used to determine the similarity with other plant catalases and to study the transcriptional response to paraquat, 3-aminotriazole, and salicylic acid. 3-Aminotriazole induces mRNA levels of cat1, cat2 and cat3, indicating that a reduction in catalase activity positively affects catalase mRNA abundance. Salicylic acid that binds catalase in vitro, had no effect on catalase transcript levels at physiological concentrations. Paraquat resulted in the induction of cat1.

  18. Nicotiana small RNA sequences support a host genome origin of cucumber mosaic virus satellite RNA.

    Directory of Open Access Journals (Sweden)

    Kiran Zahid

    2015-01-01

    Full Text Available Satellite RNAs (satRNAs are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a β-glucuronidase (GUS transgene fused with a Cucumber mosaic virus (CMV Y satellite RNA (Y-Sat sequence (35S-GUS:Sat was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.

  19. The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae)

    Czech Academy of Sciences Publication Activity Database

    Leitch, I.J.; Hanson, L.; Lim, K.Y.; Kovařík, Aleš; Chase, M.W.; Clarkson, J.J.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 805-814 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : genome size * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  20. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  1. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.

    Science.gov (United States)

    Pérez, José de Jesús; Udeshi, Namrata D; Shabanowitz, Jeffrey; Ciordia, Sergio; Juárez, Silvia; Scott, Cheryl L; Olszewski, Neil E; Hunt, Donald F; García, Juan Antonio

    2013-08-01

    O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    Science.gov (United States)

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  3. The receptor-like kinase SOBIR1 interacts with Brassica napus LepR3 and is required for Leptosphaeria maculans AvrLm1-triggered immunity

    Directory of Open Access Journals (Sweden)

    Lisong eMa

    2015-10-01

    Full Text Available AbstractThe fungus Leptosphaeria maculans (L. maculans is the causal agent of blackleg disease of canola/oilseed rape (Brassica napus worldwide. We previously reported cloning of the B. napus blackleg resistance gene, LepR3, which encodes a receptor-like protein. LepR3 triggers localised cell death upon recognition of its cognate Avr protein, AvrLm1. Here, we exploited the Nicotiana benthamiana model plant to investigate the recognition mechanism of AvrLm1 by LepR3. Co-expression of the LepR3/AvrLm1 gene pair in N. benthamiana resulted in development of a hypersensitive response (HR. However, a truncated AvrLm1 lacking its indigenous signal peptide was compromised in its ability to induce LepR3-mediated HR, indicating that AvrLm1 is perceived by LepR3 extracellularly. Structure-function analysis of the AvrLm1 protein revealed that the C-terminal region of AvrLm1 was required for LepR3-mediated HR in N. benthamiana and for resistance to L. maculans in B. napus. LepR3 was shown to be physically interacting with the B. napus receptor like kinase, SOBIR1 (BnSOBIR1. Silencing of NbSOBIR1 or NbSERK3 (BAK1 compromised LepR3-AvrLm1-dependent HR in N. benthamiana, suggesting that LepR3-mediated resistance to L. maculans in B. napus requires SOBIR1 and BAK1/SERK3. Using this model system, we determined that BnSOBIR1 and SERK3/BAK1 are essential partners in the LepR3 signalling complex and were able to define the AvrLm1 effector domain.

  4. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  5. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years

    Czech Academy of Sciences Publication Activity Database

    Koukalová, Blažena; Moraes, A.P.; Renny-Byfield, S.; Matyášek, Roman; Leitch, A.R.; Kovařík, Aleš

    2010-01-01

    Roč. 186, č. 1 (2010), s. 148-160 ISSN 0028-646X R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : concerted evolution * interlocus homogenization * Nicotiana Subject RIV: BO - Biophysics Impact factor: 6.516, year: 2010

  6. UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana plumbaginifolia and Lycopersicon esculentum

    International Nuclear Information System (INIS)

    Vlahova, M.; Hinnisdaels, S.; Frulleux, F.; Claeys, M.; Atanassov, A.; Jacobs, M.

    1997-01-01

    UV-irradiated kanamycin-resistant Lycopersicon esculentum leaf protoplasts were fused with wild-type Nicotiana plumbaginifolia leaf protoplasts. Hybrid calli were recovered after selection in kanamycin-containing medium and subsequently regenerated. Cytological analysis of these regenerants showed that several (2–4) tomato chromosomes, or chromosome fragments, were present in addition to a polyploid Nicotiana genome complement. All lines tested had neomycin phosphotransferase (NPTII) activity and the presence of the kanamycin gene was shown by Southern blotting. In two cases a different hybridization profile for the kanamycin gene, compared to the tomato donor partner, was observed, suggesting the occurence of intergenomic recombination events. The hybrid nature of the regenerants was further confirmed by Southernblotting experiments using either a ribosomal DNA sequence or a tomato-specific repeat as probes. The hybrids were partially fertile and some progeny could be obtained. Our results demonstrate that UV irradiation is a valuable alternative for asymmetric cell-hybridization experiments. (author)

  7. NaStEP: a proteinase inhibitor essential to self-incompatibility and a positive regulator of HT-B stability in Nicotiana alata pollen tubes.

    Science.gov (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown.

  8. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants.

    Directory of Open Access Journals (Sweden)

    Youngjoo Oh

    Full Text Available Jasmonic acid is an important regulator of plant growth, development and defense. The jasmonate-ZIM domain (JAZ proteins are key regulators in jasmonate signaling ubiquitously present in flowering plants but their functional annotation remains largely incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana attenuata, and initiated systematic functional characterization of these proteins by reverse genetic approaches. In this report, Nicotiana attenuata plants silenced in the expression of NaJAZd (irJAZd by RNA interference were used to characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe strong defense-related phenotypes, such as altered herbivore performance or the constitutive accumulation of defense-related secondary metabolites in irJAZd plants compared to wild type plants, both in the glasshouse and the native habitat of Nicotiana attenuata in the Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules than did wild type plants as a result of increased flower abscission in later stages of flower development. The early- and mid-developmental stages of irJAZd flowers had reduced levels of jasmonic acid and jasmonoyl-L-isoleucine, while fully open flowers had normal levels, but these were impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants were shown to have strong flower abscission phenotypes and contained lower NECTARIN 1 transcript levels, phenotypes which are copied in irJAZd plants. We propose that the NaJAZd protein is required to counteract flower abscission, possibly by regulating jasmonic acid and jasmonoyl-L-isoleucine levels and/or expression of NaMYB305 gene in Nicotiana attenuata flowers. This novel insight into the function of JAZ proteins in flower and seed development highlights the diversity of functions

  9. Identification of a Nicotiana plumbaginifolia plasma membrane H(+)-ATPase gene expressed in the pollen tube.

    Science.gov (United States)

    Lefebvre, Benoit; Arango, Miguel; Oufattole, Mohammed; Crouzet, Jérôme; Purnelle, Bénédicte; Boutry, Marc

    2005-08-01

    In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.

