WorldWideScience

Sample records for nickel oxide films

  1. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  2. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  3. Monodispersed macroporous architecture of nickel-oxide film as an anode material for thin-film lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Lin, Ya-Ping

    2011-01-01

    A nickel-oxide film with monodispersed open macropores was prepared on a stainless-steel substrate by electrophoretic deposition of a polystyrene-sphere monolayer followed by anodic electrodeposition of nickel oxy-hydroxide. The deposited films convert to cubic nickel oxide after annealing at 400 o C for 1 h. Galvanostatic charge and discharge results indicate that the nickel-oxide film with monodispersed open macropores is capable of delivering a higher capacity than the bare nickel-oxide film, especially in high-rate charge and discharge processes. The lithiation capacity of macroporous nickel oxide reaches 1620 mA h g -1 at 1 C current discharge and decreases to 990 mA h g -1 at 15 C current discharge. The presence of monodispersed open macropores in the nickel-oxide film might facilitate the electrolyte penetration, diffusion, and migration. Electrochemical reactions between nickel oxide and lithium ions are therefore markedly improved by this tailored film architecture.

  4. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  5. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    Energy Technology Data Exchange (ETDEWEB)

    Denayer, Jessica [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Bister, Geoffroy [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Simonis, Priscilla [Laboratory LPS, University of Namur, rue de bruxelles 61, 5000 Namur (Belgium); Colson, Pierre; Maho, Anthony [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Aubry, Philippe [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Vertruyen, Bénédicte [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Henrist, Catherine, E-mail: catherine.henrist@ulg.ac.be [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium); Lardot, Véronique; Cambier, Francis [Environmental and Material Research Association (CRIBC-INISMa), avenue gouverneur cornez 4, 7000 Mons (Belgium); Cloots, Rudi [Group of Research in Energy and Environment for MATerials (GREENMAT), University of Liège, allée de la chimie 3, 4000 Liège (Belgium)

    2014-12-01

    Highlights: • Surfactant-assisted USP: a novel and low cost process to obtain high quality nickel oxide films, with or without lithium dopant. • Increased uniformity and reduced light scattering thanks to the addition of a surfactant. • Improved electrochromic performance (coloration efficiency and contrast) for lithium-doped films by comparison with the undoped NiO film. - Abstract: Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  6. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  7. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, A.I.; Kim, YoungSam; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Pawar, S.M.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2011-02-15

    A porous nickel oxide film is successfully synthesized by means of a chemical bath deposition technique from an aqueous nickel nitrate solution. The formation of a rock salt NiO structure is confirmed with XRD measurements. The electrochemical supercapacitor properties of the nickel oxide film are examined using cyclic voltammetery (CV), galvanostatic and impedance measurements in two different electrolytes, namely, NaOH and KOH. A specific capacitance of {proportional_to}129.5 F g{sup -1} in the NaOH electrolyte and {proportional_to}69.8 F g{sup -1} in the KOH electrolyte is obtained from a cyclic voltammetery study. The electrochemical stability of the NiO electrode is observed for 1500 charge-discharge cycles. The capacitative behaviour of the NiO electrode is confirmed from electrochemical impedance measurements. (author)

  8. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  9. In situ photoelectrochemistry and Raman spectroscopic characterization on the surface oxide film of nickel electrode in 30 wt.% KOH solution

    International Nuclear Information System (INIS)

    Nan Junmin; Yang Yong; Lin Zugeng

    2006-01-01

    The oxide films of nickel electrode formed in 30 wt.% KOH solution under potentiodynamic conditions were characterized by means of electrochemical, in situ PhotoElectrochemistry Measurement (PEM) and Confocal Microprobe Raman spectroscopic techniques. The results showed that a composite oxide film was produced on nickel electrode, in which aroused cathodic or anodic photocurrent depending upon polarization potentials. The cathodic photocurrent at -0.8 V was raised from the amorphous film containing nickel hydroxide and nickel monoxide, and mainly attributed to the formation of NiO through the separation of the cavity and electron when laser light irradiates nickel electrode. With the potential increasing to more positive values, Ni 3 O 4 and high-valence nickel oxides with the structure of NiO 2 were formed successively. The composite film formed in positive potential aroused anodic photocurrent from 0.33 V. The anodic photocurrent was attributed the formation of oxygen through the cavity reaction with hydroxyl on solution interface. In addition, it is demonstrated that the reduction resultants of high-valence nickel oxides were amorphous, and the oxide film could not be reduced completely. A stable oxide film could be gradually formed on the surface of nickel electrode with the cycling and aging in 30 wt.% KOH solution

  10. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  11. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  12. Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition

    International Nuclear Information System (INIS)

    Vidales-Hurtado, M.A.; Mendoza-Galvan, A.

    2008-01-01

    Nickel oxide-based thin films were obtained using the chemical bath deposition method on glass and silicon substrates. The precursor solution used was a mixture of nickel nitrate, urea, and deionized water. Molar concentration of nickel (0.3-1.0 M), deposition time, and immersing cycles were considered as deposition variables. Infrared spectroscopy and X-ray diffraction data reveal that all as-deposited films correspond to the transparent turbostratic phase α(II)-Ni(OH) 2 . However, the rate of deposition depends on nickel content in the solution. After annealing in air at temperatures above of 300 deg. C, the films are transformed to the NiO phase and show a grey/black color. In these films, scanning electron microscopy images show aggregates of thin stacked sheets on their surface, such aggregates can be easily removed leaving only a thin NiO layer of about 30 nm adhered firmly to the substrate, regardless of nickel concentration in the solution and deposition time. In order to obtain thicker NiO films with good optical properties a procedure is developed performing several immersing-annealing cycles

  13. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    International Nuclear Information System (INIS)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T.

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  14. The properties and transport phenomena in oxide films on iron, nickel, chromium and their alloys in aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.; Bojinov, M.; Betova, I.; Maekelae, K.; Saario, T. [VTT Manufacturing Technology, Espoo (Finland)

    1999-01-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown pitting. Stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more compact structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  15. The Properties Of And Transport Phenomena In Oxide Films On Iron, Nickel, Chromium And Their Alloys In Aqueous Environments

    International Nuclear Information System (INIS)

    Saario, T.; Laitinen, T.; Maekelae, K.; Bojinov, M.; Betova, I.

    1998-07-01

    The construction materials used in coolant systems in nuclear power plants become covered with oxide films as a result of exposure to the aqueous environment. The susceptibility of the materials to different forms of corrosion, as well as the extent of the incorporation of radioactive species on the surfaces of the primary circuit, are greatly influenced by the physical and chemical properties of these oxide films. The composition and characteristics of the oxide films in turn depend on the applied water chemistry. This work was undertaken in order to collect and evaluate the present views on the structure and behaviour of oxide films formed on iron- and nickel-based materials in aqueous environments. This survey should serve to recognise the areas in which more understanding and research effort is needed. The review begins with a discussion on the bulk oxides of iron, nickel and chromium, as well as their mixed oxides. In addition to bulk oxides, the structure and properties of oxide films forming on pure iron, nickel and chromium and on iron- and nickel-based engineering alloys are considered. General approaches to model the structure and growth of oxide films on metals are discussed in detail. The specific features of the oxide structures, properties and growth at high temperatures are presented with special focus on the relevance of existing models. Finally, the role of oxide films in localised corrosion, oxide breakdown, pitting, stress corrosion cracking and related phenomena is considered. The films formed on the surfaces of iron- and nickel-based alloys in high-temperature aqueous environments generally comprise two layers, i.e. the so-called duplex structure. The inner part is normally enriched in chromium and has a more dense structure, while the outer part is enriched in iron and has a cracked or porous structure. The information collected clearly indicates the effect of the chemical environment on the properties of oxide films growing on metal surfaces

  16. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  17. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  18. Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Adekunle, Abolanle S.; Ozoemena, Kenneth I. [Department of Chemistry, University of Pretoria, Pretoria 0002 (South Africa)

    2008-08-01

    The electron transfer behaviour of nickel film-decorated single-walled carbon nanotubes (SWCNTs-Ni) at edge plane pyrolytic graphite electrodes (EPPGEs) was investigated. The impact of SWCNTs on the redox properties of the nickel film was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). From EIS data, obtained using ferrocyanide/ferricyanide as a redox probe, we show that the electrodes based on nickel and nickel oxide films follow electrical equivalent circuit models typical of partial charge transfer or adsorption-controlled kinetics, resembling the 'electrolyte-insulator-semiconductor sensors (EIS)'. From the models, we prove that EPPGE-SWCNT-Ni exhibits the least resistance to charge transport compared to other electrodes (approximately 30 times faster than the EPPGE-SWCNT-NiO, 25 times faster than EPPGE-SWCNT, and over 300 times faster than the bare EPPGE) suggesting the ability of the SWCNTs to act as efficient conducting species that facilitate electron transport of the integrated nickel and nickel oxide particles. (author)

  19. Behaviour of nickel and nickel oxide thin films in chloride media; Comportamiento de peliculas delgadas de niquel y oxido de niquel en NaCl al 3%

    Energy Technology Data Exchange (ETDEWEB)

    Magana, C. R.; Angeles, M. E.; Rodriguez, F. J.

    2006-07-01

    The aim of this work is to study the behaviour of both: a nickel thin film deposited on steel AISI 1018 (UNS G 10180) and a superior nickel oxide electrochemically obtained on the film; with the purpose of decreasing the corrosion rate of low carbon steel immersed in a solution of NaCl 3% wt, thus efficient anti corrosive protection could be obtained. Two film deposition techniques were used, electrochemical and magnetron DC sputtering; and the protective properties of deposited films exposed to the aggressive media, were evaluated. The characterization of different films was carried out by using electrochemical techniques: polarization curves and electrochemical impedance. (Author)

  20. Highly Reversible Electrochemical Insertion of Lithium, Accompanied With a Marked Color Change, Occuring in Microcrystalline Lithium Nickel Oxide Films

    OpenAIRE

    Campet, G.; Portier, J.; Morel, B.; Ferry, D.; Chabagno, J. M.; Benotmane, L.; Bourrel, M.

    1992-01-01

    Thin films of lithium-nickel oxide, whose texture consists of microcrystallites with an average grain size of 50 Å, permit highly reversible electrochemical insertion of lithium ions in Li+ conducting electrolytes. Therefore, the corresponding materials would be of great interest for energy storage applications. In addition, the lithium insertion/extraction reactions in the nickel-based layers are accompanied with a marked color change, making these films of interest for the devel...

  1. Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method

    Science.gov (United States)

    Sathisha, D.; Naik, K. Gopalakrishna

    2018-05-01

    Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.

  2. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    International Nuclear Information System (INIS)

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  3. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  4. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  5. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  6. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  7. Study of the oxidation kinetics of the nickel-molybdenum alloy

    International Nuclear Information System (INIS)

    Gouillon, Marie-Josephe

    1974-01-01

    This research thesis reports the study of the oxidation of a nickel-molybdenum alloy in the high-nickel-content part of this alloy. After a bibliographical study on the both metals, the author proposes a physical model based on observed phenomena and based on experimental results. Based on a thermodynamic study, the author compares the stability of the different oxides which may be formed, and reports a prediction of oxides obtained on the alloy during oxidation. Qualitative and quantitative studies have been performed by scanning electron microscopy coupled with electronic microprobe analysis to investigate morphological characteristics on oxidation films. A kinetic study by thermogravimetry shows a decrease of the alloy oxidation rate with respect to that of pure nickel at temperatures lower than 800 degrees C. This result is interpreted by the intervention of two opposed diffusion phenomena which act against each other [fr

  8. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  9. Influence of thin film nickel pretreatment on catalytic thermal chemical vapor deposition of carbon nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tiggelaar, R.M. [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Thakur, D.B.; Nair, H.; Lefferts, L.; Seshan, K. [Catalytic Processes and Materials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Gardeniers, J.G.E., E-mail: j.g.e.gardeniers@utwente.nl [Mesoscale Chemical Systems, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2013-05-01

    Nickel and other metal nanoparticles are known to be active as catalysts in the synthesis of carbon nanofibers. In this paper we investigate how dewetting and break-up of nickel thin films depends on film thickness, film–substrate interaction and pretreatment conditions. This is evaluated for films evaporated on oxidized silicon and fused silica substrates with or without tantalum coating, which were subsequently exposed to different pretreatment atmospheres (vacuum, nitrogen, air and hydrogen; 1 h, 650 °C). Atomic force microscopy, scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the films. Pretreated Ni films were subjected to a thermal catalytic chemical vapor deposition procedure with brief ethylene exposures (0.5–3 min, 635 °C). It was found that only on the spherical nanoparticles originating from a hydrogen pretreatment of a Ni film with Ta adhesion layer, homogeneously distributed, randomly-oriented, well-attached, and semi-crystalline carbon nanofibers be synthesized. - Highlights: • On the formation of nanoparticles required for carbon nanofiber (CNF) synthesis • Various evaporated thin films on oxidized silicon and fused silica: Ni and Ni/Ta • Pretreatment of nickel-based thin films in vacuum, nitrogen, air and hydrogen • Only on reduced Ni/Ta fast – within 3 min – initiation of CNF nucleation and growth.

  10. Electrochemical and surface characterisation of oxide films on nano-grain nickel films electrodeposited on INCOLOY-800

    International Nuclear Information System (INIS)

    Navin Vinayak, S.; Sunitha, Y.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Nano materials have different properties from the corresponding bulk materials because of fine grain size, large fraction of surface atoms, high surface energy and high grain boundary volume fraction. For similar reasons, the nano-alloy coatings show superior high-temperature corrosion resistance and are generally more resistant to stress corrosion cracking. Hence, it is of interest to know the materials performance, if the structural materials used in nuclear reactors are made of nano-grains. In Indian PHWRs, Incoloy-800 is being used as the steam generator tubing material. It's corrosion resistance property is very important as it forms not only the pressure boundary between the radioactive primary water and non-active secondary water but also from the view point of loss of heavy water, in case of any corrosion damage. In this paper, the corrosion resistance of the oxide films formed on nano-grain nickel film electrodeposited on Incoloy-800 (a) in the presence of saccharine (WS) and (b) in the absence of saccharine (WOS) were compared with that formed on Commercial Ni foil, using electrochemical dc polarization and ac impedance techniques. The surface morphology, elemental analysis and grain size were studied with SEM, EDX and XRD techniques respectively. The nano-grain nickel films were prepared on Incoloy-800 by electrodeposition using Watt's Bath with saccharine sodium as a surfactant. The oxide films were developed by exposing them to LiOH solution (pH-10.0) at 245 deg C for 3 days (A-group) and 7 days (B-group). XRD results showed that the grain size of Ni formed in the absence of saccharine (WOS) was ∼ 60 nm and did not change after being autoclaved. But, for Ni formed in the presence of saccharine (WS), the grain size was ∼ 16 nm which increased to 40-50 nm after being autoclaved. With both A and B-group specimens, the PDAP curves showed an active-passive transition, a passive region and a transpassive region in 2N H 2 SO 4 . However, the critical

  11. Nickel films: Nonselective and selective photochemical deposition and properties

    International Nuclear Information System (INIS)

    Smirnova, N.V.; Boitsova, T.B.; Gorbunova, V.V.; Alekseeva, L.V.; Pronin, V.P.; Kon'uhov, G.S.

    2006-01-01

    Nickel films deposited on quartz surfaces by the photochemical reduction of a chemical nickel plating solution were studied. It was found that the deposition of the films occurs after an induction period, the length of which depends on the composition of the photolyte and the light intensity. Ni particles with a mean diameter of 20-30 nm were detected initially by transmission electron microscopy. The particles then increased in size (50 nm) upon irradiation and grouped into rings consisting of 4-5 particles. Irradiation with high-intensity light produces three-dimensional films. The calculated extinction coefficient of the nickel film was found to be 4800 L mol -1 cm -1 . Electron diffraction revealed that the prepared amorphous nickel films crystallize after one day of storage. It was determined that the films exhibit catalytic activity in the process of nickel deposition from nickel plating solution. The catalytic action remains for about 5-7 min after exposure of the films to air. The processes of selective and nonselective deposition of the nickel films are discussed. The use of poly(butoxy titanium) in the process of selective photochemical deposition enables negative and positive images to be prepared on quartz surfaces

  12. Formation and microstructure of nickel oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Marcius, Marijan [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ristic, Mira, E-mail: ristic@irb.hr [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Ivanda, Mile; Music, Svetozar [Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Difference in NiO films formed on Ni plate or glass substrate were found. Black-Right-Pointing-Pointer NiO particle sizes on Ni plate changed from nano to micron dimensions. Black-Right-Pointing-Pointer NiO particle sizes on glass substrate changed from {approx}16 to {approx}27 nm. Black-Right-Pointing-Pointer Raman and UV/Vis/NIR spectra are related to the microstructure of NiO films. - Abstract: The formation and microstructure of NiO films on different substrates were monitored using XRD, Raman, UV/Vis/NIR and FE-SEM/EDS techniques. The formation of NiO films on Ni plates in air atmosphere between 400 and 800 Degree-Sign C was confirmed by XRD and Raman spectroscopy. The origin of Raman bands and corresponding Raman shifts in the samples are discussed. An increase in the size of NiO particles in the films from nano to micro dimensions was demonstrated. A change in the atomic ratio Ni:O with an increase in heating temperature was observed. Polished Ni plates coated with a thin Ni-acetate layer upon heating at high temperatures gave similar NiO microstructures on the surface like in the case of non-treated Ni plates. Glass substrates coated with thin Ni-acetate films upon heating between 400 and 800 Degree-Sign C yielded pseudospherical NiO nanoparticles. The dominant Raman band as an indicator of NiO formation on a glass substrate was shown. The formation of NiO nanoparticles on glass substrates with maximum size distribution from 16 to 27 nm in a broad temperature range from 400 to 800 Degree-Sign C can be explained by the absence of a constant source of metallic nickel which was present in the case of Ni plates.

  13. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    International Nuclear Information System (INIS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-01-01

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H_2SO_4 solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  14. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jinlong, Lv, E-mail: ljlbuaa@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Tongxiang, Liang; Chen, Wang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Improved HER efficiency of Ni-Mo coatings was attributed to ‘cauliflower’ like microstructure. • RGO in nickel-RGO composite coating promoted refined grain and facilitated HER. • Synergistic effect between nickel and RGO facilitated HER due to large specific surface of RGO. - Abstract: The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H{sub 2}SO{sub 4} solution at room temperature. A large number of gaps between ‘cauliflower’ like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  15. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  16. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.

    2017-01-30

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

  17. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  18. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  19. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    International Nuclear Information System (INIS)

    Wen, Rui-Tao; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-01-01

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li + in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO 4 + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films

  20. Rare-earth nickelates RNiO3: thin films and heterostructures

    Science.gov (United States)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  1. Ultrathin and stable Nickel films as transparent conductive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Grilli, M.L., E-mail: marialuisa.grilli@enea.it [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Di Sarcina, I. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy); Bossi, S. [ENEA, Robotics Laboratory, Via Anguillarese 301, 00123 Rome (Italy); The Biorobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy); Rinaldi, A.; Pilloni, L.; Piegari, A. [ENEA, Materials Technology Unit, Via Anguillarese 301, 00123 Rome (Italy)

    2015-11-02

    Ultrathin stable transparent conductive nickel films were deposited on quartz substrates by radio frequency sputtering at room temperature. Such films showed visible transmittance up to 80% and conductivity up to 1.8 × 10{sup 4} S/cm, further increased to 2,3 × 10{sup 5} S/cm by incorporation of a micrometric silver grid. Atomic force microscopy and scanning electron microscopy revealed quite compact, smooth and low surface roughness films. Excellent film stability, ease, fast and low cost process fabrication make these films highly competitive compared to indium tin oxide alternative transparent conductors. Films were characterized regarding their morphological, optical and electrical properties. - Highlights: • Indium-free transparent conductors are proposed. • Ultrathin Ni films are fabricated with a very fast process at room temperature. • Films have conductivity values up to 1.8 × 10{sup 4} S/cm. • Ni ultrathin films are good candidates for UV and NIR optoelectronic applications.

  2. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers.

    Science.gov (United States)

    Tsao, Yu-Chung; Gu, Po-Wen; Liu, Su-Hsun; Tzeng, I-Shiang; Chen, Jau-Yuan; Luo, Jiin-Chyuan John

    2017-07-01

    The mechanism of nickel-induced pathogenesis remains elusive. To examine effects of nickel exposure on plasma oxidative and anti-oxidative biomarkers. Biomarker data were collected from 154 workers with various levels of nickel exposure and from 73 controls. Correlations between nickel exposure and oxidative and anti-oxidative biomarkers were determined using linear regression models. Workers with a exposure to high nickel levels had significantly lower levels of anti-oxidants (glutathione and catalase) than those with a lower exposure to nickel; however, only glutathione showed an independent association after multivariable adjustment. Exposure to high levels of nickel may reduce serum anti-oxidative capacity.

  3. Negative differential resistance in nickel octabutoxy phthalocyanine and nickel octabutoxy phthalocyanine/graphene oxide ultrathin films

    Science.gov (United States)

    Sarkar, Arup; Suresh, K. A.

    2018-04-01

    We find negative differential resistance (NDR) at room temperature in ultrathin films of nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine [NiPc(OBu)8] deposited on highly ordered pyrolytic graphite (HOPG) substrate [NiPc(OBu)8/HOPG] and NiPc(OBu)8 on graphene oxide (GO) deposited on HOPG [NiPc(OBu)8/GO/HOPG]. For the NiPc(OBu)8/HOPG system, NiPc(OBu)8 was transferred four times onto HOPG by the Langmuir-Blodgett (LB) technique. We have prepared a stable Langmuir monolayer of amphiphilic GO at the air-water interface and transferred it onto HOPG by the LB technique. Further, the monolayer of NiPc(OBu)8 was transferred four times for good coverage on GO to obtain the NiPc(OBu)8/GO/HOPG system. The current-voltage characteristics were carried out using a current sensing atomic force microscope (CSAFM) with a platinum (Pt) tip that forms Pt/NiPc(OBu)8/HOPG and Pt/NiPc(OBu)8/GO/HOPG junctions. The CSAFM, UV-visible spectroscopy, and cyclic voltammetry studies show that the NDR effect occurs due to molecular resonant tunneling. In the Pt/NiPc(OBu)8/GO/HOPG junction, we find that due to the presence of GO, the features of NDR become more prominent. Also, GO causes a shift in NDR voltage towards a lower value in the negative bias direction. We attribute this behavior to the role of GO in injecting holes into the NiPc(OBu)8 film.

  4. Electrochromic nickel oxide films and their compatibility with potassium hydroxide and lithium perchlorate in propylene carbonate: Optical, electrochemical and stress-related properties

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Rui-Tao, E-mail: Ruitao.Wen@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G.

    2014-08-28

    Porous nickel oxide films were deposited onto unheated indium tin oxide coated glass substrates by reactive dc magnetron sputtering. These films had a cubic NiO structure. Electrochromic properties were evaluated in 1 M potassium hydroxide (KOH) and in 1 M lithium perchlorate in propylene carbonate (Li–PC). Large optical modulation was obtained for ∼ 500-nm-thick films both in KOH and in Li–PC (∼ 70% and ∼ 50% at 550 nm, respectively). In KOH, tensile and compressive stresses, due to the expansion and contraction of the lattice, were found for films in their bleached and colored state, respectively. In Li–PC, compressive stress was seen both in colored and bleached films. Durability tests with voltage sweeps between − 0.5 and 0.65 V vs Ag/AgCl in KOH showed good durability for 10,000 cycles, whereas voltage sweeps between 2.0 and 4.7 V vs Li/Li{sup +} in Li–PC yielded significant degradation after 1000 cycles. - Highlights: • Ni oxide films were studied in KOH and in LiClO{sub 4} + propylene carbonate (Li–PC). • Good electrochromism was found in both electrolytes. • In KOH, tensile/compressive stresses were seen in bleached/colored films. • In Li–PC, compressive stress was seen both in colored and bleached films.

  5. Study of thin metal films and oxide materials for nanoelectronics applications

    OpenAIRE

    De Los Santos Valladares, Luis

    2012-01-01

    Appendix A Pages 132-134 have been removed from this online version of the thesis for publisher copyright reasons. These had contained page images from the cover of Nanotechnology, Vol. 21, Nov 2010 and its corresponding web alert Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide...

  6. Progress on sputter-deposited thermotractive titanium-nickel films

    International Nuclear Information System (INIS)

    Grummon, D.S.; Hou Li; Zhao, Z.; Pence, T.J.

    1995-01-01

    It is now well established that titanium-nickel alloys fabricated as thin films by physical vapor deposition can display the same transformation and shape-memory effects as their ingot-metallurgy counterparts. As such they may find important application to microelectromechanical and biomechanical systems. Furthermore, we show here that titanium-nickel films may be directly processed so as to possess extremely fine austenite grain size and very high strength. These films display classical transformational superelasticity, including high elastic energy storage capacity, the expected dependence of martensite-start temperature on transformation enthalpy, and large, fully recoverable anelastic strains at temperatures above A f . Processing depends on elevated substrate temperatures during deposition, which may be manipulated within a certain range to control both grain size and crystallographic texture. It is also possible to deposit crystalline titanium-nickel films onto polymeric substrates, making them amenable to lithographic patterning into actuator elements that are well-suited to electrical excitation of the martensite reversion transformation. Finally, isothermal annealing of nickel-rich films, under conditions of controlled extrinsic residual stress, leads to topotaxial orientation of Ni 4 Ti 3 -type precipitates, and the associated possibility of two-way memory effects. Much work remains to be done, especially with respect to precise control of composition. (orig.)

  7. Investigation of interdiffusion in copper-nickel bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Lettif, Ahmed M. [Physics Department, College of Science, Babylon University, Hilla (Iraq)]. E-mail: abdullettif@yahoo.com

    2007-01-15

    Auger depth profiling technique and X-ray diffraction analysis have been employed to study the interdiffusion in vacuum-deposited copper-nickel bilayer thin films. An adaptation of the Whipple model was used to determine the diffusion coefficients of both nickel in copper and copper in nickel. The calculated diffusion coefficient is (2.0x10{sup -7} cm{sup 2}/s)exp(-1.0 eV/kT) for nickel in copper, and (6x10{sup -8} cm{sup 2}/s)exp(-0.98 eV/kT) for copper in nickel. The difference between the diffusion parameters obtained in the present work and those extracted by other investigators is attributed essentially to the difference in the films microstructure and to the annealing ambient. It is concluded that interdiffusion in the investigated films is described by type-B kinetics in which rapid grain-boundary diffusion is coupled to defect-enhanced diffusion into the grain interior. The present data raise a question about the effectiveness of nickel as a diffusion barrier between copper and the silicon substrate.

  8. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  9. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  10. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Science.gov (United States)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  11. Electrical properties of thermally evaporated nickel-dimethylglyoxime thin films

    Science.gov (United States)

    Dakhel, A. A.; Ali-Mohamed Ahmed, Y.

    2005-06-01

    Thin Bis-(dimethylglyoximato)nickel(II) [Ni(DMG)2] films of amorphous and crystalline structures were prepared by vacuum deposition on Si (P) substrates. The films were characterised by X-ray fluorescence and X-ray diffraction. The constructed Al/Ni(DMG)2/Si(P) metal-insulator-semiconductor devices were characterised by the measurement of the gate-voltage dependence of their capacitance and ac conductance, from which the surface states density Dit of insulator/semiconductor interface and the density of the fixed charges in the oxide were determined. The ac electrical conduction and dielectric properties of the Ni(DMG)2-Silicon structure were studied at room temperature. The data of the ac measurements of the annealed films follow the correlated barrier-hopping CBH mode, from which the fundamental absorption bandgap, the minimum hopping distance, and other parameters of the model were determined.

  12. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    OpenAIRE

    Lota, Katarzyna; Sierczynska, Agnieszka; Lota, Grzegorz

    2011-01-01

    In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD). The morphology of the composite...

  13. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  14. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution.

    Science.gov (United States)

    Onozuka, Tomoya; Chikamatsu, Akira; Katayama, Tsukasa; Hirose, Yasushi; Harayama, Isao; Sekiba, Daiichiro; Ikenaga, Eiji; Minohara, Makoto; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2017-03-29

    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in perovskite nickelate NdNiO 3 epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO 3-x F x films is controlled with precision by varying the reaction time. The fully fluorinated film (x ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO 3 , which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from +3 to +2) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO 3 after annealing in an oxygen atmosphere. By application of the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated.

  15. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors

    Science.gov (United States)

    Ferreira, C. S.; Passos, R. R.; Pocrifka, L. A.

    2014-12-01

    The present study reports the synthesis and morphological, structural and electrochemical characterization of ternary oxides mixture containing nickel, cobalt and tin. The ternary oxide is synthesized by Pechini method with subsequent deposition onto a titanium substrate in a thin-film form. XRD and EDS analysis confirm the formation of ternary film with amorphous nature. SEM analysis show that cracks on the film favor the gain of the surface area that is an interesting feature for electrochemical capacitors. The ternary film is investigated in KOH electrolyte solution using cyclic voltammetry and charge-discharge study with a specific capacitance of 328 F g-1, and a capacitance retention of 86% over 600 cycles. The values of specific power and specific energy was 345.7 W kg-1 and 18.92 Wh kg-1, respectively.

  16. Supercapacitors Based on Nickel Oxide/Carbon Materials Composites

    Directory of Open Access Journals (Sweden)

    Katarzyna Lota

    2011-01-01

    Full Text Available In the thesis, the properties of nickel oxide/active carbon composites as the electrode materials for supercapacitors are discussed. Composites with a different proportion of nickel oxide/carbon materials were prepared. A nickel oxide/carbon composite was prepared by chemically precipitating nickel hydroxide on an active carbon and heating the hydroxide at 300 ∘C in the air. Phase compositions of the products were characterized using X-ray diffractometry (XRD. The morphology of the composites was observed by SEM. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied in addition to the properties of electrode consisting of separate active carbon and nickel oxide only. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The composites were tested in 6 M KOH aqueous electrolyte using two- and three-electrode Swagelok systems. The results showed that adding only a few percent of nickel oxide to active carbon provided the highest value of capacity. It is the confirmation of the fact that such an amount of nickel oxide is optimal to take advantage of both components of the composite, which additionally can be a good solution as a negative electrode in asymmetric configuration of electrode materials in an electrochemical capacitor.

  17. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Science.gov (United States)

    Zhao, Hang; Lu, Yinxiang

    2016-01-01

    Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  18. Effect of annealing temperature on physical properties of solution processed nickel oxide thin films

    Science.gov (United States)

    Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.

  19. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  20. Improving the performance of nickel-coated fluorine-doped tin oxide thin films by magnetic-field-assisted laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bao-jia, E-mail: li_bjia@126.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Huang, Li-jing [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Ren, Nai-fei [Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Kong, Xia; Cai, Yun-long; Zhang, Jie-lu [Jiangsu Tailong Reduction Box Co. Ltd., Taixing 225400 (China)

    2015-10-01

    Highlights: • Ni/FTO films were prepared by sputtering Ni layers on commercial FTO glass. • The as-prepared Ni/FTO films underwent magnetic-field-assisted laser annealing. • Magnetic field and laser fluence were crucial for improving quality of the films. • All Ni/FTO films displayed enhanced compactness after magnetic laser annealing. • Magnetic laser annealing using a fluence of 0.9 J/cm{sup 2} led to the best film quality. - Abstract: Nickel-coated fluorine-doped tin oxide (Ni/FTO) thin films were prepared by sputtering Ni layers on commercial FTO glass. The as-prepared Ni/FTO films underwent nanosecond pulsed laser annealing in an external magnetic field (0.4 T). The effects of the presence of magnetic field and laser fluence on surface morphology, crystal structure and photoelectric properties of the films were investigated. All the films displayed enhanced compactness after magnetic-field-assisted laser annealing. It was notable that both crystallinity and grain size of the films gradually increased with increasing laser fluence from 0.6 to 0.9 J/cm{sup 2}, and then decreased slightly with an increase in laser fluence to 1.1 J/cm{sup 2}. As a result, the film obtained by magnetic-field-assisted laser annealing using a fluence of 0.9 J/cm{sup 2} had the best overall photoelectric property with an average transmittance of 81.2%, a sheet resistance of 5.5 Ω/sq and a figure of merit of 2.27 × 10{sup −2} Ω{sup −1}, outperforming that of the film obtained by pure laser annealing using the same fluence.

  1. Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, R., E-mail: riahirim01@gmail.com [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Faculty of Sciences Tunis–El Manar University (Tunisia); Derbali, L. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Ouertani, B. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Environment Science and Technology of Borj-Cedria (Tunisia); Ezzaouia, H. [Laboratory of Semiconductors, Nanostructures and Advanced Technology (LSNTA), Research and Technology Center of Energy, Tourist Road Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2017-05-15

    Highlights: • The treatment of porous silicon (PS) with nickel oxide (NiO) decreases the reflectivity significantly. • FTIR analysis showed a substitution of Si−H bonds to Si−O−Si and Si−O−Ni after the thermal annealing. • Annealing the treated NiO/PS at 400 °C leads to a noticeable improvement of the photoluminescence (PL) intensity. • A blueshift was obtained in the PL spectra due to the decrease of silicon nanocrystallites size after exceeding 400 °C. - Abstract: This paper investigates the effect of Nickel oxide (NiO) on the structural and optical properties of porous silicon (PS). Our investigations showed an obvious improvement of porous silicon optoelectronique properties after coating the PS with NiO thin film as a passivating process. The as-prepared NiO/PS thin film was subjected to a thermal annealing to study the effect of temperature on the efficiency of this treatment. The deposition of NiO onto the porous silicon layer was performed using the spray pyrolysis method. The surface modification of the as-prepared NiO/PS samples was investigated after annealing at various temperatures, using an infrared furnace, ranging between 300 °C and 600 °C. The X-ray Diffraction results showed that obtained films show cubic structure with preferred (200) plane orientation. We found an obvious dependence of the PS nanocrystallites size (nc-Si) to the annealing temperature. Photoluminescence (PL) is directly related to the electronic structure and transitions. The characteristic change of the band gap with decrease in size of the nanostructures can be pointed out by the observed blue shift in the photoluminescence spectra. Nickel oxide treatment of Porous silicon led to a significant increase of photoluminescence with a resulting blue-shift at higher annealing temperature. The surface morphology was examined by scanning electron microscope (SEM), and FTIR spectroscopy was used to study the chemical composition of the films. Moreover, the total

  2. Temperature dependence of nickel oxide effect on the optoelectronic properties of porous silicon

    International Nuclear Information System (INIS)

    Riahi, R.; Derbali, L.; Ouertani, B.; Ezzaouia, H.

    2017-01-01

    Highlights: • The treatment of porous silicon (PS) with nickel oxide (NiO) decreases the reflectivity significantly. • FTIR analysis showed a substitution of Si−H bonds to Si−O−Si and Si−O−Ni after the thermal annealing. • Annealing the treated NiO/PS at 400 °C leads to a noticeable improvement of the photoluminescence (PL) intensity. • A blueshift was obtained in the PL spectra due to the decrease of silicon nanocrystallites size after exceeding 400 °C. - Abstract: This paper investigates the effect of Nickel oxide (NiO) on the structural and optical properties of porous silicon (PS). Our investigations showed an obvious improvement of porous silicon optoelectronique properties after coating the PS with NiO thin film as a passivating process. The as-prepared NiO/PS thin film was subjected to a thermal annealing to study the effect of temperature on the efficiency of this treatment. The deposition of NiO onto the porous silicon layer was performed using the spray pyrolysis method. The surface modification of the as-prepared NiO/PS samples was investigated after annealing at various temperatures, using an infrared furnace, ranging between 300 °C and 600 °C. The X-ray Diffraction results showed that obtained films show cubic structure with preferred (200) plane orientation. We found an obvious dependence of the PS nanocrystallites size (nc-Si) to the annealing temperature. Photoluminescence (PL) is directly related to the electronic structure and transitions. The characteristic change of the band gap with decrease in size of the nanostructures can be pointed out by the observed blue shift in the photoluminescence spectra. Nickel oxide treatment of Porous silicon led to a significant increase of photoluminescence with a resulting blue-shift at higher annealing temperature. The surface morphology was examined by scanning electron microscope (SEM), and FTIR spectroscopy was used to study the chemical composition of the films. Moreover, the total

  3. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • An etchant-free and moderate surface pre-treatment process was studied. • Citric acid, malic acid and oxalic acid were selected as modification agents. • High adhesive nickel coating on cuprammonium fabric was obtained. • The electromagnetic parameters were evaluated from the experimental data. - Abstract: Nickel films were grown on citric acid (CA), malic acid (MA) and oxalic acid (OA) modified cuprammonium fabric (CF) substrates via electroless nickel deposition. The nickel films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and electromagnetic interference (EMI) shielding effectiveness (SE) were also investigated to compare the properties of electroless nickel films. SEM images illustrated that the nickel film on MA modified CF substrate was smooth and uniform, and the density of nickel nuclei was much higher. Compared with that of CA modified CF, the coverage of nickel nuclei on OA and MA modified CF substrate was very limited and the nickel particles size was too big. XRD analysis showed that the nickel films deposited on the different modified CF substrates had a structure with Ni (1 1 1) preferred orientation. All the nickel coatings via different acid modification were firmly adhered to the CF substrates, as demonstrated by an ultrasonic washing test. The result of tensile test indicated that the electroless nickel plating on CF has ability to strengthen the CF substrate while causes limited effect on tensile elongation. Moreover, the nickel film deposited on MA modified CF substrate showed more predominant in EMI SE than that deposited on CA or OA modified CF.

