WorldWideScience

Sample records for nickel titanium niti

  1. Diffusion of titanium and nickel in B2 NiTi

    Czech Academy of Sciences Publication Activity Database

    Divinski, S.V.; Stloukal, Ivo; Král, Lubomír; Herzig, Ch.

    289-292, - (2009), s. 377-382 ISSN 1012-0386. [DIMAT 2008, International Conference on Diffusion in Materials /7./. Lanzarote, Canary Islands , 28.10.2008-31.10.2008] Institutional research plan: CEZ:AV0Z20410507 Keywords : intermetallic compound NiTi * nickel nad titanium diffusion * diffusion mechanism Subject RIV: BJ - Thermodynamics http://www.scientific.net/DDF.289-292.377/

  2. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  3. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  4. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  5. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    Science.gov (United States)

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  6. Nickel-titanium wire in circumferential suture of a flexor tendon repair: a comparison to polypropylene.

    Science.gov (United States)

    Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J

    2010-07-01

    Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Innovations: laser-cutting nickel-titanium

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, T.R.; Moore, B.; Toyama, N. [LPL Systems, Inc., Mountain View, CA (United States)

    2002-07-01

    Laser-cutting is well established as the preferred method for manufacturing many endovascular medical devices. Sometimes laser processing has been poorly understood by nickel-titanium (NiTi) material suppliers, medical device manufacturers, and device designers, but the field has made important strides in the past several years. A variety of sample, nonspecific applications are presented for cutting tubing and sheet stock. Limiting constraints, key considerations, and areas for future development are identified. (orig.)

  8. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  9. Nickel-titanium alloys: stress-related temperature transitional range.

    Science.gov (United States)

    Santoro, M; Beshers, D N

    2000-12-01

    The inducement of mechanical stress within nickel-titanium wires can influence the transitional temperature range of the alloy and therefore the expression of the superelastic properties. An analogous variation of the transitional temperature range may be expected during orthodontic therapy, when the archwires are engaged into the brackets. To investigate this possibility, samples of currently used orthodontic nickel-titanium wires (Sentalloy, GAC; Copper Ni-Ti superelastic at 27 degrees C, 35 degrees C, 40 degrees C, Ormco; Nitinol Heat-Activated, 3M-Unitek) were subjected to temperature cycles ranging between 4 degrees C and 60 degrees C. The wires were mounted in a plexiglass loading device designed to simulate clinical situations of minimum and severe dental crowding. Electrical resistivity was used to monitor the phase transformations. The data were analyzed with paired t tests. The results confirmed the presence of displacements of the transitional temperature ranges toward higher temperatures when stress was induced. Because nickel-titanium wires are most commonly used during the aligning stage in cases of severe dental crowding, particular attention was given to the performance of the orthodontic wires under maximum loading. An alloy with a stress-related transitional temperature range corresponding to the fluctuations of the oral temperature should express superelastic properties more consistently than others. According to our results, Copper Ni-Ti 27 degrees C and Nitinol Heat-Activated wires may be considered suitable alloys for the alignment stage.

  10. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy

    NARCIS (Netherlands)

    Veldhuizen, AG; Sanders, MM; Schakenraad, JM; vanHorn, [No Value

    The nearly equiatomic nickel-titanium (NiTi) alloy is known for its shape memory properties. These properties can be put to excellent use in various biomedical applications, such as wires for orthodontic tooth alignment and osteosynthesis staples. The aim of this study was to evaluate the short-term

  11. Mechanical and Metallurgical Properties of Various Nickel-Titanium Rotary Instruments

    OpenAIRE

    Shim, Kyu-Sang; Oh, Soram; Kum, KeeYeon; Kim, Yu-Chan; Jee, Kwang-Koo; Chang, Seok Woo

    2017-01-01

    The aim of this study was to investigate the effect of thermomechanical treatment on mechanical and metallurgical properties of nickel-titanium (NiTi) rotary instruments. Eight kinds of NiTi rotary instruments with sizes of ISO #25 were selected: ProFile, K3, and One Shape for the conventional alloy; ProTaper NEXT, Reciproc, and WaveOne for the M-wire alloy; HyFlex CM for the controlled memory- (CM-) wire; and TF for the R-phase alloy. Torsional fracture and cyclic fatigue fracture tests were...

  12. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    Science.gov (United States)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  13. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods.

    Science.gov (United States)

    Gambarini, Gianluca; Grande, Nicola Maria; Plotino, Gianluca; Somma, Francesco; Garala, Manish; De Luca, Massimo; Testarelli, Luca

    2008-08-01

    The aim of the present study was to investigate whether cyclic fatigue resistance is increased for nickel-titanium instruments manufactured by using new processes. This was evaluated by comparing instruments produced by using the twisted method (TF; SybronEndo, Orange, CA) and those using the M-wire alloy (GTX; Dentsply Tulsa-Dental Specialties, Tulsa, OK) with instruments produced by a traditional NiTi grinding process (K3, SybronEndo). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments inside curved artificial canals. Results indicated that size 06-25 TF instruments showed a significant increase (p 0.05) in the mean number of cycles to failure when compared with size 06-20 GT series X instruments. The new manufacturing process produced nickel-titanium rotary files (TF) significantly more resistant to fatigue than instruments produced with the traditional NiTi grinding process. Instruments produced with M-wire (GTX) were not found to be more resistant to fatigue than instruments produced with the traditional NiTi grinding process.

  14. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application

    International Nuclear Information System (INIS)

    Arruda, Carlos do Canto

    2002-01-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo Sentalloy F

  15. Nickel-Titanium Single-file System in Endodontics.

    Science.gov (United States)

    Dagna, Alberto

    2015-10-01

    This work describes clinical cases treated with a innovative single-use and single-file nickel-titanium (NiTi) system used in continuous rotation. Nickel-titanium files are commonly used for root canal treatment but they tend to break because of bending stresses and torsional stresses. Today new instruments used only for one treatment have been introduced. They help the clinician to make the root canal shaping easier and safer because they do not require sterilization and after use have to be discarded. A new sterile instrument is used for each treatment in order to reduce the possibility of fracture inside the canal. The new One Shape NiTi single-file instrument belongs to this group. One Shape is used for complete shaping of root canal after an adequate preflaring. Its protocol is simple and some clinical cases are presented. It is helpful for easy cases and reliable for difficult canals. After 2 years of clinical practice, One Shape seems to be helpful for the treatment of most of the root canals, with low risk of separation. After each treatment, the instrument is discarded and not sterilized in autoclave or re-used. This single-use file simplifies the endodontic therapy, because only one instrument is required for canal shaping of many cases. The respect of clinical protocol guarantees predictable good results.

  16. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  17. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.

    Science.gov (United States)

    Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan

    2015-04-01

    New files (ProTaper Next/HyFlex/OneShape) are made from novel nickel-titanium (NiTi) alloys/treatments. The purpose of this study was to compare the cyclic fatigue resistance of these new instruments with that of Revo-S instruments. Four groups of 20 NiTi endodontic instruments were tested in steel canals with a 3 mm radius and a 60° angle of curvature. The cyclic fatigue of the following NiTi instruments with a tip size 25 and 0.06 taper that were manufactured with different alloys was tested: ProTaper Next X2 (M-Wire), OneShape (conventional NiTi), Revo-S Shaping Universal (conventional NiTi) and HyFlex 25/0.6 (controlled memory NiTi wire). A one-way anova and post-hoc Tukey's test (α = 0.05) revealed that the HyFlex files had the highest fatigue resistance and the Revo-S had the least fatigue resistance among the groups (P < 0.001). © 2014 Australian Society of Endodontology.

  18. Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.

    Science.gov (United States)

    Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J

    2010-07-01

    Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.

  19. Nickel-Titanium Alloys: Corrosion "Proof" Alloys for Space Bearing, Components and Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2010-01-01

    An intermetallic nickel-titanium alloy, 60NiTi (60 wt% Ni, 40 wt% Ti), is shown to be a promising candidate tribological material for space mechanisms. 60NiTi offers a broad combination of physical properties that make it unique among bearing materials. 60NiTi is hard, electrically conductive, highly corrosion resistant, readily machined prior to final heat treatment, and is non-magnetic. Despite its high Ti content, 60NiTi is non-galling even under dry sliding. No other bearing alloy, metallic or ceramic, encompasses all of these attributes. Since 60NiTi contains such a high proportion of Ti and possesses many metallic properties, it was expected to exhibit poor tribological performance typical of Ti alloys, namely galling type behavior and rapid lubricant degradation. In this poster-paper, the oil-lubricated behavior of 60NiTi is presented.

  20. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Clark, William A T; Kovarik, Libor; Buie, Caesar; Liu, Jie; Ben Johnson, William

    2009-11-01

    A novel thermomechanical processing procedure has been developed that yields a superelastic (SE) nickel-titanium (NiTi) wire (M-Wire) that laboratory testing shows has improved mechanical properties compared with conventional SE austenitic NiTi wires used for manufacture of rotary instruments. The objective of this study was to determine the origin of the improved mechanical properties. Specimens from 2 batches of M-Wire prepared under different processing conditions and from 1 batch of standard-processed SE wire for rotary instruments were examined by scanning transmission electron microscopy, temperature-modulated differential scanning calorimetry, micro-x-ray diffraction, and scanning electron microscopy with x-ray energy-dispersive spectrometric analyses. The processing for M-Wire yields a microstructure containing martensite, that the proportions of NiTi phases depend on processing conditions, and that the microstructure exhibits pronounced evidence of alloy strengthening. The presence of Ti(2)Ni precipitates in both microstructures indicates that M-Wire and the conventional SE wire for rotary instruments are titanium-rich.

  1. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    Science.gov (United States)

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  2. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2006-01-01

    Diffusion bonding was carried out between commercially pure titanium and 304 stainless steel using nickel interlayer in the temperature range of 800-950 deg. C for 3.6 ks under 3 MPa load in vacuum. The transition joints thus formed were characterized in optical and scanning electron microscopes. TiNi 3 , TiNi and Ti 2 Ni are formed at the nickel-titanium (Ni-Ti) interface; whereas, stainless steel-nickel (SS-Ni) interface is free from intermetallic compounds up to 900 deg. C processing temperatures. At 950 deg. C, Ni-Ti interface exhibits the presence of β-Ti discrete islands in the matrix of Ti 2 Ni and the phase mixture of λ + χ + α-Fe, λ + α-Fe, λ + FeTi + β-Ti and FeTi + β-Ti occurs at the stainless steel-nickel interface. Nickel is able to inhibit the diffusion of Ti to stainless steel side up to 900 deg. C temperature; however, becomes unable to restrict the migration of Ti to stainless steel at 950 deg. C. Bond strength was also evaluated and maximum tensile strength of ∼302 MPa and shear strength of ∼219 MPa were obtained for the diffusion couple processed at 900 deg. C temperature due to better contact of the mating surfaces and failure takes place at the Ni-Ti interface. At higher joining temperature, the formation of Fe-Ti bases intermetallics reduces the bond strength and failure occurs at the SS-Ni interface

  3. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Shen, Ya; Zhou, Hui-Min; Zheng, Yu-Feng; Campbell, Les; Peng, Bin; Haapasalo, Markus

    2011-11-01

    To improve the fracture resistance of nickel-titanium (NiTi) files, manufacturers have introduced new alloys and developed new manufacturing processes for the fabrication of NiTi files. This study aimed to examine the phase transformation behavior and microstructure of NiTi instruments from a novel controlled memory NiTi wire (CM wire). Instruments of EndoSequence (ES), ProFile (PF), ProFile Vortex (Vortex), Twisted Files (TF), Typhoon (TYP), and Typhoon™ CM (TYP CM), all size 25/.04, were examined by differential scanning calorimetry (DSC) and x-ray diffraction (XRD). Microstructures of etched instruments were observed by optical microscopy and scanning electron microscopy with x-ray energy-dispersive spectrometric (EDS) analyses. The DSC analyses showed that each segment of the TYP CM and Vortex instruments had an austenite transformation completion or austenite-finish (A(f)) temperature exceeding 37°C, whereas the NiTi instruments made from conventional superelastic NiTi wire (ES, PF, and TYP) and TF had A(f) temperatures substantially below mouth temperature. The higher A(f) temperature of TYP CM instruments was consistent with a mixture of austenite and martensite structure, which was observed at room temperature with XRD. All NiTi instruments had room temperature martensite microstructures consisting of colonies of lenticular features with substantial twinning. EDS analysis indicated that the precipitates in all NiTi instruments were titanium-rich, with an approximate composition of Ti(2)Ni. The TYP CM and Vortex instruments with heat treatment contribute to increase austenite transformation temperature. The CM instrument has significant changes in the phase transformation behavior, compared with conventional superelastic NiTi instruments. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  5. Orthodontic buccal tooth movement by nickel-free titanium-based shape memory and superelastic alloy wire.

    Science.gov (United States)

    Suzuki, Akihiro; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Tomizuka, Ryo; Hosoda, Hideki; Miyazaki, Shuichi; Okuno, Osamu; Igarashi, Kaoru; Mitani, Hideo

    2006-11-01

    To examine the mechanical properties and the usefulness of titanium-niobium-aluminum (Ti-Nb-Al) wire in orthodontic tooth movement as compared with nickel-titanium (Ni-Ti) wire. The load deflection of expansion springs was gauged with an original jig. The gradient of the superelastic region was measured during the unloading process. Expansion springs comprising the two types of alloy wires were applied to upper first molars of rats. The distance between the first molars was measured with micrometer calipers. The force magnitude of the Ti-Nb-Al expansion spring was lower than that of the Ni-Ti expansion spring over the entire deflection range. The initial force magnitude and the gradient in the superelastic region of the Ti-Nb-Al expansion springs were half those of the Ni-Ti expansion springs. Thus, Ti-Nb-Al expansion springs generated lighter and more continuous force. Tooth movement in the Ni-Ti group proceeded in a stepwise fashion. On the other hand, tooth movement in the Ti-Nb-Al group showed relatively smooth and continuous progression. At 17 days after insertion of expansion springs, there were no significant differences between the Ti-Nb-Al and Ni-Ti groups in the amount of tooth movement. These results indicate that Ti-Nb-Al wire has excellent mechanical properties for smooth, continuous tooth movement and suggest that Ti-Nb-Al wire may be used as a practical nickel-free shape memory and superelastic alloy wire for orthodontic treatment as a substitute for Ni-Ti wire.

  6. Evolution of Nickel-titanium Alloys in Endodontics.

    Science.gov (United States)

    Ounsi, Hani F; Nassif, Wadih; Grandini, Simone; Salameh, Ziad; Neelakantan, Prasanna; Anil, Sukumaran

    2017-11-01

    To improve clinical use of nickel-titanium (NiTi) endodontic rotary instruments by better understanding the alloys that compose them. A large number of engine-driven NiTi shaping instruments already exists on the market and newer generations are being introduced regularly. While emphasis is being put on design and technique, manufacturers are more discreet about alloy characteristics that dictate instrument behavior. Along with design and technique, alloy characteristics of endodontic instruments is one of the main variables affecting clinical performance. Modification in NiTi alloys is numerous and may yield improvements, but also drawbacks. Martensitic instruments seem to display better cyclic fatigue properties at the expense of surface hardness, prompting the need for surface treatments. On the contrary, such surface treatments may improve cutting efficiency but are detrimental to the gain in cyclic fatigue resistance. Although the design of the instrument is vital, it should in no way cloud the importance of the properties of the alloy and how they influence the clinical behavior of NiTi instruments. Dentists are mostly clinicians rather than engineers. With the advances in instrumentation design and alloys, they have an obligation to deal more intimately with engineering consideration to not only take advantage of their possibilities but also acknowledge their limitations.

  7. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  8. In vitro biocompatibility of nickel-titanium esthetic orthodontic archwires.

    Science.gov (United States)

    Rongo, Roberto; Valletta, Rosa; Bucci, Rosaria; Rivieccio, Virginia; Galeotti, Angela; Michelotti, Ambrosina; D'Antò, Vincenzo

    2016-09-01

    To investigate the cytotoxicity of nickel-titanium (NiTi) esthetic orthodontic archwires with different surface coatings. Three fully coated, tooth-colored NiTi wires (BioCosmetic, Titanol Cosmetic, EverWhite), two ion-implanted wires (TMA Purple, Sentalloy High Aesthetic), five uncoated NiTi wires (BioStarter, BioTorque, Titanol Superelastic, Memory Wire Superelastic, and Sentalloy), one β-titanium wire (TMA), and one stainless steel wire (Stainless Steel) were considered for this study. The wire samples were placed at 37°C in airtight test tubes containing Dulbecco's Modified Eagle's Medium (0.1 mg/mL) for 1, 7, 14, and 30 days. The cell viability of human gingival fibroblasts (HGFs) cultured with this medium was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data were analyzed by a two-way analysis of variance (α  =  .05). The highest cytotoxic effect was reached on day 30 for all samples. The archwires exhibited a cytotoxicity on HGFs ranging from "none" to "slight," with the exception of the BioTorque, which resulted in moderate cytotoxicity on day 30. Significant differences were found between esthetic archwires and their uncoated pairs only for BioCosmetic (P  =  .001) and EverWhite (P < .001). Under the experimental conditions, all of the NiTi esthetic archwires resulted in slight cytotoxicity, as did the respective uncoated wires. For this reason their clinical use may be considered to have similar risks to the uncoated archwires.

  9. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use.

    Science.gov (United States)

    Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya

    2012-11-01

    Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.

  10. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications

    International Nuclear Information System (INIS)

    Sevilla, P.; Aparicio, C.; Planell, J.A.; Gil, F.J.

    2007-01-01

    Metallic porous materials are designed to allow the ingrowth of living tissue inside the pores and to improve the mechanical anchorage of the implant. In the present work, tantalum and nickel-titanium porous materials have been characterized. The tantalum foams were produced by vapour chemical deposition (CVD/CVI) and the NiTi foams by self-propagating high temperature synthesis (SHS). The former exhibited an open porosity ranging between 65 and 73% and for the latter it ranged between 63 and 68%. The pore sizes were between 370 and 440 μm for tantalum and between 350 and 370 μm for nickel-titanium. The Young's modulus in compression of the foams studied, especially for tantalum, were very similar to those of cancellous bone. This similitude may be relevant in order to minimize the stress shielding effect in the load transfer from the implant to bone. The strength values for NiTi foam are higher than for tantalum, especially of the strain to fracture which is about 23% for NiTi and only 8% for tantalum. The fatigue endurance limit set at 10 8 cycles is about 7.5 MPa for NiTi and 13.2 MPa for tantalum. The failure mechanisms have been studied by scanning electron microscopy

  11. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

    Science.gov (United States)

    McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S

    2012-07-01

    Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Deformation and fracture of Mtwo rotary nickel-titanium instruments after clinical use.

    Science.gov (United States)

    Inan, Ugur; Gonulol, Nihan

    2009-10-01

    In recent years, a number of rotary nickel titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system. Although the NiTi instruments are more flexible than the stainless steel files, the main problem with the rotary NiTi instruments is the failure of the instruments. The aim of this study was to evaluate the deformation and fracture rate of Mtwo rotary nickel-titanium instruments (VDW, Munich, Germany) discarded after routine clinical use. A total of 593 Mtwo rotary NiTi instruments were collected after clinical use from the clinic of endodontics over 12 months. The length of the files was measured using a digital caliper to determine any fracture, and then all the files were evaluated under a stereomicroscope for defects such as unwinding, curving, or bending and fracture. The fracture faces of separated files were also evaluated under a scanning electron microscope. The data were analyzed using a chi-square and z test. A percentage of all files (25.80%) showed defects, and the major defect was fracture (16.02%). The most frequently fractured file was #10.04 (30.39%). Deformations without fracture were mostly observed on #15.05 files (25.47%). A higher rate of deformation was observed for #10.04 and #15.05 files. Therefore, these files should be considered as single-use instruments. Because cyclic fatigue was the cause of 71.58% of the instrument fractures, it is also important not to exceed the maximum number of usage recommended by the manufacturer and discard the instruments on a regular basis.

  13. Phase transformation changes in thermocycled nickel-titanium orthodontic wires.

    Science.gov (United States)

    Berzins, David W; Roberts, Howard W

    2010-07-01

    In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.

  14. Phase equilibria and thermodynamic studies in the titanium-nickel and titanium-nickel-oxygen systems

    International Nuclear Information System (INIS)

    Chattopadhyay, G.; Kleykamp, H.; Laumer, W.

    1983-01-01

    The isothermal section of the Ti-Ni-O system was examined at 1200 K in the regions between the Ni(Ti) solid solution and the binary oxides of titanium. The relative partial Gibbs energies of oxygen over the Ti 2 O 3 -Ti 3 O 5 region and of titanium in the Ni(Ti) solid solution as well as the Gibbs energies of formation of NiTiO 3 , Ti 3 O 5 and TiNi 3 were determined between 1100 and 1300 K by use of solid electrolyte galvanic cells. (orig.) [de

  15. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires

    Directory of Open Access Journals (Sweden)

    Manu Krishnan

    2013-01-01

    Full Text Available Aim: To evaluate the changes in surface roughness and frictional features of ′ion-implanted nickel titanium (NiTi and titanium molybdenum alloy (TMA arch wires′ from its conventional types in an in-vitro laboratory set up. Materials and Methods: ′Ion-implanted NiTi and low friction TMA arch wires′ were assessed for surface roughness with scanning electron microscopy (SEM and 3 dimensional (3D optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS values in nanometers and Frictional Forces (FF in grams. Statistical Analysis Used: Mean values of RMS and FF were compared by Student′s ′t′ test and one way analysis of variance (ANOVA. Results: SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm and 48.90% for TMA groups (463.28 to 236.35 nm from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. Conclusion: The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  16. Preference of undergraduate students after first experience on nickel-titanium endodontic instruments

    Directory of Open Access Journals (Sweden)

    Sang Won Kwak

    2016-08-01

    Full Text Available Objectives This study aimed to compare two nickel-titanium systems (rotary vs. reciprocating for their acceptance by undergraduate students who experienced nickel-titanium (NiTi instruments for the first time. Materials and Methods Eighty-one sophomore dental students were first taught on manual root canal preparation with stainless-steel files. After that, they were instructed on the use of ProTaper Universal system (PTU, Dentsply Maillefer, then the WaveOne (WO, Dentsply Maillefer. They practiced with each system on 2 extracted molars, before using those files to shape the buccal or mesial canals of additional first molars. A questionnaire was completed after using each file system, seeking students' perception about 'Ease of use', 'Flexibility', 'Cutting-efficiency', 'Screwing-effect', 'Feeling-safety', and 'Instrumentation-time' of the NiTi files, relative to stainless-steel instrumentation, on a 5-point Likert-type scale. They were also requested to indicate their preference between the two systems. Data was compared between groups using t-test, and with Chi-square test for correlation of each perception value with the preferred choice (p = 0.05. Results Among the 81 students, 55 indicated their preferred file system as WO and 22 as PTU. All scores were greater than 4 (better for both systems, compared with stainless-steel files, except for 'Screwing-effect' for PTU. The scores for WO in the categories of 'Flexibility', 'Screwing-effect', and 'Feeling-safety' were significantly higher scores than those of PTU. A significant association between the 'Screwing-effect' and students' preference for WO was observed. Conclusions Novice operators preferred nickel-titanium instruments to stainless-steel, and majority of them opted for reciprocating file instead of continuous rotating system.

  17. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation.

    Science.gov (United States)

    Peitsch, T; Klocke, A; Kahl-Nieke, B; Prymak, O; Epple, M

    2007-09-01

    The influence of dynamic mechanical loading and of surface nitridation on the nickel release from superelastic nickel-titanium orthodontic wires was investigated under ultrapure conditions. Commercially available superelastic NiTi arch wires (size 0.018 x 0.025'') without surface modification (Neo Sentalloy) and with nitrogen ion implantation surface treatment (Neo Sentalloy Ionguard) were analyzed. Mechanical loading of wire segments with a force similar to the physiological situation was performed with a frequency of 5 Hz in ultrapure water and saline solution, respectively. The release of nickel was monitored by atomic absorption spectroscopy for up to 36 days. The mechanically loaded wires released significantly more nickel ( approximately 45 ng cm(-2) d(-1)) than did nonloaded wires (<1 ng cm(-2) d(-1)). There was no statistically significant effect of the testing solution (water or NaCl) or of the surface nitridation. The total amount of released nickel was small in all cases, but may nevertheless account for the occasional clinical observations of adverse reactions during application of NiTi-based orthodontic appliances. The surface nitridation did not constrain the release of nickel from NiTi under continuous mechanical stress.

  18. Fatigue testing of controlled memory wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Shen, Ya; Qian, Wei; Abtin, Houman; Gao, Yuan; Haapasalo, Markus

    2011-07-01

    To improve the fracture resistance of nickel-titanium (NiTi) files, manufacturers have introduced new alloys to manufacture NiTi files and developed new manufacturing processes. This study was aimed to examine the fatigue behavior of NiTi instruments from a novel controlled memory NiTi wire (CM Wire). Instruments of ProFile, Typhoon (TYP), Typhoon CM (TYP CM), DS-SS0250425NEYY (NEYY), and DS-SS0250425NEYY CM (NEYY CM) (DS Dental, Johnson City, TN) all size 25/.04 were subjected to rotational bending at the curvature of 35° and 45° in air at the temperature of 23° ± 2°C, and the number of revolutions to fracture (N(f)) was recorded. The fracture surface of all fragments was examined by a scanning electron microscope. The crack-initiation sites, the percentage of dimple area to the whole fracture cross-section, and the surface strain amplitude (ε(a)) were noted. The new alloy yielded an improvement of over three to eight times in N(f) of CM files than that of conventional NiTi files (P wire (58%-100%) had one crack origin. The values of the fraction area occupied by the dimple region were significantly smaller on CM NiTi instruments compared with conventional NiTi instruments (P wire at both curvatures (P Wire had a significantly higher N(f) and lower surface strain amplitude than the conventional NiTi wire files with identical design. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  20. Comparison of changes in irregularity and transverse width with nickel-titanium and niobium-titanium-tantalum-zirconium archwires during initial orthodontic alignment in adolescents: A double-blind randomized clinical trial.

    Science.gov (United States)

    Nordstrom, Barrett; Shoji, Toshihiro; Anderson, W Cameron; Fields, Henry W; Beck, F Michael; Kim, Do-Gyoon; Takano-Yamamoto, Teruko; Deguchi, Toru

    2018-05-01

    The purpose of this prospective, double-blind, randomized clinical trial was to compare the clinical efficiency of nickel-titanium (NiTi) and niobium-titanium-tantalum-zirconium (TiNbTaZr) archwires during initial orthodontic alignment. All subjects (ages between 12 and 20 years) underwent nonextraction treatment using 0.022-inch brackets. All patients were randomized into two groups for initial alignment with 0.016-inch NiTi archwires (n = 14), or with 0.016-inch TiNbTaZr archwires (n = 14). Digital scans were taken during the course of treatment and were used to compare the improvement in Little's Irregularity Index and the changes in intercanine and intermolar widths. There was approximately a 27% reduction in crowding during the first month with the use of 0.016-inch TiNbTaZr (Gummetal) wire, and an additional 25% decrease in crowding was observed during the next month. There was no significant difference between the two treatment groups in the decrease in irregularity over time ( P = .29). There was no significant difference between the two groups in the changes in intercanine and intermolar width ( P = .80). It can be concluded that Gummetal wires and conventional NiTi wires possess a similar ability to align teeth, and Gummetal wires have additional advantages over conventional NiTi, such as formability and use in patients with nickel allergy.

  1. Friction behavior and other material properties of nickel-titanium and titanium-molybdenum archwires following electrochemical surface refinement.

    Science.gov (United States)

    Meier, Miriam Julia; Bourauel, Christoph; Roehlike, Jan; Reimann, Susanne; Keilig, Ludger; Braumann, Bert

    2014-07-01

    The aim of this work was to investigate whether electrochemical surface treatment of nickel-titanium (NiTi) and titanium-molybdenum (TiMo) archwires (OptoTherm and BetaTitan; Ortho-Dent Specials, Kisdorf, Germany) reduces friction inside the bracket-archwire complex. We also evaluated further material properties and compared these to untreated wires. The material properties of the surface-treated wires (Optotherm/LoFrix and BetaTitan/LoFrix) were compared to untreated wires made by the same manufacturer (see above) and by another manufacturer (Neo Sentalloy; GAC, Bohemia, NY, USA). We carried out a three-point bending test, leveling test, and friction test using an orthodontic measurement and simulation system (OMSS). In addition, a pure bending test was conducted at a special test station, and scanning electron micrographs were obtained to analyze the various wire types for surface characteristics. Finally, edge beveling and cross-sectional dimensions were assessed. Force losses due to friction were reduced by 10 percentage points (from 36 to 26%) in the NiTi and by 12 percentage points (from 59 to 47%) in the TiMo wire specimens. Most of the other material properties exhibited no significant changes after surface treatment. While the three-point bending tests revealed mildly reduced force levels in the TiMo specimens due to diameter losses of roughly 2%, these force levels remained almost unchanged in the NiTi specimens. Compared to untreated NiTi and TiMo archwire specimens, the surface-treated specimens demonstrated reductions in friction loss by 10 and 12 percentage points, respectively.

  2. Effect of nitriding surface treatment on the corrosion resistance of dental nickel-titanium files in 5.25% sodium hypochlorite solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.-F. [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taichung Veterans General Hospital, Taichung, Taiwan (China); Lin, M.-C. [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dental Laboratory Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan (China); Hsu, M.-L. [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Li, U.-M. [Dental Department, Cardinal Tien Hospital, Hsintien, Taiwan (China); Lin, C.-P. [Department of Dentistry, National Taiwan University, Taipei, Taiwan (China); Tsai, W.-F.; Ai, C.-F. [Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Huang, H.-H. [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China)], E-mail: hhhuang@ym.edu.tw

    2009-05-05

    This study investigated the effect of nitriding surface treatment on the corrosion resistance of commercial dental alloy, in the form of helical nickel-titanium (Ni-Ti) files, when treated with 5.25% sodium hypochlorite (NaOCl) solution. The surface of dental helical Ni-Ti files was modified using nitriding treatment at 200 deg. C, 250 deg. C and 300 deg. C in an NH{sub 3}-containing environment. The surface morphology and chemical composition of the Ni-Ti files were analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance of the Ni-Ti files when treated with a clinical solution of 5.25% NaOCl was evaluated using the linear polarization method and by potentiodynamic polarization curve measurement. The nitriding treatments at different temperatures created titanium nitride (TiN) on the surface of the helical Ni-Ti files. The Ni-Ti files nitrided at 200 deg. C and 250 deg. C showed higher polarization resistance and higher passive film breakdown potential together with a lower passive current than untreated files. The presence of TiN on dental Ni-Ti files significantly increased the corrosion resistance of the files in the presence of 5.25% NaOCl solution.

  3. Effect of nitriding surface treatment on the corrosion resistance of dental nickel-titanium files in 5.25% sodium hypochlorite solution

    International Nuclear Information System (INIS)

    Liu, J.-F.; Lin, M.-C.; Hsu, M.-L.; Li, U.-M.; Lin, C.-P.; Tsai, W.-F.; Ai, C.-F.; Chen, L.-K.; Huang, H.-H.

    2009-01-01

    This study investigated the effect of nitriding surface treatment on the corrosion resistance of commercial dental alloy, in the form of helical nickel-titanium (Ni-Ti) files, when treated with 5.25% sodium hypochlorite (NaOCl) solution. The surface of dental helical Ni-Ti files was modified using nitriding treatment at 200 deg. C, 250 deg. C and 300 deg. C in an NH 3 -containing environment. The surface morphology and chemical composition of the Ni-Ti files were analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance of the Ni-Ti files when treated with a clinical solution of 5.25% NaOCl was evaluated using the linear polarization method and by potentiodynamic polarization curve measurement. The nitriding treatments at different temperatures created titanium nitride (TiN) on the surface of the helical Ni-Ti files. The Ni-Ti files nitrided at 200 deg. C and 250 deg. C showed higher polarization resistance and higher passive film breakdown potential together with a lower passive current than untreated files. The presence of TiN on dental Ni-Ti files significantly increased the corrosion resistance of the files in the presence of 5.25% NaOCl solution.

  4. Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.

    Science.gov (United States)

    Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H

    2003-10-01

    Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.

  5. Thin NiTi Films Deposited on Graphene Substrates

    Science.gov (United States)

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  6. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    Science.gov (United States)

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  7. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: a randomized controlled clinical trial.

    Science.gov (United States)

    Keng, Feng-Yi; Quick, Andrew N; Swain, Michael V; Herbison, Peter

    2012-02-01

    The purpose of this study was to conduct a prospective randomized controlled clinical trial to evaluate the rate of space closure and tooth angulation during maxillary canine retraction using preactivated T-loops made from titanium-molybdenum alloy (TMA) and nickel-titanium (NiTi). Twelve patients (six males and six females) aged between 13 and 20 years who had upper premolar extractions were included, and each acted as their own control, with a NiTi T-loop allocated to one quadrant and TMA to the other using a split mouth block randomization design. The loops were activated 3 mm at each visit to deliver a load of approximately 150 g to the upper canine teeth. Maxillary dental casts, taken at the first and each subsequent monthly visit, were used to evaluate changes in extraction space and canine angulation. All used T-loops were compared with unused loops in order to assess distortion. Mixed model statistical analysis was used to adjust for confounding variables. The mean rate of canine retraction using preactivated NiTi and TMA T-loops was 0.91 mm/month (±0.46) and 0.87 mm/month (±0.34), respectively. The canine tipping rates were 0.71 degrees/month (±2.34) for NiTi and 1.15 degrees/month (±2.86) for TMA. Both the rate of space closure and the tipping were not significantly different between the two wire types. The average percentage distortion of the TMA T-loop was 10 times greater than that of the NiTi loops when all other variables were matched. There was no difference in the rate of space closure or tooth angulation between preactivated TMA or NiTi T-loops when used to retract upper canines. The NiTi loops possessed a greater ability to retain and return to their original shapes following cyclical activation.

  8. Sonocatalytic injury of cancer cells attached on the surface of a nickel-titanium dioxide alloy plate.

    Science.gov (United States)

    Ninomiya, Kazuaki; Maruyama, Hirotaka; Ogino, Chiaki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    The present study demonstrates ultrasound-induced cell injury using a nickel-titanium dioxide (Ni-TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni-TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm(2) for 30s led to an increased generation of hydroxyl (OH) radicals compared to nickel-titanium (Ni-Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni-TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm(2) for 30s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni-Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni-TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni-TiO2 alloy plates, indicating induction of apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    Science.gov (United States)

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  10. Comparative study of six rotary nickel-titanium systems and hand instrumentation for root canal preparation.

    Science.gov (United States)

    Guelzow, A; Stamm, O; Martus, P; Kielbassa, A M

    2005-10-01

    To compare ex vivo various parameters of root canal preparation using a manual technique and six different rotary nickel-titanium (Ni-Ti) instruments (FlexMaster, System GT, HERO 642, K3, ProTaper, and RaCe). A total of 147 extracted mandibular molars were divided into seven groups (n = 21) with equal mean mesio-buccal root canal curvatures (up to 70 degrees), and embedded in a muffle system. All root canals were prepared to size 30 using a crown-down preparation technique for the rotary nickel-titanium instruments and a standardized preparation (using reamers and Hedströem files) for the manual technique. Length modifications and straightening were determined by standardized radiography and a computer-aided difference measurement for every instrument system. Post-operative cross-sections were evaluated by light-microscopic investigation and photographic documentation. Procedural errors, working time and time for instrumentation were recorded. The data were analysed statistically using the Kruskal-Wallis test and the Mann-Whitney U-test. No significant differences were detected between the rotary Ni-Ti instruments for alteration of working length. All Ni-Ti systems maintained the original curvature well, with minor mean degrees of straightening ranging from 0.45 degrees (System GT) to 1.17 degrees (ProTaper). ProTaper had the lowest numbers of irregular post-operative root canal diameters; the results were comparable between the other systems. Instrument fractures occurred with ProTaper in three root canals, whilst preparation with System GT, HERO 642, K3 and the manual technique resulted in one fracture each. Ni-Ti instruments prepared canals more rapidly than the manual technique. The shortest time for instrumentation was achieved with System GT (11.7 s). Under the conditions of this ex vivo study all Ni-Ti systems maintained the canal curvature, were associated with few instrument fractures and were more rapid than a standardized manual technique. Pro

  11. Mechanical and Metallurgical Properties of Various Nickel-Titanium Rotary Instruments

    Directory of Open Access Journals (Sweden)

    Kyu-Sang Shim

    2017-01-01

    Full Text Available The aim of this study was to investigate the effect of thermomechanical treatment on mechanical and metallurgical properties of nickel-titanium (NiTi rotary instruments. Eight kinds of NiTi rotary instruments with sizes of ISO #25 were selected: ProFile, K3, and One Shape for the conventional alloy; ProTaper NEXT, Reciproc, and WaveOne for the M-wire alloy; HyFlex CM for the controlled memory- (CM- wire; and TF for the R-phase alloy. Torsional fracture and cyclic fatigue fracture tests were performed. Products underwent a differential scanning calorimetry (DSC analysis. The CM-wire and R-phase groups had the lowest elastic modulus, followed by the M-wire group. The maximum torque of the M-wire instrument was comparable to that of a conventional instrument, while those of the CM-wire and R-phase instruments were lower. The angular displacement at failure (ADF for the CM-wire and R-phase instruments was higher than that of conventional instruments, and ADF of the M-wire instruments was lower. The cyclic fatigue resistance of the thermomechanically treated NiTi instruments was higher. DSC plots revealed that NiTi instruments made with the conventional alloy were primarily composed of austenite at room temperature; stable martensite and R-phase were found in thermomechanically treated instruments.

  12. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation

    Directory of Open Access Journals (Sweden)

    Tiziana Segreto

    2017-12-01

    Full Text Available Nickel-Titanium (Ni-Ti alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT. The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  13. Vibration Sensor Monitoring of Nickel-Titanium Alloy Turning for Machinability Evaluation.

    Science.gov (United States)

    Segreto, Tiziana; Caggiano, Alessandra; Karam, Sara; Teti, Roberto

    2017-12-12

    Nickel-Titanium (Ni-Ti) alloys are very difficult-to-machine materials causing notable manufacturing problems due to their unique mechanical properties, including superelasticity, high ductility, and severe strain-hardening. In this framework, the aim of this paper is to assess the machinability of Ni-Ti alloys with reference to turning processes in order to realize a reliable and robust in-process identification of machinability conditions. An on-line sensor monitoring procedure based on the acquisition of vibration signals was implemented during the experimental turning tests. The detected vibration sensorial data were processed through an advanced signal processing method in time-frequency domain based on wavelet packet transform (WPT). The extracted sensorial features were used to construct WPT pattern feature vectors to send as input to suitably configured neural networks (NNs) for cognitive pattern recognition in order to evaluate the correlation between input sensorial information and output machinability conditions.

  14. Effects of intraoral aging on surface properties of coated nickel-titanium archwires.

    Science.gov (United States)

    Rongo, Roberto; Ametrano, Gianluca; Gloria, Antonio; Spagnuolo, Gianrico; Galeotti, Angela; Paduano, Sergio; Valletta, Rosa; D'Antò, Vincenzo

    2014-07-01

    To evaluate the effects of intraoral aging on surface properties of esthetic and conventional nickel-titanium (NiTi) archwires. Five NiTi wires were considered for this study (Sentalloy, Sentalloy High Aesthetic, Superelastic Titanium Memory Wire, Esthetic Superelastic Titanium Memory Wire, and EverWhite). For each type of wire, four samples were analyzed as received and after 1 month of clinical use by an atomic force microscope (AFM) and a scanning electronic microscope (SEM). To evaluate sliding resistance, two stainless steel plates with three metallic or three monocrystalline brackets, bonded in passive configuration, were manufactured; four as-received and retrieved samples for every wire were pulled five times at 5 mm/min for 1 minute by means of an Instron 5566, recording the greatest friction value (N). Data were analyzed by one-way analysis of variance and by Student's t-test. After clinical use, surface roughness increased considerably. The SEM images showed homogeneity for the as-received control wires; however, after clinical use esthetic wires exhibited a heterogeneous surface with craters and bumps. The lowest levels of friction were observed with the as-received Superelastic Titanium Memory Wire on metallic brackets. When tested on ceramic brackets, all the wires exhibited an increase in friction (t-test; P Sentalloy, showed a statistically significant increase in friction between the as-received and retrieved groups (t-test; P < .05). Clinical use of the orthodontic wires increases their surface roughness and the level of friction.

  15. Deposition of Chitosan Layers on NiTi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kowalski P.

    2015-04-01

    Full Text Available The NiTi shape memory alloys have been known from their application in medicine for implants as well as parts of medical devices. However, nickel belongs to the family of elements, which are toxic. Apart from the fact that nickel ions are bonded with titanium into intermetallic phase, their presence may cause allergy. In order to protect human body against release of nickel ions a surface of NiTi alloy can be modified with use of titanium nitrides, oxides or diamond-like layers. On the one hand the layers can play protective role but on the other hand they may influence shape memory behavior. Too stiff or too brittle layer can lead to limiting or completely blocking of the shape recovery. It was the reason to find more elastic covers for NiTi surface protection. This feature is characteristic for polymers, especially, biocompatible ones, which originate in nature. In the reported paper, the chitosan was applied as a deposited layer on surface of the NiTi shape memory alloy. Due to the fact that nature of shape memory effect is sensitive to thermo and/or mechanical treatments, the chitosan layer was deposited with use of electrophoresis carried out at room temperature. Various deposition parameters were checked and optimized. In result of that thin chitosan layer (0.45µm was received on the NiTi alloy surface. The obtained layers were characterized by means of chemical and phase composition, as well as surface quality. It was found that smooth, elastic surface without cracks and/or inclusions can be produced applying 10V and relatively short deposition time - 30 seconds.

  16. Fluoride influences nickel-titanium orthodontic wires′ surface texture and friction resistance

    Directory of Open Access Journals (Sweden)

    Mona Aly Abbassy

    2016-01-01

    Full Text Available Objectives: The aim of this study was to investigate the effects exerted by the acidulated fluoride gel on stainless steel and nickel-titanium (Ni-Ti orthodontic wires. Materials and Methods: Sixty stainless steel and Ni-Ti orthodontic archwires were distributed into forty archwires used for in vitro study and twenty for in situ study. Fluoride was applied for 1 h in the in vitro experiment while it was applied for 5 min in the in situ experiment. The friction resistance of all wires with ceramic brackets before/after topical fluoride application was measured using a universal testing machine at 1 min intervals of moving wire. Moreover, surface properties of the tested wires before/after fluoride application and before/after friction test were examined by a scanning electron microscope (SEM. Dunnett′s t-test was used to compare frictional resistance of as-received stainless steel wires and Ni-Ti wires to the wires treated by fluoride in vitro and in situ (P < 0.05. Two-way ANOVA was used to compare the effect of fluoride application and type of wire on friction resistance in vitro and in situ (P < 0.05. Results: Ni-Ti wires recorded significantly high friction resistance after fluoride application when compared to stainless steel wires in vitro, P < 0.05. Fluoride application did not significantly affect the friction resistance of the tested wires in situ, P < 0.05. SEM observation revealed deterioration of the surface texture of the Ni-Ti wires after fluoride application in vitro and in situ. Conclusions: The in vitro fluoride application caused an increase in friction resistance of Ni-Ti wires when compared to stainless steel wires. In vitro and in situ fluoride application caused deterioration in surface properties of Ni-Ti wires.

  17. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application; Analise mecanodinamica de ligas de niquel-titanio para aplicacao ortodontica

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Carlos do Canto

    2002-07-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo

  18. Mechanodynamical analysis of nickel-titanium alloys for orthodontics application; Analise mecanodinamica de ligas de niquel-titanio para aplicacao ortodontica

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Carlos do Canto

    2002-07-01

    Nickel-titanium alloys may coexist in more than one crystalline structure. There is a high temperature phase, austenite, and a low temperature phase, martensite. The metallurgical basis for the superelasticity and the shape memory effect relies in the ability of these alloys to transform easily from one phase to another. There are three essential factors for the orthodontist to understand nickel-titanium alloys behaviour: stress; deflection; and temperature. These three factors are related to each other by the stress-deflection, stress-temperature and deflection-temperature diagrams. This work was undertaken with the objective to analyse commercial nickel-titanium alloys for orthodontics application, using the dynamical mechanical analyser - DMA. Four NiTi 0,017 X 0,025'' archwires were studied. The archwires were Copper NiTi 35 deg C (Ormco), Neo Sentalloy F200 (GAC), Nitinol Superelastic (Unitek) and NiTi (GAC). The different mechanodynamical properties such as elasticity and damping moduli were evaluated. Each commercial material was evaluated with and without a 1 N static force, aiming to evaluate phase transition temperature variation with stress. The austenitic to martensitic phase ratio, for the experiments without static force, was in the range of 1.59 to 1.85. For the 1 N static force tests the austenitic to martensitic phase ratio, ranged from 1.28 to 1.57 due to the higher martensite elasticity modulus. With elastic modulus variation with temperature behaviour, the orthodontist has the knowledge of the force variation applied in the tooth in relation to the oral cavity temperature change, for nickel-titanium alloys that undergo phase transformation. The damping capacity of the studied alloys depends on the materials state: martensitic phase; austenitic phase or during phase transformation. The martensitic phase shows higher dumping capacity. During phase transformation, an internal friction peak may be observed for the CuNiTi 35 deg C and Neo Sentalloy F

  19. Release of metal ions from round and rectangular NiTi wires

    Directory of Open Access Journals (Sweden)

    Arash Azizi

    2016-04-01

    Full Text Available Abstract Background The aim of this study was to evaluate the amount of nickel and titanium ions released from two wires with different shapes and a similar surface area. Methods Forty round nickel-titanium (NiTi arch wires with the diameter of 0.020 in. and 40 rectangular NiTi arch wires with the diameter of 0.016 × 0.016 in. were immersed in artificial saliva during a 21-day period. The surface area of both wires was 0.44 in.2. Wires were separately dipped into polypropylene tubes containing 50 ml of buffer solution and were incubated and maintained at 37 °C. Inductively coupled plasma atomic emission spectrometry (ICP-AES was used to measure the amount of ions released after exposure lengths of 1 h, 24 h, 1 week, and 3 weeks. Repeated measures ANOVA and Tukey tests were used to evaluate the data. Results The results indicated that the amount of nickel and titanium concentrations was significantly higher in the rectangular wire group. The most significant release of all metals was measured after the first hour of immersion. In the rectangular wire group, 243 ± 4.2 ng/ml of nickel was released after 1 h, while 221.4 ± 1.7 ng/ml of nickel was released in the round wire group. Similarly, 243.3 ± 2.8 ng/ml of titanium was released in the rectangular wire group and a significantly lower amount of 211.9 ± 2.3 ng/ml of titanium was released in the round wire group. Conclusions Release of metal ions was influenced by the shape of the wire and increase of time.

  20. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  1. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    Directory of Open Access Journals (Sweden)

    Marcelo Faria da Silva

    2016-02-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in and heat-activated NiTi wires (0.016 x 0.022-in from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40, while the other distal portion of the same archwire was used as a heating-free control group (n = 40. Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  2. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    Science.gov (United States)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  3. Influence of temperature of the short-period heat treatment on mechanical properties of the NiTi alloy

    Directory of Open Access Journals (Sweden)

    Jaroslav Čapek

    2014-01-01

    Full Text Available The equiatomic alloy of nickel and titanium, known as nitinol, possesses unique properties such as superelasticity, pseudoplasticity, shape memory, while maintaining good corrosion resistance and sufficient biocompatibility. Therefore it is used for production of various devices including surgery implants. Heat treatment of nickel-rich NiTi alloys can result in precipitation of nickel-rich phases, which strongly influence tensile and fatigue behaviour of the material.In this work we have studied influence of short-period heat treatment on tensile behaviour and fatigue life of the NiTi (50.9 at. % Ni wire intended for fabrication of surgery stents.

  4. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    Science.gov (United States)

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A Survey on Nickel Titanium Rotary Instruments and their Usage Techniques by Endodontists in India.

    Science.gov (United States)

    Patil, Thimmanagowda N; Saraf, Prahlad A; Penukonda, Raghavendra; Vanaki, Sneha S; Kamatagi, Laxmikant

    2017-05-01

    The preference and usage of nickel titanium rotary instruments varies from individual to individual based on their technique, experience with the rotary systems and the clinical situation. Very limited information is available to explain the adoption of changing concepts with respect to nickel titanium rotary instruments pertaining to the endodontists in India. The aim of this study was to conduct a questionnaire survey to acquire the knowledge concerning different NiTi rotary instruments and their usage techniques by endodontists in India. A Survey questionnaire was designed which consisted of 32 questions regarding designation, demographics, experience with rotary instruments, usage of different file systems, usage techniques, frequency of reuse, occurrence of file fracture, reasons and their management was distributed by hand in the national postgraduate convention and also disseminated via electronic medium to 400 and 600 endodontists respectively. Information was collected from each individual to gain insight into the experiences and beliefs of endodontists concerning the new endodontic technology of rotary NiTi instrumentation based on their clinical experience with the rotary systems. The questions were designed to ascertain the problems, patterns of use and to identify areas of perceived or potential concern regarding the rotary instruments and the data acquired was statistically evaluated using Fisher's-exact test and the Chi-Square test. Overall 63.8% (638) endodontists responded. ProTaper was one of the most commonly used file system followed by M two and ProTaper Next. There was a significant co relation between the years of experience and the file re use frequency, preparation technique, file separation, management of file separation. A large number of Endodontists prefer to reuse the rotary NiTi instruments. As there was an increase in the experience, the incidence of file separation reduced with increasing number of re use frequency and with

  6. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase.