  10. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  11. Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications.

    Science.gov (United States)

    Rice, J Hollis; Mundell, Richard E; Millwood, Reginald J; Chambers, Orlando D; Stewart, C Neal; Davies, H Maelor

    2013-08-06

    The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1Nicotiana hybrids (Nicotiana tabacum × Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturing. We genetically tagged hybrids with green fluorescent protein (GFP), which was used as a visual marker to enable gene flow tracking and quantification for field and greenhouse studies. GFP was used as a useful proxy for pharmaceutical transgenes. Analysis of DNA content revealed significant genomic downsizing of the hybrid relative to that of N. tabacum. Hybrid pollen was capable of germination in vitro, albeit with a very low frequency and with significant differences between plants. In two field experiments, one each in Tennessee and Kentucky, we detected outcrossing at only one location (Tennessee) at 1.4%. Additionally, from 50 hybrid plants at each field site, formation of 84 and 16 seed was observed, respectively. Similar conclusions about hybrid fertility were drawn from greenhouse crosses. In terms of above-ground biomass, the hybrid yield was not significantly different than that of N. tabacum in the field. N. tabacum × N. glauca hybrids show potential to contribute to a bioconfinement- and biomanufacturing host system. Hybrids exhibit extremely low fertility with no difference of green biomass yields relative to N. tabacum. In addition, hybrids are morphologically distinguishable from tobacco allowing for identity preservation. This hybrid system for biomanufacturing would optimally be used where N. glauca is not present and in physical isolation of N. tabacum production to provide total bioconfinement.

  12. Identification of a Xylogalacturonan Xylosyltransferase Involved in Pectin Biosynthesis in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Markus; Sorensen, Susanne Oxenboll; Harholt, Jesper; Geshi, Naomi; Sakuragi, Yumiko; Moller, Isabel; Zandleven, Joris; Bernal, Adriana J.; Jensen, Niels Bjerg; Sorensen, Charlotte; Jensen, Jacob K.; Beldman, Gerrit; Willats, William G.T.; Scheller, Henrik

    2009-08-19

    Xylogalacturonan (XGA) is a class of pectic polysaccharide found in plant cell walls. The Arabidopsis thaliana locus At5g33290 encodes a predicted Type II membrane protein, and insertion mutants of the At5g33290 locus had decreased cell wall xylose. Immunological studies, enzymatic extraction of polysaccharides, monosaccharide linkage analysis, and oligosaccharide mass profiling were employed to identify the affected cell wall polymer. Pectic XGA was reduced to much lower levels in mutant than in wild-type leaves, indicating a role of At5g33290 in XGA biosynthesis. The mutated gene was designated xylogalacturonan deficient1 (xgd1). Transformation of the xgd1-1 mutant with the wild-type gene restored XGA to wild-type levels. XGD1 protein heterologously expressed in Nicotiana benthamiana catalyzed the transfer of xylose from UDP-xylose onto oligogalacturonides and endogenous acceptors. The products formed could be hydrolyzed with an XGA-specific hydrolase. These results confirm that the XGD1 protein is a XGA xylosyltransferase. The protein was shown by expression of a fluorescent fusion protein in N. benthamiana to be localized in the Golgi vesicles as expected for a glycosyltransferase involved in pectin biosynthesis.

  13. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing.

    Science.gov (United States)

    Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J

    2014-02-13

    Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  15. Optimization of engineered production of the glucoraphanin precursor dihomomethionine in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Crocoll, Christoph; Mirza, Nadia Muhammad Akram; Reichelt, Michael

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our...

  16. Characterization of cDNA for PMT: a Partial Nicotine Biosynthesis-Related Gene Isolated from Indonesian Local Tobacco (Nicotiana tabacum cv. Sindoro1

    Directory of Open Access Journals (Sweden)

    SESANTI BASUKI

    2013-12-01

    Full Text Available Nicotine is the major alkaloid compound in cultivated tobacco (Nicotiana tabacum that could potentially be converted into carcinogenic compound (nor-nicotine. The PMT gene encoding putrescine N-methyltransferase (PMT is one of the two key genes that play a prominent role in nicotine biosynthesis. The aimed of this study was to isolate and characterize the cDNA sequence originated from Indonesian local tobacco cv. Sindoro1 (Ntpmt_Sindoro1. The results showed that the Ntpmt_Sindoro1 was 1124 bp in length. This cDNA fragment encodes for 374 amino acid residues. The predicted polypeptide from the cDNA is a hidrophilic protein, and has a predicted molecular weight of 40.95 kDa. The predicted amino acids sequence also showed high similarity to the PMT gene product Nicotiana sp. available in the GenBank data base. The amino acid sequences also exert conserved residues specifically exhibited only by PMT gene originated from N. tabacum. Clustering analysis revealed that Ntpmt_Sindoro1 belongs to the same clade as the PMT3 gene, a member of the N. tabacum PMT gene family. The Ntpmt_Sindoro1 cDNA sequence covering exon1-exon8 of the PMT gene fragment has been registered in the GenBank data base, under the accession number JX978277.

  17. Phylogenetic analysis of six WRKY transcription factor loci across the spiny cocosoid palm subtribes Bactridinae and Elaeidinae (Areceaceae, Cocoseae),and comparison of several gene tree/species tree reconciliation approaches

    Science.gov (United States)

    The Cocoseae is one of 13 tribes of Arecaceae subfamily Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera, the coconut, and African oil palm (Elaeis guineensis). Using seven single copy WRKY transcription factor g...

  18. Evolution of rDNA in Nicotiana allopolyploids: A potential link between rDNa homogenization and epigenetics

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Nešpor Dadejová, Martina; Lim, Y.K.; Chase, M.W.; Clarkson, J.J.; Knapp, S.; Leitch, A.R.

    2008-01-01

    Roč. 101, č. 6 (2008), s. 815-823 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA521/07/0116 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : rDNA * allopolyploidy * evolution-Nicotiana Subject RIV: BO - Biophysics Impact factor: 2.755, year: 2008

  19. Purification of nitrate reductase from Nicotiana plumbaginifolia by affinity chromatography using 5'AMP-sepharose and monoclonal antibodies.

    Science.gov (United States)

    Moureaux, T; Leydecker, M T; Meyer, C

    1989-02-15

    Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).

  20. N-glycan engineering of a plant-produced anti-CD20-hIL-2 immunocytokine significantly enhances its effector functions.