  4. Study of the high temperature oxidation of nickel; Contribution a l'etude de l'oxydation du nickel aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Berry, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-11-01

    The parabolic oxidation of nickel by oxygen and by air at atmospheric pressure has been studied in the temperature range 600 to 1400 C, in particular by thermogravimetric and micrographic techniques. The mechanism of the reaction has been determined; it has been shown in particular that the break in the Arrhenius plot of the kinetics, occurring at about 950 C, is the result of a stimulation of the diffusion across the nickel prot-oxide film above this temperature; this is the result of the presence of excess nickel vacancies in the film. A systematic study has also been made of the influence of the oxygen pressure P{sub O{sub 2}} (10{sup -2} torr {<=} P{sub O{sub 2}} {<=} 760 torr) on the parabolic oxidation of nickel between 800 and 1400 C. In the range 1000 to 1400 C, the activation energy of the process decreases monotonously from 57 to 34 kcal/mole as P{sub O{sub 2}} decreases from 760 to 1 torr. Furthermore, it has been shown that the parabolic oxidation constant is proportional to P{sub O{sub 2}}{sup 1/n} the value of n is not invariant however in the temperature range examined, but decreases from 6 to about 3 when the temperature increases from 900 to 1400 C. Finally, a study has been made of the oxidation of nickel in carbon dioxide at atmospheric pressure between 750 and 1400 C. The main reaction is Ni + CO{sub 2} {yields} NiO + CO, and corresponds, with a good approximation, to the reaction of the metal with the oxygen produced by the thermal dissociation of the CO{sub 2}. (author) [French] L'oxydation parabolique du nickel avec l'oxygene et l'air a la pression atmospherique a ete etudiee dans l'intervalle de temperatures 600-1400 C, surtout par voies thermogravimetrique et micrographique. Le mecanisme de la reaction a ete precise; en particulier, il a ete montre que la brisure de la courbe d'Arrhenius traduisant sa cinetique, qui se produit a 950 C environ, resulte d'une stimulation de la diffusion dans la pellicule de protoxyde de nickel au dessous de

  5. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz; Sougrat, Rachid; Baby, Rakhi Raghavan; Rahal, Raed; Cha, Dong Kyu; Hedhili, Mohamed N.; Bouhrara, Mohamed; Alshareef, Husam N.; Polshettiwar, Vivek

    2012-01-01

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron

  6. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  7. Graph theory and binary alloys passivated by nickel

    International Nuclear Information System (INIS)

    McCafferty, E.

    2005-01-01

    The passivity of a nickel binary alloy is considered in terms of a network of -Ni-O-Ni- bridges in the oxide film, where Ni is the component of the binary alloy which produces passivity. The structure of the oxide is represented by a mathematical graph, and graph theory is used to calculate the connectivity of the oxide, given by the product of the number of edges in the graph and the Randic index. A stochastic calculation is employed to insert ions of the second metal into the oxide film so as to disrupt the connectivity of the -Ni-O-Ni- network. This disruption occurs at a critical ionic concentration of the oxide film. Mathematical relationships are developed for the introduction of a general ion B +n into the oxide film, and critical ionic compositions are calculated for oxide films on the nickel binary alloys. The notation B refers to any metal B which produces B +n ions in the oxide film, where +n is the oxidation number of the ion. The results of this analysis for Fe-Ni and Cu-Ni binary alloys are in good agreement with experimental results

  8. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Marín, E. [Departamento de Ingeniería en Metalurgia y Materiales, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México 07300 (Mexico); Villalpando, I. [Centro de Investigación para los Recursos Naturales, Salaices, Chihuahua 33941 (Mexico); Trejo-Valdez, M. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, México, Ciudad de México 07738 (Mexico); Cervantes-Sodi, F. [Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219 (Mexico); Vargas-García, J.R. [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico); Torres-Torres, C., E-mail: ctorrest@ipn.mx [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738 (Mexico)

    2017-06-15

    Highlights: • Nickel oxide decorated carbon nanotubes were prepared by chemical vapor deposition. • Contrast in photoconductivity phenomena in the nanohybrid was analyzed. • Electrical and nonlinear optical properties were evaluated. • A Wheatstone bridge sensor based metal/carbon nanostructures was proposed. - Abstract: Within this work was explored the influence of nickel oxide decoration on the photoconductive effects exhibited by multiwall carbon nanotubes. Samples in thin film form were prepared by a chemical vapor deposition method. Experiments for evaluating the photo-response of the nanomaterials at 532 nanometers wavelength were undertaken. A contrasting behavior in the photoelectrical characteristics of the decorated nanostructures was analyzed. The decoration technique allowed us to control a decrease in photoconduction of the sample from approximately 100 μmhos/cm to −600 μmhos/cm. Two-wave mixing experiments confirmed an enhancement in nanosecond nonlinearities derived by nickel oxide contributions. It was considered that metallic nanoparticles present a strong responsibility for the evolution of the optoelectronic phenomena in metal/carbon nanohybrids. Impedance spectroscopy explorations indicated that a capacitive behavior correspond to the samples. A potential development of high-sensitive Wheatstone bridge sensors based on the optoelectrical performance of the studied samples was proposed.

  9. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1980-01-01

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm 2 . The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  10. Oxidation mechanism and passive behaviour of nickel in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T. (ECN Fossil Fuels, Petten (Netherlands)); Ament, P.C.H.; De Wit, J.H.W. (Div. of Corrosion, Lab. for Maaterials Sceince, Delft Univ. of Technology, Delft (Netherlands))

    1994-07-01

    The oxidation and passivation mechanism and the passive behaviour of nickel in molten carbonate have been investigated with impedance measurements. The oxidation of nickel proceeds according to a dissolution and reprecipitation process. The slowest steps in the reaction sequence are the dissociation reaction of the carbonate and the diffusion of the formed NiO to the metal surface. In the passive range, dissolution of Ni[sup 2+] proceeds after diffusion of Ni[sup 2+] through the oxide layer. The Ni[sup 2+] is formed at the metal/oxide interface. The slowest process is the diffusion of bivalent nickel ions through the passive scale. The formation of trivalent nickel ions probably takes place at the oxide/melt interface. This reaction is accompanied by the incorporation of an oxygen ion and a nickel vacancy in the NiO lattice. The trivalent nickel ions and the nickel vacancy diffuse to the bulk of the oxide scale. The slowest step in this sequence is the dissociation of the carbonate ions and the incorporation of the oxygen ion in the NiO lattice. 9 figs., 2 tabs., 11 refs.

  11. SERS spectra of pyridine adsorbed on nickel film prepared by magnetron sputtering

    Science.gov (United States)

    Li, Daoyong; Ouyang, Yu; Chen, Li; Cao, Weiran; Shi, Shaohua

    2011-02-01

    As a repeating well and cheaper enhancement substrate, the nickel film was fabricated with magnetron sputtering coating instrument. Surface enhanced Raman spectra (SERS) of pyridine adsorbed on this nickel film are compared with the experimental values of gaseous pyridine, the theoretical value of pyridine solution listed in other literatures and our method is better than electro-chemical etching electrode method for large scale preparation. The enhancement factor of the nickel film is calculated and the result indicates that magnetron sputtering coating technology is feasible for obtaining good SERS active surface.

  12. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h

    Directory of Open Access Journals (Sweden)

    Lamiaa Z. Mohamed

    2017-11-01

    Full Text Available The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10−8 g/cm2 s and 3.4 × 10−8 g/cm2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  13. Oxidation characteristics of porous-nickel prepared by powder metallurgy and cast-nickel at 1273 K in air for total oxidation time of 100 h.

    Science.gov (United States)

    Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A

    2017-11-01

    The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8  g/cm 2  s and 3.4 × 10 -8  g/cm 2  s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.

  14. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    International Nuclear Information System (INIS)

    Kumar, Ajeet; Saxena, Amit; Shankar, Ravi; Mozumdar, Subho; De, Arnab

    2013-01-01

    Industrial demands have generated a growing need to synthesize pure metal and metal–oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5–100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions. (paper)

  15. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics

    International Nuclear Information System (INIS)

    Hsiao, Y.-S.; Whang, W.-T.; Wu, S.-C.; Chuang, Kuen-Ru

    2008-01-01

    Flexible polyimide (PI) films for flexible electronics were surface-nickelized using a fully solution-based process and excellent adhesion between the nickel and polyimide phases was observed. Polyimide substrates were modified by alkaline hydrolysis, ion exchange, reduction and nickel electroless deposition without palladium. Atomic force microscopy and field emission scanning electron microscopy were used to follow the growth of nickel nanoparticles (Ni-NPs) and nickel layers on the polyimide surface. The surface resistances of the Ni-NPs/PI films and Ni/PI films, measured using a four-point probe, were 1.6 x 10 7 and 0.83 Ω/cm 2 , respectively. The thicknesses of Ni-NPs and the Ni layer on the polyimide surface were 82 nm and 382 nm, respectively, as determined by transmission electron microscopy, and the Ni layer adhered well to PI, as determined by the adhesive tape testing method

  16. Gold nanoparticle/nickel oxide/poly(pyrrole-N-propionic acid hybrid multilayer film: Electrochemical study and its application in biosensing

    Directory of Open Access Journals (Sweden)

    T. Karazehir

    2017-06-01

    Full Text Available The present study describes the fabrication of Indium Tin Oxide /gold nanoparticles/nickel oxide/poly(Pyrrole-N-propionic acid (ITO/GNPs/NiO/poly(PPA multilayered film, and its modification with Tyrosinase (Ty. The ITO/GNPs/NiO/poly(PPA electrode was fabricated by sequential electrochemical assembly onto ITO substrate which electrochemical deposition provides a facile, inexpensive technique for synthesis of multilayered film within the adherent morphology with controllable film thickness. Cyclic voltammetry (CV, Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR, scanning electron microcopy (SEM, and atomic force microcopy (AFM were used to characterize the film assembly processes. The properties of a semiconductor/electrolyte interface were investigated based on the Mott–Schottky (M-S approach for the modified electrodes, with the flat band potential (EFB according to the potential intercept and the carrier density (ND according to the linear slopes. The ND and EFB of ITO/GNPs/NiO/poly(PPA were obtained as 2.48·1021 cm–3 and 0.26 V, respectively. Tyrosinase was immobilized using carbodiimide coupling reaction. The bioelectrode was characterized by FTIR-ATR, SEM, AFM, electrochemical impedance spectroscopy (EIS. A Randles equivalent circuit was introduced for modeling the performance of impedimetric biosensing for the detection of the dopamine (DP and the interface of bioelectrode/electrolyte. The EIS of the ITO/GNPs/NiO/poly(PPA-Ty exhibited significant changes in the charge transfer resistance (RCT value toward the detection of dopamine over a linear range of 80 µM to 0.2 mM with a limit of detection (LOD of 5.46 µM.

  17. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  18. Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: A comparative study

    International Nuclear Information System (INIS)

    Chen, Zhiting; Wang, Cun; Xing, Lidan; Wang, Xianshu; Tu, Wenqiang; Zhu, Yunmin; Li, Weishan

    2017-01-01

    Highlights: •TMB and TEB effective improve the cyclic stability of LNMO at high voltage. •The performance of LNMO with TMB-containing electrolyte is superior to that of TEB. •LNMO shows catalytic effect on the oxidation reaction of TEB. •The film generated in TMB shows better ability on suppressing LNMO shedding than TEB. -- Abstract: Trimethyl borate (TMB) and triethyl borate (TEB) are used as film-forming electrolyte additives for high voltage Lithium nickel manganese oxide (LNMO) cathode. DFT calculation and initial charge curve of LNMO reveal that the oxidation activity of TEB is higher than that of TMB. Addition of 2% TMB and 2% TEB effectively improve the capacity retention of high voltage LNMO from 23.4% to 85.3% and 72.6% after 600 cycles, respectively. The film generated in TMB-containing electrolyte shows better ability on suppressing the LNMO shedding in comparison with that of TEB, resulting in higher capacity retention of LNMO in TMB-containing electrolyte at high voltage. The superior performance of LNMO with TMB-containing electrolyte should be ascribed to its less intense film-forming reaction which generates a denser protective surface film on LNMO surface. However, why LNMO shows catalyzation effect on TEB oxidation but not on TMB is unclear, which needs further intensive investigation.

  19. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  20. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process

    International Nuclear Information System (INIS)

    Khorsand, S.; Raeissi, K.; Ashrafizadeh, F.

    2014-01-01

    A super-hydrophobic nickel film with micro-nano structure was successfully fabricated by electrodeposition process. By controlling electrodeposition parameters and considering different storage times for the coatings in air, various nickel films with different wettability were fabricated. Surface morphology of nickel films was examined by means of scanning electron microscopy (SEM). The results showed that the micro-nano nickel film was well-crystallized and exhibited pine cone-like microstructure with nano-cone arrays randomly dispersed on each micro-protrusion. The wettability of the micro-nano nickel film varied from super-hydrophilicity (water contact angle 5.3°) to super-hydrophobicity (water contact angle 155.7°) by exposing the surface in air at room temperature. The corrosion resistance of the super-hydrophobic film was estimated by electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The potentiodynamic curves revealed that the corrosion rate of superhydrophobic surface was only 0.16% of the bare copper substrate. Moreover, EIS measurements and appropriate equivalent circuit models revealed that the corrosion resistance of nickel films considerably improved with an increase in the hydrophobicity. The superhydrophobic surface also exhibited an excellent long-term durability in neutral 3.5 wt.% NaCl solution.

  1. Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide

    International Nuclear Information System (INIS)

    Liao, Xiaolin; Zheng, Xiongwen; Chen, Jiawei; Huang, Ziyu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Lu, Qilun; Li, Xiangfeng; Li, Weishan

    2016-01-01

    Highlights: • TMSP is effective for self-discharge suppression of the charged NCM under 4.5 V. • TMSP oxidizes preferentially forming protective cathode interface film on NCM. • The film suppresses electrolyte decomposition and prevents NCM destruction. - Abstract: Application of layered nickel cobalt manganese oxide as cathode under higher potential than conventional 4.2 V yields a significant improvement in energy density of lithium ion battery. However, the cathode fully charged under high potential suffers serious self-discharge, in which the interaction between the cathode and electrolyte proceeds without potential limitation. In this work, we use tris(trimethylsilyl)phosphate (TMSP) as an electrolyte additive to solve this problem. A representative layered nickel cobalt manganese oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , is considered. The effect of TMSP on self-discharge behavior of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is evaluated by physical and electrochemical methods. It is found that the self-discharge of charged LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be suppressed significantly by using TMSP. TMSP is oxidized preferentially in comparison with the standard electrolyte during initial charging process forming a protective cathode interface film, which avoids the interaction between cathode and electrolyte at any potential and thus prevents electrolyte decomposition and protects LiNi 1/3 Co 1/3 Mn 1/3 O 2 from structure destruction.

  2. Potassium/calcium/nickel oxide catalysts for the oxidative coupling of methane

    NARCIS (Netherlands)

    Dooley, K.; Dooley, Kerry M.; Ross, J.R.H.; Ross, Julian R.H.

    1992-01-01

    A series of potassium/calcium/nickel oxides were tested for the oxidative coupling of methane (OCM) at 843–943 K and water addition to the feed at 0–66 mol-%. The K/Ni ratios varied from 0.0–0.6 and Ca/Ni from 0.0–11; catalysts with no nickel were also tested. At least 10% water in the feed and

  3. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Naponiello, Gaia; Venditti, Iole [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Zardetto, Valerio [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Saccone, Davide [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Di Carlo, Aldo [Centre for Hybrid and Organic Solar Energy, Department of Electronic Engineering, University of Rome - Tor Vergata, via del Politecnico 1, 00133 Rome (Italy); Fratoddi, Ilaria [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy); Barolo, Claudia [Department of Chemistry and NIS, Interdepartmental Centre of Excellence, University of Torino, via Pietro Giuria 7, I-10125 Torino (Italy); Dini, Danilo, E-mail: danilo.dini@uniroma1.it [Department of Chemistry, Sapienza University of Rome P.le A. Moro 5, 00185 Rome (Italy)

    2015-11-30

    Graphical abstract: Screen-printing method has been adopted for the deposition of nickel oxide thin film electrodes with mesoporous features. Nickel oxide was sensitized with three newly synthesized squaraines (VG1C8,VG10C8 and DS2/35) and employed as photoelectroactive cathode of p-type dye-sensitized solar cells. Colorant erythrosine b (EB) was taken as commercial benchmark for comparative purposes. Sensitization was successful with the attainment of overall conversion efficiencies in the order of 0.025% when the mesoporous surface of nickel oxide was alkali treated. The prolongation of nickel oxide sensitization time up to 16 h led to a general increase of the open circuit voltage in the corresponding solar cells. - Highlights: • We deposited nickel oxide with screen-printing technique utilizing nickel oxide nanoparticles. • We employed screen-printed nickel oxide as cathodes of p-DSCs. • We employed new squaraine as sensitizers of screen-printed nickel oxide. • Further progress is expected when the formulation of the screen-printing paste will be optimized. - Abstract: In the present paper we report on the employment of the screen-printing method for the deposition of nickel oxide (NiO{sub x}) layers when preformed nanoparticles of the metal oxide (diameter < 50 nm) constitute the precursors in the paste. The applicative purpose of this study is the deposition of mesoporous NiO{sub x} electrodes in the configuration of thin films (thickness, l ≤ 4 μm) for the realization of p-type dye-sensitized solar cells (p-DSCs). Three different squaraine-based dyes (here indicated with VG1C8, VG10C8 and DS2/35), have been used for the first time as sensitizers of a p-type DSC electrode. VG1C8 and VG10C8 present two carboxylic groups as anchoring moieties, whereas DS2/35 sensitizer possesses four acidic anchoring groups. All three squaraines are symmetrical and differ mainly for the extent of electronic conjugation. The colorant erythrosine b (ERY B) was taken as

  4. Spectrochemical analysis of impurities in nickel and in nickel oxide

    International Nuclear Information System (INIS)

    Goldbart, Z.; Lorber, A.; Harel, A.

    1981-11-01

    Various spectrochemical methods are described for the quantitative determination of 23 impurities in metallic nickel and in nickel oxide. The average limit of detection is from 1 to 5 ppm and the dynamic range lies over 2.5 orders of magnitude. The elements that were determined are: Al,B,Ba,Bi,Ca,Cd,Co,Cu,Fe,Ga,Ge,In,Mg,Mn,Mo,Nb,Si,Sn,Sr,Ti,Cr,V. (author)

  5. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  6. Nanoroses of nickel oxides: Synthesis, electron tomography study, and application in CO oxidation and energy storage

    KAUST Repository

    Fihri, Aziz

    2012-04-11

    Nickel oxide and mixed-metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self-assembled into unique rose-shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross-sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stripe domains and magnetoresistance in thermally deposited nickel films

    International Nuclear Information System (INIS)

    Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.

    2004-01-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane

  8. Stripe domains and magnetoresistance in thermally deposited nickel films

    Science.gov (United States)

    Sparks, P. D.; Stern, N. P.; Snowden, D. S.; Kappus, B. A.; Checkelsky, J. G.; Harberger, S. S.; Fusello, A. M.; Eckert, J. C.

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21+/-0.02 up to 120nm thickness. There is a negative magnetoresistance for fields out of the plane.

  9. Stripe domains and magnetoresistance in thermally deposited nickel films

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, P.D. E-mail: sparks@hmc.edu; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21{+-}0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane.

  10. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  11. Use of 2-hydroxylhydrazine as a new modifier in dip-coating nickel films

    International Nuclear Information System (INIS)

    Syukri, R.; Ito, Yusuke; Ban, Takayuki; Ohya, Yutaka; Takahashi, Yasutaka

    2002-01-01

    A modified version of the dip-coating technique, which uses 2-hydroxylhydrazine as a mild reducing agent, was applied in the fabrication of nickel thin films. Nickel acetate was used as metal source. Metallic nickel thin films were formed on glass substrates by firing in the range of 400-600 deg. C under nitrogen atmosphere. The deposited layers were composed of cubic Ni crystallites. X-ray photoelectron spectroscopy analysis indicated almost uniformity in composition throughout the film thickness. The morphology of the films analyzed by scanning electron microscopy and atomic force microscopy revealed a very weak roughness after firing at 400 deg. C and the films turned out to be homogeneous. A thin film of approximately 19 nm in thickness exhibited a high resistivity of 86 μΩ cm. However, the resistivity was found to gradually decrease with increasing film thickness up to 110 nm by repeated dip-coating, reaching a minimum value of approximately 10 μΩ cm

  12. Early stages of oxidation of ion-implanted nickel at high temperature

    International Nuclear Information System (INIS)

    Peide, Z.; Grant, W.A.; Procter, R.P.M.

    1981-01-01

    The early stages of oxidation of nickel implanted with nickel, chromium, or lithium ions in oxygen at 1100 0 C have been studied using various electron-optical techniques. The unimplanted metal develops initially a fine-grained, convoluted scale having a ridged, cellular structure. Subsequently, the oxide grains increase in size significantly and oxidation becomes predominantly controlled by diffusion of Ni /sup 2+/ ions across a compact, columnar scale. Implantation of the surface with nickel ions has no significant effect on the initial oxidation behavior. However, after implantation with chromium or lithium ions, the development of the NiO scale is, in the early stages of oxidation, suppressed by formation of NiCr 2 O 4 or LiO 2 nodules, respectively. Subsequently, the implanted species are incorporated into the steady-state NiO scale where they dope the oxide and thus influence the diffusion rate of Ni /sup 2+/ ions through it. As would be predicted, the steady-state oxidation rate of chromium-implanted nickel is increased while that of lithium- implanted nickel is decreased compared with that of the unimplanted metal

  13. Cobalt oxide films for solar selective surfaces, obtained by spray pyrolisis

    Energy Technology Data Exchange (ETDEWEB)

    Avila G, A. [Departmento de Ingenieria Electrica, Seccion de Electronica del Estado Solido, CINVESTAV del I.P.N., Av. I.P.N. no. 2508, Ap. Postal 14-740, Mexico D. F., 07360 (Mexico); Barrera C, E. [Departamento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Ap. Postal 55-5340, Mexico, D. F. (Mexico); Huerta A, L.; Muhl, S. [Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F. 04510 (Mexico)

    2004-05-01

    Cobalt oxide films upon stainless steel substrates were deposited by using the pneumatic spray pyrolisis technique, starting from an inorganic salt (CoNO{sub 3}{center_dot}3H{sub 2}O) dissolved in a water-alcohol mixture. Stainless steel and nickeled stainless steel substrates were used. Absorptance and emittance, for selective surface applications, were evaluated from reflectance measurements in the UV-Vis and infrared ranges. X-ray diffraction, XPS and AFM measurements were done. The predominant cobalt phase is Co{sub 3}O{sub 4}, but also CoO and Co{sub 2}O{sub 3} phases, besides metallic cobalt, were detected. Films upon nickeled steel substrates at 400C exhibit high absorptances (0.86), but also the emittance is high (0.43), yielding a selectivity of 2.0. A similar film on steel substrate reaches only a figure of 0.77 absorptance, but the thermal emittance remains low (0.20), giving a selectivity of 3.85. These films are good prospects for selective solar absorption coatings.

  14. A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.

    Science.gov (United States)

    Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu

    2017-11-12

    In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.

  15. Electrochemical estimation on the applicability of nickel plating to EAC problems in CRDM nozzle

    International Nuclear Information System (INIS)

    Oh, Si Hyoung; Hwang, Il Soon

    2002-01-01

    The applicability of nickel-plating to EAC problems in CRDM nozzle was estimated in the light of electrochemical aspect. The passive film growth law for nickel was improved to include oxide dissolution rate improving conventional point defect model to explain retarded passivation of plated nickel in PWR primary side water environment and compared with experimental data. According to this model, oxide growth and passivation current is closely related with oxide dissolution rate because steady state is made only if oxide formation and oxide destruction rate are same, from which oxide dissolution rate constant, k s , was quantitatively obtained utilizing experimental data. Commonly observed current-time behavior, i∝t m ,where m is different from 1 or 0.5, for passive film formation can be accounted for by virtue of enhanced oxide dissolution in high temperature aqueous environment

  16. Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2014-01-01

    The oxidation of nickel particles was studied in situ in an environmental transmission electron microscope in 3.2 mbar of O2 between ambient temperature and 600°C. Several different transmission electron microscopy imaging techniques, electron diffraction and electron energy-loss spectroscopy were...... diffusion of Ni2+ along NiO grain boundaries, self-diffusion of Ni2+ ions and vacancies, growth of NiO grains and nucleation of voids at Ni/NiO interfaces. We also observed the formation of transverse cracks in a growing NiO film in situ in the electron microscope....

  17. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  18. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Science.gov (United States)

    2011-08-08

    ... Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) of 0.1 mg/m\\3\\ for nickel. The... 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule AGENCY: Environmental... lithium manganese nickel oxide (CAS No. 182442-95-1), which was the subject of premanufacture notice (PMN...

  19. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hajjizadeh, M. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghgoo, S. [Center of Quality Control of Drug, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode.

  20. Electrocatalytic oxidation of some anti-inflammatory drugs on a nickel hydroxide-modified nickel electrode

    International Nuclear Information System (INIS)

    Hajjizadeh, M.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A.A.; Haghgoo, S.

    2007-01-01

    The electrocatalytic oxidation of several anti-inflammatory drugs (mefenamic acid, diclofenac and indomethacin) was investigated on a nickel hydroxide-modified nickel (NHMN) electrode in alkaline solution. This oxidation process and its kinetics were studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of drugs, the anodic peak current of low-valence nickel species increases, followed by a decrease in the corresponding cathodic current. This pattern indicates that drugs were oxidized on the redox mediator immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Ni(III) active sites and their subsequent consumption by drugs was also investigated. The corresponding rate law under the control of charge transfer was developed and kinetic parameters were derived. In this context, the charge-transfer resistance accessible both theoretically and through impedancemetry was used as a criterion. The rate constants of the catalytic oxidation of drugs and the electron-transfer coefficients are reported. A sensitive, simple and time-saving amperometric procedure was developed for the analysis of these drugs in bulk form and for the direct assay of tablets, using the NHMN electrode

  1. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  2. Nanostructured nickel doped β-V{sub 2}O{sub 5} thin films for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeyalakshmi, K. [Department of Physics, PSNA College of Engineering and Technology, Dindigul 624622 (India); Vijayakumar, S. [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India); Purushothaman, K.K. [Department of Physics, TRP Engineering College, Trichy (India); Muralidharan, G., E-mail: muralg@rediffmail.com [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India)

    2013-07-15

    Graphical abstract: - Highlights: • Nanorod with pores has been observed for 5 wt.% nickel doped β-V{sub 2}O{sub 5} thin films. • Film with 5 wt.% of nickel exhibits a specific capacitance of 417 F g{sup −1}. • These films exhibit high energy density. • The charge transfer resistance is 103 Ω. - Abstract: Interesting thin film electrodes of nickel doped vanadium pentoxide with different levels of doping (2.5–10 wt.%) are prepared on FTO and glass substrate at 300 °C using sol–gel spin coating method. The structural and morphological studies are made to understand the nature of the surface of the thin films. The electrochemical characteristics have been investigated through cyclic voltammetry and ac impedance spectroscopy measurements. The doping of nickel with β-V{sub 2}O{sub 5} has led to enhanced intercalation and deintercalation of ions. β-V{sub 2}O{sub 5} films with 5 wt.% of Ni exhibit the maximum specific capacitance of 417 F/g at a scan rate of 5 mV/s, with a good cyclic stability making it a promising candidate for supercapacitor application.

  3. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    Science.gov (United States)

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  4. Preparation by thermal evaporation under vacuum of thin nickel films without support

    International Nuclear Information System (INIS)

    Prugne, P.; Garin, P.; Lechauguette, G.

    1959-01-01

    This note deals with the preparation of nickel films without support by means of the technique described but using a new evaporation apparatus. In effect it was necessary, in order to obtain these nickel films, to modify the thermal evaporation conditions. An attempt to obtain a film without support after evaporation in a conventional apparatus led almost invariably to defeat. This appeared to be due to the high concentration of oxygen and of various vapors (diffusion pumps, degassing, etc.) present in the residual atmosphere of the conventional evaporation system. Reprint of a paper published in 'Le Vide, N. 74, March-April 1958, p. 82-83

  5. Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process

    International Nuclear Information System (INIS)

    Nakasa, Akihiko; Adachi, Mami; Usami, Hisanao; Suzuki, Eiji; Taniguchi, Yoshio

    2006-01-01

    Organic light emitting diodes (OLEDs) need indium tin oxide (ITO) anodes with highly smooth surface. The work function of ITO, about 4.8 eV, is generally rather lower than the optimum level for application to OLEDs. In this work, NiO was deposited by pyrosol process on pyrosol ITO film to increase the work function of the ITO for improving the performance of OLEDs. It was confirmed that NiO was successfully deposited on pyrosol ITO film and the NiO deposition increased the work function of pyrosol ITO, using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and atmospheric photoelectron spectroscopy. Furthermore, doping ITO with Ni succeeded in producing the Ni-doped ITO film with high work function and lower sheet resistance

  6. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  7. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  8. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method.

    Science.gov (United States)

    Khalaj, Zahra; Ghoranneviss, Mahmood; Vaghri, Elnaz; Saghaleini, Amir; Diudea, Mircea V

    2012-06-01

    Research on diamond-like carbon (DLC) films has been devoted to find both optimized conditions and characteristics of the deposited films on various substrates. In the present work, we investigate the quality of the DLC films grown on stainless steel substrates using different thickness of the nickel nanoparticle layers on the surface. Nickel nanoparticles were sputtered on the stainless steel substrates at 200 °C by a DC-sputtering system to make a good adherence between DLC coating and steel substrates. Atomic Force Microscopy was used to characterize the surface roughness and distribution function of the nickel nanoparticles on the substrate surface. Diamond like carbon films were deposited on stainless steel substrates coated by nickel using pure acetylene and C2H2/H2 with 15% flow ratio by DC-Plasma Enhanced Chemical Vapor Deposition (PECVD) systems. Microstructural analysis by Raman spectroscopy showed a low intensity ratio ID/IG for DLC films by increasing the Ni layer thickness on the stainless steel substrates. Fourier Transforms Infrared spectroscopy (FTIR) evidenced the peaks attributed to C-H bending and stretching vibration modes in the range of 1300-1700 cm-1 and 2700-3100 cm-1, respectively, in good agreement with the Raman spectroscopy and confirmed the DLC growth in all samples.

  9. Improved Electrochromic Characteristics of a Honeycomb-Structured Film Composed of NiO.

    Science.gov (United States)

    Yang, Hyeeun; Lee, Yulhee; Kim, Dong In; Seo, Hyeon Jin; Yu, Jung-Hoon; Nam, Sang-Hun; Boo, Jin-Hyo

    2018-09-01

    Color changes controlled by electronic energies have been studied for many years in order to fabricate energy-efficient smart windows. Reduction and oxidization of nickel oxide under the appropriate voltage can change the color of a window. For a superior nickel oxide (NiO) electrochromic device (ECD), it is important to control the chemical and physical characteristics of the surface. In this study, we applied polystyrene bead templates to nickel oxide films to fabricate a honeycomb-structured electrochromic (EC) layer. We synthesized uniform polystyrene beads using the chemical wet method and placed them on substrates to create honeycomb-structured NiO films. Then, the EC characteristics of the nickel oxide films with a honeycomb structure were evaluated with UV-Visible and cyclic voltammetry. FE-SEM and AFM were used to measure the morphologies of the nanostructures and the efficiencies of the redox reactions related to the specific surface area.

  10. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    International Nuclear Information System (INIS)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum; Oliveira, Ione M.F. de; Oliveira, Gilver F. de; Lepretre, Jean-Claude; Bucher, Christophe; Mou tet, Jean-Claude

    2009-01-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  11. Electrosynthesis and catalytic activity of polymer-nickel particles composite electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Melki, Tahar; Zouaoui, Ahmed; Bendemagh, Barkahoum [Universite Ferhat Abbas, Setif (Algeria). Faculte des Sciences de l' Ingenieur. Dept. du Tronc Commun; Oliveira, Ione M.F. de; Oliveira, Gilver F. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica; Lepretre, Jean-Claude [UMR-5631 CNRS-INPG-UJF, St. Martin d' Heres Cedex (France). Lab. d' Electrochimie et de Physicochimie des Materiaux et Interfaces; Bucher, Christophe; Mou tet, Jean-Claude [Universite Joseph Fourier Grenoble 1 (France). Dept. de Chimie Moleculaire], e-mail: Jean-Claude.Moutet@ujf-grenoble.fr

    2009-07-01

    Nickel-polymer composite electrode materials have been synthesized using various strategies, all comprising the electrochemical reduction of nickel(II) cations or complexes, incorporated by either ion-exchange or complexation into various poly(pyrrole-carboxylate) thin films coated by oxidative electropolymerization onto carbon electrodes. The electrocatalytic activity and the stability of the different composites have been then evaluated in the course of the electrocatalytic hydrogenation of ketones and enones in aqueous electrolytes. The best results were obtained using nickel-polymer composites synthesized by electroreduction of nickel(II) ions complexed into polycarboxylate films, which are characterized by a high catalytic activity and a good operational stability. (author)

  12. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  13. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation

    Science.gov (United States)

    Shang, Xiao; Yan, Kai-Li; Lu, Shan-Shan; Dong, Bin; Gao, Wen-Kun; Chi, Jing-Qi; Liu, Zi-Zhang; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Developing cost-effective electrocatalysts with both high activity and stability remains challenging for oxygen evolution reaction (OER) in water electrolysis. Herein, based on V-doped nickel sulfide nanowire on nickel foam (NiVS/NF), we further conduct controllable electrodeposition of Fe hydroxides film on NiVS/NF (eFe/NiVS/NF) to further improve OER performance and stability. For comparison, ultrafast chemical deposition of Fe hydroxides on NiVS/NF (uFe/NiVS/NF) is also utilized. V-doping of NiVS/NF may introduce more active sites for OER, and nanowire structure can expose abundant active sites and facilitate mass transport. Both of the two depositions generate amorphous Fe hydroxides film covering on the surface of nanowires and lead to enhanced OER activities. Furthermore, electrodeposition strategy realizes uniform Fe hydroxides film on eFe/NiVS/NF confirmed by superior OER activity of eFe/NiVS/NF than uFe/NiVS/NF with relatively enhanced stability. The OER activity of eFe/NiVS/NF depends on various electrodepositon time, and the optimal time (15 s) is obtained with maximum OER activity. Therefore, the controllable electrodeposition of Fe may provide an efficient and simple strategy to enhance the OER properties of electrocatalysts.

  14. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks

    International Nuclear Information System (INIS)

    Kahng, Yung Ho; Choe, Minhyeok; Jo, Gunho; Park, Woojin; Yoon, Jongwon; Hong, Woong-Ki; Lee, Byoung Hun; Lee, Takhee; Lee, Sangchul; Cho, Chun Hum

    2011-01-01

    Large-area graphene films, synthesized by the chemical vapor deposition (CVD) method, have the potential to be used as electrodes. However, the electrical properties of CVD-synthesized graphene films fall short of the best results obtained for graphene films prepared by other methods. Therefore, it is important to understand the reason why these electrical properties are inferior to improve the applicability of CVD-grown graphene films. Here, we show that CVD-grown graphene films on nickel substrates contain many small-base-area (SBA) peaks that scatter conducting electrons, thereby decreasing the Hall mobility of charges in the films. These SBA peaks were induced by small peaks on the nickel surface and are likely composed of amorphous carbon. The formation of these SBA peaks on graphene films was successfully suppressed by controlling the surface morphology of the nickel substrate. These findings may be useful for the development of a CVD synthesis method that is capable of producing better quality graphene films with large areas.

  15. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    International Nuclear Information System (INIS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios; Shervin, Shahab

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400–600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3–6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude–Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ∼0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor. (paper)

  16. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  17. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  18. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.

  19. The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation

    International Nuclear Information System (INIS)

    Glass, Dean E.; Galvan, Vicente; Prakash, G.K. Surya

    2017-01-01

    Highlights: •Nickel was reduced on graphene oxide and annealed under argon from 300 to 700 °C. •Nickel was oxidized from the removal of oxygen groups on the graphene oxide. •Higher annealed catalysts displayed decreased urea electrooxidation currents. •Micro direct urea/hydrogen peroxide fuel cells were employed for the first time. •Ni/rGO catalysts displayed enhanced fuel cell performance than the bare nickel. -- Abstract: The annealing temperature effects on nickel on reduced graphene oxide (Ni/rGO) catalysts for urea electrooxidation were investigated. Nickel chloride was directly reduced in an aqueous solution of graphene oxide (GO) followed by annealing under argon at 300, 400, 500, 600, and 700 °C, respectively. X-ray Diffraction (XRD) patterns revealed an increase in the crystallite size of the nickel nanoparticles while the Raman spectra displayed an increase in the graphitic disorder of the reduced graphene oxide at higher annealing temperatures due to the removal of oxygen functional groups. The Ni/rGO catalysts annealed at higher temperatures displayed oxidized nickel surface characteristics from the Ni 2p X-ray Photoelectron Spectra (XPS) due to the oxidation of the nickel from the oxygen functional groups in the graphitic lattice. In the half-cell testing, the onset potential of urea electrooxidation decreased while the urea electrooxidation currents decreased as the annealing temperature was increased. The nickel catalyst annealed at 700 °C displayed a 31% decrease in peak power density while the catalyst annealed at 300 °C displayed a 13% increase compared with the unannealed Ni/rGO catalyst in the micro direct urea/hydrogen peroxide fuel cells tests.

