WorldWideScience

Sample records for ni substitutional effects

  1. The effects of Ni substitution on the magnetic properties of as-cast and annealed Fe-Co amorphous alloy wires

    International Nuclear Information System (INIS)

    Pinitsoontorn, S.; Badini Confalonieri, G.A..; Davies, H.A.; Gibbs, M.R.J.

    2005-01-01

    Amorphous alloy wires of composition (Co x Fe y Ni z ) 72.5 Si 12.5 B 15 , with Ni substituted for both Co and Fe, were prepared by the rotating water bath chill cast technique. The maximum Ni content that can be substituted in order to cast amorphous wire is reported. The effects of Ni addition on the hysteresis loop parameters and the major magnetic properties of the as-cast wire are reported

  2. Effect of Zn and Ni substitution on structural, morphological and magnetic properties of tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvana, S. [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamilnadu (India); Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamilnadu (India); Ramalingam, H.B.; Vadivel, K. [Department of Physics, Government Arts College, Udumalpet 642126, Tamilnadu (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamilnadu (India); Ayesh, Ahmad I. [Department of Math., Stat. and Physics, Qatar University, Doha (Qatar)

    2016-12-01

    Structural, morphological, optical and magnetic properties of Zn and Zn–Ni co-doped tin oxide (SnO{sub 2}) nanoparticles synthesized by sol-gel method. The influence of doping concentration on phase and particle size of the nanoparticles was determined by X-ray diffraction. The XRD study reveals that the lattice constant and crystallite size of the samples decrease with the increase of doping concentration. The change in the band gap energy of SnO{sub 2} nanoparticles influenced more by doping with Zn and Ni. The external morphology and particle size were recorded by SEM and TEM. The results indicated that Ni{sup 2+} ions would uniformly substituted into the Zn{sup 2+} sites of SnO{sub 2} lattice. The substitution of Ni creates a vital change in magnetic properties that has been measured by vibrating sample magnetometer (VSM). - Highlights: • Sn{sub 2-(x+y)} Ni{sub x}Zn{sub y}O{sub 2}, (x=y=0.07 to 0.10) nano particles are prepared by simple sol gel method. • X-ray diffraction data confirms the single phase rutile tetragonal structure. • The VSM was used to confirm, the codoping of (Ni, Zn) increases the magnetic moment of the sample prepared. • Inducing ferromagnetism in sample makes it suitable for future spintronics applications.

  3. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2017-05-01

    Full Text Available The structural, magnetic, and magnetotransport properties of Ni50-xCrxMn37In13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD, field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni50Mn37In13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (TM. This system also shows a large negative entropy change at the Curie temperature (TC, making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC values at TM and TC increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni45Cr5Mn37In13. The influence of Cr substitution on the transport properties of Ni48Cr2Mn37In13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near TM for Ni48Cr2Mn37In13.

  4. Calculated site substitution in ternary gamma'-Ni3Al: Temperature and composition effects

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    -tin orbitals method in conjunction with the local-density and multisublattice coherent-potential approximations and include all 3d, 4d, 5d, and noble metals. The calculations show the existence of simple trends in the alloying behavior of the gamma' phase which may be explained in a Friedel-like model based...... on the interaction between Ni and the added species. It is shown that the commonly accepted interpretation of the site substitution behavior of Cu and Pd may be incorrect because of site substitution reversal at high temperatures. It is further shown that the direction of the solubility lobe in the ternary phase...

  5. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Terashita, Naoyoshi [Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351 (Japan); Tashiro, Suguru; Suzuki, Tetsuya [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan)

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from the Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.

  6. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: tufanroyburdwan@gmail.com [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Chakrabarti, Aparna [Theory and Simulations Lab, HRDS, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2017-04-25

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping. - Highlights: • We discuss the effects of Co doping on magnetic properties of Ni/Pt based Heusler alloys. • Indirect RKKY interaction is maximum for shape memory alloy like systems. • We predict Pt{sub 2}MnSn as a probable ferromagnetic shape memory alloy.

  7. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite

    Science.gov (United States)

    Wu, C. P.; Tung, M. J.; Ko, W. S.; Wang, Y. P.; Tong, S. Y.; Yang, M. D.

    2015-11-01

    Nd3+ ions substituted Ni0.37Cu0.14Zn0.52Fe2O4 (Nd3+ ions content=0, 0.01, 0.04, 0.6, 1.5 wt%) were prepared by the usual standard ceramic method at 1030 °C sintering temperature, and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that it is no obvious impurities up to Nd3+ ions content wt%=0.04. For higher Nd3+ ions content samples (0.6 and 1.5 wt%), there are two kind of impurities Cu-rich and Nd-rich iron oxide phase. The saturation magnetization of the 0.01 wt% Nd3+ions content sample is higher as result of that the A-B sites distance and YK-angles are shorter and smaller. The saturation magnetization of 0.04-1.5 wt% Nd3+ ion content sample are reduced, since the total magnetic moments of the AB site are decreased. For the 0.6 wt% sample, the Curie temperature increasing is as result of the Cu-rich iron oxide separating out. The maximum enhancements of permeability μ‧ are improved to 11.2% (0.04 wt%) and 29.2% (0.6 wt%) at the 6.7 and 13.8 MHz, respectively. However, it is notice that small amount substitutions of Nd3+ increase the high frequency electromagnetic characteristics, can be applied to NFC technology and WPT technologies.

  8. Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.P., E-mail: itria20161@itri.org.tw; Tung, M.J.; Ko, W.S.; Wang, Y.P.; Tong, S.Y.; Yang, M.D.

    2015-11-01

    Nd{sup 3+} ions substituted Ni{sub 0.37}Cu{sub 0.14}Zn{sub 0.52}Fe{sub 2}O{sub 4} (Nd{sup 3+} ions content=0, 0.01, 0.04, 0.6, 1.5 wt%) were prepared by the usual standard ceramic method at 1030 °C sintering temperature, and the composition dependence of the physical and magnetic properties has been investigated. SEM micrographs and EDX analysis revealed that it is no obvious impurities up to Nd{sup 3+} ions content wt%=0.04. For higher Nd{sup 3+} ions content samples (0.6 and 1.5 wt%), there are two kind of impurities Cu-rich and Nd-rich iron oxide phase. The saturation magnetization of the 0.01 wt% Nd{sup 3+}ions content sample is higher as result of that the A–B sites distance and YK-angles are shorter and smaller. The saturation magnetization of 0.04–1.5 wt% Nd{sup 3+} ion content sample are reduced, since the total magnetic moments of the AB site are decreased. For the 0.6 wt% sample, the Curie temperature increasing is as result of the Cu-rich iron oxide separating out. The maximum enhancements of permeability μ′ are improved to 11.2% (0.04 wt%) and 29.2% (0.6 wt%) at the 6.7 and 13.8 MHz, respectively. However, it is notice that small amount substitutions of Nd{sup 3+} increase the high frequency electromagnetic characteristics, can be applied to NFC technology and WPT technologies.

  9. Effects of aluminum substitution in C14-rich multi-component alloys for NiMH battery application

    International Nuclear Information System (INIS)

    Young, K.; Regmi, R.; Lawes, G.; Ouchi, T.; Reichman, B.; Fetcenko, M.A.; Wu, A.

    2010-01-01

    The effects of aluminum substitution to the structural, electrochemical, and gas phase hydrogen storage properties of C14-rich alloys are reported. Minor phases, including C15 and TiNi, were identified by X-ray diffraction analysis. Entropy and enthalpy were estimated from equilibrium pressure at a fixed hydrogen concentration due to the large slope factor in pressure-concentration-temperature isotherms. The stability of hydrides from these materials, determined from the pressure-concentration isotherm equilibrium pressure and maximum storage capacities has a better correlation with the change in entropy than that in enthalpy. Alloys having smaller unit cell volume, relatively low hydride heat of formation, and relatively higher degree of disorder exhibit lower plateau pressure, higher storage capacity, and smaller hydrogen diffusion coefficient. Comparing to the Co substitution in the same base alloy, Al substitution makes better contribution to both bulk hydrogen transport and surface reaction. Substituting 0.4% Al and 1.5% Co to AB2 alloy is found to be the best combination in terms of general nickel metal hydride battery performance.

  10. Effect of Ta substitution method on the mechanical properties of Ni3(Si,Ti) intermetallic alloy

    International Nuclear Information System (INIS)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki

    2013-01-01

    In this study, Ta was added to an L1 2 -type Ni 3 (Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1 2 phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1 2 phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1 2 phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1 2 single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si

  11. Effect of Ta substitution method on the mechanical properties of Ni{sub 3}(Si,Ti) intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Imajo, Daiki; Kaneno, Yasuyuki; Takasugi, Takayuki, E-mail: takasugi@mtr.osakafu-u.ac.jp

    2013-12-20

    In this study, Ta was added to an L1{sub 2}-type Ni{sub 3}(Si,Ti) alloy at different levels and into different substitution sites, substituting for either Ni, Ti or Si. The solubility limits of Ta in the L1{sub 2} phase were 1.9 at%, 5.7 at% and 1.0 at% when Ta substituted for Ni, Ti and Si, respectively. The lattice parameters in the L1{sub 2} phase region increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys, in which Ta substituted for Ni, Si and Ti, respectively. The room-temperature hardness in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. Similarly, the room-temperature 0.2% proof stress as well as the tensile strength in the L1{sub 2} phase region increased linearly with increasing Ta content, and the increment rate increased in the order of the Ta(Ni)>Ta(Si)>Ta(Ti) quaternary alloys. High tensile elongation was observed at room temperature when the microstructures remain in the L1{sub 2} single phase. At high temperatures, a positive temperature dependence of the hardness as well as the flow strength was observed in the quaternary alloys. It was also shown that the wear resistance of the quaternary Ta(Ti) alloys was improved and attributed to plastically induced hardening of the worn surfaces combined with the positive temperature dependence of the flow strength. The strengthening and hardening resulting from Ta addition was suggested to be due to the hardening of the solid solution arising from the misfits in the atomic radius between Ta and the constituent atoms Ni, Ti or Si.

  12. The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2016-05-01

    Full Text Available The effect of substituting Ag for In on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15−xAgx (x = 0.1, 0.2, 0.5, and 1 Heusler alloys was studied. The magnitude of the magnetization change at the martensitic transition temperature (TM decreased with increasing Ag concentration. Smaller magnetic entropy changes (ΔSM were observed for the alloys with larger Ag concentrations and the martensitic transition shifted to higher temperature. A shift of TM by about 25 K to higher temperature was observed for an applied hydrostatic pressure of P = 6.6 kbar with respect to ambient pressure. A large drop in resistivity was observed for large Ag concentration. The magnetoresistance was dramatically suppressed due to an increase in the disorder of the system with increasing Ag concentration. Possible mechanisms responsible for the observed behavior are discussed.

  13. Study of the effect of Ni substitution and external pressure in Li2Pd3B superconductor

    International Nuclear Information System (INIS)

    Mani, Awadhesh; Geetha Kumary, T.; Bharathi, A.; Kalavathi, S.; Sankara Sastry, V.; Hariharan, Y.

    2005-01-01

    Samples belonging to the series Li 2 (Pd 1-x Ni x ) 3 B for x = 0-0.2 have been synthesized. Phase purity of the samples is established using X-ray diffraction. The lattice parameter decreases with increasing Ni substitution. The superconducting transition temperature, T c , exhibits a decrease with increasing Ni concentration. On the application of external pressure up to 3 GPa, the onset T c decreases monotonically at a rate d ln T c /dP of ∼0.064 GPa -1 . The results are seen to be consistent with the behaviour expected of conventional superconductors

  14. Effects of Ni3+ substitution on structural and temperature dependent dielectrical properties of NdFeO3

    International Nuclear Information System (INIS)

    Kaur, Pawanpreet; Pandit, Rabia; Sharma, K. K.; Kumar, Ravi

    2014-01-01

    The polycrystalline samples of NdFe 1−x Ni x O 3 (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ ac ) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni 3+ ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity

  15. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  16. Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples

    Science.gov (United States)

    Assar, S. T.; Abosheiasha, H. F.

    2015-01-01

    Nanoparticles of Ni1-xCaxFe2O4 (x=0.0, 0.02, 0.04, 0.06 and 0.10) were prepared by citrate precursor method. A part of these samples was sintered at 600 °C for 2 h in order to keep the particles within the nano-size while the other part was sintered at 1000 °C to let the particles to grow to the bulk size. The effect of Ca2+ ion substitution in nickel ferrite on some structural, magnetic, electrical and thermal properties was investigated. All samples were characterized by using X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). A two probe method was used to measure the dc electrical conductivity whereas the photoacoustic (PA) technique was used to determine the thermal diffusivity of the samples. To interpret different experimental results for nano and bulk samples some cation distributions were assumed based on the VSM and XRD data. These suggested cation distributions give logical explanations for other experimental results such as the observed values of the absorption bands in FTIR spectra and the dc conductivity results. Finally, in the thermal measurements it was found that increasing the Ca2+ ion content causes a decrease in the thermal diffusivity of both nano and bulk samples. The explanation of this behavior is ascribed to the phonon-phonon scattering.

  17. Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite

    Science.gov (United States)

    Agami, W. R.

    2018-04-01

    Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.

  18. Steam Reforming of CH4 Using Ni- Substituted Pyrochlore Catalysts

    Science.gov (United States)

    Haynes, Daniel J.

    The steam reforming of methane (SMR) continues to remain an important industrial reaction for large-scale production of H2 as well as synthesis gas mixtures which can be used for the production of useful chemicals (e.g. methanol). Although SMR is a rather mature technology, traditional nickel based catalysts used industrially are subjected to severe temperatures and reaction conditions, which lead to irreversible activity loss through sintering, support collapse, and carbon formation. Pyrochlore-based mixed oxide have been identified as refractory materials that can be modified through the substitution of catalytic metals and other promoting species into the structure to mitigate these issues causing deactivation. For this study, a lanthanum zirconate pyrochlore catalyst was substituted with Ni to determine whether the oxide structure could effectively stabilize the activity of the catalytic metal during the SMR. The effect of different variables including calcination temperature, a comparison of a substituted versus supported Ni pyrochlore catalyst, Ni weight loading, and Sr promotion have been evaluated to determine the location of the Ni in the structure, and their effect on catalytic behavior. It was revealed that the effect of calcination temperature on a 6wt% Ni substituted pyrochlore produced by the Pechini method demonstrated very little Ni was soluble in the pyrochlore lattice. It was further revealed that by XRD, TEM, and atom probe tomography that, despite the metal loading, Ni exsolves from the structure upon crystallization of the pyrochlore at 700°C, and forms NiO at the surface and grain boundaries. An additional separate La2ZrNiO6 perovskite phase also began to form at higher temperatures (>800°C). Increasing calcination temperature was found to lead to slight sintering of the NiO at the surface, which made the NiO more reducible. Meanwhile decreasing the Ni weight loading was found to produce a lower reduction temperature due to the presence of

  19. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  20. The effect of substitutional elements (Al, Co) in LaNi4.5M0.5 on the lattice defect formation in the initial hydrogenation and dehydrogenation

    International Nuclear Information System (INIS)

    Sakaki, Kouji; Akiba, Etsuo; Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2009-01-01

    The formation of the vacancy and dislocation by the initial hydrogenation and dehydrogenation in LaNi 4.5 M 0.5 (M = Al, Co, and Ni) was observed by means of the positron lifetime technique. The concentrations of vacancy introduced by these processes were 0.25, 0.13 and 0.01 at.% for LaNi 5 , LaNi 4.5 Co 0.5 and LaNi 4.5 Al 0.5 , respectively. Al substitution into LaNi 5 significantly prevented from vacancy formation, compared with LaNi 5 and LaNi 4.5 Co 0.5 . In LaNi 4.5 Al 0.5 , the increase of the hardness and the enhancement of the pulverization, i.e. enhancement of the formation of micro cracks compared with LaNi 5 were observed while the Co substitution had little effect on pulverization and hardness as well as vacancy formation. These results show that the formation of micro cracks became more active process by Al substitution than the formation of the lattice defects to release the strain energy generated by the hydride formation because of the higher formation energy of the lattice defects in LaNi 4.5 Al 0.5 , although both the formation of micro cracks and lattice defects were still observed in all alloys we studied

  1. Effect of Ga substitution on the crystallization behaviour and glass forming ability of Zr-Al-Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Devinder; Yadav, T.P.; Mandal, R.K.; Tiwari, R.S.; Srivastava, O.N.