    Science.gov (United States)

    Marusic, Carla; Pioli, Claudio; Stelter, Szymon; Novelli, Flavia; Lonoce, Chiara; Morrocchi, Elena; Benvenuto, Eugenio; Salzano, Anna Maria; Scaloni, Andrea; Donini, Marcello

    2018-03-01

    Anti-CD20 recombinant antibodies are among the most promising therapeutics for the treatment of B-cell malignancies such as non-Hodgkin lymphomas. We recently demonstrated that an immunocytokine (2B8-Fc-hIL2), obtained by fusing an anti-CD20 scFv-Fc antibody derived from C2B8 mAb (rituximab) to the human interleukin 2 (hIL-2), can be efficiently produced in Nicotiana benthamiana plants. The purified immunocytokine (IC) bearing a typical plant protein N-glycosylation profile showed a CD20 binding activity comparable to that of rituximab and was efficient in eliciting antibody-dependent cell-mediated cytotoxicity (ADCC) of human PBMC against Daudi cells, indicating its fuctional integrity. In this work, the immunocytokine devoid of the typical xylose/fucose N-glycosylation plant signature (IC-ΔXF) and the corresponding scFv-Fc-ΔXF antibody not fused to the cytokine, were obtained in a glyco-engineered ΔXylT/FucT N. benthamiana line. Purification yields from agroinfiltrated plants amounted to 20-35 mg/kg of leaf fresh weight. When assayed for interaction with FcγRI and FcγRIIIa, IC-ΔXF exhibited significantly enhanced binding affinities if compared to the counterpart bearing the typical plant protein N-glycosylation profile (IC) and to rituximab. The glyco-engineered recombinant molecules also exhibited a strongly improved ADCC and complement-dependent cytotoxicity (CDC). Notably, our results demonstrate a reduced C1q binding of xylose/fucose carrying IC and scFv-Fc compared to versions that lack these sugar moieties. These results demonstrate that specific N-glycosylation alterations in recombinant products can dramatically affect the effector functions of the immunocytokine, resulting in an overall improvement of the biological functions and consequently of the therapeutic potential. © 2017 Wiley Periodicals, Inc.

  1. De invloed van auxine, tryptofaan en enige anorganische zouten op de infectie van Nicotiana glutinosa met tabaksmozaiekvirus

    NARCIS (Netherlands)

    Liem, A.S.N.

    1963-01-01

    The number of necrotic spots arising on leaves of Nicotiana glutinosa after inoculation with tobacco mosaic virus was less than in controls without additives, if the water in which the leaves floated hadβ-indoleacetic acid (IAA),α-naphthylacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D)

  2. In vitro and in vivo activities of eugenol against tobacco black shank caused by Phytophthora nicotianae.

    Science.gov (United States)

    Jing, Changliang; Gou, Jianyu; Han, Xiaobin; Wu, Qian; Zhang, Chengsheng

    2017-10-01

    Phytophthora nicotianae causes serious black shank disease in tobacco. Syringa oblata essential oil and its main components were evaluated to develop an effective and environmentally friendly biocontrol agent. Eugenol, which exhibited the strongest activity, was intensively investigated in vitro and in vivo. The mycelial growth of P. nicotianae was inhibited by eugenol at a minimum inhibitory concentration of 200μgmL -1 , and inhibition occurred in a dose-dependent manner. Extracellular pH and extracellular conductivity results indicated that eugenol increased membrane permeability. Flow cytometry and fluorescent staining results further showed that eugenol disrupted mycelial membranes but did not affect spore membrane integrity. The in vivo results confirmed that treatment of tobacco with various concentrations of eugenol formulations reduced disease incidence and better controlled against the disease. Our results suggested that the ability of eugenol to control tobacco black shank depended on its ability to damage mycelial membranes and that eugenol formulations have potential as an eco-friendly antifungal agent for controlling tobacco blank shank. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Suitability of Nicotiana tabacum 'Bel W3' for biomonitoring ozone in Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sant' Anna, Silvia M.R.; Esposito, Marisia P.; Domingos, Marisa [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Souza, Silvia R. [Instituto de Botanica, Secao de Ecologia, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)], E-mail: souzasrd@terra.com.br

    2008-01-15

    Nicotiana tabacum 'Bel W3' is a widely used sensitive bioindicator for ambient ozone, but it is rarely used in tropical countries. Our goal was to determine the suitability of this plant for biomonitoring ozone in the city of Sao Paulo by evaluating the relationships between leaf necroses and ozone under field conditions and measurements of chlorophyll a fluorescence and antioxidants in plants exposed to different concentrations of ozone in closed chambers. While a weak linear relationship between leaf injury and ozone concentrations (R{sup 2} = 0.10) was determined in the field, a strong linear relationship was observed in the chamber experiments. Maximum leaf injury was observed in plants submitted to 40 ppb, which coincided with a significant decrease in fluorescence and total ascorbic acid. The relationship between leaf damage observed in the field and ozone was improved when the concentrations were limited to 40 ppb (R{sup 2} = 0.28). - Nicotiana tabacum 'Bel W3' is suitable for indicating low ozone levels in Brazil.

  4. Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis

    Directory of Open Access Journals (Sweden)

    Hai-Lei Wei

    2018-05-01

    Full Text Available Summary: The bacterial pathogen Pseudomonas syringae pv. tomato DC3000 suppresses the two-tiered innate immune system of Nicotiana benthamiana and other plants by injecting a complex repertoire of type III secretion effector (T3E proteins. Effectorless polymutant DC3000D36E was used with a modularized system for native delivery of the 29 DC3000 T3Es singly and in pairs. Assays of the performance of this T3E library in N. benthamiana leaves revealed a matrix of T3E interplay, with six T3Es eliciting death and eight others variously suppressing the death activity of the six. The T3E library was also interrogated for effects on DC3000D36E elicitation of a reactive oxygen species burst, for growth in planta, and for T3Es that reversed these effects. Pseudomonas fluorescens and Agrobacterium tumefaciens heterologous delivery systems yielded notably different sets of death-T3Es. The DC3000D36E T3E library system highlights the importance of 13 T3Es and their interplay in interactions with N. benthamiana. : Wei et al. used a Pseudomonas syringae strain lacking all known type III effectors with a modularized library expressing the 29 active effectors in the strain’s native repertoire, individually and in pairs, to comprehensively determine effector actions and interplay in inducing and suppressing responses associated with plant pathogenesis and immunity. Keywords: effector-triggered-immunity, pattern-triggered-immunity, Hop proteins, plant immunity, mini-Tn7

  5. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    Science.gov (United States)

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. An arabinoxyloglucan isolated from the midrib of the leaves of Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Eda, S; Kato, K

    1978-01-01

    The structure of an arabinoxyloglucan, separated from the hemicellulosic polysaccharides of the midrib of the leaves of Nicotiana tabacum, was investigated by methylation analyses before and after mild acid hydrolysis, acetolysis and cellulase-degradation. The arabinoxyloglucan consists of L-arabinose, D-xylose and D-glucose in a molar ratio of 13:33:54, and has a backbone of ..beta..-(1..-->..4)-linked D-glucopyranosyl residues. Some of the glucopyranosyl residues are attached at the 6 position by single ..cap alpha..-D-xylopyranosyl and ..cap alpha..-L-arabinofuranosyl-(1..-->..2)-..cap alpha..-D-xylopyranosyl side chains.