    Science.gov (United States)

    Lopes, Hélio P; Gambarra-Soares, Thaiane; Elias, Carlos N; Siqueira, José F; Inojosa, Inês F J; Lopes, Weber S P; Vieira, Victor T L

    2013-04-01

    This study compared the mechanical properties of endodontic instruments made of conventional nickel-titanium (NiTi) wire (K(3) and Revo-S SU), M-Wire (ProFile Vortex), or NiTi alloy in R-phase (K(3)XF). The test instruments were subjected to mechanical tests to evaluate resistance to bending (flexibility), cyclic fatigue, and torsional load in clockwise rotation. Data were statistically evaluated by the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. In the bending resistance test, flexibility decreased in the following order: K(3)XF > Revo-S SU > ProFile Vortex > K(3). The ranking in the fatigue resistance test was the following: K(3)XF > K(3) > ProFile Vortex > Revo-S SU. In the torsional assay, the angular deflection at failure decreased in the following order: K(3)XF > Revo-S SU > K(3) > ProFile Vortex. For the maximum torque values, the ranking was K(3) > K(3)XF > ProFile Vortex > Revo-S SU. The results showed that the K(3)XF instrument, which is made of NiTi alloy in R-phase, had the overall best performance in terms of flexibility, angular deflection at failure, and cyclic fatigue resistance. In addition to the alloy from which the instrument is manufactured, the design and dimensions are important determinants of the mechanical performance of endodontic instruments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  8. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  9. Ball bearings comprising nickel-titanium and methods of manufacture thereof

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Glennon, Glenn N. (Inventor)

    2012-01-01

    Disclosed herein is a friction reducing nickel-titanium composition. The nickel-titanium composition includes a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38. A bearing for reducing friction comprising a nickel-titanium composition comprising a first phase that comprises nickel and titanium in an atomic ratio of about 0.45:0.55 to about 0.55:0.45; a second phase that comprises nickel and titanium in an atomic ratio of about 0.70:0.30 to about 0.80:0.20; and a third phase that comprises nickel and titanium in an atomic ratio of about 0.52:0.48 to about 0.62:0.38; where the bearing is free from voids and pinholes.

  10. NiTi bonded space regainer/maintainer

    Directory of Open Access Journals (Sweden)

    Negi K

    2010-06-01

    Full Text Available Early orthodontic interventions are often initiated in the developing dentition to promote favorable developmental changes. Interceptive orthodontic can eliminate or reduce the severity of a developing malocclusion, the complexity of orthodontic treatment, overall treatment time and cost. Premature loss of deciduous tooth or teeth can often destroy the integrity of normal occlusion. There are many space regaining and maintaining devices mentioned in literature. In this article, I present a simple space regaining method by a piece of nickel titanium (NiTi wire bonded between the teeth in active loop form, and the unique shape memory property of NiTi wire will upright or move the teeth and the lost space can be regained easily.

  11. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah, Sahar A., E-mail: sahar.fadlallah@yahoo.com [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Cairo University, Cairo (Egypt); El-Bagoury, Nader [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Casting Technology Lab., Manufacturing Technology Dept., CMRDI, P.O. Box 87, Helwan, Cairo (Egypt); Gad El-Rab, Sanaa M.F. [Biotechnology Department, Faculty of Science, Taif University, Taif (Saudi Arabia); Botany Department, Faculty of Science, Asuit University, Asuit (Egypt); Ahmed, Rasha A. [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia); Forensic Chemistry Laboratories, Medico Legal Department, Ministry of Justice, Cairo (Egypt); El-Ousamii, Ghaida [Materials and Corrosion Lab. (MCL), Faculty of Science, Taif University, Taif (Saudi Arabia)

    2014-01-15

    -ray analysis (EDX). The study confirmed that the distinctive characteristics of the NiTi alloy back to its chemical composition with two phases from nickel and titanium.

  12. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application

    International Nuclear Information System (INIS)

    Fadlallah, Sahar A.; El-Bagoury, Nader; Gad El-Rab, Sanaa M.F.; Ahmed, Rasha A.; El-Ousamii, Ghaida

    2014-01-01

    study confirmed that the distinctive characteristics of the NiTi alloy back to its chemical composition with two phases from nickel and titanium

  13. Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Shen, Ya; Qian, Wei; Abtin, Houman; Gao, Yuan; Haapasalo, Markus

    2012-03-01

    This study examined the fatigue behavior of 2 types of nickel-titanium (NiTi) instruments made from a novel controlled memory NiTi wire (CM wire) under various environment conditions. Three conventional superelastic NiTi instruments of ProFile (Dentsply Maillefer, Ballaigues, Switzerland), Typhoon (Clinician's Choice Dental Products, New Milford, CT), and DS-SS0250425NEYY (Clinician's Choice Dental Products) and 2 new CM wire instruments of Typhoon CM and DS-SS0250425NEYY CM were subjected to rotational bending at the curvature of 35° in air, deionized water, 17% EDTA, or deionized water after immersion in 6% sodium hypochlorite for 25 minutes, and the number of revolutions of fracture (N(f)) was recorded. The fracture surface of all fragments was examined by a scanning electron microscope. The crack-initiation sites and the percentage of dimple area to the whole fracture cross-section were noted. Two new CM Wire instruments yielded an improvement of >4 to 9 times in N(f) than conventional NiTi files with the same design under various environments (P Wire instruments was significantly longer in liquid media than in air (P wire had one crack origin. The values of the area fraction occupied by the dimple region were significantly smaller on CM NiTi instruments than in conventional NiTi instruments under various environments (P < .05). Within the limitations of this study, the type of NiTi metal alloy (CM files vs conventional superelastic NiTi files) influences the cyclic fatigue resistance under various environments. The fatigue life of CM instruments is longer in liquid media than in air. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

    Science.gov (United States)

    Markhoff, Jana; Krogull, Martin; Schulze, Christian; Rotsch, Christian; Hunger, Sandra; Bader, Rainer

    2017-01-01

    The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi) have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC)-coated NiTi) to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery. PMID:28772412

  15. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2017-01-01

    Full Text Available The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC-coated NiTi to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery.

  16. Maxillary molar derotation and distalization by using a nickel-titanium wire fabricated on a setup model.

    Science.gov (United States)

    Jung, Jong Moon; Wi, Young Joo; Koo, Hyun Mo; Kim, Min Ji; Chun, Youn Sic

    2017-07-01

    The purpose of this article is to introduce a simple appliance that uses a setup model and a nickel-titanium (Ni-Ti) wire for correcting the mesial rotation and drift of the permanent maxillary first molar. The technique involves bonding a Ni-Ti wire to the proper position of the target tooth on a setup model, followed by the fabrication of the transfer cap for indirect bonding and its transfer to the patient's teeth. This appliance causes less discomfort and provides better oral hygiene for the patients than do conventional appliances such as the bracket, pendulum, and distal jet. The treatment time is also shorter with the new appliance than with full-fixed appliances. Moreover, the applicability of the new appliance can be expanded to many cases by using screws or splinting with adjacent teeth to improve anchorage.

  17. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  18. Reduction in bacterial counts in infected root canals after rotary or hand nickel-titanium instrumentation--a clinical study.

    Science.gov (United States)

    Rôças, I N; Lima, K C; Siqueira, J F

    2013-07-01

    To compare the antibacterial efficacy of two instrumentation techniques, one using hand nickel-titanium (NiTi) instruments and the other using rotary NiTi instruments, in root canals of teeth with apical periodontitis. Root canals from single-rooted teeth were instrumented using either hand NiTi instruments in the alternated rotation motion technique or rotary BioRaCe instruments. The irrigant used in both groups was 2.5% NaOCl. DNA extracts from samples taken before and after instrumentation were subjected to quantitative analysis by real-time polymerase chain reaction (qPCR). Qualitative analysis was also performed using presence/absence data from culture and qPCR assays. Bacteria were detected in all S1 samples by both methods. In culture analysis, 45% and 35% of the canals were still positive for bacterial presence after hand and rotary NiTi instrumentation, respectively (P > 0.05). Rotary NiTi instrumentation resulted in significantly fewer qPCR-positive cases (60%) than hand NiTi instrumentation (95%) (P = 0.01). Intergroup comparison of quantitative data showed no significant difference between the two techniques. There was no significant difference in bacterial reduction in infected canals after instrumentation using hand or rotary NiTi instruments. In terms of incidence of positive results for bacteria, culture also showed no significant differences between the groups, but the rotary NiTi instrumentation resulted in more negative results in the more sensitive qPCR analysis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. The influence of artificial salivary pH on nickel ion release and the surface morphology of stainless steel bracket-nickel-titanium archwire combinations

    Directory of Open Access Journals (Sweden)

    Ida Bagus Narmada

    2017-06-01

    Full Text Available Background: In the oral cavity, orthodontic appliances come into contact with saliva which may cause corrosion capable of changing their surface morphology due to the release of metal ions. Surface roughness can influence the effectiveness of tooth movement. One of the ions possibly released when body fluid comes into contact with brackets and archwire is nickel ion (Ni. Ni, one of the most popular components of orthodontic appliances, is, however, a toxic element that could potentially increase the likelihood of health problems such as allergic responses during treatment. Purpose: The purpose of this study was to investigate the effect of different artificial salivary pH on the ions released and the surface morphology of stainless steel (SS brackets-nickel-titanium (NiTi and archwire combinations. Methods: Brackets and archwires were analyzed by an Energy Dispersive X-Ray Detector System (EDX to determine their composition, while NiTi archwire compound was examined by means of X-ray Diffraction (XRD. The immersion test was performed at artificial salivary pH levels of 4.2; 6.5; and 7.6 at 37°C for 28 days. Ni ion release measurement was performed using an Atomic Absorption Spectroscopy (AAS. Surface morphology was analyzed by means of a Scanning Electron Microscopy (SEM. Results: The chemical composition of all orthodontic appliances contained Ni element. In addition, XRD was depicted phases not only NiTi but also Ni, Titanium, Silicon and Zinc Oleate. The immersion test showed that the highest release of Ni ions occured at a pH of 4.2, with no significant difference at various levels of pH (p=.092. There were surface morphology changes in the orthodontic appliances. It was revealed that at a pH of 4.2, the surfaces of orthodontic appliances become unhomogenous and rough compared to those at other pH concentrations. Conclusion: The reduction of pH in the artificial saliva increases the amount of released Ni ions, as well as causing changes to

  20. Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations.

    Science.gov (United States)

    Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo

    2014-05-01

    To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (Pwire's load during alignment.

  1. Behaviour of human endothelial cells on surface modified NiTi alloy.

    Science.gov (United States)

    Plant, Stuart D; Grant, David M; Leach, Lopa

    2005-09-01

    Intravascular stents are being designed which utilise the shape memory properties of NiTi alloy. Despite the clinical advantages afforded by these stents their application has been limited by concerns about the large nickel ion content of the alloy. In this study, the surface chemistry of NiTi alloy was modified by mechanical polishing and oxidising heat treatments and subsequently characterised using X-ray photon spectroscopy (XPS). The effect of these surfaces on monolayer formation and barrier integrity of human umbilical vein endothelial cells (HUVEC) was then assessed by confocal imaging of the adherens junctional molecule VE-cadherin, perijunctional actin and permeability to 42kDa dextrans. Dichlorofluoroscein assays were used to measure oxidative stress in the cells. XPS analysis of NiTi revealed its surface to be dominated by TiO(2). However, where oxidation had occurred after mechanical polishing or post polishing heat treatments at 300 and 400 degrees C in air, a significant amount of metallic nickel or nickel oxide species (10.5 and 18.5 at%) remained on the surface. Exposure of HUVECs to these surfaces resulted in increased oxidative stress within the cells, loss of VE-cadherin and F-actin and significantly increased paracellular permeability. These pathological phenomena were not found in cells grown on NiTi which had undergone heat treatment at 600 degrees C. At this temperature thickening of the TiO(2) layer had occurred due to diffusion of titanium ions from the bulk of the alloy, displacing nickel ions to sub-surface areas. This resulted in a significant reduction in nickel ions detectable on the sample surface (4.8 at%). This study proposes that the integrity of human endothelial monolayers on NiTi is dependent upon the surface chemistry of the alloy and that this can be manipulated, using simple oxidising heat treatments.

  2. The solidification velocity of nickel and titanium alloys

    Science.gov (United States)

    Altgilbers, Alex Sho

    2002-09-01

    The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.

  3. Cyclic Fatigue Resistance of Novel Rotary Files Manufactured from Different Thermal Treated Nickel-Titanium Wires in Artificial Canals.

    Science.gov (United States)

    Karataşlıoglu, E; Aydın, U; Yıldırım, C

    2018-02-01

    The aim of this in vitro study was to compare the static cyclic fatigue resistance of thermal treated rotary files with a conventional nickel-titanium (NiTi) rotary file. Four groups of 60 rotary files with similar file dimensions, geometries, and motion were selected. Groups were set as HyFlex Group [controlled memory wire (CM-Wire)], ProfileVortex Group (M-Wire), Twisted File Group (R-Phase Wire), and OneShape Group (conventional NiTi wire)] and tested using a custom-made static cyclic fatigue testing apparatus. The fracture time and fragment length of the each file was also recorded. Statistical analysis was performed using one-way analysis of variance and Tukey's test at the 95% confidence level (P = 0.05). The HyFlex group had a significantly higher mean cyclic fatigue resistance than the other three groups (P Wire alloy represented the best performance in cyclic fatigue resistance, and NiTi alloy in R-Phase had the second highest fatigue resistance. CM and R-Phase manufacturing technology processed to the conventional NiTi alloy enhance the cyclic fatigue resistance of files that have similar design and size. M-wire alloy did not show any superiority in cyclic fatigue resistance when compared with conventional NiTi wire.

  4. Comparison of cyclic fatigue resistance of three different rotary nickel-titanium instruments designed for retreatment.

    Science.gov (United States)

    Inan, Ugur; Aydin, Cumhur

    2012-01-01

    A number of rotary nickel-titanium (NiTi) systems have been developed to provide better, faster, and easier cleaning and shaping of the root canal system, and recently, rotary NiTi systems designed for root canal retreatment have been introduced. Because the main problem with the rotary NiTi files is fracture, the aim of this study was to compare the cyclic fatigue resistance of 3 different rotary NiTi systems designed for root canal retreatment. Total of 60 instruments of 3 different rotary NiTi systems designed for root canal retreatment were used in this study. Twenty R-Endo R3, 20 ProTaper D3, and 20 Mtwo R (Retreatment) 25.05 instruments were tested. Cyclic fatigue testing of instruments was performed by using a device that allowed the instruments to rotate freely inside an artificial canal. Each instrument was rotated until fracture occurred, and the number of cycles to fracture for each instrument was calculated. Representative samples were also evaluated under a scanning electron microscope to confirm the fracture was flexural. Data were analyzed by using 1-way analysis of variance test. R-Endo R3 instruments showed better cyclic fatigue resistance than ProTaper D3 and Mtwo R 25.05 instruments, and the difference was statistically significant (P instruments were more resistant to fatigue failure than ProTaper D3 and Mtwo R 25.05. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Shaping ability of two M-wire and two traditional nickel-titanium instrumentation systems in S-shaped resin canals.

    Science.gov (United States)

    Ceyhanli, K T; Kamaci, A; Taner, M; Erdilek, N; Celik, D

    2015-01-01

    The aim of this study was to evaluate the shaping effects of two M-wire and two traditional nickel-titanium (NiTi) rotary systems in simulated S-shaped resin canals. Forty simulated S-shaped canals in resin blocks were instrumented with two traditional (ProTaper, Sendoline S5) and two M-wire (WaveOne, GT series X) NiTi systems according to the manufacturers' instructions. Ten resin blocks were used for each system. Pre- and post-instrumentation images were captured using a stereomicroscope and superimposed with an image program. Canal transportation, material removal, and aberrations were evaluated and recorded as numeric parameters. Data were analyzed using one-way ANOVA and post-hoc Tukey tests with a 95% confidence interval. There were significant differences between systems in terms of transportation and material removal (Pwire or traditional NiTi) and kinematics (rotary or reciprocating motion) did not affect the shaping abilities of the systems. The extended file designs of highly tapered NiTi systems (ProTaper, WaveOne) resulted in greater deviations from the original root canal trace and more material removal when compared to less tapered systems (Sendoline S5, GT series X).

  6. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study

    Directory of Open Access Journals (Sweden)

    Venith Jojee Pulikkottil

    2016-01-01

    Full Text Available Objective: (1 To evaluate the corrosion resistance of four different orthodontic archwires and to determine the effect of 0.5% NaF (simulating high fluoride-containing toothpaste of about 2250 ppm on corrosion resistance of these archwires. (2 To assess whether surface roughness (Ra is the primary factor influencing the corrosion resistance of these archwires. Materials and Methods: Four different archwires (stainless steel [SS], nickel-titanium [NiTi], titanium molybdenum alloy [TMA], and ion-implanted TMA were considered for this study. Surface characteristics were analyzed using scanning electron microscopy, atomic force microscopy (AFM, and energy dispersive spectroscopy. Linear polarization test, a fast electrochemical technique, was used to evaluate the corrosion resistance, in terms of polarization resistance of four different archwires in artificial saliva with NaF concentrations of 0% and 0.5%. Statistical analysis was performed by one-way analysis of variance. Results: The potentiostatic study reveals that the corrosion resistance of low-friction TMA (L-TMA > TMA > NiTi > SS. AFM analysis showed the surface Ra of TMA > NiTi > L-TMA > SS. This indicates that the chemical composition of the wire is the primary influential factor to have high corrosion resistance and surface Ra is only secondary. The corrosion resistance of all wires had reduced significantly in 0.5% acidic fluoride-containing artificial saliva due to formation of fluoride complex compound. Conclusion: The presence of 0.5% NaF in artificial saliva was detrimental to the corrosion resistance of the orthodontic archwires. Therefore, complete removal of residual high-fluorinated toothpastes from the crevice between archwire and bracket during tooth brushing is mandatory.

  7. A comparison of nickel-titanium rotary instruments manufactured using different methods and cross-sectional areas: ability to resist cyclic fatigue.

    Science.gov (United States)

    Oh, So-Ram; Chang, Seok-Woo; Lee, Yoon; Gu, Yu; Son, Won-Jun; Lee, Woocheol; Baek, Seung-Ho; Bae, Kwang-Shik; Choi, Gi-Woon; Lim, Sang-Min; Kum, Kee-Yeon

    2010-04-01

    This study examined the effect of the manufacturing methods (ground, electropolished, and twisted) and the cross-sectional area (CSA) of nickel-titanium (NiTi) rotary instruments on their cyclic fatigue resistance. A total of 80 NiTi rotary instruments (ISO 25/.06 taper) from 4 brands (K3, ProFile, RaCe, and TF) were rotated in a simulated root canal with pecking motion until fracture. The number of cycles to failure (NCF) was calculated. The CSA at 3 mm from the tip of new instruments of each brand was calculated. The correlation between the CSA and NCF was evaluated. All fractured surfaces were analyzed using a scanning electron microscope to determine the fracture mode. The TF instruments were the most resistant to fatigue failure. The resistance to cyclic failure increased with decreasing CSA. All fractured surfaces showed the coexistence of ductile and brittle properties. The CSA had a significant effect on the fatigue resistance of NiTi rotary instruments. Copyright 2010 Mosby, Inc. All rights reserved.

  8. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    Science.gov (United States)

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  9. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    Science.gov (United States)

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  10. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    Science.gov (United States)

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  11. Mechanical response of nickel-titanium instruments with different cross-sectional designs during shaping of simulated curved canals.

    Science.gov (United States)

    Kim, H C; Kim, H J; Lee, C J; Kim, B M; Park, J K; Versluis, A

    2009-07-01

    To evaluate how different cross-sectional designs affect stress distribution in nickel-titanium (NiTi) instruments during bending, torsion and simulated shaping of a curved canal. Four NiTi rotary instruments with different cross-sectional geometries were selected: ProFile and HeroShaper systems with a common triangle-based cross section, Mtwo with an S-shaped rectangle-based design and NRT with a modified rectangle-based design. The geometries of the selected files were scanned in a micro-CT and three-dimensional finite-element models were created for each system. Stiffness characteristics for each file system were determined in a series of bending and torsional conditions. Canal shaping was simulated by inserting models of the rotating file into a 45 degrees curved canal model. Stress distribution in the instruments was recorded during simulated shaping. After the instruments were retracted from the canal, residual stresses and permanent bending of their tips due to plastic deformation were determined. The greatest bending and torsional stiffness occurred in the NRT file. During simulated shaping, the instruments with triangle-based cross-sectional geometry had more even stress distributions along their length and had lower stress concentrations than the instruments with rectangle-based cross sections. Higher residual stresses and plastic deformations were found in the Mtwo and NRT with rectangle-based cross-sectional geometries. Nickel-titanium instruments with rectangle-based cross-sectional designs created higher stress differentials during simulated canal shaping and may encounter higher residual stress and plastic deformation than instruments with triangle-based cross sections.

  12. Force level of small diameter nickel-titanium orthodontic wires ligated with different methods

    Directory of Open Access Journals (Sweden)

    Rodrigo Hitoshi Higa

    2017-08-01

    Full Text Available Abstract Background The aim of this study was to compare the deflection force in conventional and thermally activated nickel-titanium (NiTi wires in passive (Damon Q and active (Bioquick self-ligating brackets (SLB and in conventional brackets (CB tied by two different methods: elastomeric ligature (EL and metal ligature (ML. Methods Two wire diameters (0.014 and 0.016 in. and 10 specimens per group were used. The specimens were assembled in a clinical simulation device and tested in an Instron Universal Testing Machine, with a load cell of 10 N. For the testing procedures, the acrylic block representative of the right maxillary central incisor was palatally moved, with readings of the force at 0.5, 1, 2, and 3 mm, at a constant speed of 2 mm/min and temperature of 36.5 °C. Results The conventional NiTi released higher forces than the thermally activated NiTi archwires in large deflections. In general, the SLB showed lower forces, while the ML had higher forces, with both showing a similar force release behavior, constantly decreasing as the deflection decreased. The EL showed an irregular behavior. The active SLB showed smaller forces than passive, in large deflections. Conclusions The SLB and the ML exhibit standard force patterns during unloading, while the elastomeric ligatures exhibit a randomly distributed force release behavior.

  13. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study

    Directory of Open Access Journals (Sweden)

    Vandana Kararia

    2015-01-01

    Full Text Available Introduction: The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM study of surface changes and complexometric titration to study compositional change was performed. Materials and Methods: Ten archwires each of group 1-3 M 0.016" NiTi, group 2-JJ 0.016" NiTi, group 3-3 M 0.019" FNx010.025" SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at Χ2000, Χ4000 and Χ6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. Observations and Results: The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0. Conclusion: Extensive and stringent trials are required before certifying any product to be used in Orthodontics.

  14. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.

    Science.gov (United States)

    Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan

    2007-05-01

    Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.

  15. Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements

    Directory of Open Access Journals (Sweden)

    Gianluca Turco

    2017-01-01

    Full Text Available Objectives: The aim of the study was to examine how probiotic supplements affect the corrosion stability of orthodontic archwires made of nickel-titanium alloy (NiTi. Materials and Methods: Ni-Ti archwires (0.508x0.508 and having the length of 2.5 cm were tested. The archwires (composition Ni=50.4%, Ti=49.6% were uncoated, nitrified and rhodium coated. Surface microgeometry was observed by using scanning electron microscope and surface roughness was measured by profilometer through these variables: roughness average, maximum height and maximum roughness depth. Corrosion was examined by electrochemical method of cyclic polarisation. Results: Rhodium coated alloy in saliva has significantly higher general corrosion in saliva than nitrified alloy and uncoated alloy, with large effect size (p=0.027; η2=0.700. In the presence of probiotics, the result was even more pronounced (p<0.001; η2=0.936. Probiotic supplement increases general and localised corrosion of rhodium coated archwire and slightly decreases general corrosion and increases localised corrosion in uncoated archwire , while in the case of nitrified archwire the probability of corrosion is very low. The differences in surface roughness between NiTi wires before corrosion are not significant. Exposure to saliva decreases roughness average in rhodium coated wire (p=0.015; η2=0.501. Media do not significantly influence surface microgeometry in nitrified and uncoated wires. Conclusion: Probiotic supplement affects corrosion depending on the type of coating of the NiTi archwire. It increases general corrosion of rhodium coated wire and causes localised corrosion of uncoated and rhodium coated archwire. Probiotic supplement does not have greater influence on surface roughness compared to that of saliva.

  16. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  17. Glide path preparation in S-shaped canals with rotary pathfinding nickel-titanium instruments.

    Science.gov (United States)

    Ajuz, Natasha C C; Armada, Luciana; Gonçalves, Lucio S; Debelian, Gilberto; Siqueira, José F

    2013-04-01

    This study compared the incidence of deviation along S-shaped (double-curved) canals after glide path preparation with 2 nickel-titanium (NiTi) rotary pathfinding instruments and hand K-files. S-shaped canals from 60 training blocks were filled with ink, and preinstrumentation images were obtained by using a stereomicroscope. Glide path preparation was performed by an endodontist who used hand stainless steel K-files (up to size 20), rotary NiTi PathFile instruments (up to size 19), or rotary NiTi Scout RaCe instruments (up to size 20). Postinstrumentation images were taken by using exactly the same conditions as for the preinstrumentation images, and both pictures were superimposed. Differences along the S-shaped canal for the mesial and distal aspects were measured to evaluate the occurrence of deviation. Intragroup analysis showed that all instruments promoted some deviation in virtually all levels. Overall, regardless of the group, deviations were observed in the mesial wall at the canal terminus and at levels 4, 5, 6 and 7 mm and in the distal wall at levels 1, 2, and 3 mm. These levels corresponded to the inner walls of each curvature. Both rotary NiTi instruments performed significantly better than hand K-files at all levels (P instruments showed significantly better results than PathFiles at levels 0, 2, 3, 5, and 6 mm (P rotary NiTi instruments are suitable for adequate glide path preparation because they promoted less deviation from the original canal anatomy when compared with hand-operated instruments. Of the 2 rotary pathfinding instruments, Scout RaCe showed an overall significantly better performance. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  19. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy

    Science.gov (United States)

    Wierenga, Mark

    Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P orthodontic metallurgy.

  20. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Habijan, T., E-mail: Tim.Habijan@rub.de [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany); Haberland, C.; Meier, H. [Institute Product and Service Engineering, Ruhr-University Bochum (Germany); Frenzel, J. [Institute for Materials, Ruhr-University Bochum (Germany); Wittsiepe, J. [Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum (Germany); Wuwer, C.; Greulich, C.; Schildhauer, T.A.; Koeller, M. [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany)

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. - Highlights: Black-Right-Pointing-Pointer Specimens, varying in porosity and surface structure were produced via SLM. Black-Right-Pointing-Pointer Biocompatibility of these specimens was analyzed. Black

  1. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    Science.gov (United States)

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P wires were significantly different from one another depending on the coating method (P wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  2. Shaping abilities of two different engine-driven rotary nickel titanium systems or stainless steel balanced-force technique in mandibular molars.

    Science.gov (United States)

    Matwychuk, Michael J; Bowles, Walter R; McClanahan, Scott B; Hodges, Jim S; Pesun, Igor J

    2007-07-01

    The purpose of this study was to compare apical transportation, working-length changes, and instrumentation time by using nickel-titanium (Ni-Ti) rotary file systems (crown-down method) or stainless steel hand files (balanced-force technique) in mesiobuccal canals of extracted mandibular molars. The curvature of each canal was determined and teeth placed into three equivalent groups. Group 1 was instrumented with Sequence (Brasseler USA, Savannah, GA) rotary files, group 2 with Liberator (Miltex Inc, York, PA) rotary files, and group 3 with Flex-R (Union Broach, New York, NY) files. Pre- and postoperative radiographs were superimposed to measure loss of working length and apical transportation as shown by changes in radius of curvature and the long-axis canal angle. Sequence rotary files, Liberator rotary files, and Flex-R hand files had similar effects on apical canal transportation and changes in working length, with no significant differences detected among the 3 groups. Hand instrumentation times were longer than with either Ni-Ti rotary group, whereas the rotary NiTi groups had a higher incidence of fracture.

  3. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.

    Science.gov (United States)

    Ninan, Elizabeth; Berzins, David W

    2013-01-01

    Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  5. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  6. Evaluation of surface characteristics of rotary nickel-titanium instruments produced by different manufacturing methods.

    Science.gov (United States)

    Inan, U; Gurel, M

    2017-02-01

    Instrument fracture is a serious concern in endodontic practice. The aim of this study was to investigate the surface quality of new and used rotary nickel-titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Total 16 instruments of two rotary NiTi systems were used in this study. Eight Twisted Files (TF) (SybronEndo, Orange, CA, USA) and 8 Mtwo (VDW, Munich, Germany) instruments were evaluated. New and used of 4 experimental groups were evaluated using an atomic force microscopy (AFM). New and used instruments were analyzed on 3 points along a 3 mm. section at the tip of the instrument. Quantitative measurements according to the topographical deviations were recorded. The data were statistically analyzed with paired samples t-test and independent samples t-test. Mean root mean square (RMS) values for new and used TF 25.06 files were 10.70 ± 2.80 nm and 21.58 ± 6.42 nm, respectively, and the difference between them was statistically significant (P instruments produced by twisting method (TF 25.06) had better surface quality than the instruments produced by traditional grinding process (Mtwo 25.06 files).

  7. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.

    Science.gov (United States)

    Ye, Jia; Gao, Yong

    2012-01-01

    Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Comparison of Superelasticity of Nickel Titanium Orthodontic Arch wires using Mechanical Tensile Testing and Correlating with Electrical Resistivity

    Science.gov (United States)

    Sivaraj, Aravind

    2013-01-01

    Background: Application of light and continuous forces for optimum physiological response and least damage to the tooth supporting structures should be the primary aim of the orthodontist. Nickel titanium alloys with the properties of excellent spring back, super elasticity and wide range of action is one of the natural choices for the clinicians to achieve this goal. In recent periods, various wire manufacturers have come with a variety of wires exhibiting different properties. It is the duty of the clinician to select appropriate wires during various stages of treatment for excellent results. For achieving this evaluation of the properties of these wires is essential. Materials & Methods: This study is focussed on evaluating the super elastic property of eight groups of austenite active nickel titanium wires. Eight groups of archwires bought from eight different manufacturers were studied. These wires were tested through mechanical tensile testing and electrical resistivity methods. Results: Unloading curves were carefully assessed for superelastic behaviour on deactivation. Rankings of the wires tested were based primarily upon the unloading curve’s slope Conclusion: Ortho organisers wires ranked first and superior, followed by American Orthodontics and Ormco A wires. Morelli and GAClowland NiTi wires were ranked last. It can be concluded that the performance of these wires based on rankings should be further evaluated by clinical studies. How to cite this article: Sivaraj A. Comparison of Superelasticity of Nickel Titanium Orthodontic Arch wires using Mechanical Tensile Testing and Correlating with Electrical Resistivity. J Int Oral Health 2013; 5(3):1-12. PMID:24155596

  9. Three-dimensional quantification of pretorqued nickel-titanium wires in edgewise and prescription brackets.

    Science.gov (United States)

    Mittal, Nitika; Xia, Zeyang; Chen, Jie; Stewart, Kelton T; Liu, Sean Shih-Yao

    2013-05-01

    To quantify the three-dimensional moments and forces produced by pretorqued nickel-titanium (NiTi) rectangular archwires fully engaged in 0.018- and 0.022-inch slots of central incisor and molar edgewise and prescription brackets. Ten identical acrylic dental models with retroclined maxillary incisors were fabricated for bonding with various bracket-wire combinations. Edgewise, Roth, and MBT brackets with 0.018- and 0.022-inch slots were bonded in a simulated 2 × 4 clinical scenario. The left central incisor and molar were sectioned and attached to load cells. Correspondingly sized straight and pretorqued NiTi archwires were ligated to the brackets using 0.010-inch ligatures. Each load cell simultaneously measured three force (Fx, Fy, Fz) and three moment (Mx, My, Mz) components. The faciolingual, mesiodistal, and inciso-occluso/apical axes of the teeth corresponded to the x, y, and z axes of the load cells, respectively. Each wire was removed and retested seven times. Three-way analysis of variance (ANOVA) examined the effects of wire type, wire size, and bracket type on the measured orthodontic load systems. Interactions among the three effects were examined and pair-wise comparisons between significant combinations were performed. The force and moment components on each tooth were quantified according to their local coordinate axes. The three-way ANOVA interaction terms were significant for all force and moment measurements (P .05). The pretorqued wire generates a significantly larger incisor facial crown torquing moment in the MBT prescription compared to Roth, edgewise, and the straight NiTi wire.

  10. Stereomicroscopic evaluation of defects caused by torsional fatigue in used hand and rotary nickel-titanium instruments.

    Science.gov (United States)

    Asthana, Geeta; Kapadwala, Marsrat I; Parmar, Girish J

    2016-01-01

    The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation.

  11. Electrodeposition of polypyrrole onto NiTi and the corrosion behaviour of the coated alloy

    International Nuclear Information System (INIS)

    Flamini, D.O.; Saidman, S.B.

    2010-01-01

    Polypyrrole (PPy) films were electrodeposited onto nickel--titanium alloy (NiTi) employing sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT) solutions. Polarizing anodically NiTi samples recovered by PPy in a monomer-free solution increases adhesion of the coating. Electrochemical techniques, scanning electron microscopy (SEM) and element analysis were used in determining the corrosion performance of the coated samples in chloride solution. The polymer improves the corrosion performance at the open circuit potential and at potentials where the bare substrate suffers pitting attack. The improvement in both, adhesion and corrosion performance, is discussed considering substrate/polymer interaction, overoxidation of PPy and the role played by AOT.

  12. An adjustment in NiTi closed coil spring for an extended range of activation.

    Science.gov (United States)

    Ravipati, Raghu Ram; Sivakumar, Arunachalam; Sudhakar, P; Padmapriya, C V; Bhaskar, Mummudi; Azharuddin, Mohammad

    2014-01-01

    The Nickel Titanium (NiTi) closed coil springs serve as an efficient force delivery system in orthodontic space closure mechanics. The closed coil springs with the eyelets come in various lengths to broaden its force characteristics for an expedient space closure. However, at a certain point of time of progressive space closure, the coil spring can be expanded no further for an adequate force delivery. In such situations, the clinician prefers to replace the existing spring with another short length spring. The present article describes a simple conservative technique for progressively re-activating the same NiTi closed coil spring for complete space closure.

  13. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  14. Influence of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires

    Science.gov (United States)

    Asiry, Moshabab A.; AlShahrani, Ibrahim; Almoammar, Salem; Durgesh, Bangalore H.; Kheraif, Abdulaziz A. Al; Hashem, Mohamed I.

    2018-02-01

    Aim. To investigate the effect of epoxy, polytetrafluoroethylene (PTFE) and rhodium surface coatings on surface roughness, nano-mechanical properties and biofilm adhesion of nickel titanium (Ni-Ti) archwires Methods. Three different coated (Epoxy, polytetrafluoroethylene (PTFE) and rhodium) and one uncoated Ni-Ti archwires were evaluated in the present study. Surface roughness (Ra) was assessed using a non-contact surface profilometer. The mechanical properties (nano-hardness and elastic modulus) were measured using a nanoindenter. Bacterial adhesion assays were performed using Streptococcus mutans (MS) and streptococcus sobrinus (SS) in an in-vitro set up. The data obtained were analyzed using analyses of variance, Tukey’s post hoc test and Pearson’s correlation coefficient test. Result. The highest Ra values (1.29 ± 0.49) were obtained for epoxy coated wires and lowest Ra values (0.29 ± 0.16) were obtained for the uncoated wires. No significant differences in the Ra values were observed between the rhodium coated and uncoated archwires (P > 0.05). The highest nano-hardness (3.72 ± 0.24) and elastic modulus values (61.15 ± 2.59) were obtained for uncoated archwires and the lowest nano-hardness (0.18 ± 0.10) and elastic modulus values (4.84 ± 0.65) were observed for epoxy coated archwires. No significant differences in nano-hardness and elastic modulus values were observed between the coated archwires (P > 0.05). The adhesion of Streptococcus mutans (MS) to the wires was significantly greater than that of streptococcus sobrinus (SS). The epoxy coated wires demonstrated an increased adhesion of MS and SS and the uncoated wires demonstrated decreased biofilm adhesion. The Spearman correlation test showed that MS and SS adhesion was positively correlated with the surface roughness of the wires. Conclusion. The different surface coatings significantly influence the roughness, nano-mechanical properties and biofilm adhesion parameters of the archwires. The

  15. Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Haïkel, Y; Serfaty, R; Bateman, G; Senger, B; Allemann, C

    1999-06-01

    The absence of adequate testing standards for engine-driven nickel-titanium (NiTi) instruments necessitates further study of these instruments in all areas. This study examined three groups of engine-driven rotary NiTi endodontic instruments (Profile, Hero, and Quantec) and assessed the times for dynamic fracture in relation to the radius of curvature to which the instruments were subjected during preparation, with the instrument diameter determined by size and taper and the mode by which the fracture occurred. Ten instruments were randomly selected representing each size and taper for each group and for each radius of curvature: 600 in total. The instruments were rotated at 350 rpm and introduced into a tempered steel curve that simulated a canal. Two radii of curvature of canals were used: 5 and 10 mm. Time at fracture was noted for all files, and the fracture faces of each file were analyzed with scanning electron microscopy. Radius of curvature was found to be the most significant factor in determining the fatigue resistance of the files. As radius of curvature decreased, fracture time decreased. Taper of files was found to be significant in determining fracture time. As diameter increased, fracture time decreased. In all cases, fracture was found to be of a ductile nature, thus implicating cyclic fatigue as a major cause of failure and necessitating further analyses and setting of standards in this area.

  16. Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments.

    Science.gov (United States)

    Al-Hadlaq, Solaiman M S; Aljarbou, Fahad A; AlThumairy, Riyadh I

    2010-02-01

    This study was conducted to investigate cyclic flexural fatigue resistance of GT series X rotary files made from the newly developed M-wire nickel-titanium alloy compared with GT and Profile nickel-titanium files made from a conventional nickel-titanium alloy. Fifteen files, size 30/0.04, of each type were used to evaluate the cyclic flexural fatigue resistance. A simple device was specifically constructed to measure the time each file type required to fail under cyclic flexural fatigue testing. The results of this experiment indicated that the GT series X files had superior cyclic flexural fatigue resistance than the other 2 file types made from a conventional nickel-titanium alloy (P = .004). On the other hand, the difference between the Profile and the GT files was not statistically significant. The findings of this study suggest that size 30/0.04 nickel-titanium rotary files made from the newly developed M-wire alloy have better cyclic flexural fatigue resistance than files of similar design and size made from the conventional nickel-titanium alloy. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Nickel titanium springs versus stainless steel springs: A randomized clinical trial of two methods of space closure.

    Science.gov (United States)

    Norman, Noraina Hafizan; Worthington, Helen; Chadwick, Stephen Mark

    2016-09-01

    To compare the clinical performance of nickel titanium (NiTi) versus stainless steel (SS) springs during orthodontic space closure. Two-centre parallel group randomized clinical trial. Orthodontic Department University of Manchester Dental Hospital and Orthodontic Department Countess of Chester Hospital, United Kingdom. Forty orthodontic patients requiring fixed appliance treatment were enrolled, each being randomly allocated into either NiTi (n = 19) or SS groups (n = 21). Study models were constructed at the start of the space closure phase (T0) and following the completion of space closure (T1). The rate of space closure achieved for each patient was calculated by taking an average measurement from the tip of the canine to the mesiobuccal groove on the first permanent molar of each quadrant. The study was terminated early due to time constraints. Only 30 patients completed, 15 in each study group. There was no statistically significant difference between the amounts of space closed (mean difference 0.17 mm (95%CI -0.99 to 1.34; P = 0.76)). The mean rate of space closure for NiTi coil springs was 0.58 mm/4 weeks (SD 0.24) and 0.85 mm/4 weeks (SD 0.36) for the stainless steel springs. There was a statistically significant difference between the two groups (P = 0.024), in favour of the stainless steel springs, when the mean values per patient were compared. Our study shows that stainless steel springs are clinically effective; these springs produce as much space closure as their more expensive rivals, the NiTi springs.

  18. Hand and nickel-titanium root canal instrumentation performed by dental students: a micro-computed tomographic study.

    Science.gov (United States)

    Peru, M; Peru, C; Mannocci, F; Sherriff, M; Buchanan, L S; Pitt Ford, T R

    2006-02-01

    The aim of this study was to evaluate root canals instrumented by dental students using the modified double-flared technique, nickel-titanium (NiTi) rotary System GT files and NiTi rotary ProTaper files by micro-computed tomography (MCT). A total of 36 root canals from 18 mesial roots of mandibular molar teeth were prepared; 12 canals were prepared with the modified double-flared technique, using K-flexofiles and Gates-Glidden burs; 12 canals were prepared using System GT and 12 using ProTaper rotary files. Each root was scanned using MCT preoperatively and postoperatively. At the coronal and mid-root sections, System GT and ProTaper files produced significantly less enlarged canal cross-sectional area, volume and perimeter than the modified double-flared technique (P ProTaper (P ProTaper and System GT were able to prepare root canals with little or no procedural error compared with the modified double-flared technique. Under the conditions of this study, inexperienced dental students were able to prepare curved root canals with rotary files with greater preservation of tooth structure, low risk of procedural errors and much quicker than with hand instruments.

  19. Urethra sparing - potential of combined Nickel-Titanium stent and intensity modulated radiation therapy in prostate cancer.

    Science.gov (United States)

    Thomsen, Jakob Borup; Arp, Dennis Tideman; Carl, Jesper

    2012-05-01

    To investigate a novel method for sparing urethra in external beam radiotherapy of prostate cancer and to evaluate the efficacy of such a treatment in terms of tumour control using a mathematical model. This theoretical study includes 20 patients previously treated for prostate cancer using external beam radiotherapy. All patients had a Nickel-Titanium (Ni-Ti) stent inserted into the prostate part of urethra. The stent has been used during the treatment course as an internal marker for patient positioning prior to treatment. In this study the stent is used for delineating urethra while intensity modulated radiotherapy was used for lowering dose to urethra. Evaluation of the dose plans were performed using a tumour control probability model based on the concept of uniform equivalent dose. The feasibility of the urethra dose reduction method is validated and a reduction of about 17% is shown to be possible. Calculations suggest a nearly preserved tumour control probability. A new concept for urethra dose reduction is presented. The method relies on the use of a Ni-Ti stent as a fiducial marker combined with intensity modulated radiotherapy. Theoretical calculations suggest preserved tumour control. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. An in vitro evaluation of the accuracy of four electronic apex locators using stainless-steel and nickel-titanium hand files

    Directory of Open Access Journals (Sweden)

    Paras Mull Gehlot

    2016-02-01

    Full Text Available Objectives The purpose of this in vitro study was to evaluate the accuracy of working length (WL determination of four electronic apex locators (EALs, namely, Root ZX (RZX, Elements diagnostic unit and apex locator (ELE, SybronEndo Mini Apex locator (MINI and Propex pixi (PIXI using Stainless steel (SS and nickel-titanium (NiTi hand files. The null hypothesis was that there was no difference between canal length determination by SS and NiTi files of 4 EALs. Materials and Methods Sixty extracted, single rooted human teeth were decoronated and the canal orifice flared. The actual length (AL was assessed visually, and the teeth were embedded in an alginate model. The electronic length (EL measurements were recorded with all four EALs using SS and NiTi files at '0.5' reading on display. The differences between the AL and EL were compared. Results The results obtained with each EAL with SS and NiTi files were compared with AL. A paired sample t test showed that there was a statistical significant difference between EAL readings with SS and NiTi files for RZX and MINI (p < 0.05. The accuracy of RZX, ELE, MINI and PIXI within ± 0.5 mm of AL with SS/NiTi files were 93.3%/70%, 90%/91.7%, 95%/68.3%, and 83.3%/83.3%, respectively. Conclusions The results of this study indicate that Root ZX was statistically more accurate with NiTi files compared to SS files, while MINI was statistically more accurate with SS files compared to NiTi files. ELE and PIXI were not affected by the alloy type of the file used to determine WL.

  1. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    Science.gov (United States)

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  2. Stress induced martensite at the crack tip in NiTi alloys during fatigue loading

    Directory of Open Access Journals (Sweden)

    E. Sgambitterra

    2014-10-01

    Full Text Available Crack tip stress-induced phase transformation mechanisms in nickel-titanium alloys (NiTi were analyzed by Digital Image Correlation (DIC, under fatigue loads. In particular, Single Edge Crack (SEC specimens, obtained from a commercial pseudoelastic NiTi sheet, and an ad-hoc experimental setup were used, for direct measurements of the near crack tip displacement field by the DIC technique. Furthermore, a fitting procedure was developed to calculate the mode I Stress Intensity Factor (SIF, starting from the measured displacement field. Finally, cyclic tensile tests were performed at different operating temperature, in the range 298-338 K, and the evolution of the SIF was studied, which revealed a marked temperature dependence.

  3. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.

    Science.gov (United States)

    Habijan, T; Haberland, C; Meier, H; Frenzel, J; Wittsiepe, J; Wuwer, C; Greulich, C; Schildhauer, T A; Köller, M

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles.

    Science.gov (United States)

    Wichelhaus, Andrea; Brauchli, Lorenz; Ball, Judith; Mertmann, Matthias

    2010-05-01

    The main advantage of superelastic nickel-titanium (NiTi) products is their unique characteristic of force plateaus, which allow for clinically precise control of the force. The aims of this study were to define the mechanical characteristics of several currently available closed-coil retraction springs and to compare these products. A universal test frame was used to acquire force-deflection diagrams of 24 NiTi closed-coil springs at body temperature. Data analysis was performed with the superelastic algorithm. Also, the influence of temperature cycles and mechanical microcycles simulating ingestion of different foods and mastication, respectively, were considered. Mechanical testing showed significant differences between the various spring types (ANOVA, mechanical properties of the springs: strong superelasticity without bias stress, weak superelasticity without bias stress, strong superelasticity with bias stress, and weak superelasticity with bias stress. In sliding mechanics, the strongly superelastic closed-coil springs with preactivation are recommended. In addition, we found that the oral environment seems to have only a minor influence on their mechanical properties. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Determining cutting efficiency of nickel-titanium coronal flaring instruments used in lateral action.

    Science.gov (United States)

    Peters, O A; Morgental, R D; Schulze, K A; Paqué, F; Kopper, P M P; Vier-Pelisser, F V

    2014-06-01

    To develop a method to evaluate the cutting behaviour of nickel-titanium (NiTi) coronal flaring instruments. BioRaCe BR0 (BR), HyFlex CM 1 (HY), ProFile OS No. 2 (PF) and ProTaper Sx (PT) instruments were used in simulated coronal flaring using a lateral action against bovine dentine blocks, at 250 and 500 rpm. Cutting efficiency was assessed by three methods: first, areas of notches produced by instruments were directly measured under a stereomicroscope. Second, dentine specimens were then analysed by surface profilometry to determine the maximum cutting depth and finally by microcomputed tomography to assess the volume of removed dentine. Data were compared using parametric tests with the significance level set at 0.05. For all three methods, HY and PF were the most and the least cutting-efficient instruments, respectively (P wire, was the most efficient instrument, and increased rotational speed was associated with increased cutting efficiency. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Nickel-Titanium Wire as Suture Material: A New Technique for the Fixation of Skin.

    Science.gov (United States)

    Li, Haidong; Song, Tao

    2018-01-29

    To introduce nickel-titanium wire as suture material for closure of incisions in cleft lip procedures. Closure of skin incisions using nickel-titanium wire as suture material, with postoperative follow-up wound evaluation. There was excellent patient satisfaction and good cosmetic outcome. Nickel-titanium wire is an excellent alternative for suture closure of cleft lip surgical incisions.

  7. Repercussion of noni mouthwash on surface characterization of Nickel-Titanium archwire

    Directory of Open Access Journals (Sweden)

    Dhivya Dilipkumar

    2017-01-01

    Full Text Available Objective: Maintaining oral hygiene is very important during orthodontic therapy mouthwashes are prescribed as an adjunct to improve patient's oral hygiene. Commercially available mouthwashes e.g. Chlorhexidine, Listerine, fluoride containing mouthwashes have shown to alter the surface characteristics of orthodontic wires. Hence the purpose of the study was to evaluate the effect of Noni mouthwash on surface quality and compositional changes of Nickel Titanium orthodontic wires. Materials and Methods: In this in vitro study pre-formed 0.014 inch NiTi arch wire was used. The study comprised of two samples, one control and one test sample which were 25mm in length. Control sample was stored at room temperature without any manipulation while test sample was immersed in Noni mouthwash solution for 1.5 hours, after which the test specimen was removed from the mouthwash solution and rinsed with distilled water. Both control and test samples were sent for scanning electron microscopy analysis, to qualitatively characterize the topography of the wire surface. Electron dispersion spectrum analysis was done to evaluate the various components of both the wires. Results: No significant difference in the average surface roughness for both wire samples was observed. There was no significant difference seen in the composition of wire after immersion in Noni mouthwash. Conclusion: Noni mouthwash did not have significant influence on the surface roughness or altered the composition of the Ni-Ti wire. Hence Noni mouthwash may be prescribed as a natural, non-destructive prophylactic agent for orthodontic patients.

  8. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  9. Copper and nickel alloys and titanium for seawater applications

    International Nuclear Information System (INIS)

    Richter, H.

    1977-01-01

    Copper and nickel alloys and titanium have been successfully used for heat exchangers on ships, in power plants and for chemical apparatus and piping systems because of their resistance against corrosion in sea water. Aluminium brass and copper nickel alloys, the standard materials for condensers and coolers, however, may be attacked, the corrosion depending on water quality, water velocity, and structural conditions. The mechanisms of corrosion are discussed. Under severe conditions the use of titanium may be indicated. The use of nickel base alloys is advantageous at elevated temperatures, e.g. for chemical reactions and for evaporation processes. Examples are given for application and for prevention of corrosion. (orig.) [de

  10. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu, Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys are useful orthopedic biomaterials on account of its super-elastic and shape memory properties. However, the problem associated with out-diffusion of harmful nickel ions in prolonged use inside the human body raises a critical safety concern. Titanium oxide films are deemed to be chemically inert and biocompatible and hence suitable to be the barrier layers to impede the leaching of Ni from the NiTi substrate to biological tissues and fluids. In the work reported in this paper, we compare the anti-corrosion efficacy of oxide films produced by atmospheric-pressure oxidation and oxygen plasma ion implantation. Our results show that the oxidized samples do not possess improved corrosion resistance and may even fare worse than the untreated samples. On the other hand, the plasma-implanted surfaces exhibit much improved corrosion resistance. Our work also shows that post-implantation annealing can further promote the anti-corrosion capability of the samples

  11. Do Mechanical and Physicochemical Properties of Orthodontic NiTi Wires Remain Stable In Vivo?

    Directory of Open Access Journals (Sweden)

    Michał Sarul

    2016-01-01

    Full Text Available Introduction and Aim. Exceptional properties of the NiTi archwires may be jeopardized by the oral cavity; thus its long-term effect on the mechanical and physiochemical properties of NiTi archwires was the aim of work. Material and Methods. Study group comprised sixty 0.016 × 0.022 NiTi archwires from the same manufacturer evaluated (group A after the first 12 weeks of orthodontic treatment. 30 mm long pieces cut off from each wire prior to insertion formed the control group B. Obeying the strict rules of randomization, all samples were subjected to microscopic evaluation and nanoindentation test. Results. Both groups displayed substantial presence of nonmetallic inclusions. Heterogeneity of the structure and its alteration after usage were found in groups B and A, respectively. Conclusions. Long-term, reliable prediction of biomechanics of NiTi wires in vivo is impossible, especially new archwires from the same vendor display different physiochemical properties. Moreover, manufacturers have to decrease contamination in the production process in order to minimize risk of mutual negative influence of nickel-titanium archwires and oral environment.