    2010-01-01

    The crystallization behaviour of melt spun Zr 69.5 Al 7.5-x Ga x Cu 12 Ni 11 (x = 0-7.5; in at.%) metallic glasses has been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The DSC traces showed changes in crystallization behaviour with substitution of Ga. Formation of single nano-quasicrystalline phase by controlled crystallization of glasses has been found only for 0 ≤ x ≤ 1.5. Further increase of Ga content gives rise to formation of the quasicrystals together with Zr 2 Cu type crystalline phase. In addition to this, the substitution of Ga influences the size and shape of nano-quasicrystals. The glass forming abilities (GFAs) of these metallic glasses were assessed by the recognition of glass forming ability indicators, i.e. reduced glass transition temperature (T rg ) and supercooled liquid region (ΔT x ). The glass transition temperature (T g ) has been observed for all the melt spun ribbons.

  2. Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iqbal, M. Asif [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Nust College of Electrical and Mechanical Engineering, Islamabad (Pakistan); Najam-Ul-Haq, Muhammad [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2014-01-01

    Graphical abstract: - Highlights: • Single phase nanostructured Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} were synthesized by the microemulsion method. • The materials show semiconducting behavior. • The high resistivity makes these materials useful for high frequency applications. • The Curie temperature decreases with the substituents. - Abstract: Single phase nanostructured Eu–Ni substituted Y-type hexaferrites with nominal composition Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} (x = 0.0–1, y = 0.0–0.1) were synthesized by the normal microemulsion method. X-ray diffraction (XRD) technique was employed for phase analysis and indexing of each pattern corroborates that well defined Y-type crystalline phase is formed. It is observed that DC resistivity enhanced which is accredited to room temperature resistivity differences of dopant and host ions. The hopping of electrons and jumping of holes are responsible for conduction below Curie temperature (T{sub C}), whereas above Curie temperature is due to polaron hopping. The decrease in T{sub C} may be due to the fact that Eu–Fe interactions on the B sites are weaker than Fe–Fe interaction. The dispersion in the dielectric constant ε′(f) favor the occurrence of peaks in the tan δ(f). The extraordinary values of resistivity and small dielectric loss make these materials pre-eminent contestant for high frequency applications.

  3. Effect of W substitution for Mo on stress corrosion cracking behavior of 25Cr-7Ni duplex stainless steel

    International Nuclear Information System (INIS)

    Ha, Tae Hong; Kim, Kyoo Young

    1998-01-01

    The effect of W substitution for Mo in duplex stainless steel (DSS) was investigated with respect to microstructure and stress corrosion cracking behavior. Homogenizing treatment was performed at 1100.deg.C for 10 minutes, while aging treatment was performed at 900.deg.C with different holding times. In homogenized condition, regardless of W substitution, all the specimens had the nearly equal volume-ratio of ferrite and austenite, and had no secondary phase precipitation. On aging, the W modification on suppression of secondary phase precipitation was very effective. Total amount of secondary phase precipitates was greatly reduced in the W-modified DSS in the early stage of the ageing treatment comparing to the commercial grade DSS without W modification. However, this effect was reduced rapidly as the aging time increased. Stress corrosion cracking(SCC) was examined in boil-ing 42% MgCl 2 solution by slow strain rate test(SSRT) and constant load test (CLT). Under the homogenized condition, the beneficial effect of W was clearly observed at the low applied stress levels where the electrochemical action plays a dominant role. In the commercial grade DSS without W modification, the crack propagated in a trans-phase mode,whereas in the W-modified DSS, the crack propagated in a mixed mode of trans-phase and inter-phase due to barrier effect of austenite phase against crack growth. Under the aged condition, the signification improvement in SCC resistance of the aged DSS specimens with W modification resulted from increase in toughness due to a relatively small amount of the brittle secondary phase precipitates. However, the cracks propagated in a trans-phase mode in the DSS specimens regardless of W modification

  4. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  5. Minority anion substitution by Ni in ZnO

    CERN Document Server

    Pereira, Lino Miguel da Costa; Correia, João Guilherme; Amorim, Lígia Marina; Silva, Daniel José; David-Bosne, Eric; Decoster, Stefan; da Silva, Manuel Ribeiro; Temst, Kristiaan; Vantomme, André

    2013-01-01

    We report on the lattice location of implanted Ni in ZnO using the $\\beta$− emission channeling technique. In addition to the majority substituting for the cation (Zn), a significant fraction of the Ni atoms occupy anion (O) sites. Since Ni is chemically more similar to Zn than it is to O, the observed O substitution is rather puzzling. We discuss these findings with respect to the general understanding of lattice location of dopants in compound semiconductors. In particular, we discuss potential implications on the magnetic behavior of transition metal doped dilute magnetic semiconductors.

  6. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  7. Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites

    Science.gov (United States)

    Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.

    2018-04-01

    Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.

  8. Effects of Ni{sup 3+} substitution on structural and temperature dependent dielectrical properties of NdFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Pawanpreet, E-mail: merry2286@gmail.com; Pandit, Rabia, E-mail: merry2286@gmail.com; Sharma, K. K., E-mail: merry2286@gmail.com [Department of Physics, National Institute of Technology Hamirpur-177005, Himachal Pradesh (India); Kumar, Ravi [Beant College of Engineering and Technology Gurdaspur-143521, Punjab (India)

    2014-04-24

    The polycrystalline samples of NdFe{sub 1−x}Ni{sub x}O{sub 3} (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ{sub ac}) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni{sup 3+} ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity.

  9. Thermoelectric power of the Ni and Cd substituted YBCO system

    International Nuclear Information System (INIS)

    Mukherjee, C.D.; Ranganathan, R.; Raychaudhuri, A.K.; Chatterjee, N.

    1989-01-01

    The thermoelectric power behaviour in the range between 250 K and the superconducting transition temperature T c of YBa 2 Cu 3-x A x O 7-y (where A = Ni or Cd and x = 0.2 and 0.4) samples has been examined. The normalized resistance and thermopower of substituted samples as functions of temperature are plotted and discussed. It was concluded that nickel has a slight positive role in causing overall thermopower generation in the YBCO system

  10. Zn and Ni substitutional effects on spin fluctuations in YBa sub 2 Cu sub 3 O sub 7 by sup 6 sup 3 sup , sup 6 sup 5 Cu NQR

    CERN Document Server

    Han, K S; Mean, B J; Lee, K H; Seo, S W; Lee, M H; Lee, W C

    2000-01-01

    We have prepared Zn- and Ni-substituted YBa sub 2 Cu sub 3 O sub 7 (YBa sub 2 Cu sub 3 sub - sub x M sub x O sub 7 , M=Zn or Ni, x=0.00 approx 0.09) and performed sup 6 sup 3 sup , sup 6 sup 5 Cu nuclear quadrupole resonance (NQR) measurements for the plane site at 300 and 100 K. Substitutional effects on the relaxation rates are markedly different. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn-doped YBCO. However, those increase for Ni-doped YBCO. This contrast in local electronic dynamics provides clear microscopic evidence that Zn forms no local moment while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping. This is also confirmed by the ratio of the sup 6 sup 3 sup , sup 6 sup 5 Cu spin-lattice relaxation rates for the plane coppers.

  11. Rate of hydrogen motion in Ni-substituted LaNi5Hx from NMR

    International Nuclear Information System (INIS)

    Mendenhall, Michael P.; Bowman, Robert C.; Ivancic, Timothy M.; Conradi, Mark S.

    2007-01-01

    Partial substitution of Sn, Ge, or Si for Ni in LaNi 5 H x greatly enhances the stability under repeated hydrogen-cycling. Proton NMR relaxation measurements are reported here to determine the rates of H hopping in the substituted metals LaNi 4.6 M 0.4 H x with M = Sn, Ge, and Si, for comparison to bare LaNi 5 H x . The relaxation times T 2 * (FID), T 2 (Hahn echo), T 2 -CPMG, T 1 , and T 1ρ were determined from 130 to 375 K. The three substituents result in only small increases in the average rate of motion at a given temperature but with a broader distribution of rates over the many inequivalent H sites and hopping paths. Evidently, the average energy barriers along the paths for H motion are only little affected by these substituents. Changes of H content x produce only minor changes in the relaxation times

  12. Atomic substitution effects on the structural and vibrational properties of Ni{sub x}Pb{sub 1-x}TiO{sub 3}: X-ray diffraction and Raman scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Costa, R. C. da [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Universidade Federal de Campina Grande, Pombal-PB, 58840-000 (Brazil); Toledo, T. A. de; Pizani, P. S., E-mail: pizani@df.ufscar.br [Universidade Federal de São Carlos, Departamento de Física, São Carlos-SP, 13565-905 (Brazil); Espinosa, J. W. M. [Universidade Federal de Goiás, Engenharia de Produção, Catalão-GO, 75704-020 (Brazil)

    2015-07-15

    The effects of the atomic substitution of Pb by Ni in the PbTiO{sub 3} ferroelectric perovskite on the vibrational and structural properties was studied using x-ray diffraction and Raman scattering. It was observed that for Ni concentrations between 0.0 and 0.4, there is the formation of a solid solution with reduction of the Raman wavenumber of the E(TO1) soft mode and the tetragonallity factor, which influence directly the temperature of the tetragonal ferroelectric to cubic paraelectric phase transition, the Curie temperature. For concentrations greater than 0.4, it is observed the formation of a PbTiO{sub 3} and NiTiO{sub 3} composite, denounced by the recovering of the both, tetragonallity factor and the E(TO1) soft mode wavenumber. The values of the Curie temperatures were estimated by the Raman scattering measurements for temperatures ranging from 300 to 950 K.

  13. Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-x Mg x Fe2O4 nanoparticle ferrites

    Science.gov (United States)

    R, M. Rosnan; Z, Othaman; R, Hussin; Ali, A. Ati; Alireza, Samavati; Shadab, Dabagh; Samad, Zare

    2016-04-01

    In this study, nanocrystalline Co-Ni-Mg ferrite powders with composition Co0.5Ni0.5-x Mg x Fe2O4 are successfully synthesized by the co-precipitation method. A systematic investigation on the structural, morphological and magnetic properties of un-doped and Mg-doped Co-Ni ferrite nanoparticles is carried out. The prepared samples are characterized using x-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and vibrating sample magnetometry (VSM). The XRD analyses of the synthesized samples confirm the formation of single-phase cubic spinel structures with crystallite sizes in a range of ˜ 32 nm to ˜ 36 nm. The lattice constant increases with increasing Mg content. FESEM images show that the synthesized samples are homogeneous with a uniformly distributed grain. The results of IR spectroscopy analysis indicate the formation of functional groups of spinel ferrite in the co-precipitation process. By increasing Mg2+ substitution, room temperature magnetic measurement shows that maximum magnetization and coercivity increase from ˜ 57.35 emu/g to ˜ 61.49 emu/g and ˜ 603.26 Oe to ˜ 684.11 Oe (1 Oe = 79.5775 A·m-1), respectively. The higher values of magnetization M s and M r suggest that the optimum composition is Co0.5Ni0.4Mg0.1Fe2O4 that can be applied to high-density recording media and microwave devices. Project supported by the Ibnu Sina Institute for Scientific and Industrial Research, Physics Department of Universiti Teknologi Malaysia and the Ministry of Education Malaysia (Grant Nos. Q.J130000.2526.04H65).

  14. Strength and ductility of Ni3Al alloyed with boron and substitutional elements

    International Nuclear Information System (INIS)

    Ishikawa, K.; Aoki, K.; Masumoto, T.

    1995-01-01

    The effect of simultaneous alloying of boron (B) and the substitutional elements M on mechanical properties of Ni 3 Al was investigated by the tensile test at room temperature. The yield strength of Ni 3 Al+B increases by alloying with M except for Fe and Ga. In particular, it increases by alloying with Hf, Nb, W, Ta, Pd and Si. The fracture strength of Ni 3 Al+B increases by alloying with Pd, Ga, Si and Hf, but decreases with the other elements. Elongation of Ni 3 Al+B increases by alloying with Ga, Fe and Pd, but decreases with other elements. Hf and Pd is the effective element for the increase of the yield strength and the fracture strength of Ni 3 Al+B, respectively. Alloying with Hf leads to the increases of the yield strength and the fracture strength of Ni 3 Al+B, but to the lowering of elongation. On the other hand, alloying with Pd improves all mechanical properties, i.e. the yield strength, the fracture strength and elongation. On the contrary, alloying with Ti, V and Co leads to the lowering of mechanical properties of Ni 3 Al+B. The reason why ductility of Ni 3 Al+B is reduced by alloying with some elements M is discussed

  15. Enhancement of plasticity of Fe-based bulk metallic glass by Ni substitution for Fe

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.F. [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Li, N.; Zhang, C. [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Liu, L., E-mail: sfguo2005@163.co [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)

    2010-08-15

    Bulk metallic glasses (BMGs) (Fe{sub 1-x}Ni{sub x}){sub 71}Mo{sub 5}P{sub 12}C{sub 10}B{sub 2} (x = 0, 0.1 and 0.2) with a diameter of 3 mm were synthesized by copper mold casting. The effect of Ni substitution for Fe on the structure, thermal and mechanical properties has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and compressive testing. It was found that the substitution of Ni for Fe enhances the glass forming ability, and improves the plasticity of Fe{sub 71}Mo{sub 5}P{sub 12}C{sub 10}B{sub 2} BMG as indicated by the increase in the plastic strain from 3.1% (x = 0) to 5.2% (x = 0.2). The improvement of the plasticity is discussed in term of the reduction of glass transition temperature and the supercooled liquid region due to the substitution of Ni for Fe.

  16. Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Zhong, Xiao-Xi; Wang, Rui; Tu, Xiao-Qiang; Peng, Long

    2017-07-01

    Highlights: • There are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. • The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. • The anisotropy constant increases with the increase of Co substitution. • The calculated and observed values of magneton number are in close agreement with each other. - Abstract: Co-substituted NiCu ferrite nanopowders with the chemical formula Ni{sub 0.5−x}Cu{sub 0.5−x}Co{sub 2x}Fe{sub 2}O{sub 4} (0 ≤ x ≤ 0.50) were synthesized by sol-gel auto-combustion method. The effects of Co substitution on the cation distribution, structural and magnetic properties of the NiCu ferrite nanopowders have been investigated. Differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the chemical, structural and magnetic properties of the ferrite nanopowders, respectively. The DTA-TG results indicate that there are three steps of the combustion process. XRD results indicate that there are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. Furthermore, the lattice parameter increases, and the X-ray density and the average crystallite size decrease with increasing Co substitution. And the obtained particle size from TEM image is in very good agreement with the average crystallite size estimated by XRD measurements. The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. The increase of the saturation magnetization is due to the substitution of Ni{sup 2+} and Cu{sup 2+} ions with lower magnetic moment by Co{sup 2+} ions with higher magnetic moment on the octahedral sites. And the increase of the coercivity is mainly due to the increase of magnetocrystalline anisotropy energy.

  17. Effect of Sr substituted La 2−x Sr x NiO 4+δ (x = 0, 0.2, 0.4, 0.6, and 0.8) on oxygen stoichiometry and oxygen transport properties

    KAUST Repository

    Inprasit, T.; Wongkasemjit, S.; Skinner, S. J.; Burriel, M.; Limthongkul, P.