  7. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    International Nuclear Information System (INIS)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-01-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR - nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second 14 CO 2 pulse, the total 14 C incorporation of the mutant leaves was approximately 20 5 of that of the control. The 14 C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second 14 CO 2 pulse followed by a 60 second chase with normal CO 2 , 14 C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus

  8. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    Energy Technology Data Exchange (ETDEWEB)

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  9. Anti-sense expression of putrescine N-methyltransferase confirms defensive role of nicotine in Nicotiana sylvestris against Manduca sexta

    NARCIS (Netherlands)

    Voelckel, C.; Krugel, T.; Gase, K.; Heidrich, N.; Van Dam, N.M.; Winz, R.; Baldwin, I.T.

    2001-01-01

    Several lines of evidence support the defensive function of nicotine production in the Nicotiana genus against a range of herbivores, but the evidence is largely correlative. To suppress nicotine production in planta and to test its defensive function, we expressed DNA of putrescine N-methyl

  10. Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants

    NARCIS (Netherlands)

    Moravcikova, J.; Matusikova, I.; Libantova, J.; Bauer, M.; Mlynarova, L.

    2004-01-01

    The genes encoding for a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase were co-introduced into Slovak potato (Solanum tuberosum L.) breeding line 116/86 using Agrobacterium tumefaciens. For both transgenes the number of integrated copies and level of RNA expression

  11. Spontaneous and induced loss of chromosomes in slow-growing somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia

    NARCIS (Netherlands)

    Tempelaar, MJ; Drenth - Diephuis, L.J.; SAAT, TAWM; Jacobsen, E.

    Rate and extent of spontaneous and induced chromosome loss have been determined at the callus level of somatic hybrids of mutants of Solanum tuberosum and Nicotiana plumbaginifolia. AEC (amino ethyl cystein) resistance in potato and Nitrate-Reductase deficiency in N. plumbaginifolia have been used

  12. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia; van Dijk, Aalt D J; Scaffidi, Adrian; Flematti, Gavin R.; Hofmann, Manuel; Charnikhova, Tatsiana; Verstappen, Francel; Hepworth, Jo; van der Krol, Sander; Leyser, Ottoline; Smith, Steven M.; Zwanenburg, Binne; Al-Babili, Salim; Ruyter-Spira, Carolien; Bouwmeester, Harro J.

    2014-01-01

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  13. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  14. An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity.

    Science.gov (United States)

    Omarov, Rustem T; Ciomperlik, Jessica; Scholthof, Herman B

    2016-03-01

    Infection of Nicotiana benthamiana plants with Tomato bushy stunt virus (TBSV) mutants compromised for silencing suppression induces formation of an antiviral RISC (vRISC) that can be isolated using chromatography procedures. The isolated vRISC sequence-specifically degrades TBSV RNA in vitro, its activity can be down-regulated by removing siRNAs, and re-stimulated by exogenous supply of siRNAs. vRISC is most effective at hydrolyzing the ~4.8kb genomic RNA, but less so for a ~2.2kb TBSV subgenomic mRNA (sgRNA1), while the 3' co-terminal sgRNA2 of ~0.9kb appears insensitive to vRISC cleavage. Moreover, experiments with in vitro generated 5' co-terminal viral transcripts show that RNAs of ~2.7kb are efficiently cleaved while those of ~1.1kb or shorter are unaffected. The isolated antiviral ribonuclease complex fails to degrade ~0.4kb defective interfering RNAs (DIs) in vitro, agreeing with findings that in plants DIs are not targeted by silencing. Copyright © 2016. Published by Elsevier Inc.

  15. Lupines, poison-hemlock and Nicotiana spp: toxicity and teratogenicity in livestock.

    Science.gov (United States)

    Panter, K E; James, L F; Gardner, D R

    1999-02-01

    Many species of lupines contain quinolizidine or piperidine alkaloids known to be toxic or teratogenic to livestock. Poison-hemlock (Conium maculatum) and Nicotiana spp. including N. tabacum and N. glauca contain toxic and teratogenic piperidine alkaloids. The toxic and teratogenic effects from these plant species have distinct similarities including maternal muscular weakness and ataxia and fetal contracture-type skeletal defects and cleft palate. It is believed that the mechanism of action of the piperidine and quinolizidine alkaloid-induced teratogenesis is the same; however, there are some differences in incidence, susceptible gestational periods, and severity between livestock species. Wildlife species have also been poisoned after eating poison-hemlock but no terata have been reported. The most widespread problem for livestock producers in recent times has been lupine-induced "crooked calf disease." Crooked calf disease is characterized as skeletal contracture-type malformations and occasional cleft palate in calves after maternal ingestion of lupines containing the quinolizidine alkaloid anagyrine during gestation days 40-100. Similar malformations have been induced in cattle and goats with lupines containing the piperidine alkaloids ammodendrine, N-methyl ammodendrine, and N-acetyl hystrine and in cattle, sheep, goats, and pigs with poison-hemlock containing predominantly coniine or gamma-coniceine and N. glauca containing anabasine. Toxic and teratogenic effects have been linked to structural aspects of these alkaloids, and the mechanism of action is believed to be associated with an alkaloid-induced inhibition of fetal movement during specific gestational periods. This review presents a historical perspective, description and distribution of lupines, poison-hemlock and Nicotiana spp., toxic and teratogenic effects and management information to reduce losses.

  16. Identification, isolation, and N-terminal sequencing of style glycoproteins associated with self-incompatibility in Nicotiana alata.

    Science.gov (United States)

    Jahnen, W; Batterham, M P; Clarke, A E; Moritz, R L; Simpson, R J

    1989-05-01

    S-Gene-associated glycoproteins (S-glycoproteins) from styles of Nicotiana alata, identified by non-equilibrium two-dimensional electrophoresis, were purified by cation exchange fast protein liquid chromatography with yields of 0.5 to 8 micrograms of protein per style, depending on the S-genotype of the plant. The method relies on the highly basic nature of the S-glycoproteins. The elution profiles of the different S-glycoproteins from the fast protein liquid chromatography column were characteristic of each S-glycoprotein, and could be used to establish the S-genotype of plants in outbreeding populations. In all cases, the S-genotype predicted from the style protein profile corresponded to that predicted from DNA gel blot analysis using S-allele-specific DNA probes and to that established by conventional breeding tests. Amino-terminal sequences of five purified S-glycoproteins showed a high degree of homology with the previously published sequences of N. alata and Lycopersicon esculentum S-glycoproteins.