  12. Behavior of nickel-titanium instruments manufactured with different thermal treatments.

    Science.gov (United States)

    Pereira, Érika Sales Joviano; Viana, Ana Cecília Diniz; Buono, Vicente Tadeu Lopes; Peters, Ove A; Bahia, Maria Guiomar de Azevedo

    2015-01-01

    The purpose of this study was to investigate if nickel-titanium instruments with similar designs manufactured by different thermal treatments would exhibit significantly different in vitro behavior. Thirty-six instruments each of ProTaper Universal (PTU F1; Dentsply Maillefer, Ballaigues, Switzerland), ProFile Vortex (PV; Dentsply Tulsa Dental Specialties, Tulsa, OK), Vortex Blue (VB, Dentsply Tulsa Dental Specialties), and TYPHOON Infinite Flex NiTi (TYP; Clinician's Choice Dental Products, New Milford, CT) (all size 25/.06) were evaluated. Bending resistance, torsion at failure, and dynamic torsional tests were performed with the instruments (n = 12). Analysis of variance and Tukey post hoc tests were applied. Flexibility was significantly higher for TYP compared with the other 3 groups (P .05). The highest mean forces were recorded with PTU (7.02 ± 2.36 N) and the lowest with TYP (1.22 ± 0.40 N). TYP instruments were significantly more flexible than the other instruments tested. The PV group had the highest torsional strength and TYP, despite being the most flexible, showed similar torsional moments to the other instruments, whereas its angular deflection was the highest among the groups. Copyright © 2015 American Association of Endodontists. All rights reserved.

  13. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.

    Science.gov (United States)

    Garrec, Pascal; Tavernier, Bruno; Jordan, Laurence

    2005-08-01

    The choice of the most suitable orthodontic wire for each stage of treatment requires estimation of the forces generated. In theory, the selection of wire sequences should initially utilize a lower flexural rigidity; thus clinicians use smaller round cross-sectional dimension wires to generate lighter forces during the preliminary alignment stage. This assessment is true for conventional alloys, but not necessarily for superelastic nickel titanium (NiTi). In this case, the flexural rigidity dependence on cross-sectional dimension differs from the linear elasticity prediction because of the martensitic transformation process. It decreases with increasing deflection and this phenomenon is accentuated in the unloading process. This behaviour should lead us to consider differently the biomechanical approach to orthodontic treatment. The present study compared bending in 10 archwires made from NiTi orthodontics alloy of two cross-sectional dimensions. The results were based on microstructural and mechanical investigations. With conventional alloys, the flexural rigidity was constant for each wire and increased largely with the cross-sectional dimension for the same strain. With NiTi alloys, the flexural rigidity is not constant and the influence of size was not as important as it should be. This result can be explained by the non-constant elastic modulus during the martensite transformation process. Thus, in some cases, treatment can begin with full-size (rectangular) wires that nearly fill the bracket slot with a force application deemed to be physiologically desirable for tooth movement and compatible with patient comfort.

  14. Characterization of closed nickel-titanium orthodontic coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Langeron, T. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; Filleul, M.P. [Rene Descartes Univ., Paris V, Pontoise (France). Faculte de Chirurgie Dentaire; ENSCP, Paris (France). Lab. de Metallurgie Structurale; Humbeeck, J. van [Katholieke Univ. Leuven, Heverlee (Belgium). Faculteit Toegepaste Wetenschappen, Metaalkunde en Toegepaste Materialkund

    2001-11-01

    Nickel-titanium orthodontic coil springs are used to move teeth with low forces and slow deactivation. The present paper provides data on transformation temperatures and on load-deflection rate at buccal temperature of closed Nickel-Titanium coil springs available on the market from ORMCO {sup trademark} and GAC {sup trademark}. All the springs exhibited superelasticity but their properties were not stable in the range of buccal temperatures and varied not only from one manufacturer to the other but they also varied from one batch to the other of each supplier. The need for more stability is stressed. (orig.)

  15. Ni-Ti Alloys for Tribological Applications: The Effects of Serendipity on Research and Development

    Science.gov (United States)

    DellaCorte, Christopher

    2016-01-01

    Novel superelastic materials based upon Nickel-Titanium (NiTi) alloys are an emerging technology that almost escaped recognition. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In 2004, at the request of a small manufacturing firm, Nitinol 60 was assessed as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but its tribological properties were not fully explored. Conventional wisdom in the field of tribology suggests that alloys rich in titanium are poor candidate bearing materials but NiTi, an intermetallic, demonstrates that such thinking can be and often is, wrong. Though early stage tests reveal acceptable friction and wear behavior, extensive materials engineering and processing development was essential in producing the precision microstructures needed for long-life bearings and gears. In the course of exploring this new material system other game-changing and unexpected properties, such as superelastic resilience, were observed. Today, the aerospace community is exploiting the unique characteristics of the NiTi alloy materials to solve problems on earth, underwater and in space. A fortunate decision to acknowledge a single industrial request turned out to be the key to an entirely new technology.

  16. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Science.gov (United States)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  17. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  18. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Nandagopal, M.; Mannan, S.L.

    2011-01-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  19. Comparison of the superelasticity of different nickel-titanium orthodontic archwires and the loss of their properties by heat treatment.

    Science.gov (United States)

    Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu

    2016-10-01

    The aim of this work is to describe and compare mechanical properties of eight widely used nickel-titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel-titanium archwire segments of 0.016 inch. To obtain a load-deflection curve, the centre of each segment was deflected to 3.1 mm and then unloaded until force became zero. On the unloading curve, deflection at the end of the plateau and forces delivered at that point, and at 3, 2, 1 and 0.5 mm of deflection, were recorded. Plateau slopes were calculated from 3 and from 2 mm of deflection. Data obtained were statistically analysed to determine inter-brand, intra-brand and inter-batch differences (P Sentalloy M (1.001 N)] was 0.998 N (102 gf). The Nitinol SuperElastic plateau slope (0.353 N/mm) was the only one that was statistically different from 2 mm of deflection, as compared with the other brand values (0.129-0.155 N/mm). Damon Optimal Force described the gentlest slope from 3 mm of deflection (0.230 N/mm) and one of the longest plateaus. Titanol and Orthonol showed the most notable intra-brand differences, whereas inter-batch variability was significant for Nitinol (Henry Schein), Euro Ni-Ti and Orthonol. Superelasticity degree and exerted forces differed significantly among brands. Superelasticity of Nitinol SuperElastic was not observed, while Damon Optimal Force and Proclinic Ni-Ti Superelástico (G&H) showed the most superelastic curves. Intra-brand and inter-batch differences were observed in some brands. In all cases, the heat treatment at 600 °C produces precipitation in the matrix. The precipitates are rich in titanium and this fact produce changes in the chemical composition of the matrix and the loss of

  20. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    Science.gov (United States)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2014-02-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  1. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing.

    Science.gov (United States)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-02-07

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel-titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces.

  2. In Vivo Force Decay of Niti Closed Coil Springs

    Science.gov (United States)

    Cox, Crystal; Nguyen, Tung; Koroluk, Lorne; Ko, Ching-Chang

    2014-01-01

    Introduction Nickel-titanium (NiTi) closed coil springs are purported to deliver constant forces over extended ranges of activation and working times. In vivo studies supporting this claim are limited. The objective of this study is to evaluate changes in force decay properties of NiTi closed coil springs after clinical use. Methods Pseudoelastic force-deflection curves for 30 NiTi coil springs (used intra-orally) and 15 matched laboratory control springs (simulated intra-oral conditions - artificial saliva, 37°C) were tested pre- and post-retrieval via Dynamic Mechanical Analysis (DMA) and the Instron machine, respectively, to evaluate amount of force loss and hysteresis change following 4, 8, or 12 weeks of working time (n=10 per group). Effect of the oral environment and clinical use on force properties were evaluated by comparing in vivo and in vitro data. Results The springs studied showed a statistically significant decrease in force (~12%) following 4 weeks of clinical use (pspace closure at an average rate of 0.91mm per month was still observed despite this decrease in force. In vivo and in vitro force loss data were not statistically different. Conclusions NiTi closed coil springs do not deliver constant forces when used intra-orally, but they still allow for space closure rates of ~1mm/month. PMID:24703289

  3. Comparison of cyclic fatigue life of nickel-titanium files: an examination using high-speed camera

    Directory of Open Access Journals (Sweden)

    Taha Özyürek

    2017-08-01

    Full Text Available Objectives To determine the actual revolutions per minute (rpm values and compare the cyclic fatigue life of Reciproc (RPC, VDW GmbH, WaveOne (WO, Dentsply Maillefer, and TF Adaptive (TFA, Axis/SybronEndo nickel-titanium (NiTi file systems using high-speed camera. Materials and Methods Twenty RPC R25 (25/0.08, 20 WO Primary (25/0.08, and 20 TFA ML 1 (25/0.08 files were employed in the present study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which has an artificial stainless steel canal with a 60° angle of curvature and a 5-mm radius of curvature. The files were divided into 3 groups (group 1, RPC R25 [RPC]; group 2, WO Primary [WO]; group 3, TF Adaptive ML 1 [TFA]. All the instruments were rotated until fracture during the cyclic fatigue test and slow-motion videos were captured using high-speed camera. The number of cycles to failure (NCF was calculated. The data were analyzed statistically using one-way analysis of variance (ANOVA, p < 0.05. Results The slow-motion videos were indicated that rpm values of the RPC, WO, and TFA groups were 180, 210, and 425, respectively. RPC (3,464.45 ± 487.58 and WO (3,257.63 ± 556.39 groups had significantly longer cyclic fatigue life compared with TFA (1,634.46 ± 300.03 group (p < 0.05. There was no significant difference in the mean length of the fractured fragments. Conclusions Within the limitation of the present study, RPC and WO NiTi files showed significantly longer cyclic fatigue life than TFA NiTi file.

  4. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  5. A preliminary study of cladding steel with NiTi by microwave-assisted brazing

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Nickel titanium (NiTi) plate of 1.2 mm thickness was successfully clad on AISI 316L stainless steel substrate by a microwave-assisted brazing process. Brazing was conducted in a multimode microwave oven in air using a copper-based brazing material in tape form. The brazing material was melted in a few minutes by microwave-induced plasma initiated by conducting wires surrounding the brazing assembly. Metallographic study by scanning-electron microscopy (SEM) and compositional analysis by energy-dispersive spectroscopy (EDS) of the brazed joint revealed metallurgical bonding formed via inter-diffusion between the brazing filler and the adjacent materials. A shear bonding strength in the range of 100-150 MPa was recorded in shear tests of the brazed joint. SEM and X-ray diffractometry (XRD) analysis for the surface of as-received NiTi plate and NiTi cladding showed similar microstructure and phase composition. Nanoindentation tests also indicated that the superelastic properties of NiTi were essentially retained. The cavitation erosion resistance of the NiTi cladding was essentially the same as that of as-received NiTi plate, and higher than that obtained in laser or TIG (tungsten-inert gas) surfacing. The high resistance could be attributed to avoidance of dilution and defect formation in the NiTi clad since the cladding did not undergo melting and solidification in the brazing process. Electrochemical tests also recorded similar corrosion resistance in both as-received NiTi and NiTi cladding. Thus, the present study indicates that microwave-assisted brazing is a simple, economical, and feasible process for cladding NiTi on 316L stainless steel for enhancing cavitation erosion resistance

  6. The placement of Y-shaped titanium-nickel memory alloy stent in the carina: a fundamental study in experimental canines

    International Nuclear Information System (INIS)

    Bian Wei; Shen Che

    2010-01-01

    Objective: To investigate the pathological changes of local airway tissue after inserting Yshaped titanium-nickel memory alloy stent in carina, and to evaluate CT three-dimensional reconstruction technique in postoperative and follow-up observation. Methods: Twelve healthy adult canines were enrolled in this study. Based on the information of the carina obtained from CT three-dimensional reconstruction images, the preparation of Y-shape netlike stent was made by knitting method with single Ni-Ti memory alloy wire. The stent was then inserted in canine's carina with the help of a releasing system. After the operation fiberbronchoscopy and CT three-dimensional reconstruction were performed. The animals were sacrificed 12 weeks after the procedure and the bronchus of the stenting segment was removed and sent for histopathologic examination. Results: Technical success was achieved in all canines with the stent right in the carina. The airway remained unobstructed 12 weeks after the procedure. Histopathologic examination revealed that the stent became partial epithelialization. Conclusion: The Y-shaped titanium-nickel memory alloy stent has good histocompatibility and physicochemical stability and no re-stenosis of the airway develops in the follow-up period of three months. The stent-releasing technique is easy and simple. As a non-invasive and convenient exam, CT three-dimensional reconstruction technique is of great value in postoperative follow-up observation. (authors)

  7. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments.

    Science.gov (United States)

    Braga, Lígia Carolina Moreira; Faria Silva, Ana Cristina; Buono, Vicente Tadeu Lopes; de Azevedo Bahia, Maria Guiomar

    2014-09-01

    The aim of this study was to assess the influence of M-Wire (Dentsply Tulsa Dental Specialties, Tulsa, OK) and controlled memory technologies on the fatigue resistance of rotary nickel-titanium (NiTi) files by comparing files made using these 2 technologies with conventional NiTi files. Files with a similar cross-sectional design and diameter were chosen for the study: new 30/.06 files of the EndoWave (EW; J. Morita Corp, Osaka, Japan), HyFlex (HF; Coltene/Whaledent, Inc, Cuyahoga Falls, OH), ProFile Vortex (PV; Dentsply Tulsa Dental Specialties, Tulsa, OK), and Typhoon (TYP; Clinician's Choice Dental Products, New Milford, CT) systems together with ProTaper Universal F2 instruments (PTU F2; Dentsply Maillefer, Ballaigues, Switzerland). The compositions and transformation temperatures of the instruments were analyzed using x-ray energy-dispersive spectroscopy and differential scanning calorimetry, whereas the mean file diameter values at 3 mm from the tip (D3) were measured using image analysis software. The average number of cycles to failure was determined using a fatigue test device. X-ray energy-dispersive spectroscopy analysis showed that, on average, all the instruments exhibited the same chemical composition, namely, 51% Ni-49% Ti. The PV, TYP, and HF files exhibited increased transformation temperatures. The PTU F2, PV, and TYP files had similar D3 values, which were less than those of the EW and HF files. The average number of cycles to failure values were 150% higher for the TYP files compared with the PV files and 390% higher for the HF files compared with the EW files. M-Wire and controlled memory technologies increase the fatigue resistance of rotary NiTi files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Investigations on laser induced nickel and titanium plasmas

    International Nuclear Information System (INIS)

    Rahman, M.K.U.; Latif, A.; Bhatti, K.A.; Rafique, M.S.; Yousaf, M.K.

    2011-01-01

    Experiments were performed to find out plasma parameters for Nickel and Titanium metals which were irradiated in air (1 atm) to produce plasma plume using Q switched Nd: YAG pulsed laser of 1.1 MW, 10 m J, 1064 nm and 9-14 ns. Langmuir probe was used as a diagnostic tool. The signals at different probe voltages were recorded on digital storage oscilloscope. The information carried by the signals was utilized to calculate electron density, electron temperature, Debye's length and number of particles in Debye's sphere. The study shows that the calculated values of these parameters for Nickel and Titanium are different except Debye's length. Plasma parameters strongly depend on probe potentials, material used and ambient conditions. (author)

  9. Investigation of the Dissolution-Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

    Science.gov (United States)

    Uzer, B.; Birer, O.; Canadinc, D.

    2017-09-01

    Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

  10. Influence of rotational speed on the cyclic fatigue of rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Lopes, Hélio P; Ferreira, Alessandra A P; Elias, Carlos N; Moreira, Edson J L; de Oliveira, Júlio C Machado; Siqueira, José F

    2009-07-01

    During the preparation of curved canals, rotary nickel-titanium (NiTi) instruments are subjected to cyclic fatigue, which can lead to instrument fracture. Although several factors may influence the cyclic fatigue resistance of instruments, the role of the rotational speed remains uncertain. This study was intended to evaluate the effects of rotational speed on the number of cycles to fracture of rotary NiTi instruments. ProTaper Universal instruments F3 and F4 (Maillefer SA, Ballaigues, Switzerland) were used in an artificial curved canal under rotational speeds of 300 rpm or 600 rpm. The artificial canal was made of stainless steel, with an inner diameter of 1.5 mm, total length of 20 mm, and arc at the end with a curvature radius of 6 mm. The arc length was 9.4 mm and 10.6 mm on the straight part. The number of cycles required to fracture was recorded. Fractured surfaces and the helical shafts of the fractured instruments were analyzed by scanning electron microscopy. The results showed approximately a 30% reduction in the observed number of cycles to fracture as rotational speed was increased from 300 to 600 RPM (p ductile type, and no plastic deformation was observed on the helical shaft of fractured instruments. The present findings for both F3 and F4 ProTaper instruments revealed that the increase in rotational speed significantly reduced the number of cycles to fracture.

  11. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  12. Root Canal Transportation and Centering Ability of Nickel-Titanium Rotary Instruments in Mandibular Premolars Assessed Using Cone-Beam Computed Tomography.

    Science.gov (United States)

    Mamede-Neto, Iussif; Borges, Alvaro Henrique; Guedes, Orlando Aguirre; de Oliveira, Durvalino; Pedro, Fábio Luis Miranda; Estrela, Carlos

    2017-01-01

    The aim of this study was to evaluate, using cone-beam computed tomography (CBCT), transportation and centralization of different nickel-titanium (NiTi) rotary instruments. One hundred and twenty eight mandibular premolars were selected and instrumented using the following brands of NiTi files: WaveOne, WaveOne Gold, Reciproc, ProTaper Next, ProTaper Gold, Mtwo, BioRaCe and RaCe. CBCT imaging was performed before and after root canal preparation to obtain measurements of mesial and distal dentin walls and calculations of root canal transportation and centralization. A normal distribution of data was confirmed by the Kolmogorov-Smirnov and Levene tests, and results were assessed using the Kruskal-Wallis test. Statistical significance was set at 5%. ProTaper Gold produced the lowest canal transportation values, and RaCe, the highest. ProTaper Gold files also showed the highest values for centering ability, whereas BioRaCe showed the lowest. No significant differences were found across the different instruments in terms of canal transportation and centering ability (P > 0.05). Based on the methodology employed, all instruments used for root canal preparation of mandibular premolars performed similarly with regard to canal transportation and centering ability.

  13. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments.

    Science.gov (United States)

    Pedullà, E; Lo Savio, F; Boninelli, S; Plotino, G; Grande, N M; Rapisarda, E; La Rosa, G

    2015-11-01

    To evaluate the effect of different torsional preloads on cyclic fatigue resistance of endodontic rotary instruments constructed from conventional nickel-titanium (NiTi), M-Wire or CM-Wire. Eighty new size 25, 0.06 taper Mtwo instruments (Sweden & Martina), size 25, 0.06 taper HyFlex CM (Coltene/Whaledent, Inc) and X2 ProTaper Next (Dentsply Maillefer) were used. The Torque and distortion angles at failure of new instruments (n = 10) were measured, and 0% (n = 10), 25%, 50% and 75% (n = 20) of the mean ultimate torsional strength as preloading condition were applied according to ISO 3630-1 for each brand. The twenty files tested for every extent of preload were subjected to 20 or 40 torsional cycles (n = 10). After torsional preloading, the number of cycles to failure was evaluated in a simulated canal with 60° angle of curvature and 5 mm of radius of curvature. Data were analysed using two-way analysis of variance. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). Data were analysed by two-way analyses of variance. Preload repetitions did not influence the cyclic fatigue of the three brands; however, the 25%, 50% and 75% torsional preloading significantly reduced the fatigue resistance of all instruments tested (P 0.05). Torsional preloads reduced the cyclic fatigue resistance of conventional and treated (M-wire and CM-wire) NiTi rotary instruments except for size 25, 0.06 taper HyFlex CM instruments with a 25% of torsional preloading. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Cyclic Fatigue of Different Nickel-Titanium Rotary Instruments: A Comparative Study

    OpenAIRE

    Testarelli, L.; Grande, N.M; Plotino, G; Lendini, M; Pongione, G; Paolis, G. De; Rizzo, F; Milana, V; Gambarini, G

    2009-01-01

    Since the introduction of nickel-titanium alloy to endodontics, there have been many changes in instrument design, but no significant improvements in the raw material properties, or enhancements in the manufacturing process. Recently, a new method to produce nickel-titanium rotary (NTR) instruments has been developed, in an attempt to obtain instruments that are more flexible and resistant to fatigue. NTR instruments produced using the process of twisting (TF, SybronEndo, Orange, CA) were com...

  15. Polymer Hydrogel/Polybutadiene/Iron Oxide Nanoparticle Hybrid Actuators for the Characterization of NiTi Implants

    Directory of Open Access Journals (Sweden)

    Aleksandra Jeličić

    2009-03-01

    Full Text Available One of the main issues with the use of nickel titanium alloy (NiTi implants in cardiovascular implants (stents is that these devices must be of very high quality in order to avoid subsequent operations due to failing stents. For small stents with diameters below ca. 2 mm, however, stent characterization is not straightforward. One of the main problems is that there are virtually no methods to characterize the interior of the NiTi tubes used for fabrication of these tiny stents. The current paper reports on a robust hybrid actuator for the characterization of NiTi tubes prior to stent fabrication. The method is based on a polymer/hydrogel/magnetic nanoparticle hybrid material and allows for the determination of the inner diameter at virtually all places in the raw NiTi tubes. Knowledge of the inner structure of the raw NiTi tubes is crucial to avoid regions that are not hollow or regions that are likely to fail due to defects inside the raw tube. The actuator enables close contact of a magnetic polymer film with the inner NiTi tube surface. The magnetic signal can be detected from outside and be used for a direct mapping of the tube interior. As a result, it is possible to detect critical regions prior to expensive and slow stent fabrication processes.

  16. The Effect of Autoclaving on Torsional Moment of Two Nickel-Titanium Endodontic Files

    Science.gov (United States)

    2012-01-01

    titanium endodontic files 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) J. B. King, H. W. Roberts, B. E... Endodontic Journal, doi:10.1111/j.1365- 2591.2011.01958.x 45, 156–161, 2012 doi:10.1111/j.1365-2591.2011.01958.x Wiley Blackwell Publishing, 111 River...autoclaving on torsional strength of two nickel–titanium (NiTi) rotary endodontic files: Twisted Files (SybronEndo, Orange, CA, USA) and GT Series X

  17. Nickel-titanium alloys: a systematic review

    Directory of Open Access Journals (Sweden)

    Marcelo do Amaral Ferreira

    2012-06-01

    Full Text Available OBJECTIVE: A systematic review on nickel-titanium wires was performed. The strategy was focused on Entrez-PubMed-OLDMEDLINE, Scopus and BioMed Central from 1963 to 2008. METHODS: Papers in English and French describing the behavior of these wires and laboratorial methods to identify crystalline transformation were considered. A total of 29 papers were selected. RESULTS: Nickel-titanium wires show exceptional features in terms of elasticity and shape memory effects. However, clinical applications request a deeper knowledge of these properties in order to allow the professional to use them in a rational manner. In addition, the necessary information regarding each alloy often does not correspond to the information given by the manufacturer. Many alloys called "superelastic" do not present this effect; they just behave as less stiff alloys, with a larger springback if compared to the stainless steel wires. CONCLUSIONS: Laboratory tests are the only means to observe the real behavior of these materials, including temperature transition range (TTR and applied tensions. However, it is also possible to determine in which TTR these alloys change the crystalline structure.

  18. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires

    OpenAIRE

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria Jr, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    Abstract The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Ni...

  19. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    Science.gov (United States)

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  20. The effects of autoclave sterilization on the cyclic fatigue resistance of ProTaper Universal, ProTaper Next, and ProTaper Gold nickel-titanium instruments.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments. Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and post hoc Tukey tests. PTG showed significantly higher NCF than PTU and PTN in group 1 ( p Autoclaving increased the cyclic fatigue resistances of PTN and PTG.

  1. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  2. On aging of iron-nickel-titanium alloys

    International Nuclear Information System (INIS)

    Vintajkin, E.Z.; Dmitriev, V.B.; Udovenko, V.A.

    1978-01-01

    The mechanism of structural transformations on the initial stages of aging of Fe-(26-29) at. % Ni-(2.5-5.75) at. % Ti alloys was studied by neutron radiography. It was shown that at the earliest aging stages at 550 deg C there appear ordered areas which are FCC nuclei of the Ni 3 Ti phase. The rate of nucleation depends on the content of titanium in the all. In alloys with more than 3% Ti, nuclei appear even at the hardening stage. During the subsequent aging, the nuclei are enriched with nickel and titanium

  3. Effectiveness of supplementary irrigant agitation with the Finisher GF Brush on the debridement of oval root canals instrumented with the Gentlefile or nickel titanium rotary instruments.

    Science.gov (United States)

    Neelakantan, P; Khan, K; Li, K Y; Shetty, H; Xi, W

    2018-07-01

    To examine the efficacy of a novel supplementary irrigant agitating brush (Finisher GF Brush, MedicNRG, Kibbutz Afikim, Israel) on the debridement of root canals prepared with a novel stainless steel rotary instrumentation system (Gentlefile; MedicNRG), or nickel titanium rotary instruments in oval root canals. Mandibular premolars (n = 72) were selected and divided randomly into three experimental groups (n = 24) after microCT scanning: group 1, canal preparation to rotary NiTi size 20, .04 taper (R20); group 2, rotary NiTi to size 25, .04 taper (R25) and group 3, Gentlefile size 23, .04 taper (GF). Specimens were subdivided into two subgroups: subgroup A, syringe-and-needle irrigation (SNI); subgroup B, Finisher GF Brush (GB). Ten untreated canals served as controls. Specimens were processed for histological evaluation, and the remaining pulp tissue (RPT) was measured. Data were analysed using Mann-Whitney and Kruskal-Wallis tests (P = 0.05). All experimental groups had significantly less RPT than the control (P  0.05). When instrumented with R20, there was no significant difference between SNI and GF (P rotary NiTi. Root canal debridement did not significantly differ between the instruments when syringe irrigation was used. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Characterization of the laser gas nitrided surface of NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Cui, Z.D.; Man, H.C.; Yang, X.J.

    2003-01-01

    Owing to its unique properties such as shape memory effects, superelasticity and radiopacity, NiTi alloy is a valuable biomaterial for fabricating implants. The major concern of this alloy for biological applications is the high atomic percentage of nickel in the alloy and the deleterious effects to the body by the corrosion and/or wears products. In this study, a continuous wave Nd-YAG laser was used to conduct laser gas nitriding on the substrate of NiTi alloy. The results show that a continuous and crack-free thin TiN layer was produced in situ on the NiTi substrate. The characteristics of the nitrided surface layer were investigated using SEM, XRD, XPS and AAS. No nickel signal was detected on the top surface of the laser gas nitrided layer. As compared with the mechanical polished NiTi alloy, the nickel ion release rate out of the nitrided NiTi alloy decreased significantly in Hanks' solution at 37 deg. C, especially the initial release rate

  5. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Guillem-Martí, J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); Herranz-Díez, C. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Shaffer, J.E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Avenue, 46809 Fort Wayne (United States); Gil, F.J. [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Campus Río Ebro, Edificio I+D Bloque 5, 1a planta, C/ Poeta Mariano Esquillor s/n, 50018 Zaragoza (Spain); Centre for Research in NanoEngineering (CRNE) – UPC, C/Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2015-06-11

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future.

  6. Mechanical and microstructural characterization of new nickel-free low modulus β-type titanium wires during thermomechanical treatments

    International Nuclear Information System (INIS)

    Guillem-Martí, J.; Herranz-Díez, C.; Shaffer, J.E.; Gil, F.J.

    2015-01-01

    NiTi alloy is the only practical shape memory alloy (SMA) in biomedical use because of its excellent mechanical stability and functionality. However, it is estimated that between 4.5% and 28.5% of the population are hypersensitive to nickel metal, with a higher prevalence in females. Therefore, developing nickel-free low modulus β-type titanium alloys showing shape memory or super elastic behavior would have a great interest in the biomaterials field. Homogeneous 127 μm diameter Ti25Hf21Nb wires were produced and compared to straight annealed Ti–50.8 at% Ni (Nitinol) and 90% cold-drawn 316L wires. Microstructural changes taking place during the heat treatment of cold-worked Ti25Hf21Nb wires were investigated. Large plastic deformation during wire drawing and subsequent annealing led to nano-crystallization and amorphization which may contribute to the observed superelasticity. Mechanical properties were characterized using cyclic uniaxial tension and rotary beam fatigue test modes. A modulus of elasticity of less than 60 GPa and axial recoverable strain of greater than 3% were observed with stress hysteresis resembling a reversible stress-induced martensitic transformation at higher temperatures. The new Ti25Hf21Nb alloy is an important candidate for developing Ni-free SMAs in the future

  7. Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi

    Science.gov (United States)

    Taheri Andani, Mohsen

    In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase

  8. [Torque resistance of three different types of nickel-titanium rotary instruments].

    Science.gov (United States)

    Sun, Wei; Hou, Ben-xiang

    2010-10-01

    To compare torsional fracture of three different types of nickel-titanium rotary instruments ProTaper, Hero642 and Mtwo by making a stimulate models in vitro. Through the establishment of model in vitro, compared the different time with 3 kinds of nickel titanium file in cutting-edge bound occurs, and to observe the section of fractured instruments by scanning electron microscope. The resistence to torque was different from three types of nickel titanium instruments. The time to fracture of Mtwo was significantly longer than ProTaper's and Hero642's, but ProTaper's and Hero642's had no significant difference. Three kinds cross-sectional design were different, a lot of toughness nests were seen in broken surface. Most of them were ductile fracture. Time to fracture was influenced by the quality disfigurement. The resistance to torque of Mtwo was better than ProTaper and Hero642. The lifespan was influenced by the design of cross-section. The quality disfigurement of the files reduced the resistance to flexual fatigue.

  9. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  10. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  11. Influence of SLM on compressive response of NiTi scaffolds

    Science.gov (United States)

    Shayesteh Moghaddam, Narges; Saedi, Soheil; Amerinatanzi, Amirhesam; Jahadakbar, Ahmadreza; Saghaian, Ehsan; Karaca, Haluk; Elahinia, Mohammad

    2018-03-01

    Porous Nickel-Titanium shape memory alloys (NiTi-SMAs) have attracted much attention in biomedical applications due to their high range of pure elastic deformability (i.e., superelasticity) as well as their bone-level modulus of elasticity (E≈12-20 GPa). In recent years, Selective Laser Melting (SLM) has been used to produce complex NiTi components. The focus of this study is to investigate the superelasticity and compressive properties of SLM NiTi-SMAs. To this aim, several NiTi components with different level of porosities (32- 58%) were fabricated from Ni50.8Ti (at. %) powder via SLM PXM by Phenix/3D Systems, using optimum processing parameter (Laser power-P=250 W, scanning speed-v=1250mm/s, hatch spacing-h=120μm, layer thickness-t=30μm). To tailor the superelasticity behavior at body temperature, the samples were solution annealed and aged for 15 min at 350°C. Then, transformation temperatures (TTs), superelastic response, and cyclic behavior of NiTi samples were studied. As the porosity was increased, the irrecoverable strain was observed to be higher in the samples. At the first superelastic cycle, 3.5%, 3.5%, and 2.7% strain recovery were observed for the porosity levels of 32%, 45%, and 58%, respectively. However, after 10 cycles, the superelastic response of the samples was stabilized and full strain recovery was observed. Finally, the modulus of elasticity of dense SLM NiTi was decreased from 47 GPa to 9 GPa in the first cycle by adding 58% porosity.

  12. Comparative study of 6 rotary nickel-titanium systems and hand instrumentation for root canal preparation in severely curved root canals of extracted teeth.

    Science.gov (United States)

    Celik, Davut; Taşdemir, Tamer; Er, Kürşat

    2013-02-01

    Some improvements have been developed with new generations of nickel-titanium (NiTi) rotary instruments that led to their successful and extensive application in clinical practice. The purpose of this in vitro study was to compare the root canal preparations performed by using GT Series X and Twisted File systems produced by innovative manufacturing process with Revo-S, RaCe, Mtwo, and ProTaper Universal systems manufactured directly from conventional nitinol and with stainless steel K-Flexofile instruments. The mesiobuccal root canals of 140 maxillary first permanent molars that had between 30°-40° curvature angle and 4- to 9-mm curvature radius of the root canal were used. After root canal preparations made by using GT Series X, Twisted File, Revo-S, RaCe, Mtwo, and ProTaper Universal NiTi rotary systems and stainless steel K-Flexofile instruments, transportation occurred in the root canal, and alteration of working length (WL) was assessed by using a modified double-digital radiographic technique. The data were compared by the post hoc Tukey honestly significant difference test. NiTi rotary systems caused less canal transportation and alteration of WL than K-Flexofile instruments (P .05) except 2.5 mm from the WL. At this level ProTaper Universal system caused significant canal transportation (P ProTaper Universal rotary systems manufactured by traditional methods. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Comparison of working length control consistency between hand K-files and Mtwo NiTi rotary system.

    Science.gov (United States)

    Krajczár, Károly; Varga, Enikő; Marada, Gyula; Jeges, Sára; Tóth, Vilmos

    2016-04-01

    The purpose of this study was to investigate the consistency of working length control between hand instrumentation in comparison to engine driven Mtwo nickel-titanium rotary files. Forty extracted maxillary molars were selected and divided onto two parallel groups. The working lengths of the mesiobuccal root canals were estimated. The teeth were fixed in a phantom head. The root canal preparation was carried out group 1 (n=20) with hand K-files, (VDW, Munich, Germany) and group 2 (n=20) with Mtwo instruments (VDW, Munich, Germany). Vestibulo-oral and mesio-distal directional x-ray images were taken before the preparation with #10 K-file, inserted into the mesiobuccal root canal to the working length, and after preparation with #25, #30 and #40 files. Working lenght changes were detected with measurements between the radiological apex and the instrument tips. In the Mtwo group a difference in the working competency (protary files. Mtwo NiTi rotary file did therefore proved to be more accurate in comparison to the conventional hand instrumentation. Working length, Mtwo, nickel-titanium, hand preparation, engine driven preparation.

  14. Vibrations Generated by Several Nickel-titanium Endodontic File Systems during Canal Shaping in an Ex Vivo Model.

    Science.gov (United States)

    Choi, Dong-Min; Kim, Jin-Woo; Park, Se-Hee; Cho, Kyung-Mo; Kwak, Sang Won; Kim, Hyeon-Cheol

    2017-07-01

    This study aimed to compare the vibration generated by several nickel-titanium (NiTi) file systems and transmitted to teeth under 2 different motions (continuous rotation motion and reciprocating motion). Sixty J-shaped resin blocks (Endo Training Bloc-J; Dentsply Maillefer, Ballaigues, Switzerland) were trimmed to a root-shaped form and divided into 2 groups according to the types of electric motors: WaveOne motor (WOM, Dentsply Maillefer) and X-Smart Plus motor (XSM, Dentsply Maillefer). Each group was further subdivided into 3 subgroups (n = 10 each) according to the designated file systems: ProTaper Next (PTN, Dentsply Maillefer), ProTaper Universal (PTU, Dentsply Maillefer), and WaveOne (WOP, Dentsply Maillefer) systems. Vibration was measured during the pecking motion using an accelerometer attached to a predetermined consistent position. The average vibration values were subjected to 2-way analysis of variance as well as the t test and Duncan test for post hoc comparison at the 95% confidence interval. Both motor types and instrument types produced significantly different ranges of average vibrations. Regardless of the instrument types, the WOM group generated greater vibration than the XSM group (P file system may generate greater vibration than the continuous rotation NiTi file systems. The motor type also has a significant effect to amplify the vibrations. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    Directory of Open Access Journals (Sweden)

    Murilo Gaby Neves

    2016-02-01

    Full Text Available Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil, 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4. 28-mm length segments from the straight portion (ends of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm, during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  16. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.

    Science.gov (United States)

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  17. Comparison of titanium cable tension band and nickel-titanium patella concentrator for patella fractures.

    Science.gov (United States)

    Zhao, Quan-Ming; Gu, Xiao-Feng; Cheng, Li; Feng, De-Hong

    2017-07-01

    Patellar fractures account for approximately 1% of all fractures. Due to the patella's importance as regards the extensor mechanism, effort should be made to preserve the patella. Several operative treatment methods have been introduced for patella fractures. This study aims to compare the clinical effect of a titanium cable tension band and nickeltitanium (NiTi) patella concentrator (NT-PC) in treating patella fractures. Thirty-nine patients with patella fractures were enrolled in this retrospective study. All the patients were treated via the open reduction internal fixation procedure using a titanium cable tension band or NT-PC. All the patients were followed up over an average period of 13 months. The main outcome measures were operation time, time of fracture union, postoperative complications, and Böstman knee scores. Statistical analyses were conducted between the 2 groups. All the patients were operated on successfully. The operation time of the NT-PC treatment group was less than that of the titanium cable tension band treatment group (p cable tension band and NT-PC groups, respectively. No significant difference was observed between the excellent and good results (p > 0.05). Both titanium cable tension band and NT-PC showed good efficacy for the treatment of patellar fractures. NT-PC fixation, a new option for the treatment of patella fractures, is a simple and effective fixation method.

  18. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  19. Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes

    Directory of Open Access Journals (Sweden)

    AmirHossein Mirhashemi

    2018-02-01

    Full Text Available Abstract Background Corrosion resistance is an important requirement for orthodontic appliances. Nickel and chromium may be released from orthodontic wires and can cause allergic reactions and cytotoxicity when patients use various mouthwashes to whiten their teeth. Our study aimed to assess the release of nickel and chromium ions from nickel titanium (NiTi and stainless steel (SS orthodontic wires following the use of four common mouthwashes available on the market. Methods This in vitro, experimental study was conducted on 120 orthodontic appliances for one maxillary quadrant including five brackets, one band and half of the required length of SS, and NiTi wires. The samples were immersed in Oral B, Oral B 3D White Luxe, Listerine, and Listerine Advance White for 1, 6, 24, and 168 h. The samples immersed in distilled water served as the control group. Atomic absorption spectroscopy served to quantify the amount of released ions. Results Nickel ions were released from both wires at all time-points; the highest amount was in Listerine and the lowest in Oral B mouthwashes. The remaining two solutions were in-between this range. The process of release of chromium from the SS wire was the same as that of nickel. However, the release trend in NiTi wires was not uniform. Conclusions Listerine caused the highest release of ions. Listerine Advance White, Oral B 3D White Luxe, and distilled water were the same in terms of ion release. Oral B showed the lowest amount of ion release.

  20. Effect of the Addition of 3% Co in NiTi Alloy on Loading/Unloading Force

    Science.gov (United States)

    Phukaoluan, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Khantachawana, A.; Kaewtathip, P.; Kajornchaiyakul, J.; Wichai, W.

    2017-11-01

    The study evaluated the loading-unloading force in the load-deflection curve of the fabricated NiTiCo and NiTi wires. Wire alloys with Nickel, Titanium, and Cobalt (purity-99.95%) with atomic weight ratio 47Ni:50Ti:3Co and 50.6Ni:49.4Ti were prepared, sliced, and cold-rolled at 30% reduction, followed by heat treatment in a furnace at 400oC for 1 hour. The specimens of wire size of 0.016 x 0.022 inch2 were cut and subjected to three-point bending test to investigate the load-deflection curve at deflection point 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm. Descriptive statistic was used to evaluate each variables and independent t-test was used to compare between the groups. The results presented a load-deflection curve that resembled a typical superelastic wire. However, significant differences were seen in the loading-unloading forces between the two with an average loading force of 412.53g and 304.98g and unloading force of 292.40g and 208.08g for NiTiCo and NiTi wire, respectively. The force at each deflection point of NiTiCo in loading-unloading force was higher than NiTi wire. This study concluded that the addition of 3%Co in NiTi alloy can increase the loading-unloading force of NiTi wire but were within the range for orthodontic tooth movement.

  1. Application of Taguchi method to optimization of surface roughness during precise turning of NiTi shape memory alloy

    Science.gov (United States)

    Kowalczyk, M.

    2017-08-01

    This paper describes the research results of surface quality research after the NiTi shape memory alloy (Nitinol) precise turning by the tools with edges made of polycrystalline diamonds (PCD). Nitinol, a nearly equiatomic nickel-titanium shape memory alloy, has wide applications in the arms industry, military, medicine and aerospace industry, and industrial robots. Due to their specific properties NiTi alloys are known to be difficult-to-machine materials particularly by using conventional techniques. The research trials were conducted for three independent parameters (vc, f, ap) affecting the surface roughness were analyzed. The choice of parameter configurations were performed by factorial design methods using orthogonal plan type L9, with three control factors, changing on three levels, developed by G. Taguchi. S/N ratio and ANOVA analyses were performed to identify the best of cutting parameters influencing surface roughness.

  2. Effect of nickel plating upon tensile tests of uranium--0.75 titanium alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1975-01-01

    Electrolytic-nickel-plated specimens of uranium-0.75 wt percent titanium alloy were tested in air at 20 and 100 percent relative humidities. Tensile-test ductility values were lowered by a high humidity and also by nickel plating alone. Baking the nickel-plated specimens did not eliminate the ductility degradation. Embrittlement because of nickel plating was also evident in tensile tests at -34 0 C. (U.S.)

  3. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.; Fratila-Apachitei, L.E., E-mail: e.l.fratila-apachitei@tudelft.nl; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel–titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  4. Comparison of radiographic density and compaction index of root canal obturation using nickel titanium or stainless-steel spreaders

    Directory of Open Access Journals (Sweden)

    M. Adel

    2016-08-01

    Full Text Available Background: Both nickel titanium and stainless-steel spreaders are available. The obvious advantage of nickel titanium spreader over stainless steel spreaders is greater penetration in curved canals. Objective: To compare the radiographic density and compaction index of root canal obturation using nickel-titanium or stainless-steel spreaders in curved canals. Methods: In this experimental study the primary weight of 30 acrylic blocks with 45o degrees of apical curvature were measured by a scale (W1. After canals were prepared by step back master apical up to file #30 all blocks were weighed again (W2 and randomly divided in two groups of 15each. All canals were obturated by Cold lateral compaction technique (with nickel-titanium in one group and stainless-steel finger spreaders in another group. After all blocks were reweighed (W3, compaction index (W3-W2/W1-W2 was calculated. One radiograph was taken for each sample. Apical density of the apical third of each canal was measured by digital transmission densitometer. Data were analyzed statistically using T-test. Findings: Mean compaction index for nickel-titanium group was 7.67±2.38 and for stainless-steel group was 9.14±4.06. There was no significant difference between two groups. Mean radiographic density of obturation was 2.05±0.14 in nickel-titanium group and was 2.07±0.21 in stainless-steel group. There was no significant difference between two groups. Conclusion: It is concluded that nickel-titanium spreaders are not superior than stainless-steel spreaders in obturating curved canal.

  5. Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Luk, Camille M.Y.; Liu Xuanyong; Chung, Jonathan C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2006-01-01

    Nickel-titanium shape memory alloys (NiTi) have potential applications as orthopedic implants because of their unique super-elastic properties and shape memory effects. However, the problem of out-diffusion of harmful Ni ions from the alloys during prolonged use inside a human body must be overcome before they can be widely used in orthopedic implants. In this work, we enhance the corrosion resistance of NiTi using carbon plasma immersion ion implantation and deposition (PIII and D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII and D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Results of atomic force microscopy (AFM) indicate that both C 2 H 2 -PIII and D and C 2 H 2 -PIII do not roughen the original flat surface to an extent that can lead to degradation in corrosion resistance

  6. Experimental evaluation on the influence of autoclave sterilization on the cyclic fatigue of new nickel-titanium rotary instruments.

    Science.gov (United States)

    Plotino, Gianluca; Costanzo, Alberto; Grande, Nicola M; Petrovic, Renata; Testarelli, Luca; Gambarini, Gianluca

    2012-02-01

    The purpose of this study was to evaluate the effect of autoclave sterilization on cyclic fatigue resistance of rotary endodontic instruments made of traditional and new nickel-titanium (NiTi) alloys. Four NiTi rotary endodontic instruments of the same size (tip diameter 0.40 mm and constant .04 taper) were selected: K3, Mtwo, Vortex, and K3 XF prototypes. Each group was then divided into 2 subgroups, unsterilized instruments and sterilized instruments. The sterilized instruments were subjected to 10 cycles of autoclave sterilization. Twelve files from each different subgroup were tested for cyclic fatigue resistance. Means and standard deviations of number of cycles to failure (NCF) and fragment length of the fractured tip were calculated for each group, and data were statistically analyzed (P instruments for each type of file, differences were statistically significant (P instruments did not show significant differences (P > .05) in the mean NCF as a result of sterilization cycles (K3, 424 versus 439 NCF; Mtwo, 409 versus 419 NCF; Vortex, 454 versus 480 NCF). Comparing the results among the different groups, K3 XF (either sterilized or not) showed a mean NCF significantly higher than all other files (P endodontic instruments except for the K3 XF prototypes of rotary instruments that demonstrated a significant increase of cyclic fatigue resistance. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Thermomechanical behavior of Ti-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Paula, A.S.; Mahesh, K.K.; Santos, C.M.L. dos; Braz Fernandes, F.M.; Costa Viana, C.S. da

    2008-01-01

    Phase transformations associated with shape memory effect in nickel-titanium (NiTi) alloys can be one-stage, B19' (martensite) ↔ B2 (austenite), two-stage including an intermediate R-phase stage, or multiple-stage depending on the thermal and/or mechanical history of the alloy. In the present paper, we highlight the effect of (i) deformation by cold-rolling (from 10% to 40% thickness reduction) and (ii) final annealing on the transformation characteristics of a Ti-rich NiTi shape memory alloy. For this purpose, one set of samples initially heat treated at 773 K followed by cold-rolling (10-40% thickness reduction), has been further heat treated at various temperatures between 673 and 1073 K. Another sample was subjected to heat treatment at 1040 K for 300 s followed by hot rolling (50%) after cooling in air to 773 K and water quenching to room temperature (T room ). Phase transformations were studied using differential scanning calorimetry, electrical resistivity measurements and in situ X-ray diffraction. A specific pattern of transformation sequences is found as a result of combination of the competing effects due to mechanical-working and annealing

  8. NiTi Alloys: New Materials that enable Shockproof, Corrosion Immune Bearings

    Science.gov (United States)

    DellaCorte, Christopher

    2017-01-01

    Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, dimensionally stable nickel-rich Ni-Ti alloys, such as Nitinol 60, are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed the science behind NiTi's remarkable properties. In this presentation, the state-of-the-art of nickel-rich NiTi alloys will be introduced along with a discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  9. Effect of particle size of titanium and nickel on the synthesis of NiTi by TE-SHS

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Veselý, T.; Marek, I.; Dvořák, P.; Vojtěch, V.; Salvetr, P.; Karlík, M.; Haušild, P.; Kopeček, Jaromír

    2016-01-01

    Roč. 47, č. 2 (2016), s. 932-938 ISSN 1073-5615 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : shape memory alloys * behavior * NiTi Subject RIV: JG - Metallurgy Impact factor: 1.642, year: 2016

  10. Fatigue behavior of lubricated Ni-Ti endodontic rotary instruments

    Directory of Open Access Journals (Sweden)

    A. Brotzu

    2014-04-01

    Full Text Available The use of Ni-Ti alloys in the practice of endodontic comes from their important properties such as shape memory and superelasticity phenomena, good corrosion resistance and high compatibility with biological tissues. In the last twenty years a great variety of nickel-titanium rotary instruments, with various sections and taper, have been developed and marketed. Although they have many advantages and despite their increasing popularity, a major concern with the use of Ni-Ti rotary instruments is the possibility of unexpected failure in use due to several reasons: novice operator handling, presence manufacturing defects, fatigue etc. Recently, the use of an aqueous gel during experimental tests showed a longer duration of the instruments. The aim of the present work is to contribute to the study of the fracture behavior of these endodontic rotary instruments particularly assessing whether the use of the aqueous lubricant gel can extend their operative life stating its reasons. A finite element model (FEM has been developed to support the experimental results. The results were rather contradictory, also because the Perspex (Poly-methyl methacrylate, PMMA cannot simulate completely the dentin mechanical behavior; however the results highlight some interesting points which are discussed in the paper.

  11. The preparation of titanium-vanadium carbide/nickel cermets. Technical report

    International Nuclear Information System (INIS)

    Precht, W.; Sprissler, B.

    1976-01-01

    Titanium/vanadium alloy carbide rods were prepared by a zone melting procedure. Wetting studies were carried out using sections of the fused rods and candidate matrix material. It was established that nickel exhibits excellent wetting of (Ti, V) C, and accordingly cermet blends were prepared and liquid phase sintered. Processing parameters are discussed as well as their effect on the final microstructure. Alternate methods for cermet preparation are offered which use as received titanium carbide and vanadium carbide powders

  12. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    Science.gov (United States)

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase

  13. Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

    Directory of Open Access Journals (Sweden)

    Ok-In Cho

    2013-02-01

    Full Text Available Objectives This study compared the cyclic fatigue resistance of nickel-titanium (NiTi files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions. Materials and Methods ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional device prescribed curvature inside a simulated canal (C-test, the second new device exerted a constant load (L-test whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF was determined. The NCF were subjected to one-way ANOVA and Duncan's post-hoc test for each method. Spearman's rank correlation coefficient was computed to examine any association between methods. Results Spearman's rank correlation coefficient (ρ = -0.905 showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files. Conclusions The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.