    2015-01-01

    © The Royal Society of Chemistry 2015. Stoichiometry and oxygen diffusion properties of La2-xSrxNiO4±δ with x = 0.2, 0.4, 0.6, and 0.8 prepared via a sol-gel method were investigated in this study. Iodometric titration and thermogravimetric analysis were used to determine the oxygen non-stoichiometry. Over the entire compositional range, the samples exhibit oxygen hyperstoichiometry with the minimum value δ = 0.14 at x = 0.4. Mixed effects of reduction of oxygen excess and increasing valence of Ni were found to serve as charge compensation mechanisms; the former dominated at a low level of substitution, x < 0.4, while the latter dominated at higher levels of Sr (0.4 < x < 0.8). The highest oxygen diffusion coefficient was found for the minimum amount of Sr substitution, x = 0.2, continuously decreasing with x until x = 0.6. An unusual increase in D∗ was observed when the Sr content increased up to x = 0.8.

  18. Tuning of superconductivity by Ni substitution into noncentrosymmetric ThC o1 -xN ixC2

    Science.gov (United States)

    Grant, T. W.; Cigarroa, O. V.; Rosa, P. F. S.; Machado, A. J. S.; Fisk, Z.

    2017-07-01

    The recently discovered noncentrosymmetric superconductor ThCoC2 was observed to show unusual superconducting behavior with a critical temperature of Tc=2.65 K . Here we investigate the effect of nickel substitution on the superconducting state in ThC o1 -xN ixC2 . Magnetization, resistivity, and heat capacity measurements demonstrate Ni substitution has a dramatic effect with critical temperature increased up to Tc=12.1 K for x =0.4 Ni concentration, which is a rather high transition temperature for a noncentrosymmetric superconductor. In addition, the unusual superconducting characteristics observed in pure ThCoC2 appear to be suppressed or tuned with Ni substitution towards a more conventional fully gapped superconductor.

  19. Effect of partial substitution of Fe by Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on its microstructure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Babu, P.D.; Kaushik, S.D. [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Srivastava, Amita [Seismology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Siruguri, Vasudeva [UGC–DAE Consortium for Scientific Research, Mumbai Centre, Mumbai 400 085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-02-15

    Highlights: • Effect of Mn in Ni{sub 55}Fe{sub 19}Ga{sub 26} on microstructure and MCE is presented. • Mn stabilizes 14M martensite in place of NM martensite. • Increasing Mn also leads to a drastic reduction in γ-phase content. • MCE shows significant improvement with increasing Mn. • A maximum value of ΔS{sub M}= −19.8 J/kg K has been observed at 9 T for the Mn-10 alloy. -- Abstract: Ni–Fe–Ga-based Ferromagnetic Shape Memory Alloys (FSMAs) show considerable formability because of the presence of a disordered FCC γ-phase, but they lack in magnetocaloric property. Addition of Mn has been explored as a way to improve their magnetocaloric property. The current study presents a detailed structural and magnetization analyses of a two-phase ternary Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy and its quaternary counterparts obtained by partial replacement of Fe by Mn, Ni{sub 55}Fe{sub 19−x}Mn{sub x}Ga{sub 26} (x = 2.5, 2.75, 3, 5, 10). Characterization of these alloys has been carried out using Optical and Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray (XRD) and Neutron Diffraction (ND), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC) and DC magnetization measurement. Ni{sub 55}Fe{sub 19}Ga{sub 26} alloy shows predominantly non-modulated (NM) internally-twinned martensite, with traces of a modulated 14M martensite and the parent L2{sub 1} phase along with the FCC γ-phase. Quaternary addition of Mn in partial replacement of Fe stabilizes 14M martensite, drastically reduces the amount of γ-phase, keeps the martensitic transition temperatures unchanged, but raises T{sub C} considerably. Magnetocaloric effect improves significantly with increasing Mn-content and a maximum value of −19.8 J/kg K for ΔS{sub M} has been observed at 9 T for the alloy containing 10 at.% Mn.

  20. Improvement in low-temperature and instantaneous high-rate output performance of Al-free AB5-type hydrogen storage alloy for negative electrode in Ni/MH battery: Effect of thermodynamic and kinetic regulation via partial Mn substituting

    Science.gov (United States)

    Zhou, Wanhai; Zhu, Ding; Tang, Zhengyao; Wu, Chaoling; Huang, Liwu; Ma, Zhewen; Chen, Yungui

    2017-03-01

    A series of Al-free Mn-modified AB5-type hydrogen storage alloys have been designed and the effects of thermodynamic stability and electrochemical kinetics on electrochemical performance via Mn substituting have been investigated. Compared with high-Al alloys, the Al-free alloys in this study have better low-temperature performance and instantaneous high-rate output because of the higher surface catalytic ability. After partial substitution of Ni by Mn, both the hydrogen desorption capacity and plateau pressure decrease, and correspondingly results in an improved thermodynamic stability which is adverse to low-temperature delivery. Additionally, with the improvement of charge acceptance ability and anti-corrosion property via Mn substitution, the room-temperature discharge capacity and cycling stability increase slightly. However, Mn adversely affects the electrochemical kinetics and deteriorates both the surface catalytic ability and the bulk hydrogen diffusion ability, leading to the drop of low-temperature dischargeability, high-rate dischargeability and peak power (Ppeak). Based on the thermodynamic and kinetic regulation and overall electrochemical properties, the optimal composition is obtained when x = 0.2, the discharge capacity is 243.6 mAh g-1 at -40 °C with 60 mA g-1, and the Ppeak attains to 969.6 W kg-1 at -40 °C.

  1. Effect of Si substitution on structural, electronic and optical properties of YNi{sub 4}Si-type DyNi{sub 5−x}Si{sub x} (x=0, 1, 2) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Dinesh Kumar; Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in

    2016-10-15

    We employed first principle calculations for investigation of structural, electronic and optical properties of YNi{sub 4}Si-type DyNi{sub 5−x}Si{sub x} (x=0, 1, 2) compounds. These properties are studied first time on YNi{sub 4}Si-type DyNi{sub 5−x}Si{sub x} compounds. The exchange and correlation potential is treated by the Coulomb corrected local spin density approximation (LSDA+U) method for better accounting of the correlation between the 4f electrons. The optimized lattice constants and internal cell parameters are in agreement with the available data. Self consistence band structure calculations show that Ni-3d states remains in valance band and dominant below the E{sub F}, while Dy-5d and 4f states mainly contributes above Fermi Energy (E{sub F}) in DyNi{sub 5−x}Si{sub x} (x=0, 1, 2) compounds. We also find that when silicon for nickel substitution takes place (DyNi{sub 4}Si), there is a gradual hybridization of Ni-3d and Si-3p states results, nickel moments decrease rapidly in agreement with the experiment. Optical spectra shows the main absorption peak around 4 eV depends on the substituent concentration and could be due to transition from hybridized band (Ni-3d and Si-3p), below E{sub F} to free Dy-4d states. Frequency-dependent refractive index, n(ω), and the extinction coefficient, k(ω), of DyNi{sub 5−x}Si{sub x} (x=0, 1, 2) are also calculated for the radiation up to 14 eV. - Highlights: • Calculated DOS revels that Ni-3d states are dominated below Fermi level (E{sub F}). • Spin down Dy-4f states show significant contribution to DOS above E{sub F.} • Nickel moments decrease rapidly with substitution of silicon for nickel (DyNi{sub 4}Si). • Most significant peak is found around 7eV in optical conductivity. • Nickel moments decrease rapidly with substitution of silicon for nickel (DyNi{sub 4}Si). • Peak indicates the possibility of transitions from Ni-3d states to empty spin down Dy-4f states.

  2. Role of grain boundaries in the conduction of Eu–Ni substituted Y-type hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Naeem Ashiq, Muhammad, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [National University of Sciences and Technology, EME College, Islamabad (Pakistan); Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan)

    2014-08-01

    Single phase nanostructured (Eu–Ni) substituted Y-type hexaferrites with nominal composition of Sr{sub 2}Co{sub 2−x}Ni{sub x}Eu{sub y}Fe{sub 12−y}O{sub 22} (x=0.0–1, y=0.0–0.1) were synthesized by the microemulsion method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The presence of Debye peaks in imaginary electric modulus curves confirmed the existence of relaxation phenomena in given frequency range. The AC conductivity follows power law, with exponent (n) value, ranges from 0.81–0.97, indicating that the mechanism is due to polaron hopping. In the present ferrite system, Cole–Cole plots were used to separate the grain and grain boundary effects. Eu–Ni substitution leads to a remarkable rise of grain boundary resistance as compared to the grain resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. It was also observed that the AC activation energy is lower than the DC activation energy. Appreciable improved values of quality factor suggested the possible use of these synthesized materials for power applications and high frequency multilayer chip inductors. - Highlights: • Single phase nanostructures were synthesized by the micro-emulsion method. • Substitution leads to a remarkable rise of grain boundary resistance. • The AC activation energy is lower than the DC activation energy. • Improved values of quality factor make these materials useful for high frequency multilayer chip inductors.

  3. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, Zahoor [Surface and Solid State Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Meydan, Turgut [Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA (United Kingdom); Nlebedim, Ikenna Cajetan [Ames Laboratory of US Department of Energy, Ames, IA 50011 (United States)

    2012-02-15

    Graphical abstract: Variation of saturation magnetization (M{sub S}) and magnetocrystalline anisotropy coefficient (K{sub 1}) with Ni-Cr content for Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5). Highlights: Black-Right-Pointing-Pointer Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} are synthesized by novel PEG assisted microemulsion method. Black-Right-Pointing-Pointer High field regime of M-H loops are modeled using Law of Approach to saturation. Black-Right-Pointing-Pointer A considerable increase in the value of M{sub S} from 148 kA/m to 206 kA/m is achieved Black-Right-Pointing-Pointer {rho}{sup RT} enhanced to the order of 10{sup 9} {Omega}cm at potential operational range around 300 K. -- Abstract: The effect of variation of composition on the structural, morphological, magnetic and electric properties of Mg{sub 1-x}Ni{sub x}Cr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0-0.5) nanocrystallites is presented. The samples were prepared by novel polyethylene glycol (PEG) assisted microemulsion method with average crystallite size of 15-47 nm. The microstructure, chemical, and phase analyses of the samples were studied by the scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray fluorescence (ED-XRF), and X-ray diffraction (XRD). Compositional variation greatly affected the magnetic and structural properties. The high-field regimes of the magnetic loops are modelled using the Law of Approach (LOA) to saturation in order to extract information about their anisotropy and the saturation magnetization. Thermal demagnetization measurements are carried out using VSM and significant enhancement of the Curie temperature from 681 K to 832 K has been achieved by substitution of different contents of Ni-Cr. The dc-electrical resistivity ({rho}{sup RT}) at potential operational range around 300 K is increased from 7.5 Multiplication-Sign 10{sup 8} to 4.85 Multiplication-Sign 10{sup 9} {Omega}cm with the increase in Ni-Cr contents

  4. Nanostructure and magnetic properties of Ni-substituted finemet ribbons

    International Nuclear Information System (INIS)

    Iturriza, N.; Fernandez, L.; Ipatov, M.; Vara, G.; Pierna, A.R.; Val, J.J. del; Chizhik, A.; Gonzalez, J.

    2007-01-01

    Magnetic anisotropy has been induced during the nanocrystallization process of Ni-rich amorphous ferromagnetic (Finemet) ribbons by means of the application of a constant stress during the annealing process. Magnetization measurements have evidenced the anisotropy of the treated samples. The main goal of this work was the analysis of the treated ribbons using X-ray Diffraction (XRD), Transmission Electronic Microscopy (TEM) and Atomic Force Microscopy (AFM). AFM measurements revealed in all the cases a strong nanocrystallisation of the surface without evidences of amorphous matrix, which contrast with XRD and TEM measurements that have shown a high content of amorphous phase in the bulk of the ribbons. Magneto-optical Kerr effect measurements show much higher coercive field values than in the bulk, indicating a complex magnetic behavior for the surface of the ribbons

  5. Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique

    International Nuclear Information System (INIS)

    Ashtar, M.; Munir, A.; Anis-ur-Rehman, M.; Maqsood, A.

    2016-01-01

    Graphical abstract: Variation of AC conductivity (σ AC ) as a function of natural log of angular frequency (lnω) for Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 nanoferrites at room temperature. - Highlights: • Cr doped mixed Ni-Zn ferrites were successfully synthesized by a newly developed WOWS sol gel technique. • The specific surface area and specific surface area to volume ratio increased with decrease in particle size. • The resonance peaks appeared in dielectric loss graphs, shifting towards low frequency with the increase in Cr concentration. • The prepared samples have the lowest values of the dielectric constant. • The dielectric constant were observed to be inversely proportional to square root of the AC resistivity. - Abstract: Cr +3 doped Ni-Zn nanoferrite samples with composition Ni 0.5 Zn 0.5 Fe 2-x Cr x O 4 (x = 0.1, 0.2, 0.3, 0.4) were synthesized With Out Water and Surfactant (WOWS) sol-gel technique. The structural, morphological and dielectric properties of the samples were investigated. The lattice constant, crystallite size, theoretical density and porosity of each sample were obtained from X-ray diffraction (XRD) data. The specific surface area and specific surface area to volume ratio increased with the decrease in the size of Cr +3 doped Ni-Zn ferrite nanoparticles, as the concentration of Cr +3 increased. The SEM analysis revealed that the particles were of nano size and of spherical shape. The dielectric parameters such as dielectric constant (ε′) and dielectric loss (tanδ) of all the samples as a function of frequency at room temperature were measured. The AC conductivity (σ AC ) was determined from the dielectric parameters, which showed increasing trend with the rise in frequency.

  6. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe{sub 2}O{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Kalpana [Department of Physics, Govt. Women Engineering College, Ajmer, 305002 India (India); Department of Pure and Applied Physics, University of Kota, Kota, 324010 India (India); Tiwari, Shailja, E-mail: tiwari_shailja@rediffmail.com [Department of Physics, Govt. Women Engineering College, Ajmer, 305002 India (India); Bapna, Komal [Department of Physics, M. L. Sukhadia University, Udaipur, 313001 India (India); Heda, N.L. [Department of Pure and Applied Physics, University of Kota, Kota, 324010 India (India); Choudhary, R.J.; Phase, D.M. [UGC-DAE Consortium for Scientific Research, University Campus, Indore, 452001 India (India); Ahuja, B.L. [Department of Physics, M. L. Sukhadia University, Udaipur, 313001 India (India)

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni{sub 1−x}Cr{sub x}Fe{sub 2}O{sub 4} (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties. - Highlights: • Thin films of Ni{sub 1−x}Cr{sub x}Fe{sub 2}O{sub 4} are grown on Si(111) and Si(100) substrates. • Films on Si(111) substrate are better crystalline than those on Si(100). • XRD and FTIR results confirm the single phase growth of the films. • Cationic distribution deviates from inverse spinel structure, as revealed by XPS. • Saturation magnetization is larger on Si(100) but lower than the bulk value.

  7. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe_2O_4 thin films

    International Nuclear Information System (INIS)

    Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N.L.; Choudhary, R.J.; Phase, D.M.; Ahuja, B.L.

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni_1_−_xCr_xFe_2O_4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties. - Highlights: • Thin films of Ni_1_−_xCr_xFe_2O_4 are grown on Si(111) and Si(100) substrates. • Films on Si(111) substrate are better crystalline than those on Si(100). • XRD and FTIR results confirm the single phase growth of the films. • Cationic distribution deviates from inverse spinel structure, as revealed by XPS. • Saturation magnetization is larger on Si(100) but lower than the bulk value.