  17. NaStEP: A Proteinase Inhibitor Essential to Self-Incompatibility and a Positive Regulator of HT-B Stability in Nicotiana alata Pollen Tubes1[W][OA

    Science.gov (United States)

    Jiménez-Durán, Karina; McClure, Bruce; García-Campusano, Florencia; Rodríguez-Sotres, Rogelio; Cisneros, Jesús; Busot, Grethel; Cruz-García, Felipe

    2013-01-01

    In Solanaceae, the self-incompatibility S-RNase and S-locus F-box interactions define self-pollen recognition and rejection in an S-specific manner. This interaction triggers a cascade of events involving other gene products unlinked to the S-locus that are crucial to the self-incompatibility response. To date, two essential pistil-modifier genes, 120K and High Top-Band (HT-B), have been identified in Nicotiana species. However, biochemistry and genetics indicate that additional modifier genes are required. We recently reported a Kunitz-type proteinase inhibitor, named NaStEP (for Nicotiana alata Stigma-Expressed Protein), that is highly expressed in the stigmas of self-incompatible Nicotiana species. Here, we report the proteinase inhibitor activity of NaStEP. NaStEP is taken up by both compatible and incompatible pollen tubes, but its suppression in Nicotiana spp. transgenic plants disrupts S-specific pollen rejection; therefore, NaStEP is a novel pistil-modifier gene. Furthermore, HT-B levels within the pollen tubes are reduced when NaStEP-suppressed pistils are pollinated with either compatible or incompatible pollen. In wild-type self-incompatible N. alata, in contrast, HT-B degradation occurs preferentially in compatible pollinations. Taken together, these data show that the presence of NaStEP is required for the stability of HT-B inside pollen tubes during the rejection response, but the underlying mechanism is currently unknown. PMID:23150644

  18. Mutability of the self-incompatibility locus and identification of the S-bearing chromosome in Nicotiana alata

    International Nuclear Information System (INIS)

    Gastel, A.J.G. van.

    1976-01-01

    γ rays, X rays, fast neutrons and ethyl methanesulfonate (EMS) were used for inducing mutations at the self-incompatibility locus of Nicotiana alata. Chronic gamma irradiation and EMS treatment neither induced self-compatability mutations nor led to changes from one S allele to another. X rays and fast neutrons induced many self-compatibility mutations, but did not generate new self-incompatibility alleles. (Auth.)

  19. The role of Nicotiana gluca Graham (paraguayan herbs as an adjuvant in immunomodulation of Newcastle disease vaccine for broilers Estudo da ação de Nicotiana glauca Graham (erva paraguaia como coadjuvante em vacina contra a doença de Newcastle em frangos de corte

    Directory of Open Access Journals (Sweden)

    Fabiane Pereira Gentilini

    2008-07-01

    Full Text Available The Nicotiana glauca is a native plant species from Argentina, but found all over South América, being used against headaches, rheumatism, injuries, ulcers, and so on. Researchers have considered it as having immunomodulation effect. This study was conducted to investigate the use of a aqueous extract of Nicotiana glauca Graham as an immunomodulator (adjuvant of a Newcastle disease vaccine.. A total of 56 broilers were distributed into 4 experimental groups. Each one of them received 3 dosages of this vaccine with or without the addition of different concentrations of the extract Using hemmoaglutination inhibition techniques , the results have shown differences (P<0.05 in the third sera collection. An increase in the antibody titer with the inclusion of 5 mg/dosage of the extract (Treatment 3 as compared to 1 mg/dosage (Treatment 2 and 10 mg/dosage of the extract (Treatment 4 was observed, However, birds from Treatment 3 did not differ (P> 0.05 from Treatment 1. These results indicated that further investigations are required, including the use of cytotoxicity tests in vitro, to evaluate the immunomodulation effect of this extract.

     

    KEY WORDS: Immunomodulation effect, Nicotiana glauca Graham, vaccine.

    A Nicotiana glauca Graham é uma espécie nativa da Argentina, bem distribuída na América do Sul, sendo empregada, popularmente, contra dores de cabeça, dores reumáticas, cicatrização de feridas e úlceras, entre outros. Pesquisas têm avaliado a sua ação na potencialização da resposta imune. Assim, com este estudo, buscou-se avaliar a ação de um extrato aquoso de Nicotiana glauca Graham como coadjuvante imunológico em uma vacina contra a doença de Newcastle (DNC. Utilizaram-se 56 frangos de corte, distribuídos em quatro grupos experimentais, que receberam tr

  20. Effect of gamma-radiation on callus initiation and oraganogenesis in the tissue culture of Nicotiana tabaccum L

    International Nuclear Information System (INIS)

    Shin, S. H.; Kim, J. G.; Song, H. S.

    2004-01-01

    It is generally agreed that ionizing radiations stimulate cell division, growth and development in various organisms including animals and plants. Differentiating tissues are the most sensitive to radiation. The present experiment was carried out to investigate the effects of ionizing radiation on callus initiation and organogenesis from the stem in the culture of Nicotiana tabaccum L. cv. When the stem segments were cultured on a Murashige and Skoog (MS) medium with 2 mg/L kinetin, with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), with 2 mg/L kinetin and 1 mg/L 2,4-D, the shoots and callus were differentiated 14 days after cultivation. Callus was especially formed on the MS medium with 2,4-D and/or kinetin and the formation was promoted by 1 Gy and 5 Gy of gamma radiation. The formation of the shoot clusters on the MS medium with 2 mg/L kinetin were prominent in the 5 Gy-irradiated groups. It is concluded that that gamma radiation enhanced the callus initiation and organogenesis in the tissue culture of Nicotiana tabaccum L

  1. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, H.; Van Camp, W.; Van Montagu, M.; Inze, D. [Laboratoire Associe de l`Institut National de la Recherche Agronomique (France); Langebartels, C.; Sandermann, H. Jr. [Universiteit Gent (Belgium)]|[Institut fuer Biochemische Pflanzenpathologie, Oberschleissheim (Germany)

    1994-11-01

    We have studied the expression of antioxidant genes in response to near ambient conditions of O{sub 3}, SO{sub 2}, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O{sub 3}, SO{sub 2}, and UV-B on the antioxidant genes are very similar, although the response to SO{sub 2} is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O{sub 3}, SO{sub 2}, and UV-B in Nicotiana. 57 refs., 4 figs.

  2. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA. However, the existence of geminivirus related DNA (GRD integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported date for the split is between 20 and 30 MYA--a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.

  3. Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of phytoremediation of polychlorinated biphenyls

    Czech Academy of Sciences Publication Activity Database

    Nováková, Martina; Macková, M.; Antošová, Z.; Viktorová, J.; Szekeres, M.; Demnerová, K.; Macek, Tomáš

    2010-01-01

    Roč. 1, č. 6 (2010), s. 419-423 ISSN 1949-1018 R&D Projects: GA MŠk 1M06030 Grant - others:GA MŠk(CZ) ME09024 Institutional research plan: CEZ:AV0Z40550506 Keywords : phytoremediation * transgenic plant * Nicotiana tabacum * bphC Subject RIV: EI - Biotechnology ; Bionics

  4. Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells.