  20. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo; Lee, Daeho; Yeo, Junyeob; Yoo, Jae-Hyuck; Allen, Frances I.; Kim, Eunpa; So, Hongyun; Park, Hee K.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2015-01-01

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  1. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  2. Dewetting of nickel oxide-films on silicon under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Bolse, Thunu; Elsanousi, Ammar; Paulus, Hartmut; Bolse, Wolfgang

    2006-01-01

    Dewetting, occurring when a thin film on a non-wettable substrate turns into its liquid state, has gained strong interest during the last decade, since it results in nano-scale, large-area covering pattern formation. Recently we found that swift heavy ion (SHI) irradiation of thin NiO films on Si substrates at 80 K results in similar dewetting pattern, although in this case the coating has never reached its melting point. Careful inspection of the SEM images clearly revealed that the same nucleation mechanisms as observed for molten polymer films on Si (heterogeneous and homogeneous nucleation) were active. AFM shows that the circular holes formed in the early stages of the dewetting process exhibit a high and asymmetric rim-structure. RBS analysis was used to measure the coverage of the surface by the oxide films and revealed that the holes grow at constant velocity. This, and the shape of the rims, indicate that the material removed from the substrate surface piles up by plastic deformation, which points at a balance of the capillary driving forces and the hindered material dissipation

  3. In situ coating nickel organic complexes on free-standing nickel wire films for volumetric-energy-dense supercapacitors.

    Science.gov (United States)

    Hong, Min; Xu, Shusheng; Yao, Lu; Zhou, Chao; Hu, Nantao; Yang, Zhi; Hu, Jing; Zhang, Liying; Zhou, Zhihua; Wei, Hao; Zhang, Yafei

    2018-07-06

    A self-free-standing core-sheath structured hybrid membrane electrodes based on nickel and nickel based metal-organic complexes (Ni@Ni-OC) was designed and constructed for high volumetric supercapacitors. The self-standing Ni@Ni-OC film electrode had a high volumetric specific capacity of 1225.5 C cm -3 at 0.3 A cm -3 and an excellent rate capability. Moreover, when countered with graphene-carbon nanotube (G-CNT) film electrode, the as-assembled Ni@Ni-OC//G-CNT hybrid supercapacitor device delivered an extraordinary volumetric capacitance of 85 F cm -3 at 0.5 A cm -3 and an outstanding energy density of 33.8 at 483 mW cm -3 . Furthermore, the hybrid supercapacitor showed no capacitance loss after 10 000 cycles at 2 A cm -3 , indicating its excellent cycle stability. These fascinating performances can be ascribed to its unique core-sheath structure that high capacity nano-porous nickel based metal-organic complexes (Ni-OC) in situ coated on highly conductive Ni wires. The impressive results presented here may pave the way to construct s self-standing membrane electrode for applications in high volumetric-performance energy storage.

  4. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  5. Size-dependent magnetic properties of branchlike nickel oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2017-01-01

    Full Text Available Branchlike nickel oxide nanocrystals with narrow size distribution are obtained by a solution growth method. The size-dependent of magnetic properties of the nickel oxides were investigated. The results of magnetic characterization indicate that the NiO nanocrystals with size below 12.8 nm show very weak ferromagnetic state at room temperature due to the uncompensated spins. Both of the average blocking temperature (Tb and the irreversible temperature (Tirr increase with the increase of nanoparticle sizes, while both the remnant magnetization and the coercivity at 300 K increase with the decrease of the particle sizes. Moreover, the disappearance of two-magnon (2M band and redshift of one-phonon longitudinal (1LO and two-phonon LO in vibrational properties due to size reduction are observed. Compared to the one with the spherical morphological, it is also found that nano-structured nickel oxides with the branchlike morphology have larger remnant magnetization and the coercivity at 5 K due to their larger surface-to-volume ratio and greater degree of broken symmetry at the surface or the higher proportion of broken bonds.

  6. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Science.gov (United States)

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  7. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    International Nuclear Information System (INIS)

    Uudeküll, Peep; Kozlova, Jekaterina; Mändar, Hugo; Link, Joosep; Sihtmäe, Mariliis; Käosaar, Sandra; Blinova, Irina; Kasemets, Kaja; Kahru, Anne; Stern, Raivo; Tätte, Tanel; Kukli, Kaupo; Tamm, Aile

    2017-01-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  8. Atomic layer deposition of titanium oxide films on As-synthesized magnetic Ni particles: Magnetic and safety properties

    Energy Technology Data Exchange (ETDEWEB)

    Uudeküll, Peep, E-mail: peep.uudekull@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kozlova, Jekaterina; Mändar, Hugo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Link, Joosep [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Sihtmäe, Mariliis [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Käosaar, Sandra [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Faculty of Chemical and Materials Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Blinova, Irina; Kasemets, Kaja; Kahru, Anne [Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Stern, Raivo [Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Tätte, Tanel [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); Kukli, Kaupo [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Tamm, Aile [Institute of Physics, University of Tartu, W. Ostwaldi Str.1, 50411 Tartu (Estonia)

    2017-05-01

    Spherical nickel particles with size in the range of 100–400 nm were synthesized by non-aqueous liquid phase benzyl alcohol method. Being developed for magnetically guided biomedical applications, the particles were coated by conformal and antimicrobial thin titanium oxide films by atomic layer deposition. The particles retained their size and crystal structure after the deposition of oxide films. The sensitivity of the coated particles to external magnetic fields was increased compared to that of the uncoated powder. Preliminary toxicological investigations on microbial cells and small aquatic crustaceans revealed non-toxic nature of the synthesized particles.

  9. Kinetics of oxidation of nickel(II) aza macrocycles by ...

    Indian Academy of Sciences (India)

    The kinetics of the oxidation of nickel (II) hexaaza and nickel (II) pentaaza macrocycles by the peroxydisulphate anion, S2O8 2-, were studied in aqueous media. Effect of H on reaction rate was also studied. The rate increases with increase of S2OO8 2- concentration. Rates are almost independent of acid between H 4 ...

  10. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  11. Oxide ultrathin films science and technology

    CERN Document Server

    Pacchioni, Gianfranco

    2012-01-01

    A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors T...

  12. Structural and magnetic studies of Cr doped nickel ferrite thin films

    International Nuclear Information System (INIS)

    Panwar, Kalpana; Heda, N. L.; Tiwari, Shailja; Bapna, Komal; Ahuja, B. L.; Choudhary, R. J.; Phase, D. M.

    2016-01-01

    We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Si (111). It turns out that structural and magnetic properties of these two films are correlated.

  13. Electrochromic characteristics of a nickel borate thin film investigated by in situ XAFS and UV/vis spectroscopy

    International Nuclear Information System (INIS)

    Yoshida, Masaaki; Iida, Tsuyoshi; Mineo, Takehiro

    2014-01-01

    The electrochromic transition of a nickel borate thin film between colorless and brown was examined by means of in situ XAFS and UV/vis spectroscopy. The XAFS spectra showed that the average valence state of the nickel species in the film changed from +2.1 to +3.8 following the application of an electrode potential. Additionally, a broad peak at 700 nm was observed during in situ UV/vis absorption measurements on the application of a positive potential. These results suggest that the nickel borate film reversibly forms a NiOOH structure with a domain size of several nanometers during the electrochromic reaction. (author)

  14. PREPARATION OF NICKEL - COBALT SPINEL OXIDES NixCO3 ...

    African Journals Online (AJOL)

    degree of crystallinity give rise to reversible nickel incorporation. Pellets ... are of interest in solid oxide fuel cell and this is one of the features which make them attractive ... oxide system can only be obtained in a limited composition extent.

  15. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  16. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  17. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun; Zou, Jing; Zhang, Sheng; Zhou, Xin; Jiang, Jizhou

    2015-01-01

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nickel Oxide and Nickel Co-doped Graphitic Carbon Nitride Nanocomposites and its Octylphenol Sensing Application

    KAUST Repository

    Gong, Wanyun

    2015-11-16

    Nickel oxide and nickel co-doped graphitic carbon nitride (NiO-Ni-GCN) nanocomposites were successfully prepared by thermal treatment of melamine and NiCl2 6H2O. NiO-Ni-GCN nanocomposites showed superior electrochemical catalytic activity for the oxidation of octylphenol to pure GCN. A detection method of octylphenol in environmental water samples was developed based at NiO-Ni-GCN nanocomposites modified electrode under infrared light irradiation. Differential pulse voltammetry was used as the analytic technique of octylphenol, exhibiting stable and specific concentration-dependent oxidation signal in the presence of octylphenol in the range of 10nM to 1μM and 1μM to 50μM, with a detection limit of 3.3nM (3S/N). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of quaternary metal oxide films by synchrotron x-ray fluorescence microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Thompson, A.C.; Russo, R.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A high demand for thin films in industrial technology has been responsible for the creation of new techniques for the fabrication of such films. One highly effective method for the syntheses of variable composition thin films is pulsed-laser deposition (PLD). The technique has a large number of characteristics which make it an attractive approach for making films. It offers rapid deposition rates, congruent material transfer, simple target requirements from which to make the films, in situ multilayer deposition, and no gas composition or pressure requirements. Additionally, the technique can also afford crystalline films and films with novel structures. Pulsed-laser deposition can be used to make films of semiconductors, insulators, high-temperature superconductors, diamond-like films, and piezoelectric materials. Quaternary metal oxides involving calcium, nickel, and potassium have been shown to be quite effective in the catalysis of coal gasification and methane coupling. One approach to incorporating all three of the metal oxides into one phase is the use of laser ablation to prepare films of the catalysts so that they may be used for coatings, smooth surfaces on which to conduct detailed studies of gas-solid interface reactions that are involved in catalytic processes, and other applications. The problem of dissimilar boiling points of the three metal oxides system is overcome, since the laser ablation process effects the volatilization of all three components from the laser target essentially simultaneously. There is strong interest in gaining an understanding of the chemical and morphological aspects of the films that are deposited. Phenomena such as lattice defects and chemical heterogeneity are of interest. The experimental data discussed here are restricted to the matrix homogeneity of the films themselves for films which were void of microparticles.

  20. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  1. Oxidation resistance of nickel alloys at high temperature

    International Nuclear Information System (INIS)

    Tyuvin, Yu.D.; Rogel'berg, I.L.; Ryabkina, M.M.; Plakushchaya, A.F.

    1977-01-01

    The heat resistance properties of nickel alloys Ni-Cr-Si, Ni-Si-Al, Ni-Si-Mn and Ni-Al-Mn have been studied by the weight method during oxidation in air at 1000 deg and 1200 deg C. It is demonstrated that manganese reduces the heat resistance properties of Ni-Si and Ni-Al alloys, whilst the addition of over 3% aluminium enhances the heat resistance properties of Ni-Si (over 1.5%) alloys. The maximum heat resistance properties are shown by Ni-Si-Al and Ni-Cr-Si alloys with over 2% Si. These alloys offer 3 to 4 times better oxidation resistance as compared with pure nickel at 1000 deg C and 10 times at 1200 deg C

  2. Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance.

    Science.gov (United States)

    Mondal, Anjon Kumar; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Wang, Guoxiu

    2013-11-01

    Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X-ray diffraction, field-emission SEM, and TEM. When applied as electrode materials for lithium-ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g(-1) at a current density of 500 mA g(-1), an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g(-1) at a current density of 20 A g(-1) in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microstructure and magnetooptics of silicon oxide with implanted nickel nanoparticles

    International Nuclear Information System (INIS)

    Edel’man, I. S.; Petrov, D. A.; Ivantsov, R. D.; Zharkov, S. M.; Khaibullin, R. I.; Valeev, V. F.; Nuzhdin, V. I.; Stepanov, A. L.

    2011-01-01

    Metallic nickel nanoparticles of various sizes are formed in a thin near-surface layer in an amorphous SiO 2 matrix during 40-keV Ni + ion implantation at a dose of (0.25−1.0) × 10 17 ions/cm 2 . The micro-structure of the irradiated layer and the crystal structure, morphology, and sizes of nickel particles formed at various irradiation doses are studied by transmission electron microscopy and electron diffraction. The magnetooptical Faraday effect and the magnetic circular dichroism in an ensemble of nickel nanoparticles are studied in the optical range. The permittivity ε tensor components are calculated for the implanted samples using an effective medium model with allowance for the results of magnetooptical measurements. The spectral dependences of the tensor ε components are found to be strongly different from those of a continuous metallic nickel film. These differences are related to a disperse structure of the magnetic nickel phase and to a surface plasma resonance in the metal nanoparticles.

  4. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  5. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  6. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  7. NICKEL HYDROXIDE FILMS IN CONTACT WITH AN ELECTROACTIVE SOLUTION. A STUDY EMPLOYING ELECTROCHEMICAL IMPEDANCE MEASUREMENTS

    OpenAIRE

    RICARDO TUCCERI

    2018-01-01

    The deactivation of nickel hydroxide films after prolonged storage times without use was studied. This study was carried out in the context of the Rotating Disc Electrode Voltammetry (RDEV) and Electrochemical Impedance Spectroscopy (EIS) when the nickel hydroxide film contacts an electroactive solution and a redox reaction occurs at the Au-Ni(OH)2|electrolyte interface. Deferasirox (4-(3,5-bis(2- hydroxyphenyl)-1,2,4-triazol-1-yl) benzoic acid) was employed as redox species in solution. Limi...

  8. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium

    International Nuclear Information System (INIS)

    Silva, M.L.A. da; Varela, M.C.R.S.

    2016-01-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  9. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  10. Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic...

  11. Oxidation films morphology

    International Nuclear Information System (INIS)

    Paidassi, J.

    1960-01-01

    After studying the oxidation of several pure polyvalent metals (Fe, Cu, Mn, Ni, U) and of their oxides at high temperature and atmospheric pressure, the author suggests how to modify the usual representation of the oxide film (a piling of different oxide layers, homogeneous on a micrographic scale with a equi-axial crystallisation, free of mechanical tensions, with flat boundary surfaces) to have it nearer to reality. In this first part, the author exposes the study of the real micrographic structure of the oxidation film and gives examples of precipitation in the oxides during the cooling of the oxidised sample. (author) [fr

  12. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    Science.gov (United States)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  13. Synthesis and characterization of nickel oxide particulate annealed at different temperatures

    Science.gov (United States)

    Sharma, Khem Raj; Thakur, Shilpa; Negi, N. S.

    2018-04-01

    Nickel oxide has been synthesized by solution combustion technique. The nickel oxide ceramic was annealed at 600°C and 1000°C for 2 hours. Structural, electrical, dielectric and magnetic properties were analyzed which are strongly dependent upon the synthesis method. Structural properties were examined by X-ray diffractometer (XRD), which confirmed the purity and cubic phase of nickel oxide. XRD data reveals the increase in crystallite size and decrease in full width half maximum (FWHM) as the annealing temperature increases. Electrical conductivity is found to increase from 10-6 to 10-5 (Ω-1cm-1) after annealing. Dielectric constant is observed to increase from 26 to 175 when the annealing temperature is increased from 600°C to 1000°C. Low value of coercive field is found which shows weak ferromagnetic behavior of NiO. It is observed that all the properties of NiO particulate improve with increasing annealing temperature.

  14. Study of the nickel-fullerene nano-structured thin films

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Naramoto, H.; Narumi, K.; Yamamoto, S.; Abe, H.

    2004-01-01

    Roč. 219, č. 20 (2004), s. 862-866 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nickel * fullerene * magnesium oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.997, year: 2004

  15. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  16. Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, N.; Soboyejo, W.O.; Tarquinio, C.

    2008-01-01

    In situ scanning electron microscopy micro-tensile tests were conducted on freestanding LIGA nickel thin films of two thicknesses (70 and 270 μm). The deformation and fracture mechanisms were elucidated by in situ scanning electron microscopy imaging and ex situ fractographic analysis. Due to the film microstructural gradient, an apparent thickness effect on the film yield strengths was observed, which was then rationalized with a continuum micromechanics model

  17. Clad modified optical fiber gas sensors based on nanocrystalline nickel oxide embedded coatings

    Science.gov (United States)

    Yamini, K.; Renganathan, B.; Ganesan, A. R.; Prakash, T.

    2017-07-01

    A clad modified optical fiber gas sensor for sensing volatile organic compound vapours (VOCs) such as formaldehyde (HCHO), ammonia (NH3), ethanol (C2H5OH) and methanol (CH3OH) up to 500 ppm was studied using nanocrystalline nickel oxide embedded coatings. Prior to the measurements, nickel oxide in two different crystallite sizes such as 24 nm and 76 nm was synthesized by calcination of reverse precipitated nickel hydroxide subsequently at 450 °C and 900 °C for 30 min. Then, samples physical properties were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Our gas sensing measurement concludes that the lower crystallite size (24 nm) nickel oxide nanocrystals exhibits superior performance to formaldehyde and ethanol vapours as compared with other two VOCs, the observed experimental results were discussed in detail.

  18. Influence of pH on the chemical and structural properties of the oxide films formed on 316L stainless steel, alloy 600 and alloy 690 in high temperature aqueous environments

    International Nuclear Information System (INIS)

    Dupin, M.; Gosser, P.; Walls, M.G.; Rondot, B.; Pastol, J.L.

    2002-01-01

    The oxide films formed on 316L stainless steel, alloy 600 and alloy 690 at 320 deg C in high temperature aqueous environments of different pH have been examined by glow discharge optical spectroscopy, scanning electron microscopy, atomic force microscopy and capacitance measurements. The analytical study reveals that the films formed at pH 5 are mainly composed of chromium oxides. When the pH increases the chromium concentration decreases and those of the other two elements (Ni and Fe) tend to increase. The films formed at pH 5 on 316L stainless steel and alloy 600 are thick and powder-like. The film formed at the same pH on alloy 690 is thin and is composed of a compact protective inner layer and a less-compact outer layer formed by crystals of mixed iron-nickel-chromium oxides. The morphological appearance of the thick films and that of the thin films is very different. However, equivalent morphologies can be observed for the relatively thin duplex films formed at pH 8 and pH 9.5 on the 316L stainless steel and nickel-base alloys. The evolution of the chemical composition of the films is accompanied by important changes from the point of view of their semi-conductivity. (authors)

  19. Development of a Novel Biosensor Using Cationic Antimicrobial Peptide and Nickel Phthalocyanine Ultrathin Films for Electrochemical Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Maysa F. Zampa

    2012-01-01

    Full Text Available The antimicrobial peptide dermaseptin 01 (DS 01, from the skin secretion of Phyllomedusa hypochondrialis frogs, was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPc, widely used in electronic devices, using layer-by-layer technique. The films were used as a biosensor to detect the presence of dopamine (DA, a neurotransmitter associated with diseases such as Alzheimer's and Parkinson's, with detection limits in the order of 10−6 mol L−1. The use of DS 01 in LbL film generated selectivity in the detection of DA despite the presence of ascorbic acid found in biological fluids. This work is the first to report that the antimicrobial peptide and NiTsPc LbL film exhibits electroanalytical activity to DA oxidation. The selectivity in the detection of DA is a fundamental aspect for the development of electrochemical sensors with potential applications in the biomedical and pharmaceutical industries.

  20. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Yao, Q.; Shen, D. W.

    2016-01-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO 3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO 3 and iso-polarity LaAlO 3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO 3 (111) substrate was more suitable than Nb-doped SrTiO 3 . In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO 3 based superlattices.

  1. Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants

    Science.gov (United States)

    Manna, Indrani; Bandyopadhyay, Maumita

    2017-11-01

    Concentration of engineered NiO-NP in nature is on the rise, owing to large scale industrial uses and human interventions, which have accreted the scope of exposure especially at the primary trophic levels of the ecosystem. Nickel content in air, drinking water and soil is already above permissible limits in most parts of the developed world. Though nickel oxide is an essential micronutrient in the animal system, it has already been graded as a human carcinogen by WHO, and numerous studies have established the toxic nature of nickel in higher dosage in the animal system. Though studies depicting toxicity and bioaccumulation of nickel in plants is documented, the interaction of nickel oxide nanoparticle with plants is not fully a well-studied, well elucidated topic. What is known is that, exposure to nickel oxide nanoparticle, arouses stress response and leads to cytotoxicity and growth retardation in a handful of plants, a defined work on the intricate physicochemical cellular responses and genotoxic challenges has been so far absent. We have tried to fill in such gaps with this study. We planned the work around pertinent hypotheses like: whether NiO-NP cause cytotoxicity in a model plant system (Allium cepa L.)?If so, does internalization of nickel ion (the potent toxic) take place in the tissue? Does internalized NiO-NP create furore in the antioxidant enzyme system of the plant leading to cytotoxicity? In that case, whether the ENP causes genotoxicity and leads to pycknosis of the cell. The study has been designed to assess the change in biochemical profile and genotoxicity potential of NiO-NP at a wide range of concentrations using root tips of Allium cepa L., the model system for study of cytotoxicity and genotoxicity, and four of its closest relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., Allium fistulosum L., chosen for their immense economic importance. Growing root tips were treated with seven different concentrations of Ni

  2. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  3. Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    Science.gov (United States)

    Broadway, David M.; O'Dell, Stephen L.; Ramsey, Brian D.; Weimer, Jeffrey

    2015-01-01

    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively.

  4. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2012-01-01

    A method for the preparation of NiO and Nb-NiO nanocomposites is developed, based on the slow oxidation of a nickel-rich Nb-Ni gel obtained in citric acid. The resulting materials have higher surface areas than those obtained by the classical evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar to that of NiNb 2O 6. Unlike bulk nickel oxides, the activity of these nanooxides for low-temperature ethane oxidative dehydrogenation (ODH) has been related to their redox properties. In addition to limiting the size of NiO crystallites, the presence of the Nb-rich phase also inhibits NiO reducibility. At Nb content >5 at.%, Nb-NiO composites are thus less active for ethane ODH but more selective, indicating that the Nb-rich phase probably covers part of the unselective, non-stoichiometric, active oxygen species of NiO. This geometric effect is supported by high-resolution transmission electron microscopy observations. The close interaction between NiO and the thin Nb-rich mixed oxide layer, combined with possible restructuration of the nanocomposite under ODH conditions, leads to significant catalyst deactivation at high Nb loadings. Hence, the most efficient ODH catalysts obtained by this method are those containing 3-4 at.% Nb, which combine high activity, selectivity, and stability. The impact of the preparation method on the structural and catalytic properties of Nb-NiO nanocomposites suggests that further improvement in NiO-catalyzed ethane ODH can be expected upon optimization of the catalyst. © 2011 Elsevier Inc. All rights reserved.

  5. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  6. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  7. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  8. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Science.gov (United States)

    Tam, Waiping G.; Wainright, Jesse S.

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested.

  9. A microfabricated nickel-hydrogen battery using thick film printing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Waiping G.; Wainright, Jesse S. [Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-02-25

    To utilize the distinctive cycle life and safety characteristics of the nickel-hydrogen chemistry while eliminating the high pressure limitations of conventional nickel-hydrogen cells, a microfabricated nickel-hydrogen battery using a low-pressure metal hydride for hydrogen storage is being developed for powering micro-electromechanical systems (MEMS) devices and for biomedical applications where the battery would be implanted within the body. Thick film printing techniques which are simple and low cost were used to fabricate this battery. Inks were developed for each of the different battery components, including the electrodes, current collectors and separator. SEM images on these printed components showed the desired characteristics for each. Positive electrode cycling tests were performed on the printed positive electrodes while cyclic voltammetry was used to characterize the printed negative electrodes. Consistent charge and discharge performance was observed during positive electrode cycling. Full cells with printed positive and negative assemblies were assembled and tested. (author)

  10. Elaboration of modified poly(NiII-DHS films as electrodes by the electropolymerization of Ni(II-[5,5′-dihydroxysalen] onto indium tin oxide surface and study of their electrocatalytic behavior toward aliphatic alcohols

    Directory of Open Access Journals (Sweden)

    Ali Ourari

    2017-11-01

    Full Text Available Nickel(II-DHS complex was obtained from N,N′-bis(2,5-dihydroxybenzylidene-1,2-diaminoethane (H2DHS ligand and nickel acetate tetrahydrated in ethanolic solution with stirring under reflux. This complex, dissolved in an alkaline solution, was oxidized to form electroactive films strongly adhered on the ITO (indium tin oxide electrode surface. In this alkaline solution, the poly-[NiII-DHS]/ITO films showed the typical voltammetric response of (Ni2+/Ni3+ redox couple centers which are immobilized in the polymer-film. The modified electrodes (MEs obtained were also characterized by several techniques such as scanning electronic microscopy, atomic force microscopy and electrochemical methods. The electrocatalytic behavior of these MEs toward the oxidation reaction of some aliphatic alcohols such as methanol, ethanol, 2-Methyl-1-propanol and isopropanol was investigated. The voltammograms recorded with these alcohols showed good electrocatalytic efficiency. The electrocatalytic currents were at least 80 times higher than those obtained for the oxidation of methanol on electrodes modified with nickel hydroxide films in alkaline solutions. We noticed that these electrocatalytic currents are proportional to the concentration of methanol (0.050–0.30 μM. In contrast, those recorded for the oxidation of other aliphatic short chain alcohols such as ethanol, 2-methyl-1-propanol and isopropanol are rather moderately weaker. In all cases the electrocatalytic currents presented a linear dependence with the concentration of alcohol. These modified electrodes could be applied as alcohol sensors.

  11. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rathmall, Aaron [Duke University; Nguyen, Minh [Duke University; Wiley, Benjamin J [Duke University

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  12. Synthesis and characterization of nickel oxide doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M. [Dept. of Electrical Engineering, Bengal Institute of Technology Kolkata (India); Mukherjee, S. [Dept. of Metallurgical Engineering, Jadavpur University, Kolkata (India); Maitra, S. [Govt. College of Engg. and Ceramic Technology, Kolkata (India)

    2012-01-15

    Barium strontium titanate (BST) ceramics (Ba{sub 0.6}Sr{sub 0.4})TiO{sub 3} were synthesized by solid state sintering using barium carbonate, strontium carbonate and rutile as the precursor materials. The samples were doped with nickel oxide in different proportions. Different phases present in the sintered samples were determined from X-ray diffraction investigation and the distribution of different phases in the microstructure was assessed from scanning electron microscopy study. It was observed that the dielectric properties of BST were modified significantly with nickel oxide doping. These ceramics held promise for applications in tuned circuits. (author)

  13. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Science.gov (United States)

    Pandey, B.; Das, D.; Kar, A. K.

    2015-05-01

    Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current-voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp2 content in DLC matrix. The magnetic moment vs. magnetic field (m-H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  14. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks

    Science.gov (United States)

    Jones, J. Graham; Warner, C. G.

    1972-01-01

    Graham Jones, J., and Warner, C. G. (1972).Brit. J. industr. Med.,29, 169-177. Chronic exposure to iron oxide, chromium oxide, and nickel oxide fumes of metal dressers in a steelworks. Occupational and medical histories, smoking habits, respiratory symptoms, chest radiographs, and ventilatory capacities were studied in 14 steelworkers employed as deseamers of steel ingots for periods of up to 16 years. The men were exposed for approximately five hours of each working shift to fume concentrations ranging from 1·3 to 294·1 mg/m3 made up mainly of iron oxide with varying proportions of chromium oxide and nickel oxide. Four of the men, with 14 to 16 years' exposure, showed radiological evidence of pneumoconiosis classified as ILO categories 2 or 3. Of these, two had pulmonary function within the normal range and two had measurable loss of function, moderate in one case and mild in the other. Many observers would diagnose these cases as siderosis but the authors consider that this term should be reserved for cases exposed to pure iron compounds. The correct diagnosis is mixed-dust pneumoconiosis and the loss of pulmonary function is caused by the effects of the mixture of metallic oxides. It is probable that inhalation of pure iron oxide does not cause fibrotic pulmonary changes, whereas the inhalation of iron oxide plus certain other substances obviously does. Images PMID:5021996

  15. Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Anjum, Dalaver Hussain; Sun, Miao; Biausque, Gregory; Basset, Jean-Marie; Caps, Valerie

    2012-01-01

    evaporation method from nickel nitrate and ammonium niobium oxalate. These consist in NiO nanocrystallites (7-13 nm) associated, at Nb contents >3 at.%., with an amorphous thin layer (1-2 nm) of a niobium-rich mixed oxide with a structure similar

  16. The passive oxide films growth on 316L stainless steel in borate buffer solution measured by real-time spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haisong; Wang, Lu; Sun, Dongbai [National Center for Materials Service Safety (NCMS), University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongying, E-mail: hyyu@ustb.edu.cn [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-10-01

    Highlights: • The optical properties of passive oxide films on 316L stainless steel were studied. • The thickness of the oxide films (1.5–2.6 nm) increased linearly with the potentials. • The growth of passive film followed high electric field ion conduction model. • Selective solubility of oxide induced compositional change of passive film. - Abstract: Passive film growth on 316L stainless steel was investigated in borate buffer electrolyte (pH = 9.1) by real-time spectroscopic ellipsometry (SE) and the composition was estimated by X-ray photoelectron spectroscopy (XPS). Anodic passivation of 316L SS was carried out in the potential range from 0 V{sub SCE} to 0.9 V{sub SCE}, after potentiostatic polarization for 1800s, the current density decayed from 10{sup −2} A cm{sup −2} to 10{sup −6} A cm{sup −2}. The passive film thickness was simulated from Frenel and Drude reflection equations, the average complex refractive index was assumed to be N = 2.3 − j0.445. The estimated thickness increased linearly with potential from 1.5 nm at 0 V to 2.6 nm at 0.8 V. The growth of passive film followed high electric field ion conduction model. The passive film mainly contained the oxide/hydroxide of iron and chromium. The selective solubility of oxide in passive film explained the change of iron and chromium content at different potentials. Few nickel and molybdenum also contributed to the passive film with a constant content.

  17. Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors

    Science.gov (United States)

    Chang, Jie; Sun, Jing; Xu, Chaohe; Xu, Huan; Gao, Lian

    2012-10-01

    Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni : Co = 2) outperform pure NiO and Co3O4. The Ni-Co-O-1 and Ni-Co-O-2 possess high specific capacities of 778.2 and 867.3 F g-1 at 1 A g-1 and capacitance retentions of 84.1% and 92.3% at 10 A g-1, respectively. After full activation, the Ni-Co-O-1 and Ni-Co-O-2 could achieve a maximum value of 971 and 1550 F g-1 and remain at ~907 and ~1450 F g-1 at 4 A g-1, respectively. Also, the nickel cobalt oxides show high capacity retention when fast charging.Nickel cobalt oxides with various Ni/Co ratios were synthesized using a facile template-free approach for electrochemical supercapacitors. The texture and morphology of the nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller analysis (BET). The results show that a hierarchical porous structure assembled from nanoflakes with a thickness of ~10 nm was obtained, and the ratio of nickel to cobalt in the nanocomposites was very close to the precursors. Cyclic voltammetry (CV) and galvanostatic charge and discharge tests were carried out to study the electrochemical performance. Both nickel cobalt oxides (Ni-Co-O-1 with Ni : Co = 1, Ni-Co-O-2 with Ni

  18. Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions--a review

    International Nuclear Information System (INIS)

    Tzvetkoff, Tzvety; Gencheva, Petia

    2003-01-01

    A review of the corrosion of Ni and Ni-based alloys in melts containing oxyanions (nitrate, sulphate, hydroxide and carbonate) is presented, emphasising the mechanism of growth, the composition and structure of the passivating oxide films formed on the material in such conditions. First, the thermodynamical background involving solubility and point defect chemistry calculations for oxides formed on Ni, Cr and Ni-Cr alloys in molten salt media is briefly commented. The main passivation product on the Ni surface has been reported to be cubic NiO. In the transition stage, further oxidation of the compact NiO layer has been shown to take place in which Ni(III) ions and nickel cation vacancies are formed. Transport of nickel cation vacancies has been proposed to neutralise the charges of the excess oxide ions formed in the further oxidation reaction. Ex situ analysis studies reported in the literature indicated the possible formation of Ni 2 O 3 phase in the anodic layer. During the third stage of oxidation, a survey of the published data indicated that oxygen evolution from oxyanion melts is the predominant reaction taking place on the Ni/NiO electrode. This has been supposed to lead to a further accumulation of oxygen ions in the oxide lattice presumably as oxygen interstitials, and a NiO 2 phase formation has been also suggested. Literature data on the composition of the oxide film on industrial Ni-based alloys and superalloys in melts containing oxyanions are also presented and discussed. Special attention is paid to the effect of the composition of the alloy, the molten salt mixture and the gas atmosphere on the stability and protective ability of corrosion layers

  19. Microstructural characteristics of high-temperature oxidation in nickel-base superalloy

    International Nuclear Information System (INIS)

    Khalid, F.A.

    1997-01-01

    Superalloys are used for aerospace and nuclear applications where they can withstand high-temperature and severe oxidizing conditions. High-temperature oxidation behavior of a nickel-base superalloy is examined using optical and scanning electron microscopical techniques. The morphology of the oxide layers developed is examined, and EDX microanalysis reveals diffusion of the elements across the oxide-metal interface. Evidence of internal oxidation is presented, and the role of structural defects is considered. The morphology of the oxide-metal interface formed in the specimens exposed in steam and air is examined to elucidate the mechanism of high-temperature oxidation

  20. Challenges of sample preparation for cross sectional EBSD analysis of electrodeposited nickel films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; Pantleon, Karen

    2009-01-01

    Thorough microstructure and crystallographic orientation analysis of thin films by means of electron backscatter diffraction requires cross section preparation of the film-substrate compound. During careful preparation, changes of the rather non-stable as-deposited microstructure must be avoided....... Different procedures for sample preparation including mechanical grinding and polishing, electropolishing and focused ion beam milling have been applied to a nickel film electrodeposited on top of an amorphous Ni-P layer on a Cu-substrate. Reliable EBSD analysis of the whole cross section can be obtained...

  1. Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC).

    Science.gov (United States)

    Alencar, Wagner S; Crespilho, Frank N; Martins, Marccus V A; Zucolotto, Valtencir; Oliveira, Osvaldo N; Silva, Welter C

    2009-07-07

    The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

  2. Preliminary results on the chemical characterisation of the cathode nickel--emissive layer interface in oxide cathodes

    International Nuclear Information System (INIS)

    Jenkins, S.N.; Barber, D.K.; Whiting, M.J.; Baker, M.A.

    2003-01-01

    In cathode ray tube (CRT) thermionic oxide cathodes, the nickel-oxide interface properties are key to understanding the mechanisms of operation. At the elevated operational temperatures, free barium is formed at the interface by the reaction of reducing activators, from the nickel alloy, with barium oxide. The free barium diffuses to the outer surface of the oxide providing a low work function electron-emitting surface. However, during cathode life an interface layer grows between the nickel alloy and oxide, comprised of reaction products. The interfacial layer sets limits on the cathode performance and useful operational lifetime by inhibiting the barium reducing reaction. This paper discusses sample preparation procedures for exposure of the interface and the use of several surface and bulk analytical techniques to study interface layer formation. SEM, AES and SIMS data are presented, which provide preliminary insight into the mechanisms operating during the cathode's lifetime. There is evidence that the activator elements in the nickel alloy base, Al and Mg, are able to diffuse to the surface of the oxide during activation and ageing and that these elements are enriched at the interface after accelerated life

  3. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    In the present work, the effect of addition of nickel oxide that annualizes the .... for required dimension using grinding machine, then sam- ples were subjected to ... the hardness testing machine, the size of the sample was. 10 × 10 × 10 mm ...

  4. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  5. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    Science.gov (United States)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  6. Effect of gamma irradiation on the color, structure and morphology of nickel-doped polyvinyl alcohol films: Alternative use as dosimeter or irradiation indicator

    Science.gov (United States)

    Raouafi, A.; Daoudi, M.; Jouini, K.; Charradi, K.; Hamzaoui, A. H.; Blaise, P.; Farah, K.; Hosni, F.

    2018-06-01

    Nickel-doped poly vinyl alcohol (PVA) films were developed for potential application in industrial sectors like radiation processing. We report in this paper the results of an experimental investigation of 60Co source γ-radiation effect on colorimetric, structural and morphological properties of PVA films doped with 0.5% Ni2+ ions (PVA/Ni2+). The PVA/Ni2+ films were irradiated by different gamma-radiation doses varying from 5 to 100 kGy. Color modification of films were studied using L∗, a∗ and b∗ color space measurements as function of the γ-dose and post-irradiation time. The visual change in all samples was verified by microstructure analysis, Fourier transforms infrared (FTIR) spectroscopy, X-Rays diffraction (XRD) and scanning electron microscopy (SEM). The color space exhibited a linear dose response at a dose ranging from 5 to 50 kGy, and then it reached saturation for higher γ-doses. The calculated color changes (ΔE) show a linear dose response relationship from 9.90 to 115.02 in the dose range from 0 to 50 kGy. It showed also the activation of stable color centers. The variability of the color change did not exceed 3% during 80 h (h) post-irradiation. Furthermore, the microstructure analysis evidenced that the color modification due to the optical activation of nickel-oxide (NiO) color center were obtained by complexing Ni2+ ions in irradiated PVA films. The obtained results inspire the possibility to use PVA films for the control process in industrial radiation facilities in dose range 5-50 kGy.