  8. Effect of Ni substitution on the structural and transport properties of Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0 {<=} x {<=} 0.40 ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala1947@yahoo.com [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt); Bishay, Samiha T. [Phys. Dept., Faculty of Girls for Art, Science and Education, Ain Shams Univ., Cairo (Egypt); El-dek, S.I.; Omar, G. [Materials Science Lab (1), Physics Dept., Faculty of Science, Cairo Univ., Giza (Egypt)

    2011-01-21

    Research highlights: We aimed to merge the advantages of both Ni and Mn ferrites and to profit from the existence of Mg in small constant ratio to assure the large magnetization of the ferrite under investigation. To achieve such goals one have to investigate the effect of Ni substitution on the structural and electrical properties of Mn-Mg ferrite of the chemical formula Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0 {<=} x {<=} 0.40 prepared by conventional ceramic technique. - Abstract: Ni{sub x}Mn{sub 0.8-x}Mg{sub 0.2}Fe{sub 2}O{sub 4}; 0.0{<=} x {<=}0.40 was prepared by standard ceramic technique, presintering was carried out at 900 deg. C and final sintering at 1200 deg. C with heating/cooling rate 4 deg. C/min. X-ray diffraction analyses assured the formation of the samples in a single phase spinel cubic structure. The calculated crystal size was obtained in the range of 75-130 nm. A slight increase in the theoretical density and decrease in the porosity was obtained with increasing the nickel content. This result was discussed based on the difference in the atomic masses between Ni (58.71) and Mn (54.938). IR spectral analyses show four bands of the spinel ferrite for all the samples. The conductivity and dielectric loss factor give nearly continuous decrease with increasing Ni-content. This was discussed as the result of the significant role of the multivalent cations, such as iron, nickel, manganese, in the conduction mechanism. Anomalous behavior was obtained for the sample with x = 0.20 as highest dielectric constant, highest dielectric loss and highest conductivity. This anomalous behavior was explained due to the existence of two divalent cations on B-sites with the same ratio, namely, Mg{sup 2+} and Ni{sup 2+}.

  9. Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ferrites

    Science.gov (United States)

    Babu, K. Vijaya; Sailaja, B.; Jalaiah, K.; Shibeshi, Paulos Taddesse; Ravi, M.

    2018-04-01

    A series of Ni0.5Co0.5-xZnxFe2O4 (x = 0, 0.02, 0.04 and 0.06) nanoferrites were synthesized by sol-gel method using citric acid as chelating reagent. The synthesized ferrite systems are characterized by XRD, SEM, FTIR, ESR and dielectric techniques. The formation of cubic spinel phase belonging to space group Fd3m is identified from the X-ray diffraction patterns. SEM showed the particles are in spherical shape with an average grain size 5-10 nm. FTIR spectra portrait the fundamental absorption bands in the range 400-600 cm-1 relating to octahedral and tetrahedral sites. Dielectric properties are investigated over the frequency range of 20 Hz to 1 MHz at room temperature. A difference in dielectric constant (εr) and dissipation factor (tanδ) of the ferrites has been observed. The dielectric constant and dielectric loss tangent decreases exponentially with increase in frequency. The obtained results are good agreeing with the reported values.

  10. Effect of Bi substitution on the magnetic and magnetocaloric properties of Ni50Mn35In15-xBix Heusler alloys

    Science.gov (United States)

    Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The structural, magnetic, magnetocaloric, and transport properties of Ni50Mn35In15-xBix (x = 0, 0.25, 0.5, 1, 1.5) compounds has been studied through X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. A mixture of high temperature austenite phase (AP) and low temperature martensitic phase (MP) was observed from the XRD at room temperature. The saturation magnetization MS at 10 K was found to decrease with increasing Bi content. A shift in the martensitic transition temperature (TM) relative to the parent compound was observed with a maximum shift of ˜ 36 K for x = 1.5. Abnormal shifts in TC and TM to higher temperatures were observed at high field for x ≥ 0.5. Large magnetic entropy changes (ΔSM) of about 40 J/kg K (x = 0) and 34 J/kg K (x = 0.25) were observed at TM with H = 5 T, which reduced significantly for higher Bi concentrations. The doping of small amounts of Bi in the In sites increased the peak width of the ΔSM curves at the second order transition, leading to larger values of relative cooling power. A significant magnetoresistance (-30%) was observed near TM with ΔH = 5T for x = 0.5.

  11. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    Science.gov (United States)

    Banerjee, A.; Chaudhari, S. M.; Phase, D. M.; Dasannacharya, B. A.

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li xNi 1- xO with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li xNi 1- xO samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated in terms of earlier findings in pure and low Li doped NiO.

  12. Effect of Cu{sup 2+} and Ni{sup 2+} substitution at the Mn site in (La{sub 0.63}Ca{sub 0.37})MnO{sub 3}: A neutron powder diffraction investigation

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, A., E-mail: alberto.martinelli@spin.cnr.it [CNR-SPIN, C.so Perrone 24, 16152 Genova (Italy); Ferretti, M. [CNR-SPIN, C.so Perrone 24, 16152 Genova (Italy); Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Castellano, C. [Università degli Studi di Milano, Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Via G. Venezian 21, 20133 Milano (Italy); Cimberle, M.R. [IMEM-CNR, Via Dodecaneso 33, 16146 Genova (Italy); Ritter, C. [Institute Laue—Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2013-04-15

    The crystal and magnetic structures of the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}TM{sub x})O{sub 3} compounds (x=0.00, 0.03, 0.08; TM=Cu{sup 2+}, Ni{sup 2+}) were investigated between 5 K and 300 K by means of dc magnetic measurements and neutron powder diffraction analysis followed by Rietveld refinement. Both substituting cations lead to a reduction of the long range ferromagnetic ordering temperature; ferromagnetism is strongly suppressed in the 8% Cu-substituted sample, where long- and short-range FM magnetic orders coexist together with short-range A-type AFM order. This particular feature can be related to the Jahn–Teller character of Cu{sup 2+}, absent in Ni{sup 2+}, and suggests the occurrence of a quantum critical point in the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}Cu{sub x})O{sub 3} system. - Graphical abstract: Rietveld refinement plot of (La{sub 0.63}Ca{sub 0.37})(Mn{sub 0.92}Cu{sub 0.08})O{sub 3} showing in the inset the coexistence of broad A-type AFM peaks with FM ones. Highlights: ► (La{sub 0.63}Ca{sub 0.37})MnO{sub 3} was substituted with Ni and Cu. ► Neutron powder diffraction and Rietveld refinement were carried out. ► A quantum critical point possibly occurs in the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}Cu{sub x})O{sub 3} system.

  13. Rate of hydrogen motion in Ni-substituted LaNi{sub 5}H{sub x} from NMR

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, Michael P. [Washington University, Department of Physics, Saint Louis, MO 63130 (United States); Bowman, Robert C. [Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 79-24, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Ivancic, Timothy M. [Washington University, Department of Physics, Saint Louis, MO 63130 (United States); Conradi, Mark S. [Washington University, Department of Physics, Saint Louis, MO 63130 (United States)], E-mail: msc@wuphys.wustl.edu

    2007-10-31

    Partial substitution of Sn, Ge, or Si for Ni in LaNi{sub 5}H{sub x} greatly enhances the stability under repeated hydrogen-cycling. Proton NMR relaxation measurements are reported here to determine the rates of H hopping in the substituted metals LaNi{sub 4.6}M{sub 0.4}H{sub x} with M = Sn, Ge, and Si, for comparison to bare LaNi{sub 5}H{sub x}. The relaxation times T{sub 2}{sup *} (FID), T{sub 2} (Hahn echo), T{sub 2}-CPMG, T{sub 1}, and T{sub 1{rho}} were determined from 130 to 375 K. The three substituents result in only small increases in the average rate of motion at a given temperature but with a broader distribution of rates over the many inequivalent H sites and hopping paths. Evidently, the average energy barriers along the paths for H motion are only little affected by these substituents. Changes of H content x produce only minor changes in the relaxation times.

  14. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    CERN Document Server

    Banerjee, A; Phase, D M; Dasannacharya, B A

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li sub x Ni sub 1 sub - sub x O with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li sub x Ni sub 1 sub - sub x O samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated...

  15. Influence of Ni substitution at B-site for Fe{sup 3+} ions on morphological, optical, and magnetic properties of HoFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Zubida; Majid, Kowsar [National Institute of Technology, Department of Chemistry, Srinagar (India); Ikram, Mohd; Sultan, Khalid; Mir, Sajad Ahmad [National Institute of Technology, Department of Physics, Srinagar (India); Asokan, K. [Inter University Accelerator Centre, New Delhi (India)

    2016-05-15

    Present study reports the effect of Ni substitution at B-site in HoFeO{sub 3} on the morphological, optical and magnetic properties. These compounds were prepared by solid-state reaction method. Scanning electron microscope reveals an increase in average grain sizes with Ni concentration. Absorption and emission spectra show redshift in band gap with increase in Ni ion concentrations. The Tauc plots show direct allowed transitions. Temperature-dependent magnetization studies on these compounds revealed the transition from ferromagnetism to paramagnetism. There is separation between temperature at which zero-field-cooled and field-cooled occurs at varied temperature with Ni substitution. The separation effect is related to the impact of the paramagnetic Ho{sup 3+} ions, whose magnitude becomes more prominent at higher temperature. The value of squareness ratio in these materials is below 0.5 indicating presence of multidomain structures. (orig.)

  16. Magnetic and electrical properties of Cr substituted Ni nano ferrites

    Directory of Open Access Journals (Sweden)

    Katrapally Vijaya Kumar

    2018-03-01

    Full Text Available Nano-ferrites with composition NiCrxFe2-xO4 (where x = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0 were synthesized through citrate-gel auto combustion technique at moderately low temperature. X-ray analysis shows cubic spinel structure single phase without any impurity peak and average crystallite size in the range 8.5–10.5 nm. Magnetic properties were measured using a vibrating sample magnetometer at room temperature in the applied field of ±6 KOe. The obtained M-H loop area is very narrow, hence the synthesized nano ferrites are soft magnetic materials with small coercivity. Magnetic parameters such as saturation magnetization (Ms, coercivity (Hc, remanent magnetization (Mr and residual magnetization were measured and discussed with regard to Cr3+ ion concentration. Electrical properties were measured using two probe method from room temperature to well beyond transition temperature. The DC resistivity variation with temperature shows the semiconductor nature. Resistivity, drift mobility and activation energy values are measured and discussed with regard to composition. The Curie temperature was determined using DC resistivity data and Loria-Sinha method. The observed results can be explained in detail on the basis of composition.

  17. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  18. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    Science.gov (United States)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  19. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution.

    Science.gov (United States)

    Onozuka, Tomoya; Chikamatsu, Akira; Katayama, Tsukasa; Hirose, Yasushi; Harayama, Isao; Sekiba, Daiichiro; Ikenaga, Eiji; Minohara, Makoto; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2017-03-29

    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in perovskite nickelate NdNiO 3 epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO 3-x F x films is controlled with precision by varying the reaction time. The fully fluorinated film (x ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO 3 , which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from +3 to +2) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO 3 after annealing in an oxygen atmosphere. By application of the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated.

  20. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huan, E-mail: liuhuanseu@hotmail.com [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Xue, Feng, E-mail: xuefeng@seu.edu.cn [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Bai, Jing; Zhou, Jian [Jiangsu Key Lab of Advanced Metallic Materials, School of Material Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, Xiaodao [Nanjing Yunhai Special Metals Co., Ltd., Nanjing 211200 (China)

    2013-11-15

    The microstructure and mechanical properties of Mg{sub 94}Y{sub 4}Zn{sub 2} and Mg{sub 94}Y{sub 4}Zn{sub 1}Ni{sub 1} alloys have been systematically investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and an electronic universal testing machine. The as-cast WZ42 alloy is composed of α-Mg matrix, 18R LPSO (long period stacking ordered) phase and a small fraction of Mg{sub 24}(Y,Zn){sub 5} phases. With the replacement of 1 at% Ni atoms, the phase structures in WZN411 alloy remain unchanged, but their chemical compositions vary obviously. A great number of stacking faults exist in α-Mg grains of WZ42 alloy, while they are barely observed in WZN411 alloy. After annealing at 500 °C for 12 h, there are plenty of 14H LPSO lamellas formed in WZ42 alloy and many nano-scale α-Mg slices generated between 18R phases. In contrast, the 18R in WZN411 alloy is thermally stable, and both the formation of α-Mg slices and 14H lamellas are restricted for annealed WZN411 alloy. Tensile tests indicate that the as-extruded WZ42 alloy exhibits ultimate tensile strength of 390 MPa, tensile yield strength of 246 MPa and elongation of 2.8% at room temperature. With the replacement of 1 at% Ni, the UTS and TYS of WZN411 alloy increase by 20 MPa and the ductility improves as well. The improvement of comprehensive mechanical properties could be ascribed to the substitution of 1 at% Ni element, which could enhance the degree of solid-solution strengthening and stimulate the thermal stability of 18R phase during annealing and extrusion processes.

  1. Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-SubstitutedNi0.5Zn0.5Fe2O4using sol-gel auto-combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Chandra mouli, K.; Subba Rao, P. S. V.

    2018-04-01

    The Zr and Cu co-substituted Ni0.5Zn0.5Fe2O4 ferrite nanoparticles have been synthesized by the sol-gel auto combustion method. The XRD patterns confirmed single phase cubic spinel structure for present ferrite systems. The substitution of co-dopants in the spinel structure initially decreases the lattice parameter from x = 0.00 to 0.08 and thereafter increases and the same tendency reflecting in cell volume. The DC resistivity was initially increased later followed the decreasing trend; however the drift mobility of all ferrite samples appears to be in opposite phenomenon to DC resistivity. The saturation magnetization and net magnetic moments of all ferrite samples are decreasing with increasing dopant concentration. The coercive field and Y-K angles are increased with dopant concentration. The initial permeability of all samples is decreased with increasing dopant concentration. The Q-Factor for all samples shows the narrow frequency band with increasing frequency.

  2. Crystal growth, electronic structure, and properties of Ni-substituted FeGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Likhanov, Maxim S. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Verchenko, Valeriy Yu. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Bykov, Mikhail A. [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Tsirlin, Alexander A. [National Institute of Chemical Physics and Biophysics, 12618 Tallinn (Estonia); Experimental Physics VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Gippius, Andrei A. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Shubnikov Institute of Crystallography, Russian Academy of Science, 119333, Moscow (Russian Federation); Berthebaud, David; Maignan, Antoine [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, F-14050 CAEN Cedex 4 (France); Shevelkov, Andrei V., E-mail: shev@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-04-15

    Crystals of the Fe{sub 1−x}Ni{sub x}Ga{sub 3} limited solid solution (x<0.045) have been grown from gallium flux. We have explored the electronic structure as well as magnetic and thermoelectric properties of Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} in comparison with Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, following the rigid band approach and assuming that one Ni atom donates twice the number of electrons as one Co atom. However, important differences between the Co- and Ni-doped compounds are found below 620 K, which is the temperature of the metal-to-insulator transition for both compounds. We have found that Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} displays lower degree of spatial inhomogeneity on the local level and exhibits diamagnetic behavior with a broad shallow minimum in the magnetic susceptibility near 35 K, in sharp contrast with the Curie–Weiss paramagnetism of Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}. Transport measurements have shown the maximum of the thermoelectric figure-of-merit ZT of 0.09 and 0.14 at 620 K for Fe{sub 0.975}Ni{sub 0.025}Ga{sub 3} and Fe{sub 0.95}Co{sub 0.05}Ga{sub 3}, respectively. - Graphical abstract: Crystals of Ni-substituted FeGa{sub 3} up to 8 mm long were grown from gallium flux (see Figure for the temperature profile and crystal shape) that allowed studying magnetic and thermoelectric properties of the title solid solution.

  3. Freeze-substitution methods for Ni localization and quantitative analysis in Berkheya coddii leaves by means of PIXE

    International Nuclear Information System (INIS)

    Budka, D.; Mesjasz-PrzybyIowicz, J.; Tylko, G.; PrzybyIowicz, W.J.