    Science.gov (United States)

    Vatsa, Parul; Chiltz, Annick; Luini, Estelle; Vandelle, Elodie; Pugin, Alain; Roblin, Gabriel

    2011-07-01

    The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca²⁺](cyt) which intensity depends on ergosterol concentration in the range 0.002-10 μM. Among sterols, this calcium mobilization was specific for ergosterol and, ergosterol-induced pH and [Ca²⁺](cyt) changes were specifically desensitized after two subsequent applications of ergosterol. Specific modulators allowed elucidating some events in the signalling pathway triggered by ergosterol. The action of BAPTA, LaCl₃, nifedipine, verapamil, neomycin, U73122 and ruthenium red suggested that the first phase was linked to calcium influx from external medium which subsequently triggered the second phase linked to calcium release from internal stores. The calcium influx and the [Ca²⁺](cyt) increase depended on upstream protein phosphorylation. The extracellular alkalinization and ROS production depended on calcium influx but, the ergosterol-induced MAPK activation was calcium-independent. ROS were not involved in cytosolic calcium rise as described in other models, indicating that ROS do not systematically participate in the amplification of calcium signalling. Interestingly, ergosterol-induced ROS production is not linked to cell death and ergosterol does not induce any calcium elevation in the nucleus. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Differential Expression of Tomato Spotted Wilt Virus-Derived Viral Small RNAs in Infected Commercial and Experimental Host Plants

    Science.gov (United States)

    Mitter, Neena; Koundal, Vikas; Williams, Sarah; Pappu, Hanu

    2013-01-01

    Background Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. Principal Findings Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. Significance Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral

  6. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants.

    Directory of Open Access Journals (Sweden)

    Neena Mitter

    Full Text Available BACKGROUND: Viral small RNAs (vsiRNAs in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV, a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide. PRINCIPAL FINDINGS: Tomato spotted wilt virus (TSWV-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1 higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV. SIGNIFICANCE: Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsi

  7. Changes in cytokinins are sufficient to alter developmental patterns of defense metabolites in Nicotiana attenuata

    Czech Academy of Sciences Publication Activity Database

    Bruetting, C.; Schaefer, N.; Vaňková, Radomíra; Gase, K.; Baldwin, I.T.; Meldau, S.

    2017-01-01

    Roč. 89, č. 1 (2017), s. 15-30 ISSN 0960-7412 R&D Projects: GA MŠk LD14120 Institutional support: RVO:61389030 Keywords : proteinase-inhibitor production * plant defense * arabidopsis-thaliana * leaf senescence * insect interactions * tobacco plants * jasmonic acid * manduca-sexta * cis-zeatin * responses * cytokinins * optimal defense * herbivores * inducible defense * Nicotiana attenuata * Manduca sexta * plant development * immunosenescence * phytohormones Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  8. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    Science.gov (United States)

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  9. Supplementary Material for: CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir; Abulfaraj, Aala A.; Idris, Ali; Ali, Shakila; Tashkandi, Manal; Mahfouz, Magdy

    2015-01-01

    Abstract Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  10. CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir

    2015-11-11

    Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  11. Leaf curl diseases of two solanaceous species in Southwest Arabia are caused by a monopartite begomovirus evolutionarily most closely related to a species from the Nile Basin and unique suite of betasatellites

    KAUST Repository

    Idris, Ali

    2012-10-01

    The complete genome of 2780 bases was amplified using rolling circle amplification, and cloned, and sequenced for two distinct strains of the monopartite begomovirus Tomato leaf curl Sudan virus (ToLCSDV). The two strains shared 86-91% identity with the previously described ToLCSDV from the Nile Basin, and 90-91% identity with one another. One strain was cloned from symptomatic tomato plants from Tihamah (ToLCSDV-YE[YE:Tih:05]) while the other was cloned from symptomatic tobacco plants collected from Wadi Hadramaut (ToLCSDV-YE[YE:Had:89]). A distinct full-length betasatellite molecule (1352 bases) was cloned from the respective field-infected tomato and tobacco plants. Agro-inoculation of tomato and Nicotiana benthamiana plants with cloned partial tandem repeats of ToLCSDV-YE[YE:Tih11:05]) and the associated betasatellite, Tomato leaf curl Yemen betasatellite (ToLCYEB-[Tih:tom:137:05]), resulted in the reproduction of leaf curl disease symptoms in test plants like those observed in the field-infected plants. The betasatellite contributed to symptom severity in N. benthamiana test plants when it was co-inoculated with ToLCSDV-YE, compared to the milder symptoms that were observed in tobacco plants infected with the helper virus alone. © 2012 Elsevier B.V.

  12. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  13. Leaf curl diseases of two solanaceous species in Southwest Arabia are caused by a monopartite begomovirus evolutionarily most closely related to a species from the Nile Basin and unique suite of betasatellites

    KAUST Repository

    Idris, Ali; Abdullah, N.; Brown, Judith K.

    2012-01-01

    The complete genome of 2780 bases was amplified using rolling circle amplification, and cloned, and sequenced for two distinct strains of the monopartite begomovirus Tomato leaf curl Sudan virus (ToLCSDV). The two strains shared 86-91% identity with the previously described ToLCSDV from the Nile Basin, and 90-91% identity with one another. One strain was cloned from symptomatic tomato plants from Tihamah (ToLCSDV-YE[YE:Tih:05]) while the other was cloned from symptomatic tobacco plants collected from Wadi Hadramaut (ToLCSDV-YE[YE:Had:89]). A distinct full-length betasatellite molecule (1352 bases) was cloned from the respective field-infected tomato and tobacco plants. Agro-inoculation of tomato and Nicotiana benthamiana plants with cloned partial tandem repeats of ToLCSDV-YE[YE:Tih11:05]) and the associated betasatellite, Tomato leaf curl Yemen betasatellite (ToLCYEB-[Tih:tom:137:05]), resulted in the reproduction of leaf curl disease symptoms in test plants like those observed in the field-infected plants. The betasatellite contributed to symptom severity in N. benthamiana test plants when it was co-inoculated with ToLCSDV-YE, compared to the milder symptoms that were observed in tobacco plants infected with the helper virus alone. © 2012 Elsevier B.V.

  14. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.).

    Science.gov (United States)

    Willekens, H; Langebartels, C; Tiré, C; Van Montagu, M; Inzé, D; Van Camp, W

    1994-10-25

    We have analyzed the expression of three catalase (Cat; EC 1.11.1.6) genes from Nicotiana plumbaginifolia by means of RNA blot and in situ hybridizations. Our data demonstrate that the expression of each catalase is associated with a particular H2O2-producing process. Cat1 appears to be specifically involved in the scavenging of photorespiratory H2O2 and is under control of a circadian rhythm, Cat2 is uniformly expressed in different organs with a cellular preference for vascular tissues, and the expression profile of Cat3 points to a role in glyoxysomal processes. Differential expression of these catalases is also manifested in response to temperature changes. DNA sequence comparison with other dicotyledonous catalases led to the identification of at least three distinct classes, which indicates that the functional organization of catalases is generally conserved in dicotyledonous plants.