  14. Comparison of two techniques for assessing the shaping efficacy of repeatedly used nickel-titanium rotary instruments.

    Science.gov (United States)

    Ounsi, Hani F; Franciosi, Giovanni; Paragliola, Raffaele; Al-Hezaimi, Khalid; Salameh, Ziad; Tay, Franklin R; Ferrari, Marco; Grandini, Simone

    2011-06-01

    The shaping capacity of nickel-titanium (NiTi) rotary instruments is often assessed by photographic or micro-computed tomography (micro-CT) measurements, and these instruments are often used more than once clinically. This study was conducted to compare photographic and micro-CT measurements and to assess if the repeated use of NiTi instruments affected the shape of canal preparation. Ten new sets of ProTaper Universal instruments (Dentsply-Maillefer, Ballaigues, Switzerland) were used in 60 resin blocks simulating curved root canals. Groups 1 to 6 (n=10) represented the first to sixth use of the instrument, respectively. Digitized images of the prepared blocks were taken in both mesiodistal (MD) and buccolingual (BL) directions and area measurements (mm(2)) were calculated using AutoCAD (Autodesk Inc, San Rafael, CA). The volumes of the same prepared canals were measured using micro-CT (mm(3)). Statistical analysis was performed to detect differences between photographic and volumetric measurements and differences between uses. Two-way repeated-measures analysis of variance revealed significant differences between groups (P < .001). Regarding measurement type, there were no significant differences between BL and MD measurements, but there were significant differences between micro-CT and BL measurements (P < .001) and micro-CT and MD measurements (P=.001). Significant differences were also noted between uses. Within the limitations of the present study, micro-CT scanning is more discriminative of the changes in canal space associated with repeated instrument use than photographic measurements. Canal preparations are significantly smaller after the third use of the same instrument. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. [The influence of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 nickel-titanium rotary instruments].

    Science.gov (United States)

    Li, Xiang-fen; Zheng, Ping; Xu, Li; Su, Qin

    2015-12-01

    To investigate the effects of autoclave sterilization on surface characteristics and cyclic fatigue resistance of 3 types of nickel-titanium rotary instruments (K3, Mtwo, ProTaper). Three brands of NiTi rotary endodontic instruments of the same size (tip diameter 0.25 mm and constant 0.06 taper) were selected: K3, Mtwo and Protaper (F2). 24 instruments for each brand were used to evaluate the effects of autoclave sterilization on inner character in the as-received condition and after subjection to 0, 1, 5, and 10 sterilization cycles (6 for each group). Time to fracture (TtF) from the start of the test to the moment of file breakage and the length of the fractured fragment were recorded. Means and standard deviations of TtF and fragment length were calculated. The data was analyzed with SPSS13.0 software package. Another 12 NiTi rotary instruments for each brand were used, 6 subjected to 10 autoclave sterilization cycles and the other as control. Scanning electron microscope was used to observe the changes in surface topography and inner character. For cyclic fatigue resistance, when sterilization was not performed, K3 showed the highest value of TtF means and ProTaper the lowest. The differences between each brand were statistically significant (Pinstruments were intensified greatly after 10 cycles of sterilization. Cycle fatigue resistance is different among instruments of different brands. Autoclave sterilization may increase fatigue resistance of the 3 brands. Autoclave sterilization may increase the surface roughness and inner defects in cross section.

  16. A clinical study of space closure with nickel-titanium closed coil springs and an elastic module.

    Science.gov (United States)

    Samuels, R H; Rudge, S J; Mair, L H

    1998-07-01

    A previous study has shown that a 150-gram nickel-titanium closed coil spring (Sentalloy, GAC International Inc.) closed spaces more quickly and more consistently than an elastic module (Alastik, Unitec/3M). This study used the same friction sensitive sliding mechanics of pitting the six anterior teeth against the second bicuspid and first molars, to examine the rate of space closure of 100-gram and 200-gram nickel-titanium closed coil springs. The results for the three springs and elastic module were compared. The nickel-titanium closed coil springs produced a more consistent space closure than the elastic module. The 150- and 200-gram springs produced a faster rate of space closure than the elastic module or the 100-gram spring. No significant difference was noted between the rates of closure for the 150- and the 200-gram springs.

  17. The effect of multiple autoclave cycles on the surface of rotary nickel-titanium endodontic files: An in vitro atomic force microscopy investigation.

    Science.gov (United States)

    Nair, Ashish Shashikant; Tilakchand, Mahima; Naik, Balaram Damodar

    2015-01-01

    To observe and study the effect of multiple autoclave sterilization cycles, on the surface of nickel-titanium (NiTi) files. The file used for this study was the Mtwo file (VDW) and ProTaper (Dentsply). The apical 5 mm of the files were attached to a silicon wafer and subjected to autoclave cycles under standardized conditions. They were scanned with an AFM after 1, 5, and 10 cycles. The unsterilized files were used as control, before start of the study. Three vertical topographic parameters namely maximum height (MH), root mean square (RMS) of surface roughness, and arithmetic mean roughness (AMR)were measured with the atomic force microscope (AFM). Analysis of variance along with Tukey's test was used to test the differences. The vertical topographic parameters were higher for both the files, right after the first cycle, when compared with the control (P autoclave cycles, a fact that should be kept in mind during their reuse.

  18. On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy

    International Nuclear Information System (INIS)

    Johansen, K.; Voggenreiter, H.; Eggeler, G.

    1999-01-01

    The present study investigates the tensile properties of a nickel titanium (NiTi) shape memory alloy (SMA) produced by powder metallurgy (PM) with and without TiC-particles. It discusses the effect of the addition of particles on the mechanical behavior in tension and studies the intrinsic two way effect (ε 2W ) after thermomechanical training. Special emphasis is placed on the stability of ε 2W after subsequent thermal cycling. The results are discussed on the basis of an analysis of the thermomechanical data and microstructural results. The present study shows that the PM route can produce NiTi SMAs with tensile properties which match those of materials produced by classical ingot metallurgy. Adding TiC particles to NiTi SMAs alters the phase transition temperatures (PTTs) and affects the SMA performance. Adding more than ten volume percent TiC particles results in early and brittle rupture during tensile loading. (orig.)

  19. Endodontic shaping performance using nickel-titanium hand and motor ProTaper systems by novice dental students.

    Science.gov (United States)

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-05-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel-titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Twenty-three fourth-year dental students attending China Medical University Dental School prepared 46 simulated curved canals in resin blocks with two types of NiTi rotary systems: hand and motor ProTaper files. Composite images were prepared for estimation. Material removed, canal width and canal deviation were measured at five levels in the apical 4 mm of the simulated curved canals using AutoCAD 2004 software. Data were analyzed using Wilcoxon's rank-sum test. The hand ProTaper group cut significantly wider than the motor rotary ProTaper group in the outer wall, except for the apical 0 mm point. The total canal width was cut significantly larger in the hand group than in the motor group. There was no significant difference between the two groups in centering canal shape, except at the 3 mm level. These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.

  20. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    Science.gov (United States)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the

  1. Microstructural and Mechanical Properties of Porous 60NiTi Prepared by Conventional Press-and-sinter Method

    Directory of Open Access Journals (Sweden)

    Khanlari Khashayar

    2017-01-01

    Full Text Available An intermetallic nickel-titanium alloy, 60NiTi, comprised of approximately 60 wt.% Ni and 40 wt.% Ti, contains a broad combination of physical and mechanical properties such as high hardness, low elastic modulus, resistance to aqueous corrosion and good biocompatibility. These unique combinations make this alloy an attractive candidate for medical components such as implants and prosthesis, where biocompatible materials with high hardness and low stiffness are typically used. The conventional press-and-sinter method which represents the least complex, most flexible and economic powder metallurgy method was used to produce porous 60NiTi parts suitable for biomedical applications. The effect of sintering holding time on the microstructure and mechanical properties is investigated. The structure of the as sintered parts is quite porous which is beneficial based on the medical point of view. The ultimate compressive strength of the samples is higher than that of the compact human bone and can, therefore, meet the strength demand of implants for general bone replacement applications.

  2. Ex vivo study on root canal instrumentation of two rotary nickel-titanium systems in comparison to stainless steel hand instruments.

    Science.gov (United States)

    Vaudt, J; Bitter, K; Neumann, K; Kielbassa, A M

    2009-01-01

    To investigate instrumentation time, working safety and the shaping ability of two rotary nickel-titanium (NiTi) systems (Alpha System and ProTaper Universal) in comparison to stainless steel hand instruments. A total of 45 mesial root canals of extracted human mandibular molars were selected. On the basis of the degree of curvature the matched teeth were allocated randomly into three groups of 15 teeth each. In group 1 root canals were prepared to size 30 using a standardized manual preparation technique; in group 2 and 3 rotary NiTi instruments were used following the manufacturers' instructions. Instrumentation time and procedural errors were recorded. With the aid of pre- and postoperative radiographs, apical straightening of the canal curvature was determined. Photographs of the coronal, middle and apical cross-sections of the pre- and postoperative canals were taken, and superimposed using a standard software. Based on these composite images the portion of uninstrumented canal walls was evaluated. Active instrumentation time of the Alpha System was significantly reduced compared with ProTaper Universal and hand instrumentation (P < 0.05; anova). No instrument fractures occurred in any of the groups. The Alpha System revealed significantly less apical straightening compared with the other instruments (P < 0.05; Mann-Whitney U test). In the apical cross-sections Alpha System resulted in significantly less uninstrumented canal walls compared with stainless steel files (P < 0.05; chi-squared test). Despite the demonstrated differences between the systems, an apical straightening effect could not be prevented; areas of uninstrumented root canal wall were left in all regions using the various systems.

  3. Phase transitions in coated nickel titanium arch wires: A differential ...

    Indian Academy of Sciences (India)

    Division of Orthodontics, Indian Army, 10 Corps Dental Unit, C/O 56 APO, ... Shape memory and super-elastic properties of orthodontic nickel titanium ... test did not show any significant difference in mean values of transition ... Low enthalpy values (0·92–3·59 j/g) compared to conventional ones, implied complete phase.

  4. Angular deflection of rotary nickel titanium files: a comparative study

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2009-12-01

    Full Text Available A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF, Profile, K3 and M2 (NRT. All instruments tested had the same dimensions (taper 0.06 and tip size 25. Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05, than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files.

  5. Management of long-term and reversible hysteroscopic sterilization: a novel device with nickel-titanium shape memory alloy

    Science.gov (United States)

    2014-01-01

    Background Female sterilization is the second most commonly used method of contraception in the United States. Female sterilization can now be performed through laparoscopic, abdominal, or hysteroscopic approaches. The hysteroscopic sterilization may be a safer option than sterilization through laparoscopy or laparotomy because it avoids invading the abdominal cavity and undergoing general anaesthesia. Hysteroscopic sterilization mainly includes chemical agents and mechanical devices. Common issues related to the toxicity of the chemical agents used have raised concerns regarding this kind of contraception. The difficulty of the transcervical insertion of such mechanical devices into the fallopian tubes has increased the high incidence of device displacement or dislodgment. At present, Essure® is the only commercially available hysteroscopic sterilization device being used clinically. The system is irreversible and is not effective immediately. Presentation of the hypothesis Our new hysteroscopic sterility system consists of nickel-titanium (NiTi) shape memory alloy and a waterproof membrane. The NiTi alloy is covered with two coatings to avoid toxic Ni release and to prevent stimulation of epithelial tissue growth around the oviducts. Because of the shape memory effect of the NiTi alloy, the device works like an umbrella: it stays collapsed at low temperature before placement and opens by the force of shape memory activated by the body temperature after it is inserted hysteroscopically into the interstitial tubal lumen. The rim of the open device will incise into interstitial myometrium during the process of unfolding. Once the device is fixed, it blocks the tube completely. When the patient no longer wishes for sterilization, the device can be closed by perfusing liquid with low temperature into the uterine cavity, followed by prospective hysteroscopic removal. After the device removal, the fallopian tube will revert to its physiological functions. Testing the

  6. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour

    International Nuclear Information System (INIS)

    Ponsonnet, L.; Reybier, K.; Jaffrezic, N.; Comte, V.; Lagneau, C.; Lissac, M.; Martelet, C.

    2003-01-01

    Cell attachment and spreading to titanium-based alloy surfaces is a major parameter in implant technology. In this paper, substratum surface hydrophobicity, surface free energy, interfacial free energy and surface roughness were investigated to ascertain which of these parameters is predominant in human fibroblast spreading. Two methods for contact angle measurement were compared: the sessile drop method and the captive bubble two-probe method. The relationship between surface roughness and the sessile drop contact angles of various engineered titanium surfaces such as commercial pure titanium (cp-Ti), titanium-aluminium-vanadium alloy (Ti-6Al-4V), and titanium-nickel (NiTi), was shown. Surface free energy (SFE) calculations were performed from contact angles obtained on smooth samples based on the same alloys in order to eliminate the roughness effect. SFE of the surfaces have been calculated using the Owens-Wendt (OW) and Van Oss (VO) approaches with the sessile drop method. The OW calculations are used to obtain the dispersive (γ d ) and polar (γ p ) component of SFE, and the VO approach allows to reach the apolar (γ LW ) and the polar acid-base component (γ ab ) of the surface. From captive bubble contact angle experiments (air or octane bubble under water), the interfacial free energy of the different surfaces in water was obtained. A relationship between cell spreading and the polar component of SFE was found. Interfacial free energy values were low for all the investigated surfaces indicating good biocompatibility for such alloys

  7. Influence of bending mode on the mechanical properties of nickel-titanium archwires and correlation to differential scanning calorimetry measurements.

    Science.gov (United States)

    Brauchli, Lorenz M; Keller, Heidi; Senn, Christiane; Wichelhaus, Andrea

    2011-05-01

    Nickel-titanium orthodontic archwires are used with bonded appliances for initial leveling. However, precise bending of these archwires is difficult and can lead to changes within the crystal structure of the alloy, thus changing the mechanical properties unpredictably. The aim of this study was to evaluate different bending methods in relation to the subsequent mechanical characteristics of the alloy. The mechanical behaviors of 3 archwires (Copper NiTi 35°C [Ormco, Glendora, Calif], Neo Sentalloy F 80 [GAC International, Bohemia, NY], and Titanol Low Force [Forestadent, Pforzheim, Germany]) were investigated after heat-treatment in a dental furnace at 550-650°C, treatment with an electrical current (Memory-Maker, Forestadent), and cold forming. In addition, the change in A(f) temperature was registered by means of differential scanning calorimetry. Heat-treatment in the dental furnace as well as with the Memory-Maker led to widely varying force levels for each product. Cold forming resulted in similar or slightly reduced force levels when compared to the original state of the wires. A(f) temperatures were in general inversely proportional to force levels. Archwire shape can be modified by using either chair-side technique (Memory-Maker, cold forming) because the superelastic behavior of the archwires is not strongly affected. However it is important to know the specific changes in force levels induced for each individual archwire with heat-treatment. Cold forming resulted in more predictable forces for all products tested. Therefore, cold forming is recommended as a chair-side technique for the shaping of NiTi archwires. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. NiTi Alloys for Tribological Applications: The Role of In-Situ Nanotechnology

    Science.gov (United States)

    Dellacorte, Christopher

    2016-01-01

    Beginning in 2004, NASA initiated the investigation and development of, Nitinol 60, a nickel-rich and dimensionally stable version of shape memory alloy Nitinol 55, as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but the fundamental reasons for these properties were unknown. Shape memory alloys made from equiatomic Ni-Ti are widely known for their unique dimensional instability behavior that can be triggered by thermal and mechanical stress. The nickel-rich alloys exhibit no such dimension change property and have high hardness but have largely been overlooked by industry and the engineering community. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, Ni-Ti alloys are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed that in-situ nano-scale phases that form during processing are largely responsible for NiTis remarkable properties. In this presentation, the state-of-art of nickel-rich NiTi alloys will be introduced and the nanotechnology behind their intriguing behavior will be addressed. The presentation will include discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  9. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  10. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing

    International Nuclear Information System (INIS)

    Haberland, Christoph; Elahinia, Mohammad; Walker, Jason M; Meier, Horst; Frenzel, Jan

    2014-01-01

    Additive manufacturing provides an attractive processing method for nickel–titanium (NiTi) shape memory and pseudoelastic parts. In this paper, we show how the additive manufacturing process affects structural and functional properties of additively manufactured NiTi and how the process parameter set-up can be optimized to produce high quality NiTi parts and components. Comparisons of shape recovery due to shape memory and pseudoelasticity in additively manufactured and commercial NiTi exhibit promising potential for this innovative processing method. (paper)

  11. A micro-computed tomographic evaluation of dentinal microcrack alterations during root canal preparation using single-file Ni-Ti systems.

    Science.gov (United States)

    Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong

    2018-01-01

    The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (Pfiles. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.

  12. The Effect of Pre-Stressing on the Static Indentation Load Capacity of the Superelastic 60NiTi

    Science.gov (United States)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2013-01-01

    Superelastic nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt.%), are under development for use in mechanical components like rolling element bearings and gears. Compared to traditional bearing steels, these intermetallic alloys, when properly heat-treated, are hard but exhibit much lower elastic modulus (approx.100 GPa) and a much broader elastic deformation range (approx.3 percent or more). These material characteristics lead to high indentation static load capacity, which is important for certain applications especially space mechanisms. To ensure the maximum degree of elastic behavior, superelastic materials must be pre-stressed, a process referred to as "training" in shape memory effect (SME) terminology, at loads and stresses beyond expected use conditions. In this paper, static indentation load capacity tests are employed to assess the effects of pre-stressing on elastic response behavior of 60NiTi. The static load capacity is measured by pressing 12.7 mm diameter ceramic Si3N4 balls into highly polished, hardened 60NiTi flat plates that have previously been exposed to varying levels of pre-stress (up to 2.7 GPa) to determine the load that results in shallow but measurable (0.6 m, 25 in. deep) permanent dents. Hertz stress calculations are used to estimate contact stress. Without exposure to pre-stress, the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.4 m deep) occurs. When pre-stressed to 2.7 GPa, a static load of 4900 kN is required to achieve a comparable dent, a 30 percent increase. These results suggest that stressing contact surfaces prior to use enhances the static indentation load capacity of the superelastic 60NiTi. This approach may be adaptable to the engineering and manufacture of highly resilient mechanical components such as rolling element bearings.

  13. Absolute cross section measurement for the ionization of the K-shell of titanium and nickel by electron impact (50 KEV)

    International Nuclear Information System (INIS)

    Jessenberger, J.

    1974-01-01

    The yield of characteristic X-ray K radiation of titanium during bombardment with electrons in the energy region of 6-50 keV and of nickel at 9-50 keV was measured, and the cross sections for th ionization of the K shell of titanium and nickel were determined from this. The results obtained are compared with several theoretical models. (WL/LN) [de

  14. Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer

    International Nuclear Information System (INIS)

    Kundu, S.; Chatterjee, S.

    2008-01-01

    Solid-state diffusion bonded joints were prepared between commercially pure titanium and 304 stainless steel with nickel as an intermediate material in the temperature range of 800-950 deg. C for 10.8 ks under a 3 MPa uniaxial pressure in vacuum. The interface microstructures and reaction products of the transition joints were investigated by optical and scanning electron microscopy. Up to 850 deg. C processing temperature, a 300-μm nickel interlayer completely restricts the diffusion of titanium to stainless steel. However, the nickel interlayer cannot block the diffusion of Ti to the stainless side and λ + χ + α-Fe, λ + FeTi and λ + FeTi + β-Ti phase mixtures are formed at the SS-Ni interface, when bonding was processed at 900 deg. C and above. These reaction products were confirmed by X-ray diffraction. A maximum tensile strength of ∼ 270 MPa and shear strength of ∼ 194 MPa, along with 6.2% ductility, were obtained for the diffusion bonded joint processed at 850 deg. C. Fracture surface observation in SEM using EDS demonstrates that failure occurred through the Ni-Ti interface of the joints when processed up to 850 deg. C and through the SS-Ni interface when processed at and above 900 deg. C

  15. Validated finite element analyses of WaveOne Endodontic Instruments: a comparison between M-Wire and NiTi alloys.

    Science.gov (United States)

    Bonessio, N; Pereira, E S J; Lomiento, G; Arias, A; Bahia, M G A; Buono, V T L; Peters, O A

    2015-05-01

    To validate torsional analysis, based on finite elements, of WaveOne instruments against in vitro tests and to model the effects of different nickel-titanium (NiTi) materials. WaveOne reciprocating instruments (Small, Primary and Large, n = 8 each, M-Wire) were tested under torsion according to standard ISO 3630-1. Torsional profiles including torque and angle at fracture were determined. Test conditions were reproduced through Finite Element Analysis (FEA) simulations based on micro-CT scans at 10-μm resolution; results were compared to experimental data using analysis of variance and two-sided one sample t-tests. The same simulation was performed on virtual instruments with identical geometry and load condition, based on M-Wire or conventional NiTi alloy. Torsional profiles from FEA simulations were in significant agreement with the in vitro results. Therefore, the models developed in this study were accurate and able to provide reliable simulation of the torsional performance. Stock NiTi files under torsional tests had up to 44.9%, 44.9% and 44.1% less flexibility than virtual M-Wire files at small deflections for Small, Primary and Large instruments, respectively. As deflection levels increased, the differences in flexibility between the two sets of simulated instruments decreased until fracture. Stock NiTi instruments had a torsional fracture resistance up to 10.3%, 8.0% and 7.4% lower than the M-Wire instruments, for the Small, Primary and Large file, respectively. M-Wire instruments benefitted primarily through higher material flexibility while still at low deflection levels, compared with conventional NiTi alloy. At fracture, the instruments did not take complete advantage of the enhanced fractural resistance of the M-Wire material, which determines only limited improvements of the torsional performance. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.

    Science.gov (United States)

    Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P

    2016-08-05

    The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.

  17. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S. K.; Mohan, S. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore-560012 (India); Bysakh, S. [Central Glass and Ceramics Research Institute, Kolkata-700032 (India); Kumar, A.; Kamat, S. V. [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India)

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  18. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C 2 H 2 PIII is composed of mainly TiC x with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti 4+ , Ti 3+ and Ti 2+

  19. Comparison of the superelasticity of different nickel?titanium orthodontic archwires and the loss of their properties by heat treatment

    OpenAIRE

    Bellini, Humberto; Moyano, Javier; Gil, Javier; Puigdollers, Andreu

    2016-01-01

    The aim of this work is to describe and compare mechanical properties of eight widely used nickel?titanium orthodontic wires under uniform testing conditions and to determine the influence of the heat treatments on the loss of the superelasticity. Ten archwires from two batches from eight different manufacturers were evaluated. A three-point bending test was performed, in accordance with ISO 15841:2006, on 80 round nickel?titanium archwire segments of 0.016?inch. To obtain a load-deflection c...

  20. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni- Ti files - An In-Vitro SEM study.

    Science.gov (United States)

    Reddy, J M V Raghavendra; Latha, Prasanna; Gowda, Basavana; Manvikar, Varadendra; Vijayalaxmi, D Benal; Ponangi, Kalyana Chakravarthi

    2014-02-01

    Predictable successful endodontic therapy depends on correct diagnosis, effective cleaning, shaping and disinfection of the root canals and adequate obturation. Irrigation serves as a flush to remove debris, tissue solvent and lubricant from the canal irregularities; however these irregularities can restrict the complete debridement of root canal by mechanical instrumentation.Various types of hand and rotary instruments are used for the preparation of the root canal system to obtain debris free canals. The purpose of this study was to evaluate the amount of smear layer and debris removal on canal walls following the using of manual Nickel-Titanium (NiTi) files compared with rotary ProTaperNiTi files using a Scanning Electron Microscope in two individual groups. A comparative study consisting of 50 subjects randomized into two groups - 25 subjects in Group A (manual) and 25 subjects in Group B (rotary) was undertaken to investigate and compare the effects of smear layer and debris between manual and rotary NiTi instruments. Chi square test was used to find the significance of smear layer and debris removal in the coronal, middle and apical between Group A and Group B. Both systems of Rotary ProTaperNiTi and manual NiTi files used in the present study, did not create completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary ProTaperNiTi instruments. Rotary instruments were less time consuming when compared to manual instruments. Instrument separation was not found to be significant with both the groups. Both systems of Rotary ProTaperNiTi and manual NiTi files used did not produce completely clean root canals. Manual NiTi files produced significantly less smear layer and debris compared to Rotary protaper instruments. How to cite the article: Reddy JM, Latha P, Gowda B, Manvikar V, Vijayalaxmi DB, Ponangi KC. Smear layer and debris removal using manual Ni-Ti files compared with rotary Protaper Ni-Ti files

  1. Dynamic mechanical properties of straight titanium alloy arch wires.

    Science.gov (United States)

    Kusy, R P; Wilson, T W

    1990-10-01

    Eight straight-wire materials were studied: an orthodontic titanium-molybdenum (Ti-Mo) product, TMA; three orthodontic nickel-titanium (Ni-Ti) products, Nitinol, Titanal, and Orthonol; three prototype alloys, a martensitic, an austenitic, and a biphasic alloy; and a hybrid shape-memory-effect product, Biometal. Each wire was prepared with a length-to-cross-sectional area of at least 3600 cm-1. With an Autovibron Model DDV-II-C used in the tensile mode, each sample was scanned from -120 to +200 degrees C at 2 degrees C/min. From the data base, plots of the log storage modulus, log tan delta, and percent change in length vs. temperature were generated. Results showed that the dynamic mechanical properties of the alloys within this TI system are quite different. The Ti-Mo alloy, TMA, was invariant with temperature, having a modulus of 7.30 x 10(11) dyne/cm2 (10.6 x 10(6) psi). The three cold-worked alloys--Nitinol, Titanal, and Orthonol--appeared to be similar, having a modulus of 5.74 x 10(11) dyne/cm2 (8.32 x 10(6) psi). The biphasic shape-memory alloy displayed a phase transformation near ambient temperature; whereas the hybrid shape-memory product, Biometal, underwent a 3-5% change in length during its transformation between 95 and 125 degrees C. Among the Ni-Ti wires tested, several different types of alloys were represented by this intermetallic material.

  2. Microscopic Features of Fractured Fragment of Nickel-Titanium Endodontic Instruments by Two Different Modes of Torsional Loading

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Abu-Tahun

    2018-01-01

    Full Text Available This study compared the microscopic features of the fractured endodontic nickel-titanium (NiTi rotary instruments by two different torsional loadings: repetitive torsional loading (RTL and single torsional loading (STL based on the International Organization for Standardization (ISO. ProTaper Next, HyFlex EDM, and V-Taper 2 were compared in this study. In the STL method, the torsional load was applied after fixing the 3 mm tip of the file, by continuous clockwise rotation (2 rpm until fracture. In the RTL method, a preset rotational loading (0.5 N·cm was applied and the clockwise loading to the preset torque and counterclockwise unloading to original position were repeated at 50 rpm until the file fractured. Fractured fragments by two methods were compared under a scanning electron microscope (SEM to examine the topographic features of the fractured surfaces and longitudinal aspects. SEM examinations showed significantly different features according to the loading methods. Specimens from the RTL method showed ruptured aspects on cross sections, with multiple areas of initiated cracks while the STL method showed the typical features of torsional failure, such as circular abrasion marks and fatigue dimples. This study suggested a new repetitive torsional loading method which is much more clinically relevant and may result in a different fracture feature from STL method.

  3. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    Science.gov (United States)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  4. Effect of clinical use of nickel-titanium springs.

    Science.gov (United States)

    Magno, Amanda Fahning; Monini, André da Costa; Capela, Marisa Veiga; Martins, Lídia Parsekian; Martins, Renato Parsekian

    2015-07-01

    Our objectives were to determine whether there are changes on the load deflection rate (L/DP) and the average force (FP) of the superelastic pseudoplateau, and whether permanent deformation is changed in nickel-titanium closed-coil springs (CCSs) after 6 months of clinical use. Twenty-two nickel-titanium CCSs (Sentalloy 100 g; Dentsply GAC, York, Pa) were subjected to tensile mechanical testing at 37°C on activations varying from 3.2 to 16.0 mm before and after 6 months of clinical use. A regression line was fitted over the most horizontal area of the unloading part of the stress-strain graph of every CCS, and its slope was used as L/DP. The FP was determined by the midpoint of the longest segment of the curve that could be fit within the regression line with a R(2) of at least 0.999, and permanent deformation was determined graphically by obtaining the strain value when the measured stress reached zero. The data were analyzed by 3 analyses of variance at 2 levels, with 5% of significance. Time and activation significantly influenced the variables tested (P < 0.001). Time increased the L/DP and permanent deformation but decreased the FP. Activation decreased L/DP, FP, and permanent deformation. Significant interactions between time and activation were detected for FP (P = 0.013) and deformation (P < 0.001). After 6 months of active clinical use, the analyzed springs had a significant but small increase in their L/DP; FP dropped up to 88%, and the CCSs deformed up to 1.26 mm. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  5. A novel approach to determine the effect of irrigation on temperature and failure of Ni-Ti endodontic rotary files

    Science.gov (United States)

    Mousavi, Sayed Ali; Kargar-Dehnavi, Vida; Mousavi, Sayed Amir

    2012-01-01

    Background: Nickel-titanium (Ni-Ti) rotary instrument files are important devices in Endodontics in root canal preparation. Ni-Ti file breakage is a critical and problematic issue and irrigation techniques were applied to decrease risk of file failure root. The aim of the present study was to compare the temperature gradient change of different irrigation solutions with Ni-Ti rotary instrument system during root canal preparation and also to define their effects on the file failure. Materials and Methods: A novel computerized instrumentation was utilized and thirty standard (ProFile #25/.04) files were divided into three groups and subjected to a filing in the root canal test. Changes in temperature on teeth under constant instrumental conditions with custom-designed computerized experimental apparatus were measured by using a temperature sensor bonded to the apical hole. A rotary instrument for canal preparation in three series of solution was used and the changes in temperature after each solution were compared. Finally, the file failure results were mentored according to each step of test. Comparisons were performed between group status clinically by using ANOVA (t) test, once the sample showed up normal and differences of Pinstruments, which were immersed in 5% NaOCl, when compared with the water group (Pinstruments immersed in water, when compared with the no solution group (Pinstruments. Conclusion: By immersing the file in 5% NaOCl, the temperature gradient decreased and instrument failure was reduced. PMID:23087732

  6. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments.

    Science.gov (United States)

    Pereira, E S J; Peixoto, I F C; Viana, A C D; Oliveira, I I; Gonzalez, B M; Buono, V T L; Bahia, M G A

    2012-05-01

    To compare physical and mechanical properties of one conventional and one thermomechanically treated nickel-titanium (NiTi) wire used to manufacture rotary endodontic instruments. Two NiTi wires 1.0 mm in diameter were characterized; one of them, C-wire (CW), was processed in the conventional manner, and the other, termed M-Wire (MW), received an additional heat treatment according to the manufacturer. Chemical composition was determined by energy-dispersive X-ray spectroscopy, phase constitution by XRD and the transformation temperatures by DSC. Tensile loading/unloading tests and Vickers microhardness measurements were performed to assess the mechanical behaviour. Data were analysed using analysis of variance (α = 0.05). The two wires showed approximately the same chemical composition, close to the 1 : 1 atomic ratio, and the β-phase was the predominant phase present. B19' martensite and the R-phase were found in MW, in agreement with the higher transformation temperatures found in this wire compared with CW, whose transformation temperatures were below room temperature. Average Vickers microhardness values were similar for MW and CW (P = 0.91). The stress at the transformation plateau in the tensile load-unload curves was lower and more uniform in the M-Wire, which also showed the smallest stress hysteresis and apparent elastic modulus. The M-Wire had physical and mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. © 2011 International Endodontic Journal.

  7. Effect of long-term repeated deflections on fatigue of preloaded superelastic nickel-titanium archwires

    NARCIS (Netherlands)

    Aken, C.A.J.M.; Pallav, P.; Kleverlaan, C.J.; Kuitert, R.B.; Prahl-Andersen, B.; Feilzer, A.J.

    2008-01-01

    Introduction: The aim of this in-vitro study was to investigate the changes in force delivery of superelastic nickel-titanium archwires used in combination with a self-ligating bracket system after dynamic fatigue-loading in a 3-bracket model under controlled temperature. Methods: Samples of 2

  8. Evaluation and comparison of shear bond strength of porcelain to a beryllium-free alloy of nickel-chromium, nickel and beryllium free alloy of cobalt-chromium, and titanium: An in vitro study

    Directory of Open Access Journals (Sweden)

    Ananya Singh

    2017-01-01

    Conclusion: It could be concluded that newer nickel and beryllium free Co-Cr alloys and titanium alloys with improved strength to weight ratio could prove to be good alternatives to the conventional nickel-based alloys when biocompatibility was a concern.

  9. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions.

    Science.gov (United States)

    Iijima, Masahiro; Yuasa, Toshihiro; Endo, Kazuhiko; Muguruma, Takeshi; Ohno, Hiroki; Mizoguchi, Itaru

    2010-01-01

    This study investigated the corrosion properties of ion implanted nickel-titanium wire (Neo Sentalloy Ionguard) in artificial saliva and fluoride mouth rinse solutions (Butler F Mouthrinse, Ora-Bliss). Non ion implanted nickel-titanium wire (Neo Sentalloy) was used as control. The anodic corrosion behavior was examined by potentiodynamic polarization measurement. The surfaces of the specimens were examined with SEM. The elemental depth profiles were characterized by XPS. Neo Sentalloy Ionguard in artificial saliva and Butler F Mouthrinse (500 ppm) had a lower current density than Neo Sentalloy. In addition, breakdown potential of Neo Sentalloy Ionguard in Ora-Bliss (900 ppm) was much higher than that of Neo Sentalloy although both wires had similar corrosion potential in Ora-Bliss (450 and 900 ppm). The XPS results for Neo Sentalloy Ionguard suggested that the layers consisted of TiO(2) and TiN were present on the surface and the layers may improve the corrosion properties.

  10. An in vitro assessment of the physical properties of novel Hyflex nickel-titanium rotary instruments.

    Science.gov (United States)

    Peters, O A; Gluskin, A K; Weiss, R A; Han, J T

    2012-11-01

    To determine several properties including torsional and fatigue limits, as well as torque during canal preparation, of Hyflex, a rotary instrument manufactured from so-called controlled memory nickel-titanium alloy. The instruments were tested in vitro using a special torque bench that permits both stationary torque tests according to ISO3630-1 and fatigue limit determination, as well as measurement of torque (in Ncm) and apical force (in N) during canal preparation. Fatigue limit (in numbers of cycles to failure) was determined in a 90°, 5 mm radius block-and-rod assembly. Simulated canals in plastic blocks were prepared using both a manufacturer-recommended single-length technique as well as a generic crown-down approach. anova with Bonferroni post hoc procedures was used for statistical analysis. Torque at failure ranged from 0.47 to 1.38 Ncm, with significant differences between instrument sizes (P instruments size 20, .04 taper and size 25, .08 taper, respectively. Torque during canal preparation was significantly higher for small instruments used in the single-length technique but lower for the size 40, .04 taper, compared to a crown-down approach. No instrument fractured; 82% of the instruments used were plastically deformed; however, only 37% of these remained deformed after a sterilization cycle. Hyflex rotary instruments are bendable and flexible and have similar torsional resistance compared to instruments made of conventional NiTi. Fatigue resistance is much higher, and torque during preparation is less, compared to other rotary instruments tested previously under similar conditions. © 2012 International Endodontic Journal.

  11. Evaluation of anomalies during nickel and titanium silicide formation using the effective heat of formation mode

    CSIR Research Space (South Africa)

    Pretorius, R

    1993-11-01

    Full Text Available , as well as the observed sequence of growth of different silicide phases, are not in agree- ment with thermodynamic considerations [26]. In the case of the nickel silicides Ni,Si is nearly always found to be the first... to determine how the oxygen content in the silicon affects phase formation. We also show how the anomalous behaviour of titanium and nickel silicide formation can be explained thermodynamically by using the ?effective heat...

  12. The influence of simulated clinical use on the flexibility of rotary ProTaper Universal, K3 and EndoSequence nickel-titanium instruments.

    Science.gov (United States)

    Viana, A C D; Pereira, E S J; Bahia, M G A; Buono, V T L

    2013-09-01

    To investigate the influence of cyclic flexural and torsional loading on the flexibility of ProTaper Universal, K3 and EndoSequence nickel-titanium instruments, in view of the hypothesis that these types of loading would decrease the flexibility of the selected NiTi rotary files. The instruments evaluated were S2 and F1 ProTaper Universal, sizes 20 and 25, .06 taper K3, and sizes 20 and 25, .06 taper EndoSequence. Flexibility was determined by 45° bending tests according to ISO 3630-1 specification. Values of the bending moment (MB ) obtained with new instruments were considered as the control group (CG). Bending tests were then conducted in instruments previously fatigued to one-fourth and three-fourths of their average fatigue life (fatigue groups, FG¼ and FG¾), as well as after cyclic torsional loading (torsional group, TG). Fatigue tests were carried out in a bench device that allowed the files to rotate freely inside an artificial canal with an angle of curvature of 45° and a radius of 5 mm. Cyclic torsional loading tests were performed that entailed rotating the instrument from zero angular deflection to 180° and then returning to zero applied torque in 20 cycles. Data were analysed using one-way analysis of variance at a significance level of 5%. Simulated clinical use by means of flexural fatigue tests did not affect the flexibility of the instruments, except for a significant increase in flexibility observed in a few instruments (P instruments and after cyclic torsional loading showed no significant differences between them (P > 0.05). The flexibility of rotary ProTaper Universal, K3 and EndoSequence NiTi instruments, measured in bending tests, was not adversely affected by simulated clinical use in curved root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Dynamic properties of nickel-titanium alloys

    International Nuclear Information System (INIS)

    Hackenberg, Robert; Thoma, Dan; Cooley, Jason; Swift, Damian; Paisley, Dennis; Bourne, Neil; Gray, George III; Hauer, Allan

    2004-01-01

    The shock response of near-equiatomic Ni-Ti alloys have been investigated to support studies of shock-induced martensitic transitions. The equation of state (EOS) and elasticity were predicted using ab initio quantum mechanics. Polycrystalline NiTi samples were prepared with a range of compositions, and thickesses between about 100 and 400 μm. Laser-driven flyer impact experiments were used to verify the EOS and to measure the flow stress from the amplitude of the elastic precursor; the spall strength was also obtained from these experiments. The laser flyer EOS data were consistent with Hugoniot points deduced from gas gun experiments. Decaying shocks were induced in samples, by direct laser irradiation with a variety of pressures and durations, to investigate the threshold for martensite formation

  14. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  15. Effects of HVEM irradiation on ordered phases in Ni-Ti

    International Nuclear Information System (INIS)

    Pelton, A.R.

    1983-01-01

    Various ordered phases in the Ni-Ti system were subjected to electron irradiation in the Berkeley HVEM. Austenitic NiTi (B2 structure) disorders and turns amorphous with room-temperature irradiations at accelerating potentials between 1 and 1.5 MeV. Total doses for the onset of amorphiticity range between 0.7 x 10 22 and 3 x 10 22 e.cm -2 (0.4 to 1.0dpa). At 90K the dose requirement decreases to 4 x 10 20 e.cm -2 (approx. 10 -2 dpa). Martensitic NiTi (distorted monoclinic structure) readily detwins and transforms to austenite when irradiated for short times (approx. 10 seconds). Vapor-deposited amorphous films were crystallized to produce NiTi, Phase X (ordered nickel-rich phase with unknown structure) and Ni 3 Ti (DO 24 structure). Upon electron irradiation, NiTi and Phase X disorder and become amorphous, while Ni 3 Ti disorders but does not turn amorphous with doses up to 4 x 10 22 e.cm -2 at 90K. These results are discussed in terms of the requirement of a critical concentration of defects and their relative mobilities. Brimhall's solubility criteria for amorphization of ordered alloys by ion bombardment is apparantly applicable to electron-induced crystalline to amorphous transitions in this alloy

  16. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Schricker, Scott R; Nusstein, John M; Li, Uei-Ming; Svec, Timothy A

    2009-10-01

    Employ Micro-X-ray diffraction and temperature-modulated differential scanning calorimetry to investigate microstructural phases, phase transformations, and effects of heat treatment for rotary nickel-titanium instruments. Representative as-received and clinically used ProFile GT and ProTaper instruments were principally studied. Micro-XRD analyses (Cu Kalpha X-rays) were performed at 25 degrees C on areas of approximately 50 microm diameter near the tip and up to 9 mm from the tip. TMDSC analyses were performed from -80 to 100 degrees C and back to -80 degrees C on segments cut from instruments, using a linear heating and cooling rate of 2 degrees C/min, sinusoidal oscillation of 0.318 degrees C, and period of 60s. Instruments were also heat treated 15 min in a nitrogen atmosphere at 400, 500, 600 and 850 degrees C, and analyzed. At all Micro-XRD analysis regions the strongest peak occurred near 42 degrees , indicating that instruments were mostly austenite, with perhaps some R-phase and martensite. Tip and adjacent regions had smallest peak intensities, indicative of greater work hardening, and the intensity at other sites depended on the instrument. TMDSC heating and cooling curves had single peaks for transformations between martensite and austenite. Austenite-finish (A(f)) temperatures and enthalpy changes were similar for as-received and used instruments. Heat treatments at 400, 500 and 600 degrees C raised the A(f) temperature to 45-50 degrees C, and heat treatment at 850 degrees C caused drastic changes in transformation behavior. Micro-XRD provides novel information about NiTi phases at different positions on instruments. TMDSC indicates that heat treatment might yield instruments with substantial martensite and improved clinical performance.

  17. The ability of different nickel-titanium rotary instruments to induce dentinal damage during canal preparation

    NARCIS (Netherlands)

    Bier, C.A.S.; Shemesh, H.; Tanomaru-Filho, M.; Wesselink, P.R.; Wu, M.K.

    2009-01-01

    The purpose of this study was to compare the incidence of dentinal defects (fractures and craze lines) after canal preparation with different nickel-titanium rotary files. Two hundred sixty mandibular premolars were selected. Forty teeth were left unprepared (n = 40). The other teeth were prepared

  18. Endodontic complications of root canal therapy performed by dental students with stainless-steel K-files and nickel-titanium hand files.

    Science.gov (United States)

    Pettiette, M T; Metzger, Z; Phillips, C; Trope, M

    1999-04-01

    Straightening of curved canals is one of the most common procedural errors in endodontic instrumentation. This problem is commonly encountered when dental students perform molar endodontics. The purpose of this study was to compare the effect of the type of instrument used by these students on the extent of straightening and on the incidence of other endodontic procedural errors. Nickel-titanium 0.02 taper hand files were compared with traditional stainless-steel 0.02 taper K-files. Sixty molar teeth comprised of maxillary and mandibular first and second molars were treated by senior dental students. Instrumentation was with either nickel-titanium hand files or stainless-steel K-files. Preoperative and postoperative radiographs of each tooth were taken using an XCP precision instrument with a customized bite block to ensure accurate reproduction of radiographic angulation. The radiographs were scanned and the images stored as TIFF files. By superimposing tracings from the preoperative over the postoperative radiographs, the degree of deviation of the apical third of the root canal filling from the original canal was measured. The presence of other errors, such as strip perforation and instrument breakage, was established by examining the radiographs. In curved canals instrumented by stainless-steel K-files, the average deviation of the apical third of the canals was 14.44 degrees (+/- 10.33 degrees). The deviation was significantly reduced when nickel-titanium hand files were used to an average of 4.39 degrees (+/- 4.53 degrees). The incidence of other procedural errors was also significantly reduced by the use of nickel-titanium hand files.

  19. Improvement of Ti-plasma coating on Ni-Ti shape memory alloy applying to implant materials and its evaluation

    International Nuclear Information System (INIS)

    Okuyama, Masaru; Endo, Jun; Take, Seisho; Itoi, Yasuhiko; Kambe, Satoshi

    2002-01-01

    Utilizing of Ni-Ti shape memory alloy for implant materials has been world-widely studied. it is, however, known that Ni-Ti alloy is easily attacked by chloride ion contained in body liquid. To prevent Ni dissolution, the authors tried to coat the alloy surface with titanium metal by means of plasma-spray coating method. The plasma coating films resulted in rather accelerating pitting corrosion because of their high porosity. Therefore, sealing of the porous films was required. In order to solve this problem and satisfy prolonged lifetime in the body, the authors tried to use the vacuum evaporation technique of titanium metal. Two types of Ti vacuum evaporation procedures were employed. The one was to cover a thin film on Ni-Ti alloy surface prior to massive Ti plasma spray coating. The other was to first coat plasma spray films on Ni-Ti alloy and then to cover them with vacuum evaporation films of Ti. Protective ability against pitting corrosion was examined by electrochemical polarization measurement in physiological solution and the coating films were characterized by microscopic and SEM observation and EPMA analysis. Vacuum evaporation thin films could not protect Ni-Ti alloy from pitting corrosion. In the case of plasma spray coating over the Ti vacuum evaporation thin film, the substrate Ni-Ti alloy could not be better protected. On the contrary, vacuum evaporation of Ti over the porous plasma spray coating layer remarkably improved corrosion protective performance

  20. Cyclic fatigue resistance of newly manufactured rotary nickel titanium instruments used in different rotational directions.

    Science.gov (United States)

    Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca

    2013-12-01

    The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  1. Mechanical and geometric features of endodontic instruments and its clinical effect

    OpenAIRE

    Hyeon-Cheol Kim

    2011-01-01

    Introduction The aim of this paper is to discuss the mechanical and geometric features of Nickel-titanium (NiTi) rotary files and its clinical effects. NiTi rotary files have been introduced to the markets with their own geometries and claims that they have better ability for the root canal shaping than their competitors. The contents of this paper include the (possible) interrelationship between the geometries of NiTi file (eg. tip, taper, helical angle, etc) and clinical performance ...

  2. Development of Biomimetic NiTi Alloy: Influence of Thermo-Chemical Treatment on the Physical, Mechanical and Biological Behavior

    Science.gov (United States)

    Rupérez, Elisa; Manero, José María; Bravo-González, Luis-Alberto; Espinar, Eduardo; Gil, F.J.

    2016-01-01

    A bioactive layer, free of nickel, has been performed for its greater acceptability and reliability in clinical applications for NiTi shape memory alloys. In the first step, a safe barrier against Ni release has been produced on the surface by means of a thicker rutile/anastase protective layer free of nickel. In the second step, a sodium alkaline titanate hydrogel, which has the ability to induce apatite formation, has been performed from oxidized surface. An improvement of host tissue–implant integration has been achieved in terms of Ni ions release and the bioactivity of the treated NiTi alloys has been corroborated with both in vitro and in vivo studies. The transformation temperatures (As, Af, Ms, and Mf), as well as the critical stresses (σβ⇔M), have been slightly changed due to this surface modification. Consequently, this fact must be taken into account in order to design new surface modification on NiTi implants. PMID:28773526

  3. Development of Biomimetic NiTi Alloy: Influence of Thermo-Chemical Treatment on the Physical, Mechanical and Biological Behavior

    Directory of Open Access Journals (Sweden)

    Elisa Rupérez

    2016-05-01

    Full Text Available A bioactive layer, free of nickel, has been performed for its greater acceptability and reliability in clinical applications for NiTi shape memory alloys. In the first step, a safe barrier against Ni release has been produced on the surface by means of a thicker rutile/anastase protective layer free of nickel. In the second step, a sodium alkaline titanate hydrogel, which has the ability to induce apatite formation, has been performed from oxidized surface. An improvement of host tissue–implant integration has been achieved in terms of Ni ions release and the bioactivity of the treated NiTi alloys has been corroborated with both in vitro and in vivo studies. The transformation temperatures (As, Af, Ms, and Mf, as well as the critical stresses (σβ⇔M, have been slightly changed due to this surface modification. Consequently, this fact must be taken into account in order to design new surface modification on NiTi implants.

  4. In vitro force delivery of nickel-titanium superelastic archwires in vertical displacement

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2012-12-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate the force delivered by different superlastic nickel-titanium wires during vertical displacement, in order to determine whether their stress release meets the criteria for constant and light forces that are usually accredited to these archwires. METHOD: Ten samples of 6 brands of 0.016-in archwires (Ormco, GAC, Morelli, TP, American Orthodontics e Rocky Mountain were tested in a complete metal model using Dynalock brackets (3M Unitek™. In the canine position, there was a sliding bracket connected to a pole. This set was related to a load cell of 0.5 kg attached to a universal testing machine (Autograph AG-199kNG, Shimadzu. The crosshead speed was 0.5 mm/min and the maximum displacement was 1.0 mm. The model was submerged in temperature-controlled water. The results were analyzed by ANOVA (p OBJETIVO: o objetivo deste estudo foi avaliar a força liberada por diferentes fios de níquel-titânio (NiTi superelástico em deslocamento vertical, a fim de determinar se a liberação de estresse por esses satisfaz o critério de forças suaves e constantes, geralmente atribuído a tais arcos. MÉTODOS: dez amostras de seis arcos de NiTi superelástico 0,016” de marcas comerciais diferentes (Ormco, GAC, Morelli, TP, American Orthodontics e Rocky Mountain foram testados em um modelo metálico usando braquetes Dynalock (3M Unitek. Na região do canino, havia um braquete móvel conectado a uma haste, a qual estava relacionada com uma célula de carga de 0,5kg de uma máquina universal de ensaios (Autograph AG-199kNG, Shimadzu. O deslocamento do conjunto na região do canino foi realizado a uma velocidade constante de 0,5mm/min e o deslocamento máximo foi de 1,0mm. O conjunto foi submerso em água com temperatura controlada a 37ºC. RESULTADOS: os resultados obtidos foram avaliados por ANOVA (p <0,05, usando o software SAS System 8.02, Cry, NC, EUA. O arco da TP apresentou a menor força durante todo o

  5. Comparative evaluation of surface changes in four Ni-Ti instruments with successive uses - An SEM study.

    Science.gov (United States)

    Subha, N; Sikri, Vimal K

    2011-07-01

    To evaluate the surface alterations seen in four kinds of Nickel-Titanium (Ni-Ti) instruments using a scanning electron microscope (SEM) for five successive uses in preparing root canals of extracted human molars and also to determine whether the design of the instrument influenced the appearance of defects on the instrument surface. Four different types of instruments namely; ProFile, ProTaper Rotary, ProTaper Hand and K3 Endo were used in 300 mesio-buccal canals. The instruments were examined under the SEM, after every use, to assess the progress of changes on their surfaces for a maximum of five uses. Chi-square test. The most prevalent defects observed were pitting, followed by metal strips. Signs of discontinuity, microfractures and disruption of cutting edge were also evident. Number of defects increased with successive uses. ProTaper Hand showed significantly more microfractures and metal strips than other instruments from third use onwards. ProTaper Rotary and K3 Endo also showed significant changes.