  7. Nonlinear oxidation kinetics of nickel cermets

    International Nuclear Information System (INIS)

    Galinski, Henning; Bieberle-Huetter, Anja; Rupp, Jennifer L.M.; Gauckler, Ludwig J.

    2011-01-01

    The oxidation of a cermet of screen-printed nickel (Ni) and gadolinia-doped ceria (CGO) with an approximate median porosity of 50 vol.% has been studied via in situ X-ray diffraction and focused ion beam nanotomography in the temperature range 773-848 K. The oxidation kinetics of Ni to NiO is found to be highly nonlinear with an apparent activation energy of 2.8(2) eV in this temperature range. The nonlinear oxidation kinetics found is in good agreement with theoretical works on oxide growth driven by nonlinear inbuilt fields. Stress-induced Kirkendall void formation has been identified as the physical process that enhances the oxidation of Ni/CGO cermets. Compressive stresses within the Ni matrix result from the thermal expansion mismatch of Ni and CGO and cause plastic deformation as they exceed the yield stress of the Ni matrix. The pore size distribution of Kirkendall voids formed has been measured by FIB nanotomography and shows a significant temperature dependence. It is shown that even one cycle of reoxidation changes irreversibly the microstructure of the cermet which can be interpreted as the onset and main contribution to the mechanical degradation of the cermet.

  8. Stabilized chromium oxide film

    Science.gov (United States)

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  9. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  10. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  11. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Science.gov (United States)

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  12. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass.

    Directory of Open Access Journals (Sweden)

    Marcia Regina Salvadori

    Full Text Available The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs, which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites.

  13. Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applications

    International Nuclear Information System (INIS)

    Adamska, A.M.; Bright, E. Lawrence; Sutcliffe, J.; Liu, W.; Payton, O.D.; Picco, L.; Scott, T.B.

    2015-01-01

    Polycrystalline uranium dioxide thin films were grown on nickel substrates via aqueous electrodeposition of a precursor uranyl salt. The arising semiconducting uranium dioxide thin films exhibited a tower-like morphology, which may be suitable for future application in 3D solar cell applications. The thickness of the homogenous, tower-like films reached 350 nm. Longer deposition times led to the formation of thicker (up to 1.5 μm) and highly porous films. - Highlights: • Electrodeposition of polycrystalline UO_2 thin films • Tower-like morphology for 3D solar cell applications • Novel technique for separation of heavy elements from radioactive waste streams

  14. The study of chlorination of nickel oxide by chlorine and calcium chloride in the presence of active additives

    OpenAIRE

    Ilic, Ilija; Krstev, Boris; Stopic, Srecko; Cerovic, K

    1997-01-01

    Chlorination of nickel oxide by chlorine and calcium chloride in the presence of C, BaS and S were studied, both experimentally and theoretically. Chlorination of nickel oxide by chlorine was carried out in the temperature range 573-873 K and by calcium chloride in the temperature range 1023-1223 K. The results obtained of the chlorination of nickel oxide by chlorine showed that C has the strongest and S the weakest effect on the process. Addition of BaS has a favorable effect on the chlorina...

  15. Interaction of atomic hydrogen with ethylene adsorbed on nickel films

    International Nuclear Information System (INIS)

    Korchak, V.N.; Tret'yakov, I.I.; Kislyuk, M.U.

    1976-01-01

    The reactivity of ethylene adsorbed on the pure films of nickel at various temperatures was studied with respect to hydrogen atoms generated in the gaseous phase. The experiments were conducted in a glass vacuum apparatus enabling one to obtain the highest vacuum up to 2x20 -10 torr. The catalyst, nickel films, was produced by their deposition onto the walls of the glass reactor at a pressure of the residual gas of 10 -9 torr and a temperature of the walls of 25 deg C. Gas purity was analyzed by the mass spectrometric method. The ethylene adsorbed at the temperatures below 173 deg K reacted readily with the hydrogen atoms to yield ethane. The process ran without practically any activation energy involved and was limited by the attachment of the first hydrogen atom to the ethylene molecule. The efficiency of this interaction was 0.02 of the number of the hydrogen atoms collisions against the surface occupied by the ethylene. The adsorption of the ethylene at room and higher temperatures was accompanied by its disproportioning with the release of the hydrogen into the gaseous phase and a serious destruction of the ethylene molecules adsorbed to produce hydrogen residues interacting with neither molecular nor atomic hydrogen [ru

  16. Synthesis of graphene on nickel films by CVD method using methane

    International Nuclear Information System (INIS)

    Castro, Manuela O. de; Liebold-Ribeiro, Yvonne; Barros, Eduardo B.; Salomao, Francisco C.C.; Mendes Filho, Josue; Souza Filho, Antonio G.; Chesman, Carlos

    2011-01-01

    Full text: Nanomaterials have opened up many possibilities for groundbreaking innovations in various technologies of modern society. One key example is graphene, which is composed of one-atom-thick sheet of sp2-bonded carbon atoms, arranged in a hexagonal symmetry. However, real world applications of graphene require well-established and large synthesis techniques. The so-called Chemical Vapor Deposition (CVD) is one of the most promising method for synthesizing graphene. The general idea of this technique is to dissolve carbon atoms inside a transition metal melt at a certain temperature, then allowing the dissolved carbon to precipitate at lower temperatures as single layer graphene (SLG). In the present work, we used the CVD method and methane gas as carbon source for the synthesis of graphene on silicon (Si) substrates (300nm thermal oxide) covered with sputtered nickel (Ni) films as catalyst. In order to achieve large-area and defect-free graphene sheets the influence of the different growth parameters (growth temperature and time, gas flow of methane, film thickness and grain size of Ni) on quality and quantity of graphene growth were studied. The obtained graphene films were transferred to a silicon substrate by the polymer coating process, using polymethyl-methacrylate (PMMA) as coating. In order to characterize the transferred graphene we used Scanning Electron Microscopy (SEM), Raman Spectroscopy, Optical Microscopy and Atomic Force Microscopy (AFM). The results show the influence of CVD process parameters on the quality and quantity of graphene growth in our experimental conditions. Acknowledgments: The authors thank Brazilian agencies CNPq and FUNCAP for financial support and Alfonso Reina (MIT, USA) for helpful discussions. (author)

  17. Nickel coated flyash (Ni-FAC) cenosphere doped polyaniline composite film for electromagnetic shielding

    International Nuclear Information System (INIS)

    Bora, Pritom J; Ramamurthy, Praveen C; Madras, Giridhar; Vinoy, K J; Kishore

    2015-01-01

    A solid waste material fly ash cenosphere (FAC) was nickel coated and polyaniline in situ polymerized at −30 ± 2 °C in nitrogen atmosphere. A thin film of this composite material was prepared by solution processing and surface morphology/topography was studied. High electromagnetic shielding effectiveness (SE) was obtained for this film; 59 ± 4 μm and 133 ± 4 μm films show an average of 38 and 60 dB SE, respectively, in the frequency range 8.2–12.4 GHz (X-band). Unlike PANI film, the SE of these composite films is high at high frequency. The presence of magneto dielectric microsphere (Ni-FAC) increases the heterogeneity of the composite film in an efficient way for EMI shielding by changing film topography and increasing ac conductivity and permeability. (paper)

  18. Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties.

    Science.gov (United States)

    Kandasamy, N; Venugopal, T; Kannan, K

    2018-06-01

    A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.

  19. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating

    International Nuclear Information System (INIS)

    Chi Fangting; Sichuan Univ., Chengdu; Li Bo; Liu Yiyang; Chen Sufen; Jiang Bo

    2009-01-01

    The deposition capability of nickel on the surface of poly-α-methylstyrene microspheres was improved by combined treatment of ozone aeration and UV irradiation in aqueous ammonia. Surface properties of the treated film were investigated by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FT-TR) measurements. The samples were characterized by SEM. The results indicate that after ultraviolet joint ozone treatment, the surfaces of microspheres were oxidized, and the amine and amide groups are introduced on their surface. The images of SEM show the adhesion between microspheres and nickel-phosphorus films was improved after surface modification. This was attributed to amide which could chemisorb palladium ions to catalyze electroless nickel plating on the pretreated surface of microspheres. (authors)

  20. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960)

    International Nuclear Information System (INIS)

    Charpin, P.; Hauptman, A.

    1960-01-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [fr

  1. Process for electroforming nickel containing dispersed thorium oxide particles therein

    International Nuclear Information System (INIS)

    Malone, G.A.

    1975-01-01

    Nickel electroforming is effected by passing a direct current through a bath containing a dissolved nickel salt or a mixture of such salts, such as those present in sulfamate or Watts baths, and finely divided sol-derived thorium oxide particles of 75 to 300 angstroms, preferably 100 to 200 angstroms diameters therein, at a pH in the range of 0.4 to 1.9, preferably 0.8 to 1.3. The nickel so deposited, as on a pre-shaped stainless steel cathode, may be produced in desired shape and may be removed from the cathode and upon removal, without additional working, possesses desirable engineering properties at elevated temperatures, e.g., 1,500 to 2,200 0 F. Although the material produced is of improved high temperature stability, hardness, and ductility, compared with nickel alone, it is still ductile at room temperature and has properties equivalent or superior to nickel at room temperatures up to 1,500 0 F. Further improvements in mechanical properties of the material may be obtained by working. Also disclosed are electrodeposition baths, methods for their manufacture, and products resulting from the electrodeposition process. (U.S.)

  2. Cyclic Oxidation and Hot Corrosion Behavior of Nickel-Iron-Based Superalloy

    Science.gov (United States)

    Chellaganesh, D.; Adam Khan, M.; Winowlin Jappes, J. T.; Sathiyanarayanan, S.

    2018-01-01

    The high temperature oxidation and hot corrosion behavior of nickel-iron-based superalloy are studied at 900 ° and 1000 °C. The significant role of alloying elements with respect to the exposed medium is studied in detail. The mass change per unit area was catastrophic for the samples exposed at 1000 °C and gradual increase in mass change was observed at 900 °C for both the environments. The exposed samples were further investigated with SEM, EDS and XRD analysis to study the metallurgical characteristics. The surface morphology has expressed the in situ nature of the alloy and its affinity toward the environment. The EDS and XRD analysis has evidently proved the presence of protective oxides formation on prolonged exposure at elevated temperature. The predominant oxide formed during the exposure at high temperature has a major contribution toward the protection of the samples. The nickel-iron-based superalloy is less prone to oxidation and hot corrosion when compared to the existing alloy in gas turbine engine simulating marine environment.

  3. Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique

    Energy Technology Data Exchange (ETDEWEB)

    Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey); Department of Physics, Çankırı Karatekin University, Çankırı 18100 (Turkey); Zor, M.; Turan, E. [Department of Physics, Anadolu University, Eskişehir 26470 (Turkey)

    2015-10-15

    Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were deposited onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.

  4. In situ Reduction and Oxidation of Nickel from Solid Oxide Fuel Cells in a Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Faes, Antonin; Jeangros, Quentin; Wagner, Jakob Birkedal

    2009-01-01

    Environmental transmission electron microscopy was used to characterize in situ the reduction and oxidation of nickel from a Ni/YSZ solid oxide fuel cell anode support between 300-500{degree sign}C. The reduction is done under low hydrogen pressure. The reduction initiates at the NiO/YSZ interface...

  5. Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction

    Science.gov (United States)

    Babar, P. T.; Lokhande, A. C.; Pawar, B. S.; Gang, M. G.; Jo, Eunjin; Go, Changsik; Suryawanshi, M. P.; Pawar, S. M.; Kim, Jin Hyeok

    2018-01-01

    The development of an inexpensive, stable, and highly active electrocatalyst for oxygen evolution reaction (OER) is essential for the practical application of water splitting. Herein, we have synthesized an electrodeposited cobalt hydroxide on nickel foam and subsequently annealed in an air atmosphere at 400 °C for 2 h. In-depth characterization of all the films using X-ray diffraction (XRD), X-ray photoelectron emission spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) techniques, which reveals major changes for their structural, morphological, compositional and electrochemical properties, respectively. The cobalt hydroxide nanosheet film shows high catalytic activity with 290 mV overpotential at 10 mA cm-2 and 91 mV dec-1 Tafel slope and robust stability (24 h) for OER in 1 M KOH electrolyte compared to cobalt oxide (340 mV). The better OER activity of cobalt hydroxide in comparison to cobalt oxide originated from high active sites, enhanced surface, and charge transport capability.

  6. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei; Fan, Zhongli; Zeng, Gaofeng; Lai, Zhiping

    2013-01-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found

  7. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  8. Modulating Hole Transport in Multilayered Photocathodes with Derivatized p-Type Nickel Oxide and Molecular Assemblies for Solar-Driven Water Splitting

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Bing [Department; Sherman, Benjamin D. [Department; Klug, Christina M. [Center; Nayak, Animesh [Department; Marquard, Seth L. [Department; Liu, Qing [Department; Bullock, R. Morris [Center; Meyer, Thomas J. [Department

    2017-08-31

    We report here a new photocathode composed of a bi-layered doped NiO film topped by a macro-mesoporous ITO (ioITO) layer with molecular assemblies attached to the ioITO surface. The NiO film containing a 2% K+ doped NiO inner layer and a 2% Cu2+ doped NiO outer layer provides sufficient driving force for hole transport after injection to NiO by the molecular assembly. The tri-layered oxide, NiK0.02O | NiCu0.02O | ioITO, sensitized by a ruthenium polypyridyl dye and functionalized with a nickel-based hydrogen evolution catalyst, outperforms its counterpart, NiO | NiO | ioITO, in photocatalytic hydrogen evolution from water over a period of several hours with a Faradaic yield of ~90%.

  9. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    International Nuclear Information System (INIS)

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui

    2007-01-01

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl 2 -induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression

  10. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  11. Thick film nickel plating - the alternative. Long-term experiences; Dickschichtvernickelung - die Alternative. Langzeiterfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Senff-Wollenberg, Ralf [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Technik; Ansey, Johann-Wilhelm [Baumgarte Boiler Systems GmbH, Bielefeld (Germany). Forschung und Entwicklung; Reinmoeller, Frank [Baumgarte Boiler Systems GmbH, Bielefeld (Germany)

    2013-03-01

    The ecologic and energetic demands on modern plants fort he thermal utilization of waste materials increase continuously. Beside low costs of investment, enhanced efficiencies, an enhanced availability, long journey times as well as low costs of operation and maintenance are important factors for the investment decision. The primary and secondary measures for the shrinkage of corrosion are decisive for achieving the factors for the decision of investment and maintenance. The authors of the contribution under consideration report on long-term experiences on the thick film nickel plating. Especially, the process of galvanic nickel plating, the fields of application as well as the operational experiences are described.

  12. Improved mechanical and corrosion properties of nickel composite coatings by incorporation of layered silicates

    Energy Technology Data Exchange (ETDEWEB)

    Tientong, J. [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States); Ahmad, Y.H. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Nar, M.; D' Souza, N. [University of North Texas, Department of Mechanical and Energy Engineering, Denton, TX 76207 (United States); Mohamed, A.M.A. [Center for Advanced Materials, P.O. Box 2713, Qatar University, Doha (Qatar); Golden, T.D., E-mail: tgolden@unt.edu [University of North Texas, Department of Chemistry, 1155 Union Circle #305070, Denton, TX 76203 (United States)

    2014-05-01

    Layered silicates as exfoliated montmorillonite are incorporated into nickel films by electrodeposition, enhancing both corrosion resistance and hardness. Films were deposited onto stainless steel from a plating solution adjusted to pH 9 containing nickel sulfate, sodium citrate, and various concentrations of exfoliated montmorillonite. The presence of the incorporated layered silicate was confirmed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The composite films were also compact and smooth like the pure nickel films deposited under the same conditions as shown by scanning electron microscopy. X-ray diffraction results showed that incorporation of layered silicates into the film do not affect the nickel crystalline fcc structure. The nanocomposite films exhibited improved stability and adhesion. Pure nickel films cracked and peeled from the substrate when immersed in 3.5% NaCl solution within 5 days, while the nanocomposite films remained attached even after 25 days. The corrosion resistance of the nickel nanocomposites was also improved compared to nickel films. Nickel-layered silicate composites showed a 25% increase in Young's modulus and a 20% increase in hardness over pure nickel films. - Highlights: • 0.05–2% of layered silicates are incorporated into crystalline nickel films. • Resulting composite films had improved stability and adhesion. • Corrosion resistance improved for the composite films. • Hardness improved 20% and young's modulus improved 25% for the composite films.

  13. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  14. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    Science.gov (United States)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  15. Application of anodizing as a pre-treatment for nickel plating on aluminum

    International Nuclear Information System (INIS)

    Mehmood, M.; Ahmad, J.; Aslam, M.; Iqbal, M.; Akhtar, J.I.

    2003-01-01

    Effect of anodizing on subsequent electroplating of nickel on aluminum was investigated. Electroplated nickel did not exhibit any adhesion with un-anodized aluminum. Formation of a very thin anodized alumina film prior to nickel plating led to an excellent adhesion between the nickel film and the substrate. If the thickness of the alumina film increased, adhesion of electroplated nickel was significantly deteriorated and became similar to that of un-anodized bare aluminum. The study revealed that deposition proceeded through pores and defects in the insulator alumina film. These pores and defects also acted as nucleation and anchor points for nickel deposit. There was larger number of nucleation/ anchor points on thin alumina films. This provided better adhesion of nickel with the substrate as well as excellent coverage in relatively shorter times. On the other hand, very rough and poorly adherent nickel deposits formed on thick anodized films. Therefore, it may be used as precursor for producing nickel powder with controlled particle size as well as a catalyst with high specific surface area for hydrogenation and dehydrogenation reactions. (author)

  16. Decomposition of hydrogen peroxide on nickel oxide - vanadium pentoxide catalysts and the effect of ionizing radiation on them

    International Nuclear Information System (INIS)

    Mucka, V.

    1984-01-01

    Some physico-chemical and catalytic properties of nickel oxide-vanadium pentoxide two-component catalysts were studied over the entire concentration range of the components, using the decomposition of hydrogen peroxide in an aqueous solution as the test reaction. The two oxides were found to affect each other; this was shown by the dependences of the specific surface area, the V 4+ ion concentration, and the catalyst activity on the system composition. At low vanadium pentoxide concentrations (up to 15 mol%) the reaction took place on nickel oxide modified with vanadium pentoxide, whereas in the region of higher vanadium pentoxide concentrations the decomposition of the peroxide was catalyzed primarily in the homogeneous phase by vanadium(V) peroxide ions; in a sample with 30 mol% V 2 O 5 , trivalent vanadium also played a part. With catalysts obtained by mere mechanical mixing of the two oxides, a modified activity was observed in the region of high excess of nickel oxide. The activity of catalyst, particularly pure nickel oxide, was increased by its partial reduction and decreased by its exposure to gamma radiation if the dose was higher than 10 5 Gy. The effects observed are interpreted in terms of the concept of bivalent catalytic centres. (author)

  17. UV photodissociation spectroscopy of oxidized undecylenic acid films.

    Science.gov (United States)

    Gomez, Anthony L; Park, Jiho; Walser, Maggie L; Lin, Ao; Nizkorodov, Sergey A

    2006-03-16

    Oxidation of thin multilayered films of undecylenic (10-undecenoic) acid by gaseous ozone was investigated using a combination of spectroscopic and mass spectrometric techniques. The UV absorption spectrum of the oxidized undecylenic acid film is significantly red-shifted compared to that of the initial film. Photolysis of the oxidized film in the tropospheric actinic region (lambda > 295 nm) readily produces formaldehyde and formic acid as gas-phase products. Photodissociation action spectra of the oxidized film suggest that organic peroxides are responsible for the observed photochemical activity. The presence of peroxides is confirmed by mass-spectrometric analysis of the oxidized sample and an iodometric test. Significant polymerization resulting from secondary reactions of Criegee radicals during ozonolysis of the film is observed. The data strongly imply the importance of photochemistry in aging of atmospheric organic aerosol particles.

  18. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  19. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  20. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Science.gov (United States)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  1. Laser patterning of superconducting oxide films

    International Nuclear Information System (INIS)

    Gupta, A.; Hussey, B.W.; Koren, G.; Cooper, E.I.; Jagannathan, R.

    1988-01-01

    The focused output of an argon ion laser (514.5 nm) has been used for wiring superconducting lines of Y/sub 1/Ba/sub 2/CU/sub 3/O/sub 7-δ/ using films prepared from nitrate and trifluoroacetate solution precursors. A stoichiometric solution of the precursors is sprayed or spun on to the substrate to form a film. The film is patterned by irradiating in selected areas to convert the irradiated layers to an intermediate oxide or fluoride state, the nonirradiated areas being unchanged. The nonirradiated areas are then dissolved away, leaving a pattern of the oxide or fluoride material. This patterned layer is converted to the superconducting 1-2-3 oxide in a subsequent annealing step. Maskless patterning of superconducting films has also been demonstrated by laser-assisted etching of the films in aqueous KOH solution. Although superconductivity is destroyed when the films are placed in solution, it can be restored after a brief anneal in oxygen

  2. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g m change, threshold voltage V T change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  3. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw; Lin, Yung-Hao; Lin, Jhong-Ham [Institute of Microelectronics, Department of Electrical Engineering, Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan, Taiwan (China)

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  4. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    Science.gov (United States)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  5. Magnetism, spin-lattice-orbital coupling and exchange-correlation energy in oxide heterostructures: Nickelate, titanate, and ruthenate

    Science.gov (United States)

    Han, Myung-Joon

    Many interesting physical phenomena and material characteristics in transition-metal oxides (TMO) come out of the intriguing interplay between charge, spin, orbital, and lattice degrees of freedom. In the thin film and/or heterointerface form of TMO, this feature can be controlled and thus be utilized. Simultaneously, however, its detailed characteristic is more difficult to be identified experimentally. For this reason, the first-principles-based approach has been playing an important role in this field of research. In this talk, I will try to give an overview of current status of first-principles methodologies especially for the magnetism in the correlated oxide heterostructures or thin films. Nickelate, titanate, and ruthenate will be taken as representative examples to demonstrate the powerfulness of and the challenges to the current methodologies On the one hand, first-principles calculation provides the useful information, understanding and prediction which can hardly be obtained from other theoretical and experimental techniques. Nickelate-manganite superlattices (LaNiO3/LaMnO3 and LaNiO3/CaMnO3) are taken as examples. In this interface, the charge transfer can induce the ferromagnetism and it can be controlled by changing the stacking sequence and number of layers. The exchange-correlation (XC) functional dependence seems to give only quantitatively different answers in this case. On the other hand, for the other issues such as orbital polarization/order coupled with spin order, the limitation of current methodology can be critical. This point will be discussed with the case of tatinate superlattice (LaTiO3/LaAlO3) . For ruthenates (SrRuO3\\ and Sr2RuO4) , we found that the probably more fundamental issue could be involved. The unusually strong dependence on the XC functional parametrization is found to give a qualitatively different conclusion for the experimentally relevant parameter regions. This work was supported by National Research Foundation of

  6. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  7. Electrical and optical properties of zinc oxide: thin films

    International Nuclear Information System (INIS)

    Zuhairusnizam Md Darus; Abdul Jalil Yeop Majlis; Anis Faridah Md Nor; Burhanuddin Kamaluddin

    1992-01-01

    Zinc oxide films have been prepared by high temperature oxidation of thermally evaporated zinc films on glass substrates. The resulting films are characterized using X-ray diffraction, optical absorption and electrical conductivity measurements. These zinc oxide films are very transparent and photoconductive

  8. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    International Nuclear Information System (INIS)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-01-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO 4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  9. Nanoparticles of nickel oxide: growth and organization on zinc-substituted anionic clay matrix by one-pot route at room temperature

    Science.gov (United States)

    Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi

    2010-10-01

    A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.

  10. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin filmsOxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  11. Corrosion and biofouling resistance evaluation of 90-10 copper-nickel

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Carol [Consultant to Copper Development Association, UK, Square Covert, Caynham, Ludlow, Shropshire (United Kingdom)

    2004-07-01

    Copper-nickel alloys for marine use were developed for naval applications in the early part of the 20. century with a view to improving the corrosion resistance of condenser tubes and seawater piping. They still enjoy widespread use today not only for many navies but also in commercial shipping, floating production, storage and off loading vessels (FPSOs), and in multistage flash desalination. The two popular alloys contain 90% or 70% copper and differ in strength and maximum sea water velocity levels they can handle but it is the 90-10 copper-nickel (CuNi10Fe1Mn) which is the more economic and extensively used. An additional benefit of this alloy is its high resistance to biofouling: in recent years this has led to sheathing developments particularly for structures and boat hulls. This paper provides a review of the corrosion and biofouling resistance of 90-10 copper-nickel based on laboratory test data and documented experience of the alloy in marine environments. Particular attention is given to exposure trials over 8 years in Langstone Harbour, UK, which have recently been completed by Portsmouth University on behalf of the Nickel Institute. These examined four sheathing products; plate and foil as well as two composite products with rubber backing. The latter involved copper-nickel granules and slit sheet. The trial results are consistent with the behaviour of the alloy in the overall review. There is an inherent high resistance to marine biofouling when freely exposed. Prolonged exposure to quiet conditions can result in some growth of marine organisms but this is loosely attached and can readily be removed by wiping or a light scraping. The good corrosion resistance of 90-10 copper-nickel in sea water is also confirmed and associated with the formation of a thin, complex, protective and predominantly cuprous oxide surface film, which forms and matures naturally on exposure to seawater. Sound initial oxide film formation is also known to help protect against

  12. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  13. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  14. A highly efficient microfluidic nano biochip based on nanostructured nickel oxide.

    Science.gov (United States)

    Ali, Md Azahar; Solanki, Pratima R; Patel, Manoj K; Dhayani, Hemant; Agrawal, Ved Varun; John, Renu; Malhotra, Bansi D

    2013-04-07

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on nickel oxide nanorods (NRs-NiO) that is capable of directly measuring the concentration of total cholesterol in human blood through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of cholesterol present in buffer solutions at clinically relevant concentrations. The microfluidic channel has been fabricated onto a nickel oxide nanorod-based electrode co-immobilized with cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) that serves as the working electrode. Bare indium tin oxide served as the counter electrode. A Ag/AgCl wire introduced to the outlet of the microchannel acts as a reference electrode. The fabricated NiO nanorod-based electrode has been characterized using X-ray diffraction, Raman spectroscopy, HR-TEM, FT-IR, UV-visible spectroscopy and electrochemical techniques. The presented NRs-NiO based microfluidic sensor exhibits linearity in the range of 1.5-10.3 mM, a high sensitivity of 0.12 mA mM(-1) cm(-2) and a low value of 0.16 mM of the Michaelis-Menten constant (Km).

  15. Chitosan/graphene oxide biocomposite film from pencil rod

    Science.gov (United States)

    Gea, S.; Sari, J. N.; Bulan, R.; Piliang, A.; Amaturrahim, S. A.; Hutapea, Y. A.

    2018-03-01

    Graphene Oxide (GO) has been succesfully synthesized using Hummber method from graphite powder of pencil rod. The excellent solubility of graphene oxide (GO)in water imparts its feasibilty as new filler for reinforcement hydrophilic biopolymers. In this research, the biocomposite film was fabricated from chitosan/graphene oxide. The characteristics of graphene oxide were investigated using Fourier Transform Infrared (FT-IR) and X-ray Diffraction (XRD). The results of the XRD showed graphene structur in 2θ, appeared at 9.0715°with interlayer spacing was about 9.74063Å. Preparation films with several variations of chitosan/graphene oxide was done by casting method and characterized by mechanical and morphological analysis. The mechanical properties of the tensile test in the film show that the film CS/GO (85: 15)% has the optimum Young’s modulus size of 2.9 GPa compared to other variations of CS / GO film. Morphological analysis film CS/GO (85:15)% by Scanning Electron Microscopy (SEM), the obtained biocomposites film showed fine dispersion of GO in the CS matrix and could mix each other homogeneously.

  16. Interface and oxide traps in high-κ hafnium oxide films

    International Nuclear Information System (INIS)

    Wong, H.; Zhan, N.; Ng, K.L.; Poon, M.C.; Kok, C.W.

    2004-01-01

    The origins of the interface trap generation and the effects of thermal annealing on the interface and bulk trap distributions are studied in detail. We found that oxidation of the HfO 2 /Si interface, removal of deep trap centers, and crystallization of the as-deposited film will take place during the post-deposition annealing (PDA). These processes will result in the removal of interface traps and deep oxide traps and introduce a large amount of shallow oxide traps at the grain boundaries of the polycrystalline film. Thus, trade-off has to be made in considering the interface trap density and oxide trap density when conducting PDA. In addition, the high interface trap and oxide trap densities of the HfO 2 films suggest that we may have to use the SiO 2 /HfO 2 stack or hafnium silicate structure for better device performance

  17. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  18. Inkjet Printing as High-Throughput Technique for the Fabrication of NiCo2O4 Films

    Directory of Open Access Journals (Sweden)

    Reyna Dianela Bacelis-Martínez

    2017-01-01

    Full Text Available Owing to its distinctive physicochemical properties, nickel-cobalt mixed oxide (NiCo2O4 has become a promising and innovative material for applications in many technological fields. The design of fast and reliable techniques for the deposition of this material is essential in the development of applications. In this work, NiCo2O4 films were successfully prepared by an inkjet printing technique using a suitable ink obtained from metal nitrates in a glycerol-water mixture. In order to deposit well-defined and uniform film patterns, the instrumental parameters such as drop spacing and inkjet voltage have been explored. The pure crystalline bimetallic nickel cobaltite oxide is obtained at 500°C with a homogeneous compositional distribution along the film. The average thickness observed by scanning electron microscopy is around 490 nm, whereas X-ray photoelectron spectroscopy analysis revealed that the film surface presents mixed oxidation states for both metals: Co2+, Co3+, Ni2+, and Ni3+. The electrocatalytic performance of inkjet-printed NiCo2O4 films for the water oxidation reaction is comparable with earlier reports.

  19. Recovery Of Nickel From Spent Nickel-Cadmium Batteries Using A Direct Reduction Process

    Directory of Open Access Journals (Sweden)

    Shin D.J.

    2015-06-01

    Full Text Available Most nickel is produced as Ferro-Nickel through a smelting process from Ni-bearing ore. However, these days, there have been some problems in nickel production due to exhaustion and the low-grade of Ni-bearing ore. Moreover, the smelting process results in a large amount of wastewater, slag and environmental risk. Therefore, in this research, spent Ni-Cd batteries were used as a base material instead of Ni-bearing ore for the recovery of Fe-Ni alloy through a direct reduction process. Spent Ni-Cd batteries contain 24wt% Ni, 18.5wt% Cd, 12.1% C and 27.5wt% polymers such as KOH. For pre-treatment, Cd was vaporized at 1024K. In order to evaluate the reduction conditions of nickel oxide and iron oxide, pre-treated spent Ni-Cd batteries were experimented on under various temperatures, gas-atmospheres and crucible materials. By a series of process, alloys containing 75 wt% Ni and 20 wt% Fe were produced. From the results, the reduction mechanism of nickel oxide and iron oxide were investigated.

  20. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    Science.gov (United States)

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deactivation of nickel hydroxide-gold modified electrodes

    OpenAIRE

    Caram, Bruno; Tucceri, Ricardo

    2013-01-01

    The aim of the present work was to study how the charge-transport process of a nickel hydroxide film electrochemically synthesized on a gold substrate is modified when the electrode is stored for a long time. It was found that nickel hydroxide films are deactivated under storage, that is, films became less conductive than films immediately prepared (nondeactivated). This study was carried out in the context of the rotating disc electrode voltammetry when the modified electrode contacts an ele...

  2. Nickel nanostructured materials from liquid phase photodeposition

    International Nuclear Information System (INIS)

    Giuffrida, Salvatore; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio; Nigro, Raffaella Lo; Favazza, Maria; Votrico, Enrico; Bongiorno, Corrado; Fragala, Ignazio L.

    2007-01-01

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac) 2 (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl 2 was formed from CCl 4 solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl 2 films

  3. Nickel nanostructured materials from liquid phase photodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, Salvatore, E-mail: sgiuffrida@unict.it; Condorelli, Guglielmo G.; Costanzo, Lucia L.; Ventimiglia, Giorgio [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Nigro, Raffaella Lo [IMM-CNR (Italy); Favazza, Maria; Votrico, Enrico [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy); Bongiorno, Corrado [IMM-CNR (Italy); Fragala, Ignazio L. [Universita degli Studi di Catania and INSTM UdR di, Dipartimento di Scienze Chimiche (Italy)

    2007-08-15

    Liquid Phase Photo-Deposition (LPPD) technique has been used to obtain both colloidal particles and thin films of metallic and chloride nickel from solutions of only precursor Ni(acac){sub 2} (acac=2,4-pentandionato). Metallic nickel was obtained from ethanol solutions by direct nickel(II) photoreduction at 254 nm and by acetone sensitised reaction at 300 nm. In this latter process the rate was higher than in the first one. NiCl{sub 2} was formed from CCl{sub 4} solution by a solvent-initiated reaction. TEM analysis, performed on colloidal particles of nickel, showed that their dimensions are in the range 2-4 nm. The films did not present carbon contamination and were characterized by AFM, XPS and GIXRD. Metallic films consisted of particles of 20-40 nm that are the result of the aggregation of smaller crystallites (4-5 nm). Larger agglomerations (around 200 nm) have been observed for NiCl{sub 2} films.

  4. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho

    2018-01-01

    Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports...... a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h...... of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown...

  5. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  6. Electrochemistry of hydrous oxide films

    International Nuclear Information System (INIS)

    Burke, L.D.; Lyons, M.E.G.

    1986-01-01

    The formation, acid-base properties, structural aspects, and transport processes of hydrous oxide films are discussed. Classical and nonclassical theoretical models of the oxide-solution interface are compared. Monolayer oxidation, behavior, and crystal growth of oxides on platinum, palladium, gold, iridium, rhodium, ruthenium, and some non-noble metals, including tungsten, are reviewed and compared

  7. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    International Nuclear Information System (INIS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-01-01

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM"−"1 cm"−"2. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N_2 adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM"−"1 cm"−"2, and a possible mechanism was also given in the paper.

  8. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang, E-mail: caowang507@163.com; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-30

    Graphical abstract: The enzyme-less amperometric sensor based on 3-D periodic mesoporous NiO nanomaterials used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}. - Highlights: • Microwave-assisted method was used to fabricate the 3-D periodic mesoporous NiO particles. • The mesoporous nickel oxide was applied to nonenzymatic uric acid biosensor. • The detection limit is 0.005 μM over wide linear detection ranges up to 0.374 mM. • The sensitivity is 756.26 μA mM{sup −1} cm{sup −2}. - Abstract: 3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N{sub 2} adsorption–desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM{sup −1} cm{sup −2}, and a possible mechanism was also given in the paper.

  9. Electrochromism of the electroless deposited cuprous oxide films

    International Nuclear Information System (INIS)

    Neskovska, R.; Ristova, M.; Velevska, J.; Ristov, M.

    2007-01-01

    Thin cuprous oxide films were prepared by a low cost, chemical deposition (electroless) method onto glass substrates pre-coated with fluorine doped tin oxide. The X-ray diffraction pattern confirmed the Cu 2 O composition of the films. Visible transmittance spectra of the cuprous oxide films were studied for the as-prepared, colored and bleached films. The cyclic voltammetry study showed that those films exhibited cathode coloring electrochromism, i.e. the films showed change of color from yellowish to black upon application of an electric field. The transmittance across the films for laser light of 670 nm was found to change due to the voltage change for about 50%. The coloration memory of those films was also studied during 6 h, ex-situ. The coloration efficiency at 670 nm was calculated to be 37 cm 2 /C

  10. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  11. Capacitance measurements and AC conductivity of Nickel Phthalocyanine films

    International Nuclear Information System (INIS)

    Darwish, S.