    2005-01-01

    Leaves of Ni hyperaccumulator Berkheya coddii were chosen as a model to investigate the influence of eight freeze-substitution protocols on the Ni content and distribution. Freeze-substitution of leaf samples cryofixed by high-pressure freezing was carried out in dry acetone, methanol, diethyl ether and tetrahydrofuran. The same substitution media were also used with dimethylglyoxime added as a precipitation reagent. The samples were infiltrated and embedded in Spurr's resin. Micro-PIXE analysis of Ni concentration and localization, complemented by proton backscattering for matrix assessment, was performed using the nuclear microprobe at Materials Research Group, iThemba LABS, South Africa. True elemental maps and concentrations were obtained using GeoPIXE-II software. The results were compared with the control results obtained for the parallel air-dried samples, corrected for the water content. The highest Ni content was found in the leaf samples substituted in diethyl ether. This concentration was statistically different from the results obtained for other media. In case of diethyl ether medium Ni was mainly localized in the mesophyll tissue, and the distribution map of this element was in accordance with previous results obtained for freeze-dried and frozen-hydrated leaves of this species. The same distribution pattern was observed for specimens embedded in dry acetone, but Ni concentration was significantly lower. Tetrahydrofuran medium preserved Ni preferentially in the epidermis and vascular tissue, and the elemental map for samples embedded in this medium was distorted. Ni was almost completely washed out from samples substituted in methanol and it was thus impossible to obtain a picture of its distribution. Dimethylglyoxime did not improve the preservation of this element. These results show that diethyl ether is a suitable substitution medium for assessment of Ni concentration and distribution in leaves of B. coddii

  4. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    Directory of Open Access Journals (Sweden)

    Y K Dasan

    Full Text Available Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00 synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM. The results revealed that saturation magnetization (Ms and coercivity (Hc of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  5. Effect of component substitution on the atomic dynamics in glass-forming binary metallic melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Evenson, Z.; Hansen, T. C.; Meyer, A.

    2017-08-01

    We investigate the substitution of early transition metals (Zr, Hf, and Nb) in Ni-based binary glass-forming metallic melts and the impact on structural and dynamical properties by using a combination of neutron scattering, electrostatic levitation (ESL), and isotopic substitution. The self-diffusion coefficients measured by quasielastic neutron scattering (QENS) identify a sluggish diffusion as well as an increased activation energy by almost a factor of 2 for Hf35Ni65 compared to Zr36Ni64 . This finding can be explained by the locally higher packing density of Hf atoms in Hf35Ni65 compared to Zr atoms in Zr36Ni64 , which has been derived from interatomic distances by analyzing the measured partial structure factors. Furthermore, QENS measurements of liquid Hf35Ni65 prepared with 60Ni , which has a vanishing incoherent scattering cross section, have demonstrated that self-diffusion of Hf is slowed down compared to the concentration weighted self-diffusion of Hf and Ni. This implies a dynamical decoupling between larger Hf and smaller Ni atoms, which can be related to a saturation effect of unequal atomic nearest-neighbor pairs, that was observed recently for Ni-rich compositions in Zr-Ni metallic melts. In order to establish a structure-dynamics relation, measured partial structure factors have been used as an input for mode-coupling theory (MCT) of the glass transition to calculate self-diffusion coefficients for the different atomic components. Remarkably, MCT can reproduce the increased activation energy for Hf35Ni65 as well as the dynamical decoupling between Hf and Ni atoms.

  6. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ

    Science.gov (United States)

    Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.

    2017-04-01

    Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.

  7. Dielectric property of NiTiO3 doped substituted ortho-chloropolyaniline composites

    Directory of Open Access Journals (Sweden)

    Mohana Lakshmi

    2013-11-01

    Full Text Available Ortho-chloropolyaniline (OCP-NiTiO3 composites have been synthesized via in-situ polymerization of ortho-chloroaniline with various weight percentages of NiTiO3. Fourier Transform Infrared spectroscopic studies of Ortho-chloropolyaniline and its composites indicated the formation of composites as a result of Vander Waal's interaction between OCP and NiTiO3 particles. Surface morphology of OCP and OCP-NiTiO3 composites were studied using Scanning Electron Microscope (SEM. The SEM micrographs indicated a modified morphology after the composite formation. Dielectric properties and electric modulus of OCP and OCP-NiTiO3 composites have been investigated in the frequency range of 50 Hz – 5 MHz. It has been noticed that electrical resistance decreases with increase in weight percentage of NiTiO3 particles in polymer matrix as well as with applied frequency. The display of semicircular arcs in Cole-Cole plots indicates the formation of series resistor and capacitor in network causing a decrease in the relaxation time and as a result conductivity enhances in these composites. The facile and cost effective synthesis process and excellent dielectric and conductivity response of these materials makes them promising materials for practical applications.

  8. Spin Crossover in Fe(II)-M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines.

    Science.gov (United States)

    Kucheriv, Olesia I; Shylin, Sergii I; Ksenofontov, Vadim; Dechert, Sebastian; Haukka, Matti; Fritsky, Igor O; Gural'skiy, Il'ya A

    2016-05-16

    Discovery of spin-crossover (SCO) behavior in the family of Fe(II)-based Hofmann clathrates has led to a "new rush" in the field of bistable molecular materials. To date this class of SCO complexes is represented by several dozens of individual compounds, and areas of their potential application steadily increase. Starting from Fe(2+), square planar tetracyanometalates M(II)(CN)4(2-) (M(II) = Ni, Pd, Pt) and 2-substituted pyrazines Xpz (X = Cl, Me, I) as coligands we obtained a series of nine new Hofmann clathrate-like coordination frameworks. X-ray diffraction reveals that in these complexes Fe(II) ion has a pseudo-octahedral coordination environment supported by four μ4-tetracyanometallates forming its equatorial coordination environment. Depending on the nature of X and M, axial positions are occupied by two 2X-pyrazines (X = Cl and M(II) = Ni (1), Pd (2), Pt (3); X = Me and M(II) = Ni (4), Pd (5)) or one 2X-pyrazine and one water molecule (X = I and M(II) = Ni (7), Pd (8), Pt (9)), or, alternatively, two distinct Fe(II) positions with either two pyrazines or two water molecules (X = Me and M(II) = Pt (6)) are observed. Temperature behavior of magnetic susceptibility indicates that all compounds bearing FeN6 units (1-6) display cooperative spin transition, while Fe(II) ions in N5O or N4O2 surrounding are high spin (HS). Structural changes in the nearest Fe(II) environment upon low-spin (LS) to HS transition, which include ca. 10% Fe-N distance increase, lead to the cell expansion. Mössbauer spectroscopy is used to characterize the spin state of all HS, LS, and intermediate phases of 1-9 (see abstract figure). Effects of a pyrazine substituent and M(II) nature on the hyperfine parameters in both spin states are established.

  9. Heterometallic Pd(II)-Ni(II) complexes with meso-substituted dibenzotetraaza[14]annulene: double C-H bond activation and formation of a rectangular tetradibenzotetraaza[14]annulene.

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Fukuda, Takamitsu; Ali, Hapipah Mohd

    2014-11-03

    Three isomeric 2[Pd(II)-Ni(II)] metal complexes, derived from indoleninyl meso-substituted dibenzotetraaza[14]annulene, were synthesized. The resulting dimers feature Ni···Ni or, alternatively, Ni···π interactions in staggered or slipped cofacial structures. A remarkable insertion of palladium into two different C-H bonds yielded a 4[Pd(II)-Ni(II)] rectangular complex with dimensions of 8.73 × 10.38 Å.

  10. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  11. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  12. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M.A. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Uddin, M.M., E-mail: mohi@cuet.ac.bd [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Khan, M.N.I. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh); Chowdhury, F.U.-Z. [Department of Physics, Chittagong University of Engineering and Technology (CUET), Chittagong 4349 (Bangladesh); Haque, S.M. [Materials Science Division, Atomic Energy Center, Dhaka 1000 (Bangladesh)

    2017-02-15

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant. - Highlights: • Sn-substituted Ni-Zn ferrites with cubic spinel structure have been synthesized. • a{sub th} is calculated and well compared with a{sub expt}. • Dielectric unusual behavior has been successfully explained by the Rezlescu model. • Long τ (ns) is determined, can be utilized for memory and spintronics devices.

  13. Substitution effects in magnetic and superconducting materials

    Directory of Open Access Journals (Sweden)

    Peña, O.

    1999-10-01

    Full Text Available Chemical substitutions at very low level have been proved to be a very effective tool to change important physical parameters in many kinds of materials. These modifications may be the result of, for instance, subtle variations of the position of the Fermi level with respect to the density of states, presence of additional electrons which may change the hole carrier concentration, steric effects which impose contraints in the crystallographic lattice, mixed-valence states resultating from the dismutation of chemical components, etc. We review herein three systems in which the substitution effects are at the origin of new physical states : the high-Tc superconductor bismuth cuprate of the 2212 family, the mixed-valence manganese perovskites representative of giant magneto-resistive compounds, and the Chevrel phase materials in which a structural transition may inhibit the superconducting state.

    Las substituciones químicas a un nivel muy pequeño se han probado como una importante herramienta para cambiar los parámetros físicos en una gran variedad de materiales. Estas modificaciones pueden ser el resultado de, por ejemplo, muy ligeras variaciones de la posición del nivel de Fermi con respecto a la densidad de estados, presencia de electrones adicionales que pueden cambiar la concentración de portadores tipo huecos, efectos estéricos que imponen restricciones en la red cristalográfica, estados de valencia mixtos resultantes de la dismutación de los componentes químicos, etc. Aquí se revisan tres sistemas donde los efectos de substitución son el origen de nuevos estados físicos: los superconductores de alta temperatura basados en cupratos de bismuto de la familia 2212, las perovskitas de manganeso de valencia mixta representantes de compuestos con magnetorresistencia gigante, y los materiales con fases de Chevrelt cuya transición estructural puede inhibir el estado superconductor.

  14. Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Wenwen; Tanaka, Akinobu; Momosaki, Kyoko; Yamamoto, Shinji; Zhang, Fabi; Guo, Qixin; Noguchi, Hideyuki

    2015-01-01

    Highlights: • Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode was synthesized. • Structural and electrochemical properties of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 were studied. • Ti substituted cathodes exhibit enhanced cycleability and rate performance. • Ti substitution has impact on stabilizing the P2 structure during cycling. -- Abstract: Ti substituted P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode material with the composition of Na 2/3 Ni 1/4 Ti x Mn 3/4-x O 2 has been synthesized by solid state method. The influence of Ti substitution for Mn on the structure, morphology and electrochemical performances of P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 has been investigated. X-ray diffraction (XRD) results of Ti substituted sample show that they exhibit same diffraction patterns as those of pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 . Progressive change in the lattice parameters of Ti substituted samples suggests that Mn was successfully substituted by Ti. In contrast to P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 which shows step-type voltage profiles, Ti substituted samples show sloping voltage profiles. Drastic capacity fade occurred for P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode, while Ti substituted cathodes still show high capacity retention over 92% after 25 cycles at the voltage range of 2.0-4.3 V. Even cycled at high upper cut-off voltage of 4.5 V, Ti=0.20 sample can deliver a reversible capacity of 140 mAhg −1 with the capacity retention over 92% after 25 cycles. Furthermore, Ti substituted cathodes exhibit enhanced rate capability over pristine P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 cathode. Comparison of the Ex-situ XRD results of the cycled P2-Na 2/3 Ni 1/4 Mn 3/4 O 2 and its substituted samples provides evidence that the improved electrochemical performance of Ti substituted cathodes would be attributed to the stabilization of the structure with Ti substitution

  15. Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites

    International Nuclear Information System (INIS)

    Ding Xifeng; Liu Yingjia; Gao Ling; Guo Lucun

    2006-01-01

    The effects of cation substitution on the sintering characteristics, thermal expansion and electrical conductivity properties of La(AE)Cr(M)O 3 (AE=Mg, Ca, Sr, M=Ni, Cu, Co) were investigated. The sinterability of alkaline metal earth (AE)-doped LaCrO 3 increased with AE contents in a sequence of Ca > Sr > Mg. Sr-doped LaCrO 3 sample had a TEC compatible with that of 8YSZ electrolyte. The transition metals of Ni, Co and Cu substituted in Cr-site further optimized the sinterability of La 0.85 Sr 0.15 CrO 3 in air. Ni and Co could effectively enhance the electrical conductivity from room temperature to 1123 K though the concomitant increase in TEC was distinctively large with Co doping. The TEC was controlled by co-doping Ni and Co in Cr-site, and La 0.85 Sr 0.15 Cr 0.95 Ni 0.02 Co 0.02 O 3 exhibited a TEC of 10.9 x 10 -6 /K, which was matched with that of 8YSZ, indicating that it could be suitable to be used as an SOFC interconnect material

  16. [The substitution effect of leadership substitutes for transformational leadership in nursing organization].

    Science.gov (United States)

    Kim, Jeong-Hee

    2006-04-01

    This paper was conducted to examine the effects of transformational leadership behaviors, within the substitutes for leadership model (Kerr & Jermier, 1978). Data was collected from 181 staff nurses in 3 general hospitals, with self-reporting questionnaires (MLQ developed by Bass, rd-SLS developed by Podsakoff, et al., and MSQ developed by Weiss, et al.). Descriptive statistics, factor analysis, Cronbach's alpha and moderated regression analysis were used. 1) The transformational leader behaviors and substitutes for leadership each had correlations with job satisfaction. 2) The total amount of variance accounted for by the substitutes for leadership was substantially greater than by the transformational leadership behaviors. 3) Few of the substitutes variables moderated the relationships between the transformational leader behaviors and job satisfaction in a manner consistent with that specified by Howell, Dorfman, and Kerr (1986). The finding of this study suggest that leaders need to have a better understanding of those contextual variables that influence job satisfaction. Thus future research should focus attention on the moderating effects of substitutes, as well as the things that leaders can do to influence them. In addition, it may be good to examine the effects of substitutes on other criterion variables.

  17. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 2. Ni/MH Battery Performance and Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-09-01

    Full Text Available The electrochemical performance and failure mechanisms of Ni/MH batteries made with a series of the Fe-substituted A2B7 superlattice alloys as the negative electrodes were investigated. The incorporation of Fe does not lead to improved cell capacity or cycle life at either room or low temperature, although Fe promotes the formation of a favorable Ce2Ni7 phase. Fe-substitution was found to inhibit leaching of Al from the metal hydride negative electrode and promote leaching of Co, which could potentially extend the cycle life of the positive electrode. The failure mechanisms of the cycled cells with the Fe-substituted superlattice hydrogen absorbing alloys were analyzed by scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma analysis. The failure of cells with Fe-free and low Fe-content alloys is mainly attributed to the pulverization of the metal hydride alloy. Meanwhile, severe oxidation/corrosion of the negative electrode is observed for cells with high Fe-content alloys, resulting in increased internal cell resistance, formation of micro-shortages in the separator and eventual cell failure.

  18. Design of Nickel-Based Cation-Disordered Rock-Salt Oxides: The Effect of Transition Metal (M = V, Ti, Zr) Substitution in LiNi0.5M0.5O2 Binary Systems.

    Science.gov (United States)

    Cambaz, Musa Ali; Vinayan, Bhaghavathi P; Euchner, Holger; Johnsen, Rune E; Guda, Alexander A; Mazilkin, Andrey; Rusalev, Yury V; Trigub, Alexander L; Gross, Axel; Fichtner, Maximilian

    2018-06-20

    Cation-disordered oxides have been ignored as positive electrode material for a long time due to structurally limited lithium insertion/extraction capabilities. In this work, a case study is carried out on nickel-based cation-disordered Fm3 ̅m LiNi 0.5 M 0.5 O 2 positive electrode materials. The present investigation targets tailoring the electrochemical properties for nickel-based cation-disordered rock-salt by electronic considerations. The compositional space for binary LiM +3 O 2 with metals active for +3/+4 redox couples is extended to ternary oxides with LiA 0.5 B 0.5 O 2 with A = Ni 2+ and B = Ti 4+ , Zr 4+ , and V +4 to assess the impact of the different transition metals in the isostructural oxides. The direct synthesis of various new unknown ternary nickel-based Fm3̅ m cation-disordered rock-salt positive electrode materials is presented with a particular focus on the LiNi 0.5 V 0.5 O 2 system. This positive electrode material for Li-ion batteries displays an average voltage of ∼2.55 V and a high discharge capacity of 264 mAhg -1 corresponding to 0.94 Li. For appropriate cutoff voltages, a long cycle life is achieved. The charge compensation mechanism is probed by XANES, confirming the reversible oxidation and reduction of V 4+ /V 5+ . The enhancement in the electrochemical performances within the presented compounds stresses the importance of mixed cation-disordered transition metal oxides with different electronic configuration.

  19. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  20. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  1. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  2. Effect of Honey as Partial Sugar Substitute on Pasting Properties ...