  6. Fracture of nickel-titanium superelastic alloy in sodium hypochlorite solution

    International Nuclear Information System (INIS)

    Yokoyama, Ken'ichi; Kaneko, Kazuyuki; Yabuta, Eiji; Asaoka, Kenzo; Sakai, Jun'ichi

    2004-01-01

    Fracture of the Ni-Ti superelastic alloy for endodontic instruments such as files was investigated with a sustained tensile-loading test in sodium hypochlorite (NaOCl) solution of various concentrations. It was found that the time to fracture was reduced when the applied stress exceeded the critical stress for martensite transformation. When the applied stress was higher than the critical stress, the 0.3 mm diameter wires of the Ni-Ti superelastic alloy sometimes fractured within 60 min. From the results of observations of the fracture surface using a scanning electron microscope, it was revealed that the fracture of the Ni-Ti superelastic alloy is significantly influenced by corrosion when the applied stress was higher than the critical stress for martensite transformation. The results of the present study suggest that one of the causes of the fracture of Ni-Ti files during clinical use is corrosion under the applied stress above the critical stress for martensite transformation in NaOCl solution

  7. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    Science.gov (United States)

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Cyclic Fatigue Testing of Three Different Rotary Nickel Titanium Endodontic Instruments in Simulated Curved Canals - An in Vitro Sem Analysis

    OpenAIRE

    Reddy Y., Pallavi; S., Kavita; Subbarao, C.V.

    2014-01-01

    Introduction: Instrument separation is a serious concern in endodontics. Stainless steel instruments usually deform before they separate whereas Nickel Titanium instruments do not show any sign of deformation.

  10. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface

    Science.gov (United States)

    Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.

    2018-01-01

    In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  11. In Vivo and In Vitro Effectiveness of Rotary Nickel-Titanium vs Manual Stainless Steel Instruments for Root Canal Therapy: Systematic Review and Meta-analysis.

    Science.gov (United States)

    Del Fabbro, Massimo; Afrashtehfar, Kelvin Ian; Corbella, Stefano; El-Kabbaney, Ahmed; Perondi, Isabella; Taschieri, Silvio

    2018-03-01

    This systematic review evaluated the effectiveness of nickel-titanium (NiTi) rotary files compared to stainless-steel (SST) hand files. An electronic search was performed on Medline, EMBASE, CENTRAL and Scopus databases up to February 2016. An additional hand searching was performed in 13 journals. The studies were classified according to study type and the outcome variables. Two reviewers independently applied eligibility criteria, extracted data, and three reviewers independently assessed the quality of the evidence of each included study according to The Cochrane Collaboration's procedures. A meta-analysis was performed whenever it was possible. The electronic and hand search strategies yielded 1155 references of studies after removal of duplicates. Four clinical studies (two prospective and two retrospective studies) and 18 in vitro studies (on extracted teeth) were included for the qualitative synthesis after full-text evaluation of the eligible studies. The overall level of methodological quality of the studies included can be considered inadequate. Only one clinical study was judged at low risk of bias, whereas most non-clinical studies had a low risk of bias. Three meta-analyses, based on a very limited number of studies, could be performed. Each meta-analysis contained two studies. Of these, one meta-analysis was based on clinical studies. The results of this systematic review suggested that NiTi rotary instruments were associated with lower canal transportation and apical extrusion when compared to SST hand files, whereas both groups had similar outcomes in terms of success of therapy, amount of residual bacteria, and cleansing ability after treatment. However, due to the limited evidence available, these results should be interpreted with caution. Consequently, more randomized control trials using standardized protocols are needed in order to provide more solid recommendations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Nickel titanium T-loop wire dimensions for en masse retraction.

    Science.gov (United States)

    Almeida, Layene; Ribeiro, Alexandre; Parsekian Martins, Renato; Viecilli, Rodrigo; Parsekian Martins, Lídia

    2016-09-01

    To compare the force system produced by nickel-titanium T-loop springs made with wires of different dimensions. Thirty compound T-loop springs were divided into three groups according to the dimensions of the nickel-titanium wire used for its design: 0.016" × 0.022", 0.017" × 0.025", and 0.018" × 0.025". The loops were tested on the Orthodontic Force Tester machine at an interbracket distance of 23 mm and activated 9 mm. The force in the y-axis and the moment in the x-axis were registered while the calculated moment to force ratio was recorded at each .5 mm of deactivation. The data were analyzed by three analyses of variance of repeated measures to detect differences and interactions between deactivation and wire size on force, moment, and moment-force ratios (M/F). All groups had significantly different forces (P wire produced 1.78N of force while the 0.017" × 0.025" and the 0.018" × 0.025" produced 2.81 N and 3.25 N, respectively. The 0.016" × 0.022" wire produced lower moments (11.6 Nmm) than the 0.017" × 0.025" and 0.018" × 0.025" wires, which produced similar moments (13.9 Nmm and 14.4Nmm, respectively). The M/F produced was different for all groups; 0.016" × 0.022" T-loops produced 6.7 mm while the 0.017" × 0.025" and 0.018" × 0.025" T-loops produced 5.0 mm and 4.5 mm, respectively. An interaction was detected for all variables between deactivation and groups. The larger wires tested produced higher forces with slight increase on the moments, but the M/F produced by the 0.016" × 0.022" wire was the highest found.

  13. Evaluation of the interfacial shear strength between pseudoplastic NiTi shape memory alloy wires and epoxy by the pull-out method

    International Nuclear Information System (INIS)

    Spārniņš, E; Michaud, V; Leterrier, Y; Andersons, J

    2015-01-01

    The interfacial shear strength (IFSS) between nickel–titanium (NiTi) shape memory alloy wires, characterized by a nonlinear stress–strain behavior, and epoxy matrix was determined by pull-out tests. Tests were carried out at several temperatures and levels of pre-strain in the wires, to evaluate the effects of embedded wire length and of crystalline state of the alloy. The IFSS between the twinned NiTi and epoxy was estimated at 24 MPa, and found to increase to 47 MPa for completely detwinned and preloaded martensitic NiTi. This increase in IFSS values was attributed to microcracking of the superficial TiO 2 layer and the resulting roughening of the NiTi wire surface. (paper)

  14. Mechanical properties of nickel-titanium archwire used in the final treatment phase of Tip-Edge Plus technique: an in vitro study.

    Science.gov (United States)

    Shen, Xiao; Sun, Xin-hua; Tian, Hua; Zhang, Chun-bo; Yan, Kuo; Guo, Yong-liang

    2013-01-01

    As the only active component in final treatment phase of Tip-Edge Plus technique, the activation of nickel-titanium orthodontic archwires is one of the factors that affect the torque expression. It is necessary to evaluate the mechanical properties of the nickel-titanium wire used in the final treatment phase in simulated oral environments to forecast the treatment outcomes. The mechanical properties of 171 thermal nickel-titanium wires of 0.35 mm (0.014-in) in diameters with different deflection of 40 mm in length were investigated with three-point bending test. The samples were divided into 2 groups: as-received and bended groups. In the bended group, samples were divided into 7 subgroups according to the amounts of deflection and named by the canine angulations (-25°, -19°, -13°, -7°, -1°, +5°, +11°). The deflection of wires was made by inserting the wires into the deep tunnel of Tip-Edge Plus brackets positioned in plaster casts with different canine angulations to mimic the use of nickel-titanium wires in the final treatment phase. Immersed the bended group in artificial saliva (pH 6.8) and preserved at 37.0°C. Eight durations of incubation were tested: 1 to 8 weeks. Three analogous samples of each group and subgroups were tested per week. Stiffness (YS:E) and the load-deflection characteristics of unloading plateau section were obtained. Significant changes in specific mechanical properties were observed in long-term immersed and large deflected wires compared with as-received groups. Both immersion time and deflection affected the mechanical properties of wires in the simulated oral environment, and the two factors had synergistic effect. In groups -25°, -19° and -13°, stiffness (YS:E) increased then decreased and average plateau force and ratio of variance decreased then increased correspondingly at specific time. In the final treatment phase of Tip-Edge Plus technique, the mechanical properties of nickel-titanium wire are associated with the

  15. A Clinical Evaluation of Three Force Delivery Systems in Stage II of the Begg Technique

    Directory of Open Access Journals (Sweden)

    Vincy Antony Margaret

    2013-01-01

    Materials and methods: The present study was designed to compare the rates of retraction and anchorage loss between elastics, elastomeric chains and nickel-titanium (NiTi closed coil springs, using a continuous archwire system with the Begg light wire differential force technique. Results: The rate of canine retraction was faster by 0.6 mm per month with the NiTi closed coil spring compared to elastics and elastomeric chains. The NiTi closed coil springs produced more rapid rate of canine retraction but they also produced the greatest amount of anchorage loss.

  16. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  17. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  18. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  19. Effect of titanium impurities on helium bubble growth in nickel

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Rajaraman, R.; Srinivasan, S.; Gopinathan, K.P.

    1992-01-01

    Positron lifetime measurements in He-implanted Ni and Ni-Ti alloys containing dilute concentrations of Ti, during isochronal annealing, are reported. In the initial annealing stage of Ni-Ti alloys, only a single lifetime ranging from 160 to 180 ps is observed, in contrast with the two lifetimes seen in pure Ni. This indicates saturation positron trapping at helium-bound Ti-vacancy complexes, formed in high concentrations. Lattice statics calculations of the He binding energy at various defect complexes in Ni-containing Ti give credence to the above interpretation. Above 800K, two lifetimes are resolved in Ni-Ti alloys, where the longer lifetime τ 2 increases with a sharp reduction in its intensity. This is indicative of He bubble growth. The bubble radius r B and bubble concentration C B are obtained from an analysis of positron lifetime parameters. These results indicate that, for a given annealing temperature, r B is smaller by a factor of two and C B higher by nearly an order of magnitude in Ni-Ti than the corresponding values in pure Ni. This is explained as due to significant retardation of bubble growth on the addition of Ti to Ni, where the Ti impurities cause an impediment to bubble migration and coalescence. (author)

  20. Evaluation of debris extruded apically during the removal of root canal filling material using ProTaper, D-RaCe, and R-Endo rotary nickel-titanium retreatment instruments and hand files.

    Science.gov (United States)

    Topçuoğlu, Hüseyin Sinan; Aktı, Ahmet; Tuncay, Öznur; Dinçer, Asiye Nur; Düzgün, Salih; Topçuoğlu, Gamze

    2014-12-01

    The aim of this study was to evaluate the amount of debris extruded apically during the removal of root canal filling material using ProTaper (Dentsply Maillefer, Ballaigues, Switzerland), D-RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland), and R-Endo (Micro-Mega, Besançon, France) nickel-titanium (NiTi) rotary retreatment instruments and hand files. Sixty extracted single-rooted mandibular premolar teeth were prepared with K-files and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany). The teeth were then randomly assigned to 4 groups (n = 15 for each group) for retreatment. The removal of canal filling material was performed as follows: hand files, ProTaper, D-RaCe, and R-Endo retreatment instruments. Debris extruded apically during the removal of canal filling material was collected into preweighed Eppendorf tubes. The tubes were then stored in an incubator at 70°C for 5 days. The weight of the dry extruded debris was established by subtracting the preretreatment and postretreatment weight of the Eppendorf tubes for each group. The data obtained were analyzed using 1-way analysis of variance and Tukey post hoc tests. All retreatment techniques caused the apical extrusion of debris. Hand files produced significantly more debris when compared with ProTaper, D-RaCe, and R-Endo rotary systems (P ProTaper, D-RaCe, and R-Endo retreatment systems (P > .05). The findings showed that during the removal of root canal filling material, rotary NiTi retreatment instruments used in this study caused less apical extrusion of debris compared with hand files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Asymmetrical distalization of maxillary molars with zygomatic anchorage, improved superelastic nickel-titanium alloy wires, and open-coil springs.

    Science.gov (United States)

    Ishida, Takayoshi; Yoon, Hyung Sik; Ono, Takashi

    2013-10-01

    In nongrowing patients with skeletal Class II malocclusion, premolar extraction or maxillary distalization can be used as camouflage treatment. Zygomatic anchorage enables distalization in uncooperative or noncompliant patients. We describe 1 such procedure in a 24-year-old woman. We used novel improved superelastic nickel-titanium archwires combined with nickel-titanium open-coil springs to provide a constant and continuous low force to the dentition. We were able to successfully eliminate the protrusive profile and correct the Class II molar relationship using this system of zygomatic anchorage. The posterior occlusal relationships were improved to achieve Class I canine and molar relationships on both sides, and ideal overbite and overjet relationships were established. Facial esthetics was improved with decreased protrusion of the upper and lower lips. The method used here is a promising alternative to traditional distalization techniques and might offer an effective and simple means of distalizing maxillary molars in uncooperative patients. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  2. Efficacy and safety of a NiTi CAR 27 compression ring for end-to-end anastomosis compared with conventional staplers: A real-world analysis in Chinese colorectal cancer patients

    Science.gov (United States)

    Lu, Zhenhai; Peng, Jianhong; Li, Cong; Wang, Fulong; Jiang, Wu; Fan, Wenhua; Lin, Junzhong; Wu, Xiaojun; Wan, Desen; Pan, Zhizhong

    2016-01-01

    OBJECTIVES: This study aimed to evaluate the safety and efficacy of a new nickel-titanium shape memory alloy compression anastomosis ring, NiTi CAR 27, in constructing an anastomosis for colorectal cancer resection compared with conventional staples. METHODS: In total, 234 consecutive patients diagnosed with colorectal cancer receiving sigmoidectomy and anterior resection for end-to-end anastomosis from May 2010 to June 2012 were retrospectively analyzed. The postoperative clinical parameters, postoperative complications and 3-year overall survival in 77 patients using a NiTi CAR 27 compression ring (CAR group) and 157 patients with conventional circular staplers (STA group) were compared. RESULTS: There were no statistically significant differences between the patients in the two groups in terms of general demographics and tumor features. A clinically apparent anastomotic leak occurred in 2 patients (2.6%) in the CAR group and in 5 patients (3.2%) in the STA group (p=0.804). These eight patients received a temporary diverting ileostomy. One patient (1.3%) in the CAR group was diagnosed with anastomotic stricture through an electronic colonoscopy after 3 months postoperatively. The incidence of postoperative intestinal obstruction was comparable between the two groups (p=0.192). With a median follow-up duration of 39.6 months, the 3-year overall survival rate was 83.1% in the CAR group and 89.0% in the STA group (p=0.152). CONCLUSIONS: NiTi CAR 27 is safe and effective for colorectal end-to-end anastomosis. Its use is equivalent to that of the conventional circular staplers. This study suggests that NiTi CAR 27 may be a beneficial alternative in colorectal anastomosis in Chinese colorectal cancer patients. PMID:27276395

  3. Influence of axial movement on fatigue of PROFILE* NI-TI rotary instruments: an in vitro evaluation

    Science.gov (United States)

    Avoaka, Marie-Chantal; Haïkel, Youssef

    2010-01-01

    The aim of this study was to evaluate the influence of the axial movement and the angle of curve (in degrees) on fatigue of nickel-titanium (Ni-Ti) ProFile’ rotary endodontic instruments. Ni-Ti ProFile’ rotary instruments (Maillefer SA, Ballaigues, Switzerland), 25 mm long in the range of ISO size 15 to 40 with two tapers (0.4 and 0.6) were evaluated. They are divided in two groups: the instruments with axial movement and those without axial movement. The system used to test the fatigue is maintained in mechanical conditions as close as possible to the clinical situation. The axial movement is in the order of 2mm in corono-apical direction with a frequency of 1Hz. The concave radii incorporating a notched V-form for guiding the instruments were: 5; 7,5 and 10 mm. The rotary system is mounted on an electric handpiece and rotated at 350 rpm speed as recommended by the manufacturers. The instruments are rotated until their separation, and the time, in seconds, is recorded. Statístícal evaluation is undertaken using a two-way t-test to identify significant differences between variables in the study (p engine drive ProFile’ instruments incorporating an axial movement and the instruments without axial movement with the same radius of curvature, size and taper. The incorporation of the axial movement increases significantly the life-span of the ProFile’ rotary instruments. This should reduce the risk of the instrument separation during the endodontic treatment. PMID:20507289

  4. Impaired bacterial attachment to light activated Ni-Ti alloy

    International Nuclear Information System (INIS)

    Chrzanowski, Wojciech; Valappil, Sabeel P.; Dunnill, Charles W.; Abou Neel, Ensanya A.; Lee, Kevin; Parkin, Ivan P.; Wilson, Michael; Armitage, David A.; Knowles, Jonathan C.

    2010-01-01

    Ni-Ti alloy due to its unique mechanical properties, is used for many types of implants. Failure of these implants can be attributed to many different factors; however infections are a common problem. In this paper, the attachment of the bacteria, Staphylococcus aureus, to the Ni-Ti surface modified by a range of processes with and without of light activation (used to elicit antimicrobial properties of materials) was assessed and related to different surface characteristics. Before the light activation the number of bacterial colony forming units was the greatest for the samples thermally oxidised at 600 deg. C. This sample and the spark oxidised samples showed the highest photocatalytic activity but only the thermally oxidised samples at 600 deg. C showed a significant drop of S. aureus attachment. The findings in this study indicate that light activation and treating samples at 600 deg. C is a promising method for Ni-Ti implant applications with inherent antimicrobial properties. Light activation was shown to be an effective way to trigger photocatalytic reactions on samples covered with relatively thick titanium dioxide via accumulation of photons in the surface and a possible increase in defects which may result in free oxygen. Moreover, light activation caused an increase in the total surface energy.

  5. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis

    OpenAIRE

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, F?bio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, Andr? Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    Aim: The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Den...

  6. Effect of Saliva on Load-Deflection Characteristics of Superelastic Nickel-Titanium Orthodontic Wires

    OpenAIRE

    Hosseinzadeh Nik, T.; Ghadirian, H.; Ahmadabadi, M. Nili; Shahhoseini, T.; Haj-Fathalian, M.

    2012-01-01

    Statement of Problem: Most published results about the features of NiTi wires are based on the mechanical laboratory tests in a dry environment.Purpose of Study: The purpose of this study was to investigate the effect of saliva on load-deflection characteristics of superelastic NiTi wires.Materials and Methods: In this experimental study, 15 wires of three kinds of NiTi wires (Sentalloy, Force I and Truflex) were prepared; five of them were tested in their as-received condition to provide bas...

  7. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release.

    Science.gov (United States)

    Clarke, B; Carroll, W; Rochev, Y; Hynes, M; Bradley, D; Plumley, D

    2006-10-01

    Medical implants and devices are now used successfully in surgical procedures on a daily basis. Alloys of nickel and titanium, and in particular Nitinol are of special interest in the medical device industry, because of their shape memory and superelastic properties. The corrosion behavior of nitinol in the body is also of critical importance because of the known toxicological effects of nickel. The stability of a NiTi alloy in the physiological environment is dependant primarily on the properties of the mostly TiO(2) oxide layer that is present on the surface. For the present study, a range of nitinol wires have been prepared using different drawing processes and a range of surface preparation procedures. It is clear from the results obtained that the wire samples with very thick oxides also contain a high nickel content in the oxide layer. The untreated samples with the thicker oxides show the lowest pitting potential values and greater nickel release in both long and short-term experiments. It was also found that after long-term immersion tests breakdown potentials increased for samples that exhibited lower values initially. From these results it would appear that surface treatment is essential for the optimum bioperformance of nitinol. (c) 2006 Wiley Periodicals, Inc

  8. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing

    International Nuclear Information System (INIS)

    Huan, Z; Fratila-Apachitei, L E; Apachitei, I; Duszczyk, J

    2014-01-01

    The purpose of this study was to generate hybrid micro/nano-structures on biomedical nickel–titanium alloy (NiTi). To achieve this, NiTi surfaces were firstly electrochemically etched and then anodized in fluoride-containing electrolyte. With the etching process, the NiTi surface was micro-roughened through the formation of micropits uniformly distributed over the entire surface. Following the subsequent anodizing process, self-organized nanotube structures enriched in TiO 2 could be superimposed on the etched surface under specific conditions. Furthermore, the anodizing treatment significantly reduced water contact angles and increased the surface free energy compared to the surfaces prior to anodizing. The results of this study show for the first time that it is possible to create hybrid micro/nano-structures on biomedical NiTi alloys by combining electrochemical etching and anodizing under controlled conditions. These novel structures are expected to significantly enhance the surface biofunctionality of the material when compared to conventional implant devices with either micro- or nano-structured surfaces. (paper)

  9. Influence of axial movement on fatigue of ProFile Ni-Ti rotary instruments: an in vitro evaluation.

    Science.gov (United States)

    Avoaka, Marie-Chantal; Haïkel, Youssef

    2010-05-01

    The aim of this study was to evaluate the influence of the axial movement and the angle of curve (in degrees) on fatigue of nickel-titanium (Ni-Ti) ProFile rotary endodontic instruments. Ni-Ti ProFile rotary instruments (Maillefer SA, Ballaigues, Switzerland), 25 mm long in the range of ISO size 15 to 40 with two tapers (0.4 and 0.6) were evaluated. They are divided in two groups: the instruments with axial movement and those without axial movement. The system used to test the fatigue is maintained in mechanical conditions as close as possible to the clinical situation. The axial movement is in the order of 2 mm in corono-apical direction with a frequency of 1 Hz. The concave radii incorporating a notched V-form for guiding the instruments were: 5; 7,5 and 10 mm. The rotary system is mounted on an electric handpiece and rotated at 350 rpm speed as recommended by the manufacturers. The instruments are rotated until their separation, and the time, in seconds, is recorded. Statistical evaluation is undertaken using a two-way t-test to identify significant differences between variables in the study (p engine drive ProFile instruments incorporating an axial movement and the instruments without axial movement with the same radius of curvature, size and taper.The incorporation of the axial movement increases significantly the life-span of the ProFile rotary instruments. This should reduce the risk of the instrument separation during the endodontic treatment.

  10. Influence of nickel-titanium rotary systems with varying tapers on the biomechanical behaviour of maxillary first premolars under occlusal forces: a finite element analysis study.

    Science.gov (United States)

    Askerbeyli Örs, S; Serper, A

    2018-05-01

    To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal

  11. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  12. Geometric analysis of root canals prepared by four rotary NiTi shaping systems.

    Science.gov (United States)

    Hashem, Ahmed Abdel Rahman; Ghoneim, Angie Galal; Lutfy, Reem Ahmed; Foda, Manar Yehia; Omar, Gihan Abdel Fatah

    2012-07-01

    A great number of nickel-titanium (NiTi) rotary systems with noncutting tips, different cross-sections, superior resistance to torsional fracture, varying tapers, and manufacturing method have been introduced to the market. The purpose of this study was to evaluate and compare the effect of 4 rotary NiTi preparation systems, Revo-S (RS; Micro-Mega, Besancon Cedex, France), Twisted file (TF; SybronEndo, Amersfoort, The Netherlands), ProFile GT Series X (GTX; Dentsply, Tulsa Dental Specialties, Tulsa, OK), and ProTaper (PT; Dentsply Maillefer, Ballaigues, Switzerland), on volumetric changes and transportation of curved root canals. Forty mesiobuccal canals of mandibular molars with an angle of curvature ranging from 25° to 40° were divided according to the instrument used in canal preparation into 4 groups of 10 samples each: group RS, group TF, group GTX, and group PT. Canals were scanned using an i-CAT CBCT scanner (Imaging Science International, Hatfield, PA) before and after preparation to evaluate the volumetric changes. Root canal transportation and centering ratio were evaluated at 1.3, 2.6, 5.2, and 7.8 mm from the apex. The significance level was set at P ≤ .05. The PT system removed a significantly higher amount of dentin than the other systems (P = .025). At the 1.3-mm level, there was no significant difference in canal transportation and centering ratio among the groups. However, at the other levels, TF maintained the original canal curvature recording significantly the least degree of canal transportation as well as the highest mean centering ratio. The TF system showed superior shaping ability in curved canals. Revo-S and GTX were better than ProTaper regarding both canal transportation and centering ability. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding.

    Science.gov (United States)

    Jee, Jeong-Hyun; Ahn, Hyo-Won; Seo, Kyung-Won; Kim, Seong-Hun; Kook, Yoon-Ah; Chung, Kyu-Rhim; Nelson, Gerald

    2014-09-01

    To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with pre-adjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency.

  14. Mast cell histamine-mediated transient inflammation following exposure to nickel promotes nickel allergy in mice.

    Science.gov (United States)

    Kinbara, Masayuki; Bando, Kanan; Shiraishi, Daisuke; Kuroishi, Toshinobu; Nagai, Yasuhiro; Ohtsu, Hiroshi; Takano-Yamamoto, Teruko; Sugawara, Shunji; Endo, Yasuo

    2016-06-01

    We previously reported that allergic responses to nickel (Ni) were minimal in mice deficient in the histamine-forming enzyme histidine decarboxylase (HDC-KO), suggesting an involvement of histamine in allergic responses to Ni. However, it remains unclear how histamine is involved in the process of Ni allergy. Here, we examined the role of histamine in Ni allergy using a murine model previously established by us. Mice were sensitized to Ni by intraperitoneal injection of a NiCl2 -lipopolysaccharide (LPS) mixture. Ten days later, allergic inflammation was elicited by challenging ear-pinnas intradermally with NiCl2 . Then, ear-swelling was measured. Pyrilamine (histamine H1-receptor antagonist) or cromoglicate (mast cell stabilizer) was intravenously injected 1 h before the sensitization or the challenge. In cell-transfer experiments, spleen cells from Ni-sensitized donor mice were intravenously transferred into non-sensitized recipient mice. In both sensitized and non-sensitized mice, 1 mm or more NiCl2 (injected into ear-pinnas) induced transient non-allergic inflammation (Ni-TI) with accompanying mast cell degranulation. LPS did not affect the magnitude of this Ni-TI. Pyrilamine and cromoglicate reduced either the Ni-TI or the ensuing allergic inflammation when administered before Ni-TI (at either the sensitization or elicitation step), but not if administered when the Ni-TI had subsided. Experiments on HDC-KO and H1-receptor-KO mice, and also cell-transfer experiments using these mice, demonstrated histamine's involvement in both the sensitization and elicitation steps. These results suggest that mast cell histamine-mediated Ni-TI promotes subsequent allergic inflammatory responses to Ni, raising the possibility that control of Ni-TI by drugs may be effective at preventing or reducing Ni allergy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Numerical simulation of the force generated by a superelastic NiTi orthodontic archwire during tooth alignment phase: comparison between different constitutive models

    Science.gov (United States)

    Gannoun, M.; Laroussi Hellara, M.; Bouby, C.; Ben Zineb, T.; Bouraoui, T.

    2018-04-01

    Nickel Titanium (NiTi) Superelastic (SE) Shape Memory Alloys (SMAs) are widely considered for applications that need high reversible strain or high recovery forces. In particular, the SE SMAs present a high interest for biomedical applications such as endodontic and orthodontic apparatus. They are available in a large variety of archwires exerting continuum forces to ensure the dental displacement. The purpose of this study is to report the clinical implications of NiTi SE wires for dental treatment in a given configuration. Three main constitutive models of the literature (Lagoudas and Boyd 1996 Int. J. Plast. 12 805–842, Auricchio and Petrini 2004 Int. J. Numer. Meth. Engng. 61 807–836 and Chemisky et al 2011 Mech. Mater. 68 361–376) are considered for the finite element (FE) numerical simulations of the SMA archwires response. Tensile tests had been carried out in order to identify the material parameters of these constitutive models. The FE numerical study allowed to predict the dental displacement and its corresponding orthodontic force level exerted by the wire in similar conditions to those in the oral environment. This work allows to predict the orthodontic generated load by a NiTi SE archwire with a 0.64 × 0.46 mm2 rectangular cross section under prescribed thermomechanical conditions. The effect of the temperature and the alveolar bone stiffness on the orthodontic load level and the tooth displacement degree has been investigated. The performed numerical simulations demonstrate that the orthodontic load is sensitive to the displacement magnitude, to the tooth stiffness and to the temperature variations. The obtained forces applied continuously and at a constant level are within the acceptable orthodontic force level range. Some directives are therefore provided to help orthodontists to select the optimal archwire.

  16. The biocompatibility of dense and porous Nickel–Titanium produced by selective laser melting

    International Nuclear Information System (INIS)

    Habijan, T.; Haberland, C.; Meier, H.; Frenzel, J.; Wittsiepe, J.; Wuwer, C.; Greulich, C.; Schildhauer, T.A.; Köller, M.

    2013-01-01

    Nickel–Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. - Highlights: ► Specimens, varying in porosity and surface structure were produced via SLM. ► Biocompatibility of these specimens was analyzed. ► All specimens were completely coated with a layer

  17. Oxygen and sodium plasma-implanted nickel-titanium shape memory alloy: A novel method to promote hydroxyapatite formation and suppress nickel leaching

    International Nuclear Information System (INIS)

    Chan, Y.L.; Yeung, K.W.K.; Lu, W.W.; Ngan, A.H.W.; Luk, K.D.K.; Chan, D.; Wu, S.L.; Liu, X.M.; Chu, Paul K.; Cheung, K.M.C.

    2007-01-01

    This study aims at modifying the surface bioactivity of NiTi by sodium and oxygen plasma immersion ion implantation (PIII). Sodium ions were implanted into oxygen plasma-implanted NiTi and untreated NiTi. X-ray photoelectron spectroscopy (XPS) revealed that more sodium was implanted into the oxygen pre-implanted sample in comparison with the untreated surface. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX) detected calcium and phosphorus rich deposits on both samples after immersion in simulated body fluids for 7 and 21 days. Inductively-coupled plasma mass spectrometry (ICPMS) conducted on the deposits dissolved in diluted hydrochloric acid showed more calcium on the oxygen PIII samples. The improved corrosion resistance of the oxygen PIII NiTi was retained after sodium PIII as evaluated by potentiodynamic polarization tests. Better spreading and proliferation of osteoblasts were also observed on the treated samples

  18. A randomized clinical trial to compare three methods of orthodontic space closure.

    Science.gov (United States)

    Dixon, V; Read, M J F; O'Brien, K D; Worthington, H V; Mandall, N A

    2002-03-01

    To compare the rates of orthodontic space closure for: Active ligatures, polyurethane powerchain (Rocky Mountain Orthodontics, RMO Europe, Parc d'Innovation, Rue Geiler de Kaysersberg, 67400 Illkirch-Graffenstaden, Strasbourg, France) and nickel titanium springs. Patients entering the space closure phase of fixed orthodontic treatment attending six orthodontic providers. Twelve patients received active ligatures (48 quadrants), 10 patients received powerchain (40 quadrants) and 11 patients, nickel-titanium springs (44 quadrants). Patients were randomly allocated for treatment with active ligatures, powerchain or nickel titanium springs. Upper and lower study models were collected at the start of space closure (T(o)) and 4 months later (T(1)). We recorded whether the patient wore Class II or Class III elastics. Space present in all four quadrants was measured, by a calibrated examiner, using Vernier callipers at T(o) and T(1.) The rate of space closure, in millimetres per month (4 weeks) and a 4-monthly rate, was then calculated. Examiner reliability was assessed at least 2 weeks later. Mean rates of space closure were 0.35 mm/month for active ligatures, 0.58 mm/month for powerchain, and 0.81 mm/month for NiTi springs. No statistically significant differences were found between any methods with the exception of NiTi springs showing more rapid space closure than active ligatures (P space closure. NiTi springs gave the most rapid rate of space closure and may be considered the treatment of choice. However, powerchain provides a cheaper treatment option that is as effective. The use of inter-arch elastics does not appear to influence rate of space closure.

  19. Cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments in artificial canals.

    Science.gov (United States)

    Higuera, Oscar; Plotino, Gianluca; Tocci, Luigi; Carrillo, Gabriela; Gambarini, Gianluca; Jaramillo, David E

    2015-06-01

    The purpose of this study was to evaluate the cyclic fatigue resistance of 3 different nickel-titanium reciprocating instruments. A total of 45 nickel-titanium instruments were tested and divided into 3 experimental groups (n = 15): group 1, WaveOne Primary instruments; group 2, Reciproc R25 instruments; and group 3, Twisted File (TF) Adaptive M-L1 instruments. The instruments were then subjected to cyclic fatigue test on a static model consisting of a metal block with a simulated canal with 60° angle of curvature and a 5-mm radius of curvature. WaveOne Primary, Reciproc R25, and TF Adaptive instruments were activated by using their proprietary movements, WaveOne ALL, Reciproc ALL, and TF Adaptive, respectively. All instruments were activated until fracture occurred, and the time to fracture was recorded visually for each file with a 1/100-second chronometer. Mean number of cycles to failure and standard deviations were calculated for each group, and data were statistically analyzed (P fatigue resistance of Reciproc R25 and TF Adaptive M-L1 was significantly higher than that of WaveOne Primary (P = .009 and P = .002, respectively). The results showed no statistically significant difference between TF Adaptive M-L1 and Reciproc R25 (P = .686). Analysis of the fractured portion under scanning electron microscopy indicated that all instruments showed morphologic characteristics of ductile fracture that were due to accumulation of metal fatigue. No statistically significant differences were found between the instruments tested except for WaveOne Primary, which showed the lowest resistance to cyclic fatigue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Nanostructured titanium-based materials for medical implants: Modeling and development

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Levashov, Evgeny; Valiev, Ruslan Z.

    2014-01-01

    Nanostructuring of titanium-based implantable devices can provide them with superior mechanical properties and enhanced biocompatibity. An overview of advanced fabrication technologies of nanostructured, high strength, biocompatible Ti and shape memory Ni-Ti alloy for medical implants is given. C...

  1. Theromdynamics of carbon in nickel-based multicomponent solid solutions

    International Nuclear Information System (INIS)

    Bradley, D.J.

    1978-04-01

    The activity coefficient of carbon in nickel, nickel-titanium, nickel-titanium-chromium, nickel-titanium-molybdenum and nickel-titanium-molybdenum-chromium alloys has been measured at 900, 1100 and 1215 0 C. The results indicate that carbon obeys Henry's Law over the range studied (0 to 2 at. percent). The literature for the nickel-carbon and iron-carbon systems are reviewed and corrected. For the activity of carbon in iron as a function of composition, a new relationship based on re-evaluation of the thermodynamics of the CO/CO 2 equilibrium is proposed. Calculations using this relationship reproduce the data to within 2.5 percent, but the accuracy of the calibrating standards used by many investigators to analyze for carbon is at best 5 percent. This explains the lack of agreement between the many precise sets of data. The values of the activity coefficient of carbon in the various solid solutions are used to calculate a set of parameters for the Kohler-Kaufman equation. The calculations indicate that binary interaction energies are not sufficient to describe the thermodynamics of carbon in some of the nickel-based solid solutions. The results of previous workers for carbon in nickel-iron alloys are completely described by inclusion of ternary terms in the Kohler-Kaufman equation. Most of the carbon solid solution at high temperatures in nickel and nickel-titantium alloys precipitates from solution on quenching in water. The precipitate is composed of very small particles (greater than 2.5 nm) of elemental carbon. The results of some preliminary thermomigration experiments are discussed and recommendations for further work are presented

  2. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  3. Fatigue resistance of engine-driven rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Chaves Craveiro de Melo, Marta; Guiomar de Azevedo Bahia, Maria; Lopes Buono, Vicente Tadeu

    2002-11-01

    A comparative study of the fatigue resistance of engine-driven nickel-titanium endodontic instruments was performed, aiming to access the influence of the cutting flute design and of the size of the files that reach the working length in curved canal shaping. Geometrical conditions similar to those found in practice were used. Series 29 #5 ProFile, together with #6 and #8 Quantec instruments, were tested in artificial canals with a 45-degree angle of curvature and 5-mm radius of curvature. It was observed that the size of the instrument, which determines the maximum strain amplitude during cyclic deformation, is the most important factor controlling fatigue resistance. The effect of heat sterilization on the fatigue resistance of the instruments was also examined. The results obtained indicate that the application of five sterilization procedures in dry heat increases the average number of cycles to failure of unused instruments by approximately 70%.

  4. Cyclic fatigue of nickel-titanium rotary instruments in a double (S-shaped) simulated curvature.

    Science.gov (United States)

    Al-Sudani, Dina; Grande, Nicola M; Plotino, Gianluca; Pompa, Giorgio; Di Carlo, Stefano; Testarelli, Luca; Gambarini, Gianluca

    2012-07-01

    The goal of the present study was to test the fatigue resistance of nickel-titanium rotary files in a double curvature (S-shaped) artificial root canal and to compare those results with single curvature artificial root canals. Two nickel-titanium endodontic instruments consisting of identical instrument sizes (constant .06 taper and 0.25 tip diameter) were tested, ProFile instruments and Vortex instruments. Both instruments were tested for fatigue inside an artificial canal with a double curvature and inside a curved artificial canal with a single curvature. Ten instruments for each group were tested to fracture in continuous rotary motion at 300 rpm. Number of cycles to failure (NCF) was calculated to the nearest whole number, and the length of the fractured fragment was measured in millimeters. Data were statistically analyzed with a level of significance set at 95% confidence level. The NCF value was always statistically lower in the double curved artificial canal when compared with the single curve (P instruments of the same size of different brand only in the single curve; ProFile registered a mean of 633.5 ± 75.1 NCF, whereas Vortex registered a mean of 548 ± 48.9 NCF. Regardless of the differences between the instruments used in the present study, the results suggest that the more complex is the root canal, the more adverse are the effects on the cyclic fatigue resistance of the instruments. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications

    International Nuclear Information System (INIS)

    Khalil-Allafi, Jafar; Amin-Ahmadi, Behnam; Zare, Mehrnoush

    2010-01-01

    Due to unique properties of NiTi shape memory alloys such as high corrosion resistance, biocompatibility, super elasticity and shape memory behavior, NiTi shape memory alloys are suitable materials for medical applications. Although TiO 2 passive layer in these alloys can prevent releasing of nickel to the environment, high nickel content and stability of passive layer in these alloys are very debatable subjects. In this study a NiTi shape memory alloy with nominal composition of 50.7 atom% Ni was investigated by corrosion tests. Electrochemical tests were performed in two physiological environments of Ringer solution and NaCl 0.9% solution. Results indicate that the breakdown potential of the NiTi alloy in NaCl 0.9% solution is higher than that in Ringer solution. The results of Scanning Electron Microscope (SEM) reveal that low pitting corrosion occurred in Ringer solution compared with NaCl solution at potentiostatic tests. The pH value of the solutions increases after the electrochemical tests. The existence of hydride products in the X-ray diffraction analysis confirms the decrease of the concentration of hydrogen ion in solutions. Topographical evaluations show that corrosion products are nearly same in all samples. The biocompatibility tests were performed by reaction of mouse fibroblast cells (L929). The growth and development of cells for different times were measured by numbering the cells or statistics investigations. The figures of cells for different times showed natural growth of cells. The different of the cell numbers between the test specimen and control specimen was negligible; therefore it may be concluded that the NiTi shape memory alloy is not toxic in the physiological environments simulated with body fluids.

  6. Clinicians' Choices in Selecting Orthodontic Archwires

    Directory of Open Access Journals (Sweden)

    Silvia-Izabella Pop

    2013-08-01

    Full Text Available Objective: The aim of this study was to assess the choices made by clinicians in selecting archwires during the initial, intermediate and final stages of orthodontic treatment with fixed appliances. Methods: We carried out a questionnaire-based study at the Orthodontics and Pedodontics Clinic Târgu Mureș, between March 2012 and September 2012. The questionnaires consisted of two parts: the first included questions related to the dimension, alloy used in fabrication, section (round or rectangular and manufacturer of the archwires used by the orthodontists in their orthodontic practice, the second part was concerned with their personal opinion about the physical properties and disadvantages of the archwires. Results: From a total number of 90 distributed questionnaires, 62 were returned. The majority of clinicians are using stainless steel (SS and nickel-titanium alloy (NiTi wires in their fixed orthodontic treatments, very few are using beta-titanium (Beta Ti, copper nickel-titanium (Co- NiTi and esthetic archwires. The preferred dimension seem to be 0.022 inches in the appliance system. Regarding the wire dimensions, 0.014, 0.016 inch wires are mostly used from the round section group and 0.016 × 0.022 inch, 0.017 × 0.025 inch from the rectangular ones. Conclusions: There is a general lack of agreement between the clinicians surveyed regarding the properties of an ideal archwire and the disadvantages of the used wires. The most frequently used alloys seemed to be the SS and NiTi

  7. Influence of Axial Movement on Fatigue of Profile® Ni-Ti Rotary Instruments: an in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Marie-Chantal Avoaka

    2010-05-01

    Full Text Available The aim of this study was to evaluate the influence of the axial movement and the angle of curve (in degrees on fatigue of nickel-titanium (Ni-Ti ProFile’ rotary endodontic instruments.Ni-Ti ProFile’ rotary instruments (Maillefer SA, Ballaigues, Switzerland, 25 mm long in the range of ISO size 15 to 40 with two tapers (0.4 and 0.6 were evaluated. They are divided in two groups: the instruments with axial movement and those without axial movement. The system used to test the fatigue is maintained in mechanical conditions as close as possible to the clinical situation. The axial movement is in the order of 2mm in corono-apical direction with a frequency of 1Hz. The concave radii incorporating a notched V-form for guiding the instruments were: 5; 7,5 and 10 mm. The rotary system is mounted on an electric handpiece and rotated at 350 rpm speed as recommended by the manufacturers. The instruments are rotated until their separation, and the time, in seconds, is recorded. Statístícal evaluation is undertaken using a two-way t-test to identify significant differences between variables in the study (p <0,05.We found significant statistical difference (p<0,05 between Ni-Ti engine drive ProFile’ instruments incorporating an axial movement and the instruments without axial movement with the same radius of curvature, size and taper.The incorporation of the axial movement increases significantly the life-span of the ProFile’ rotary instruments. This should reduce the risk of the instrument separation during the endodontic treatment

  8. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  9. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    Science.gov (United States)

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  10. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    OpenAIRE

    Ghassan Yared

    2015-01-01

    This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy...

  11. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  12. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  13. En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

    Science.gov (United States)

    Jee, Jeong-Hyun; Ahn, Hyo-Won; Seo, Kyung-Won; Kook, Yoon-Ah; Chung, Kyu-Rhim; Nelson, Gerald

    2014-01-01

    Objective To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with pre-adjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency. PMID:25309863

  14. Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis.

    Science.gov (United States)

    Barbosa, I; Ferreira, F; Scelza, P; Neff, J; Russano, D; Montagnana, M; Zaccaro Scelza, M

    2018-04-10

    To evaluate the presence and propagation of defects and their effects on surfaces of nickel-titanium (NiTi) instruments using noncontact, three-dimensional optical profilometry, and to assess the accuracy of this method of investigation. The flute surface areas of instruments from two commercial instrumentation systems, namely Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were assessed and compared before and after performing two instrumentation cycles in simulated root canals in clear resin blocks. All the analyses were conducted on areas measuring 211 × 211 μm, located 3 mm from the tips of the instruments. A quantitative analysis was conducted before and after the first and second instrumentation cycles, using the Sa (average roughness over the measurement field), Sq (root mean square roughness) and Sz (average height over the measurement field) amplitude parameters. All the data were submitted to statistical analysis at a 5% level of significance. There was a significant increase (P = 0.007) in wear in both groups, especially between baseline and the second instrumentation cycle, with significantly higher wear values being observed on WaveOne instruments (Sz median values = 33.68 and 2.89 μm, respectively, for WO and RP groups). A significant increase in surface roughness (P = 0.016 and P = 0.008, respectively, for Sa and Sq) was observed in both groups from the first to the second instrumentation cycle, mostly in WaveOne specimens. Qualitative analysis revealed a greater number of defects on the flute topography of all the instruments after use. More defects were identified in WaveOne Primary instruments compared to Reciproc R25, irrespective of the evaluation stage. The investigation method provided an accurate, repeatable and reproducible assessment of NiTi instruments at different time-points. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. A patient with mandibular deviation and 3 mandibular incisors treated with asymmetrically bent improved superelastic nickel-titanium alloy wires.

    Science.gov (United States)

    Ikeda, Yuhei; Kokai, Satoshi; Ono, Takashi

    2018-01-01

    Skeletal and dental discrepancies cause asymmetric malocclusions in orthodontic patients. It is difficult to achieve adequate functional occlusion and guidance in patients with congenital absence of a mandibular incisor due to the tooth-size discrepancy. Here, we describe the orthodontic treatment of a 22-year-old woman with an asymmetric Angle Class II malocclusion, mandibular deviation to the left, and 3 mandibular incisors. The anterior teeth and maxillary canines were crowded. We used an improved superelastic nickel-titanium alloy wire (Tomy International, Tokyo, Japan) to compensate for the asymmetric mandibular arch and an asymmetrically bent archwire to move the maxillary molars distally. A skeletal anchorage system provided traction for intermaxillary elastics, and extractions were not needed. We alleviated the crowding and created an ideal occlusion with proper overjet, overbite, and anterior guidance with Class I canine and molar relationships. This method of treatment with an asymmetrically bent nickel-titanium alloy wire provided proper Class I occlusion and anterior guidance despite the mandibular deviation to the left and 3 mandibular incisors, without the need for extractions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Corrosion of chromium, nickel, titanium and steels in solutions of sodium and ammonium thiosulfates

    International Nuclear Information System (INIS)

    Grebenshchikova, S.V.; Kochergin, V.P.; Doronina, I.V.

    1983-01-01

    Results of gravimetric determinatiion of average rate of chromium, nickel, titatnium and steels 12Kh18N10T and VSt.3 corrosion rate in solutions 50 mass.% (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 in the air and nitrogen atmosphere at 333 K have been generalized. Anodic polarization curves are recorded and stationary potentials of metals and steels under the conditions are measured. It is shown that in (NH 4 ) 2 S 2 O 3 solution the rate of metal and steels corrosion is higher than in Na 2 S 2 O 3 solution indepenent of the nature of gaseous medium contacting with solution. In the series Ni → VSt.3 → 12Kh18N10T → VT1 → chromium in (NH 4 ) 2 S 2 O 3 and Na 2 S 2 O 3 solutions at 333 K corrosion resistance increases. Chromium, titanium and chromium-nickel steel 12Kh18N10T possess a high corrosion resistance

  17. Efficacy of Different Nickel-Titanium Instruments in Removing Gutta-percha during Root Canal Retreatment.

    Science.gov (United States)

    Özyürek, Taha; Demiryürek, Ebru Özsezer

    2016-04-01

    The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland), Twisted File Adaptive (TFA; Axis/SybronEndo, Orange, CA), Reciproc (PRC; VDW, Munich, Germany), and ProTaper Universal retreatment (PTR, Dentsply Maillefer) nickel-titanium systems and the time required for gutta-percha and sealer removal. Eighty human maxillary central incisors with single and straight root canals were instrumented up to #40.02 with manual K-files (Dentsply Maillefer) and obturated using the continuous wave of condensation technique. Removal of the gutta-percha and sealer was performed using 1 of the following nickel-titanium systems: PTN, TFA, RPC, or PTR. The teeth were sectioned, and digital images were captured. The photographs were analyzed using AutoCAD software (Autodesk, San Rafael, CA). Also, the total time required for gutta-percha removal was calculated by a chronometer. The total retreatment time was significantly shorter in the PTR group compared with the other groups (P < .05). There was a significant difference between the groups according to the total residual gutta-percha and sealer (P < .05). The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the TFA and RPC groups (P < .05). Within the limitations of this study, the PTN and the PTR groups showed less residual gutta-percha and sealer than the TFA and RPC groups. The time required for gutta-percha and sealer removal was similar for all the groups, except for the PTR group. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Shaping ability of NT Engine and McXim rotary nickel-titanium instruments in simulated root canals. Part 2.

    Science.gov (United States)

    Thompson, S A; Dummer, P M

    1997-07-01

    The aim of this laboratory-based study was to determine the shaping ability of NT Engine and McXim nickel-titanium rotary instruments in simulated root canals. A total of 40 canals with four different shapes in terms of angle and position of curve were prepared with NT Engine and McXim instruments, using the technique recommended by the manufacturer. Part 2 of this report describes the efficacy of the instruments in terms of prevalence of canal aberrations, the amount and direction of canal transportation and overall postoperative shape. Pre- and postoperative images of the canals were taken using a video camera attached to a computer with image analysis software. The pre- and postoperative views were superimposed to highlight the amount and position of material removed during preparation. No zips, elbows, perforations or danger zones were created during preparation. Forty-two per cent of canals had ledges on the outer aspect of the curve, the majority of which (16 out of 17) occurred in canals with short acute curves. There were significant differences (P Engine and McXim rotary nickel-titanium instruments created no aberrations other than ledges and produced only minimal transportation. The overall shape of canals was good.

  19. Smart materials activation analysis on example of nickel and titanium alloys

    Directory of Open Access Journals (Sweden)

    Wieczorek Bartosz

    2018-01-01

    Full Text Available This paper is focused on research concerning activation time of elements made of Ni-Ti alloy (55/45% vol. The activation time is a period of time required for alloy to reach it’s austenitic transformation (Af temperature. For examined wire it reached values up to 60 °C. Heating of NiTi wire was conducted by retaining heat. In this paper the influence of wire length and electric current power on heating time is presented. This research allows to determine the correlation between the increase of temperature and time. For given electric current values. This data is useful for effective design of SMA actuators‥

  20. Understanding the shape-memory alloys used in orthodontics.

    Science.gov (United States)

    Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.

  1. Lateral and axial cutting efficiency of instruments manufactured with conventional nickel-titanium and novel gold metallurgy.