    2005-01-01

    A C dark Current measurements of nickel phthalocyanine thin films using ohmic gold electrodes are investigated in the frequency range 30-10 Hz and within the temperature range 295-385 K. The A C conductivity as D Ac is found to vary as within the index s < 1, indicating a dominant hopping process at low temperatures. From the temperature dependence of A C conductivity, free carrier conduction with mean activation energy of 0.31 eV is observed at higher temperatures. Capacitance and loss tangent are found to be decreased with increasing frequency and increase with increasing temperature. Such characteristics are found to be in good qualitative agreement with existing equivalent circuit model assuming ohmic contacts

  12. Electrochromic Ni–Fe oxide thin films synthesized by an atmospheric pressure plasma jet for flexible electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yun-Sen, E-mail: yslin@fcu.edu.tw; Chuang, Pei-Ying; Shie, Ping-Shiun

    2014-11-03

    Flexible-electrochromic organo-nickel-iron oxide (NiFe{sub x}O{sub y}C{sub z}) films deposited onto flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various flow rates of oxygen gases are investigated. Precursors [nickelocence, Ni(C{sub 5}H{sub 5}){sub 2}] and [ferrocence, Fe(C{sub 5}H{sub 5}){sub 2}] vapors are carried by argon gas, mixed by oxygen gas and injected into air plasma torch for a rapid synthesis of NiFe{sub x}O{sub y}C{sub z} films by a short duration of the substrate, 32 s, in the plasmas. Uniform light modulation on PET/ITO/NiFe{sub x}O{sub y}C{sub z} is produced while the moving PET/ITO substrate is exposed to plasma torch at room temperature (∼ 23 °C) and atmospheric pressure. Light modulation with up to a 43.2% transmittance variation at a wavelength of 708 nm even after 200 cycles of Li{sup +} intercalation and de-intercalation in a 1 M LiClO{sub 4}-propylene carbonate electrolyte is accomplished. - Highlights: • Rapid deposition of electrochromic organo-nickel–iron oxide (NiFe{sub x}O{sub y}C{sub z}) films • Enhanced electrochromic performance of NiFe{sub x}O{sub y}C{sub z} films by oxygen gas addition • Uniform light modulation on NiFe{sub x}O{sub y}C{sub z} films produced by air plasma jet • Porous surfaces allow reversible Li{sup +} intercalation and deintercalation.

  13. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  14. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  15. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  16. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography

    Science.gov (United States)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Tsai, Esther Hsiao Rho; Holler, Mirko; Kreka, Kosova; Bowen, Jacob R.

    2018-04-01

    Nickel coarsening is considered a significant cause of solid oxide cell (SOC) performance degradation. Therefore, understanding the morphological changes in the nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode is crucial for the wide spread usage of SOC technology. This paper reports a study of the initial 3D microstructure evolution of a SOC analyzed in the pristine state and after 3 and 8 h of annealing at 850 °C, in dry hydrogen. The analysis of the evolution of the same location of the electrode shows a substantial change of the nickel and pore network during the first 3 h of treatment, while only negligible changes are observed after 8 h. The nickel coarsening results in loss of connectivity in the nickel network, reduced nickel specific surface area and decreased total triple phase boundary density. For the condition of this experiment, nickel coarsening is shown to be predominantly curvature driven, and changes in the electrode microstructure parameters are discussed in terms of local microstructural evolution.

  17. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  18. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  19. OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Directory of Open Access Journals (Sweden)

    Y. J. O. Asencios

    Full Text Available Abstract In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD, Temperature Programmed Reduction (H2-TPR, Scanning Electron Microscopy (SEM/EDX and Adsorption-Desorption of nitrogen (BET area. The reactions were carried out at 750 °C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%. In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2 with 15% nickel (15NiPrZr catalyst showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H2 and CO. The results suggest that the promoter PrO2 and the Niº centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.

  20. Highly efficient electrochemical hydrogen evolution based on nickel diselenide nanowall film

    Science.gov (United States)

    Tang, Chun; Xie, Lisi; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-05-01

    In this letter, we report on hydrothermal growth of nickel diselenide nanowall film on carbon cloth (NiSe2 NW/CC) through topotactic transformation from a Ni(OH)2 precursor based on anion exchange reactions. When tested as an integrated 3D hydrogen-evolving cathode in strongly acidic media, NiSe2 NW/CC exhibits outstanding catalytic activity superior to its powder counterpart and strong long-term durability. It displays 10 and 100 mA cm-2 at overpotentials of 145 and 183 mV, respectively, with its catalytic activity being retained for 40 h.

  1. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  2. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  3. Absolute determination by X-ray diffraction of a binary or ternary mixture: nickel oxide and fluoride in a nickel powder (1960); Dosage absolu par diffraction X d'un melange binaire ou ternaire: oxyde et fluorure de nickel dans une poudre de nickel (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Charpin, P; Hauptman, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The method employed is based upon the comparison between computed and measured intensities for conveniently selected X-Ray diffraction lines of each component of the powder. Care must be taken to allow for absorption, both inside each grain and in overall sample. This method has been applied to the determination of nickel oxide and fluoride in a nickel powder. (author) [French] La methode utilisee, dite 'absolue' est basee sur le calcul des intensites theoriques de raies de diffraction convenablement choisies. Elle n'est applicable que si l'absorption est negligeable a travers chaque grain constituant l'echantillon et a travers l'echantillon total. Elle a ete employee pour doser, ensemble ou separement, de l'oxyde et du fluorure de nickel dans une poudre de nickel. (auteur)

  4. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  5. Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    In situ reduction of nickel oxide (NiO) particles is performed under 1.3 mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the...

  6. X-ray diffraction on nanoparticles chromium and nickel oxides obtained by gelatin using synchrotron radiation

    International Nuclear Information System (INIS)

    Menezes, Alan Silva de; Medeiros, Angela Maria de Lemos; Miranda, Marcus Aurelio Ribeiro; Almeida, Juliana Marcela Abraao; Remedios, Claudio Marcio Rocha; Silva, Lindomar R.D. da; Gouveia, S.T.; Sasaki, Jose Marcos; Jardim, P.M.

    2003-01-01

    Full text: Cr 2 O 3 nanoparticles has many applications like green pigments, wear resistance, and coating materials for thermal protection. Several methods to produce chromium oxide nanoparticles have already been studied, gas condensation, laser induced pyrolysis, microwave plasma, sol-gel and gamma radiation methods. Many applications for this kind of material can be provide concerning the particle size. For instance, particle size approximately of 200 nm are preferable as pigment due to its opacity and below 50 nm can be used as transparent pigment. In this work we have demonstrated that chromium and nickel oxide nanoparticles can be prepared by gelatin method. X-Ray diffraction (XRD) show that mean particle size for chromium oxide of 15-150 nm and nickel oxide of 90 nm were obtained for several temperature of sintering. The X-Ray powder diffraction pattern were performed using Synchrotron Radiation X-Ray source at XRD1 beamline in National Laboratory of Light Synchrotron (LNLS). (author)

  7. Formation of corrosion-resistant oxide film on uranium

    International Nuclear Information System (INIS)

    Petit, G.S.

    1976-01-01

    A vacuum heat-treatment method was developed for coating metallic uranium with an adherent protective film of uranium oxide. The film is prepared by vacuum heat-treating the metallic uranium at 625 0 C for 1 h while controlling the amount of oxygen being metered into the furnace. Uranium coupons with the protective film were exposed for several hundred hours in a corrosion test bath at 95 0 C and 100 percent RH without corroding. Film thicknesses ranging from 5 to 25 μm (0.0002 to 0.001 in.) were prepared and corrosion tested; the film thickness can be controlled to less than +-2.5 μm (+-0.0001 in.). The oxide film is hard, nonwetting, and very adherent. The resulting surface finish of the metal is equivalent to that of the original finish. The advantages of the oxide films over other protective coatings are given. 12 fig

  8. Reduced Graphene Oxide on Nickel Foam for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Uma Ramabadran

    2017-11-01

    Full Text Available The focus of this paper is the investigation of reduced graphene oxide (GO/nickel foam (RGON samples for use as supercapacitor electrodes. Nickel foam samples were soaked in a GO suspension and dried before being subjected to two different methods to remove oxygen. Atmospheric pressure annealed (APA samples were treated with a varying number (10–18 of nitrogen plasma jet scans, where sample temperatures did not exceed 280 °C. Furnace annealed (FA samples were processed in an atmosphere of hydrogen and argon, at temperatures ranging from 600 °C to 900 °C. Environmental Scanning Electron Microscope (ESEM data indicated that the carbon to oxygen (C:O ratio for APA samples was minimized at an intermediate number of plasma scans. Fourier Transform Infrared Spectroscopic (FTIR and Raman spectroscopic data supported this finding. ESEM analysis from FA samples showed that with increasing temperatures of annealing, GO is transformed to reduced graphene oxide (RGO, with C:O ratios exceeding 35:1. X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD data indicated the formation of RGO with an increasing annealing temperature until 800 °C, when oxygen reincorporation in the surface atomic layers becomes an issue. Supercapacitors, constructed using the FA samples, demonstrated performances that correlated with surface atomic layer optimization of the C:O ratio.

  9. Thermogravimetric study of the reduction of oxides of nickel and chromium

    Science.gov (United States)

    Herbell, T. P.

    1973-01-01

    The effectiveness of hydrogen, carbon and hydrogen-carbon in reducing NiO, Cr2O3, mixed NiO-Cr2O3 and oxidized Ni-20Cr was evaluated by thermogravimetry. NiO was effectively reduced by all three atmospheres, Cr2O3 only by hydrogen-carbon, NiO-Cr2O3 by hydrogen and hydrogen-carbon and oxidized Ni-20Cr by hydrogen, hydrogen-carbon and partially by carbon alone. The results indicate that nickel and carbon promote the reduction of Cr2O3.

  10. Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting

    Czech Academy of Sciences Publication Activity Database

    Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathouský, Jiří; Scheidt, E.-W.; Bein, T.; Fattakhova-Rohlfing, D.

    2014-01-01

    Roč. 24, č. 21 (2014), s. 3123-3129 ISSN 1616-301X Institutional support: RVO:61388955 Keywords : electrocatalysis * nickel oxide * nanocrystals Subject RIV: CG - Electrochemistry Impact factor: 11.805, year: 2014

  11. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    International Nuclear Information System (INIS)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  12. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  13. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  14. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    International Nuclear Information System (INIS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-01-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ∝ 4.1 Aa), and low electrical resistivity (4.2 x 10 -4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained ''on/off'' current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 x 10 7 , 0.43 V/decade, 0.7 V, and 2.1 cm 2 /V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs. (orig.)

  15. The study on corrosion resistance of decorative satin nickel plating

    OpenAIRE

    LU Wenya; CHENG Xianhua

    2012-01-01

    This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the p...

  16. Facts and views on the role of anionic impurities, crack tip chemistry and oxide films in environmentally assisted cracking

    International Nuclear Information System (INIS)

    Aaltonen, P.; Bojinov, M.; Helin, M.

    2002-01-01

    The aim of this literature study has been to evaluate the level of understanding of the role of anionic impurities in environmentally assisted cracking (EAC) of iron- and nickel-based alloys in the coolant conditions of a boiling water reactor (BWR) - type nuclear power plant, mainly under normal water chemistry (NWC). The study has been motivated by a need to find the most relevant experimental approaches that can be applied when looking for correlations between crack growth rate and measurable electrochemical and chemical parameters. Special crack tip chemistry conditions are established, when trace amounts are present in the BWR coolant and become enriched within a crack. Anions may influence both the conductivity and the pH of the coolant within the crack. In addition, they may influence the composition, structure and properties of the oxide films formed on crack walls either directly via adsorption or incorporation or indirectly via the effect of changes in pH within the crack. Based on the proposed mechanisms for EAC, oxide films formed on crack wall surfaces are likely to play a key role in determing the crack growth rate of structural materials. The prediction of the influence of anionic impurities is thus likely to be facilitated by means of understanding their effect on the films on crack walls. One of the most promising approaches to experimentally clarify this influence is based on investigating the electrochemical behaviour of oxide films Fe- and Ni-based materials in high-temperature conditions simulating the special chemistry within a stress corrosion crack. Results from such studies should be compared and combined with ex situ analytical results obtained using modern electron microscopic techniques. In addition to crack growth, currently available electro-chemical techniques should also be applied to find out whether crack initiation can be explained and modelled on the basis of the electrochemical behaviour of oxide films. (orig.)

  17. Influence of sulphate ions on the composition and structure of the oxide films on stainless steel and nickel alloys in simulated BWR crack conditions

    International Nuclear Information System (INIS)

    Bojinov, M.; Kinnunen, P.; Laitinen, E.; Maekelae, K.; Saario, T.; Sirkiae, P.; Toivonen, A.; Campbell, J.M.; Johansson, L.S.; Helin, M.; Muttilainen, E.; Reinvall, A.; Ollonqvist, T.; Vaeyrynen, J.

    2002-01-01

    The goal of the present work has been to clarify the influence of sulphate ions on the oxide films formed on stainless steel and Ni-based alloys in simulated crack chemistry conditions using different ex situ analytical techniques. The main observations of this work can be summarised as follows: The thickness of the films formed in simulated oxygen-free crack chemistry conditions during an exposure of circa 4 days varies roughly in the range 200..500 nm, which corresponds to observations reported in the literature [2]. The presence of 10000 ppb sulphate ions in simulated crack tip conditions seems to lead to a considerably lower thickness of the oxide films when compared to sulphate-free conditions. The presence of 10000 ppb sulphate ions leads also to considerable changes in the morphology of the oxide crystals on the material samples. In the absence of sulphate the outer oxide layer contains elongated round-edged crystals, while in the presence of sulphate ions the crystals are longish and needle-like. No visible difference can be observed in the outlook of the crystals formed on stainless steel and Inconel alloy surfaces. A small amount of sulphur in the form of sulphate can be found on the oxide surface on all the studied materials after exposure to the 10000 ppb solution. Sulphur seems to become incorporated inside the oxide film on AISI 316 L(NG). It is not clear at this stage, whether the observed influence of the sulphate ions can be ascribed to the lower pH, to a possible effect on solubility or to a direct influence of the anionic species. (authors)

  18. Roentgenoelectronic investigation into oxidation of iron-chromium and iron-chromium-nickel alloys

    International Nuclear Information System (INIS)

    Akimov, A.G.; Rozenfel'd, I.L.; Kazanskij, L.P.; Machavariani, G.V.

    1978-01-01

    Kinetics of iron-chromium and iron-chromium-nickel alloy oxidation (of the Kh13 and Kh18N10T steels) in oxygen was investigated using X-ray electron spectroscopy. It was found that according to X-ray electron spectra chromium oxidation kinetics in the iron-chromium alloy differs significantly from oxidation kinetics of chromium pattern. Layer by layer X-ray electron analysis showed that chromium is subjected to a deeper oxidation as compared to iron, and accordingly, Cr 2 O 3 layer with pure iron impregnations is placed between the layer of mixed oxide (Fe 3 O 4 +Cr 2 O 3 ) and metal. A model of the iron-chromium alloy surface is suggested. The mixed oxide composition on the steel surface is presented as spinel Fesub(2+x)Crsub(1-x)Osub(y)

  19. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  20. Mn-implanted, polycrystalline indium tin oxide and indium oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Vinnichenko, Mykola; Xu Qingyu; Buerger, Danilo; Zhou Shengqiang; Kolitsch, Andreas; Grenzer, Joerg; Helm, Manfred; Schmidt, Heidemarie

    2009-01-01

    Polycrystalline conducting, ca. 250 nm thick indium tin oxide (ITO) and indium oxide (IO) films grown on SiO 2 /Si substrates using reactive magnetron sputtering, have been implanted with 1 and 5 at.% of Mn, followed by annealing in nitrogen or in vacuum. The effect of the post-growth treatment on the structural, electrical, magnetic, and optical properties has been studied. The roughness of implanted films ranges between 3 and 15 nm and XRD measurements revealed a polycrystalline structure. A positive MR has been observed for Mn-implanted and post-annealed ITO and IO films. It has been interpreted by considering s-d exchange. Spectroscopic ellipsometry has been used to prove the existence of midgap electronic states in the Mn-implanted ITO and IO films reducing the transmittance below 80%.

  1. Nuclear microanalysis of oxide films on structural steel

    International Nuclear Information System (INIS)

    Istomin, I.V.; Karabash, V.A.; Maisyukov, V.D.; Sosnin, A.N.; Shorin, V.S.

    1989-01-01

    Studies of the behavior of structural materials in nuclear power plants have indicated the important role of oxide films on metals, especially metals of the iron group. The films may be formed as a result of the corrosion of the metal in an aggressive coolant. At the same time, some oxide films have anticorrosive properties and can be produced specially by the introduction of inhibitor-passivators, e.g., molecular oxygen, into the aggressive medium. Experimental data on the film growth rate make it possible to determine the kinetics of the oxidation process, the nature of the diffusion of the main components through the film, and the role of the phase transitions (crystal-chemical transformations) and point defects during the migration of oxygen and metal ions through the oxide. In this study nuclear microanalysis is used to measure the parameters of oxide films formed on 10Cr2Mo and 1Cr18Ni10Ti steels in steam in the temperature range 320-620C. In this method the film parameters in the general analysis of the energy spectra of deuterons back-scattered from iron nuclei and protons in the case of the 16 O(d,p 1 ) 17 O nuclear reaction. With this approach and an initial deuteron energy E o = 0.9 MeV the range of the measurable thickness t of the films is 0.001-1.5 mg/cm 2 . The data obtained not only confirm the high sensitivity of the nuclear microanalysis method but also demonstrate that it can be used for nondestructive quality control of the surface

  2. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants

    Directory of Open Access Journals (Sweden)

    Indrani Manna

    2017-11-01

    Full Text Available Concentration of engineered nickel oxide nanoparticle (NiO-NP in nature is on the rise, owing to large scale industrial uses, which have accreted the scope of its exposure to plants, the primary producers of the ecosystem. Though an essential micronutrient for the animal system, supported by numerous studies confirming its toxicity at higher dosages, nickel oxide is graded as a human carcinogen by WHO. A few studies do depict toxicity and bioaccumulation of nickel in plants; however, interaction of NiO-NP with plants is not well-elucidated. It is known that exposure to NiO-NP can incite stress response, leading to cytotoxicity and growth retardation in some plants, but a defined work on the intricate physicochemical cellular responses and genotoxic challenges is wanting. The present study was planned to explore cytotoxicity of NiO-NP in the model plant, Allium cepa L., its internalization in the tissue and concomitant furore created in the antioxidant enzyme system of the plant. The prospect of the NiO-NP causing genotoxicity was also investigated. Detailed assessments biochemical profiles and genotoxicity potential of NiO-NP on A. cepa L. was performed and extended to four of its closest economically important relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., and Allium fistulosum L. Growing root tips were treated with seven different concentrations of NiO-NP suspension (10–500 mg L−1, with deionised distilled water as negative control and 0.4 mM EMS solution as positive control. Study of genotoxic endpoints, like, mitotic indices (MI, chromosomal aberrations (CAs, and chromosome breaks confirmed NiO-NP induced genotoxicity in plants, even at a very low dose (10 mg L−1. That NiO-NP also perturbs biochemical homeostasis, disrupting normal physiology of the cell, was confirmed through changes in state of lipid peroxidation malonaldehyde (MDA, as well as, in oxidation marker enzymes, like catalase (CAT, super oxide

  4. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  5. High Temperature Oxidation of Nickel-based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

    Science.gov (United States)

    Farrokhzad, M. A.; Khan, T. I.

    2014-09-01

    New technological challenges in oil production require materials that can resist high temperature oxidation. In-Situ Combustion (ISC) oil production technique is a new method that uses injection of air and ignition techniques to reduce the viscosity of bitumen in a reservoir and as a result crude bitumen can be produced and extracted from the reservoir. During the in-situ combustion process, production pipes and other mechanical components can be exposed to air-like gaseous environments at extreme temperatures as high as 700 °C. To protect or reduce the surface degradation of pipes and mechanical components used in in-situ combustion, the use of nickel-based ceramic-metallic (cermet) coating produced by co-electrodeposition of nanosized Al2O3 and TiO2 have been suggested and earlier research on these coatings have shown promising oxidation resistance against atmospheric oxygen and combustion gases at elevated temperatures. Co-electrodeposition of nickel-based cermet coatings is a low-cost method that has the benefit of allowing both internal and external surfaces of pipes and components to be coated during a single electroplating process. Research has shown that the volume fraction of dispersed nanosized Al2O3 and TiO2 particles in the nickel matrix which affects the oxidation resistance of the coating can be controlled by the concentration of these particles in the electrolyte solution, as well as the applied current density during electrodeposition. This paper investigates the high temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by coelectrodeposition technique as a function of the concentration of these particles in the electrolyte solution and applied current density. For this purpose, high temperature oxidation tests were conducted in dry air for 96 hours at 700 °C to obtain mass changes (per unit of area) at specific time

  6. Evaluation of Iron Nickel Oxide Nanopowder as Corrosion Inhibitor: Effect of Metallic Cations on Carbon Steel in Aqueous NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, A. U.; Mishra, Brajendra [Colorado School of Mines, Denver (United States); Mittal, Vikas [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2016-01-15

    The aim of this study was to evaluate the use of iron-nickel oxide (Fe{sub 2}O{sub 3}.NiO) nanopowder (FeNi) as an anti-corrosion pigment for a different application. The corrosion protection ability and the mechanism involved was determined using aqueous solution of FeNi prepared in a corrosive solution containing 3.5 wt.% NaCl. Anti-corrosion abilities of aqueous solution were determined using electrochemical impedance spectroscopy (EIS) on line pipe steel (API 5L X-80). The protection mechanism involved the adsorption of metallic cations on the steel surface forming a protective film. Analysis of EIS spectra revealed that corrosion inhibition occurred at low concentration, whereas higher concentration of aqueous solution produced induction behavior.

  7. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Muslim, Noormariah, E-mail: 14h8702@ubd.edu.bn [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Soon, Ying Woan [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Physical and Geological Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam); Lim, Chee Ming; Voo, Nyuk Yoong [Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410 (Brunei Darussalam)

    2016-08-01

    Pure nickel (Ni) thin films of thicknesses of 100 nm were deposited on glass substrates by radio frequency magnetron sputtering at a power of 100 W and at various substrate temperatures i.e., room temperature, 100, 200, and 300 °C. The crystalline structure, surface topography, surface morphology, electrical resistivity, and optical properties of the deposited films were studied. The properties of the Ni films could be controlled by altering the substrate temperature. Specifically, the films featured a face-centered cubic crystalline structure with predominant (111) crystallite orientation at all the substrate temperatures employed, as observed from the X-ray diffraction analysis. Films deposited at substrate temperatures greater than 200 °C additionally displayed crystalline (200) and (220) diffraction peaks. The surface morphology analysis revealed that the grain size of the Ni thin films increased with increasing substrate temperatures employed. This increase was accompanied with a decrease in the resistivity of the Ni films. The surface roughness of the films increased with increasing substrate temperatures employed, as observed from the atomic force microscopy analysis. - Highlights: • RF magnetron sputtering is a good alternative method to deposit Ni films. • Properties of Ni films could be controlled simply by tuning substrate temperatures. • Crystallite size and surface roughness increased with substrate temperatures. • Electrical resistivity reduced with increasing substrate temperatures. • Optical properties also changed with substrate temperatures.

  8. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    International Nuclear Information System (INIS)

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-01

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO 4 ; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO 4 exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO 4 -exposed SH rats were greater than those on NiSO 4 -exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO 4 . Both NAC and celecoxib mitigated the NiSO 4 -induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and celecoxib mitigated the Ni

  9. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Hsiao-Chi, E-mail: r92841005@ntu.edu.tw [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Tzu-Wei, E-mail: r95841015@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Chuen-Chau, E-mail: nekota@tmu.edu.tw [Department of Anaesthesiology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan (China); Hwang, Jing-Shiang, E-mail: jshwang@stat.sinica.edu.tw [Institute of Statistical Science, Academia Sinica, Taipei, Taiwan (China); Chuang, Kai-Jen, E-mail: kjc@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Yan, Yuan-Horng, E-mail: d97841006@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  10. Anti-corrosion performance of oxidized and oxygen plasma-implanted NiTi alloys

    International Nuclear Information System (INIS)

    Poon, Ray W.Y.; Ho, Joan P.Y.; Liu, Xuanyong; Chung, C.Y.; Chu, Paul K.; Yeung, Kelvin W.K.; Lu, William W.; Cheung, Kenneth M.C.

    2005-01-01

    Nickel-titanium shape memory alloys are useful orthopedic biomaterials on account of its super-elastic and shape memory properties. However, the problem associated with out-diffusion of harmful nickel ions in prolonged use inside the human body raises a critical safety concern. Titanium oxide films are deemed to be chemically inert and biocompatible and hence suitable to be the barrier layers to impede the leaching of Ni from the NiTi substrate to biological tissues and fluids. In the work reported in this paper, we compare the anti-corrosion efficacy of oxide films produced by atmospheric-pressure oxidation and oxygen plasma ion implantation. Our results show that the oxidized samples do not possess improved corrosion resistance and may even fare worse than the untreated samples. On the other hand, the plasma-implanted surfaces exhibit much improved corrosion resistance. Our work also shows that post-implantation annealing can further promote the anti-corrosion capability of the samples

  11. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    International Nuclear Information System (INIS)

    D'Addato, S; Grillo, V; Valeri, S; Frabboni, S; Altieri, S; Tondi, R

    2011-01-01

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O 2 gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  12. Structure and stability of nickel/nickel oxide core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    D' Addato, S; Grillo, V; Valeri, S; Frabboni, S [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Altieri, S; Tondi, R, E-mail: sergio.daddato@unimore.it [Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2011-05-04

    The results of a combined x-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HR-TEM) study of Ni nanoparticles (NP), before and after oxidation, are presented. An experimental set-up was realized for the preparation and study of pre-formed NP films, concentrating the attention on Ni NP in the diameter range between 4 and 8 nm. The XPS data were taken in situ from NPs after different stages of oxidation, including controlled dosing of O{sub 2} gas in the experimental system and exposure to the atmosphere. The Ni 2p structure is a combination of spectra from metallic Ni in the NP core and from the oxide shell. The signal from the NP core was observed even for samples after exposure to air. From the comparison of HR-TEM experimental images with theoretical simulations, it was found that the Ni NP core has a regular multitwinned icosahedral structure, composed of single-crystal tetrahedra with (111) faces. The NiO phase is clearly observed forming islands on the NP surface.

  13. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.

    2017-08-29

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  14. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy

    KAUST Repository

    LAGROW, A.P.; AlYami, Noktan; LLOYD, D.C.; Bakr, Osman; BOYES, E.D.; GAI, P.L.

    2017-01-01

    Understanding the oxidation and reduction mechanisms of transition metals, such as nickel (Ni), is important for their use in industrial applications of catalysis. A powerful technique for investigating the redox reactive species is in situ environmental transmission electron microscopy (ETEM), where oxidation and reduction can be tracked in real time. One particular difficulty in understanding the underlying reactions is understanding the underlying morphology of the starting structure in a reaction, in particular the defects contained in the material, and the exposed surface facets. Here-in, we use a colloidal nanoparticle synthesis in a continuous flow reactor to form nanoplates of nickel coated with oleylamine as a capping agent. We utilise an in situ heating procedure at 300 °C in vacuum to remove the oleylamine ligands, and then oxidise the Ni nanoparticles at 25 °C with 2 Pa oxygen, and follow the nanoparticles initial oxidation. After that, the nanoparticles are oxidised at 200 and 300 °C, making the size of the oxide shell increase to ∼4 nm. The oxide shell could be reduced under 2 Pa hydrogen at 500 °C to its initial size of ∼1 nm. High temperature oxidation encouraged the nanoparticles to form pure NiO nanoparticles, which occurred via the Kirkendall effect leading to hollowing and void formation.

  15. Preparation of molybdenum oxide thin films by MOCVD

    International Nuclear Information System (INIS)

    Guerrero, R. Martinez; Garcia, J.R. Vargas; Santes, V.; Gomez, E.

    2007-01-01

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 o C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 o C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of α-MoO 3 phase at deposition temperatures ranging from 400 to 560 o C (673-833 K). Crystalline α-MoO 3 films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 o C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance

  16. Preparation of molybdenum oxide thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, R. Martinez [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico); Garcia, J.R. Vargas [Depto. de Ingenieria Metalurgica, ESIQIE-IPN, Mexico 07300, D.F. (Mexico)]. E-mail: rvargasga@ipn.mx; Santes, V. [CIIEMAD-IPN, Miguel Othon de Mendizabal 485, Mexico 07700, D.F. (Mexico); Gomez, E. [Instituto de Quimica-UNAM, Circuito Exterior-Ciudad Universitaria, Mexico 04510, D.F. (Mexico)

    2007-05-31

    In this study, molybdenum oxide films were prepared in a horizontal hot-wall MOCVD apparatus using molybdenum dioxide acetylacetonate as precursor. The molybdenum precursor was synthesized from acetylacetone and molybdenum oxide powder. Thermal gravimetric (TG) and differential thermal analyses (DTA) of the precursor suggested the formation of molybdenum oxides around 430 {sup o}C (703 K). Thus, a range of deposition temperatures varying from 350 to 630 {sup o}C (623-903 K) was explored to investigate the effects on the nature of the molybdenum oxide films. X-ray diffraction (XRD) results showed that the films consisted of {alpha}-MoO{sub 3} phase at deposition temperatures ranging from 400 to 560 {sup o}C (673-833 K). Crystalline {alpha}-MoO{sub 3} films can be obtained from molybdenum dioxide acetylacetonate precursor, without need of a post-annealing treatment. The best crystalline quality was found in films having needle-like crystallites grown at deposition temperature of about 560 {sup o}C (833 K), which exhibit a strong (0 1 0) preferred orientation and a transparent visual appearance.

  17. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  18. Photoconductivity of oxidized nanostructured PbTe(In) films

    International Nuclear Information System (INIS)

    Dobrovolsky, A A; Ryabova, L I; Khokhlov, D R; Dashevsky, Z M; Kasiyan, V A

    2009-01-01

    Photoconductivity of as-grown and oxidized nanocrystalline PbTe(In) films has been studied in the dc and ac modes at temperatures 4.2–300 K. The electric transport in the films is defined by two mechanisms: conductivity through barriers at grain boundaries and transport along inversion channels at the grain surface. Modification of the transport mechanisms induced by oxidation is considered. Relatively weak oxidation results in an increase in the contribution of grain barriers to conductivity followed by an enhancement of the photoconductivity amplitude. Instead, this contribution drops in the case of deep oxidation resulting in a photoresponse reduction. It is shown that the main mechanism of charge transport in deeply oxidized films at low temperatures is hopping along inversion channels at the grain surface. It is demonstrated that the photoconductive response of nanocrystalline materials may be optimized by variation of the oxidation level, measurement frequency and temperature

  19. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors

    Science.gov (United States)

    Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui

    2018-04-01

    In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

  20. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  1. Chemically abrupt interface between Ce oxide and Fe films

    International Nuclear Information System (INIS)

    Lee, H.G.; Lee, D.; Kim, S.; Kim, S.G.; Hwang, Chanyong

    2005-01-01

    A chemically abrupt Fe/Ce oxide interface can be formed by initial oxidation of an Fe film followed by deposition of Ce metal. Once a Ce oxide layer is formed on top of Fe, it acts a passivation barrier for oxygen diffusion. Further deposition of Ce metal followed by its oxidation preserve the abrupt interface between Ce oxide and Fe films. The Fe and Ce oxidation states have been monitored at each stage using X-ray photoelectron spectroscopy

  2. Evolution of the nickel/zirconia interface

    International Nuclear Information System (INIS)

    Shinde, S.L.; Olson, D.A.; De Jonghe, L.C.; Miller, R.A.

    1986-01-01

    The changes taking place at the nickel zirconia interface during oxidation in air at 900 0 C were studied using analytical electron microscopy (AEM). The nickel oxide layer growing at the interface and the stabilizers used in zirconia interact, giving different interface morphologies

  3. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  4. The study on corrosion resistance of decorative satin nickel plating

    Directory of Open Access Journals (Sweden)

    LU Wenya

    2012-10-01

    Full Text Available This study examined the corrosion resistance of satin nickel plating on conductive plastic.The electrochemical tests were to analyze the corrosion behavior of satin nickel plating with different processes in 3.5% NaCl solution.The results show that,because the satin nickel plating has an organic film on its surface due to process characteristics,the film results in different corrosion resistance.By increasing satin additive dosage,the nickel plating chroma decreases,the microsurface of the plating becomes rough,and the corrosion resistance is followed by decrease.

  5. Degradation of superconducting Nb/NbN films by atmospheric oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Wolfley, Steven L.; Young, Travis Ryan; Monson, Todd; Pearce, Charles Joseph; Lewis, Rupert M.; Clark, Blythe; Brunke, Lyle Brent; Missert, Nancy A.

    2017-03-01

    Niobium and niobium nitride thin films are transitioning from fundamental research toward wafer scale manufacturing with technology drivers that include superconducting circuits and electronics, optical single photon detectors, logic, and memory. Successful microfabrication requires precise control over the properties of sputtered superconducting films, including oxidation. Previous work has demonstrated the mechanism in oxidation of Nb and how film structure could have deleterious effects upon the superconducting properties. This study provides an examination of atmospheric oxidation of NbN films. By examination of the room temperature sheet resistance of NbN bulk oxidation was identified and confirmed by secondary ion mass spectrometry. As a result, Meissner magnetic measurements confirmed the bulk oxidation not observed with simple cryogenic resistivity measurements.

  6. Electrochromics for smart windows: Oxide-based thin films and devices

    Energy Technology Data Exchange (ETDEWEB)

    Granqvist, Claes G.

    2014-08-01

    possibilities to accomplish further porosity by having suitable thin-film deposition parameters. A number of examples on the importance of the detailed deposition conditions are presented, and Section 4 ends with a presentation of the EC properties of films with compositions across the full tungsten–nickel oxide system. Section 5 is devoted to transparent electrical conductors and electrolytes, both of which are necessary in EC devices. Detailed surveys are given of transparent conductors comprising doped-oxide semiconductors, coinage metals, nanowire meshes and other alternatives, and also of electrolytes based on thin films and on polymers. Particular attention is devoted to electrolyte functionalization by nanoparticles. Section 6 considers one particular device construction: A foil that is suitable for glass lamination and which, in the author's view, holds particular promise for low-cost large-area implementation of EC smart windows. Device data are presented, and a discussion is given of quality assessment by use of 1/f noise. The “battery-type” EC device covered in the major part of this critical review is not the only alternative, and Section 7 consists of brief discussions of a number of more or less advanced alternatives such as metal hydrides, suspended particle devices, polymer-dispersed liquid crystals, reversible electroplating, and plasmonic electrochromism based on transparent conducting oxide nanoparticles. Finally, Section 8 provides a brief summary and outlook. The aim of this critical review is not only to paint a picture of the state-of-the-art for electrochromics and its applications in smart windows, but also to provide ample references to current literature of particular relevance and thereby, hopefully, an easy entrance to the research field. - Highlights: • Critical review of electrochromic oxide thin films and devices. • Variable transmittance of visible light and solar energy. • Fenestration in energy efficient buildings.

  7. Electrochromics for smart windows: Oxide-based thin films and devices

    International Nuclear Information System (INIS)

    Granqvist, Claes G.

    2014-01-01

    possibilities to accomplish further porosity by having suitable thin-film deposition parameters. A number of examples on the importance of the detailed deposition conditions are presented, and Section 4 ends with a presentation of the EC properties of films with compositions across the full tungsten–nickel oxide system. Section 5 is devoted to transparent electrical conductors and electrolytes, both of which are necessary in EC devices. Detailed surveys are given of transparent conductors comprising doped-oxide semiconductors, coinage metals, nanowire meshes and other alternatives, and also of electrolytes based on thin films and on polymers. Particular attention is devoted to electrolyte functionalization by nanoparticles. Section 6 considers one particular device construction: A foil that is suitable for glass lamination and which, in the author's view, holds particular promise for low-cost large-area implementation of EC smart windows. Device data are presented, and a discussion is given of quality assessment by use of 1/f noise. The “battery-type” EC device covered in the major part of this critical review is not the only alternative, and Section 7 consists of brief discussions of a number of more or less advanced alternatives such as metal hydrides, suspended particle devices, polymer-dispersed liquid crystals, reversible electroplating, and plasmonic electrochromism based on transparent conducting oxide nanoparticles. Finally, Section 8 provides a brief summary and outlook. The aim of this critical review is not only to paint a picture of the state-of-the-art for electrochromics and its applications in smart windows, but also to provide ample references to current literature of particular relevance and thereby, hopefully, an easy entrance to the research field. - Highlights: • Critical review of electrochromic oxide thin films and devices. • Variable transmittance of visible light and solar energy. • Fenestration in energy efficient buildings

  8. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  9. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  10. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  11. Kinetic studies of isooctane partial oxidation over a nickel-based catalyst

    International Nuclear Information System (INIS)

    Ibrahim, Hussameldin; Idem, Raphael; Aboudheir, Ahmed

    2006-01-01

    The production of hydrogen (H 2 ) for fuel cell applications in mobile vehicles by reforming technologies such as partial oxidation of various fossil fuels has gained much attention recently. In this study, the production of H 2 by the catalytic partial oxidation of isooctane ((C 8 H 18 ) used here as a surrogate for gasoline) was investigated over alumina (AI 2 O 3 )supported nickel (Ni) catalyst. The work investigated the kinetics of the partial oxidation of isooctane over a stable Ni/□-AI 2 O 3 catalyst in the range of 863 to 913 K, at atmospheric pressure, W/F i c8 in the range of 1.97 to 8.58 g h mol - 1, and molar feed ratio in the range of 2.0 to 8.0 experiments to obtain kinetic data were performed in a 12.7 mm diameter Inconel micro-reactor housed in an electrically controlled furnace. The chemical reaction was then modeled using rate models developed from the Langmuir-Hinshelwood-hougen-Watson (LHHW) and Eley-Rideal (ER) formulations. The model parameters were estimated using an adaptive Gauss-Newton and Marquardi-Levenberg minimization algorithm. Rival models were screened for their thermodynamic consistency and physicochemical significance of estimated parameters. Langmuir-Hinshelwood-hougen-Watson mechanism requiring the dissociative adsorption of isooctane and oxygen on two different sites appeared to be the most likely pathway for the partial oxidation reaction of isooctane. Reaction order with respect to isooctane indicates the strong coverage of nickel by isooctane. The activation energy of 73±3.1 kJ mol - 1 estimated from the LHHW model is consistent with the trend observed with lower hydrocarbons.(Author)

  12. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  13. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  14. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    International Nuclear Information System (INIS)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun

    2016-01-01

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al 3+ ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al 3+ films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni 3+ /Ni 2+ also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni 3+ making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni 3+ /Ni 2+ varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted

  15. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  16. TEM investigation of DC sputtered carbon-nitride-nickel thin films

    International Nuclear Information System (INIS)

    Safran, G.; Geszti, O.; Radnoczi, G.