  15. Arabidopsis Lectin Receptor Kinases LecRK-IX.1 and LecRK-IX.2 Are Functional Analogs in Regulating Phytophthora Resistance and Plant Cell Death.

    Science.gov (United States)

    Wang, Yan; Cordewener, Jan H G; America, Antoine H P; Shan, Weixing; Bouwmeester, Klaas; Govers, Francine

    2015-09-01

    L-type lectin receptor kinases (LecRK) are potential immune receptors. Here, we characterized two closely-related Arabidopsis LecRK, LecRK-IX.1 and LecRK-IX.2, of which T-DNA insertion mutants showed compromised resistance to Phytophthora brassicae and Phytophthora capsici, with double mutants showing additive susceptibility. Overexpression of LecRK-IX.1 or LecRK-IX.2 in Arabidopsis and transient expression in Nicotiana benthamiana increased Phytophthora resistance but also induced cell death. Phytophthora resistance required both the lectin domain and kinase activity, but for cell death, the lectin domain was not needed. Silencing of the two closely related mitogen-activated protein kinase genes NbSIPK and NbNTF4 in N. benthamiana completely abolished LecRK-IX.1-induced cell death but not Phytophthora resistance. Liquid chromatography-mass spectrometry analysis of protein complexes coimmunoprecipitated in planta with LecRK-IX.1 or LecRK-IX.2 as bait, resulted in the identification of the N. benthamiana ABC transporter NbPDR1 as a potential interactor of both LecRK. The closest homolog of NbPDR1 in Arabidopsis is ABCG40, and coimmunoprecipitation experiments showed that ABCG40 associates with LecRK-IX.1 and LecRK-IX.2 in planta. Similar to the LecRK mutants, ABCG40 mutants showed compromised Phytophthora resistance. This study shows that LecRK-IX.1 and LecRK-IX.2 are Phytophthora resistance components that function independent of each other and independent of the cell-death phenotype. They both interact with the same ABC transporter, suggesting that they exploit similar signal transduction pathways.

  16. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors.

    Science.gov (United States)

    Wei, Hai-Lei; Collmer, Alan

    2017-12-25

    Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  17. Ageratum enation virus—A Begomovirus of Weeds with the Potential to Infect Crops

    Directory of Open Access Journals (Sweden)

    Muhammad Tahir

    2015-02-01

    Full Text Available Samples of two Ageratum conyzoides, one Sonchus oleraceus and one turnip (Brassica rapa var. rapa exhibiting virus-like symptoms were collected from Pakistan and Nepal. Full-length begomovirus clones were obtained from the four plant samples and betasatellite clones from three of these. The begomovirus sequences were shown to be isolates of Ageratum enation virus (AEV with greater than 89.1% nucleotide sequence identity to the 26 AEV sequences available in the databases. The three betasatellite sequences were shown to be isolates of Ageratum yellow leaf curl betasatellite (AYLCB with greater than 90% identity to the 18 AYLCB sequences available in the databases. The AEV sequences were shown to fall into two distinct strains, for which the names Nepal (consisting of isolates from Nepal, India, and Pakistan—including the isolates identified here and India (isolates occurring only in India strains are proposed. For the clones obtained from two AEV isolates, with their AYLCB, infectivity was shown by Agrobacterium-mediated inoculation to Nicotiana benthamiana, N. tabacum, Solanum lycopersicon and A. conyzoides. N. benthamiana plants infected with AEV alone or betasatellite alone showed no symptoms. N. benthamiana plants infected with AEV with its associated betasatellite showed leaf curl symptoms. The findings show that AEV is predominantly a virus of weeds that has the capacity to infect crops. AYLCB appears to be the common partner betasatellite of AEV and is associated with diseases with a range of very different symptoms in the same plant species. The inability to satisfy Koch’s postulates with the cloned components of isolate SOL in A. conyzoides suggests that the etiology may be more complex than a single virus with a single betasatellite.

  18. Ageratum enation virus—A Begomovirus of Weeds with the Potential to Infect Crops

    Science.gov (United States)

    Tahir, Muhammad; Amin, Imran; Haider, Muhammad Saleem; Mansoor, Shahid; Briddon, Rob W.

    2015-01-01

    Samples of two Ageratum conyzoides, one Sonchus oleraceus and one turnip (Brassica rapa var. rapa) exhibiting virus-like symptoms were collected from Pakistan and Nepal. Full-length begomovirus clones were obtained from the four plant samples and betasatellite clones from three of these. The begomovirus sequences were shown to be isolates of Ageratum enation virus (AEV) with greater than 89.1% nucleotide sequence identity to the 26 AEV sequences available in the databases. The three betasatellite sequences were shown to be isolates of Ageratum yellow leaf curl betasatellite (AYLCB) with greater than 90% identity to the 18 AYLCB sequences available in the databases. The AEV sequences were shown to fall into two distinct strains, for which the names Nepal (consisting of isolates from Nepal, India, and Pakistan—including the isolates identified here) and India (isolates occurring only in India) strains are proposed. For the clones obtained from two AEV isolates, with their AYLCB, infectivity was shown by Agrobacterium-mediated inoculation to Nicotiana benthamiana, N. tabacum, Solanum lycopersicon and A. conyzoides. N. benthamiana plants infected with AEV alone or betasatellite alone showed no symptoms. N. benthamiana plants infected with AEV with its associated betasatellite showed leaf curl symptoms. The findings show that AEV is predominantly a virus of weeds that has the capacity to infect crops. AYLCB appears to be the common partner betasatellite of AEV and is associated with diseases with a range of very different symptoms in the same plant species. The inability to satisfy Koch’s postulates with the cloned components of isolate SOL in A. conyzoides suggests that the etiology may be more complex than a single virus with a single betasatellite. PMID:25674770

  19. Ageratum enation virus-a begomovirus of weeds with the potential to infect crops.

    Science.gov (United States)

    Tahir, Muhammad; Amin, Imran; Haider, Muhammad Saleem; Mansoor, Shahid; Briddon, Rob W

    2015-02-10

    Samples of two Ageratum conyzoides, one Sonchus oleraceus and one turnip (Brassica rapa var. rapa) exhibiting virus-like symptoms were collected from Pakistan and Nepal. Full-length begomovirus clones were obtained from the four plant samples and betasatellite clones from three of these. The begomovirus sequences were shown to be isolates of Ageratum enation virus (AEV) with greater than 89.1% nucleotide sequence identity to the 26 AEV sequences available in the databases. The three betasatellite sequences were shown to be isolates of Ageratum yellow leaf curl betasatellite (AYLCB) with greater than 90% identity to the 18 AYLCB sequences available in the databases. The AEV sequences were shown to fall into two distinct strains, for which the names Nepal (consisting of isolates from Nepal, India, and Pakistan-including the isolates identified here) and India (isolates occurring only in India) strains are proposed. For the clones obtained from two AEV isolates, with their AYLCB, infectivity was shown by Agrobacterium-mediated inoculation to Nicotiana benthamiana, N. tabacum, Solanum lycopersicon and A. conyzoides. N. benthamiana plants infected with AEV alone or betasatellite alone showed no symptoms. N. benthamiana plants infected with AEV with its associated betasatellite showed leaf curl symptoms. The findings show that AEV is predominantly a virus of weeds that has the capacity to infect crops. AYLCB appears to be the common partner betasatellite of AEV and is associated with diseases with a range of very different symptoms in the same plant species. The inability to satisfy Koch's postulates with the cloned components of isolate SOL in A. conyzoides suggests that the etiology may be more complex than a single virus with a single betasatellite.