    Science.gov (United States)

    Vasconcelos, R A; Arias, A; Peters, O A

    2018-05-01

    To isolate the effect of metallurgy in lateral and axial cutting efficacy against plastic and bovine dentine substrates by comparing two rotary systems with identical design but manufactured with either conventional nickel-titanium or heat-treated gold alloy. A total of 258 ProTaper Universal (PTU) and ProTaper Gold (PTG) Shaping instruments were used. Bending behaviour was assessed to determine the appropriate displacement associated with a 2 N force in lateral cutting. Ten instruments of each type were used in lateral action for 60 s against bovine dentine or plastic substrates four consecutive times producing four notches in each specimen. Ten further instruments of each type were used in on axial action in four standardized simulated root canals fabricated from 4-mm thick plastic or dentine discs. Both tests were performed at 300 rpm in a computer-controlled testing platform. Notch area and torsional load were compared with Student's t-tests. Repeated measures ANOVA was used to compare cutting efficiency across the four different time-points. Pearson correlation coefficients between substrates were also determined. For lateral action, all three PTG instruments cut significantly more effectively (P cut significantly more after 120 and 180 s (P cutting at 180 s on plastic and 120 s on bovine dentine (P cutting efficiency when compared to those made from conventional nickel-titanium. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Interaction of human endothelial cells and nickel-titanium materials modified with silicon ions

    Energy Technology Data Exchange (ETDEWEB)

    Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru; Kashin, Oleg A., E-mail: okashin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Kudryavtseva, Yuliya A., E-mail: yulia-k1970@mail.ru; Antonova, Larisa V., E-mail: antonova.la@mail.ru; Matveeva, Vera G., E-mail: matveeva-vg@mail.ru; Sergeeva, Evgeniya A., E-mail: sergeewa.ew@yandex.ru [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation); Kudryashov, Andrey N., E-mail: kudryashov@angioline.ru [Angioline Interventional Device Ltd, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    The paper studies the influence of chemical and phase compositions of NiTi surface layers modified with Si ions by plasma immersion implantation on their interaction with endothelial cells. It is shown that certain technological modes of Si ion implantation enhance the adhesion, proliferation, and viability of endothelial cells. It is found that the Si-modified NiTi surface is capable of stimulating the formation of capillary-like structures in the cell culture.

  3. A study of the oxidation of nickel-titanium intermetallics. II. Phase composition of the scale

    Energy Technology Data Exchange (ETDEWEB)

    Chuprina, V G [Institut Problem Materialovedeniia, Kiev (Ukrainian SSR)

    1989-06-01

    The phase composition of the scale formed on NiTi during oxidation in air in the temperature range 600-1000 C was investigated by X-ray diffraction and layer-by-layer metallographic analyses. The scale was found to contain NiO, NiO.TiO2, TiO2, Ti2O3, Ti3O5, Ni, and Ni(Ti) solid solution; an Ni3Ti sublayer was present at the scale-alloy boundary. Oxygen diffusion in the scale toward the sublayer and counterdiffusion of Ni(+2) were found to be the principal processes responsible for NiTi oxidation. 8 refs.

  4. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  5. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation

    Science.gov (United States)

    Varela, Sebastian; ‘Saiid' Saiidi, M.

    2016-07-01

    This paper reports a unique concept for resilient bridge columns that can undergo intense earthquake loading and remain functional with minimal damage and residual drift. In this concept, the column is designed so that its components can be easily disassembled and reassembled to facilitate material recycling and component reuse. This is meant to foster sustainability of bridge systems while minimizing monetary losses from earthquakes. Self-centering and energy dissipation in the column were provided by unbonded superelastic nickel-titanium (NiTi) shape memory alloy bars placed inside a plastic hinge element made of rubber. This replaceable plastic hinge was in turn attached to a concrete-filled carbon fiber-reinforced polymer tube and a precast concrete footing that were designed to behave elastically. The proposed concept was evaluated experimentally by testing a ¼-scale column model under simulated near-fault earthquake motions on a shake table. After testing, the model was disassembled, reassembled and tested again. The seismic performance of the reassembled model was found to be comparable to that of the ‘virgin’ model. A relatively simple computational model of the column tested that was developed in OpenSees was able to match some of the key experimental response parameters.

  6. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of nickel titanium closed-coil springs to align unerupted teeth: a case report.

    Science.gov (United States)

    Samuels, R H; Peak, J D

    1998-03-01

    We describe a case in which a patient with a class II division I incisor relationship on a skeletal II base was transferred midway through a treatment that consisted of aligning the upper and lower arches with fixed appliance orthodontics in preparation for a mandibular advancement osteotomy. The lower second molars had previously been extracted; the lower third molars were left unerupted and some distance from the lower first molars. To provide a good occlusion at the end of treatment, it was decided to expose and approximate the lower third molars to the distal aspect of the lower first molars with the use of nickel titanium closed-coil springs; this was to be done before the osteotomy.

  8. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  9. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  10. Electroplating on titanium alloy

    Science.gov (United States)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  11. Frictional resistance of self-ligating versus conventional brackets in different bracket-archwire-angle combinations

    Science.gov (United States)

    MONTEIRO, Maria Regina Guerra; da SILVA, Licinio Esmeraldo; ELIAS, Carlos Nelson; VILELLA, Oswaldo de Vasconcellos

    2014-01-01

    Objective To compare the influence of archwire material (NiTi, beta-Ti and stainless steel) and brackets design (self-ligating and conventional) on the frictional force resistance. Material and Methods Two types of brackets (self-ligating brackets - Smartclip, 3M/Unitek - and conventional brackets - Gemini, 3M/Unitek) with three (0, 5, and 10 degrees) slot angulation attached with elastomeric ligatures (TP Orthodontics) were tested. All brackets were tested with archwire 0.019"x0.025" nickel-titanium, beta-titanium, and stainless steel (Unitek/3M). The mechanical testing was performed with a universal testing machine eMIC DL 10000 (eMIC Co, Brazil). The wires were pulled from the bracket slots at a cross-head speed of 3 mm/min until 2 mm displacement. Results Self-ligating brackets produced significantly lower friction values compared with those of conventional brackets. Frictional force resistance values were directly proportional to the increase in the bracket/ wire angulation. With regard to conventional brackets, stainless steel wires had the lowest friction force values, followed by nickel-titanium and beta-titanium ones. With regard to self-ligating brackets, the nickel-titanium wires had the lowest friction values, significantly lower than those of other materials. Conclusion even at different angulations, the self-ligating brackets showed significantly lower friction force values than the conventional brackets. Combined with nickel-titanium wires, the self-ligating brackets exhibit much lower friction, possibly due to the contact between nickel-titanium clips and wires of the same material. PMID:25025564

  12. Frictional resistance of self-ligating versus conventional brackets in different bracket-archwire-angle combinations

    Directory of Open Access Journals (Sweden)

    Maria Regina Guerra MONTEIRO

    2014-06-01

    Full Text Available Objective: To compare the influence of archwire material (NiTi, beta-Ti and stainless steel and brackets design (self-ligating and conventional on the frictional force resistance. Material and Methods: Two types of brackets (self-ligating brackets - Smartclip, 3M/Unitek - and conventional brackets - Gemini, 3M/Unitek with three (0, 5, and 10 degrees slot angulation attached with elastomeric ligatures (TP Orthodontics were tested. All brackets were tested with archwire 0.019"x0.025" nickel-titanium, beta-titanium, and stainless steel (Unitek/3M. The mechanical testing was performed with a universal testing machine eMIC DL 10000 (eMIC Co, Brazil. The wires were pulled from the bracket slots at a cross-head speed of 3 mm/min until 2 mm displacement. Results: Self-ligating brackets produced significantly lower friction values compared with those of conventional brackets. Frictional force resistance values were directly proportional to the increase in the bracket/ wire angulation. With regard to conventional brackets, stainless steel wires had the lowest friction force values, followed by nickel-titanium and beta-titanium ones. With regard to self-ligating brackets, the nickel-titanium wires had the lowest friction values, significantly lower than those of other materials. Conclusion: even at different angulations, the self-ligating brackets showed significantly lower friction force values than the conventional brackets. Combined with nickel-titanium wires, the self-ligating brackets exhibit much lower friction, possibly due to the contact between nickel-titanium clips and wires of the same material.

  13. Evaluation of the lower incisor inclination during alignment and leveling using superelastic NiTi archwires: a laboratory study

    Directory of Open Access Journals (Sweden)

    Carolina Baratieri

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this laboratory study is to evaluate the influence of the shape and the length limitation of superelastic nickel-titanium (NiTi archwires on lower incisors inclination during alignment and leveling. METHODS: Metal teeth mounted on a typodont articulator device were used to simulate a malocclusion of the mandibular arch (-3.5 mm model discrepancy. Three different shapes (Standard, Accuform and Ideal of superelastic NiTi archwires (Sentalloy, GAC, USA were tested. Specimens were divided in two groups: Group I, with no limitation of the archwire length; and Group II, with distal limitation. Each group had thirty specimens divided into three subgroups differentiated by the archwire shape. All groups used round wires with diameters of 0.014-in, 0.016-in, 0.018-in and 0.020-in. The recording of all intervals was accomplished using standardized digital photographs with orthogonal norm in relation to median sagittal plane. The buccolingual inclination of the incisor was registered using photographs and software CorelDraw. RESULTS: The results were obtained using ANOVA and Tukey's test at a significant level of 5%. The inclination of the lower incisor increased in both groups and subgroups. The shape of the archwire had statistically significant influence only in Group I - Standard (11.76º, Ideal (5.88º and Accuform (1.93º. Analyzing the influence of the length limitation, despite the mean incisor tipping in Group II (3.91º had been smaller than Group I (6.52º, no statistically significant difference was found, except for Standard, 3.89º with limitation and 11.76º without limitation. The greatest incisor tipping occurred with the 0.014-in archwires.

  14. Finite Element Study on Continuous Rotating versus Reciprocating Nickel-Titanium Instruments.

    Science.gov (United States)

    El-Anwar, Mohamed I; Yousief, Salah A; Kataia, Engy M; El-Wahab, Tarek M Abd

    2016-01-01

    In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.

  15. Mechanical and geometric features of endodontic instruments and its clinical effect

    Directory of Open Access Journals (Sweden)

    Hyeon-Cheol Kim

    2011-01-01

    Full Text Available Introduction The aim of this paper is to discuss the mechanical and geometric features of Nickel-titanium (NiTi rotary files and its clinical effects. NiTi rotary files have been introduced to the markets with their own geometries and claims that they have better ability for the root canal shaping than their competitors. The contents of this paper include the (possible interrelationship between the geometries of NiTi file (eg. tip, taper, helical angle, etc and clinical performance of the files as follows; - Fracture modes of NiTi rotary files - Non-cutting guiding tip and glide path - Taper and clinical effects - Cross-sectional area and clinical effects - Heat treatments and surface characteristics - Screw-in effect and preservation of root dentin integrity - Designs for reducing screw-in effect Conclusions Based on the reviewed contents, clinicians may have an advice to use various brands of NiTi rotary instruments regarding their advantages which would fit for clinical situation.

  16. Interaction mechanism in nickel-titanium, nickel-aluminium bedded bimetallic systems

    International Nuclear Information System (INIS)

    Vadchenko, S.G.; Bulaev, A.M.; Gal'chenko, Yu.A.; Merzhanov, A.G.

    1987-01-01

    The electrothermographic method and local roentgenospectral analysis are used to investigate experimentally the mechanism of intermetallide formation (NiTi, AlNi) during ignition and burning, as well as at initial reaction stages under isothermal conditions. It is shown that solid phase and liquid interactions exist under isothermal conditions. In the first case kinetics of growth of β-solid solution layer can be expressed by a power law σ n =kt. In the second case micropores were formed in a melt layer due to decrease of molar volume of the system during reaction or due to increase in the diameter of a diffusion zone.Under isothermal interaction conditions a different nature of burning wave propagation and different burning regimes connected with them is observed. Composition and structure of reaction products are determined for every regime

  17. The efficacy of two rotary NiTi instruments and H-files to remove gutta-percha from root canals

    Science.gov (United States)

    Akpınar, Kerem E.; Altunbaş, Demet

    2012-01-01

    Objective: The aim of this study was to evaluate the efficacy of R-Endo® and K3® rotary nickel-titanium instruments compared with manual instrumentation with H-files, with use of a solvent, for removal of gutta-percha during retreatment. Study design: Forty five freshly extracted human single-rooted teeth, each with one root canal, were instrumented with K-files and filled using cold lateral compaction of gutta-percha and AH 26® sealer. The teeth were randomly divided into three groups of 15 specimens each. Removal of gutta-percha was performed with the following devices and techniques: Group 1 (H-files), Group 2 (R-Endo®), and Group 3 (K3®). The specimens were rendered transparent for the evaluation of the area of remaining gutta-percha/sealer in buccolingual and mesiodistal directions. Statistical analysis as performed by using one-way ANOVA and Kruskal-Wallis tests (p=0.05). Results: All retreatment techniques used in this study left some filling material inside the root canal. Images in buccolingual and mesiodistal directions showed no significant differences between the groups (p>0.05). Conclusions: Under the experimental conditions, the remaining filling material after retreatment was similar for each group. Key words:Gutta-percha removal, K3®, NiTi, R-Endo®. PMID:22143729

  18. The Effect of Particles Shape and Size on Feedstock Flowibility and Chemical content of As-sintered NiTi Alloys

    Science.gov (United States)

    Kadir, R. A. Abdul; Razali, R.; Mohamad Nor, N. H.; Subuki, I.; Ismail, M. H.

    2018-05-01

    This paper presents a comparative study of two different titanium powders in fabrication of NiTi alloys by metal injection moulding (MIM) route. Two batches of powder mixture consisted of Ni-Ti and Ni-TiH2 with atomic ratio (at%) of 50-50 were prepared. TiH2 powder was used as a substitution for pure Ti powder owing to its relatively cheaper cost and has been claimed favourable in producing less impurity uptake in sintering process. The binder system used for both mixtures comprised of composite binder of palm stearin (PS) and polyethylene (PE) at weigth ratio (wt%) of 60-40. The flow behaviour of the mixtures was analysed using a capillary rheometer at different shear rates and temperatures. The results showed that owing to irregular shape of TiH2 compared to Ti powder, the viscosity of the feedstock was significantly higher, thus required greater temperature in order to improve the mouldability of the feedstock. Nevertheless, both feedstocks exhibited pseudoplastic, a shear thinning behavior with shear rate and temperature, desirable properties for injection moulding process. Samples prepared with Ni-Ti feedstock were sintered in a high vacuum furnace, while Ni-TiH2 feedstock was sintered in a tube furnace under a flowing of Argon gas. The results showed that the impurity contents (Carbon and Oxygen) for both feedstocks were almost comparable, suggesting NiTi alloy samples prepared with TiH2 powder is an attractive route for manufacturing of NiTi alloys.

  19. Evaluation of friction in orthodontics using various brackets and archwire combinations-an in vitro study.

    Science.gov (United States)

    Kumar, Sujeet; Singh, Shamsher; Hamsa P R, Rani; Ahmed, Sameer; Prasanthma; Bhatnagar, Apoorva; Sidhu, Manreet; Shetty, Pramod

    2014-05-01

    The aim of this study was to compare frictional resistance which was produced between conventional brackets (0.022 slot Otho-Organiser) and self ligating brackets (active Forestadent and passive Damon III) by using various arch wire combinations (0.016 Niti, 0.018 Niti, 0.017 x 0.025 SS and 0.019 x 0.025 SS). An experimental model which consisted of 5 aligned stainless steel 0.022-in brackets was used to assess frictional forces which were produced by SLBs (self ligating brackets) and CELs (conventional elastomeric ligatures) with use of 0.016 nickel titanium, 0.018 nickel titanium, 0.017 X 0.025"stainless steel and 0.019 X 0.025"stainless steel wires. One way ANOVA test was used to study the effect of the bracket type, wire alloy and section on frictional resistance test . Conventional brackets produced highest levels of friction for all bracket/archwire combinations. Both Damon III and Forestadent brackets were found to produce significantly lower levels of friction when they were compared with elastomerically tied conventional brackets. SLBs are valid alternatives for low friction during sliding mechanics.

  20. Synthesis of cerium and nickel doped titanium nanofibers for hydrolysis of sodium borohydride.

    Science.gov (United States)

    Tamboli, Ashif H; Gosavi, S W; Terashima, Chiaki; Fujishima, Akira; Pawar, Atul A; Kim, Hern

    2018-07-01

    A recyclable titanium nanofibers, doped with cerium and nickel doped was successfully synthesized by using sol-gel and electrospinning method for hydrogen generation from alkali free hydrolysis of NaBH 4 . The resultant nanocomposite was characterized to find out the structural and physical-chemical properties by a series of analytical techniques such as FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscope), EDX (energy-dispersive X-ray spectroscopy),N 2 adsorption-desorption and BET (Brunauer-Emmett-Teller), etc. The results revealed that cerium and nickel nanoparticles were homogeneously distributed on the surface of the TiO 2 nanofibers due to having similar oxidation state and atomic radium of TiO 2 nanofibers with CeO 2 and NiO for the effective immobilization of metal ions. The NiO doped catalyst showed superior catalytic performance towards the hydrolysis reaction of NaBH 4 at room temperature. These catalysts have ability to produce 305 mL of H 2 within the time of 160 min at room temperature. Additionally, reusability test revealed that the catalyst is active even after five runs of hydrolytic reaction, implying the as-prepared NiO doped TiO 2 nanofibers could be considered as a potential candidate catalyst for portable hydrogen fuel system such as PEMFC (proton exchange membrane fuel cells). Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  2. Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

    Directory of Open Access Journals (Sweden)

    Ghassan Yared

    2015-02-01

    Full Text Available This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickel-titanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

  3. Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2017-12-01

    Full Text Available Objectives: The friction between the brackets and orthodontic wire during sliding mechanics inflicts difficulties such as decreasing the applied force and tooth movement and also the loss of anchorage. Therefore, many studies have focused on the factors that affect the friction. The purpose of this study was to assess the effect of 0.05% sodium fluoride mouthwash on the friction between orthodontic brackets and wire.Materials and Methods: Four types of orthodontic wires including rectangular standard stainless steel (SS, titanium molybdenum alloy (TMA, nickel-titanium (NiTi and copper-nickel-titanium (Cu-NiTi were selected. In each group, half of the samples were immersed in 0.05% sodium fluoride mouthwash and the others were immersed in artificial saliva for 10 hours. An elastomeric ligature was used for ligating the wires to brackets. The frictional test was performed in a universal testing machine at the speed of 10 mm/minute. Two-way ANOVA was used for statistical analysis of the friction rate.Results: The friction rate was significantly higher after immersion in 0.05% sodium fluoride mouthwash in comparison with artificial saliva (P=0.00. Cu-NiTi wire showed the highest friction value followed by TMA, NiTi and SS wires.  Conclusions: According to the results of the current study, 0.05% sodium fluoride mouthwash increased the frictional characteristics of all the evaluated orthodontic wires.

  4. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    Science.gov (United States)

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  5. Finite element modeling of superelastic nickel-titanium orthodontic wires.

    Science.gov (United States)

    Naceur, Ines Ben; Charfi, Amin; Bouraoui, Tarak; Elleuch, Khaled

    2014-11-28

    Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.

  6. [Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].

    Science.gov (United States)

    Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong

    2006-08-01

    To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P ProTaper group (P ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.

  7. Corrosion of titanium and titanium alloys in spent fuel repository conditions - literature review

    International Nuclear Information System (INIS)

    Aho-Mantila, I.; Haenninen, H.; Aaltonen, P.; Taehtinen, S.

    1985-03-01

    The spent nuclear fuel is planned to be disposed in Finnish bedrock. The canister of spent fuel in waste repository is one barrier to the release of radionuclides. It is possible to choose a canister material with a known, measurable corrosion rate and to make it with thickness allowing corrosion to occur. The other possibility is to use a material which is nearly immune to general corrosion. In this second category there are titanium and titanium alloys which exhibit a very high degree of resistance to general corrosion. In this literature study the corrosion properties of unalloyed titanium, titanium alloyed with palladium and titanium alloyed with molybdenum and nickel are reviewed. The two titanium alloys own in addition to the excellent general corrosion properties outstanding properties against localized corrosion like pitting or crevice corrosion. Stress corrosion cracking and corrosion fatique of titanium seem not to be a problem in the repository conditions, but the possibilities of delayed cracking caused by hydrogen should be carefully appreciated. (author)

  8. A survey of experience-based preference of Nickel-Titanium rotary files and incidence of fracture among general dentists

    Directory of Open Access Journals (Sweden)

    WooCheol Lee

    2012-11-01

    Full Text Available Objectives The purpose was to investigate the preference and usage technique of NiTi rotary instruments and to retrieve data on the frequency of re-use and the estimated incidence of file separation in the clinical practice among general dentists. Materials and Methods A survey was disseminated via e-mail and on-site to 673 general dentists. The correlation between the operator's experience or preferred technique and frequency of re-use or incidence of file fracture was assessed. Results A total of 348 dentists (51.7% responded. The most frequently used NiTi instruments was ProFile (39.8% followed by ProTaper. The most preferred preparation technique was crown-down (44.6%. 54.3% of the respondents re-used NiTi files more than 10 times. There was a significant correlation between experience with NiTi files and the number of reuses (p = 0.0025. 54.6% of the respondents estimated experiencing file separation less than 5 times per year. The frequency of separation was significantly correlated with the instrumentation technique (p = 0.0003. Conclusions A large number of general dentists in Korea prefer to re-use NiTi rotary files. As their experience with NiTi files increased, the number of re-uses increased, while the frequency of breakage decreased. Operators who adopt the hybrid technique showed less tendency of separation even with the increased number of re-use.

  9. New excitation functions for proton induced reactions on natural titanium, nickel and copper up to 70 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, E. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Duchemin, C., E-mail: Charlotte.Duchemin@subatech.in2p3.fr [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Guertin, A. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); Haddad, F.; Michel, N. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France); GIP Arronax, 1 rue Aronnax, 44817 Saint-Herblain (France); Métivier, V. [SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS/IN2P3, Nantes (France)

    2016-09-15

    Highlights: • Natural titanium, nickel and copper targets. • 70 MeV ARRONAX cyclotron proton beam. • Stacked-foil technique and monitor reactions. • Experimental cross section values. • TALYS code version 1.6. - Abstract: New excitation functions for proton induced nuclear reactions on natural titanium, nickel and copper were measured, using the stacked-foil technique and gamma spectrometry, up to 70 MeV. The experimental cross sections were measured using the Ti-nat(p,x) V-48, Ni-nat(p,x) Ni-57 and Cu-nat(p,x) Zn-62,Co-56 monitor reactions recommended by the International Atomic Energy Agency (IAEA), depending on the investigated energy range. Data have been extracted for the Ti-nat(p,x) Sc-43,44m,46,47,48, V-48, K-42,43, Ni-nat(p,x) Ni-56,57, Co-55,56,57,58, Mn-52,54, Cu-nat(p,x) Cu-61,64, Ni-57, Co-56,57,58,60, Zn-62,65, Mn-54 reactions. Our results are discussed and compared to the existing ones as well as with the TALYS code version 1.6 calculations using default models. Our experimental data are in overall good agreement with the literature. TALYS is able to reproduce, in most cases, the experimental trend. Our new experimental results allow to expand our knowledge on these excitation functions, to confirm the existing trends and to give additional values on a large energy range. This work is in line with the new Coordinated Research Project (CRP) launched by the IAEA to expand the database of monitor reactions.

  10. Rotary endodontics in primary teeth - A review.

    Science.gov (United States)

    George, Sageena; Anandaraj, S; Issac, Jyoti S; John, Sheen A; Harris, Anoop

    2016-01-01

    Endodontic treatment in primary teeth can be challenging and time consuming, especially during canal preparation, which is considered one of the most important steps in root canal therapy. The conventional instrumentation technique for primary teeth remains the "gold-standard" over hand instrumentation, which makes procedures much more time consuming and adversely affects both clinicians and patients. Recently nickel-titanium (Ni-Ti) rotary files have been developed for use in pediatric endodontics. Using rotary instruments for primary tooth pulpectomies is cost effective and results in fills that are consistently uniform and predictable. This article reviews the use of nickel-titanium rotary files as root canal instrumentation in primary teeth. The pulpectomy technique is described here according to different authors and the advantages and disadvantages of using rotary files are discussed.

  11. Plasma immersion ion implantation for the efficient surface modification of medical materials

    International Nuclear Information System (INIS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2015-01-01

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment

  12. Liquid phase sintering of carbides using a nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Barranco, J.M.; Warenchak, R.A.

    1987-01-01

    Liquid phase vacuum sintering was used to densify four carbide groups. These were titanium carbide, tungsten carbide, vanadium carbide, and zirconium carbide. The liquid phase consisted of nickel with additions of molybdenum of from 6.25 to 50.0 weight percent at doubling increments. The liquid phase or binder comprised 10, 20, and 40 percent by weight of the pressed powders. The specimens were tested using 3 point bending. Tungsten carbide showed the greatest improvement in bend rupture strength, flexural modulus, fracture energy and hardness using 20 percent binder with lesser amounts of molybdenum (6.25 or 12.5 wt %) added to nickel compared to pure nickel. A refinement in the carbide microstructure and/or a reduction in porosity was seen for both the titanium and tungsten carbides when the alloy binder was used compared to using the nickel alone. Curves depicting the above properties are shown for increasing amounts of molybdenum in nickel for each carbide examined. Loss of binder phase due to evaporation was experienced during heating in vacuum at sintering temperatures. In an effort to reduce porosity, identical specimens were HIP processed at 15 ksi and temperatures averaging 110 C below the sintering g temperature. The tungsten carbide and titanium carbide series containing 80 and 90 weight percent carbide phase respectively showed improvement properties after HIP while properties decreased for most other compositions

  13. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  14. Shaping ability of the conventional nickel-titanium and reciprocating nickel-titanium file systems: a comparative study using micro-computed tomography.

    Science.gov (United States)

    Hwang, Young-Hye; Bae, Kwang-Shik; Baek, Seung-Ho; Kum, Kee-Yeon; Lee, WooCheol; Shon, Won-Jun; Chang, Seok Woo

    2014-08-01

    This study used micro-computed tomographic imaging to compare the shaping ability of Mtwo (VDW, Munich, Germany), a conventional nickel-titanium file system, and Reciproc (VDW), a reciprocating file system morphologically similar to Mtwo. Root canal shaping was performed on the mesiobuccal and distobuccal canals of extracted maxillary molars. In the RR group (n = 15), Reciproc was used in a reciprocating motion (150° counterclockwise/30° clockwise, 300 rpm); in the MR group, Mtwo was used in a reciprocating motion (150° clockwise/30° counterclockwise, 300 rpm); and in the MC group, Mtwo was used in a continuous rotating motion (300 rpm). Micro-computed tomographic images taken before and after canal shaping were used to analyze canal volume change and the degree of transportation at the cervical, middle, and apical levels. The time required for canal shaping was recorded. Afterward, each file was analyzed using scanning electron microscopy. No statistically significant differences were found among the 3 groups in the time for canal shaping or canal volume change (P > .05). Transportation values of the RR and MR groups were not significantly different at any level. However, the transportation value of the MC group was significantly higher than both the RR and MR groups at the cervical and apical levels (P file deformation was observed for 1 file in group RR (1/15), 3 files in group MR (3/15), and 5 files in group MC (5/15). In terms of shaping ability, Mtwo used in a reciprocating motion was not significantly different from the Reciproc system. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. [Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].

    Science.gov (United States)

    Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong

    2008-01-01

    To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.

  16. Effect of saliva on load-deflection characteristics of superelastic nickel-titanium orthodontic wires.

    Science.gov (United States)

    Hosseinzadeh Nik, T; Ghadirian, H; Ahmadabadi, M Nili; Shahhoseini, T; Haj-Fathalian, M

    2012-01-01

    Most published results about the characteristics of NiTi wires are based on the mechanical laboratory tests on the as-received wires.The purpose of this study was to investigate the effect of saliva on load-deflection characteristics of superelastic NiTi wires. In this experimental study, 15 wires of three kinds of superelastic NiTi wires (Sentalloy, Force I and Truflex) were prepared. Five specimens of each wire were tested in the as-received condition (T0) to provide baseline information and the remaining wires were divided into two groups of five. Half of them were kept inside artificial saliva for one month (T1), while the others were kept in air (T2). After 30 days, three-point bending test was done in a dental arch model and data from selected points on the unloading phase of the generated graphs were used for statistical analysis. Force I and Truflex showed significantly greater force than Sentalloy. The load values of Truflex and Force I after one month exposed to artificial saliva (T1) decreased significantly, but Sentalloy was not affected significantly. The plateau gap values were not considerably different among T0, T1 and T2. Saliva decreased the load of Force I and Truflex significantly, but it did not have a statistically significant effect on Sentalloy.

  17. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    Science.gov (United States)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  18. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I; Hoghoj, P [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  19. Electromagnetic heating of a shape memory alloy translator

    Science.gov (United States)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  20. NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications

    Science.gov (United States)

    Witkowska, Justyna; Sowińska, Agnieszka; Czarnowska, Elżbieta; Płociński, Tomasz; Borowski, Tomasz; Wierzchoń, Tadeusz

    2017-11-01

    Surface layers currently produced on NiTi alloys do not meet all the requirements for materials intended for use in cardiology. Plasma surface treatments of titanium and its alloys under glow discharge conditions make it possible to produce surface layers, such as TiN or TiO2, which increases corrosion resistance and biocompatibility. The production of layers on NiTi alloys with the same properties, and maintaining their shape memory and superelasticity features, requires the use of low-temperature processes. At the same time, since it is known that the carbon-based layers could prevent excessive adhesion and aggregation of platelets, we examined the composite a-CNH + TiO2 type surface layer produced by means of a hybrid method combining oxidation in low-temperature plasma and Radio Frequency Chemical Vapor Deposition (RFCVD) processes. Investigations have shown that this composite layer increases the corrosion resistance of the material, and both the low degree of roughness and the chemical composition of the surface produced lead to decreased platelet adhesion and aggregation and proper endothelialization, which could extend the range of applications of NiTi shape memory alloys.

  1. Mechanical properties of orthodontic wires on ceramic brackets associated with low friction ligatures

    Directory of Open Access Journals (Sweden)

    Fernando KOIKE

    2017-03-01

    Full Text Available Abstract Introduction Few studies investigated the mechanical properties of orthodontic wires on ceramic brackets associated the ligatures. Objective This study aimed to compare the load-deflection of orthodontic wires with round section of 0.016” made of stainless steel (SS, nickel-titanium (NiTi and glass fiber-reinforced polymer composite (GFRPC. Material and method Sixty specimens obtained from 10 sectioned pre-contoured arches (TP Orthodontics, were divided into 3 groups of 20 according to each type of material (1 esthetic-type wire and 2 not esthetic and length of 50 mm. The methodology consisted of a 3-point bending test using esthetic ceramic brackets (INVU, TP Orthodontics, Edgewise, 0.022”x 0.025” as points of support. The tensile tests were performed on a mechanical test machine, at a speed of 10 mm/min, deflection of 1 mm, 2 mm and 3 mm. Friedman’s Non Parametric Multiple comparisons test was used (P<0.05. Result The nickel-titanium wire presented smaller load/ deflection compared with stainless steel. GFRPC wires had lower strength values among all groups evaluated (P<.05. The steel wire showed permanent deformation after 3 mm deflection, NiTi wire demonstrated memory effect and the esthetic type had fractures with loss of strength. Conclusion It can be concluded that steel wires have high strength values, requiring the incorporation of loops and folds to reduce the load / deflection. NiTi and GFRPC wires produced low levels of force, however the esthetic wire was shown to fracture and break.

  2. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  3. Color stability of esthetic coatings applied to nickel-titanium archwires

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Neiva Nunes do REGO

    Full Text Available Abstract Introduction Color stability is an important feature to be considered when using esthetic coated archwires. Objective To evaluate color changes on the surface of esthetic nickel-titanium archwires coated with Teflon (Ortho Organizers, USA or epoxy resin (Tecnident, Brazil after immersion in staining solution. Material and method Twelve 20-mm-long wire segments were used for each type of coating, which were mounted as two test specimens with a width of 7 mm each. The buccal surface of the archwires was evaluated for fluorescence and color measurements both at baseline and after immersion in a staining solution for 21 days using the VITA Easyshade® Compact spectrophotometer (Model DEASYC220. Differences in total color change according to coating type were compared using an independent samples t-test (p<0.05. The surface characteristics of as-received coated archwires were assessed using scanning electron microscopy. Result Color changes were observed on the esthetic coatings, with a significant difference between the two brands analyzed. Surface analysis revealed flaws such as wear, pitting, elevations, lack of material, granulation, grooves, cracks, and lack of standardization in the coating process in all as-received archwires, but flaws were less evident in epoxy-resin coatings. Conclusion The two esthetic coatings did not show color stability, but Teflon coatings showed a more intense color change than epoxy-resin coatings.

  4. Observation of neutron bursts in saturation of titanium with deuterium by means of D2O electrolysis

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Bystritskij, V.M.; Gilev, A.I.

    1991-01-01

    The paper describes a correlation experiment on investigation of low-temperature nuclear dd-fusion during saturation of titanium with deuterium through electrolysis of heavy water D 2 O. The experiments with cathodes of chemically pure titanium and of titanium coated with a 0.4μm nickel layer (mass of titanium 26 g) were carried out. Emission of neutrons in the form of separate bursts was observed in the experiments with the nickel-coated cathode. The neutron emission density in the burst was found to be I n =(3.6±0.9)x10 4 s -1 . 17 refs.; 6 figs

  5. Influence of the geometry of curved artificial canals on the fracture of rotary nickel-titanium instruments subjected to cyclic fatigue tests.

    Science.gov (United States)

    Lopes, Hélio P; Vieira, Márcia V B; Elias, Carlos N; Gonçalves, Lucio S; Siqueira, José F; Moreira, Edson J L; Vieira, Victor T L; Souza, Letícia C

    2013-05-01

    This study evaluated the influence of different features of canal curvature geometry on the number of cycles to fracture of a rotary nickel-titanium endodontic instrument subjected to a cyclic fatigue test. BioRaCe BR4C instruments (FKG Dentaire, La Chaux-de Fonds, Switzerland) were tested in 4 grooves simulating curved metallic artificial canals, each one measuring 1.5 mm in width, 20 mm in total length, and 3.5 mm in depth with a U-shaped bottom. The parameters of curvature including the radius and arc lengths and the position of the arc differed in the 4 canal designs. Fractured surfaces and helical shafts of the separated instruments were analyzed by scanning electron microscopy. The Student's t test showed that a significantly lower number of cycles to fracture values were observed for instruments tested in canals with the smallest radius, the longest arc, and the arc located in the middle portion of the canal. Scanning electron microscopic analysis of the fracture surfaces revealed morphologic characteristics of ductile fracture. Plastic deformation was not observed in the helical shaft of the fractured instruments. Curvature geometry including the radius and arc lengths and the position of the arc along the root canal influence the number of cycles to fracture of rotary nickel-titanium instruments subjected to flexural load. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Formation of titanium oxide coatings on NiTi shape memory alloys by selective oxidation

    International Nuclear Information System (INIS)

    Pohl, M.; Glogowski, T.; Kuehn, S.; Hessing, C.; Unterumsberger, F.

    2008-01-01

    Materials used for medical devices that are in contact with human tissue must have good corrosion resistance and biocompatibility. NiTi shape memory alloys (SMAs) are often used in medical applications due to their special functional and mechanical properties (shape memory effect, pseudo elasticity). Because of the high Ni content in nearly stoichiometric NiTi SMAs, the possibility of Ni being released needs to be considered as Ni may cause problems in the human body. SMAs exhibit a high intrinsic corrosion resistance because of the thermodynamic stability of Ni (thermodynamic reason) and the low degree of disorder in a thin protective TiO 2 -layer (kinetic reason). While therefore there is no need to be concerned too much about a normal corrosive attack in the human body, it has to be kept in mind that in medical applications, these materials represent one part of a tribological system where wear processes need to be considered. The formation of a uniform TiO 2 -layer can be beneficial in this respect. The selective oxidation of Ti to TiO 2 on the surface is a promising method to decrease the Ni release significantly. This can be achieved by controlling the partial pressure of oxygen during a controlled oxidation process. The atmosphere must be adjusted so that TiO 2 is stable while NiO cannot yet form. The result of a selective oxidation is a TiO 2 -layer that has an excellent degree of purity and represents a safe barrier against Ni emission

  7. Processing and Characterization of Liquid-Phase Sintered NiTi Woven Structures

    Science.gov (United States)

    Erdeniz, Dinc; Weidinger, Ryan P.; Sharp, Keith W.; Dunand, David C.

    2018-03-01

    Porous NiTi is of interest for bone implants because of its unique combination of biocompatibility (encouraging osseointegration), high strength (to prevent fracture), low stiffness (to reduce stress shielding), and shape memory or superelasticity (to deploy an implant). A promising method for creating NiTi structures with regular open channels is via 3D weaving of NiTi wires. This paper presents a processing method to bond woven NiTi wire structures at contact points between wires to achieve structural integrity: (i) a slurry consisting of a blend of NiTi and Nb powders is deposited on the surface of the NiTi wires after the weaving operation; (ii) the powders are melted to create a eutectic liquid phase which collects at contact points; and (iii) the liquid is solidified and binds the NiTi woven structures. The bonded NiTi wire structures exhibited lower transformation temperatures compared to the as-woven NiTi wires because of Nb diffusion into the NiTi wires. A bonded woven sample was deformed in bending and showed near-complete recovery up to 6% strain and recovered nearly half of the deformation up to 19% strain.

  8. Vanadium and titanium determination by resorcinalhydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Karpova, O I; Pilipenko, A T; Lukachina, V V [AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody

    1979-02-01

    The complexing of titanium and vanadium with resorcinalhydrazyl of salicylic acid (RHSA) in water-organic media is studied. Titanium (4) forms a complex at pH 0.8-1.8, vanadium - at pH 2.5-5.6, and at pH 7.6-9.8. The complexes are well extracted by polar and nonpolar solvents from acid solutions. The techniques are developed for the determination of titanium and vanadium by the RHSA agent in nickel alloys.

  9. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kajan, Zahra Dalili; Alizadeh, Ahmad; Hemmaty, Yasmin Babael; Roushan, Zahra Atrkar; Khademi, Jalil

    2015-01-01

    This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1-weighted images, fast spin-echo T2-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires

  10. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kajan, Zahra Dalili; Alizadeh, Ahmad; Hemmaty, Yasmin Babael; Roushan, Zahra Atrkar; Khademi, Jalil [Guilan University of Medical Sciences, Rasht (Iran, Islamic Republic of)

    2015-09-15

    This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1-weighted images, fast spin-echo T2-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

  11. A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging.

    Science.gov (United States)

    Dalili Kajan, Zahra; Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra

    2015-09-01

    This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1 -weighted images, fast spin-echo T2 -weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

  12. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    Science.gov (United States)

    Casalena, Lee

    . NiTiAu alloys are shown to demonstrate work output at extremely high temperatures - above 400 °C - where the potential benefits may offset material cost. Crystal structures and chemical effects of previously undocumented secondary phases are extensively examined using STEM and X-ray energy dispersive spectroscopy (XEDS). These insights are combined with mechanical test data to develop an understanding of the critical microstructure-property relationships involved. In addition to the native corrosion resistance common to all these alloys, a nickel rich NiTi-1Hf alloy is shown to demonstrate extremely high strength and wear resistance, making it an ideal candidate for tribological applications such as bearings used in corrosive environments. Details of the stress-induced martensite phase are revealed in this alloy system using synchrotron radiation and aberration-corrected STEM. Finally, post mortem Transmission Kikuchi Diffraction (TKD) and in situ High Energy Diffraction Microscopy (HEDM) are used to explore the remarkable grain refinement process that occurs in NiTi and related alloys through load-biased thermal cycling. Microstructural changes in the form of defect generation and subgrain development are key mechanistic insights sought to further understand the processes resulting in unrecovered strain accumulation, which lead to detrimental functional fatigue in these alloys.

  13. Debris extrusion by glide-path establishing endodontic instruments with different geometries

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2016-06-01

    Conclusion: Creating the glide-path using nickel-titanium rotary files produced lower amounts of debris extrusion than using manual stainless-steel files. The progressive taper design of ProGlider, the center-off cross-section of One G, and the alternative-pitch design of ScoutRace may have increased the efficiencies of debris removal with minimal extrusion during glide-path preparation. Glide-path preparation using NiTi rotary files have better clinical efficiency than the manual stainless-steel file.

  14. Safety Assessment of Two Hybrid Instrumentation Techniques in a Dental Student Endodontic Clinic: A Retrospective Study.

    Science.gov (United States)

    Coelho, Marcelo Santos; Card, Steven John; Tawil, Peter Zahi

    2017-03-01

    The aim of this study was to retrospectively assess the safety potential of a hybrid technique combining nickel-titanium (NiTi) reciprocating and rotary instruments by third- and fourth-year dental students in the predoctoral endodontics clinic at one U.S. dental school. For the study, 3,194 root canal treatments performed by 317 dental students from 2012 through 2015 were evaluated for incidence of ledge creation and instrument separation. The hybrid reciprocating and rotary technique (RRT) consisted of a glide path creation with stainless steel hand files up to size 15/02, a crown down preparation with a NiTi reciprocating instrument, and an apical preparation with NiTi rotary instruments. The control was a traditional rotary and hand technique (RHT) that consisted of the same glide path procedure followed by a crown down preparation with NiTi rotary instruments and an apical preparation with NiTi hand instruments. The results showed that the RHT technique presented a rate of ledge creation of 1.4% per root and the RRT technique was 0.5% per root (protary technique for root canal instrumentation by these dental students provided good safety. This hybrid technique offered a low rate of ledge creation along with no NiTi instrument separation.

  15. A Review of Selective Laser Melted NiTi Shape Memory Alloy

    Science.gov (United States)

    Khoo, Zhong Xun; Shen, Yu Fang

    2018-01-01

    NiTi shape memory alloys (SMAs) have the best combination of properties among the different SMAs. However, the limitations of conventional manufacturing processes and the poor manufacturability of NiTi have critically limited its full potential applicability. Thus, additive manufacturing, commonly known as 3D printing, has the potential to be a solution in fabricating complex NiTi smart structures. Recently, a number of studies on Selective Laser Melting (SLM) of NiTi were conducted to explore the various aspects of SLM-produced NiTi. Compared to producing conventional metals through the SLM process, the fabrication of NiTi SMA is much more challenging. Not only do the produced parts require a high density that leads to good mechanical properties, strict composition control is needed as well for the SLM NiTi to possess suitable phase transformation characteristics. Additionally, obtaining a good shape memory effect from the SLM NiTi samples is another challenging task that requires further understanding. This paper presents the results of the effects of energy density and SLM process parameters on the properties of SLM NiTi. Its shape memory properties and potential applications were then reviewed and discussed. PMID:29596320

  16. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  17. Thermoelectric transport properties of polycrystalline titanium diselenide co-intercalated with nickel and titanium using spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Holgate, T.C. [Department of Energy Storage and Conversion, Technical University of Denmark, Riso Campus, 4000 Roskilde (Denmark); Zhu, S.; Zhou, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Bangarigadu-Sanasy, S.; Kleinke, H. [Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Tritt, T.M., E-mail: ttritt@clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2013-01-15

    Polycrystalline samples of nickel intercalated (0-5%) TiSe{sub 2} were attempted via solid-state reaction in evacuated quartz tubes followed by densification using a spark plasma sintering process. X-ray diffraction data indicated that mixed NiSe{sub 2} and TiSe{sub 2} phases were present after initial synthesis by solid-state reaction, but a pure TiSe{sub 2} phase was present after the spark plasma sintering. While EPMA data reveals the stoichiometry to be near 1:1.8 (Ti:Se) for all samples, comparisons of the measured bulk densities to the theoretical densities suggest that the off stoichiometry is a result of the co-intercalation of both Ni and Ti rather than Se vacancies. Due to the presence of excess Ti (0.085-0.130 per formula) in the van der Waals gap of all the samples, the sensitive electron-hole balance is offset by the additional Ti-3d electrons, leading to an increase in the thermopower (n-type) over pristine, stoichiometric TiSe{sub 2}. The effects of the co-intercalation of both Ni and Ti in TiSe{sub 2} on the structural, thermal, and electrical properties are discussed herein. - Graphical abstract: Co-intercalation of nickel and excess titanium into the van der Waals gap of TiSe{sub 2} via solid state synthesis followed by spark plasma sintering results in a systematic shift in the ratio of hole and electron carrier concentration, which is close to unity for pristine TiSe{sub 2}. This directly affects the electrical transport properties, and as the structural disorder induced by intercalation suppresses the lattice thermal conductivity, co-intercalation is an effective route to enhance the thermoelectric properties of transition metal diselenides. Highlights: Black-Right-Pointing-Pointer Single phase bulk Ni and Ti co-intercalated TiSe{sub 2} samples prepared by spark plasma sintering. Black-Right-Pointing-Pointer Density and X-ray diffraction suggest that the Ni and excess Ti are ordered in the Van der Waals gap. Black-Right-Pointing-Pointer Co

  18. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    Science.gov (United States)

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  19. Investigations on the binary systems of boron with chromium, columbium, nickel, and thorium, including a discussion of the Phase TiB in the titanium-boron system

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, L H; Kiessling, R

    1950-01-01

    Investigations on the binary systems chromium-, columbium-, nickel-, and thorium-boron are reported. The titanium-boron system is discussed, and it is shown that the phase TiB, previously assumed to have zincblende structure, probably has a face-centered titanium lattice with boron in the octahedral interstices. In the chromium-boron system, the structure of the eta phase has been determined. It has the composition Cr/sub 3/B/sub 4/ and is isomorphous with Ta/sub 3/B/sub 4/ and Mn/sub 3/B/sub 4/. Some data for the delta phase are also given. For the columbium-boron system, a phase analysis has been carried out. The structures of three of the intermediary phases, CbB, Cb/sub 3/B/sub 2/, and CbB/sub 2/ (with extended homogeneity range), have been determined. They are isomorphous with corresponding phases of the tantalum-boron system. A brief phase analysis of the nickel-boron system showed the existence of a phase with lower boron content than Ni/sub 2/B, which has not been previously reported. In the thorium-boron system a new phase, probably with a complicated structure, was found with a boron content of about 50 at. %.

  20. Safety and efficacy of nano lamellar TiN coatings on nitinol atrial septal defect occluders in vivo

    International Nuclear Information System (INIS)

    Zhang, Zhi xiong; Fu, Bu fang; Zhang, De yuan; Zhang, Zhi wei; Cheng, Yan; Sheng, Li yuan; Lai, Chen; Xi, Ting fei

    2013-01-01

    Atrial septal defect (ASD) occlusion devices made of nickel–titanium (NiTi) have a major shortcoming in that they release nickel into the body. We modified NiTi occluders using Arc Ion Plating technology. Nano lamellar titanium–nitrogen (TiN) coatings were formed on the surfaces of the occluders. The safety and efficacy of the modified NiTi occluders were evaluated in animal model. The results showed that 38 out of 39 rams (97%) survived at the end of the experiment. Fibrous capsules formed on the surfaces of the devices. Gradual endothelialization took place through the attachment of endothelial progenitor cells from the blood and the migration of endothelial cells from adjacent endocardium. The neo-endocardium formed more quickly in the coated group than in the uncoated group, as indicated by the evaluation of the six month study group. After TiN coating, there was no significant difference in endothelial cell cycle. TiN coating significantly reduced the release of nickel in both in vivo and in vitro indicating an improved biocompatibility of the nitinol ASD occluders. Superior and modified ASD occluders may provide a good choice for people with nickel allergies after sFDA registration, which is expected in one to two years. - Highlights: ► The nano lamella TiN coating did not change the shape-memory behavior and flexibility of the nitinol occluder. ► Nano lamella TiN coating modifications significantly reduced nickel release from nitinol ASD occluder. ► The new ASD occluder was found to be superior to nitinol ASD occluder with respect to both safety and efficacy

  1. Safety and efficacy of nano lamellar TiN coatings on nitinol atrial septal defect occluders in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi xiong, E-mail: Top5460@163.com [Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Fu, Bu fang, E-mail: fubnicpbp@163.com [National Institutes for Food and Drug Control, Beijing (China); Zhang, De yuan, E-mail: Deyuanzhangcn@yahoo.com.cn [Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen (China); Zhang, Zhi wei, E-mail: Zhzhx65@163.com [Guangdong Cardiovascular Institute, Guangzhou (China); Cheng, Yan, E-mail: chengyan@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing (China); Sheng, Li yuan, E-mail: lysheng@yeah.net [Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Lai, Chen, E-mail: laichen1110@163.com [Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Xi, Ting fei, E-mail: Xitingfie@pku.edu.cn [Research Institute of Peking University in Shenzhen, Shenzhen 518057 (China); Academy for Advanced Interdisciplinary Studies, Peking University, Beijing (China)

    2013-04-01

    Atrial septal defect (ASD) occlusion devices made of nickel–titanium (NiTi) have a major shortcoming in that they release nickel into the body. We modified NiTi occluders using Arc Ion Plating technology. Nano lamellar titanium–nitrogen (TiN) coatings were formed on the surfaces of the occluders. The safety and efficacy of the modified NiTi occluders were evaluated in animal model. The results showed that 38 out of 39 rams (97%) survived at the end of the experiment. Fibrous capsules formed on the surfaces of the devices. Gradual endothelialization took place through the attachment of endothelial progenitor cells from the blood and the migration of endothelial cells from adjacent endocardium. The neo-endocardium formed more quickly in the coated group than in the uncoated group, as indicated by the evaluation of the six month study group. After TiN coating, there was no significant difference in endothelial cell cycle. TiN coating significantly reduced the release of nickel in both in vivo and in vitro indicating an improved biocompatibility of the nitinol ASD occluders. Superior and modified ASD occluders may provide a good choice for people with nickel allergies after sFDA registration, which is expected in one to two years. - Highlights: ► The nano lamella TiN coating did not change the shape-memory behavior and flexibility of the nitinol occluder. ► Nano lamella TiN coating modifications significantly reduced nickel release from nitinol ASD occluder. ► The new ASD occluder was found to be superior to nitinol ASD occluder with respect to both safety and efficacy.

  2. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  3. The effect of brushing motion on the cyclic fatigue of rotary nickel titanium instruments

    Directory of Open Access Journals (Sweden)

    Gianluca Gambarini

    2010-12-01

    Full Text Available The goal of the study is to evaluate if the use of rotary nickel-titanium (RNT instruments, as Hedstroem files, is safe. Twelve twisted files (TF RNT instruments size 06-25 were selected and randomly divided in 2 groups of 6 instruments each. Group A (new instruments were used as control. Group B (test instruments were clinically used only as Hedstroem files in a canal that had been previously instrumented to the working length with other 06-25 RNT instruments. Group B instruments were used only in the straight portion of the canal (1 minute at 1000 rpm. A cyclic fatigue test was performed for each instrument of groups. Data were statistically analyzed (Student's t-test. Results showed no significant difference (P > 0.05 between groups A and B. Data confirmed that the use of TF instruments as Hedstroem files is a safe procedure. Cross section images and volumes of the same instrument, before and after cyclic fatigue testing, have been obtained by means of microtomographic analysis to evaluate possible microstructure alterations.