    2002-01-01

    Deposition of carbon nitride (C-N) and carbon-nitride-nickel (C-N-Ni) films onto glass, NaCl and Si(001) substrates was carried out in a dc magnetron sputtering system. Carbon was deposited from high-purity (99.99%) pyrolytic graphite target, 50 mm in diameter, positioned at 10 cm from a resistance-heated substrate holder. C-N-Ni films were grown by a small Ni plate mounted on the graphite target. The base pressure of the deposition chamber was ∼7x10 -7 Torr. Films were grown at a substrate temperature of 20-700 grad C, in pure N 2 at partial pressures of 1.9 -2.2 mTorr and the substrates were held at ground potential. The typical film thickness of 15-30 nm was deposited on all the substrates at a magnetron current of 0.2 and 0.3 A, which resulted in a deposition rate of 1.5-2 nm/s. Structural characterizations were performed by high-resolution transmission electron microscopy (HRTEM) using a JEOL 3010 operated at 300 kV and a 200 kV Philips CM 20 electron microscope equipped with a Ge detector Noran EDS system. The N content of the C-N samples prepared at room temperature was 22-24% by EDS measurement and showed a decrease to 6-7% at elevated temperatures up to 700 grad C. The N concentration in the C-N-Ni films was higher: ∼38% at RT and ∼9% at 700 grad C. The Ni concentration of C-N-Ni samples was 5-6% and 0.3-0.4% in samples deposited at RT and 700 grad C respectively. The low Ni content in the latter is attributed to a decrease of the sticking coefficient of the carbon co-deposited Ni at elevated temperatures. (Authors)

  17. Thick-film effects in the oxidation and hydriding of zirconium alloys

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1989-08-01

    One of the fundamental discoveries involving radiation effects on the oxidation of Zircaloy in low-oxygen aqueous environments is the influence of thick oxide films. Zircaloy oxidation rates in low-oxygen (hydrogen-rich) coolants initially proceed at relatively low rates, often almost uninfluenced by radiation. Marked upturns in oxidation rate have signaled the onset of radiation effects. The radiation effects appear to correlate with a threshold oxide thickness. Results of the test reactor experiments lead to formulation of the Thick-Film Hypothesis: beyond a threshold oxide thickness, radiolysis of water that infiltrates oxide cracks and pores controls the oxidation rate; radiation creates microenvironments inside the oxide film, producing highly oxidizing conditions, that are no longer suppressed by the coolant-borne hydrogen. Upturns in oxidation rate on high-exposure Zircaloy pressure tubes add confirmatory evidence for the thick-film effect. This paper summarizes the early evidence for thick-film behavior, including oxidation and hydriding trends, updates confirmatory evidence from Zircaloy reactor and fuel assembly components, and highlights other observations from the test reactor series that have potential fundamental significance to explanations of radiation effects on Zircaloy. 23 refs., 10 figs

  18. Atomic layer deposition of calcium oxide and calcium hafnium oxide films using calcium cyclopentadienyl precursor

    International Nuclear Information System (INIS)

    Kukli, Kaupo; Ritala, Mikko; Sajavaara, Timo; Haenninen, Timo; Leskelae, Markku

    2006-01-01

    Calcium oxide and calcium hafnium oxide thin films were grown by atomic layer deposition on borosilicate glass and silicon substrates in the temperature range of 205-300 o C. The calcium oxide films were grown from novel calcium cyclopentadienyl precursor and water. Calcium oxide films possessed refractive index 1.75-1.80. Calcium oxide films grown without Al 2 O 3 capping layer occurred hygroscopic and converted to Ca(OH) 2 after exposure to air. As-deposited CaO films were (200)-oriented. CaO covered with Al 2 O 3 capping layers contained relatively low amounts of hydrogen and re-oriented into (111) direction upon annealing at 900 o C. In order to examine the application of CaO in high-permittivity dielectric layers, mixtures of Ca and Hf oxides were grown by alternate CaO and HfO 2 growth cycles at 230 and 300 o C. HfCl 4 was used as a hafnium precursor. When grown at 230 o C, the films were amorphous with equal amounts of Ca and Hf constituents (15 at.%). These films crystallized upon annealing at 750 o C, showing X-ray diffraction peaks characteristic of hafnium-rich phases such as Ca 2 Hf 7 O 16 or Ca 6 Hf 19 O 44 . At 300 o C, the relative Ca content remained below 8 at.%. The crystallized phase well matched with rhombohedral Ca 2 Hf 7 O 16 . The dielectric films grown on Si(100) substrates possessed effective permittivity values in the range of 12.8-14.2

  19. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  20. The application and study of an oxide-impregnated nickel-matrix cathode for Beijing proton linac

    International Nuclear Information System (INIS)

    Xia Dehong; Shi Rongjian

    1996-01-01

    A low power consumption oxide-impregnated nickel-matrix cathode used in the Duoplasmatron ion source of the Beijing Proton Linac (BPL) is presented. Its structure, treatment process of nickel-foam rubber on metal matrix surface and manufacture of dip coating carbonate are briefly introduced. The activation method and experiment results of the cathode are described. The principal factors which influence the cathode lifetime are discussed. The lifetime of the cathode is up to 2110 h while the extracted pulsed beam current is about 200 mA

  1. Sputtered indium oxide films

    International Nuclear Information System (INIS)

    Gillery, F.H.

    1986-01-01

    A method is described for depositing on a substrate multiple layer films comprising at least one primary layer of a metal oxide and at least one primary layer of a metal other than the metal of the oxide layer. The improvement described here comprises improving the adhesion between the metal oxide and metal layers by depositing between the layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers. An article of manufacture is described comprising a nonmetallic substrate, and deposited thereon in any order: a. at least one coating layer of metal; b. at least one coating layer of an oxide of a metal other than the metal of the metal layer; and c. deposited between the metal and metal oxide layers an intermediate metal-containing layer having an affinity for both the metal and metal oxide layers

  2. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.

    Science.gov (United States)

    Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2012-06-25

    Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  4. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  5. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Samaane, Mikhail

    1966-01-01

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al 2 O 3 , NiAl 2 O 4 and NiO + NiAl 2 O 4 ) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al 2 O 3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O 2 and CO 2 on the 2NiO+Al 2 O 3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl 2 O 4 and NiO+NiAl 2 O 4 ) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O 2 and CO 2 on NiAl 2 O 4 , and the kinetic of the oxidation reaction are herein studied

  6. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  7. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    International Nuclear Information System (INIS)

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-01-01

    Preparation of supported nickel phosphide (Ni 2 P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni 2 P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni 2 P structure, verified by XRD characterization results. The alumina (namely, γ-Al 2 O 3 , θ-Al 2 O 3 , or α-Al 2 O 3 ) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni 2 P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N 2 -sorption isotherm. The uniform surface energy of α-Al 2 O 3 results only in the nickel phosphosate precursor and thus the Ni 2 P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al 2 O 3 , θ-Al 2 O 3 , and γ-Al 2 O 3 ) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni 3 P, Ni 12 P 5 , Ni 2 P). - Highlights: • Preparing pure Ni 2 P. • Elucidating nickel phosphate precursor. • Associating with surface energy

  8. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  9. Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia

    International Nuclear Information System (INIS)

    Cloud, Andrew N.; Abelson, John R.; Davis, Luke M.; Girolami, Gregory S.

    2014-01-01

    Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300 °C from three recently synthesized M[N(t-Bu) 2 ] 2 precursors, where M = Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200 °C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18 nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities

  10. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  11. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  12. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

    DEFF Research Database (Denmark)

    Meškinis, Šaru Nas; Gudaitis, Rimantas; Šlapikas, Kęstutis

    2018-01-01

    deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted......Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some...... samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four...

  13. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  14. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  15. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  16. A comparative study of humidity sensing and photocatalytic applications of pure and nickel (Ni)-doped WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S. [Bannari Amman Institute of Technology, Department of Physics, Erode, Tamilnadu (India); Rajarajan, G. [Vidhya Mandhir Institute of Technology, Department of Physics, Erode, Tamilnadu (India)

    2017-06-15

    Nanocrystalline of pristine and nickel (Ni)-doped tungsten trioxide (WO{sub 3}) thin films was deposited by chemical bath deposition method. The concentrations of Ni ions were varied from 0 to 10 wt%. In order to improve the crystallinity of the films were annealed at 600 C for 2 h in the ambient atmosphere. X-ray diffraction results reveal that the WO{sub 3} doped with nickel crystallizes in monoclinic structure and the results are in good agreement with the standard JCPDS data (card no: 83-0951). AFM micrographs reveal that average grain size of about 27-39 nm for pure and Ni-doped WO{sub 3} thin films. In addition, the band gap of the Ni-doped WO{sub 3} nanostructures is facilely tunable by controlling the Ni contents. The humidity sensor setup was fabricated and measured for pure and Ni-doped WO{sub 3} thin film sensor with various level of RH (10-90%). The Ni-doped WO{sub 3} sensor showed fast response and high sensitivity than pure WO{sub 3}. The photocatalytic activities of the films were evaluated by degradation of methyl orange, methylene blue and phenol in an aqueous solution under visible light irradiation. The photocatalytic activity of WO{sub 3} nanostructures could be remarkably enhanced by doping the Ni impurity. (orig.)

  17. Hydrogenation of Levulinic Acid over Nickel Catalysts Supported on Aluminum Oxide to Prepare γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2015-12-01

    Full Text Available Four types of nickel catalysts supported on aluminum oxide (Ni/Al2O3 with different nickel loadings were synthesized using the co-precipitation method and were used for the hydrogenation of levulinic acid (LA to prepare γ-valerolactone (GVL. The synthesized Ni/Al2O3 catalysts exhibited excellent catalytic activity in dioxane, and the activity of the catalysts was excellent even after being used four times in dioxane. The catalytic activity in dioxane as a solvent was found to be superior to the activity in water. Nitrogen physisorption, X-ray diffraction, and transmission electron microscopy were employed to characterize the fresh and used catalysts. The effects of the nickel loading, temperature, hydrogen pressure, and substrate/catalyst ratio on the catalytic activity were investigated.

  18. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  19. Nickel Oxide (NiO nanoparticles prepared by solid-state thermal decomposition of Nickel (II schiff base precursor

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-06-01

    Full Text Available In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II Schiff base complex as new precursor. First, the nickel (II Schiff base precursor was prepared by solid-state grinding using nickel (II nitrate hexahydrate, Ni(NO32∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene benzene-1,4-diamine for 30 min without using any solvent, catalyst, template or surfactant. It was characterized by Fourier Transform Infrared spectroscopy (FT-IR and elemental analysis (CHN. The resultant solid was subsequently annealed in the electrical furnace at 450 °C for 3 h in air atmosphere. Nanoparticles of NiO were produced and characterized by X-ray powder diffraction (XRD at 2θ degree 0-140°, FT-IR spectroscopy, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The XRD and FT-IR results showed that the product is pure and has good crystallinity with cubic structure because no characteristic peaks of impurity were observed, while the SEM and TEM results showed that the obtained product is tiny, aggregated with plate-like shape, narrow size distribution with an average size between 10-40 nm. Results show that the solid state thermal decomposition method is simple, environmentally friendly, safe and suitable for preparation of NiO nanoparticles. This method can also be used to synthesize nanoparticles of other metal oxides.

  20. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  1. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods

    Directory of Open Access Journals (Sweden)

    Amira M. Mahmoud

    2015-03-01

    Full Text Available Environmental pollution by heavy metal is arising as the most endangering tasks to both water sources and atmosphere quality today. The treatment of heavy metals is of special concern due to their recalcitrance and persistence in the environment. To limit the spread of the heavy metals within water sources, nickel oxide nanoparticles adsorbents were synthesized and characterized with the aim of removal of one of the aggressive heavy elements, namely; lead ions. Nano nickel oxide adsorbents were prepared using NaOH and oxalic acid dissolved in ethanol as precursors. The results indicated that adsorption capacity of Pb(II ion by NiO-org catalyst is favored than that prepared using NaOH as a precipitant. Nickel oxide nanoparticles prepared by the two methods were characterized structurally and chemically through XRD, DTA, TGA, BET and FT-IR. Affinity and efficiency sorption parameters of the solid nano NiO particles, such as; contact time, initial concentration of lead ions and the dosage of NiO nano catalyst and competitive adsorption behaviors were studied. The results showed that the first-order reaction law fit the reduction of lead ion, also showed good linear relationship with a correlation coefficient (R2 larger than 0.9.

  2. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition

    Directory of Open Access Journals (Sweden)

    D. Santos-Cruz

    Full Text Available Thin films of Cu2O and CuO oxides were developed by direct oxidation of physical vapor deposited copper films in an open atmosphere by varying the temperature in the range between 250 and 400 °C. In this work, the influence of oxidation temperature on structural, optical and electrical properties of copper oxide films has been discussed. The characterization results revealed that at lower temperatures (<300 °C, it is feasible to obtained coper (I oxide whereas at temperatures higher than 300 °C, the copper (II oxide is formed. The band gap is found to vary in between 1.54 and 2.21 eV depending on the oxidation temperature. Both oxides present p-type electrical conductivity. The carrier concentration has been increased as a function of the oxidation temperature from 1.61 × 1012 at 250 °C to 6.8 × 1012 cm−3 at 400 °C. The mobility has attained its maximum of 34.5 cm2 V−1 s−1 at a temperature of 300 °C, and a minimum of 13.8 cm2 V−1 s−1 for 400 °C. Finally, the resistivity of copper oxide films decreases as a function of oxidation temperature from 5.4 × 106 to 2.4 × 105 Ω-cm at 250 and 400 °C, respectively. Keywords: PVD, Oxidizing annealed treatment, Non-toxic material

  3. Magnetic nanofilms of nickel prepared at the liquid-liquid interface

    International Nuclear Information System (INIS)

    Varghese, Neenu; Rao, C.N.R.

    2011-01-01

    Highlights: → Formation of nickel thinfims at the organic-aqueous interface at room temperature. → Thickness of nanofilm is ∼20 nm. → Ni nanofilms exhibit superparamagnetic behavior. → Thicker Ni films are obtained at a higher temperature (60 o C). -- Abstract: Thin films of metallic nickel with a thickness of the order of 20 nm have been prepared at the organic-aqueous interface at room temperature by the reaction of nickel cupferronate [Ni(C 6 H 5 N 2 O 2 ) 2 ] in toluene medium and sodium borohydride (NaBH 4 ) in aqueous medium. The films were characterized with transmission electron microscopy, scanning electron microscopy and atomic force microscopy. Thicker Ni films could be prepared by carrying out the reaction at the interface at 60 o C. The Ni nanofilms exhibit superparamagnetic behavior.

  4. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  5. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Maheshwari, Arpit; Heck, Michael; Santarelli, Massimo

    2018-01-01

    The cycle aging of a commercial 18650 lithium-ion battery with graphite anode and lithium nickel manganese cobalt (NMC) oxide-based cathode at defined operating conditions is studied by regular electrochemical characterization, electrochemical impedance spectroscopy (EIS) and post-mortem analysis.

  6. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    Science.gov (United States)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  7. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  8. Photoconduction in silicon rich oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Luna-Lopez, J A; Carrillo-Lopez, J; Flores-Gracia, F J; Garcia-Salgado, G [CIDS-ICUAP, Benemerita Universidad Autonoma de Puebla. Ed. 103 D and C, col. San Manuel, Puebla, Pue. Mexico 72570 (Mexico); Aceves-Mijares, M; Morales-Sanchez, A, E-mail: jluna@buap.siu.m, E-mail: jluna@inaoep.m [INAOE, Luis Enrique Erro No. 1, Apdo. 51, Tonantzintla, Puebla, Mexico 72000 (Mexico)

    2009-05-01

    Photoconduction of silicon rich oxide (SRO) thin films were studied by current-voltage (I-V) measurements, where ultraviolet (UV) and white (Vis) light illumination were applied. SRO thin films were deposited by low pressure chemical vapour deposition (LPCVD) technique, using SiH{sub 4} (silane) and N{sub 2}O (nitrous oxide) as reactive gases at 700 {sup 0}. The gas flow ratio, Ro = [N{sub 2}O]/[SiH{sub 4}] was used to control the silicon excess. The thickness and refractive index of the SRO films were 72.0 nm, 75.5 nm, 59.1 nm, 73.4 nm and 1.7, 1.5, 1.46, 1.45, corresponding to R{sub o} = 10, 20, 30 and 50, respectively. These results were obtained by null ellipsometry. Si nanoparticles (Si-nps) and defects within SRO films permit to obtain interesting photoelectric properties as a high photocurrent and photoconduction. These effects strongly depend on the silicon excess, thickness and structure type. Two different structures (Al/SRO/Si and Al/SRO/SRO/Si metal-oxide-semiconductor (MOS)-like structures) were fabricated and used as devices. The photocurrent in these structures is dominated by the generation of carriers due to the incident photon energies ({approx}3.0-1.6 eV and 5 eV). These structures showed large photoconductive response at room temperature. Therefore, these structures have potential applications in optoelectronics devices.

  9. On the reflectivity of nickel neutron mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Habib, N. (Atomic Energy Establishment, Cairo (Egypt). Reactor and Neutron Physics Dept.); Kenawy, M.A.; Wahba, M.; Ashry, A.H. (Ain Shams Univ., Cairo (Egypt))

    1991-02-01

    Neutron reflectivities were determined for 300 nm thick films of natural nickel and nickel 58 coated on glass plates. The measurements were performed at glancing angles between 40' and 60'. The incident neutron beam from one of the ET-RR-1 reactor horizontal channels covered neutron wavelengths between 0.55 and 0.80 nm. It was found that nickel 58, because of the high value of its critical glancing angle, is more efficient as a neutron mirror than natural nickel. (orig.).

  10. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  11. Aluminum doped nickel oxide thin film with improved electrochromic performance from layered double hydroxides precursor in situ pyrolytic route

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jingjing; Lai, Lincong; Zhang, Ping; Li, Hailong; Qin, Yumei; Gao, Yuanchunxue; Luo, Lei; Lu, Jun, E-mail: lujun@mail.buct.edu.cn

    2016-09-15

    Electrochromic materials with unique performance arouse great interest on account of potential application values in smart window, low-power display, automobile anti-glare rearview mirror, and e-papers. In this paper, high-performing Al-doped NiO porous electrochromic film grown on ITO substrate has been prepared via a layered double hydroxides(LDHs) precursor in situ pyrolytic route. The Al{sup 3+} ions distributed homogenously within the NiO matrix can significantly influence the crystallinity of Ni-Al LDH and NiO:Al{sup 3+} films. The electrochromic performance of the films were evaluated by means of UV–vis absorption spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry(CA) measurements. In addition, the ratio of Ni{sup 3+}/Ni{sup 2+} also varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range (58.4%), fast switching speed (bleaching/coloration times are 1.8/4.2 s, respectively) and excellent durability (30% decrease after 2000 cycles). The improved performance was owed to the synergy of large NiO film specific surface area and porous morphology, as well as Al doping stifled the formation of Ni{sup 3+} making bleached state more pure. This LDHs precursor pyrolytic method is simple, low-cost and environmental benign and is feasible for the preparation of NiO:Al and other Al-doped oxide thin film. - Graphical abstract: The ratio of Ni{sup 3+}/Ni{sup 2+} varies with Al content which can lead to different electrochemical performances. Among the as-prepared films, NiO film prepared from Ni-Al (19:1) LDH show the best electrochromic performance with a high transparency of 96%, large optical modulation range, fast switching speed and excellent durability. Display Omitted.

  12. Study of high mobility carriers in Ni-doped CdO films

    Indian Academy of Sciences (India)

    Cadmium oxide (CdO) doped with different amounts of nickel ion thin films have been prepared on silicon and glass .... glass substrate have [111] energetically preferred orientation growth, which is ... Bragg angle of the considered (111) reflection. ... boundaries. .... (figure 3), which means that the grain or crystallite bound-.

  13. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  14. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  15. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  16. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  17. Co-sputter deposited nickel-copper bimetallic nanoalloy embedded carbon films for electrocatalytic biomarker detection

    Science.gov (United States)

    Shiba, Shunsuke; Kato, Dai; Kamata, Tomoyuki; Niwa, Osamu

    2016-06-01

    We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d-mannitol, which should be detected with a low detection limit in urine samples for the diagnosis of severe intestinal diseases. With a Ni/Cu ratio of around 64/36, the electrocatalytic current per metal area was 3.4 times larger than that of an alloy film electrode with a similar composition (~70/30). This improved electrocatalytic activity realized higher stability (n = 60, relative standard deviation (RSD): 4.6%) than the alloy film (RSD: 32.2%) as demonstrated by continuous measurements of d-mannitol.We report the fabrication of a nickel (Ni)-copper (Cu) bimetallic nanoalloy (~3 nm) embedded carbon film electrode with the unbalanced magnetron (UBM) co-sputtering technique, which requires only a one-step process at room temperature. Most of each nanoalloy body was firmly embedded in a chemically stable carbon matrix with an atomically flat surface (Ra: 0.21 nm), suppressing the aggregation and/or detachment of the nanoalloy from the electrode surface. The nanoalloy size and composition can be controlled simply by individually controlling the target powers of carbon, Ni and Cu, which also makes it possible to localize the nanoalloys near the electrode surface. This electrode exhibited excellent electrocatalytic activity for d

  18. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release.

    Science.gov (United States)

    Clarke, B; Carroll, W; Rochev, Y; Hynes, M; Bradley, D; Plumley, D

    2006-10-01

    Medical implants and devices are now used successfully in surgical procedures on a daily basis. Alloys of nickel and titanium, and in particular Nitinol are of special interest in the medical device industry, because of their shape memory and superelastic properties. The corrosion behavior of nitinol in the body is also of critical importance because of the known toxicological effects of nickel. The stability of a NiTi alloy in the physiological environment is dependant primarily on the properties of the mostly TiO(2) oxide layer that is present on the surface. For the present study, a range of nitinol wires have been prepared using different drawing processes and a range of surface preparation procedures. It is clear from the results obtained that the wire samples with very thick oxides also contain a high nickel content in the oxide layer. The untreated samples with the thicker oxides show the lowest pitting potential values and greater nickel release in both long and short-term experiments. It was also found that after long-term immersion tests breakdown potentials increased for samples that exhibited lower values initially. From these results it would appear that surface treatment is essential for the optimum bioperformance of nitinol. (c) 2006 Wiley Periodicals, Inc

  19. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  20. Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Bagheri, Narjes; Aghaei, Alireza; Ghotbi, Mohammad Yeganeh; Marzbanrad, Ehsan; Vlachopoulos, Nick; Häggman, Leif; Wang, Michael; Boschloo, Gerrit; Hagfeldt, Anders; Skunik-Nuckowska, Magdalena; Kulesza, Pawel J.

    2014-01-01

    Highlights: • Dye Solar Cell and supercapacitor are integrated into a single device capable of generation and storage of energy. • The solar cell part of the device utilizes the Co-based electrolyte and nickel/PEDOT counter electrode. • A cobalt-doped nickel oxide together with activated carbon is used in the capacitor part of the device. • The integrated photocapacitor is characterized by the capacitance of 32 F g −1 and the total efficiency of 0.6%. - Abstract: A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm −2 level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm −2 which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g −1 and energy density of 2.3 Wh kg −1 . The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively

  1. Study of oxide/metal/oxide thin films for transparent electronics and solar cells applications by spectroscopic ellipsometry

    Directory of Open Access Journals (Sweden)

    Mihaela Girtan

    2017-05-01

    Full Text Available A comprehensive study of a class of Oxide/Metal/Oxide (Oxide = ITO, AZO, TiO2 and Bi2O3, Metal = Au thin films was done by correlating the spectrophotometric studies with the ellispometric models. Films were deposited by successive sputtering from metallic targets In:Sn, Zn:Al, Ti and Bi in reactive atmosphere (for the oxide films and respective inert atmosphere (for the metallic Au interlayer films on glass substrates. The measurements of optical constants n—the refractive index and k—the extinction coefficient, at different incident photon energies for single oxide films and also for the three layers films oxide/metal/oxide samples were made using the spectroscopic ellipsometry (SE technique. The ellipsometry modelling process was coupled with the recorded transmission spectra data of a double beam spectrophotometer and the best fitting parameters were obtained not only by fitting the n and k experimental data with the dispersion fitting curves as usual is practiced in the most reported data in literature, but also by comparing the calculated the transmission coefficient from ellipsometry with the experimental values obtained from direct spectrophotometry measurements. In this way the best dispersion model was deduced for each sample. Very good correlations were obtained for the other different thin films characteristics such as the films thickness, optical band gap and electrical resistivity obtained by other measurements and calculation techniques. The ellipsometric modelling, can hence give the possibility in the future to predict, by ellipsometric simulations, the proper device architecture in function of the preferred optical and electrical properties.

  2. The effect of CTAB on synthesis in butanol of samaria and gadolinia doped ceria - nickel oxide ceramics

    International Nuclear Information System (INIS)

    Arakaki, A.R.; Cunha, S.M.; Yoshito, W.K.; Ussui, V.; Lazar, D.R.R.

    2011-01-01

    In this work it was synthesized doped ceria and Samaria gadolinia - nickel oxide ceramics, mainly applied as anodes Fuel Cells Solid Oxide. Powders of composition Ce 0,8 (SmGd) 0,2 O 1,9 /NiO and mass ratio of 40: 60% were initially synthesized by hydroxides coprecipitation and then treated solvo thermically in butanol. Cerium samarium, gadolinium and nickel chlorides and CTAB with molar ratio metal / CTAB ranging from 1 to 3, were used as raw materials Powders were treated in butanol at 150 deg C for 16h. The powders were analyzed by X-ray diffraction, scanning electron microscopy, specific surface area for adsorption of nitrogen and particle size distribution by laser beam scattering. The ceramics were analyzed by scanning electron microscopy and density measurements by immersion technique in water. The results showed that the powders had the characteristic crystalline structures of ceria and nickel hydroxide, and high specific surface area (80 m 2 / g). The characterizations of ceramics demonstrated high chemical homogeneity and porosity values of 30%. (author)

  3. Thin film ionic conductors based on cerium oxide

    International Nuclear Information System (INIS)

    Haridoss, P.; Hellstrom, E.; Garzon, F.H.; Brown, D.R.; Hawley, M.

    1994-01-01

    Fluorite and perovskite structure cerium oxide based ceramics are a class of materials that may exhibit good oxygen ion and/or protonic conductivity. The authors have successfully deposited thin films of these materials on a variety of substrates. Interesting orientation relationships were noticed between cerium oxide films and strontium titanate bi-crystal substrates. Near lattice site coincidence theory has been used to study these relationships

  4. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Science.gov (United States)

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  5. Valence control of cobalt oxide thin films by annealing atmosphere

    International Nuclear Information System (INIS)

    Wang Shijing; Zhang Boping; Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping

    2011-01-01

    The cobalt oxide (CoO and Co 3 O 4 ) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH 3 OCH 2 CH 2 OH and Co(NO 3 ) 2 .6H 2 O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co 3 O 4 thin film was obtained by annealing in air at 300-600, and N 2 at 300, and transferred to CoO thin film by raising annealing temperature in N 2 . The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  6. The influence of ion implantation on the oxidation of nickel

    International Nuclear Information System (INIS)

    Goode, P.D.

    1975-11-01

    The effects of ion implantation on the oxidation of polycrystalline nickel have been studied for a range of implanted species: viz. He, Li, Ne, Ca, Ti, Ni, Co, Xe, Ce and Bi. The oxides were grown in dry oxygen at 630 0 C and the 16 O(d,p) 17 O nuclear reaction technique used to determine the amount of oxygen taken up. The influence of atomic and ionic size, valency and electronegativity of the implanted impurities was studied as also were the effects of ion bombardment damage and the influence of sputtering during implantation. Atomic size and the annealing of disorder were found to have a marked influence on oxide growth rate. The dependence of oxidation on annealing was further studied by implanting polycrystalline specimens with self ions and observing the oxide growth rate as a function of annealing temperature. A peak in the curve was found at 400 0 C and a similar peak observed at a somewhat higher temperature for oxidised single crystals. It is concluded that the oxidation rate will be influenced by those factors which alter the epitaxial relationship between metal and growing oxide. Such factors include atomic size of the implanted species, surface strain induced by implantation and changes in surface topography as a result of sputtering. In addition a model based on vacancy assisted cation migration is proposed to explain enhanced oxidation observed over a limited temperature range. (author)

  7. Impedance measurements on oxide films on aluminium obtained by pulsed tensions

    Energy Technology Data Exchange (ETDEWEB)

    Belmokre, K. [Lab. of Applied Chemical, Dept. of Chemie, Skikda University, BP 26 - 21000 Skikda (Algeria); Azzouz, N. [Dept. of Industrial Chemie, Jijel University Center, 18000 Jijel (Algeria); Hannani, A. [Lab. Electrochem. Corros. Institute of Chemical USTHB Alger (Algeria); Pagetti, J. [Lab. LCMI, Franche-Comte - University UFR Sciences and Technical 16, Gray street - 25030 Besancon Cedex (France)

    2003-01-01

    We have performed this study on oxide films sealed or not in boiling water. The films are first obtained on type 1050 A aluminium substrate by pulsed tensions anodizing technique, in a sulfuric acid solution. Afterwards the, Electrochemical Impedance Spectroscopy (EIS) is employed to appreciate the films behaviour in a neutral solution of 3.5% K{sub 2}SO{sub 4}, in which the interface processes interest only the ageing phenomenon of the oxide films and not their corrosion. We have also attempted a correlation between pulse parameters of anodization and the electrical parameters characterizing these films. The sealing influence on ageing has been studied as well. For all films, ageing is appreciated using impedance diagrams evolution versus time. The results show: - the existence of two capacitive loops confirming the presence of two oxide layers characteristic of oxide films obtained in a sulfuric acid medium. The first loop, at high frequencies, is related to the external porous layer and the second one, at lower frequencies, is related to the internal barrier layer. - the thickness of the barrier layer varies between 25 and 40 nm in relation with the electrical pulse parameters. - the sealing acts favorably against anodic oxide films ageing. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  8. Microdefects in Al2O3 films and interfaces revealed by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Xu, J.; Somieski, B.; Hulett, L.D.; Pint, B.A.; Tortorelli, P.F.; Suzuki, R.; Ohdaira, T.

    1997-01-01

    We have studied microdefects and interfaces of Al 2 O 3 films on iron and nickel aluminide substrates using variable-energy positron lifetime spectroscopy. Di-vacancies, vacancy clusters, and microvoids were observed in the oxide scales. Their sizes and distributions were determined by the nature of the process used to synthesize the alumina film, and influenced by the composition of the alloy substrates. For oxide endash iron aluminide interfaces, positron lifetimes are longer than those for the alumina layer itself, suggesting a greater defect concentration at such sites. copyright 1997 American Institute of Physics

  9. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  10. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    Science.gov (United States)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  11. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Patake, V.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Joshi, S.S. [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: l_chandrakant@yahoo.com; Joo, Oh-Shim [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: joocat@kist.rre.kr

    2009-03-15

    In present study, the porous amorphous copper oxide thin films have been deposited from alkaline sulphate bath. The cathodic electrodeposition method was employed to deposit copper oxide film at room temperature on stainless steel substrate. Their structural and surface morphological properties were investigated by means of X-ray diffraction (XRD) and scanning electron micrograph (SEM), respectively. To propose this as a new material for possible application in the supercapacitor, its electrochemical properties have been studied in aqueous 1 M Na{sub 2}SO{sub 4} electrolyte using cyclic voltammetry. The structural analysis from XRD pattern showed the formation of amorphous copper oxide film on the substrate. The surface morphological studies from scanning electron micrographs revealed the formation of porous cauliflower-like copper oxide film. The cyclic voltammetric curves showed symmetric nature and increase in capacitance with increase in film thickness. The maximum specific capacitance of 36 F g{sup -1} was exhibited for the 0.6959 mg cm{sup -2} film thickness. This shows that low-cost copper oxide electrode will be a potential application in supercapacitor.

  12. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1984-01-01

    Kinetics of zirconium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  13. Characterization of zirconium alloy oxidation films by alternating current impedance

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1983-11-01

    Kinetics of zirocnium alloy oxidation are highly nonlinear. The results of electrochemical measurements and electron microscopy support the existence of porosity in oxide films formed on zirconium alloys in high temperature aqueous environments. Analytical treatment is presented relating oxidation kinetics to the thickness and distribution of nonporous elements within the oxide. This analysis illustrates that both the level and distribution of porosity within the oxide factor into oxidation kinetics. The barrier layer model can provide a basis for predicting the effect of environmental changes on oxidation rate. In addition, it demonstrates the need for further research into porosity generation mechanisms in oxide films

  14. On the mechanism of self-deceleration of the thin oxide film growth

    CERN Document Server

    Mukhambetov, D G

    2002-01-01

    The objective of this work was to investigate the kinetics of the two-phase oxide film growth on the alpha-Fe surface at temperatures of 650-750 K. We experimentally determined that the film thickness (h)-time oxidation (tau) relationship in the range denoted above is a logarithmic function, whereas Cabrera and Mott's theory gives a square law of film growth. In our work, analytical treatment of experimental data was made based on this theory, but we propose that self-deceleration of the film growth is caused not by attenuation of the electric intensity in the film because of an increase of h but by the shielding influence of the space charge of diffusing ions and electrons in that oxide film. With that purpose in view, the Debye shielding distance for plasma substance state in the oxide film was taken into consideration. The logarithmic law of oxide film growth was derived. Estimated calculations of this law's parameters were made that quantitatively correspond with literature data. The results obtained were...

  15. Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation

    International Nuclear Information System (INIS)

    Yang, P.; Leng, Y.X.; Zhao, A.S.; Zhou, H.F.; Xu, L.X.; Hong, S.; Huang, N.

    2006-01-01

    Our recent investigation suggested that Ti-O thin film could be a newly developed antithrombotic material and its thromboresistance could be related to its physical properties of wide gap semiconductor. In this work, titanium oxide film was modified by phosphorus ion implantation and succeeding vacuum annealing. RBS were used to investigate phosphorus distribution profile. Contact angle test results show that phosphorus-doped titanium oxide film becomes more hydrophilic after higher temperature annealing, while its electric conductivity increases. Antithrombotic property of phosphorus-doped titanium oxide thin films was examined by clotting time and platelet adhesion tests. The results suggest that phosphorus doping is an effective way to improve the bloodcompatibility of titanium oxide film, and it is related to the changes of electron structure and surface properties caused by phosphorus doping

  16. Electrografting of in situ generated pyrrole derivative diazonium salt for the surface modification of nickel

    International Nuclear Information System (INIS)

    Jacques, A.; Devillers, S.; Delhalle, J.; Mekhalif, Z.

    2013-01-01

    Highlights: • Electrografting of in situ generated 4-pyrrolylphenyldiazonium (Py-PD) on Ni. • Generation of Py-PD from 4-pyrrolylaniline in 3 acidic conditions followed by UV. • XPS and SEM confirm efficiency, reproducibility and homogeneity of the grafting. • Electrografting process assessed by CV. • Barrier properties of the grafted film evidenced by CV. -- Abstract: This work reports for the first time on the modification of nickel surfaces by cathodic electrografting of in situ generated diazonium. An original diazonium salt (the 4-pyrrolylphenyldiazonium called Py-PD hereafter) was electrografted on nickel after its generation from 4-(1H-pyrrol-1-yl)aniline (Py-A) in presence of three acidic conditions (1, 2 and 10 equiv. of HClO 4 /Py-A) has been investigated by UV–vis spectroscopy. Results show that the potentiostatic electrografting of Py-PD is concomitant with nickel and proton reduction. This electrografting leads to the formation of multilayered films in each of the studied in situ generation conditions. The use of 1 equiv. of HClO 4 /Py-A for the in situ generation results in the formation of inhomogeneous and irreproducible coatings while 2 and 10 equiv. lead to the formation of highly covering, homogeneous and reproducible films. These films present good electrochemical barrier properties toward the ferri/ferrocyanide couple. The use of gentle stoichiometric acidic conditions for in situ diazonium generation widens the application field of this one-step procedure to the surface modification of oxidizable materials presenting an unstable oxide layer

  17. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  18. Ultrathin copper aluminum and nickel aluminide protective oxidation studied with an x-ray photoelectron spectrometer

    Science.gov (United States)

    Moore, J. F.; McCann, M. P.; Pellin, M. J.; Zinovev, A.; Hryn, J. N.