    African Journals Online (AJOL)

    The effect of partial substitution of sugar with liquid honey on the pasting properties of cooked dough made from cassava-wheat composite (10:90) flour as well as the sensory preference and shelf stability of its bread was investigated. Sucrose (S) in the bread recipe formulation was substituted with honey (H) at levels 0, 10, ...

  3. Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferrite

    International Nuclear Information System (INIS)

    Pahuja, Poonam; Kotnala, R.K.; Tandon, R.P.

    2014-01-01

    Highlights: • Rare earth ions Dy 3+ , Gd 3+ and Sm 3+ have been substituted in Ba 0.95 Sr 0.05 TiO 3 (BST). • Ni 0.8 Co 0.2 Fe 2 O 4 has been used as ferrimagnetic phase to obtain composites. • Substitution of these ions increases dielectric constant of BST and composites. • Magnetoelectric coefficient of composites increases on substitution of these ions. - Abstract: Effect of substitution of rare earth ions (Dy 3+ , Gd 3+ and Sm 3+ ) on various properties of Ba 0.95 Sr 0.05 TiO 3 (BST) i.e. the composition Ba 0.95−1.5x Sr 0.05 R x TiO 3 (where x = 0.00, 0.01, 0.02, 0.03 and R are rare earths Dy, Gd, Sm) and that of their multiferroic composite with Ni 0.8 Co 0.2 Fe 2 O 4 (NCF) has been studied. Shifting of peaks corresponding to different compositions in the X-ray diffraction pattern confirmed the substitution of rare earth ions at both Ba 2+ and Ti 4+ sites in BST. It is clear from scanning electron microscopy (SEM) images that rare earth substitution in BST increases its grain size in both pure and composite samples. Substitution of rare earth ions results in increase in value of dielectric constant of pure and composite samples. Sm substitution in BST significantly decreases its Curie temperature. Dy substituted pure and composite samples possess superior ferroelectric properties as confirmed by polarization vs electric field (P–E) loops. Composite samples containing Dy, Gd and Sm substituted BST as ferroelectric phase possess lower values of remanent and saturation magnetizations in comparison to composite sample containing pure BST as ferroelectric phase (BSTC). Rare earth substituted composite samples possess higher value of magnetoelectric coefficient as compared to that for BSTC

  4. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  5. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    Science.gov (United States)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  6. Contribution to the study of Li{sub x}(Co,M)O{sub 2} phases used as cathodes in Li-ion batteries. Combined effects of the lithium sur-stoichiometry and of the substitution (M = Ni, Mg); Contribution a l'etude des phases Li{sub x}(Co,M)O{sub 2} en tant que materiaux d'electrode positive des batteries Li-ion. Effets combines de la surstoechiometrie en lithium et de la substitution (M = Ni, Mg)

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, St.

    2001-12-01

    Li{sub x0}(Co,M)O{sub 2} (M = Ni, Mg; x0 {<=} 1.0) materials used as positive electrode for Li-ion batteries have been prepared at high temperature (900 degrees C) and characterized by X-ray diffraction, galvano-static measurements, {sup 7}Li MAS NMR spectroscopy and electrical properties measurements. If the results on the LiCoO{sub 2} phase agree with the literature, the adding of an excess of lithium during synthesis leads to the presence in the actual materials to the presence of oxygen vacancies and intermediate spin Co{sup 3+} ions (Co{sup 3+(IS)}) in a square-based environment. This defect suppresses all the phase transitions usually observed upon lithium de-intercalation in Li{sub x}CoO{sub 2}. The partial substitution by Ni ions allows us to separate the relative contribution of Ni(III) and Co{sup 3+(IS)} ions in the suppression of the various phase transitions upon cycling. Mg doping, even without any lithium excess, systematically induces some oxygen vacancies and Co{sup 3+(IS)} ions in the material. This observation had been correlated to the behaviour of the Li{sub x}(Co,Mg)O{sub 2} system upon cycling. (author)

  7. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  8. Synthesis of Highly Branched Polyolefins Using Phenyl Substituted α-Diimine Ni(II Catalysts

    Directory of Open Access Journals (Sweden)

    Fuzhou Wang

    2016-04-01

    Full Text Available A series of α-diimine Ni(II complexes containing bulky phenyl groups, [ArN = C(NaphthC = NAr]NiBr2 (Naphth: 1,8-naphthdiyl, Ar = 2,6-Me2-4-PhC6H2 (C1; Ar = 2,4-Me2-6-PhC6H2 (C2; Ar = 2-Me-4,6-Ph2C6H2 (C3; Ar = 4-Me-2,6-Ph2C6H2 (C4; Ar = 4-Me-2-PhC6H3 (C5; Ar = 2,4,6-Ph3C6H2 (C6, were synthesized and characterized. Upon activation with either diethylaluminum chloride (Et2AlCl or modified methylaluminoxane (MMAO, all Ni(II complexes showed high activities in ethylene polymerization and produced highly branched amorphous polyethylene (up to 145 branches/1000 carbons. Interestingly, the sec-butyl branches were observed in polyethylene depending on polymerization temperature. Polymerization of 1-alkene (1-hexene, 1-octene, 1-decene and 1-hexadecene with C1-MMAO at room temperature resulted in branched polyolefins with narrow Mw/Mn values (ca. 1.2, which suggested a living polymerization. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature and types of monomers.

  9. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application

    Science.gov (United States)

    Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran

    2018-04-01

    This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.

  10. 40 CFR Appendix H to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes, Effective May 28, 1999

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Substitutes Subject to Use Restrictions and Unacceptable Substitutes, Effective May 28, 1999 H Appendix H to Subpart G of Part 82... STRATOSPHERIC OZONE Significant New Alternatives Policy Program Pt. 82, Subpt. G, App. H Appendix H to Subpart G...

  11. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  12. Modulation in magnetic exchange interaction, core shell structure and Hopkinson's peak with chromium substitution into Ni0.75Co0.25Fe2O4 nano particles

    Science.gov (United States)

    Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana

    2018-05-01

    The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.

  13. Impact of Ni substitution on structural, electrical and thermoelectric properties of zinc aluminium chromites synthesized by sol-gel route and their photocatalytic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Seema Pandurang; Helavi, Vasant Baburao [Department of chemistry, Rajaram college, Maharashtra (India); Sanadi, Kallappa Ramchandra, E-mail: sanadikishor@gmail.com [Department of chemistry, Doodhsakhar Mahavidyalaya, Maharashtra (India)

    2017-11-15

    Nanostructured nickel substituted zinc aluminium chromites (Zn{sub 1-x}Ni{sub x} AlCrO{sub 4}, where, x= 0.0, 0.25, 0.50, 0.75, 1.0) were prepared by simple, cost effective, sol-gel auto combustion method. Temperature of phase formation was analyzed by thermogravimetric and differential thermal analysis (TGA/DTA). Crystallographic studies of all the samples show formation of single cubic spinel phase only. The lattice parameter, crystallite size and X-ray density decreases with increase in Nickel content. The surface morphology of Zn1{sub -x}Ni{sub x} AlCrO{sub 4} shows spherical inter linked morphology while elemental studies show desired composition. The nanosize of the synthesized material was confirmed by transmission electron microscopy (TEM) which was lies in between 19-25 nm. The DC conductivity as well as thermoelectric power studies of the samples reveals their semiconducting nature. The nanocrystalline chromite has optimal charge separation, which make them to enhance their photocatalytic efficiency. 0.100gm palladium loaded nickel aluminium chromite shows excellent mineralization in water. (author)

  14. Effect of substitution of titanium by magnesium and niobium on ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of substitution of titanium by magnesium and niobium on structure and piezoelectric properties in (Bi1/2. Na1/2. )TiO3 ceramics. ZHOU CHANG-RONG*, LIU XIN-YU, LI WEI-ZHOU. † and YUAN CHANG-LAI. Department of Information Material Science and Engineering, Guilin University of Electronic Technology,. Guilin ...

  15. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  16. Mössbauer spectroscopic studies of Al{sup 3+} ions substitution effects in superparamagnetic Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} compositions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Satish, E-mail: satishapurva@gmail.com [Department of Physics, Govt. P.G. College, Solan (India); Chand, Jagdish; Singh, M. [Department of Physics, Himachal Pradesh University, Summer-Hill, Shimla, 171005 (India)

    2016-09-15

    Nanoparticles of Al{sup 3+} ions substituted Mg−Mn−Ni materials with compositions Mg{sub 0.2}Mn{sub 0.5}Ni{sub 0.3}Al{sub y}Fe{sub 2−y}O{sub 4} (y = 0.15–0.25) were synthesized by citrate precursor technique. Samples were characterized by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and room temperature {sup 57}Fe Mössbauer spectroscopy. Saturation magnetization decreases with increasing Al{sup 3+} ions concentration because replacement of Fe{sup 3+} ions by Al{sup 3+} ions at octahedral B-site weaken sublattice interaction and lowers magnetic moments. Mössbauer spectral studies show that as-prepared nano-sized samples are superparamagnetic at room temperature. Superparamagnetic relaxation was observed for small crystallite in samples with higher Al content, which is attributed to weakening of A–B exchange interaction. Mössbauer spectra at 300 K show a gradual collapse of magnetic hyperfine splitting typical for superparamagnetic relaxation. An increase in inversion parameter is observed with increasing Al{sup 3+} ions substitution, which is attributed to decrease in crystallite size. - Highlights: • Single phase nanocrystalline samples were synthesized by citrate precursor method. • Particle size decreases as non-magnetic Al{sup 3+} ions concentration increase. • Presence of doublet in Mössbauer spectra was due to superparamagnetic relaxation. • Study shows collapse of long range magnetic order and quenching of magnetic moment.

  17. Dual Tuning of Ni-Co-A (A = P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution.

    Science.gov (United States)

    Fang, Zhiwei; Peng, Lele; Qian, Yumin; Zhang, Xiao; Xie, Yujun; Cha, Judy J; Yu, Guihua

    2018-04-18

    Seeking earth-abundant electrocatalysts with high efficiency and durability has become the frontier of energy conversion research. Mixed-transition-metal (MTM)-based electrocatalysts, owing to the desirable electrical conductivity, synergistic effect of bimetal atoms, and structural stability, have recently emerged as new-generation hydrogen evolution reaction (HER) electrocatalysts. However, the correlation between anion species and their intrinsic electrocatalytic properties in MTM-based electrocatalysts is still not well understood. Here we present a novel approach to tuning the anion-dependent electrocatalytic characteristics in MTM-based catalyst for HER, using holey Ni/Co-based phosphides/selenides/oxides (Ni-Co-A, A = P, Se, O) as the model materials. The electrochemical results, combined with the electrical conductivity measurement and DFT calculation, reveal that P substitution could modulate the electron configuration, lower the hydrogen adsorption energy, and facilitate the desorption of hydrogen on the active sites in Ni-Co-A holey nanostructures, resulting in superior HER catalytic activity. Accordingly we fabricate the NCP holey nanosheet electrocatalyst for HER with an ultralow onset overpotential of nearly zero, an overpotential of 58 mV, and long-term durability, along with an applied potential of 1.56 V to boost overall water splitting at 10 mA cm -2 , among the best electrocatalysts reported for non-noble-metal catalysts to date. This work not only presents a deeper understanding of the intrinsic HER electrocatalytic properties for MTM-based electrocatalyst with various anion species but also offers new insights to better design efficient and durable water-splitting electrocatalysts.

  18. Boron-substitution and defects in B2-type AlNi compound: Site-preference and influence on structural, thermodynamic and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Capaz, Rodrigo B. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); ElMassalami, M., E-mail: massalam@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Terrazos, L.A. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB 58175-000 (Brazil); Elhadi, M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Takeya, H. [National Institute for Materials Science, 1-2-1, Sengen, Tsukuba, 305-0047 (Japan); Ghivelder, L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2016-06-05

    Using a combination of theoretical (first-principles total-energy and electronic structure calculations) as well as experimental (structural, thermodynamics) techniques, we systematically investigated the influence of B incorporation on the structural, electronic and thermodynamic properties of a series of technologically-important B-containing AlNi matrix. Special attention was paid to calculating the energy cost of placing B at various sites within the cubic unit cell. The most energetically favorable defects were identified to be, depending on initial stoichiometry, substitutional B at Al site (B{sub Al}), Ni vacancy (V{sub Ni}), or Ni antisite (Ni{sub Al}). We show that the induced variation in the lattice parameters can be correlated with the type and concentration of the involved defects: e.g. the surge of V{sub Ni} defects leads to a stronger lattice-parameter reduction, that of Ni{sub Al} ones to a relatively weaker reduction while that of B{sub Al} defects to a much weaker influence. Both electronic band structure calculations as well as thermodynamics measurements indicate that the 3d bands of Ni are fully occupied and magnetically unpolarized and that the resulting N(E{sub F}) is very small: all studied compounds are normal conductors with no trace of superconductivity or magnetic polarization.

  19. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    Science.gov (United States)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  20. SELENIUM SUBSTITUTIONEFFECT ON THYROID FUNCTION

    Directory of Open Access Journals (Sweden)

    Milica Pešić

    2015-03-01

    Full Text Available The understanding of the essential role of selenium (Se in thyroid hormone synthesis, metabolism and action, as well as normal thyroid function, increased during the past decades. The thyroid gland is among the human tissues with the highest Se content per mas unit, similar to other endocrine organs and brain. Biological actions of Se are mediated, in most cases, through the expression of at least 30 selenoproteins coded by 25 selenoprotein genes in the human. Via the selenoproteins, selenium can influence the cell function through antioxidant activites, modifying redox status and thyroid hormone synthesis and metabolism. Selenoproteins iodothyronine deiodinases are present in most tissues and have a role to increase the production of bioactive tri-iodothyronine. Futhermore, Se has been shown to be important in the regulation of immune function. Se deficiency is accompained by the loss of immune competence. The links between Se deficiency, altered immune function and inflamation have prompted studies in humans to examine if Se suplementation can modify auto-antibodies production in patients with chronic autoimmune thyroiditis. Until now, several randomised prospective clinical trials have been performed in patients with established chronic autoimmune thyrioditis. The clinical endpoint of each study was the decrease in TPO antibodies concentration after 3-12 months of treatment. Ussualy, the dosage of daily Se supplementation was 200µg. Selenium suplemetation had no significant effect on the concentration of TSH or thyroid hormone concentrations. These studies indicate that Se treatment result in reduced inflammatory activity, but it does not cure chronc autoimmune process.

  1. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  2. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  3. Synthesis and magnetic properties of (Eu–Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Islam, M.U. [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Sadiq, Imran [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Centre of Excellence in Solid State Physics, University of The Punjab, Lahore (Pakistan); Karamat, Nazia [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iftikhar, Aisha [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Khan, M. Azhar [Department of Physics, Islamia University of Bahawalpur, 63100 Pakistan (Pakistan); Shah, Afzal [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Athar, Muhammad [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University (Saudi Arabia); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2015-07-01

    A series of (Eu–Ni) substituted Y-type hexaferrite with composition Sr{sub 2}Co{sub (2−x)}Ni{sub x}Eu{sub y}Fe{sub (12−y)}O{sub 22} (x=0.0–1, Y=0.0–0.1) were prepared by the surfactant assisted co-precipitation method. The present samples were sintered at 1050 °C for 8 h. The shape of the particles is plate-like which is very advantageous for various applications and the grain size varies from 73 to 269 nm. The values of saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and magnetic moment (n{sub B}) were found to decrease which are attributed to the weakening of super exchange interactions. The values of in-plane Squareness ratios (M{sub r}/M{sub s}) ranging from 0.41 to 0.65 whereas in case of out of plane measurement it varies from 0.30 to 0.62.The investigated samples can be used in perpendicular recording media (PRM) due to high value of coercivity 2300 Oe which is analogous to the those of M-type and W-type hard magnetic. - Highlights: • The present samples sintered at 1050 °C for 8 h. • The grain size varies from 73 to 269 nm. • The magnetic moment varies from 15.27 to 6.07. • The shape of grains is plate like for microwave devices. • The present samples can be used in PRM due to high value of coercivity i.e. 2300 Oe.