  20. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus.

    Science.gov (United States)

    Yazhisai, Uthaman; Rajagopalan, Prem Anand; Raja, Joseph A J; Chen, Tsung-Chi; Yeh, Shyi-Dong

    2015-08-01

    Tospoviruses cause severe damages to important crops worldwide. In this study, Nicotiana benthamiana transgenic lines carrying individual untranslatable constructs comprised of the conserved region of the L gene (denoted as L), the 5' half of NSs coding sequence (NSs) or the antisense fragment of whole N coding sequence (N) of Watermelon silver mottle virus (WSMoV), individually or in combination, were generated. A total of 15-17 transgenic N. benthamiana lines carrying individual transgenes were evaluated against WSMoV and the serologically unrelated Tomato spotted wilt virus (TSWV). Among lines carrying single or chimeric transgenes, the level of resistance ranged from susceptible to completely resistant against WSMoV. From the lines carrying individual transgenes and highly resistant to WSMoV (56-63% of lines assayed), 30% of the L lines (3/10 lines assayed) and 11% of NSs lines (1/9 lines assayed) were highly resistant against TSWV. The chimeric transgenes provided higher degrees of resistance against WSMoV (80-88%), and the NSs fragment showed an additive effect to enhance the resistance to TSWV. Particularly, the chimeric transgenes with the triple combination of fragments, namely L/NSs/N or HpL/NSs/N (a hairpin construct), provided a higher degree of resistance (both 50%, with 7/14 lines assayed) against TSWV. Our results indicate that the untranslatable NSs fragment is able to enhance the transgenic resistance conferred by the L conserved region. The better performance of L/NSs/N and HpL/NSs/N in transgenic N. benthamiana lines suggests their potential usefulness in generating high levels of enhanced transgenic resistance against serologically unrelated tospoviruses in agronomic crops.

  1. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana.

    Science.gov (United States)

    McClure, B; Mou, B; Canevascini, S; Bernatzky, R

    1999-11-09

    Although S-locus RNases (S-RNases) determine the specificity of pollen rejection in self-incompatible (SI) solanaceous plants, they alone are not sufficient to cause S-allele-specific pollen rejection. To identify non-S-RNase sequences that are required for pollen rejection, a Nicotiana alata cDNA library was screened by differential hybridization. One clone, designated HT, hybridized strongly to RNA from N. alata styles but not to RNA from Nicotiana plumbaginifolia, a species known to lack one or more factors necessary for S-allele-specific pollen rejection. Sequence analysis revealed a 101-residue ORF including a putative secretion signal and an asparagine-rich domain near the C terminus. RNA blot analysis showed that the HT-transcript accumulates in the stigma and style before anthesis. The timing of HT-expression lags slightly behind S(C10)-RNase in SI N. alata S(C10)S(C10) and is well correlated with the onset of S-allele-specific pollen rejection in the style. An antisense-HT construct was prepared to test for a role in pollen rejection. Transformed (N. plumbaginifolia x SI N. alata S(C10)S(C10)) hybrids with reduced levels of HT-protein continued to express S(C10)-RNase but failed to reject S(C10)-pollen. Control hybrids expressing both S(C10)-RNase and HT-protein showed a normal S-allele-specific pollen rejection response. We conclude that HT-protein is directly implicated in pollen rejection.

  2. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    Science.gov (United States)

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  3. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity.

    Directory of Open Access Journals (Sweden)

    Andrew J Love

    Full Text Available Cauliflower mosaic virus (CaMV encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA- and jasmonic acid (JA-dependent signaling and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst. Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants

  4. Phosphoenolpyruvate carboxylase, NADP-malic enzyme, and pyruvate, phosphate dikinase are involved in the acclimation of Nicotiana tabacum L. to drought stress

    Czech Academy of Sciences Publication Activity Database

    Doubnerová-Hýsková, V.; Miedzińska, L.; Dobrá, Jana; Vaňková, Radomíra; Ryšlavá, H.

    2014-01-01

    Roč. 171, č. 5 (2014), s. 19-25 ISSN 0176-1617 R&D Projects: GA MŠk 1M0505 Institutional support: RVO:61389030 Keywords : Drought * NADP-malic enzyme * Nicotiana tabacum L. Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.557, year: 2014

  5. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant.

    Science.gov (United States)

    Zhong, Xueting; Wang, Zhan Qi; Xiao, Ruyuan; Cao, Linge; Wang, Yaqin; Xie, Yan; Zhou, Xueping

    2017-08-15

    Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N

  6. Back-transmission of a virus associated with apple stem pitting and pear vein yellows from Nicotiana occidentalis to apple and pear indicators

    NARCIS (Netherlands)

    Leone, G.; Lindner, J.L.; Jongedijk, G.; Meer, van der F.

    1995-01-01

    The successful back-transmission of the mechanically transmissible virus associated with apple stem pitting and pear vein yellows, from Nicotiana occidentalis to apple seedlings "Golden Delicious" under greenhouse conditions is reported. This result enabled a field experiment where isolates of apple

  7. The molecular characterisation of a Sida-infecting begomovirus from Jamaica.

    Science.gov (United States)

    Stewart, Cheryl; Kon, Tatsuya; Rojas, Maria; Graham, André; Martin, Darren; Gilbertson, Robert; Roye, Marcia

    2014-02-01

    The complete DNA sequence of both genome components of a new begomovirus (Sida golden mosaic Buckup virus-[Jamaica:St. Elizabeth:2004]; SiGMBuV-[JM:SE:04]) was determined from a field-infected Sida sp. sample from Buckup, St. Elizabeth, Jamaica. Phylogenetically, both genome components of SiGMBuV-[JM:SE:04] are most closely related to malvaceous weed-infecting Floridian and Mexican begomoviruses. Its DNA-B is a recombinant molecule, the majority of which was derived from a virus resembling Sida yellow mosaic Yucatan virus-[Mexico:Yucatan:2005] (SiYMYuV-[MX:Yuc:05]), while nucleotides 43-342 were derived from a virus resembling Sida golden mosaic virus-[United States of America:Florida] (SiGMV-[US:Flo]). Symptomatic infectivity of our cloned SiGMBuV-[JM:SE:04] components was confirmed in Nicotiana benthamiana.