    2003-09-01

    Oxidation in a regime where diffusion is rapid and pressures are low is addressed. Kinetic effects under these conditions are minimized and a protective oxide film of near-equilibrium composition that is a few nanometers thick may form. Ultrathin oxides have great potential for addressing the corrosion resistance of metals, since they do not always suffer stress-induced cracking upon thermal cycling, and can be reformed under high temperature, oxidizing environments. Ultrathin oxide films are also preferable to those on a thick oxide scale for electrochemical applications due to their electrical properties. To study the growth of these oxide films, we have developed a high signal x-ray photoelectron spectrometer. The instrument can measure the near-surface composition during growth under oxygen partial pressures of up to 10-5 mbar and surface temperatures up to 1300 K. Under these conditions, films grow to a level of 3 nm in 1 h. Experiments with Cu-Al alloys show rapid segregation of Al upon oxygen exposure at 875 K, whereas exposures at lower temperatures result in a mixed oxide. With a Ni-Al intermetallic, higher temperatures were needed to preferentially segregate Al. Thermal cycling followed by exposure to chlorine in the same instrument is used as a measure of the degree of corrosion resistance of the oxides in question.

  19. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  20. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries

    Science.gov (United States)

    Joulié, M.; Laucournet, R.; Billy, E.

    2014-02-01

    A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.

  1. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  2. Systematic study of nickel oxide ceramic pigment using Ni C O3.2 Ni(O H)2.4 H2 O as precursor

    International Nuclear Information System (INIS)

    Azevedo, Emilio; Longo, Elson

    1997-01-01

    The ability of some ceramics silicate and oxides have to accommodate impurity in the crystal lattice to a large colors diversity. These impurities can be both interstitial or substitutional creating crystal fields in accordance with ion-impurity valence. The technical procedures used to characterize the pigments were: DRX, IV, MEV, and BET. To optimize this property systematic studies were done for nickel oxide with a composition of 0,3% to 30%. In this work it was studied nickel oxide synthesis based on feldspar using Pechini chemistry synthesis. To obtain this powder. (author)

  3. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  4. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    Science.gov (United States)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  5. Oxidation of nickel particles in an environmental TEM

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    nanometres in size. These domains impinge and cover the particles surface. As the temperature increases under O2, the NiO film grows and creates irregular structures composed of many crystallites. The reaction kinetics are inferred by EELS using different techniques analyzing changes in shapes of the Ni L2...... temperature, providing new insights into oxidation/corrosion processes....

  6. Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth

    International Nuclear Information System (INIS)

    Randolph, S J; Fowlkes, J D; Melechko, A V; Klein, K L; III, H M Meyer; Simpson, M L; Rack, P D

    2007-01-01

    Vertically aligned carbon nanofiber (CNF) growth is a catalytic chemical vapor deposition process in which structure and functionality is controlled by the plasma conditions and the properties of the catalyst nanoparticles that template the fiber growth. We have found that the resultant catalyst nanoparticle network that forms by the dewetting of a continuous catalyst thin film is dependent on the initial properties of the thin film. Here we report the ability to tailor the crystallographic texture and composition of the nickel catalyst film and subsequently the nanoparticle template by varying the rf magnetron sputter deposition conditions. After sputtering the Ni catalyst thin films, the films are heated and exposed to an ammonia dc plasma, to chemically reduce the native oxide on the films and induce dewetting of the film to form nanoparticles. Subsequent nanoparticle treatment in an acetylene plasma at high substrate temperature results in CNF growth. Evidence is presented that the texture and composition of the nickel thin film has a significant impact on the structure and composition of the formed nanoparticle, as well as the resultant CNF morphology. Nickel films with a preferred (111) or (100) texture were produced and conditions favoring interfacial silicidation reactions were identified and investigated. Both compositional and structural analysis of the films and nanoparticles indicate that the properties of the as-deposited Ni catalyst film influences the subsequent nanoparticle formation and ultimately the catalytic growth of the carbon nanofibers

  7. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  8. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  9. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  10. Aluminum oxide film thickness and emittance

    International Nuclear Information System (INIS)

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55 degrees C) moderator for about a year. The average moderator temperature was assumed to be 30 degrees C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 μm ± 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 μm ± 11%. Total hemispherical emittance is predicted to be 0.69 at 96 degrees C, decreasing to 0.45 at 600 degrees C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values

  11. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Atuchin, Victor V.; Kesler, V. G.; Kochubey, V. A.; Pokrovsky, L. D.; Shutthanandan, V.; Becker, U.; Ewing, Rodney C.

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of argon-oxygen gas mixture under varying conditions of substrate temperature (Ts) and oxygen partial pressure (pO2). The effect of Ts and pO2 on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of Ts and pO2 on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 *C under 62.3% O2 pressure were stoichiometric and polycrystalline MoO3. Films grown at lower pO2 were nonstoichiometric MoOx films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO3 films.

  12. Photoconductivity of reduced graphene oxide and graphene oxide composite films

    International Nuclear Information System (INIS)

    Liang, Haifeng; Ren, Wen; Su, Junhong; Cai, Changlong

    2012-01-01

    A photoconductive device was fabricated by patterning magnetron sputtered Pt/Ti electrode and Reduced Graphene Oxide (RGO)/Graphene Oxide (GO) composite films with a sensitive area of 10 × 20 mm 2 . The surface morphology of as-deposited GO films was observed by scanning electronic microscopy, optical microscopy and atomic force microscopy, respectively. The absorption properties and chemical structure of RGO/GO composite films were obtained using a spectrophotometer and an X-ray photoelectron spectroscopy. The photoconductive properties of the system were characterized under white light irradiation with varied output power and biased voltage. The results show that the resistance decreased from 210 kΩ to 11.5 kΩ as the irradiation power increased from 0.0008 mW to 625 mW. The calculated responsiveness of white light reached 0.53 × 10 −3 A/W. Furthermore, the device presents a high photo-conductivity response and displays a photovoltaic response with an open circuit voltage from 0.017 V to 0.014 V with irradiation power. The sources of charge are attributed to efficient excitation dissociation at the interface of the RGO/GO composite film, coupled with cross-surface charge percolation.

  13. Experimental Study and Mathematical Modeling of Self-Sustained Kinetic Oscillations in Catalytic Oxidation of Methane over Nickel.

    Science.gov (United States)

    Lashina, Elena A; Kaichev, Vasily V; Saraev, Andrey A; Vinokurov, Zakhar S; Chumakova, Nataliya A; Chumakov, Gennadii A; Bukhtiyarov, Valerii I

    2017-09-21

    The self-sustained kinetic oscillations in the oxidation of CH 4 over Ni foil have been studied at atmospheric pressure using an X-ray diffraction technique and mass spectrometry. It has been shown that the regular oscillations appear under oxygen-deficient conditions; CO, CO 2 , H 2 , and H 2 O are detected as the products. According to in situ X-ray diffraction measurements, nickel periodically oxidizes to NiO initiating the reaction-rate oscillations. To describe the oscillations, we have proposed a five-stage mechanism of the partial oxidation of methane over Ni and a corresponding three-variable kinetic model. The mechanism considers catalytic methane decomposition, dissociative adsorption of oxygen, transformation of chemisorbed oxygen to surface nickel oxide, and reaction of adsorbed carbon and oxygen species to form CO. Analysis of the kinetic model indicates that the competition of two processes, i.e., the oxidation and the carbonization of the catalyst surface, is the driving force of the self-sustained oscillations in the oxidation of methane. We have compared this mechanism with the detailed 18-stage mechanism described previously by Lashina et al. (Kinetics and Catalysis 2012, 53, 374-383). It has been shown that both kinetic mechanisms coupled with a continuous stirred-tank reactor model describe well the oscillatory behavior in the oxidation of methane under non-isothermal conditions.

  14. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  15. Valence control of cobalt oxide thin films by annealing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shijing [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhang Boping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China); Zhao Cuihua; Li Songjie; Zhang Meixia; Yan Liping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083 (China)

    2011-02-01

    The cobalt oxide (CoO and Co{sub 3}O{sub 4}) thin films were successfully prepared using a spin-coating technique by a chemical solution method with CH{sub 3}OCH{sub 2}CH{sub 2}OH and Co(NO{sub 3}){sub 2}.6H{sub 2}O as starting materials. The grayish cobalt oxide films had uniform crystalline grains with less than 50 nm in diameter. The phase structure is able to tailor by controlling the annealing atmosphere and temperature, in which Co{sub 3}O{sub 4} thin film was obtained by annealing in air at 300-600, and N{sub 2} at 300, and transferred to CoO thin film by raising annealing temperature in N{sub 2}. The fitted X-ray photoelectron spectroscopy (XPS) spectra of the Co2p electrons are distinguishable from different valence states of cobalt oxide especially for their satellite structure. The valence control of cobalt oxide thin films by annealing atmosphere contributes to the tailored optical absorption property.

  16. Spark counting technique of alpha tracks on an aluminium oxide film

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1984-01-01

    We have tried to use aluminium oxide film as a neutron detector film with a spark counter for neutron monitoring in the mixed field of neutron and gamma-rays near a reactor. The merits of this method are that (1) aluminium oxide is good electric insulator, (2) any desired thickness of the film can be prepared, (3) chemical etching of the thin film can be dispensed with. The relation between spark counts and numbers of alpha-particles which entered the aluminium oxide film 1 μm thick was linear in the range of 10 5 -10 7 alpha-particles. The sensitivity(ratio of the spark counts to irradiated numbers of alpha-particles) was approximately 10 -3 . (author)

  17. Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Bouaoud, A.; Rmili, A.; Ouachtari, F.; Louardi, A.; Chtouki, T. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Ecole Nationale des Sciences Appliquees de Kenitra (ENSAK) (Morocco)

    2013-01-15

    Undoped and Ni doped zinc oxide (Ni-ZnO) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of anhydrous zinc acetate (Zn(CH{sub 3}COOH){sub 2} and hexahydrated nickel chloride (NiCl{sub 2}{center_dot}6H{sub 2}O) as sources of zinc and nickel, respectively. The films were deposited onto the amorphous glass substrates kept at (450 Degree-Sign C). The effect of the [Ni]/[Zn] ratio on the structural, morphological, optical and electrical properties of Ni doped ZnO thin film was studied. It was found from X-ray diffraction (XRD) analysis that both the undoped and Ni doped ZnO films were crystallized in the hexagonal structure with a preferred orientation of the crystallites along the [002] direction perpendicular to the substrate. The scanning electron microscopy (SEM) images showed a relatively dense surface structure composed of crystallites in the spherical form whose average size decreases when the [Ni]/[Zn] ratio increases. The optical study showed that all the films were highly transparent. The optical transmittance in the visible region varied between 75 and 85%, depending on the dopant concentrations. The variation of the band gap versus the [Ni]/[Zn] ratio showed that the energy gap decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02 and then increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. The films obtained with the [Ni]/[Zn] ratio = 0.02 showed minimum resistivity of 2 Multiplication-Sign 10{sup -3} {Omega} cm at room temperature. -- Highlights: Black-Right-Pointing-Pointer The optical transmittance of Ni doped ZnO varies between 75 and 85%. Black-Right-Pointing-Pointer The energy gap of these films decreases from 2.95 to 2.72 eV as the [Ni]/[Zn] ratio increases from 0 to 0.02. Black-Right-Pointing-Pointer The energy gap increases to reach 3.22 eV for [Ni]/[Zn] = 0.04. Black-Right-Pointing-Pointer The films obtained with [Ni]/[Zn] ratio = 0.02 show minimum resistivity of 2

  18. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  19. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    Science.gov (United States)

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  20. Investigation of the electrocatalytic activity for oxygen reduction of sputter deposited mixed metal films

    International Nuclear Information System (INIS)

    Schumacher, L.C.; Holzheuter, I.B.; Nucara, M.C.; Dignam, M.J.

    1989-01-01

    Sputter-deposited films of silver with lead, manganese and nickel have been studied as possible oxygen reduction electrocatalysts using cyclic voltammetry, rotating disc studies, steady-state polarization and Auger analysis. In general, the Ag-Pb and Ag-Mn films display superior electrocatalytic activity for O 2 reduction, while the Ag-Ni films' performance is inferior to that of pure Ag. For the Ag-Pb films, which show the highest electrocatalytic activity, the mixed metal films display oxidation-reduction behavior which is not simply a superposition of that of the separate metals, and suggests a mechanism for the improved behavior

  1. Comparative study of the influence of antimony oxide additives (III) and nickel hydroxide (II) on electrochemical behavior of cadmium electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kadnikova, N.V.; Lvova, L.A.; Ryabskaya, I.A.

    1983-01-01

    Comparative study of the influence of additives indicated that with partial or complete replacement in the active mass of the cadmium electrode of nickel hydroxide (II) by antimony oxide (III), the electrochemical characteristics do not significantly change. During prolonged storage of charged cadmium electrodes the presence of nickel hydroxide (II) and intermetal compound (IMC) of cadmium with nickel is formed and the specific surface increases. In the case of adding antimony (III) formation of noticeable quantities of IMC of cadmium with antimony is not observed. The specific surface is reduced during storage.

  2. A Versatile Route for the Synthesis of Nickel Oxide Nanostructures Without Organics at Low Temperature

    Directory of Open Access Journals (Sweden)

    Shah MA

    2008-01-01

    Full Text Available AbstractNickel oxide nanoparticles and nanoflowers have been synthesized by a soft reaction of nickel powder and water without organics at 100 °C. The mechanism for the formation of nanostructures is briefly described in accordance with decomposition of metal with water giving out hydrogen. The structure, morphology, and the crystalline phase of resulting nanostructures have been characterized by various techniques. Compared with other methods, the present method is simple, fast, economical, template-free, and without organics. In addition, the approach is nontoxic without producing hazardous waste and could be expanded to provide a general and convenient strategy for the synthesis of nanostructures to other functional nanomaterials.

  3. Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite. X-ray photoelectron spectroscopy and atomic force microscopy study

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Bastl, Zdeněk

    2008-01-01

    Roč. 516, č. 18 (2008), s. 6095-6103 ISSN 0040-6090 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : nickel oxide nanoparticles * vapour deposition * XPS * AFM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008

  4. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  5. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  6. Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure.

    Science.gov (United States)

    Li, H K; Chen, T P; Hu, S G; Li, X D; Liu, Y; Lee, P S; Wang, X P; Li, H Y; Lo, G Q

    2015-10-19

    Ultraviolet photodetector with p-n heterojunction is fabricated by magnetron sputtering deposition of n-type indium gallium zinc oxide (n-IGZO) and p-type nickel oxide (p-NiO) thin films on ITO glass. The performance of the photodetector is largely affected by the conductivity of the p-NiO thin film, which can be controlled by varying the oxygen partial pressure during the deposition of the p-NiO thin film. A highly spectrum-selective ultraviolet photodetector has been achieved with the p-NiO layer with a high conductivity. The results can be explained in terms of the "optically-filtering" function of the NiO layer.

  7. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  8. Growth and surface characterization of sputter-deposited molybdenum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, C.V. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: ramanacv@umich.edu; Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Centre, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kochubey, V.A. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pokrovsky, L.D. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Shutthanandan, V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Becker, U. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Ewing, R.C. [Nanoscience and Surface Chemistry Laboratory, Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2007-04-15

    Molybdenum oxide thin films were produced by magnetron sputtering using a molybdenum (Mo) target. The sputtering was performed in a reactive atmosphere of an argon-oxygen gas mixture under varying conditions of substrate temperature (T {sub s}) and oxygen partial pressure (pO{sub 2}). The effect of T {sub s} and pO{sub 2} on the growth and microstructure of molybdenum oxide films was examined in detail using reflection high-energy electron diffraction (RHEED), Rutherford backscattering spectrometry (RBS), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurements. The analyses indicate that the effect of T {sub s} and pO{sub 2} on the microstructure and phase of the grown molybdenum oxide thin films is remarkable. RHEED and RBS results indicate that the films grown at 445 deg. C under 62.3% O{sub 2} pressure were stoichiometric and polycrystalline MoO{sub 3}. Films grown at lower pO{sub 2} were non-stoichiometric MoO {sub x} films with the presence of secondary phase. The microstructure of the grown Mo oxide films is discussed and conditions were optimized to produce phase pure, stoichiometric, and highly textured polycrystalline MoO{sub 3} films.

  9. Native oxidation of ultra high purity Cu bulk and thin films

    International Nuclear Information System (INIS)

    Iijima, J.; Lim, J.-W.; Hong, S.-H.; Suzuki, S.; Mimura, K.; Isshiki, M.

    2006-01-01

    The effect of microstructure and purity on the native oxidation of Cu was studied by using angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and spectroscopic ellipsometry (SE). A high quality copper film prepared by ion beam deposition under a substrate bias voltage of -50 V (IBD Cu film at V s = -50 V) showed an oxidation resistance as high as an ultra high purity copper (UHP Cu) bulk, whereas a Cu film deposited without substrate bias voltage (IBD Cu film at V s = 0 V) showed lower oxidation resistance. The growth of Cu 2 O layer on the UHP Cu bulk and both types of the films obeyed in principle a logarithmic rate law. However, the growth of oxide layer on the IBD Cu films at V s = 0 and -50 V deviated upward from the logarithmic rate law after the exposure time of 320 and 800 h, respectively. The deviation from the logarithmic law is due to the formation of CuO on the Cu 2 O layer after a critical time

  10. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Figueroa, Carlos A.; Morando, Pedro J.; Blesa, Miguel A.

    1999-01-01

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe 2 O 4 ) confronted with simple oxides (NiO and Fe 2 O 3 ) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni 3+ . It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  11. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    Science.gov (United States)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  12. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  13. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  14. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  15. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  16. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  17. Modification of oxide films by ion implantation: TiO2-films modified by Ti+ and O+ as example

    International Nuclear Information System (INIS)

    Schultze, J.W.; Elfenthal, L.; Leitner, K.; Meyer, O.

    1988-01-01

    Oxide films can be modified by ion implantation. Changes in the electrochemical properties of the films are due to the deposition profile of the implanted ion, ie doping and stoichiometric changes, as well as to the radiation damage. The latter is due to the formation of Frenkel defects and at high concentrations to a complete amorphization of the oxide film. TiOsub(x)-films with 1 + - and O + -ions into anodic oxide films on titanium. The electrode capacity shows always the behaviour of an n-type semiconductor with an almost constant flatband potential but a strong maximum donor concentration at about 3% Ti + concentration. Oxygen implantation, on the other hand, causes a small increase of donor concentration only at high concentration of O + . Electron transfer reactions show strong modifications of the electronic behaviour of the oxide film with a maximum again at 3% titanium. Photocurrent spectra prove the increasing amorphization and show interband states 2.6 eV above the VB or below the CB. During repassivation measurements at various potentials different defects formed by Ti + - and O + -implantation become mobile. A tentative model of the band structure is constructed which takes into account the interband states due to localised Ti + - and O + -ions. The modification of ion implanted oxide films is compared with the effects of other preparation techniques. (author)

  18. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  19. Swelling of a Zirconium Oxide Film

    International Nuclear Information System (INIS)

    Henderson, Mark; Hawley, Adrian; White, John; Rennie, Adrian

    2005-01-01

    Full text: The structural changes that cause the change in the interlayer spacing of a surfactanttemplated zirconium oxide film have been studied using neutron diffractometry. We report that the film after drying on a glass substrate swells slightly through the addition of benzene by up to 4 Aangstroem on a lattice parameter of about 36 Aangstroem. The (001) and (002) diffraction peaks positions, widths and areas of a swollen film were then monitored by neutron diffraction as a function of benzene desorption. Disorder of the lamellar mesophase is considered as a cause of the observed effects on the diffraction signals. (authors)

  20. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Eren, B. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Gysin, U.; Marot, L., E-mail: Laurent.marot@unibas.ch; Glatzel, Th.; Steiner, R.; Meyer, E. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  1. Films of double oxides of zirconium and iron

    International Nuclear Information System (INIS)

    Kozik, V.V.; Borilo, L.P.; Shul'pekov, A.M.

    2000-01-01

    Films of double oxides of zirconium and iron were prepared by the method of precipitation from film-forming alcohol solutions of zirconium oxychloride and iron chloride with subsequent thermal treatment. Using the methods of X-ray phase and differential thermal analyses, conductometry and optical spectroscopy, basic chemical processes occurring in the film-forming solutions and during thermal treatment are studied alongside with phase composition and optical characteristics of the films prepared. The composition-property diagrams of the given system in a thin-film state are plotted [ru

  2. Oxidation behaviour of Ti2AIN films composed mainly of nanolaminated MAX phase.

    Science.gov (United States)

    Wang, Q M; Garkas, W; Renteria, A Flores; Leyens, C; Kim, K H

    2011-10-01

    In this paper, we reported the oxidation behaviour of Ti2AIN films on polycrystalline Al2O3 substrates. The Ti2AIN films composed mainly of nanolaminated MAX phase was obtained by first depositing Ti-Al-N films using reactive sputtering of two elemental Ti and Al targets in Ar/N2 atmosphere and subsequent vacuum annealing at 800 degrees C for 1 h. The Ti2AIN films exhibited excellent oxidation resistance and thermal stability at 600-900 degrees C in air. Very low mass gain was observed. At low temperature (600 degrees C), no oxide crystals were observed on film surface. Blade-like Theta-Al2O3 fine crystals formed on film surfaces at 700-800 degrees C. At high temperature (900 degrees C), firstly Theta-Al2O3 formed on film surface and then transformed into alpha-Al2O3. At 700-900 degrees C, a continuous Al2O3 layer formed on Ti2AIN films surface, acting as diffusion barrier preventing further oxidation attack. The mechanism of the excellent oxidation resistance of Ti2AIN films was discussed based on the experimental results.

  3. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  4. Ni/SiO2 Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2 Reforming and Partial Oxidation of Methane: Characterization and Deactivation Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Sufang He

    2015-01-01

    Full Text Available The performance of Ni/SiO2 catalyst in the process of combination of CO2 reforming and partial oxidation of methane to produce syngas was studied. The Ni/SiO2 catalysts were prepared by using incipient wetness impregnation method with nickel nitrate as a precursor and characterized by FT-IR, TG-DTA, UV-Raman, XRD, TEM, and H2-TPR. The metal nickel particles with the average size of 37.5 nm were highly dispersed over the catalyst, while the interaction between nickel particles and SiO2 support is relatively weak. The weak NiO-SiO2 interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at 700°C, which resulted in the sintering of metal nickel particles. As a result, a rapid deactivation of the Ni/SiO2 catalysts was observed in 2.5 h reaction on stream.

  5. Nanocomposite oxide thin films grown by pulsed energy beam deposition

    International Nuclear Information System (INIS)

    Nistor, M.; Petitmangin, A.; Hebert, C.; Seiler, W.

    2011-01-01

    Highly non-stoichiometric indium tin oxide (ITO) thin films were grown by pulsed energy beam deposition (pulsed laser deposition-PLD and pulsed electron beam deposition-PED) under low oxygen pressure. The analysis of the structure and electrical transport properties showed that ITO films with a large oxygen deficiency (more than 20%) are nanocomposite films with metallic (In, Sn) clusters embedded in a stoichiometric and crystalline oxide matrix. The presence of the metallic clusters induces specific transport properties, i.e. a metallic conductivity via percolation with a superconducting transition at low temperature (about 6 K) and the melting and freezing of the In-Sn clusters in the room temperature to 450 K range evidenced by large changes in resistivity and a hysteresis cycle. By controlling the oxygen deficiency and temperature during the growth, the transport and optical properties of the nanocomposite oxide films could be tuned from metallic-like to insulating and from transparent to absorbing films.

  6. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  7. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    International Nuclear Information System (INIS)

    Lee, Kyuha; Kim, A-Young; Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young; Lee, Joong Kee

    2014-01-01

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO 4 salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode

  8. Investigation of the solubility of He in pressure-gassed and irradiated nickel

    International Nuclear Information System (INIS)

    Driesch, H.J. von den.

    1980-06-01

    The behaviour of helium in nickel and gold was investigated in pressure-gassed, homogeneously implanted surface loaded samples doped by the (p,α) and (d,a) nuclear reactions. The following results were obtained: The helium content of gassed nickel foil was mostly determined by a surface oxide film with a thickness that shows a temperature dependence similar to the helium content. Such an effect could not be detected in gassed gold foils. At gasification pressures above 300 bar a deformation of the samples could be observed that can be attributed to a change of the temperature distribution or of the convection flow. A helium solubility could not be detected for pure undeformed nickel. An upper limit of solubility of Ssub(He) -11 atom quota at 1500 K could be estimated from the measured data. Homogeneously implanted nickel samples released 1-30% of their helium content in several degassing stages at 600, 800 and 1200 K. The helium amount released, before the melting of the material is a clear function of the concentration in the investigated concentration range (10 -11 -10 -4 atom quota). A preirradiation of the samples with 6 MeV protons leads at high helium concentrations to an increased helium release before the melting of the samples. The largest quota of helium (70 to 99%) is released only during the melting of the nickel. (orig./RW) [de

  9. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    Directory of Open Access Journals (Sweden)

    Abdallah Oukarroum

    2015-01-01

    Full Text Available The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs and nickel(II oxide as bulk (NiO-Bulk. Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS formation, especially at high concentration (1000 mg/L. These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  10. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  11. A novel Graphene Oxide film: Synthesis and Dielectric properties

    Science.gov (United States)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with Sdirect current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  12. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  13. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  14. The Impact of Morphology and Composition on the Resistivity and Oxidation Resistance of Metal Nanostructure Films

    Science.gov (United States)

    Stewart, Ian Edward

    that more closely reflect experimental data collected from the nanowire transparent conductors. In our analysis, we find that Cu NW-based transparent conductors are capable of achieving comparable electrical performance to Ag NW transparent conductors with similar dimensions. We also synthesize high aspect ratio Cu NWs (as high as 5700 in an aqueous based synthesis taking less than 30 minutes) and show that this increase in aspect ratio can result results in transparent conducting films with a transmittance >95% at a sheet resistance <100 O sq-1, optoelectronic properties similar to that for ITO. Two of the major barriers preventing the further use of Cu NWs in printed electronics are the necessity to anneal the nanowires under H2 at higher temperatures and copper's susceptibility to oxidation. The former issue is solved by removing the insulating oxide along the Cu NWs with acetic acid and pressing the nanowires together to make H2 annealing obsolete. Finally, several methods of preventing copper oxidation in the context of transparent conductors were successfully developed such as electroplating zinc, tin, and indium and electrolessly plating benzotriazole (BTAH), nickel, silver, gold, and platinum. While all of the shells lessened or prevented oxidation both in dry and humid conditions, it was found that a thin layer of silver confers identical optoelectronic properties to the Cu NWs as pure Ag NWs. These results are expected provide motivation to replace pure silver and ITO in printed electronics.

  15. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    International Nuclear Information System (INIS)

    Yuan, Guangjie; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-01

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH 2 radical as the reducing agent and nickelocene as the precursor. NH 2 radicals were generated by the thermal decomposition of NH 3 with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH 2 radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH 2 radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH 2 radical flux and the reactivity of the NH 2 radicals

  16. Effects of iron content on electrical resistivity of oxide films on Zr-base alloys

    International Nuclear Information System (INIS)

    Kubo, Toshio; Uno, Masayoshi

    1991-01-01

    Measurements of electrical resistivity were made for oxide films formed by anodic oxidation and steam oxidation (400degC/12 h) on Zr plates with different Fe contents. When the Fe content was higher than about 1,000 ppm the electrical resistivity of the steam oxide films was almost equivalent to that of the anodic oxide films, while at lower Fe content the former exhibited lower electrical resistivity than the latter by about 1∼3 orders of magnitude. The anodic oxide film was an almost homogeneous single oxide layer. The steam oxide films, on the other hand, were composed of duplex oxide layers. The oxide layer formed in the vicinity of the oxide/metal interface had higher electrical resistivity than the near-surface oxide layer by about 1∼4 orders of magnitude. The oxide layer in the vicinity of the interface could act as a protective film against corrosion and its electrical resistivity is one important factor controlling the layer protectiveness. The electrical resistivity of the oxide/metal interfacial layer was strongly dependent on the Fe content. One possible reason for Fe to improve the corrosion resistance is that Fe ions would tend to stabilize the tetragonal (or cubic) phase and consequently suppress the formation of open pores and cracks in the interfacial layer. (author)

  17. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  18. Friction behaviour of anodic oxide film on aluminum impregnated with molybdenum sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maejima, M.; Saruwatari, K. [Fujikura Ltd., Tokyo (Japan); Takaya, M. [Faculty of Engineering, Chiba Institute of Technology 17-1, Tsudanuma 2-Chome, 275-0016, Narasino-shi Chiba (Japan)

    2000-10-23

    In order to improve the lubricity and wear resistance of aluminum anodic oxide films, it is necessary to ensure the film layers are dense to prevent cracking, and to harden the films as well as reduce the shear stress of the film surfaces. From this view point, lubricious, hard anodic oxide films have been studied in the past, but fully satisfactory results have yet to be realized. In this paper, we report on our study of the re-anodizing of anodic oxide film in an aqueous solution of (NH)MoS. Molybdenum sulfide and compounds filled the 20-nm diameter pores of the film, creating internal stress which compressed the film, suppressing the occurrence of cracks and reducing the friction coefficient. (orig.)

  19. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ou-Yang, Wei, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: OUYANG.Wei@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectronics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  20. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  1. Influences of the main anodic electroplating parameters on cerium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Zhao, E-mail: eaglezzy@zjuem.zju.edu.cn [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhang, Jianqing [Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang (China); State Key Laboratory for Corrosion and Protection of Metals, Shenyang 110016 (China)

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O{sub 2} and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce{sup 3+} goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce{sup 3+}, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N{sub 2} or O{sub 2} purged into the bath will result in film porosities and O{sub 2} favors cerium oxide particles and film generation.

  2. Microstructure and protection characteristics of the naturally formed oxide films on Mg–xZn alloys

    International Nuclear Information System (INIS)

    Song, Yingwei; Han, En-Hou; Dong, Kaihui; Shan, Dayong; Yim, Chang Dong; You, Bong Sun

    2013-01-01

    Highlights: •The oxide films on Mg–xZn alloys consist of similar chemical composition. •The higher Zn content results in the thicker but higher defect of the oxide films. •The oxide films exhibit different protection performance under various potentials. -- Abstract: The naturally formed oxide films on Mg–2Zn and Mg–5Zn alloys were investigated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The oxide films on the both alloys present a similar chemical composition, consisting of surface layer of basic magnesium carbonate and MgO following with MgO and ZnO, but the oxide film on Mg–5Zn is thicker and contains more defects. The protection performance of the oxide film on Mg–5Zn is worse under open circuit potential but better in a suitable anodic potential scope compared with that on Mg–2Zn alloy

  3. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  4. Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni-P films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: liu_yunli@hotmail.com [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom); Beckett, D.; Hawthorne, D. [R and D Department, MacDermid plc, 198 Golden Hillock Road, Birmingham B11 2PN (United Kingdom)

    2011-02-15

    Electroless black nickel-phosphorus plating is an advanced electroless nickel plating process formulated to deposit a black finish when processed through an oxidizing acid solution. Heat treatment, five types of top organic coating techniques and one conversion coating technique with three different experimental conditions were investigated to stabilize the black film and increase the hardness and corrosion resistance. Morphology and compositions of electroless nickel-phosphorous films with or without heat treatment, with five types of top organic coatings, and with three conversion coatings were compared to examine nickel, phosphorus, oxygen, carbon, silicon and chrome contents on the corrosion resistance of black surfaces by energy dispersive X-ray microanalysis and scanning electron microscope. Corrosion resistance of black electroless nickel-phosphorus coatings with or without heat treatment, with five types of top organic coatings, and with three conversion coatings was investigated by the polarization measurements and the salt spray test in 5% NaCl solution, respectively. HydroLac as the top organic coating from MacDermid showed the excellent corrosion resistance and the black EN film did not lose the black color after 48 h salt spray test. Electrotarnil B process with 0.5 ASD for 1 min stabilized the black Ni-P film immediately and increased the hardness and corrosion performance of the black Ni-P film. The black Ni-P coating with Electroarnil B process passed the 5% NaCl salt spray test for 3000 h in the black color and had a minimal corrosion current 0.8547 {mu}A/cm{sup 2} by the polarization measurement.

  5. FTIR study of the influence of minor alloying elements on the high temperature oxidation of nickel alloys

    International Nuclear Information System (INIS)

    Lenglet, M.; Delaunay, F.; Lefez, B.

    1997-01-01

    The purpose of this paper is to study the reflectance spectra of the different single oxide layer systems : Cr 2 O 3 /Fe, MnCr 2 O 4 /Fe, TiO 2 /Fe, NiCr 2 O 4 /Fe and NiFe 2 O 4 /Fe and to extend the theoretical calculations to multilayer oxide systems on metallic substrates. The interpretation of the resulting reflectance spectra for these systems is used to explain the initial stages of oxide formation and the influence of minor alloying elements on the high temperature oxidation of three commercial nickel alloys : Incoloy 800, Inconel 600 and X. (orig.)

  6. Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof

    Science.gov (United States)

    Perkins, John; Van Hest, Marinus Franciscus Antonius Maria; Ginley, David; Taylor, Matthew; Neuman, George A.; Luten, Henry A.; Forgette, Jeffrey A.; Anderson, John S.

    2010-07-13

    Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

  7. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    International Nuclear Information System (INIS)

    Panky, Sreedevi; Thandavan, Kavitha; Sivalingam, Durgajanani; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Jeyaprakash, Beri Gopalakrishnan; Rayappan, John Bosco Balaguru

    2013-01-01

    Nanostructured cerium oxide (CeO 2 ) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO 3 ) 3 ·6H 2 O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO 2 and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film to form the lipase/nano-CeO 2 /TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO 2 /TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO 2 /TCO film and hence the lipase/nano-CeO 2 /TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33–1.98 mM) with a lowest detection limit of 2 μM with sharp response time of 5 s and a shelf life of about 6

  8. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    Directory of Open Access Journals (Sweden)

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  9. Oxide films in laser additive manufactured Inconel 718

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Cao, X.; Wanjara, P.; Medraj, M.

    2013-01-01

    A continuous-wave 5 kW fiber laser welding system was used in conduction mode to deposit Inconel® alloy 718 (IN718) by employing filler wire on as-serviced IN718 parent material (PM) substrates. The direct laser deposited (DLD) coupons and as-serviced IN718 PM were then evaluated through tensile testing. To understand the failure mechanisms, the tensile fracture surfaces of the as-serviced IN718 PM, DLD and DLD-PM samples were analyzed using scanning electron microscopy. The fracture surfaces revealed the presence of both Al 2 O 3 and Cr 2 O 3 films, although the latter was reasoned to be the main oxide in IN718. Both the experimental observations and thermodynamic analysis indicated that oxidation of some alloying elements in IN718 cannot be completely avoided during manufacturing, whether in the liquid state under vacuum (for casting, the electron beam melting, welding and/or deposition) or with inert gas protection (for welding or laser deposition). The exposed surface of the oxide film on the fracture surface has poor wetting with the metal and thus can constitute a lack of bonding or a crack with either the metal and/or another non-wetted side of the oxide film. On the other hand, the wetted face of the oxide film has good atom-to-atom contact with the metal and may nucleate some intermetallic compounds, such as Laves, Ni 3 Nb-δ, Nb-rich MC and γ′ compounds. The potential of their nucleation on Cr 2 O 3 was assessed using planar disregistry. Coherent planes were found between these intermetallics and Cr 2 O 3

  10. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    Science.gov (United States)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  11. Ion beam analysis of PECVD silicon oxide thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.; Rodriguez, J.A.; Pedrero, E.; Fonseca Filho, H.D.; Llovera, A.; Riera, M.; Dominguez, C.; Behar, M.; Zawislak, F.C.