  4. Characterization and tribocorrosion behavior of sputtered NiTi coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jin, XiaoMin; Gao, Lizhen [Taiyuan University of Technology (China). College of Environmental Science and Engineering; Wang, Hefeng [Taiyuan University of Technology (China). College of Mechanics; Liu, Erqiang [Taiyuan University of Technology (China). Inst. of Applied Mechanics and Biomedical Engineering

    2016-02-15

    In this study, NiTi coatings were deposited onto AISI 316L stainless steel substrates by closed field unbalanced magnetron sputtering. The microstructure and properties of the coatings were characterized by means of X-ray diffraction, scanning electron microscopy, and nano-indentation. The tribocorrosion resistance and corrosion behavior of the stainless steel substrates and NiTi coatings were investigated in Hanks' solution. The experimental results indicated the NiTi coatings show higher corrosion polarization resistance and a more stable corrosion potential in the Hanks' solution than the uncoated stainless steel substrate. The NiTi coatings also exhibited excellent wear resistance and chemical stability in sliding tests with an Si{sub 3}N{sub 4} ball in the Hanks' solution. The tested samples showed different wear mechanisms in the sliding tests. Compared to the SS substrates, the NiTi coatings were more compatible with the Si{sub 3}N{sub 4} ball.

  5. Evaluation of the fit of preformed nickel titanium arch wires on normal occlusion dental arches

    Directory of Open Access Journals (Sweden)

    Rakhn G. Al-Barakati

    2016-01-01

    Conclusions: Using an archwire form with the best fit to the dental arch should produce minimal changes in the dental arch form when NiTi wires are used and require less customization when stainless-steel wires are used.

  6. Corrosion considerations of high-nickel alloys and titanium alloys for high-level radioactive waste disposal containers

    International Nuclear Information System (INIS)

    Gdowski, G.E.; McCright, R.D.

    1991-07-01

    Corrosion resistant materials are being considered for the metallic barrier of the Yucca Mountain Project's high-level radioactive waste disposal containers. High nickel alloys and titanium alloys have good corrosion resistance properties and are considered good candidates for the metallic barrier. The localized corrosion phenomena, pitting and crevice corrosion, are considered as potentially limiting for the barrier lifetime. An understanding of the mechanisms of localized corrosion of how various parameters affect it will be necessary for adequate performance assessments of candidate container materials. Examples of some of the concerns involving candidate container materials. Examples of some of the concerns of involving localized corrosion are discussed. The effects of various parameters, such as temperature and concentration of halide species, on localized corrosion are given. In addition concerns about aging of the protective oxide layer in the expected service temperature range (50 to 250 degrees C) are presented. Also some mechanistic considerations of localized corrosion are given. 31 refs., 1 tab

  7. In situ observation and neutron diffraction of NiTi powder sintering

    International Nuclear Information System (INIS)

    Chen, Gang; Liss, Klaus-Dieter; Cao, Peng

    2014-01-01

    This study investigated NiTi powder sintering behaviour from elemental powder mixtures of Ni/Ti and Ni/TiH 2 using in situ neutron diffraction and in situ scanning electron microscopy. The sintered porous alloys have open porosities ranging from 2.7% to 36.0%. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH 2 compact leads to less densification yet higher chemical homogenization only after high-temperature sintering. For the first time, direct evidence of the eutectoid phase transformation of NiTi at 620 °C is reported by in situ neutron diffraction. A comparative study of cyclic stress–strain behaviours of the porous NiTi alloys made from Ni/Ti and Ni/TiH 2 compacts indicate that the samples sintered from the Ni/TiH 2 compact exhibited a much higher porosity, larger pore size, lower fracture strength, lower close-to-overall porosity ratio and lower Young’s modulus. Instead of enhanced densification by the use of TiH 2 as reported in the literature, this study shows an adverse effect of TiH 2 on powder densification in NiTi

  8. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-01-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  9. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    Science.gov (United States)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-03-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  10. An in situ Study of NiTi Powder Sintering Using Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2015-04-01

    Full Text Available This study investigates phase transformation and mechanical properties of porous NiTi alloys using two different powder compacts (i.e., Ni/Ti and Ni/TiH2 by a conventional press-and-sinter means. The compacted powder mixtures were sintered in vacuum at a final temperature of 1373 K. The phase evolution was performed by in situ neutron diffraction upon sintering and cooling. The predominant phase identified in all the produced porous NiTi alloys after being sintered at 1373 K is B2 NiTi phase with the presence of other minor phases. It is found that dehydrogenation of TiH2 significantly affects the sintering behavior and resultant microstructure. In comparison to the Ni/Ti compact, dehydrogenation occurring in the Ni/TiH2 compact leads to less densification, yet higher chemical homogenization, after high temperature sintering but not in the case of low temperature sintering. Moreover, there is a direct evidence of the eutectoid decomposition of NiTi at ca. 847 and 823 K for Ni/Ti and Ni/TiH2, respectively, during furnace cooling. The static and cyclic stress-strain behaviors of the porous NiTi alloys made from the Ni/Ti and Ni/TiH2 compacts were also investigated. As compared with the Ni/Ti sintered samples, the samplessintered from the Ni/TiH2 compact exhibited a much higher porosity, a higher close-to-total porosity, a larger pore size and lower tensile and compressive fracture strength.

  11. An evaluation of the transition temperature range of super-elastic orthodontic NiTi springs using differential scanning calorimetry.

    Science.gov (United States)

    Barwart, O; Rollinger, J M; Burger, A

    1999-10-01

    Differential scanning calorimetry (DSC) was used to determine the transition temperature ranges (TTR) of four types of super-elastic orthodontic nickel-titanium coil springs (Sentalloy). A knowledge of the TTR provides information on the temperature at which a NiTi wire or spring can assume superelastic properties and when this quality disappears. The spring types in this study can be distinguished from each other by their characteristic TTR during cooling and heating. For each tested spring type a characteristic TTR during heating (austenite transformation) and cooling (martensite transformation) was evaluated. The hysteresis of the transition temperature, found between cooling and heating, was 3.4-5.2 K. Depending on the spring type the austenite transformation started (As) at 9.7-17.1 degrees C and finished (Af) at 29.2-37 degrees C. The martensite transformation starting temperature (Ms) was evaluated at 32.6-25.4 degrees C, while Mf (martensite transformation finishing temperature) was 12.7-6.5 degrees C. The results show that the springs become super-elastic when the temperature increases and As is reached. They undergo a loss of super-elastic properties and a rapid decrease in force delivery when they are cooled to Mf. For the tested springs, Mf and As were found to be below room temperature. Thus, at room temperature and some degrees lower, all the tested springs exert super-elastic properties. For orthodontic treatment this means the maintenance of super-elastic behaviour, even when mouth temperature decreases to about room temperature as can occur, for example, during meals.

  12. Numerical study of the influence of material parameters on the mechanical behaviour of a rehabilitated edentulous mandible.

    Science.gov (United States)

    Favot, Louis-Marc; Berry-Kromer, Valérie; Haboussi, Mohamed; Thiebaud, Frédéric; Ben Zineb, Tarak

    2014-03-01

    The study dealt with full dental prosthetic reconstruction on four implants. The aim was to analyse the influence of material parameters on the mechanical behaviour of the restored mandible compared to the natural mandible. A finite element model of an edentulous mandible with prosthetic rehabilitation was established. Four materials were investigated for the framework of the prosthesis (zirconia, titanium, gold and nickel-titanium (NiTi)), as well as three cortical bone thicknesses. Various muscles were employed to simulate the main stages of mastication. Three distinct phases of mastication were modelled: maximum intercuspation, incisal clench and unilateral molar clench. The zirconia framework demonstrated the highest stresses and NiTi the weakest. The highest stresses in the framework were obtained during maximum intercuspation. The highest stresses at the bone-implant interface were recorded on the working axial implant during unilateral molar clench and on tilted implants during maximum intercuspation. The influence of the framework's material stiffness on the stresses at the bone-implant interface was insignificant for axial implants (except the right implant during unilateral molar clench) and slightly more significant for tilted implants. Mandibular flexion decreased with an increase of the cortical bone thickness and the stiffness of the prosthetic framework's material. Among all materials, NiTi allowed a better preservation of the mandibular flexure, during all the mastication stages. Compared to stiffer materials, NiTi also permitted physiological mechanical conditions at the bone/implant interface, in almost all mastication stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Influence of Surface Roughness on the Fatigue Life of Nickel-Titanium Rotary Endodontic Instruments.

    Science.gov (United States)

    Lopes, Hélio P; Elias, Carlos N; Vieira, Márcia V B; Vieira, Victor T L; de Souza, Letícia Chaves; Dos Santos, Alexander Lopes

    2016-06-01

    The goal of the present study was to evaluate the influence of surface grooves (peaks and valleys) resulting from machining during the manufacturing process of polished and unpolished nickel-titanium BR4C endodontic files on the fatigue life of the instruments. Ten electropolished and 10 unpolished endodontic files were provided by the manufacturer. Specimens were from the same batch, but the unpolished instruments were removed from the production line before surface treatment. The instruments were evaluated with a profilometer to quantify the surface roughness on the working part of the instruments. Then the files were subjected to rotating bending fatigue tests. Analysis with the profilometer showed that surface grooves were deeper on the unpolished instruments compared with their electropolished counterparts. In the rotating bending fatigue test, the mean and standard deviation for the number of cycles until fracture (NCF) were greater for instruments with less pronounced grooves. Student t test revealed significant differences in all tests (P instruments tested; the smaller the groove depth, the greater the NCF. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Inorganic ion exchanger based on tin/titanium mixed oxide doped with europium to be used in radioactive waste

    International Nuclear Information System (INIS)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A.; Brito, Hermi F.

    2009-01-01

    This work presents the results of synthesis and characterization of an inorganic ion exchanger based on tin/titanium mixed oxides doped with europium (SnO 2 /TiO 2 :Eu 3+ ) to be used in environmental field. The adsorption study of nickel was realized in this exchanger to recover the nickel metal which is in thorium-nickel alloys used as electrode of discharge lamps. The studied exchanger was synthesized by neutralization of tin chloride (IV) and titanium chloride (III) mixed solution and characterized by thermogravimetric measurement (TG), Differential Scanning Calorimetry (DSC), X-Ray Powder Diffraction (XRD), Infrared Spectroscopy (IR) and Scanning Electron Microscopy (SEM). The adsorption study showed that these inorganic ion exchangers are good materials to recovery nickel with high weight distribution ratios (Dw Ni 2+ ) and percent adsorption. (author)

  15. Corrosion of titanium alloys in concentrated chloride solutions at temperature up to 160 deg C

    International Nuclear Information System (INIS)

    Ruskol, Yu.S.; Viter, L.I.; Balakin, A.I.; Fokin, M.N.

    1982-01-01

    Resistance of VT1-0 titanium and 4200, 4207 titanium alloys to pitting and total corrosion in chlorides of cadmium, potassium, nickel, ammonium, barium, calcium, lithium, magnesium in respect to pH value and temperature (120,140,160 deg C) is determined. The results obtained are presented as nomograms of stability. Possible reasons for corrosion behaviour of titanium in each of the chlorides are discussed

  16. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium Wires: An in vitro Study

    Directory of Open Access Journals (Sweden)

    S R Harish Koushik

    2011-01-01

    Conclusion : The results suggest that using topical fluoride agents with NiTi wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.

  17. Effect of coating on properties of esthetic orthodontic nickel-titanium wires.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru

    2012-03-01

    To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n  =  10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.

  18. The use of shape memory compression anastomosis clips in cholecystojejunostomy in pigs – a preliminary study

    Directory of Open Access Journals (Sweden)

    Piotr Holak

    2015-01-01

    Full Text Available This paper reports on the use of compression anastomosis clips (CAC in cholecystoenterostomy in an animal model. Cholecystojejunostomy was performed in 6 pigs using implants made of nickel-titanium alloy in the form of elliptical springs with two-way shape memory. The applied procedure led to the achievement of tight anastomosis with a minimal number of complications and positive results of histopathological evaluations of the anastomotic site. The results of the study indicate that shape memory NiTi clips are a promising surgical tool for cholecystoenterostomy in cats and dogs.

  19. Effects of electropolishing surface treatment on the cyclic fatigue resistance of BioRace nickel-titanium rotary instruments.

    Science.gov (United States)

    Lopes, Hélio P; Elias, Carlos N; Vieira, Victor T L; Moreira, Edson J L; Marques, Raquel V L; de Oliveira, Julio C Machado; Debelian, Gilberto; Siqueira, José F

    2010-10-01

    This study evaluated the influence of electropolishing surface treatment on the number of cycles to fracture of BioRace rotary nickel-titanium endodontic instruments. BioRace size BR5C instruments with or without electropolishing surface treatment were used in an artificial curved canal under rotational speed of 300 rpm until fracture. Fractured surfaces and the helical shafts of fractured instruments were analyzed by scanning electron microscopy (SEM). Polished instruments displayed a significantly higher number of cycles to fracture when compared with nonpolished instruments (P ductile morphologic characteristics. Evaluation of the separated fragments after cyclic fatigue testing showed the presence of microcracks near the fracture surface. Polished instruments exhibited fine cracks that assumed an irregular path (zigzag crack pattern), whereas nonpolished instruments showed cracks running along the machining grooves. Electropolishing surface treatment of BioRace endodontic instruments significantly increased the cyclic fatigue resistance. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Comparison of deflection forces of esthetic archwires combined with ceramic brackets*

    Science.gov (United States)

    MATIAS, Murilo; de FREITAS, Marcos Roberto; de FREITAS, Karina Maria Salvatore; JANSON, Guilherme; HIGA, Rodrigo Hitoshi; FRANCISCONI, Manoela Fávaro

    2018-01-01

    Abstract Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings. PMID:29451650

  1. Comparison of deflection forces of esthetic archwires combined with ceramic brackets.

    Science.gov (United States)

    Matias, Murilo; Freitas, Marcos Roberto de; Freitas, Karina Maria Salvatore de; Janson, Guilherme; Higa, Rodrigo Hitoshi; Francisconi, Manoela Fávaro

    2018-01-01

    Coated archwires and ceramic brackets have been developed to improve facial esthetics during orthodontic treatment. However, their mechanical behavior has been shown to be different from metallic archwires and brackets. Therefore, the aim of this study was to compare the deflection forces in coated nickel-titanium (NiTi) and esthetic archwires combined with ceramic brackets. Material and Methods Non-coated NiTi (NC), rhodium coated NiTi (RC), teflon coated NiTi (TC), epoxy coated NiTi (EC), fiber-reinforced polymer (FRP), and the three different conventional brackets metal-insert polycrystalline ceramic (MI-PC), polycrystalline ceramic (PC) and monocrystalline ceramic (MC) were used. The specimens were set up on a clinical simulation device and evaluated in a Universal Testing Machine (Instron). An acrylic device, representative of the right maxillary central incisor was buccolingually activated and the unloading forces generated were recorded at 3, 2, 1 and 0.5 mm. The speed of the testing machine was 2 mm/min. ANOVA and Tukey tests were used to compare the different archwires and brackets. Results The brackets presented the following decreasing force ranking: monocrystalline, polycrystalline and polycrystalline metal-insert. The decreasing force ranking of the archwires was: rhodium coated NiTi (RC), non-coated NiTi (NC), teflon coated NiTi (TC), epoxy coated NiTi (EC) and fiber-reinforced polymer (FRP). At 3 mm of unloading the FRP archwire had a plastic deformation and produced an extremely low force in 2; 1 and 0.5 mm of unloading. Conclusion Combinations of the evaluated archwires and brackets will produce a force ranking proportional to the combination of their individual force rankings.

  2. Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

    Directory of Open Access Journals (Sweden)

    Jung-Hong Ha

    2012-11-01

    Full Text Available Objectives The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer, #15 NiTi K-file NITIFLEX (Dentsply Maillefer, modified #16 Path File (equivalent to #18, and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results Group 4 showed lowest screw-in effect (2.796 ± 0.134 among the groups (p < 0.05. Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

  3. Meant to make a difference, the clinical experience of minimally invasive endodontics with the self-adjusting file system in India.

    Science.gov (United States)

    Pawar, Ajinkya M; Pawar, Mansing G; Kokate, Sharad R

    2014-01-01

    The vital steps in any endodontic treatment are thorough mechanical shaping and chemical cleaning followed by obtaining a fluid tight impervious seal by an inert obturating material. For the past two decades, introduction and use of rotary nickel-titanium (Ni-Ti) files have changed our concepts of endodontic treatment from conventional to contemporary. They have reported good success rates, but still have many drawbacks. The Self-Adjusting File (SAF) introduces a new era in endodontics by performing the vital steps of shaping and cleaning simultaneously. The SAF is a hollow file in design that adapts itself three-dimensionally to the root canal and is a single file system, made up of Ni-Ti lattice. The case series presented in the paper report the clinical experience, while treating primary endodontic cases with the SAF system in India.

  4. Meant to make a difference, the clinical experience of minimally invasive endodontics with the self-adjusting file system in India

    Directory of Open Access Journals (Sweden)

    Ajinkya M Pawar

    2014-01-01

    Full Text Available The vital steps in any endodontic treatment are thorough mechanical shaping and chemical cleaning followed by obtaining a fluid tight impervious seal by an inert obturating material. For the past two decades, introduction and use of rotary nickel-titanium (Ni-Ti files have changed our concepts of endodontic treatment from conventional to contemporary. They have reported good success rates, but still have many drawbacks. The Self-Adjusting File (SAF introduces a new era in endodontics by performing the vital steps of shaping and cleaning simultaneously. The SAF is a hollow file in design that adapts itself three-dimensionally to the root canal and is a single file system, made up of Ni-Ti lattice. The case series presented in the paper report the clinical experience, while treating primary endodontic cases with the SAF system in India.

  5. Effect of load deflection on corrosion behavior of NiTi wire.

    Science.gov (United States)

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  6. Endodontic Shaping Performance Using Nickel–Titanium Hand and Motor ProTaper Systems by Novice Dental Students

    OpenAIRE

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-01-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel–titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Methods: Twenty-three fourth-year dental students attending China Medical University Dental Schoo...

  7. Shaping ability of NT Engine and McXim rotary nickel-titanium instruments in simulated root canals. Part 1.

    Science.gov (United States)

    Thompson, S A; Dummer, P M

    1997-07-01

    The aim of this study was to determine the shaping ability of NT Engine and McXim nickel-titanium rotary instruments in simulated root canals. In all, 40 canals consisting of four different shapes in terms of angle and position of curvature were prepared by a combination of NT Engine and McXim instruments using the technique recommended by the manufacturer. Part 1 of this two-part report describes the efficacy of the instruments in terms of preparation time, instrument failure, canal blockages, loss of canal length and three-dimensional canal form. Overall, the mean preparation time for all canals was 6.01 min, with canal shape having a significant effect (P Engine and McXim instruments prepared canals rapidly, with few deformations, no canal blockages and with minimal change in working length. The three-dimensional form of the canals demonstrated good flow and taper characteristics.

  8. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

    International Nuclear Information System (INIS)

    Zhong Yuan; Gall, Ken; Zhu Ting

    2012-01-01

    Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.

  9. The influence of torque and manual glide path on the defect or separation rate of NiTi rotary instruments in root canal therapy

    Directory of Open Access Journals (Sweden)

    Zarrabi M

    2010-01-01

    Full Text Available Introduction: One of the effecting factors in prognosis of root canal therapy is accidental procedure as broken files that may be unpreventable. Many manufacturers have designed and marketed various electromotors that can control rotational speed and torque. On the other hand, some studies have recommended applying a manual glide path to diminish contact area between the file and canal walls. The purpose of this study was evaluation of the effect of torque and a manual glide path on defects as separation of Nickel-titanium (NiTi rotary files. Materials and Methods: This ex vivo randomized controlled trial study was carried out on 160 canals of human′s matured molars with mild curvature (15-338. After initial preparation of samples and checking for inclusion criteria, in first group, preparation was carried out with air-driven handpiece, and in group two, Endo IT was used as electromotor. In both groups, Mtwo files with simultaneous technique were used for preparation. Then all data were collected and analyzed with Mann Whitny, Mantel Cox, and t-test. Results: No significant differences between two groups (P < 0.05 were observed. Based on survival analysis, safety probability of files after preparation of nine canals is 64% in group one and 69.9% in group two. There was no significant differences between this safety probability in two groups (P = 0.272. Conclusion: Usage of torque control handpiece is not an important factor, comparing instrumentation technique.

  10. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study

    Science.gov (United States)

    Rahmanian, Rasool; Shayesteh Moghaddam, Narges; Haberland, Christoph; Dean, David; Miller, Michael; Elahinia, Mohammad

    2014-03-01

    Common metals for stable long-term implants (e.g. stainless steel, Titanium and Titanium alloys) are much stiffer than spongy cancellous and even stiffer than cortical bone. When bone and implant are loaded this stiffness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiffness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiffness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specific implants, the ability to solve the stiffness mismatch by adding engineered porosity to the implant. This in turn allows for the design of different stiffness profiles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At first modeling of the mechanical behavior of different scaffold designs are presented as a proof of concept of stiffness tailoring. Based on these results different Nitinol scaffolds can be produced by additive manufacturing.

  11. Clinical Efficiency of Two Sequences of Orthodontic Wires to Correct Crowding of the Lower Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Cláudia Maria de Castro Serafim

    2015-01-01

    Full Text Available This study compared time to correction of mandibular anterior crowding using two arch wire sequences, one with conventional nickel-titanium (NiTi arch wires and the other with conventional and NiTi heat-activated arch wires. Twenty-two boys and girls (mean age: 16.68 ± 2.66 with moderate crowding (3–6 mm were assigned randomly to one of two groups and followed up for five months (six assessments when arch wires were changed. Time to crowding correction was analyzed statistically using the Kaplan-Meier method. Data were collected during the five-month follow-up, and time to correction was compared between groups using the log rank test. At the end of follow-up, mandibular crowding was corrected in 100% of the cases in the group treated with the sequence that included NiTi heat-activated arch wires, whereas about 30% of those treated with NiTi arch wires were not completely corrected. There was a significant difference in time to complete treatment between groups (log rank = 5.996; p<0.05. In the group treated with the sequence that included heat-activated wires, alignment and leveling of mandibular anterior teeth were completed earlier than in the group treated only with conventional NiTi arch wires. Clinical trial registration is found at RBR-7g5zng.

  12. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  13. Impact of a nickel-reduced stainless steel implant on striated muscle microcirculation: a comparative in vivo study.

    Science.gov (United States)

    Kraft, C N; Burian, B; Perlick, L; Wimmer, M A; Wallny, T; Schmitt, O; Diedrich, O

    2001-12-05

    The impairment of skeletal muscle microcirculation by a biomaterial may have profound consequences. With moderately good physical and corrosion characteristics, implant-quality stainless steel is particularly popular in orthopedic surgery. However, due to the presence of a considerable amount of nickel in the alloy, concern has been voiced in respect to local tissue responses. More recently a stainless steel alloy with a significant reduction of nickel has become commercially available. We, therefore, studied in vivo nutritive perfusion and leukocytic response of striated muscle to this nickel-reduced alloy, and compared these results with those of the materials conventional stainless steel and titanium. Using the hamster dorsal skinfold chamber preparation and intravital microscopy, we could demonstrate that reduction of the nickel quantity in a stainless steel implant has a positive effect on local microvascular parameters. Although the implantation of a conventional stainless steel sample led to a distinct and persistent activation of leukocytes combined with disruption of the microvascular endothelial integrity, marked leukocyte extravasation, and considerable venular dilation, animals with a nickel-reduced stainless steel implant showed only a moderate increase of these parameters, with a clear tendency of recuperation. Titanium implants merely caused a transient increase of leukocyte-endothelial cell interaction within the first 120 min, and no significant change in macromolecular leakage, leukocyte extravasation, or venular diameter. Pending biomechanical and corrosion testing, nickel-reduced stainless steel may be a viable alternative to conventional implant-quality stainless steel for biomedical applications. Concerning tolerance by the local vascular system, titanium currently remains unsurpassed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 57: 404-412, 2001

  14. Characterization of Transformation-Induced Defects in Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Bowers, Matthew L.

    Shape memory alloys have remarkable strain recovery properties that make them ideal candidates for many applications that include devices in the automotive, aerospace, medical, and MEMS industries. Although these materials are widely used today, their performance is hindered by poor dimensional stability resulting from cyclic degradation of the martensitic transformation behavior. This functional fatigue results in decreased work output and cyclic accumulation of permanent strain. To date, few studies have taken a fundamental approach to investigating the interaction between plasticity and martensite growth and propagation, which is vitally important to mitigating functional fatigue in future alloy development. The current work focuses on understanding the interplay of these deformation mechanisms in NiTi-based shape memory alloys under a variety of different thermomechanical test conditions. Micron-scale compression testing of NiTi shape memory alloy single crystals is undertaken in an effort to probe the mechanism of austenite dislocation generation. Mechanical testing is paired with post mortem defect analysis via diffraction contrast scanning transmission electron microscopy (STEM). Accompanied by micromechanics-based modeling of local stresses surrounding a martensite plate, these results demonstrate that the previously existing martensite and resulting austenite dislocation substructure are intimately related. A mechanism of transformation-induced dislocation generation is described in detail. A study of pure and load-biased thermal cycling of bulk polycrystalline NiTi is done for comparison of the transformation behavior and resultant defects to the stress-induced case. Post mortem and in situ STEM characterization demonstrate unique defect configurations in this test mode and STEM-based orientation mapping reveals local crystal rotation with increasing thermal cycles. Changes in both martensite and austenite microstructures are explored. The results for

  15. In vitro resistance to fracture of two nickel-titanium rotary instruments made with different thermal treatments.

    Science.gov (United States)

    Miccoli, Gabriele; Gaimari, Gianfranco; Seracchiani, Marco; Morese, Antonio; Khrenova, Tatyana; Di Nardo, Dario

    2017-01-01

    Aim of the study was to evaluate effectiveness of different heat treatments in improving Ni-Ti endodontic rotary instruments' resistance to fracture. 24 new NiTi instruments similar in length and shape: 12 M3 instruments, tip size 25 and .06 taper (United Dental, Shanghai, China), and 12 M3 Pro Gold instruments tip size 25 and .06 taper (United Dental, Shanghai, China), were tested in a 60° curved artificial root canal. Each group received a different heat treatment. Cycles to fracture were calculated for each instrument. Differences among groups were evaluated with an analysis of variance test (significance level was set at Pinstruments were significantly more resistant to fatigue (mean values = 1012, SD +/- 77) than M3 instruments (mean values = 748, SD +/- 62). No statistically significant differences were found between fragments' lengths (p>0,05). An increased flexibility and the reduction of internal defects produced by heat treatments during or after manufacturing processes, may be responsible for improving resistance to cyclic fatigue and flexural stresses.

  16. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load

    Czech Academy of Sciences Publication Activity Database

    Sedmák, P.; Pilch, Jan; Heller, Luděk; Kopeček, Jaromír; Wright, J.; Sedlák, Petr; Frost, Miroslav; Šittner, Petr

    2016-01-01

    Roč. 353, č. 6299 (2016), 559-562 ISSN 0036-8075 R&D Projects: GA MŠk LM2015088; GA ČR GA14-15264S; GA ČR GAP107/12/0800; GA ČR GPP108/12/P111 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : martensitic transformation * 3D x-ray diffraction * shape memory alloys * internal stress * NiTi wire * localized deformation * tension Subject RIV: BM - Solid Matter Physics ; Magnetism; BI - Acoustics (UT-L) Impact factor: 37.205, year: 2016

  17. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  18. Machining NiTi micro-parts by micro-milling

    International Nuclear Information System (INIS)

    Weinert, K.; Petzoldt, V.

    2008-01-01

    The machinability of NiTi by milling has been examined using solid carbide end milling cutters. First results were obtained from machining simple slots applying TiAlN-coated tools with a diameter of 0.4 mm. The machining process was evaluated in terms of tool wear, cutting forces and machining quality. The tool wear and work piece quality was analysed with a scanning electron microscope and a white-light confocal microscope. Despite the poor machinability of NiTi good results concerning tool wear and shape accuracy of the milled slots were achieved. Essential for a good machining result is the application of minimum quantity lubrication. This clearly reduces NiTi adherences compared to dry machining. Work piece quality is improved and tool life is extended. Based on these results different structures could be produced by micro-milling

  19. Nasomaxillary hypoplasia with a congenitally missing tooth treated with LeFort II osteotomy, autotransplantation, and nickel-titanium alloy wire.

    Science.gov (United States)

    Ishida, Takayoshi; Ikemoto, Shigehiro; Ono, Takashi

    2015-09-01

    In some skeletal Class III adult patients with nasomaxillary hypoplasia, the LeFort I osteotomy provides insufficient correction. This case report describes a 20-year-old woman with a combination of nasomaxillary hypoplasia and a protrusive mandible with a congenitally missing mandibular second premolar. We performed a LeFort II osteotomy for maxillary advancement. Autotransplantation of a tooth was also performed; the donor tooth was used to replace the missing permanent tooth. To increase the chance of success, we applied light continuous force with an improved superelastic nickel-titanium alloy wire technique before extraction and after transplantation. The patient's profile and malocclusion were corrected, and the autotransplanted tooth functioned well. The postero-occlusal relationships were improved, and ideal overbite and overjet relationships were achieved. The methods used in this case represent a remarkable treatment. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@isps.tsc.ru; Meisner, S. N. [Institute of Strength Physics and Materials Science SB RAS, 2/4 Akademichesky Ave., Tomsk, 634021 (Russian Federation); National Research Tomsk State University, 36, Lenina Avenue, Tomsk, 634050 (Russian Federation); Matveeva, V. A.; Matveev, A. L. [Institute of Chemical Biology and Fundamental Medicine, Siberian Branch,Russian Academy of Sciences, Novosibirsk, 630090 (Russian Federation)

    2015-11-17

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  1. In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications

    Directory of Open Access Journals (Sweden)

    Hamdy Ibrahim

    2018-03-01

    Full Text Available NiTi alloys possess distinct functional properties (i.e., shape memory effect and superelasticity and biocompatibility, making them appealing for bone fixation applications. Additive manufacturing offers an alternative method for fabricating NiTi parts, which are known to be very difficult to machine using conventional manufacturing methods. However, poor surface quality, and the presence of impurities and defects, are some of the major concerns associated with NiTi structures manufactured using additive manufacturing. The aim of this study is to assess the in vitro corrosion properties of additively manufactured NiTi structures. NiTi samples (bulk and porous were produced using selective laser melting (SLM, and their electrochemical corrosion characteristics and Ni ion release levels were measured and compared with conventionally fabricated NiTi parts. The additively manufactured NiTi structures were found to have electrochemical corrosion characteristics similar to those found for the conventionally fabricated NiTi alloy samples. The highest Ni ion release level was found in the case of 50% porous structures, which can be attributed to their significantly higher exposed surface area. However, the Ni ion release levels reported in this work for all the fabricated structures remain within the range of most of values for conventionally fabricated NiTi alloys reported in the literature. The results of this study suggest that the proposed SLM fabrication process does not result in a significant deterioration in the corrosion resistance of NiTi parts, making them suitable for bone fixation applications.

  2. Evolution of microstructure and property of NiTi alloy induced by cold rolling

    International Nuclear Information System (INIS)

    Li, Y.; Li, J.Y.; Liu, M.; Ren, Y.Y.; Chen, F.; Yao, G.C.; Mei, Q.S.

    2015-01-01

    We investigated the combination effect of plastic deformation and phase transformation on the evolution of microstructure and property of NiTi alloy. Samples of Ni 50.9 Ti 49.1 alloy were deformed by cold rolling to different strains/thickness reductions (4%–56%). X-ray diffraction, transmission electronic microscopy (TEM) and microhardness measurements were applied for characterization of the microstructure and property of the cold-rolled samples. Experimental results indicated the non-monotonic variations of microstructure parameters and mechanical property with strain, indicating the different processes in microstructure and property evolution of NiTi subjected to cold rolling. TEM observations further showed the dominating mechanisms of microstructure evolution at different strain levels, leading to the gradual reduction of grain size of NiTi to the nanoscale by cold rolling. The results were discussed and related to deformation of martensite, forward and reverse martensitic transformations and dynamic recrystallization. The present study provided experimental evidences for the enhanced formation of nanograins in NiTi by plastic deformation coupled with phase transformation. - Highlights: • Cold rolling of NiTi to thickness reductions from 4% to 56%. • Fluctuation behaviors in microstructure and property evolutions of NiTi. • Deformation coupled with phase transformation enhanced nanocrystallization of NiTi.

  3. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  5. The characteristics of corrosion, radiation degradation and dissolution of titanium alloys

    International Nuclear Information System (INIS)

    Sung, K. W.; Na, J. W.; Choi, B. S.; Lee, D. J.; Chang, M. H.

    2001-12-01

    In order to establish the technical bases of water chemistry design requirement related titanium alloys, we investigated the characteristics of corrosion, activation, radiation degradation, radiation hydrogen embrittlement of titanium alloys and dissolution of titanium dioxide. Titanium alloys generally have high corrosion resistance. Corrosion product release from PT-7M and PT-3V titanium alloy surface for 18 months of operation is negligible, and the corrosion penetration for about 30 years is about 1 μm, while the corrosion rates is not higher than one third of that of austenitic steel. Titanium only converts into Sc-46 with 85 day halflife after neutron irradiation, and its radioactivity is not higher than one thousandth of that produced from nickel. Therefore, under the condition without any neutron irradiation, the radiation damage of titanium alloys would have no problem. Titanium dioxide, that protects the metals from the corrosion, has retrograde solubility in neutral solutions. It does not form any complexes with ligands such as ammonia, but Ti(IV) gets more stable by complexing with water molecules. In conclusion, it is estimated that titanium alloys such as PT-7M would be applicable to steam generator materials

  6. Velcro-like fasteners based on NiTi micro-hook arrays

    International Nuclear Information System (INIS)

    Vokoun, D; Pilch, J; Majtás, D; Šittner, P; Sedlák, P; Frost, M

    2011-01-01

    A recently developed Velcro-like fastener utilizes superelastic deformation of two interlocked NiTi hooks when pulled apart. This work focuses on experimental analysis (evaluation of normal detachment force at different temperatures) and modeling (simulation by a finite element implemented SMA model) of the unhooking process. It is claimed that nonlinear superelastic deformation of NiTi leads to unique properties of the NiTi hook fasteners such as high strength (∼15 000 kg m −2 ), a significant increase of strength with increasing temperature, absorption of impact loads, damping of mechanical vibrations, forceless contact or silent release and better functioning in dirty environments compared to conventional Velcro fasteners

  7. Investigation of oxidation resistance of Ni-Ti film used as oxygen diffusion barrier layer

    International Nuclear Information System (INIS)

    Liu, B.T.; Yan, X.B.; Zhang, X.; Zhou, Y.; Guo, Y.N.; Bian, F.; Zhang, X.Y.

    2009-01-01

    Ni-Ti films prepared at 10 W and 70 W by rf magnetron sputtering are investigated as the oxygen diffusion barrier layer, it is found that crystallinity of Ni-Ti film does not greatly depend on the deposition power. X-ray photoelectron spectroscopy indicates that Ni is still in the form of metallic state from the binding energies of both Ni 2p 3/2 and Ni 2p 1/2 spectra for the sample with 10 W prepared Ni-Ti, however, Ni is oxidized for 70 W prepared Ni-Ti film. Moreover, the (La 0.5 Sr 0.5 )CoO 3 /Pb(Zr 0.40 Ti 0.60 )O 3 /(La 0.5 Sr 0.5 )CoO 3 capacitor grown on high power prepared Ni-Ti film is leaky, however, the capacitor on low power prepared Ni-Ti film possesses very promising physical properties (i.e. remnant polarization of ∼27 μC/cm 2 at 5 V and maximum dielectric constant of 940). Leakage current density of the capacitor grown on low power prepared Ni-Ti film is further investigated, it meets ohmic behavior ( 1.0 V).

  8. Neutron, x-ray scattering and TEM studies of Ni-Ti multilayers

    International Nuclear Information System (INIS)

    Keem, J.E.; Wood, J.; Grupido, N.; Hart, K.; Nutt, S.; Reichel, D.G.; Yelon, W.B.

    1988-01-01

    The authors present an analysis of Ni-Ti multilayer neutron reflectors and supermirrors undertaken to identify the causes of the lower than expected observed scattering power and critical angle enhancement of Ni-Ti supermirrors. Results of these investigations focus attention on cusp formation in the Ni-Ti bilayers as probable cause for the reduced neutron scattering power. Grazing angle x-ray and neutron scattering, wide angle neutron diffraction and analytical cross sectional TEM have been used. The multilayers were produced by magnetron sputtering and ion-beam deposition on float glass substrates and silicon wafers

  9. Experimental evaluation of cyclic fatigue resistance of four different nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization

    Directory of Open Access Journals (Sweden)

    Ureyen Kaya BULEM

    2013-12-01

    Full Text Available NiTi instruments have a high risk of separation due to torsional or flexural fatigue (cyclic fatigue. Chemomechanical preparation, cleaning procedures, chemical disinfection and sterilization cause the corrosion of endodontic instruments that may weaken the fracture resistance of the instruments. Objective To assess the effects of NaOCl immersion and autoclave sterilization on the cyclic fatigue resistance of ProFile, FlexMaster, Mtwo and TwistedFiles NiTi instruments (tip size 25, 0.06 taper, n=160. Material and Methods The instruments (n=10 for each subgroup were dynamically immersed in NaOCl; immersed in NaOCl and sterilized in one autoclave cycle; 5 cycles immersed in NaOCl and sterilized in autoclave and not immersed in NaOCl and not sterilized (control group. Dynamic cyclic fatigue resistance was tested. The number of cycles to failure (NCF were statistically analyzed (P.05. Conclusions Cyclic fatigue resistance of the tested NiTi instruments cannot be adversely affected by NaOCl immersion and autoclave sterilization. Production process (TwistedFiles or design (Twisted Files, FlexMaster, Mtwo and ProFile of the instruments can influence their cyclic fatigue resistance.

  10. Experimental study of different nickel-titanium memory tracheal stents in dogs

    International Nuclear Information System (INIS)

    Lang Xu; He Nengshu; Fan Hailun

    2009-01-01

    Objective: Since membrane -covered metal tracheal stent was applied successfully to treat the airway stenosis, it has been widely used and obtained satisfactory result during the past years. The purpose of our study was provide theoretical rational for treatment with membrane-covered tracheal stent by using animal experiment. Methods: The nickel- titanium memory stents of 22 mm in diameter and 6 cm in length were deployed in 18 dogs. The dogs were grouped into full- length membrane-covered group (n=6), partial-length membrane-covered group (membrane was covered for 4 cm in the medial part of the stent, n=6), and naked stent group (n=6). After the stent placement dysphagia or dysphonia was monitored daily. Twenty-four weeks later, the dogs were executed. Speiments were taken from the cephalic, medial, and caudal trachea under the stent. HE stain and proliferating cell nuclear antigen (PCNA) were evaluated. Results: After the stent placement, no dyspnea, dysphagia or dysphonia but cough was present in each dog. There was no significant difference in symptom between the three groups. Inflammation reaction, metaplasia from low columnar epithelium to spuamous epithelium, and mild granulation tissue hyperplasia in the underlying mucosa were present in each group. However, fibrosis and tracheal straitness were present only in the non-membrane-covered area, but not in the membrane-covered area. More PCNA expression was observed in the non-membrane -covered area than in the membrane-covered area. Conclusion: Both membrane-covered and non-membrane-covered stents can cause similar symptoms. However, the membrane -covered tracheal stent has good biological compatibility and would not induce tracheal straitness. The non-membrane -covered tracheal stent could induce a severe pathologic reaction and tracheal straitness. (authors)

  11. Ni-Ti Next Generation Bearings for Space Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2018-01-01

    NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.

  12. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire.

    Science.gov (United States)

    Capar, Ismail Davut; Kaval, Mehmet Emin; Ertas, Hüseyin; Sen, Bilge Hakan

    2015-04-01

    This study compared the cyclic fatigue resistance of current nickel-titanium rotary path-finding instruments. Five types of nickel-titanium rotary pathfinding instruments were used in steel canals with a 90° curvature and a curvature radius of 3 mm (n = 10) and 5 mm (n = 10). The cyclic fatigue of the following instruments was tested at 4 mm from the tip: PathFile (#16 and a .02 taper; Dentsply Maillefer, Ballaigues, Switzerland), G-File (#12 and a .03 taper; Micro-Mega, Besançon Cedex, France), Scout Race (#15 and a .02 taper; FKG Dentaire, La Chaux-de-Fonds, Switzerland), HyFlex GPF (#15 and a .02 taper; Coltene-Whaledent, Allstetten, Switzerland), and ProGlider (#16 with a mean taper of .04125 and a .02 at the first 4 mm from the tip, Dentsply Maillefer). The length of the fractured parts was measured, and the number of cycles to fracture (NCF) was calculated. The data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests (α = .05). After Bonferroni correction, the new P value was set as .005. The difference in the cyclic fatigue of all the files at both curvatures was statistically significant (P values from .0035 to less than .0001). The ranking of the instruments from the highest to the lowest NCF was as follows: HyFlex GPF, G files, ProGlider, PathFile, and Scout Race. The length of the fractured part of the instruments was similar in all the groups (P > .05). All the tested instruments had a lower NCF at a curvature radius of 3 mm when compared with a curvature radius of 5 mm (P instrument was the highest, and the curvature radius had a significant effect on the fatigue resistance. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Laboratory comparison of the mechanical properties of TRUShape with several nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2017-08-01

    To assess and compare the mechanical properties of TRUShape (TRS) with several nickel-titanium rotary instruments. Cyclic fatigue, torsional resistance, flexibility and surface microhardness of TRS (size 25, 0.06v taper), ProTaper Next X2 (PTN X2, size 25, 0.06 taper), ProTaper Gold (PTG F2; size 25, 0.08 taper) and ProTaper Universal (PTU F2; size 25, 0.08 taper) instruments were evaluated. The topographical structures of the fracture surfaces of instruments were assessed using a scanning electron microscope. The cyclic fatigue resistance, torsional resistance and microhardness data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The fragment length and bending resistance data were analysed statistically with the Kruskal-Wallis H-test and Mann-Whitney U-tests. The statistical significance level was set at P instruments revealed significantly higher resistance to cyclic fatigue than TRS and PTU instruments (P instruments revealed significantly higher torsional resistance compared with the other instruments (P instrument had significantly higher flexibility than the other tested brands (P instruments had lower resistance to cyclic fatigue and lower flexibility compared with PTG and PTN instruments. TRS, PTG and PTU instruments had lower resistance to torsional stress than PTN instruments. TRS and PTG instruments had comparable surface microhardness. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Deformation and fracture of K3 rotary nickel-titanium endodontic instruments after clinical use.

    Science.gov (United States)

    Shen, S M; Deng, M; Wang, P P; Chen, X M; Zheng, L W; Li, H L

    2016-11-01

    The aim was to evaluate the incidence and type of defects that occurred with K3 rotary nickel-titanium instruments during routine clinical use. A total of 2397 K3 (G-PACKS, SybronEndo, West Collins, Orange, CA, USA) instruments were collected from a graduate endodontic clinic over 21 months. All the instruments were limited to a maximum use of 30 canal preparations. The collected instruments were measured by a digital caliper to determine whether any fractures had occurred and then were visually inspected for deformation and fracture under a stereomicroscope. The surfaces of fractured instruments were further evaluated under a scanning electron microscope. Data were analysed using chi-square test and Kruskal-Wallis test. The incidence of instrument defect was 5.63%, consisting of 3.59% fractures and 2.05% deformations. The defect rates of 0.04 and 0.06 files were statistically higher than the other taper groups (P  0.05). For the fractured instruments, 63.95% failed from flexural fatigue, whilst 36.05% failed from torsion. Flexural fracture was the major mode of fracture for instruments with larger taper. A routine check for instrument integrity particularly for 0.04 and 0.06 files at high magnification is recommended after each clinical use. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  15. Cyclic fatigue resistance of XP-endo Shaper compared with different nickel-titanium alloy instruments.

    Science.gov (United States)

    Elnaghy, Amr; Elsaka, Shaymaa

    2018-04-01

    The aims of this study were to assess and compare the resistance to cyclic fatigue of XP-endo Shaper (XPS; FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments with TRUShape (TRS; Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), HyFlex CM (HCM; Coltene, Cuyahoga Falls, OH, USA), Vortex Blue (VB; Dentsply Tulsa Dental Specialties), and iRace (iR; FKG Dentaire) nickel-titanium rotary instruments at body temperature. Size 30, 0.01 taper of XPS, size 30, 0.04 taper of HCM, VB, iR, and size 30, 0.06 taper of TRS instruments were immersed in saline at 37 ± 1 °C during cyclic fatigue testing. The instruments were tested with 60° angle of curvature and a 3-mm radius of curvature. The number of cycles to failure (NCF) was calculated and the length of the fractured segment was measured. Fractographic examination of the fractured surface was performed using a scanning electron microscope. The data were analyzed statistically using Kruskal-Wallis H test and Mann-Whitney U tests. Statistical significance was set at P ductile fracture of cyclic fatigue failure. XPS instruments exhibited greater cyclic fatigue resistance compared with the other tested instruments. XP-endo Shaper instruments could be used more safely in curved canals due to their higher fatigue resistance.

  16. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    Science.gov (United States)

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Pain and discomfort experienced after placement of a conventional or a superelastic NiTi aligning archwire. A randomized clinical trial.

    Science.gov (United States)

    Fernandes, L M; Ogaard, B; Skoglund, L

    1998-01-01

    Two nickel-titanium arch-wire types commonly used for initial tooth alignment were compared with regard to the pain/discomfort patients experience during the initial phase of tooth movement. The two arch wires used were a superelastic nickel-titanium alloy, 0.014 inch Sentalloy, Light (GAC International Inc. Central Islip, NY, USA) and a 0.014 inch Nitinol (Unitek, Monrovia, CA, USA), a conventional nickel-titanium aligning archwire. One hundred and twenty-eight consecutive patients attending an orthodontic university clinic and 2 private practices for routine placement of a fixed appliance were randomly assigned one of these 2 initial arch wires. Assessments of pain/discomfort were made daily by means of a 100 mm visual analog scale (VAS) over the first 7-day period after bonding. On the first day, recordings were made every hour for the first 11 hours. The results showed that the level of discomfort increased continuously every hour after the insertion of either a Sentalloy or a Nitinol as first arch wires, with a peak in the first night, remaining high on the second day and decreasing thereafter to baseline level after 7 days. During the first 10 hours it was apparent that the pain/discomfort experienced after placement of a Sentalloy was less than that found with the Nitinol archwire, although a significant difference could be found at 4 hours only. No significant gender-specific differences were found in either archwire group. A significant difference between the upper and lower dental arches was observed during the first 11 hours after placement of either a Sentalloy or a Nitinol arch wire, with the lower arch having the higher pain experience.

  18. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  19. Influence of operator's experience on root canal shaping ability with a rotary nickel-titanium single-file reciprocating motion system.

    Science.gov (United States)

    Muñoz, Estefanía; Forner, Leopoldo; Llena, Carmen

    2014-04-01

    The aim of this study was to evaluate the influence of the operator's experience on the shaping of double-curvature simulated root canals with a nickel-titanium single-file reciprocating motion system. Sixty double-curvature root canals simulated in methacrylate blocks were prepared by 10 students without any experience in endodontics and by 10 professionals who had studied endodontics at the postgraduate level. The Reciproc-VDW system's R25 file was used in the root canal preparation. The blocks were photographed before and after the instrumentation, and the time of instrumentation was also evaluated. Changes in root canal dimensions were analyzed in 6 positions. Significant differences (P file reciprocating motion system Reciproc is not seen to be influenced by the operator's experience regarding the increase of the canal area. Previous training and the need to acquire experience are important in the use of this system, in spite of its apparent simplicity. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    Science.gov (United States)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  1. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    Science.gov (United States)

    Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.

    2018-05-01

    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.

  2. Novel micro-patterning processes for thin film NiTi vascular devices

    International Nuclear Information System (INIS)

    Chun, Y J; Mohanchandra, K P; Carman, G P; Levi, D S; Fishbein, M C

    2010-01-01

    In order to create microscale features in thin film NiTi for use in vascular endografts, a novel 'lift-off process' was developed for use with deep reactive ion etching. A wet etching approach is compared to two variations of this new 'lift-off' process. The first lift-off process (lift-off I) used Si posts to define the features of NiTi film deposited on the Si substrate. This method produced fractures in the NiTi when the film was released. The lift-off II process used Si islands as substrate for the film while the Si wafer defined the specific geometric features. Lift-off II process allowed for the creation of various shape patterns (i.e., ellipse, diamond, circle, square, etc) in the range of 5–180 µm. The lift-off II process produced smooth and well aligned micro-patterns in thin film NiTi without the undercutting found in wet etching techniques. The micro-patterned thin film NiTi formed from the lift-off II process was used to cover a stent. In vivo tests were performed to evaluate the endothelialization though patterned thin films. Angiography, histopathology and SEM showed patency of the artery and uniformly promoted endothelial layer covering without thrombosis in both a medium and small artery

  3. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  4. Capability of Sputtered Micro-patterned NiTi Thick Films

    Science.gov (United States)

    Bechtold, Christoph; Lima de Miranda, Rodrigo; Quandt, Eckhard

    2015-09-01

    Today, most NiTi devices are manufactured by a combination of conventional metal fabrication steps, e.g., melting, extrusion, cold working, etc., and are subsequently structured by high accuracy laser cutting. This combination has been proven to be very successful; however, there are several limitations to this fabrication route, e.g., in respect to the fabrication of more complex device designs, device miniaturization or the combination of different materials for the integration of further functionality. These issues have to be addressed in order to develop new devices and applications. The fabrication of micro-patterned films using magnetron sputtering, UV lithography, and wet etching has great potential to overcome limitations of conventional device manufacturing. Due to its fabrication characteristics, this method allows the production of devices with complex designs, high structural accuracy, smooth edge profile, at layer thicknesses up to 75 µm. The aim of this study is to present recent developments in the field of NiTi thin film technology, its advantages and limitations, as well as new possible applications in the medical and in non-medical fields. These developments include among others NiTi scaffold structures covered with NiTi membranes for their potential use as filters, heart valve components or aneurysm treatments, as well as micro-actuators for consumable electronics or automotive applications.