  4. Designed Surface Residue Substitutions in [NiFe] Hydrogenase that Improve Electron Transfer Characteristics

    Directory of Open Access Journals (Sweden)

    Isaac T. Yonemoto

    2015-01-01

    Full Text Available Photobiological hydrogen production is an attractive, carbon-neutral means to convert solar energy to hydrogen. We build on previous research improving the Alteromonas macleodii “Deep Ecotype” [NiFe] hydrogenase, and report progress towards creating an artificial electron transfer pathway to supply the hydrogenase with electrons necessary for hydrogen production. Ferredoxin is the first soluble electron transfer mediator to receive high-energy electrons from photosystem I, and bears an electron with sufficient potential to efficiently reduce protons. Thus, we engineered a hydrogenase-ferredoxin fusion that also contained several other modifications. In addition to the C-terminal ferredoxin fusion, we truncated the C-terminus of the hydrogenase small subunit, identified as the available terminus closer to the electron transfer region. We also neutralized an anionic patch surrounding the interface Fe-S cluster to improve transfer kinetics with the negatively charged ferredoxin. Initial screening showed the enzyme tolerated both truncation and charge neutralization on the small subunit ferredoxin-binding face. While the enzyme activity was relatively unchanged using the substrate methyl viologen, we observed a marked improvement from both the ferredoxin fusion and surface modification using only dithionite as an electron donor. Combining ferredoxin fusion and surface charge modification showed progressively improved activity in an in vitro assay with purified enzyme.

  5. Site occupancy of Fe in ternary Ni 75-x

    Indian Academy of Sciences (India)

    The results of a detailed structural and magnetic study clearly indicate that regardless of the thermal history of the samples, Fe has a strong preference for the Ni sites in Ni-poor (non-stoichiometric) Ni75Al25 alloys. Fe substitution has a profound effect on the nature of magnetism in Ni75Al25.

  6. Effect of antimony substitution in iron pnictide compounds

    OpenAIRE

    Schmidt, D.; Braun, H. F.

    2015-01-01

    In the present study we have examined the effect of negative chemical pressure in iron pnictides. We have synthesized substitution series replacing arsenic by antimony in a number of 1111- and 122-iron arsenides and present their crystallographic and physical properties. The SDW transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O decreases with increasing antimony content, while the superconducting transition temperature in LaFeAs$_{\\mathrm{1-x}}$Sb$_{\\mathrm{x}}$O$_{\\mathrm{0...

  7. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  8. Effect of amount of glycine as fuel in obtaining nanocomposite Ni/NiO

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Quirino, M.R.; Vieira, D.A.; Gama, L.

    2010-01-01

    This paper proposes to investigate the effect of the amount of glycine in obtaining nanocomposite Ni/NiO synthesized by combustion reaction technique. The amount of glycine used was calculated on the stoichiometric composition of 50% and 100%. Characterizations by X-ray diffraction (XRD), N2 adsorption by the BET method and scanning electron microscopy (SEM) were performed with powder of Ni/NiO result. The analysis of X-ray diffraction showed the presence of crystalline NiO phase in the presence of nickel as a secondary phase, whose amount increased with the amount of glycine. Increasing the concentration of glycine also caused an increase in surface area, which ranged from 1.1 to 1.4 m 2 /g. The micrographs revealed the formation of soft agglomerates with porous appearance and easy dispersions. It can be concluded that the synthesis is effective to obtain nanosized powders. (author)

  9. Improvement of the magnetic moment of NiZn ferrites induced by substitution of Nd3+ ions for Fe3+ ions

    Science.gov (United States)

    Wu, Xuehang; Chen, Wen; Wu, Wenwei; Wu, Juan; Wang, Qing

    2018-05-01

    Four types of Ni-Zn based ferrites materials having the general formula Ni0.5Zn0.5NdxFe2-xO4 (0.0 ≤ x ≤ 0.12) have been successfully synthesized by calcining oxalates in air and the influence of Nd content on the structure and magnetic properties of Ni0.5Zn0.5NdxFe2-xO4 is studied. X-ray diffraction examination confirms that a high-crystallized Ni0.5Zn0.5NdxFe2-xO4 with cubic spinel structure is obtained when the precursor is calcined at 1000 °C in air for 2 h. The substitutions of Nd3+ ions for partial Fe3+ ions do not change the spinel crystalline structure of MFe2O4. The incorporation of Nd3+ ions in place of Fe3+ ions in Ni-Zn ferrites increases the average crystallite size. Specific saturation magnetization decreases with increase in Nd content. This is because Nd3+ ions with smaller magnetic moment preferentially fill the octahedral sites. In addition, antiferromagnetic FeNdO3 increases with increase in Nd content. In this study, Ni0.5Zn0.5Nd0.08Fe1.92O4, calcined at 1000 °C, exhibits the highest magnetic moment (4.2954 μB) and the lowest coercivity (28.82 Oe).

  10. Fe-doping effect on the Bi{sub 3}Ni superconductor microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Silvio Henrique; Monteiro, Joao Frederico Haas Leandro; Leal, Adriane Consuelo da Silva; Andrade, Andre Vitor Chaves de; Souza, Gelson Biscaia de; Siqueira, Ezequiel Costa; Serbena, Francisco Carlos; Jurelo, Alcione Roberto, E-mail: arjurelo@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica

    2017-05-15

    The substitution effects of Fe ion on the structure of the intermetallic Bi{sub 3}Ni{sub 1-x}Fe{sub x} (0 ≤ x ≤ 0.10) superconductor were studied. The morphology of samples consists of an inhomogeneous laminar slab-like microstructure. The main phase corresponds to Bi{sub 3}Ni{sub 1-x}Fe{sub x} with an orthorhombic structure (Pnma), but with very small quantities of impurities of BiNi and Bi as revealed by X-ray diffraction. SEM and AFM reveal that the Bi3{sub N}i1{sub -x}Fe{sub x} phase consists of two regions. One region is Bi richer and Ni and Fe poorer than the other region.Raman spectroscopy revealed two phonon modes at room temperature. No significant changes were observed in the spectra with Fe doping and in different regions of the Bi{sub 3}Ni{sub 1-x}Fe{sub x} phase. Superconductivity is observed below a transition temperature T{sub C} = 4 K and regardless of iron doping. (author)

  11. Structural characterization of Mg substituted on A/B sites in NiFe_2O_4 nanoparticles using autocombustion method

    Science.gov (United States)

    De, Manojit; Tewari, H. S.

    2017-07-01

    In the present paper, we are reporting the synthesis of pure nickel and magnesium ferrite [NiFe_2O_4, MgFe_2O_4] and magnesium-substituted nickel ferrite (Ni_{1-x}Mg_{x/y}Fe_{2-y}O_4; x=y=0.60) on A/B sites with particles size in nanometer range using autocombustion technique. In this study, it has been observed that with increase in sintering temperature, the estimated bulk density of the materials increases. The XRD patterns of the samples show the formation of single-phase materials and the lattice parameters are estimated from XRD patterns. From Raman spectra, the Raman shift of pure NiFe_2O_4 and MgFe_2O_4 are comparable with the experimental values reported in literature. The Raman spectra give five Raman active modes (A_{{1g}} + Eg + 3F_{2g}) which are expected in the spinel structure.

  12. Zn substitution NiFe{sub 2}O{sub 4} nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junwei [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Huang, Fengsi; Shen, Kaixiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lam, Kwok-ho [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon 999077 (Hong Kong); Ru, Qiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun, E-mail: husj@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2016-08-15

    Zn{sup 2+} ion substituted nickel ferrite nanomaterials with the chemical formula Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g{sup −1}at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  13. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  14. Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3} (Cr, Ni, Co and Fe) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); M’nassri, R., E-mail: rafik_mnassri@yahoo.fr [Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, B.P. 471, 1200 Kasserine (Tunisia); Cheikhrouhou-Koubaa, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Chniba Boudjada, N. [Institut NEEL, B.P. 166, 38042 Grenoble Cedex 9 (France); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia)

    2015-01-15

    Highlights: • Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics were prepared by solid state method. • The manganite phases crystallize in an orthorhombic (Pnma) structure. • The samples exhibit a second order paramagnetic (PM)–ferromagnetic (FM) phase transition at the Curie temperature T{sub C}. • Maximum RCP equal to 405 J/kg observed for Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Cr{sub 0.05}O{sub 3}. • Second order phase transition is confirmed by Arrott plots and universal curves of entropy change. • The experimental ΔS{sub M} are well predicted by the phenomenological universal curve. - Abstract: Structural, magnetic and magnetocaloric properties of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics have been investigated by X-ray diffraction (XRD) and magnetic measurements. Powder samples have been elaborated using the solid state reaction method at high temperature. The Rietveld analysis of the powder X-ray diffraction shows that the samples crystallize in the orthorhombic structure with Pnma space group. Magnetic measurements show that all our materials exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. The Arrott plots of ours materials reveal the occurrence of a second-order phase transition. The maximum values of magnetic entropy change |ΔS{sub M}{sup max}| are 2.92, 2.96, 3.1, and 2.38 J kg{sup −1} K{sup −1} and the relative cooling power (RCP) values are 405.8, 378.2, 352.2 and 337.4 J kg{sup −1} for a magnetic-field change from 0 to 5 T for Cr, Ni, Co and Fe respectively. The large RCP found in our substituted samples will be interesting for magnetic refrigeration over a wide temperature range ∼130 K around its paramagnetic to ferromagnetic transition temperature. With the scaling laws of ΔS{sub M}, the experimental ΔS{sub M} collapse onto a universal curve for several ceramics, where an average curve is obtained. With the

  15. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  16. Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique

    CSIR Research Space (South Africa)

    Kunjuzwa, Niki

    2016-11-01

    Full Text Available A nickel substituted spinel cathode material (LiMn1.9Ni0.1O4) with enhanced electrochemical performance was successfully synthesized by using a locally-sourced, low-cost manganese precursor, electrolytic manganese dioxide (EMD), and NiSO4·6H2O as a...

  17. The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx shape memory alloys

    International Nuclear Information System (INIS)

    Angst, D.R.; Thoma, P.E.; Kao, M.Y.

    1995-01-01

    Ternary alloys of NiTiHf, having higher transformation temperatures than binary NiTi shape memory alloys, have been produced and analyzed. Beginning with a base composition of Ni 49 Ti 51 , Hf was substituted for Ti up to 30 atomic percent. Differential scanning calorimetry was used to determine the transformation temperatures of the as-cast alloys. The peak martensite temperature of the Ni 49 Ti 51 alloy was 69 C and increased to 525 C for the Ni 49 Ti 21 Hf 30 alloy. The peak austenite temperature of the Ni 49 Ti 51 alloy was 114 C and increased to 622 C for the Ni 49 Ti 21 Hf 30 alloy. An apparent minimum in the peak transformation temperatures occurred between 0 and 3 atomic percent Hf. Preliminary experiments were also conducted to determine the effect of thermomechanical processing on the shape memory properties of the Ni 49 Ti 41 Hf 10 . Data are presented on the effect of cold work and heat treatment on the transformation temperatures of this alloy. (orig.)

  18. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.; Zhang, H. G.; Xu, G. Z.; Zhang, X. M.; Ma, R. S.; Wang, W. H.; Chen, J. L.; Zhang, H. W.; Wu, G. H.; Feng, L.; Zhang, Xixiang

    2013-01-01

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting

  19. Effect of substitution groups in carbon-13 NMR of tri-substituted camphors; Efeitos de substituintes em RMN de carbono-13 de canforas 3-substituidas

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Carlos R; Rittner, Roberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica; Basso, Ernani A [Universidade Estadual de Maringa, PR (Brazil). Dept. de Quimica Inorganica

    1994-12-31

    This work presents and discusses the empirical effects of substitution groups in the carbon-13 NMR spectra of tri-substituted camphors and their correlation with the chemical properties of such substitution groups such as electronegativity. The obtained results are presented and discussed

  20. Effects of vibrotactile vestibular substitution on vestibular rehabilitation - preliminary study,

    Directory of Open Access Journals (Sweden)

    Cibele Brugnera

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Some patients with severe impairment of body balance do not obtain adequate improvement from vestibular rehabilitation (VR. OBJECTIVE: To evaluate the effectiveness of Vertiguard(tm biofeedback equipment as a sensory substitution (SS of the vestibular system in patients who did not obtain sufficient improvement from VR. METHODS: This was a randomized prospective clinical study. Thirteen patients without satisfactory response to conventional VR were randomized into a study group (SG, which received the vibrotactile stimulus from Vertiguard(tm for ten days, and a control group (CG, which used equipment without the stimulus. For pre- and post-treatment assessment, the Sensory Organization Test (SOT protocol of the Computerized Dynamic Posturography (CDP and two scales of balance self-perception, Activities-specific Balance Confidence (ABC and Dizziness Handicap Inventory (DHI, were used. RESULTS: After treatment, only the SG showed statistically significant improvement in C5 (p = 0.007 and C6 (p = 0.01. On the ABC scale, there was a significant difference in the SG (p= 0.04. The DHI showed a significant difference in CG and SG with regard to the physical aspect, and only in the SG for the functional aspect (p = 0.04. CONCLUSION: The present findings show that sensory substitution using the vibrotactile stimulus of the Vertiguard(tm system helped with the integration of neural networks involved in maintaining posture, improving the strategies used in the recovery of body balance.

  1. Substitution Effects and Linear Free Energy Relationships During Reduction of 4- Benzoyl-n-(4-substituted Benzyl)pyridinium Cations

    Science.gov (United States)

    Leventis, Nicholas; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.

  2. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni

    International Nuclear Information System (INIS)

    Zhou, N.; Shen, C.; Wagner, M.F.-X.; Eggeler, G.; Mills, M.J.; Wang, Y.

    2010-01-01

    Precipitation of Ni 4 Ti 3 plays a critical role in determining the martensitic transformation path and temperature in Ni-Ti shape memory alloys. In this study, the equilibrium shape of a coherent Ni 4 Ti 3 precipitate and the concentration and stress fields around it are determined quantitatively using the phase field method. Most recent experimental data on lattice parameters, elastic constants, precipitate-matrix orientation relationship and thermodynamic database are used as model inputs. The effects of the concentration and stress fields on subsequent martensitic transformations are analyzed through interaction energy between a nucleating martensitic particle and the existing microstructure. Results indicate that R-phase formation prior to B19' phase could be attributed to both direct elastic interaction and stress-induced spatial variation in concentration near Ni 4 Ti 3 precipitates. The preferred nucleation sites for the R-phase are close to the broad side of the lenticular-shaped Ni 4 Ti 3 precipitates, where tension normal to the habit plane is highest, and Ni concentration is lowest.

  3. Fe substitution and pressure effects on superconductor Re6Hf

    Science.gov (United States)

    Yang, Jinhu; Guo, Yang; Wang, Hangdong; Chen, Bin

    2018-04-01

    Polycrystalline samples of (Re1-xFex) 6Hf were synthesized by arc-melting method and the phase purity of the samples was confirmed by powder X-ray diffraction method. In this paper, we report the Fe substitution and pressure effect on non-centrosymmetric superconductor Re6Hf. The superconducting transition temperature, TC, is confirmed by the measurements of magnetic susceptibility, electrical resistivity for x ≤ 0.22 samples with the temperature down to 2 K. We find that the TC is suppressed with the increase of Fe content. The upper critical field Hc2 is larger than the value predicted by the WHH theory and shows a linear temperature dependence down to 2 K. When upon the application of external pressure up to 2.5 GPa, the TC decreases monotonically at a rate dlnTC/dP of 0.01 GPa-1.