    2006-01-01

    A study of ion beam analysis techniques of plasma enhanced chemical vapor deposited (PECVD) silicon oxide thin films (1 μm thick) obtained from silane (SiH 4 ) and nitrous oxide (N 2 O) is reported. The film, elemental composition and surface morphology were determined as function of the reactant gas flow ratio, R = [N 2 O]/[SiH 4 ] in the 22-110 range using the Rutherford backscattering spectrometry, nuclear reaction analysis and atomic force microscopy techniques. The density of the films was determined by combining the RBS and thickness measurements. All the experiments were done at a deposition temperature of 300 deg. C. In all the cases almost stoichiometric oxides were obtained being the impurity content function of R. It was also observed that physical properties such as density, surface roughness and shape factor increase with R in the studied interval

  12. Micro-length anodic porous niobium oxide for lithium-ion thin film battery applications

    International Nuclear Information System (INIS)

    Yoo, Jeong Eun; Park, Jiyoung; Cha, Gihoon; Choi, Jinsub

    2013-01-01

    The anodization of niobium in an aqueous mixture of H 3 PO 4 and HF in the potential range from 2.5 to 30 V for 2 h at 5 °C was performed, demonstrating that anodic porous niobium oxide film with a thickness of up to 2000 nm, including a surface dissolution layer, can be obtained by controlling the applied potential and composition of the electrolytes. Specifically, surface dissolution-free porous niobium oxide film with a thickness of 800 nm can be prepared in a low electrolyte concentration. The surface dissolution is observed when the concentration ratio of HF (wt.%):H 3 PO 4 (M) was more than 2:1. The discontinuous layers in the niobium oxide film were observed when the thickness was higher than 500 nm, which was ascribed to the large volume expansion of the niobium oxide grown from the niobium metal. The anodic porous niobium oxide film was used as the cathode for lithium-ion batteries in the potential range from 1.2 to 3.0 V at a current density of 7.28 × 10 − 6 A cm −2 . The first discharge capacity of ca. 53 μA h cm − 2 was obtained in 800 nm thick niobium oxide without a surface dissolution layer. - Highlights: ► Anodic porous niobium oxide film with a thickness of 2000 nm was obtained. ► Surface dissolution-free porous niobium oxide film was prepared. ► The niobium oxide film was used as the cathode for lithium-ion batteries

  13. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  14. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    International Nuclear Information System (INIS)

    Predoi, D.; Ciobanu, C.S.; Radu, M.; Costache, M.; Dinischiotu, A.; Popescu, C.; Axente, E.; Mihailescu, I.N.; Gyorgy, E.

    2012-01-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: ► Hybrid, dextran-iron oxide nanoparticles and thin films. ► Laser immobilization. ► Biocompatibility of dextran-iron oxide nanoparticles.

  15. Investigation of structural, morphological and electrical properties of APCVD vanadium oxide thin films

    International Nuclear Information System (INIS)

    Papadimitropoulos, Georgios; Trantalidis, Stelios; Tsiatouras, Athanasios; Vasilopoulou, Maria; Davazoglou, Dimitrios; Kostis, Ioannis

    2015-01-01

    Vanadium oxide films were chemically vapor deposited (CVD) on oxidized Si substrates covered with CVD tungsten (W) thin films and on glass substrates covered with indium tin oxide (ITO) films, using vanadium(V) oxy-tri-isopropoxide (C 9 H 21 O 4 V) vapors. X-ray diffraction (XRD) measurements showed that the deposited films were composed of a mixture of vanadium oxides; the composition was determined mainly by the deposition temperature and less by the precursor temperature. At temperatures up to 450 C the films were mostly composed by monoclinic VO 2 . Other peaks corresponding to various vanadium oxides were also observed. X-ray microanalysis confirmed the composition of the films. The surface morphology was studied with atomic force microscopy (AFM) and scanning electron microscopy (SEM). These measurements revealed that the morphology strongly depends on the used substrate and the deposition conditions. The well-known metal-insulator transition was observed near 75 C for films mostly composed by monoclinic VO 2 . Films deposited at 450 C exhibited two transitions one near 50 C and the other near 60 C possibly related to the presence of other vanadium phases or of important stresses in them. Finally, the vanadium oxide thin films exhibited significant sensory capabilities decreasing their resistance in the presence of hydrogen gas with response times in the order of a few seconds and working temperature at 40 C. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  17. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo

    1992-01-01

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na 2 SO 4 +H 2 SO 4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  18. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  19. Diffusion of Nickel into Ferritic Steel Interconnects of Solid Oxide Fuel/Electrolysis Stacks

    DEFF Research Database (Denmark)

    Molin, Sebastian; Chen, Ming; Bowen, Jacob R.

    2013-01-01

    diffusion of nickel from the Ni/YSZ electrode or the contact layer into the interconnect plate. Such diffusion can cause austenization of the ferritic structure and could possibly alter corrosion properties of the steel. Whereas this process has already been recognized by SOFC stack developers, only...... a limited number of studies have been devoted to the phenomenon. Here, diffusion of Ni into ferritic Crofer 22 APU steel is studied in a wet hydrogen atmosphere after 250 hours of exposure at 800 °C using Ni-plated (~ 10 micron thick coatings) sheet steel samples as a model system. Even after...... this relatively short time all the metallic nickel in the coating has reacted and formed solid solutions with iron and chromium. Diffusion of Ni into the steel causes formation of the austenite FCC phase. The microstructure and composition of the oxide scale formed on the sample surface after 250 hours is similar...

  20. Effect of micro-patterned fluorine-doped tin oxide films on electrochromic properties of Prussian blue films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyuha [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, A-Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Material Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Park, Ji Hun; Jung, Hun-Gi; Choi, Wonchang; Lee, Hwa Young [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-09-15

    Graphical abstract: - Highlights: • PB-based ECD employed micro-patterned FTO electrode was fabricated. • Effect of interface morphology on electrochromic characteristics was examined. • Electrochromic properties were enhanced by employing a patterned interface. - Abstract: The effect of interface morphology on electrochromic characteristics was examined for an electrochromic device (ECD). Micro-patterned fluorine-doped tin oxide (FTO) films were fabricated using a photolithography process. Prussian blue (PB) films were then deposited on the patterned FTO films. The surface areas of both PB films and FTO films were increased by patterning. ECDs were assembled using patterned PB/FTO films as the electrochromic electrode, bare FTO films as the counter electrode, and an electrolyte containing LiClO{sub 4} salt. The increased effective surface area of the patterned PB/FTO electrode boosted the mobility of ions at the interphase between the electrolyte and PB electrode, and the electron transfer between PB films and FTO films. As a result, electrochromic properties such as transmittance and response time were significantly improved by employing the patterned FTO films as the transparent conductive oxide layer of the electrochromic electrode.

  1. Preparation and supercapacitor application of the single crystal nickel hydroxide and oxide nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Ni, Haifang [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Cai, Yun; Cai, Xiaoyan [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Liu, Yongjun [Advanced Analysis and Measurement Center, Yunnan University, 650091 Kunming (China); Chen, Gang [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China); Fan, Li-Zhen, E-mail: fanlizhen@ustb.edu.cn [Institute of Materials Science and Engineering, University of Science and Technology Beijing, 100083 Beijing (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091 Kunming (China)

    2013-09-01

    Graphical abstract: The nickel hydroxide and nickel oxide nanosheets prepared using CTAB at room temperature exhibit a high specific capacitance, prompt charge/discharge rate. - Highlights: • The nickel hydroxide nanosheets were prepared using CTAB at room temperature. • Ni(OH){sub 2} nanosheet can be successfully converted to NiO nanosheet via calcination. • The NiO nanosheet has a specific capacitance of 388 F g{sup −1} at 5 A g{sup −1} in KOH solution. • Anneal temperature impacts capacitive properties as electrode. - Abstract: The single crystalline Ni(OH){sub 2} nanosheets were synthesized by a simple chemical precipitation method using nickel chloride as precursors and ammonia as precipitating agent. The Ni(OH){sub 2} nanosheets were successfully converted to NiO nanosheets via calcination under appropriate conditions. Analytical methods such as X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and Fourier transformed infrared (FTIR) spectra were employed to characterize the morphology and microstructure of the final products. The experimental results revealed that Ni(OH){sub 2} nanosheets were shape-preserved transformed to NiO nanosheets at 250 °C for 24 h. Ni(OH){sub 2} and NiO nanosheets were directly functionalized as supercapacitor electrodes for potential energy storage applications, whose charge–discharge properties, electrochemical impedance spectra, cyclic voltammetry, and cycle performance were examined. The experimental results show that the single-crystalline NiO nanosheets are a promising candidate for the supercapacitor electrode. They exhibit a high specific capacitance, prompt charge/discharge rate.

  2. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  3. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ou, Sin-Liang; Wuu, Dong-Sing; Fu, Yu-Chuan; Liu, Shu-Ping; Horng, Ray-Hua; Liu, Lei; Feng, Zhe-Chuan

    2012-01-01

    Highlights: ► The β-Ga2O3 thin films are prepared by pulsed laser deposition. ► The substrate temperature affects the structural, optical and etching properties of the grown films. ► The optical transmittance and band gap of the films increased with increasing the substrate temperature. ► The etching treatments for gallium oxide are performed in 49 mol% HF solution at room temperature. ► The gallium oxide thin film grown at 400 °C has the highest etching rate of 490 nm s −1 . - Abstract: The gallium oxide films were deposited on (0 0 1) sapphire at various substrate temperatures from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The etching treatments for as-grown gallium oxide were performed in a 49 mol% HF solution at room temperature. The structural, optical and etching properties of the grown films were investigated in terms of high resolution X-ray diffraction, optical transmittance, atomic force microscopy, and X-ray photoelectron spectroscopy. The phase transition from amorphous to polycrystalline β-Ga 2 O 3 structure was observed with increasing growth temperature. From the optical transmittance measurements, the films grown at 550–1000 °C exhibit a clear absorption edge at deep ultraviolet region around 250–275 nm wavelength. It was found that the optical band gap of gallium oxide films increased from 4.56 to 4.87 eV when the substrate temperature increased from 400 to 1000 °C. As the substrate temperature increases, the crystallinity of gallium oxide film is enhanced and the etching rate is decreased. The high etching rate of 490 nm s −1 for gallium oxide film grown at 400 °C could be due to its amorphous phase, which is referred to higher void ratio and looser atomic structure.

  4. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  5. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  6. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  7. Incorporation of transition metal ions and oxygen generation during anodizing of aluminium alloys

    International Nuclear Information System (INIS)

    Habazaki, H.; Konno, H.; Shimizu, K.; Nagata, S.; Skeldon, P.; Thompson, G.E.

    2004-01-01

    Enrichment of nickel at the alloy/film interface and incorporation of nickel species into the anodic film have been examined for a sputtering-deposited Al-1.2at.%Ni alloy in order to assist understanding of oxygen generation in barrier anodic alumina films. Anodizing of the alloy proceeds in two stages similarly to other dilute aluminium alloys, for example Al-Cr and Al-Cu alloys, where the Gibbs free energies per equivalent for formation of alloying element oxide exceeds the value for alumina. In the first stage, a nickel-free alumina film is formed, with nickel enriching in an alloy layer, 2 nm thick, immediately beneath the anodic oxide film. In the second stage, nickel atoms are oxidized together with aluminium, with oxygen generation forming gas bubbles within the anodic oxide film. This stage commences after accumulation of about 5.4 x 10 15 nickel atoms cm -2 in the enriched alloy layer. Oxygen generation also occurs when a thin layer of the alloy, containing about 2.0 x 10 19 nickel atoms m -2 , on electropolished aluminium, is completely anodized, contrasting with thin Al-Cr and Al-Cu alloy layers on electropolished aluminium, for which oxygen generation is essentially absent. A mechanism of oxygen generation, based on electron impurity levels of amorphous alumina and local oxide compositions, is discussed in order to explain the observations

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  9. Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Predoi, D.; Ciobanu, C.S. [National Institute for Physics of Materials, P.O. Box MG 07, Bucharest, Magurele (Romania); Radu, M.; Costache, M.; Dinischiotu, A. [Molecular Biology Center, University of Bucharest, 91-95 Splaiul Independentei, 76201, Bucharest 5 (Romania); Popescu, C.; Axente, E.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Gyorgy, E., E-mail: egyorgy@cin2.es [National Institute for Lasers, Plasma and Radiations Physics, P. O. Box MG 36, 77125 Bucharest (Romania); Consejo Superior de Investigaciones Cientificas, Centre d' Investigacions en Nanociencia i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra (Spain)

    2012-02-01

    Iron oxide nanoparticles were prepared by chemical co-precipitation method. The nanoparticles were mixed with dextran in distilled water. The obtained solutions were frozen in liquid nitrogen and used as targets during matrix assisted pulsed laser evaporation for the growth of hybrid, iron oxide nanoparticles-dextran thin films. Fourier Transform Infrared Spectroscopy and X-ray diffraction investigations revealed that the obtained films preserve the structure and composition of the initial, non-irradiated iron oxide-dextran composite material. The biocompatibility of the iron oxide-dextran thin films was demonstrated by 3-(4.5 dimethylthiazol-2yl)-2.5-diphenyltetrazolium bromide-based colorimetric assay, using human liver hepatocellular carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Hybrid, dextran-iron oxide nanoparticles and thin films. Black-Right-Pointing-Pointer Laser immobilization. Black-Right-Pointing-Pointer Biocompatibility of dextran-iron oxide nanoparticles.

  10. Hot corrosion studies on nickel-based alloys containing silicon

    International Nuclear Information System (INIS)

    Kerr, T.W.; Simkovich, G.

    1976-01-01

    Alloys of Ni--Cr, Ni--Si and Ni--Cr--Si were oxidized and ''hot corroded'' in pure oxygen at 1000 0 C. In the oxidation experiments it was found that small amounts of either chromium or silicon in nickel increased the oxidation rates in comparison to pure nickel in accord with Wagner's parabolic oxidation theory. At high concentrations of the alloying elements the oxidation rates decreased due to the formation of oxide phases other than nickel oxide in the scale. Hot corrosion experiments were conducted on both binary and ternary alloys by oxidizing samples coated with 1.0 mg/cm 2 of Na 2 SO 4 in oxygen at 1000 0 C. In general it was found that high chromium and high silicon alloys displayed excellent resistance to the hot corrosion process gaining or losing less than 0.5 mg/cm 2 in 1800 min at temperature. Microprobe and x-ray diffraction studies of the alloy and the scale indicate that amorphous SiO 2 probably formed to aid in retarding both the oxidation and the hot corrosion process

  11. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    International Nuclear Information System (INIS)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng

    2014-01-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed. • Neonatal lead

  12. Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wenqing; Huang, Yue; Wang, Xiaoling; Zhang, Jingwen; Wu, Kusheng, E-mail: kswu@stu.edu.cn

    2014-02-01

    Objective: This study aimed to evaluate the effects of toxic heavy metal co-exposure on DNA oxidative damage in neonates from a primitive e-waste recycling region, Guiyu town, China. Methods: Our participants included 201 pregnant women: 126 from Guiyu town and 75 from Jinping district of Shantou city, where no e-waste recycling and dismantling activities existed. Structured interview questionnaires were administered to the pregnant women and umbilical cord blood (UCB) samples were collected after delivery. The UCB concentrations of lead, cadmium, chromium, and nickel were analyzed by graphite furnace atomic absorption spectrometry (GFAAS). Levels of UCB plasma 8-hydroxydeoxyguanosine (8-OHdG, a DNA oxidative damage biomarker) were determined by enzyme-linked immunosorbent assay. Results: Our results suggested that UCB lead and cadmium concentrations in neonates of Guiyu were significantly higher than those of Jinping (lead: median 110.45 ng/mL vs. 57.31 ng/mL; cadmium: median 2.50 ng/mL vs. 0.33 ng/mL, both P < 0.001). Parents' residence in Guiyu, and parents' work related to e-waste recycling were the risk factors associated with neonate's UCB lead and cadmium levels. No significant difference of UCB plasma 8-OHdG levels was found between Guiyu and the control area. After adjusting for potential confounders, cord plasma 8-OHdG concentrations (ng/mL) were positively associated with blood cadmium (β = 0.126 ng/mL, 95% CI: 0.055 to 0.198 ng/mL), chromium (β = 0.086 ng/mL, 95% CI: 0.014 to 0.158 ng/mL) and nickel (β = 0.215 ng/mL, 95% CI: 0.113 to 0.317 ng/mL) concentrations. Conclusions: The primitive e-waste recycling and dismantling activities may contribute to the elevated umbilical cord blood toxic heavy metal levels in neonates born in Guiyu. Exposures to cadmium, chromium and nickel were associated with increased oxidative DNA damage in neonates. - Highlights: • DNA oxidative damage levels (8-OHdG) in neonates from Guiyu were assessed.

  13. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  14. Optimum deposition, structure, and properties of tantalum oxide films

    International Nuclear Information System (INIS)

    Lin, Y.C.

    1985-01-01

    Amorphous, ductile, and uniform Ta 2 O 5 films that acted as diffusion barriers were developed by sputter depositing Ta metal on Al single crystals (99.99%) and subsequently anodizing these thin films. The morphology, microstructure, composition and properties were characterized by scanning and transmission electron microscopy, surface and Fourier transform infrared spectroscopy, X-ray diffraction, and fluorescence. Superior corrosion resistance in a water saturated Cl 2 atmosphere was provided by Ta 2 O 5 coating on Al single crystal substrates but not on Al alloys. The strong Ta-O bond, the non-porous nature of the film and good adhesion to the substrate are attributed to the outstanding corrosion resistance of these oxide coatings. Al alloy surfaces are not protected, since the anodic film formed over grain boundaries, processing lines and emergent precipitates is poorly adherent, thus providing loci for corrosion. These problems were eliminated by casting a 400 A layer of tantalum oxyhydroxide polymer from ethanol solution onto Al substrate and curing to a Ta 2 O 5 layer that effectively resisted attack by wet Cl 2 . The mechanical properties of Ta 2 O 5 films on Al alloys were studied at various pH's by in-situ fatigue loading coupled with electrochemical measurements of corrosion potential and corrosion current. These results indicate the fatigue resistance of this oxide film effectively protects the underlying metal from strong HCl solution attack. The very unusual ductility and high corrosion resistance of Ta 2 O 5 films could be related to the graphite-like structure that exists in the amorphous state of this oxide

  15. In situ Oxidation of Ultrathin Silver Films on Ni(111)

    International Nuclear Information System (INIS)

    Meyer, A.; Flege, I.; Senanayake, S.; Kaemena, B.; Rettew, R.; Alamgir, F.; Falta, J.

    2011-01-01

    Oxidation of silver films of one- and two-monolayer thicknesses on the Ni(111) surface was investigated by low-energy electron microscopy at temperatures of 500 and 600 K. Additionally, intensity-voltage curves were measured in situ during oxidation to reveal the local film structure on a nanometer scale. At both temperatures, we find that exposure to molecular oxygen leads to the destabilization of the Ag film with subsequent relocation of the silver atoms to small few-layer-thick silver patches and concurrent evolution of NiO(111) regions. Subsequent exposure of the oxidized surface to ethylene initiates the transformation of bilayer islands back into monolayer islands, demonstrating at least partial reversibility of the silver relocation process at 600 K.

  16. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Energy Technology Data Exchange (ETDEWEB)

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  17. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  18. Preparation and characterization of nickel oxide nanoparticles and their application in glucose and methanol sensing

    Directory of Open Access Journals (Sweden)

    Mahsa Hasanzadeh

    2015-03-01

    Full Text Available In this work, a low cost glucose and methanol nonenzymatic sensor was prepared using nickel oxide (NiO nanofilm electrodeposited on a bare Cu electrode. Electrochemical deposition was assisted with cetyl trimethylammonium bromide (CTAB as a template. Scanning electron microscopy (SEM was applied to observe the surface morphology of the modified electrode. Cyclic voltammetry (CV and amperometry techniques were used to study the electrocatalytic behavior of NiO porous film in glucose and methanol detection. For glucose sensing, the electrode showed a linear relationship in the concentration range of 0.01-2.14 mM with a low limit of detection (LOD 1.7 µM (signal/noise ratio (S/N=3. Moreover, high sensitivities of 4.02 mA mM−1 cm−2 and 0.38 mA mM−1 cm−2 respectively in glucose and methanol monitoring suggested the modified electrode as an excellent sensor. The NiO-Cu modified electrode was relatively insensitive to common biological interferers. This sensor possessed good poison resistance towards chloride ions, and long term stability and significant selectivity towards glucose and methanol. Finally the proposed sensor was successfully applied for determination of glucose in human blood serum samples.

  19. Influence of annealing on texture properties of cerium oxide thin films

    International Nuclear Information System (INIS)

    Arunkumar, P.; Suresh Babu, K.; Ramaseshan, R.; Dash, S.

    2013-01-01

    Future power demand needs an energy source with higher efficiency, better power density, clean energy and fuel flexibility. Solid oxide fuel cell (SOFC) is one of the potential sources for future needs. Though the polymer and direct methanol based electrolyte are much suitable, for versatile applications (portable devices) they are having major challenges such as design, platinum based catalyst, lower power density and fuel flexibility (free from hydrocarbons). However, in SOFC the high operating temperature is the only major issue. Operating temperature of SOFC could be reduced by proper selection of electrolyte material which should have minimum ionic conductivity of 0.1 Scm -1 at reduced activation energy. This can be achieved by thin film based doped cerium oxide electrolyte for SOFC, leads to Intermediate Temperature Solid Oxide Fuel Cell (ITSOFC). In the present work, we focus on the synthesis of cerium oxide and 20 mol % samarium doped cerium oxide (SDC) nanoparticles by co-precipitation method and to synthesis thin films of the same. Pellets of those powders were heat treated at different temperatures and used as targets for e-beam evaporation to fabricate thin film based electrolyte. Stoichiometry of both powders and thin films were confirmed by XRF and EPMA. GIXRD profiles of ceria and SDC thin films are shown below and a preferred orientation effect is observed in SDC films. In SDC films the X-ray peaks have a shift towards lower angles, due to the difference in ionic radii of Ce 4+ and Sm 3+ . The band gap of CeO 2 (2.88 eV) from optical absorption technique indicates the presence of Ce 3+ with Ce 4+ , indirectly shows the concentration of oxygen vacancies which is required for the thin film electrolyte

  20. Lipase immobilized on nanostructured cerium oxide thin film coated on transparent conducting oxide electrode for butyrin sensing

    Energy Technology Data Exchange (ETDEWEB)

    Panky, Sreedevi; Thandavan, Kavitha [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sivalingam, Durgajanani [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Sethuraman, Swaminathan; Krishnan, Uma Maheswari [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Jeyaprakash, Beri Gopalakrishnan [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India); Rayappan, John Bosco Balaguru, E-mail: rjbosco@ece.sastra.edu [Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA University, Thanjavur 613 401, Tamil Nadu (India); School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, Tamil Nadu (India)

    2013-01-15

    Nanostructured cerium oxide (CeO{sub 2}) thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique with cerium nitrate salt, Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O as precursor. Fluorine doped cadmium oxide (CdO:F) thin film prepared using spray pyrolysis technique acts as the TCO film and hence the bare electrode. The structural, morphological and elemental characterizations of the films were carried out using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The diffraction peak positions in XRD confirmed the formation of highly crystalline ceria with cubic structure and FE-SEM images showed uniform adherent films with granular morphology. The band gaps of CeO{sub 2} and TCO were found to be 3.2 eV and 2.6 eV respectively. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film to form the lipase/nano-CeO{sub 2}/TCO bioelectrode. Sensing studies were carried out using cyclic voltammetry and amperometry, with lipase/nano-CeO{sub 2}/TCO as working electrode and tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp response time of 5 s and a shelf life of about 6 weeks. -- Graphical abstract: Nanostructured cerium oxide thin films were deposited on transparent conducting oxide (TCO) substrate using spray pyrolysis technique. Fluorine doped cadmium oxide (CdO:F) thin film acts as the TCO film and hence the working electrode. Lipase enzyme was physisorbed on the surface of CeO{sub 2}/TCO film and hence the lipase/nano-CeO{sub 2}/TCO bioelectrode has been fabricated. Sensing studies were carried out using cyclic voltammetry and amperometry with tributyrin as substrate. The mediator-free biosensor with nanointerface exhibited excellent linearity (0.33-1.98 mM) with a lowest detection limit of 2 {mu}M with sharp

  1. Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun

    2017-06-28

    Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.

  2. Characterization of composite metal-ceramic of nickel-oxide cerium doped gadolinium; Caracterizacao de compositos ceramica-metal de niquel e oxido de cerio dopado com gadolinio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.L.A. da, E-mail: maria.andrade@pro.unifacs.br [Universidade Salvador (UNIFACS), BA (Brazil). Escola de Engenharia, Arquitetura e TI; Universidade Federal da Bahia (UFBA), BA (Brazil); Varela, M.C.R.S. [Universidade Federal da Bahia (UFBA), BA (Brazil)

    2016-07-01

    Composite nickel doped cerium oxide are used in SOFC anode materials. In this study we evaluated the effect of the presence of gadolinium on the properties of composite nickel and ceria and. The supports were synthesized by sol-gel method. The impregnation with nickel nitrate was taken sequentially, followed by calcination. The materials were characterized by X-ray diffraction, measurement of specific surface area, temperature programmed reduction, Raman spectroscopy. The presence of gadolinium retained the fluorite structure of ceria by forming a solid solution, also not influencing significantly on the specific surface area of the support. On the other hand, there was a decrease in the area catalysts, which can be attributed to sintering of nickel. Furthermore, addition of gadolinium favored the formation of intrinsic and extrinsic vacancies in cerium oxide, which leads to an increase in the ionic conductivity of the solid, desirable property for an SOFC anode catalyst. (author)

  3. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  4. Electrosprayed Metal Oxide Semiconductor Films for Sensitive and Selective Detection of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Maryam Siadat

    2009-11-01

    Full Text Available Semiconductor metal oxide films of copper-doped tin oxide (Cu-SnO2, tungsten oxide (WO3 and indium oxide (In2O3 were deposited on a platinum coated alumina substrate employing the electrostatic spray deposition technique (ESD. The morphology studied with scanning electron microscopy (SEM and atomic force microscopy (AFM shows porous homogeneous films comprising uniformly distributed aggregates of nano particles. The X-ray diffraction technique (XRD proves the formation of crystalline phases with no impurities. Besides, the Raman cartographies provided information about the structural homogeneity. Some of the films are highly sensitive to low concentrations of H2S (10 ppm at low operating temperatures (100 and 200 °C and the best response in terms of Rair/Rgas is given by Cu-SnO2 films (2500 followed by WO3 (1200 and In2O3 (75. Moreover, all the films exhibit no cross-sensitivity to other reducing (SO2 or oxidizing (NO2 gases.

  5. Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition

    KAUST Repository

    Kim, Hyunho

    2017-02-27

    Extraordinary oxidant-dependent changes in the thermoelectric properties of undoped ZnO thin films deposited by atomic layer deposition (ALD) have been observed. Specifically, deionized water and ozone oxidants are used in the growth of ZnO by ALD using diethylzinc as a zinc precursor. No substitutional atoms have been added to the ZnO films. By using ozone as an oxidant instead of water, a thermoelectric power factor (σS) of 5.76 × 10 W m K is obtained at 705 K for undoped ZnO films. In contrast, the maximum power factor for the water-based ZnO film is only 2.89 × 10 W m K at 746 K. Materials analysis results indicate that the oxygen vacancy levels in the water- and ozone-grown ZnO films are essentially the same, but the difference comes from Zn-related defects present in the ZnO films. The data suggest that the strong oxidant effect on thermoelectric performance can be explained by a mechanism involving point defect-induced differences in carrier concentration between these two oxides and a self-compensation effect in water-based ZnO due to the competitive formations of both oxygen and zinc vacancies. This strong oxidant effect on the thermoelectric properties of undoped ZnO films provides a pathway to improve the thermoelectric performance of this important material.

  6. Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Chen, Chin-Yi; Wang, Sheng-Chang; Tien, Yue-Han; Tsai, Wen-Ta; Lin, Chung-Kwei

    2009-01-01

    Hybrid films were prepared by adding various concentrations of meso-carbon microbeads (MCMB) during sol-gel processing of manganese oxide films. The heat-treated films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, electrochemical performance of the MCMB-added Mn-oxide hybrid coatings was evaluated by cyclic voltammetry (CV) and compared with its unadded counterpart. Experimental results showed that Mn-oxide films exhibited a mixture of Mn 2 O 3 and Mn 3 O 4 phases. The higher the heat-treatment temperature, the more Mn 2 O 3 can be observed. The specific capacitance of the unadded Mn-oxide electrodes is 209 F/g. Because the MCMB particles provide more interfacial surface area for electrochemical reactions, a significant improvement can be noticed by adding MCMB in Mn-oxide coatings. The 300 o C heat-treated hybrid Mn-oxide coating with a Mn/MCMB ratio of 10/1 exhibits the highest value of 350 F/g, showing a ∼ 170% increase in specific capacitance.

  7. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  8. Raman spectroscopy of sputtered metal-graphene and metal-oxide-graphene interfaces

    Science.gov (United States)

    Chen, Ching-Tzu; Gajek, Marcin; Freitag, Marcus; Kuroda, Marcelo; Perebeinos, Vasili; Raoux, Simone

    2012-02-01

    In this talk, we report our recent development in sputtering deposition of magnetic and non-magnetic metal and metal-oxide thin films on graphene for applications in spintronics and nanoeleoctronics. TEM and SEM images demonstrate homogeneous coverage, uniform thickness, and good crystallinity of the sputtered films. Raman spectroscopy shows that the structure of the underlying graphene is well preserved, and the spectral weight of the defect D mode is comparable to that of the e-beam evaporated samples. Most significantly, we report the first observation of graphene-enhanced surface excitations of crystalline materials. Specifically, we discover two pronounced dispersive Raman modes at the interface of graphene and the nickel-oxide and cobalt-oxide films which we attribute to the strong light absorption and high-order resonant scattering process in the graphene layer. We will present the frequency-dependent, polarization-dependent Raman data of these two modes and discuss their microscopic origin.

  9. Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source

    International Nuclear Information System (INIS)

    Hwang, Man-Soo; Seob Jeong, Heui; Kim, Won Mok; Seo, Yong Woon

    2003-01-01

    Multilayer coatings consisting of metal layers sandwiched between transparent conducting oxide layers are widely used for flat panel display electrodes and electromagnetic shield coatings for plasma displays, due to their high electrical conductivity and light transmittance. The electrical and optical properties of these multilayer films depend largely on the surface characteristics of the transparent conducting oxide thin films. A smoother surface on the transparent conducting oxide thin films makes it easier for the metal layer to form a continuous film, thus resulting in a higher conductivity and visible light transmittance. Indium tin oxide (ITO) and zinc oxide (ZnO) films were co-deposited using a dual magnetron sputter and a bipolar pulse power supply to decrease the surface roughness of the transparent conducting oxide films. The symmetric pulse mode of the power supply was used to simultaneously sputter an In 2 O 3 (90 wt %) : SnO 2 (10 wt %) target and a ZnO target. We varied the duty of the pulses to control the ratio of ITO : ZnO in the thin films. The electrical and optical properties of the films were studied, and special attention was paid to the surface roughness and the crystallinity of the films. By co-depositing ITO and ZnO at a pulse duty ratio of ITO:ZnO=45:45 using a dual magnetron sputter and a bipolar pulse power supply, we were able to obtain amorphous transparent conducting oxide films with a very smooth surface which had a Zn-rich buffer layer under a In-rich surface layer. All of the films exhibited typical electrical and optical properties of transparent conducting oxide films deposited at room temperature

  10. Structural and photoluminescent properties of a composite tantalum oxide and silicon nanocrystals embedded in a silicon oxide film

    International Nuclear Information System (INIS)

    Díaz-Becerril, T.; Herrera, V.; Morales, C.; García-Salgado, G.; Rosendo, E.; Coyopol, A.; Galeazzi, R.; Romano, R.; Nieto-Caballero, F.G.; Sarmiento, J.

    2017-01-01

    Tantalum oxide crystals encrusted in a silicon oxide matrix were synthesized by using a hot filament chemical vapor deposition system (HFCVD). A solid source composed by a mixture in different percentages of Ta 2 O 5 and silicon (Si) powders were used as reactants. The films were grown at 800 °C and 1000 °C under hydrogen ambient. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) at room temperature. From the XPS results it was confirmed the formation of a mixture of Tantalum oxide, silicon oxide and Si nanoparticles (Ta 2 O 5- SiO 2 -Si(nc)) as seen from the Si (2p) and Ta (4f) lines corresponding to Si + and Ta + states respectively. Ta 2 O 5 and Si nanocrystals (Si-NCs) embedded in the silicon oxide films were observed on HRTEM images which corroborate the XPS results. Finally the emission properties of the films exhibited a broad band from 400 to 850 nm caused by the independent PL properties of tantalum oxide and Si-NCs that compose the film. The intensity of the emissions was observed to be dependent on both temperature of deposition and the ratio Ta 2 O 5 /Si, used as initial reactants. Results from this work might supply useful data for the development of future light emitter devices.

  11. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    Science.gov (United States)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  12. Influence of coprecipitation and mechanical mixture methods on the characteristics of nickel oxide-alumina composites; Influencia dos metodos de coprecipitacao e mistura mecanica nas caracteristicas de compositos oxido de niquel-alumina

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, G.L.; Yoshito, W.K.; Ussui, V.; Lima, N.B. de; Lazar, D.R.R., E-mail: gcordeiro@usp.br [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2014-07-01

    Alumina-supported nickel catalysts are currently used in the reforming process due to low cost and high activity for hydrogen production from alcohols. In this work, the effect of preparation methods on nickel oxide-alumina based materials has been investigated. Nickel content was fixed at 15 wt%. Ceramic powders were obtained by coprecipitation in ammonia medium and mechanical mixture. Coprecipitated materials were calcined in air at 750 deg C to obtain the corresponding oxides. Materials obtained by mechanical mixture were prepared by wet milling of nickel oxide and alumina powders, both synthesized by precipitation and calcination in air at 450 and 750 deg C, respectively. Powders were characterized by X-ray diffraction, nitrogen gas sorption by applying the BET method, laser diffraction, scanning electron microscopy, electrophoretic mobility measurements for zeta potential determination and infrared spectroscopy. The results showed that coprecipitation method allowed the production of mixed oxides with high surface area (232,7 ± 3,2 m{sup 2}.g{sup -1}) and normal granulometric distribution while mechanical mixture led to the formation of materials constituted by gamma alumina and nickel oxide phases, with low surface area (136,2 ± 0,5 m{sup 2}.g{sup -1}) and bimodal granulometric distribution. (author)

  13. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  14. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  15. Picosecond laser registration of interference pattern by oxidation of thin Cr films

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, Vadim; Yarchuk, Michail [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Zakoldaev, Roman, E-mail: zakoldaev@gmail.com [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation); Gedvilas, Mindaugas; Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300, Vilnius (Lithuania); Kuzivanov, Michail; Baranov, Alexander [ITMO University, Kronverksky Ave. 49, St. Petersburg, 197101 (Russian Federation)

    2017-05-15

    Highlights: • Periodical patterning of thin films was achieved by combining two technologies. • Selective chemical etching was combined with laser-induced oxidation. • Formation of the protective oxide layer prevented of chromium film from etching. • 1D binary grating with the chromium stripe width of 750 nm was fabricated. - Abstract: The laser oxidation of thin metallic films followed by its selective chemical etching is a promising method for the formation of binary metal structures on the glass substrates. It is important to confirm that even a single ultrashort laser pulse irradiation is able to create the protective oxide layer that makes possible to imprint the thermochemical image. Results of the thermo-chemical treatment of thin chromium films irradiated by picosecond laser pulse utilizing two and four beam interference combined with the chemical etching are presented. The spatial resolution of this method can be high enough due to thermo-chemical sharpening and can be close to the diffraction limit. Micro-Raman spectroscopy was applied for characterization of the chemical composition of the protective oxide layers formed under atmospheric conditions on the surface of thin chromium films.

  16. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties

    International Nuclear Information System (INIS)

    Zhang, Dongya; Dong, Guangneng; Chen, Yinjuan; Zeng, Qunfeng

    2014-01-01

    Polytetrafluoroethylene (PTFE) composite film was successfully fabricated by depositing PTFE particles into porous anodic aluminum oxide film using electrophoretic deposition (EPD) process. Firstly, porous anodic aluminum oxide film was synthesized by anodic oxidation process in sulphuric acid electrolyte. Then, PTFE particles in suspension were directionally deposited into the porous substrate. Finally, a heat treatment at 300 °C for 1 h was utilized to enhance PTFE particles adhesion to the substrate. The influence of anodic oxidation parameters on the morphology and micro-hardness of the porous anodic aluminum oxide film was studied and the PTFE particles deposited into the pores were authenticated using energy-dispersive spectrometer (EDS) and scanning electron microscopy (SEM). Tribological properties of the PTFE composite film were investigated under dry sliding. The experimental results showed that the composite film exhibit remarkable low friction. The composite film had friction coefficient of 0.20 which deposited in 15% PTFE emulsion at temperature of 15 °C and current density of 3 A/dm 2 for 35 min. In addition, a control specimen of porous anodic aluminum oxide film and the PTFE composite film were carried out under the same test condition, friction coefficient of the PTFE composite film was reduced by 60% comparing with the control specimen at 380 MPa and 100 mm/s. The lubricating mechanism was that PTFE particles embedded in porous anodic aluminum oxide film smeared a transfer film on the sliding path and the micro-pores could support the supplement of solid lubricant during the sliding, which prolonged the lubrication life of the aluminum alloys.

  17. Nickel oxide crystalline nano flakes: synthesis, characterization and their use as anode in lithium-ion batteries

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Vegge, Tejs

    2014-01-01

    Nickel oxide crystalline nano flakes (NONFs)—only about 10 nm wide—were produced using a simple and inexpensive chemistry method followed by a short annealing in ambient air. In a first step, Ni(OH)2 sheets were synthesized by adding sodium hydroxide (NaOH) drop-wise in a Ni(NO3)2 aqueous solutio...

  18. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    International Nuclear Information System (INIS)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O'Neill, Anthony; Horsfall, Alton; Goss, Jonathan; Cumpson, Peter

    2013-01-01

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  19. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  20. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.