  5. Energy landscape for martensitic phase transformation in shape memory NiTi

    International Nuclear Information System (INIS)

    Kibey, S.; Sehitoglu, H.; Johnson, D.D.

    2009-01-01

    First-principles calculations are presented for parent B2 phase and martensitic B19 and B19' phases in NiTi. The results indicate that both B19 and B19' are energetically more stable than the parent B2 phase. By means of ab initio density functional theory, the complete distortion-shuffle energy landscape associated with B2 → B19 transformation in NiTi is then determined. In addition to accounting for the Bain-type deformation through the Cauchy-Born rule, the study explicitly accounts for the shuffle displacements experienced by the internal ions in NiTi. The energy landscape allows the energy barrier associated with the B2 → B19 transformation pathway to be identified. The results indicate that a barrier of 0.48 mRyd atom -1 (relative to the B2 phase) must be overcome to transform the parent B2 NiTi to orthorhombic B19 martensite

  6. The effect of SF6 addition in a Cl2/Ar inductively coupled plasma for deep titanium etching

    Science.gov (United States)

    Laudrel, E.; Tillocher, T.; Meric, Y.; Lefaucheux, P.; Boutaud, B.; Dussart, R.

    2018-05-01

    Titanium is a material of interest for the biomedical field and more particularly for body implantable devices. Titanium deep etching by plasma was carried out in an inductively coupled plasma with a chlorine-based chemistry for the fabrication of titanium-based microdevices. Bulk titanium etch rate was first studied in Cl2/Ar plasma mixture versus the source power and the self-bias voltage. The plasma was characterized by Langmuir probe and by optical emission spectroscopy. The addition of SF6 in the plasma mixture was investigated. Titanium etch rate was optimized and reached a value of 2.4 µm · min-1. The nickel hard mask selectivity was also enhanced. The etched titanium surface roughness was reduced significantly.

  7. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    Science.gov (United States)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  8. Technical quality of root canal treatment of posterior teeth after rotary or hand preparation by fifth year undergraduate students, The University of Jordan.

    Science.gov (United States)

    Abu-Tahun, Ibrahim; Al-Rabab'ah, Mohammad A; Hammad, Mohammad; Khraisat, Ameen

    2014-12-01

    The aim of this study was to investigate the technical quality of root canal treatment provided by the undergraduate students as their first experience in molar endodontics using nickel-titanium (NiTi) files in a crown-down approach compared with stainless steel standard technique. This study was carried out by the fifth year undergraduate students attending peer review sessions as a part of their training programme, using two different questionnaires to assess the overall technical quality and potential problems regarding endodontic complications after root canal preparation with these two techniques. The overall results indicated a statistically significant difference in the performance of the two instrument techniques in difficult cases showing better performance of the NiTi system and mean rotary preparation time (P ProTaper rotary files, were able to prepare root canals faster with more preparation accuracy compared with canals of same teeth prepared with hand instruments. © 2014 Australian Society of Endodontology.

  9. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis.

    Science.gov (United States)

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, Fábio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, André Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Dentsply-Maillefer). Afterwards, the teeth were sectioned transversely and submitted to histotechnical processing to obtain histological sections for microscopic evaluation. The images were analyzed by the Corel Photo-Paint X5 program (Corel Corporation) using an integration grid superimposed on the image. Statistical analysis (U-Mann-Whitney - P < 0.05) demonstrated that G1 presented higher cleaning capacity when compared to G2. The rotary technique presented better cleaning results in the apical third of the root canal system when compared to the manual technique.

  10. Microstructure and corrosion behavior of laser processed NiTi alloy.

    Science.gov (United States)

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    Science.gov (United States)

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  12. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Tsai De-Chang

    2015-01-01

    Full Text Available This study primarily involved using a vacuum arc remelting (VAR process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%. An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processing. This study involved purifying nickel and titanium and examining the characteristics of nitinol alloy after alloy melt, including its microstructure, mechanical properties, phase transition temperature, and chemical components.

  13. The impact of a continuing education programme on the adoption of nickel-titanium rotary instrumentation and root-filling quality amongst a group of Swedish general dental practitioners.

    Science.gov (United States)

    Dahlström, L; Molander, A; Reit, C

    2015-02-01

    The aim of the study was to test the hypothesis that a further education programme relating to nickel-titanium rotary instrumentation (NTRI), with the concurrent activation of social/professional networks amongst all general dental practitioners (GDPs) in a public dental service in Sweden, would increase the adoption rate and improve root-filling quality. To activate the networks, the GDPs at the 25 clinics elected training coaches from amongst themselves. The coaches were educated by a specialist and were then free to organise and conduct the training of the local GDPs. However, collective hands-on training and discussions were mandatory. Lectures were held by an endodontist. The rate of adoption and root-filling quality was evaluated just before and 6 months after the education. Statistical tests were performed with chi-square using a 95% confidence interval. Nickel-titanium rotary instrumentation was adopted by 88%. Excellent root fillings (score 1) increased from 45% to 59% (P = 0.003). The rate of poor-quality root fillings (score 4 and score 5) was not affected. The quality ratio (score 1/score 5) increased from 5.36 (118/22) to 9.5 (133/14). Eleven dentists (17%) at nine different clinics produced 49% of the poor-quality root fillings (score 4 and score 5). Seventy-three per cent of these dentists stated that they had adopted NTRI. The introduction of NTRI will increase the adoption rate and the frequency of good-quality root fillings. However, it will not overcome the problems associated with dentists producing a low-quality level, even if a local professional network is activated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Shariat, Bashir S; Liu, Yinong; Rio, Gerard

    2013-01-01

    To improve actuation controllability of a NiTi shape memory alloy component in applications, it is desirable to create a wide stress window for the stress-induced martensitic transformation in the alloy. One approach is to create functionally graded NiTi with a geometric gradient in the actuation direction. This geometric gradient leads to transformation load and displacement gradients in the structure. This paper reports a study of the pseudoelastic behaviour of geometrically graded NiTi by means of mechanical model analysis and experimentation using three types of sample geometry. Closed-form solutions are obtained for nominal stress–strain variation of such components under cyclic tensile loading and the predictions are validated with experimental data. The geometrically graded NiTi samples exhibit a distinctive positive stress gradient for the stress-induced martensitic transformation and the slope of the stress gradient can be adjusted by sample geometry design. (paper)

  15. Assessment of Apical Extrusion of Debris during Endodontic Retreatment with 3 Rotary Nickel-Titanium Retreatment Systems and Hand Files

    Directory of Open Access Journals (Sweden)

    Gkampesi S.

    2016-03-01

    Full Text Available Aim: to evaluate the amount of debris extruded apically as well as the time needed for removal of root canal filling material using ProTaper, MTwo, REndo NiTi rotary retreatment systems and hand files.

  16. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  17. Influence of different manufacturing methods on the cyclic fatigue of rotary nickel-titanium endodontic instruments.

    Science.gov (United States)

    Rodrigues, Renata C V; Lopes, Hélio P; Elias, Carlos N; Amaral, Georgiana; Vieira, Victor T L; De Martin, Alexandre S

    2011-11-01

    The aim of this study was to evaluate, by static and dynamic cyclic fatigue tests, the number of cycles to fracture (NCF) 2 types of rotary NiTi instruments: Twisted File (SybronEndo, Orange, CA), which is manufactured by a proprietary twisting process, and RaCe files (FKG Dentaire, La Chaux-de-Fonds, Switzerland), which are manufactured by grinding. Twenty Twisted Files (TFs) and 20 RaCe files #25/.006 taper instruments were allowed to rotate freely in an artificial curved canal at 310 rpm in a static or a dynamic model until fracture occurred. Measurements of the fractured fragments showed that fracture occurred at the point of maximum flexure in the midpoint of the curved segment. The NCF was significantly lower for RaCe instruments compared with TFs. The NCF was also lower for instruments subjected to the static test compared with the dynamic model in both groups. Scanning electron microscopic analysis revealed ductile morphologic characteristics on the fractured surfaces of all instruments and no plastic deformation in their helical shafts. Rotary NiTi endodontic instruments manufactured by twisting present greater resistance to cyclic fatigue compared with instruments manufactured by grinding. The fracture mode observed in all instruments was of the ductile type. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix

  19. Effects of Fluoride on NiTi Orthodontic Archwires: An X-ray Diffraction Study

    Directory of Open Access Journals (Sweden)

    Sumit Kumar Yadav

    2013-01-01

    Results: Unloading force values of NiTi orthodontic wires were significantly decreased after exposure to both fluoride solutions (p < 0.001. Corrosive changes in surface topography were observed for both fluoride solutions. Wires exposed to acidic fluoride appeared as more severely affected. X-ray diffraction analysis showed no change in crystal lattice of NiTi wires in both solutions. Conclusion: The results suggest that using topical fluoride agents with NiTi wire could decrease the functional unloading mechanical properties of the wire and contribute to prolonged orthodontic treatment.

  20. Mechanical characterisation of orthodontic superelastic Ni-Ti wires

    Energy Technology Data Exchange (ETDEWEB)

    Arrigoni, M.; Pietrabissa, R. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Auricchio, F.; Petrini, L. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Pavia Univ. (Italy). Dept. of Structural Mechanics; Cacciafesta, V. [Politecnico di Milano, Milano (Italy). Lab. of Biological Structure Mechanics; Pavia Univ. (Italy). Dept. of Orthodontia

    2001-11-01

    Nowadays, the orthodontic treatment is improving thanks to the introduction of Ni-Ti super-elastic alloy wires in the ordinary therapy. Indeed, laboratory tests performed in the last decade have shown that Ni-Ti superelastic wires are able to satisfy the ideal requirements for fixed arch-wire appliance: high flexibility, minimal distortion or plastic deformation, light constant force production over a wide range of displacements. On the other hand, many orthodontic companies produce Ni-Ti arch-wires, without giving detailed specifications on their superelastic characteristics. To improve the knowledge on real properties for these products, an experimental campaign on different commercial arch-wires has been started at the Laboratory of Biological Structure Mechanics (LABS) at the Politecnico di Milano (Italy). This work presents the first step of the research, concerning the comparison between the behaviour of four types of wires (two produced by ORMCO and two produced by 3M/Unitek) under monotonic and cyclic isothermal tensile tests. The results show significant differences between the products in terms of elastic modulus, stress values of the loading-unloading plateau, hysteresis amplitude, spring-back capacity, shape recovery capability, strain rate effect and fatigue behaviour. (orig.)

  1. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    Science.gov (United States)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  2. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  3. Application of non-destructive impedance-based monitoring technique for cyclic fatigue evaluation of endodontic nickel-titanium rotary instruments.

    Science.gov (United States)

    Chang, Yau-Zen; Liu, Mou-Chuan; Pai, Che-An; Lin, Chun-Li; Yen, Kuang-I

    2011-06-01

    This study investigates the application of non-destructive testing based on the impedance theory in the cyclic fatigue evaluation of endodontic Ni-Ti rotary instruments. Fifty Ni-Ti ProTaper instruments were divided into five groups (n=10 in Groups A to E). Groups A to D were subjected to cyclic fatigue within an artificial canal (Group E was the control group). The mean value of the total life limit (TLL), defined as the instrument being rotated until fracture occurred was found to be 104 s in Group A. Each rotary instrument in Groups B, C and D were rotated until the tested instruments reached 80% (84 s), 60% (62 s) and 40% (42 s) of the TLL. After fatigue testing, each rotary instrument was mounted onto a custom-developed non-destructive testing device to give the tip of the instrument a progressive sideways bend in four mutually perpendicular directions to measure the corresponding impedance value (including the resistance and the reactance). The results indicated that the impedance value showed the same trend as the resistance, implying that the impedance was primarily affected by the resistance. The impedance value for the instruments in the 80% and 60% TLL groups increased by about 6 mΩ (about 7.5%) more than that of the instruments in the intact and 40% TLL groups. The SEM analysis result showed that crack striations were only found at the tip of the thread on the cracked surface of the instrument, consistent with the impedance measurements that found the impedance value of the cracked surface to be significantly different from those in other surfaces. These findings indicate that the impedance value may represent an effective parameter for evaluating the micro-structural status of Ni-Ti rotary instruments subjected to fatigue loading. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    Science.gov (United States)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  5. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  6. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  7. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  8. Relationship between friction force and orthodontic force at the leveling stage using a coated wire.

    Science.gov (United States)

    Murayama, Masaki; Namura, Yasuhiro; Tamura, Takahiko; Iwai, Hiroaki; Shimizu, Noriyoshi

    2013-01-01

    The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti) wire. Five esthetic wires (three coated and two plated) and two small, plain Ni-Ti wires (0.012 and 0.014 inches) were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm), and evaluated the relationship between them. Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  9. Effect of educational intervention on adoption of new endodontic technology by general dental practitioners: a questionnaire survey.

    Science.gov (United States)

    Koch, M; Eriksson, H G; Axelsson, S; Tegelberg, A

    2009-04-01

    To survey the clinical endodontic protocols of general dental practitioners (GDPs) in public dental clinics and to assess the effect of an educational intervention on the adoption of a nickel-titanium (Ni-Ti) rotary system. General dental practitioners in a Swedish Intervention County (IC), underwent an educational programme in endodontics. A follow-up questionnaire was posted to 98 GDPs in the IC and to 97 GDPs in a Control County (CC), where no specific training had been provided. The questionnaire concerned demographics, clinical endodontic protocols and instrumentation techniques. The response rate to the questionnaire was 87%. More than 90% of all GDPs reported they always or generally used rubber dam, determined working length, used the canal irrigant 0.5% buffered NaOCl and calcium hydroxide as an interappointment dressing. Two of three GDPs reported, they generally or always informed the patient of the prognosis. Every second GDP reported routines for postoperative recall and follow-up. The Ni-Ti rotary technique was reported to be completely adopted by 77% of the GDPs in the IC, significantly higher than in the CC (6%), P educational programme in Ni-Ti rotary instrumentation reported they had successfully integrated the technique into daily clinical practice.

  10. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant

    International Nuclear Information System (INIS)

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M. Imran; Hussain, Muhammad Asif

    2016-01-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6 vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10 h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3 h at 1325 K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi 2 , Ni 3 Ti, and Ni 4 Ti 3 . The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6 vol.% HA reinforced composite showed Ni 3 Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2 vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2 vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. - Highlights: • NiTi-HA composites were synthesized using powder metallurgy route. • New phases such as NiTi 2 , Ni 3 Ti and Ni 4 Ti 3 were observed for sintered composites. • Mechanical properties enhanced with the increasing content of HA and new phases. • No martensitic transformation was observed for all composites by DSC analysis. • 2 vol.% HA composite is a novel candidate for biomedical implants.

  11. Comparison of the shaping ability of Twisted Files with ProTaper and RevoS nickel-titanium instruments in simulated canals

    Directory of Open Access Journals (Sweden)

    Cumhur Aydin

    2012-09-01

    Conclusion: According to the results of this study, TFs respected the original canal curvature better than did ProTaper and RevoS rotary NiTi instruments. TF instruments also provided a more-centered apical preparation of the simulated canals at the apical third.

  12. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  13. Adverse reactions to orthodontic appliances in nickel-allergic patients.

    Science.gov (United States)

    Volkman, Kristen K; Inda, Michael J; Reichl, Peter G; Zacharisen, Michael C

    2007-01-01

    Nickel allergy (NA) is common and causes more cases of allergic contact dermatitis (ACD) than all other metals combined. Many orthodontic appliances (ODAs) contain nickel but their clinical relevance in nickel-allergic patients is unclear. We aimed to characterize the relationship between NA and ODAs because the medical literature investigating this is controversial. A survey concerning adverse reactions to ODAs in patients with NA was distributed to members of the Wisconsin Society of Orthodontics. Forty-three surveys were analyzed. The surveyed group was experienced, representing a mean of 21.2 years in practice and averaging 242 appliances placed per year per orthodontist. Most new patients with orthodontia were 10-18 years old. Most wires used were nickel-titanium alloy. Although 76% of orthodontists inquired about NA at initial evaluation, 37% still placed nickel-containing ODAs in known nickel-allergic patients. Fifty percent placed a single intraoral appliance, observing for reactions. Three orthodontists applied ODAs to the skin similar to patch testing. Only 8 patients with reactions to ODAs were described in detail, 6 were female patients and 6 were aged 13-14 years. Intraoral and extraoral reactions were mild; diffuse urticaria was reported in one patient. Treatment included removing the appliances or changing to nonnickel alternatives with favorable outcomes. These cases, which included >33,000 patients, suggest a prevalence of 0.03%. Adverse reactions to ODAs in patients with NA have been observed but are uncommon. Using suitable alternatives, patients usually can be accommodated.

  14. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    Science.gov (United States)

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  15. Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application.

    Science.gov (United States)

    Tanimoto, Yasuhiro; Inami, Toshihiro; Yamaguchi, Masaru; Nishiyama, Norihiro; Kasai, Kazutaka

    2015-05-01

    Generally, orthodontic treatment uses metallic wires made from stainless steel, cobalt-chromium-nickel alloy, β-titanium alloy, and nickel-titanium (Ni-Ti) alloy. However, these wires are not esthetically pleasing and may induce allergic or toxic reactions. To correct these issues, in the present study we developed glass-fiber-reinforced plastic (GFRP) orthodontic wires made from polycarbonate and E-glass fiber by using pultrusion. After fabricating these GFRP round wires with a diameter of 0.45 mm (0.018 inch), we examined their mechanical and in vitro properties. To investigate how the glass-fiber diameter affected their physical properties, we prepared GFRP wires of varying diameters (7 and 13 µm). Both the GFRP with 13-µm fibers (GFRP-13) and GFRP with 7 µm fibers (GFRP-7) were more transparent than the metallic orthodontic wires. Flexural strengths of GFRP-13 and GFRP-7 were 690.3 ± 99.2 and 938.1 ± 95.0 MPa, respectively; flexural moduli of GFRP-13 and GFRP-7 were 25.4 ± 4.9 and 34.7 ± 7.7 GPa, respectively. These flexural properties of the GFRP wires were nearly equivalent to those of available Ni-Ti wires. GFRP-7 had better flexural properties than GFRP-13, indicating that the flexural properties of GFRP increase with decreasing fiber diameter. Using thermocycling, we found no significant change in the flexural properties of the GFRPs after 600 or 1,200 cycles. Using a cytotoxicity detection kit, we found that the glass fiber and polycarbonate components comprising the GFRP were not cytotoxic within the limitations of this study. We expect this metal-free GFRP wire composed of polycarbonate and glass fiber to be useful as an esthetically pleasing alternative to current metallic orthodontic wire. © 2014 Wiley Periodicals, Inc.

  16. Nickel extraction from nickel matte

    Science.gov (United States)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  17. Shaping Ability of Reciproc, WaveOne GOLD, and HyFlex EDM Single-file Systems in Simulated S-shaped Canals.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-05-01

    The aim of the present study was to compare the shaping ability of Reciproc (RPC; VDW, Munich, Germany), HyFlex EDM (HEDM; Coltene/Whaledent AG, Altstätten, Switzerland), and WaveOne GOLD (WOG; Dentsply Maillefer, Ballaigues, Switzerland) nickel-titanium (NiTi) files made of different NiTi alloys in S-shaped simulated canals. Sixty S-shaped canals in resin blocks were prepared to an apical size of 0.25 mm using RPC R25, WOG Primary, and HEDM OneFile (n = 20 canal/per group) systems. Composite images were made from the superimposition of pre- and postinstrumentation images. The amount of resin removed by each system was measured using a digital template and image analysis software in 22 different points. Canal aberrations were also recorded. Data were statistically analyzed using the Kruskal-Wallis and post hoc Dunn tests at the 5% level. NiTi file fracture was not observed during shaping of the simulated canals although a danger zone formation in 1 sample and a ledge in 1 sample were observed in the RPC group. There was no statistically significant difference between the WOG and HEDM groups' apical, medial, and coronal regions (P > .05). However, it was determined that the RPC group removed a statistically significantly higher amount of resin from all the canal regions when compared with the WOG and HEDM groups (P < .05). Within the limitation of the present study, it was determined that all of the tested NiTi files caused various levels of resin removal. However, WOG and HEDM NiTi files were found to cause a lower level of resin removal than RPC NiTi files. Copyright © 2017 American Association of Endodontists. All rights reserved.

  18. Shape memory effect for titanium nickelide semiproducts

    International Nuclear Information System (INIS)

    Chernov, D.B.; Fatkullina, L.P.; Smirnova, Z.I.; Timonin, G.D.; Olejnikova, S.V.

    1978-01-01

    The thermomechanical properties of titanium nickelide semi-finished products obtained by garnissage melting followed by arc remelting have been studied for the purpose of investigating the NiTi ''form memory'' mechanism. The ingots were subjected to stepped pressing to produce rods. Calcined rods were tension tested. Investigation of the elastic and thermomechanical free return after deformation has shown that the share of elastic return increases as the preliminary deformation degree is increased. The return to the original form began at about 150 deg C; at 200 deg C the process rate decreases and at 300 deg C it stops. The degree of form recovery decreases with the increase of preliminary deformation. The return stress versus preliminary deformation degree relationship has a maximum at 11% strain degree. Maximum thermomechanical return stresses are observed at about 300 deg C. It is noted that yield strength decreases with the increasing degree of deformation to which the semi-finished products are subjected

  19. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  20. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  1. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  2. Scanning electron microscopy investigation of canal cleaning after canal preparation with nickel titanium files

    Directory of Open Access Journals (Sweden)

    Živković Slavoljub

    2010-01-01

    Full Text Available Introduction. Root canal preparation is the most important phase of endodontic procedure and it consists of adequate canal space cleaning and shaping. In recent years, rotary instruments and techniques have gained importance because of the great efficacy, speed and safety of the preparation procedure. Objective. The aim of this research was to investigate the influence of different NiTi files on the canal wall cleaning quality, residual dentine debris and smear layer. Methods. The research was conducted on extracted human teeth in vitro conditions. Teeth were divided in 7 main groups depending on the kind of instruments used for root canal preparation: ProTaper, GT, ProFile, K-3, FlexMaster, hand ProTaper and hand GT. Root canal preparation was accomplished by crown-down technique. Prepared samples were assessed on scanning electron microscopy JEOL, JSM-6460 LV. The evaluation of dentine debris was done with 500x magnification, and the evaluation of smear layer with 1,000 times magnification. Quantitive assessment of dentine debris and smear layer was done according to the criteria of Hulsmann. Results. The least amount of debris and smear layer has been found in canals shaped with ProFile instruments, and the largest amount in canals shaped with FlexMaster instruments. Canal cleaning efficacy of hand GT and ProTaper files has been similar to cleaning efficacy of rotary NiTi files. Statistic analysis has shown a significant difference in amount of dentine debris and smear layer on the canal walls between sample groups shaped with different instruments. Conclusion. Completely clean canals have not been found in any tested group of instruments. The largest amount of debris and smear layer has been found in the apical third of all canals. The design and the type of endodontic instruments influence the efficacy of the canal cleaning.

  3. Comparison of dentinal damage induced by different nickel-titanium rotary instruments during canal preparation: An in vitro study.

    Science.gov (United States)

    Garg, Shiwani; Mahajan, Pardeep; Thaman, Deepa; Monga, Prashant

    2015-01-01

    To compare dentinal damage caused by hand and rotary nickel-titanium instruments using ProTaper, K3 Endo, and Easy RaCe systems after root canal preparation. One hundred and fifty freshly extracted mandibular premolars were randomly divided into five experimental groups of 30 teeth each and biomechanical preparation was done: Group 1 with unprepared teeth; Group 2 were prepared with hand files; Group 3 with ProTaper rotary instruments; Group 4 with K3 rotary; Group 5 with Easy RaCe rotary instruments. Then, roots were cut horizontally at 3, 6, and 9 mm from apex and were viewed under stereomicroscope. The presence of dentinal defects was noted. Groups were analyzed with the Chi-square test. Significant difference was seen between groups. No defects were found in unprepared roots and those prepared with hand files. ProTaper, K3 rotary, and Easy RaCe preparations resulted in dentinal defects in 23.3%, 10%, and 16.7% of teeth, respectively. More defects were shown in coronal and middle sections, and no defect was seen in apical third. The present study revealed that use of rotary instruments could result in an increased chance for dentinal defects as compared to hand instrumentation.

  4. A study on poly (N-vinyl-2-pyrrolidone covalently bonded NiTi surface for inhibiting protein adsorption

    Directory of Open Access Journals (Sweden)

    Hongyan Yu

    2016-12-01

    Full Text Available Near equiatomic NiTi alloys have been extensively applied as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. It has been demonstrated that surfaces capable of preventing plasma protein adsorption could reduce the reactivity of biomaterials with human blood. This motivated a lot of researches on the surface modification of NiTi alloy. In the present work, following heat and alkaline treatment and silanization by trichlorovinylsilane (TCVS, coating of poly (N-vinyl-2-pyrrolidone (PVP was produced on the NiTi alloy by gamma ray induced chemical bonding. The structures and properties of modified NiTi were characterized and in vitro biocompatibility of plasma protein adsorption was investigated. The results indicated that heat treatment at 823 K for 1 h could result in the formation of a protective TiO2 layer with “Ni-free” zone on NiTi surface. It was found that PVP was covalently bonded on NiTi surface to create a hydrophilic layer for inhibiting protein adsorption on the surface. The present work offers a green approach to introduce a bioorganic surface on metal and other polymeric or inorganic substrates by gamma irradiation.

  5. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study.

    Science.gov (United States)

    Argalji, Nina; Silva, Eduardo Moreira da; Cury-Saramago, Adriana; Mattos, Claudia Trindade

    2017-08-21

    The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure) were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346) when the latest launched wire (13.27%) was compared to the control (29.63%). In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  6. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  7. Effect of temperature on the orthodontic clinical applications of niti closed-coil springs

    Science.gov (United States)

    Espinar-Escalona, Eduardo; Llamas-Carreras, José M.; Barrera-Mora, José M.; Abalos-Lasbrucci, Camilo

    2013-01-01

    NiTi spring coils were used to obtain large deformation under a constant force. The device consists on a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The temperature variations induced changes in the spring force. Objectives: The aim of this study is to investigate the effect of the temperature variations in the spring forces and corrosion behaviour simulating the ingestion hot/cold drinks and food. Study Design: The springs were subjected to a tensile force using universal testing machine MTS-Adamel (100 N load cell). All tests were performed in artificial saliva maintained at different temperatures. The corrosion tests were performed according to the ISO-standard 10993-15:2000. Results: The increase in temperature of 18oC induced an increase in the spring force of 30%. However, when the temperature returns to 37oC the distraction force recovers near the initial level. After cooling down the spring to 15oC, the force decreased by 46%. This investigation show as the temperature increase, the corrosion potential shifts towards negative values and the corrosion density is rising. Conclusions: The changes of the temperatures do not modify the superelastic behaviour of the NiTi closed-coil springs. The corrosion potential of NiTi in artificial saliva is decreasing by the rise of the temperatures. Key words:Superelasticity, NiTi, springs, orthodontic, coils, recovery, temperature. PMID:23722142

  8. Evaluation of the Friction of Self-Ligating and Conventional Bracket Systems

    Science.gov (United States)

    Tecco, Simona; Di Iorio, Donato; Nucera, Riccardo; Di Bisceglie, Beatrice; Cordasco, Giancarlo; Festa, Felice

    2011-01-01

    Objectives: This in vitro study evaluated the friction (F) generated by aligned stainless steel (SS) conventional brackets, self-ligating Damon MX© brackets (SDS Ormco, Glendora, California, USA), Time3© brackets (American Orthodontics, Sheboygan, Wisconsin, USA), Vision LP© brackets (American Orthodontics), and low-friction Slide© ligatures (Leone, Firenze, Italy) coupled with various SS, nickel-titanium (NiTi), and beta-titanium (TMA) archwires. Methods: All brackets had a 0.022-inch slot, and the orthodontic archwires were 0.014-inch, 0.016-inch, 0.014×0.025-inch, 0.018×0.025-inch, and 0.019×0.025-inch NiTi; 0.017×0.025-inch TMA; and 0.019×0.025-inch SS. Each bracket-archwire combination was tested 10 times. In the test, 10 brackets of the same group were mounted in alignment on a metal bar. The archwires moved through all the 10 brackets at a crosshead speed of 0.5 mm/min (each run lasted approximately 5 min). The differences among 5 groups of brackets were analyzed through the Kruskal-Wallis test, and a Mann-Whitney test was calculated as post hoc analysis. The P value was set at 0.05. Results: Coupled with 0.014-inch NiTi and 0.016-inch NiTi, Victory Series© brackets generated the greatest F, while Damon MX© and Vision LP© brackets generated the lowest (Pbrackets and Slide© ligatures. Coupled with all the rectangular archwires, Victory Series© brackets, Slide© ligatures, and Vision LP© self-ligating brackets generated significantly lower F than did Time3© and Damon MX© self-ligating brackets (Pbrackets are a family of brackets that, in vitro, can generate different levels of F when coupled with thin or thick, rectangular, or round archwires. Clinical conclusions based on our results are not possible due to the limitations of the experimental conditions. PMID:21769273

  9. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-07

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed.

  10. Evaluation of the feasibility of joining titanium alloy to heavymet tungsten alloy

    International Nuclear Information System (INIS)

    1978-01-01

    Information is presented on a program to select and evaluate methods of brazing and/or explosively welding Ti-6Al-4V titanium alloy to Heavymet, a tungsten-base metal containing up to about 20% alloying elements (nickel, copper, etc.) to improve its ductility and other mechanical properties. Designs permitting the reliable production of joints between these base metals were of interest too. While this investigation was primarily concerned with an engineering study of the problems associated with joining these base metals in the required configuration, limited experimental studies were conducted also. The joining methods are reviewed individually. Recommendations for developing a viable titanium-tungsten joining procedure are discussed

  11. Torsional resistance of XP-endo Shaper at body temperature compared with several nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2018-05-01

    To compare the torsional resistance of XP-endo Shaper (XPS; size 30, .01 taper, FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments at body temperature with TRUShape (TRS; size 30, .06 taper, Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), ProFile Vortex (PV; size 30, .04 taper, Dentsply Tulsa Dental Specialties) and FlexMaster (FM; size 30, .04 taper, VDW GmbH, Munich, Germany) nickel-titanium rotary instruments. A metal block with a square-shaped mould (5 mm × 5 mm × 5 mm) was positioned inside a glass container. Five millimetres of the tip of each instrument was held inside the metal block by filling the mould with a resin composite. The instruments were tested for torsional resistance in saline solution at 37 °C. Data were analysed using one-way analysis of variance (anova) and Tukey post hoc tests. The significance level was set at P instruments tested (P instruments (P = 0.211). The ranking for torsional resistance values was: FM > PV > TRS > XPS. FlexMaster and ProFile Vortex instruments were more resistant to torsional stress compared with TRUShape and XP-endo Shaper instruments. The manufacturing process used to produce XP-endo Shaper instruments did not enhance their resistance to torsional stress as compared with the other instruments. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Influence of Alcohol and Alcohol-free Mouthrinses on Force Degradation of Different Types of Space Closure Auxiliaries used in Sliding Mechanics

    Directory of Open Access Journals (Sweden)

    Vivek Mahajan

    2014-01-01

    Full Text Available Introduction: The objective of the study was to evaluate the percentage of force degradation of elastomeric chains, NiTi closed coil spring and stainless steel closed coil spring at different time intervals in different media. Materials and methods: Three types of space closing auxiliaries, such as elastomeric chains, NiTi closed coil springs and stainless steel coil springs immersed in artificial saliva, alcohol-free mouthrinse (Colgate plax and alcohol-containing mouthrinse (Listerine at time interval of 1, 4, 7,14, 21 and 28 days were divided into nine groups of 15 each: Group I- 15 polyurethane elastomeric chain immersed inside artificial saliva (Control. Group II-15 polyurethane elastomeric chain immersed inside alcohol-free mouthrinse. Group III- 15 polyurethane elastomeric chain immersed inside alcohol-containing mouthrinse. Group IV-15 stainless steel closed coil springs immersed inside artificial saliva (Control. Group V- 15 stainless steel closed coil springs immersed inside alcohol-free mouthrinse. Group VI-15 stainless steel closed coil springs immersed inside alcohol-containing mouthrinse. Group VII- 15 NiTi closed coil springs immersed inside artificial saliva (Control. Group VIII-15 nickel titanium closed coil springs immersed inside alcohol-free mouthrinse. Group IX- 15 NiTi closed coil springs immersed inside alcohol-containing mouthrinse. The percentage of force degradation was measured with the universal testing machine. Results: The force produced by elastomeric chain, stainless steel closed coil spring and NiTi closed coil spring at seven time intervals in artificial saliva, alcohol-free mouthwash and alcohol-containing mouthwash showed a statistically significant difference (p < 0.001. Conclusion: The force degradation in alcohol-containing mouthwash solution (Listerine is more as compared to alcohol-free mouthwash solution (Colgate plax .

  13. Synthesis and characterization of inorganic ion exchangers based on mixed oxide tin-titanium to be used in recovery of cadmium and nickel and photoluminescent studies

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2007-01-01

    This work presents the synthesis, characterization and adsorption studies of inorganic ion exchangers based on mixed tin-titanium oxide for recovery of cadmium and nickel metals from aqueous effluents, discarded in the environment mainly through Ni-Cd battery. The exchangers were synthesized by sol-gel modified method using a mixture of tin(IV) chloride and titanium(III) chloride and ammonium hydroxide, as precursors reagents. The materials obtained: SnO 2 /TiO 2 and SnO 2 /TiO 2 :Eu 3+ were characterized by infrared spectroscopy, thermal analysis, scattering electronic microscopy (SEM), X-ray powder diffraction (XRD) (powder method) and electronic spectroscopy (excitation and emission) for the europium doped exchanger. The same materials also were synthesized in polymeric matrix too and can be used in column, because the synthesized materials showed crystals size in nano metric scale. It was determined by the distribution ratios for metals taking as parameters the influence of pH, the concentration of metals (by adsorption isotherms) and the contact time (by adsorption kinetic). The inorganic ion exchanger presented high exchange capacity with adsorption percent above 90 por cent for the studied conditions, quickly kinetic, heterogeneous exchange surfaces, physic adsorption and spontaneous process of exchange. To the doped exchanger spectroscopy properties were studied and also it was calculated the intensity parameters and it was found a satisfactory quantum yield. (author)

  14. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, J. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of); Zebarjad, S.M. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: Zebarjad@um.ac.ir; Sajjadi, S.A. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)

    2008-01-25

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase.

  15. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    International Nuclear Information System (INIS)

    Jafari, J.; Zebarjad, S.M.; Sajjadi, S.A.

    2008-01-01

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase

  16. Influence of compaction pressure on the morphology and phase evolution of porous NiTi alloy prepared by SHS technique

    Directory of Open Access Journals (Sweden)

    Sirikul Wisutmethangoon

    2008-08-01

    Full Text Available The influence of compaction pressure on the pore morphology of porous NiTi shape memory alloys (SMAs fabricated by self-propagating high-temperature synthesis (SHS was investigated. The compaction pressure has a significant effect on the combustion temperature and pore morphology. The porous NiTi (SMAs thus obtained have the porosity of product in the range of 37.4-57.9 vol.%. The open porosity ratios were observed to be greater than 88%, which indicatesthat porous NiTi (SMAs are suitable for biomedical applications. In addition, the predominant phases in the porous product are B2(NiTi and B19’(NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3.

  17. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    Science.gov (United States)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  18. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  19. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    International Nuclear Information System (INIS)

    Razali, M F; Mahmud, A S; Abdullah, J; Mokhtar, N

    2016-01-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results. (paper)

  20. Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment

    Science.gov (United States)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2016-02-01

    Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.

  1. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  2. Metal release from simulated fixed orthodontic appliances.

    Science.gov (United States)

    Hwang, C J; Shin, J S; Cha, J Y

    2001-10-01

    Most orthodontic appliances and archwires are stainless steel or nickel-titanium (NiTi) alloys that can release metal ions, with saliva as the medium. To measure metal released from the fixed orthodontic appliances currently in use, we fabricated simulated fixed orthodontic appliances that corresponded to half of the maxillary arch and soaked them in 50 mL of artificial saliva (pH 6.75 +/- 0.15, 37 degrees C) for 3 months. We used brackets, tubes, and bands made by Tomy (Tokyo, Japan). Four groups were established according to the appliance manufacturer and the type of metal in the .016 x .022-in archwires. Groups A and B were stainless steel archwires from Ormco (Glendora, Calif) and Dentaurum (Ispringen, Germany), respectively, and groups C and D were both NiTi archwires with Ormco's copper NiTi and Tomy's Bioforce sentalloy, respectively. Stainless steel archwires were heat treated in an electric furnace at 500 degrees C for 1 minute and quenched in water. We measured the amount of metal released from each group by immersion time. Our conclusions were as follows: (1) there was no increase in the amount of chromium released after 4 weeks in group A, 2 weeks in group B, 3 weeks in group C, and 8 weeks in group D; (2) there was no increase in the amount of nickel released after 2 weeks in group A, 3 days in group B, 7 days in group C, and 3 weeks in group D; and (3) there was no increase in the amount of iron released after 2 weeks in group A, 3 days in group B, and 1 day in groups C and D. In our 3-month-long investigation, we saw a decrease in metal released as immersion time increased.

  3. Release of nickel and chromium ions in the saliva of patients with fixed orthodontic appliance: An in-vivo study.

    Science.gov (United States)

    Dwivedi, Anoop; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Verma, Geeta; Murthy, R C

    2015-01-01

    Various components of fixed orthodontic appliances are continuously interacting with saliva and other fluids in the mouth releasing various metal ions including nickel and chromium that can cause damaging effects if their concentration exceeds above the toxic dose. To determine and compare the level of nickel and chromium in the saliva of patients undergoing fixed orthodontic treatment at different time periods. The sample of saliva of 13 patients was taken at different time periods that is: Group 1 (before appliance placement), Group II, III, and IV (after 1-week, 1-month, and 3 months of appliance placement respectively). The fixed appliance comprised of brackets, bands, buccal tubes, lingual sheath, transpalatal arch and wires composed of Ni-Ti and stainless steel. The level of ions was determined using graphite furnace atomic absorption spectro-photometry. The data thus obtained were statistically analyzed using SPSS Statistical Analysis Software (Version 15.0). Level of nickel and chromium in saliva was highest in Group II and lowest in Groups I for both the ions. On comparison among different Groups, it was statistically significant for all the groups (<0.001) except between Group III and Group IV. The release of nickel and chromium was maximum at 1-week and then the level gradually declined. These values were well below the toxic dose of these ions. The results should be viewed with caution in subjects with Ni hypersensitivity.

  4. Civil Engineering Applications: Specific Properties of NiTi Thick Wires and Their Damping Capabilities, A Review

    Science.gov (United States)

    Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos Leonel

    2017-12-01

    This study describes two investigations: first, the applicability of NiTi wires in the damping of oscillations induced by wind, rain, or traffic in cable-stayed bridges; and second, the characteristic properties of NiTi, i.e., the effects of wire diameter and particularly the effects of summer and winter temperatures and strain-aging actions on the hysteretic behavior. NiTi wires are mainly of interest because of their high number of available working cycles, reliable results, long service lifetime, and ease in obtaining sets of similar wires from the manufacturer.

  5. Creep deformation mechanisms in a γ titanium aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zakaria [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom); Ding, Rengen [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B152TT (United Kingdom); Martin, Nigel; Dixon, Mark [Rolls-Royce plc, P.O. Box 31, Derby DE248BJ (United Kingdom); Bache, Martin [Institute of Structural Materials, College of Engineering, Bay Campus, Swansea University, Swansea SA18EN (United Kingdom)

    2016-09-15

    Titanium aluminides (TiAl) are considered as potential alternatives to replace nickel-based alloys of greater density for selected components within future gas turbine aero-engines. This is attributed to the high specific strength as well as the good oxidation resistance at elevated temperatures. The gamma (γ) titanium aluminide system Ti-45Al-2Mn-2Nb has previously demonstrated promising performance in terms of its physical and mechanical properties. The main aim of the current study, which is a continuation of a previously published paper, aims at evaluating the performance of this titanium aluminide system under high temperature creep conditions. Of particular interest, the paper is strongly demonstrating the precise capability of the Wilshire Equations technique in predicting the long-term creep behaviour of this alloy. Moreover, it presents a physically meaningful understanding of the various creep mechanisms expected under various testing conditions. To achieve this, two creep specimens, tested under distinctly different stress levels at 700 °C have been extensively examined. Detailed microstructural investigations and supporting transmission electron microscopy (TEM) have explored the differences in creep mechanisms active under the two stress regimes, with the deformation mechanisms correlated to Wilshire creep life prediction curves.

  6. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  7. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study

    Directory of Open Access Journals (Sweden)

    Nina ARGALJI

    2017-08-01

    Full Text Available Abstract The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p < 0.0001. In average, the most recently launched wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346 when the latest launched wire (13.27% was compared to the control (29.63%. In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  8. Automated detection of a prostate Ni-Ti stent in electronic portal images

    OpenAIRE

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-01-01

      Udgivelsesdato: DEC  Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is ba...

  9. Assessment of apically extruded debris produced by the single-file ProTaper F2 technique under reciprocating movement.

    Science.gov (United States)

    De-Deus, Gustavo; Brandão, Maria Claudia; Barino, Bianca; Di Giorgi, Karina; Fidel, Rivail Antonio Sergio; Luna, Aderval Severino

    2010-09-01

    This study was designed to quantitatively evaluate the amount of dentin debris extruded from the apical foramen by comparing the conventional sequence of the ProTaper Universal nickel-titanium (NiTi) files with the single-file ProTaper F2 technique. Thirty mesial roots of lower molars were selected, and the use of different instrumentation techniques resulted in 3 groups (n=10 each). In G1, a crown-down hand-file technique was used, and in G2 conventional ProTaper Universal technique was used. In G3, ProTaper F2 file was used in a reciprocating motion. The apical finish preparation was equivalent to ISO size 25. An apparatus was used to evaluate the apically extruded debris. Statistical analysis was performed using 1-way analysis of variance and Tukey multiple comparisons. No significant difference was found in the amount of the debris extruded between the conventional sequence of the ProTaper Universal NiTi files and the single-file ProTaper F2 technique (P>.05). In contrast, the hand instrumentation group extruded significantly more debris than both NiTi groups (P<.05). The present results yielded favorable input for the F2 single-file technique in terms of apically extruded debris, inasmuch as it is the most simple and cost-effective instrumentation approach. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  10. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Directory of Open Access Journals (Sweden)

    Masaki MURAYAMA

    2013-12-01

    Full Text Available The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective: The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti wire. Material and Methods: Five esthetic wires (three coated and two plated and two small, plain Ni-Ti wires (0.012 and 0.014 inches were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm, and evaluated the relationship between them. Results: Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions: A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  11. [Properties of NiTi wires with direct electric resistance heat treatment method in three-point bending tests].

    Science.gov (United States)

    Wang, Hong-mei; Wang, Bang-kang; Ren, Chao-chao; Bai, Yu-xing

    2011-03-01

    To investigate the mechanical properties of Ni-Ti wires with direct electric resistance heat treatment (DERHT) method in three-point bending tests. Two superelastic Ni-Ti wires (wire A: Smart SE, wire B: SENTALLOY SE, 0.406 mm × 0.559 mm) and 2 heat-actived Ni-Ti wires (wire C: Smart SM, wire D: L&H TITAN, 0.406 mm × 0.559 mm) were selected. They were heat-treated using the DERHT method by a controlled electric current (6.36 A) applied for different period of time [0 (control), 1.0, 1.5, 2.0, 2.5 seconds). Then, a three-point bending test was performed under controlled temperature (37°C) to examine the relationships between the deflection and the load in the bending of wires. After DERHT treatment, the plateau in the force-deflection curve of superelastic Ni-Ti wires and heat-activated Ni-Ti wires were increased. When the wires were heated for 2.0 seconds and deflected to 1.5 mm, the loading force of A, B, C and D Ni-Ti wires increased from (3.85 ± 0.11), (3.62 ± 0.07), (3.28 ± 0.09), (2.91 ± 0.23) N to (4.33 ± 0.07), (4.07 ± 0.05), (4.52 ± 0.08), (3.27 ± 0.15) N respectively. DERHT method is very convenient for clinical use. It is possible to change the arch form and superelastic force of NiTi wires. The longer the heating time is, the more the superelastic characteristics of the wires are altered.

  12. Efficacy of protaper next and protaper universal retreatment systems in removing gutta-percha in curved root canals during root canal retreatment.

    Science.gov (United States)

    Ozyurek, Taha; Ozsezer-Demiryurek, Ebru

    2017-01-01

    The aim of this study was to compare the cleanliness of root canal walls after retreatment using ProTaper Next (PTN), ProTaper Universal Retreatment (PTR) nickel-titanium (NiTi) systems and Hedström hand files in curved mesial canals of mandibular molar teeth and the time required for gutta-percha and sealer removal. Ninety mandibular molar teeth with curved mesial roots were instrumented up to #35.04 with Mtwo NiTi rotary instruments and obturated using the continuous wave of condensation technique. Removal of gutta-percha and sealer was performed using one of the following: PTN and PTR NiTi systems and Hedström hand files. Samples were placed on the VistaScan phosphor plates in the mesio-distal direction and the radiographs were taken. The digital radiographs were analyzed using AutoCAD software. Also, the total time required for gutta-percha removal was calculated by a chronometer. The total retreatment time was significantly shorter in the PTN and PTR groups compared with the manual group (p<0.05). There was a significant difference between the groups according to the total residual gutta-percha and sealer (p<0.05). The PTN and PTR groups left significantly less gutta-percha and sealer remnant than the manual group (p<0.001). Within the limitations of this study, the PTN and PTR groups showed less residual gutta-percha and sealer than the manual group. The NiTi rotary systems were significantly faster than the manual group in the time required for gutta-percha and sealer removal.

  13. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    Science.gov (United States)

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  14. The correlation between pain perception among patients with six different orthodontic archwires and the degree of dental crowding

    Directory of Open Access Journals (Sweden)

    Marković Evgenija

    2015-01-01

    Full Text Available Introduction. Forces generated in orthodontic treatment with fixed appliances create tension and compression zones in the periodontal ligament resulting in a painful experience for patients. In the first phase of orthodontic treatment, when leveling of teeth is needed, nickel-titanium (NiTi archwires can be completely engaged in brackets, even in the cases of extreme crowding, exerting small forces. There is a great individual variation in the pain perception related to the application of orthodontic forces. Objective. The aim of this study was to investigate the pain perception among patients with dental crowding after insertion of six different NiTi orthodontic archwires as a part of fixed appliances in the first stage of orthodontic treatment. Methods. The study was conducted on a sample of 189 orthodontic patients receiving one of six different either superelastic or heat activated NiTi archwires, in the first phase of orthodontic treatment. Pain perception was evaluated in groups of patients with different degree of crowding. The modified McGill Pain Questionnaire with Visual Analogue Scale was used to evaluate the quality and intensity of pain. Statistical analysis was performed using simple descriptive statistics, and Pearson`s chi-square test with statistical significance of p<0.05. Results. Majority of patients reported pain as discomfort or pressure of moderate intensity caused by chewing or biting, started within 12 hours, carried on for 3-4 days, and decreased over time without self-medication. Conclusion. No correlation was found between pain perception among patients with different types of NiTi archwires and the degree of crowding.

  15. Effect of irrigation on surface roughness and fatigue resistance of controlled memory wire nickel-titanium instruments.

    Science.gov (United States)

    Cai, J-J; Tang, X-N; Ge, J-Y

    2017-07-01

    To investigate the effect of irrigation on the surface roughness and fatigue resistance of HyFlex and M3 controlled memory (CM) wire nickel-titanium instruments. Two new files of each brand were analysed by atomic force microscopy (AFM). Then, the instruments were dynamically immersed in either 5.25% sodium hypochlorite (NaOCl) or 17% ethylene diamine tetraacetic acid (EDTA) solution for 10 min, followed by AFM analysis. The roughness average (Ra) and root mean square (RMS) values were analysed statistically using an independent sample t-test. Then, 36 files of each brand were randomly assigned to three groups (n = 12). Group 1 (the control group) was composed of new instruments. Groups 2 and 3 were dynamically immersed in 5.25% NaOCl and 17% EDTA solutions for 10 min, respectively. The number of rotations to failure for various groups was analysed using the one-way analysis of variance software. For M3 files, the Ra and RMS values significantly increased (P  0.05) NaOCl. The resistance to cyclic fatigue of both HyFlex and M3 files did not significantly decrease (P > 0.05) by immersing in 5.25% NaOCl and 17% EDTA solutions. Except the HyFlex files immersed in NaOCl, the surface roughness of other files exposed to irrigants increased. However, a change in the surface tomography of CM wire instruments caused by contact with irrigants for 10 min did not trigger a decrease in cyclic fatigue resistance. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Physical characterisation of endodontic instruments in NiTi alloy

    International Nuclear Information System (INIS)

    Torrisi, L.

    2000-01-01

    NiTi based endodontic instruments are investigated in functionality and wear. The instrument surfaces have been studied applying Auger electron spectroscopy, mechanical analysis, differential-scanning calorimetry, wear tests, and scanning electron microscopy. (orig.)

  17. Experimental investigation on local mechanical response of superelastic NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-01-01

    In this paper, primary attention is paid to the local mechanical response of NiTi shape memory alloy (SMA) under uniaxial tension. With the help of in situ digital image correlation, sets of experiments are conducted to measure the local strain field at various thermomechanical conditions. Two types of mechanical responses of NiTi SMA are identified. The residual strain localization phenomena are observed, which can be attributed to the localized phase transformation (PT) and we affirm that most of the irreversibility is accumulated simultaneously during PT. It is found that temperature and PT play important roles in inducing delocalization of the reverse transformation. We conclude that forward transformation has more influence on the transition of mechanical response in NiTi SMA than reverse transformation in terms of the critical transition temperature for inducing delocalized reverse transformation. (technical note)

  18. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Ju, X; Dong, H

    2007-01-01

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed

  19. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ju, X; Dong, H [Department of Metallurgy and Materials, School of Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2007-09-21

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed.

  20. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.