  4. Simultaneous gauche and anomeric effects in α-substituted sulfoxides.

    Science.gov (United States)

    Freitas, Matheus P

    2012-09-07

    α-Substituted sulfoxides can experience both gauche and anomeric effects, since these compounds have the geometric requirements and strong electron donor and acceptor orbitals which are essential to make operative the hyperconjugative nature of these effects. Indeed, the title effects were calculated to take place for 1,3-oxathiane 3-oxide in polar solution, where dipolar effects are absent or at least minimized, while only the gauche effect is present in 2-fluorothiane 1-oxide. Since the fluorine atom is a suitable probe for structural analysis using NMR, the (1)J(CF) dependence on the rotation around the F-C-S═O dihedral angle of (fluoromethyl)methyl sulfoxide was evaluated; differently from 1,2-difluoroethane and fluoro(methoxy)methane, this coupling constant is at least not exclusively dependent on dipolar interactions (or on hyperconjugation). Because of the nonmonotonic behavior of the (1)J(CF) rotational profile, this coupling constant does not appear to be of significant diagnostic value for probing the conformations of α-fluoro sulfoxides.

  5. Substitution effects in a generalized token economy with pigeons.

    Science.gov (United States)

    Andrade, Leonardo F; Hackenberg, Timothy D

    2017-01-01

    Pigeons made repeated choices between earning and exchanging reinforcer-specific tokens (green tokens exchangeable for food, red tokens exchangeable for water) and reinforcer-general tokens (white tokens exchangeable for food or water) in a closed token economy. Food and green food tokens could be earned on one panel; water and red water tokens could be earned on a second panel; white generalized tokens could be earned on either panel. Responses on one key produced tokens according to a fixed-ratio schedule, whereas responses on a second key produced exchange periods, during which all previously earned tokens could be exchanged for the appropriate commodity. Most conditions were conducted in a closed economy, and pigeons distributed their token allocation in ways that permitted food and water consumption. When the price of all tokens was equal and low, most pigeons preferred the generalized tokens. When token-production prices were manipulated, pigeons reduced production of the tokens that increased in price while increasing production of the generalized tokens that remained at a fixed price. The latter is consistent with a substitution effect: Generalized tokens increased and were exchanged for the more expensive reinforcer. When food and water were made freely available outside the session, token production and exchange was sharply reduced but was not eliminated, even in conditions when it no longer produced tokens. The results join with other recent data in showing sustained generalized functions of token reinforcers, and demonstrate the utility of token-economic methods for assessing demand for and substitution among multiple commodities in a laboratory context. © 2016 Society for the Experimental Analysis of Behavior.

  6. Effect of transition metal-doped Ni(211) for CO dissociation: Insights from DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kuiwei; Zhang, Minhua [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China)

    2017-03-31

    Highlights: • Doping the step edge of Ni(211) with Fe or Ru observably enhances CO dissociation. • Rh doping is unfavorable for CO activation both kinetically and thermodynamically. • Two neat linear relations are proposed besides the Brønsted–Evans–Polanyi relation. • The differences of CO adsorption are rationalized via the Blyholder model. - Abstract: Density functional theory slab calculations were performed to investigate the adsorption and dissociation of CO over pure and M-doped Ni(211) (M = Fe, Co, Ru and Rh) with the aim to elucidate the effect of transition metal doping for CO activation. Doping the step edge of Ni(211) with Fe, Co and Ru is found to enhance the binding of CO in the initial state (IS) (in the sequence by the improvement degree: Fe > Ru > Co) as well as the co-adsorption of C and O in the final state (FS) (Ru > Fe > Co). In contrast, Rh doping is unfavorable both in the IS and in the FS. Analysis of the overall potential energy surfaces (PES) suggests CO dissociation is facilitated by Fe, Ru and Co doping both kinetically and thermodynamically, wherein Fe and Ru behave extraordinary. Interestingly, Fe substitute is slightly superior to Ru in kinetics whereas the contrary is the case in thermodynamics. Rh doping elevates the energy height from 0.97 eV on Ni(211) to 1.32 eV and releases 0.39 eV less heat relative to Ni(211), again manifesting a negative effect. Besides the classical Brønsted–Evans–Polanyi relationship, we put forward another two neat linear relations, which can well describe the feature of CO dissociation. The differences of CO adsorption and activation in the IS over pure and doped Ni(211) surfaces are rationalized via electronic structure analysis. The findings presented herein are expected to provide theoretical guidance for catalyst design and optimization in relevant processes.

  7. Shape and size effects on layered Ni/PZT/Ni composites magnetoelectric performance

    Energy Technology Data Exchange (ETDEWEB)

    Pan, D A; Zhang, S G; Qiao, L J [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A [Department of Mechanical Engineering, University of South Florida, Tampa FL 33620 (United States)], E-mail: lqiao@ustb.edu.cn

    2008-09-07

    This paper presents the magnetoelectric (ME) effect in trilayered Ni/PZT/Ni composites which is related to their size and shape. The ME composites with the same interfacial areas but different geometrical shapes have different ME voltage coefficients. Longitudinal resonant modes in the rectangular and triangular trilayered ME composites were studied. One should choose optimized size, shape and working frequency of the ME composites in order to gain the maximum ME effect. This study plays a guiding role for trilayered ME composites design for real applications. (fast track communication)

  8. Influence of the substitution of Ni for Fe on the microstructure evolution and magnetic phase transition in La(Fe1−xNix)11.5Si1.5 compounds

    International Nuclear Information System (INIS)

    Sun, Song; Ye, Rongchang; Long, Yi

    2013-01-01

    Graphical abstract: M–T curves show that all the compounds undergo a ferromagnetic–paramagnetic magnetic phase transition process. Besides, the Curie temperature T c of La(Fe 1−x Ni x ) 11.5 Si 1.5 (x = 0, 0.01, 0.02, 0.03) compounds increase monotonously from 195 K to 219 K when Ni content x varies from 0 to 0.03. Highlights: ► We substituted Fe by new element Ni in La(Fe 1−x Ni x ) 11.5 Si 1.5 compounds. ► The microstructure evolution, magnetic phase transition and Curie temperature of La(Fe 1−x Ni x ) 11.5 Si 1.5 compounds were investigated. ► The small substitution of Ni for Fe in La(Fe 1−x Ni x ) 11.5 Si 1.5 compounds enhances the formation of 1:13 phase and helps the elimination of impurity phase significantly. ► The Curie temperature T C of La(Fe 1−x Ni x ) 11.5 Si 1.5 compounds increase monotonously from 195 K to 219 K when x varies from 0 to 0.03. - Abstract: The influence of Ni substitution on the microstructure evolution and magnetic phase transition has been investigated in La(Fe 1−x Ni x ) 11.5 Si 1.5 (x = 0, 0.01, 0.02, 0.03) compounds. Results show that partial substitution of Ni for Fe in La(Fe 1−x Ni x ) 11.5 Si 1.5 (x = 0, 0.01, 0.02, 0.03) alloys promotes fining of the as-cast microstructure. Besides, the formation of 1:13 phase and the elimination of impurity phases is facilitated significantly when annealed at 1373 K for 5 days. Large amounts of inhomogeneities are present in the annealed LaFe 11.5 Si 1.5 alloy. While almost single 1:13 phase is obtained in La(Fe 1−x Ni x ) 11.5 Si 1.5 (x = 0.02, 0.03) alloys. Moreover, the Curie temperature T C of La(Fe 1−x Ni x ) 11.5 Si 1.5 (x = 0, 0.01, 0.02, 0.03) compounds increase monotonously from 195 K to 219 K when Ni content x varies from 0 to 0.03.

  9. The role of annealing temperature and bio template (egg white) on the structural, morphological and magnetic properties of manganese substituted MFe2O4 (M=Zn, Cu, Ni, Co) nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Jayaprakash, R.; Kumar, Sanjay

    2014-02-01

    Manganese substituted ferrites (ZnFe2O4, CuFe2O4, NiFe2O4 and CoFe2O4) have been prepared in the bio template medium by using a simple evaporation method. The annealing temperature plays an important position on changing particle size and morphology of the mixed ferrite nanoparticles were found out by X-ray diffraction, transmission electron microscopy and scanning electron microscopy methods. The role of manganese substitution in the mixed ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in magnetic properties which is studied by using vibrating sample magnetometer (VSM). These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. However, α-Fe2O3 phase was slowly vanished after ferrites annealing above 900 °C. The effect of this secondary phase on the structural change and magnetic properties of the mixed ferrite nanoparticles is discussed.

  10. Ionizing Radiation Effects in Ni Nanotubes

    Science.gov (United States)

    Shlimas, D.; Kozlovsky, A.; Shumskaya, A.; Kaniukov, E.; Ibragimova, M.; Zdorovets, M.; Kadyrzhanov, K.

    2017-01-01

    Polycrystalline nickel nanotubes with diameter of 380 nm and wall thickness 95 nm were synthesized by electrochemical method using PET track-etched membranes with thickness of 12 μm. A comprehensive study of the structural, morphological and electrical characteristics of Ni nanotubes irradiated with C+13 ions with energy 1.75 MeV/nucleon and fluence ranging from 109 to 5 × 1011 cm-2 was carried out. The ability of modification of structural parameters such as lattice parameter and the average size of crystallites and conductivity of Ni nanotubes by irradiation was shown.

  11. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  12. Photodegradation of malachite green dye catalyzed by Keggin-type polyoxometalates under visible-light irradiation: Transition metal substituted effects

    Science.gov (United States)

    Liu, Chun-Guang; Zheng, Ting; Liu, Shuang; Zhang, Han-Yu

    2016-04-01

    In the present paper, Keggin-type polyoxometalates (POMs) (NH4)3[PW12O40] and its mono-transition-metal-substituted species (NH4)5[{PW11O39}MII(H2O)] (M = Mn, Fe, Co, Ni, Cu, Zn) have been synthesized and used as photocatalyst to activate O2 for the degradation of dye molecule under visible-light irradiation. Because of the strong adsorption on the surface of POM catalyst, malachite green (MG) molecule was employed as a molecular probe to test their photocatalytic activity. The photodegradation study shows that introduction of transition metal ion leads to an increase in the degradation of MG in the following order: Mn < Fe < Co < [PW12O40]3- < Ni < Cu < Zn, which indicates that the photocatalytic activity of these POMs is sensitive to the transition metal substituted effects. Electronic structure analysis based on the density functional theory calculations shows that a moderate decrease of oxidizing ability of POM catalyst may improve the photocatalytic activity in the degradation of dye molecule under visible-light irradiation. Meanwhile, intermediate products about the photocatalytic oxidation of MG molecule were proposed on the basis of gas chromatograph mass spectrometer analysis.

  13. Heterogeneous substitution effects in chlorocyanomethyl radical and chlorocyanocarbene.

    Science.gov (United States)

    Khuseynov, Dmitry; Dixon, Andrew R; Goebbert, Daniel J; Sanov, Andrei

    2013-10-17

    We report a photoelectron-imaging investigation of the chlorocyanomethyl radical (CHClCN) and the corresponding carbene (CClCN). The results are discussed in comparison with the corresponding dichloro- and dicyano-substituted species, focusing on the divergent effects of the halogen and pseudohalogen (CN) substitutions. A cooperative (captodative) interaction of the π-donor Cl and π-acceptor cyano groups favors the increased stability of the CHClCN radical, but a competition of the two substituents is observed in the singlet-triplet splitting of the carbene. The vertical detachment energy (VDE) of CHClCN(-) is determined to be 2.39 ± 0.04 eV, with the broad photoelectron band consistent with the significant geometry change predicted by theory for the detachment transition. The adiabatic electron affinity of CHClCN, EA = 1.86 ± 0.08 eV, is estimated on the basis of the experimental VDE and the computed difference between the VDE and EA values. This result allows the calculation of the bond dissociation energy of chloroacetonitrile, DH298(H-CHClCN) = 87.0 ± 2.7 kcal/mol. Photoelectron imaging of CClCN(-) reveals two main transitions, assigned to the singlet ((1)A') and triplet ((3)A″) states of the CClCN carbene. The respective VDEs are 2.76 ± 0.05 and 3.25 ± 0.05 eV. The experimental results are in good agreement with the theoretically predicted singlet-triplet vertical energy gap at the anion geometry, but inconclusive with regard to the adiabatic singlet-triplet splitting in CClCN. Consistent with the experimental findings, ab initio calculations using the spin-flip approach in combination with the coupled-cluster theory, indicate that the (1)A' and (3)A″ states are nearly degenerate, with the singlet state lying adiabatically only ∼0.01 eV below the triplet.

  14. Transient environmental effects of light alloy substitutions in transport vehicles

    International Nuclear Information System (INIS)

    Caceres, Carlos H.

    2009-01-01

    Materials indices and exchange constants are combined with Field et al.'s fleet analysis [Field F, Kirchain R, Clark J. Life-cycle assessment and temporal distributions of emissions: developing a fleet-based analysis. J Indust Ecol 2000;4:71-91, (doi:10.1162/108819800569816)] to examine the time-dependent CO 2 emissions attached to the production of the Al and Mg alloys used to reduce the mass of transport vehicles. The model is used to breakdown the temporal pattern of upfront emissions of passenger cars according to the mass and CO 2 -footprint efficiency of typical automotive structural substitutions (castings, stiff panels and stiff beams), accounting for the effect of recycling. The fleet's upfront emissions of Al and Mg castings with high content of secondary metal are offset by the increased fuel efficiency after 4 years of driving. Al beams and panels and electrolytic Mg panels require between 8 and 15 years, whereas for panels and beams of Pidgeon Mg no environmental benefits ever materialise.

  15. Effects of a perfusion bioreactor activated novel bone substitute in spine fusion in sheep

    DEFF Research Database (Denmark)

    Sørensen, Jesper Roed; Koroma, Kariatta Ester; Ding, Ming

    2012-01-01

    To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model.......To evaluate the effect of a large perfusion-bioreactor cell-activated bone substitute, on a two-level large posterolateral spine fusion sheep model....

  16. Effective Macroprudential Policy: Cross-Sector Substitution from Price and Quantity Measures

    NARCIS (Netherlands)

    Cizel, J.; Frost, J.; Houben, A.; Wierts, P.

    Macroprudential policy is increasingly being implemented worldwide. Key questions are its effectiveness in influencing bank credit and substitution effects beyond banking. Our results confirm the expected effects of macroprudential policies on bank credit, both for advanced economies and emerging

  17. Support effects on hydrotreating activity of NiMo catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Diaz-Garcia, L.; Cortez de la Paz, M.T.

    2007-01-01

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS x catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts

  18. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  19. Room Temperature Gas Sensing Properties of Sn-Substituted Nickel Ferrite (NiFe2O4) Thin Film Sensors Prepared by Chemical Co-Precipitation Method

    Science.gov (United States)

    Manikandan, V.; Li, Xiaogan; Mane, R. S.; Chandrasekaran, J.

    2018-04-01

    Tin (Sn) substituted nickel ferrite (NiFe2O4) thin film sensors were prepared by a simple chemical co-precipitation method, which initially characterized their structure and surface morphology with the help of x-ray diffraction and scanning electron microscopy. Surface morphology of the sensing films reveals particles stick together with nearer particles and this formation leads to a large specific area as a large specific area is very useful for easy adsorption of gas molecules. Transmission electron microscopy and selected area electron diffraction pattern images confirm particle size and nanocrystallnity as due to formation of circular rings. Fourier transform infrared analysis has supported the presence of functional groups. The 3.69 eV optical band gap of the film was found which enabled better gas sensing. Gas sensors demonstrate better response and recovery characteristics, and the maximum response was 68.43%.

  20. The Effects of Substituting Soyabean Meal for Breadfruit Meal on ...

    African Journals Online (AJOL)

    Increasing substitutions of soyabean meal for breadfruit meal in diets fed to Heterobranchus bidorsalis (♂) x Clarias gariepinus (♀) hybrid fingerlings led to weight increases in all dietary types with exception of diet G and higher growth induction in catfishes fed all diets with exception of diet B. Diets C had induced better ...

  1. Effects of substituting fishmeal with immobilized urea periodate ...

    African Journals Online (AJOL)

    Growth trails were conducted with Oreochromis niloticus fingerlings (mean weight 0.88 + 0.02 g) to evaluate the suitability of incorporating immobilized urea periodate oxidized Lignocellulosic Materials (LCMs) namely, Acha (Digitaria exilis (Staph) and Rice (Oryza sativa (L.) straws for substituting fishmeal from the reference ...

  2. Effects of choline chloride on electrodeposited Ni coating from a Watts-type bath

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yurong; Yang, Caihong; He, Jiawei; Wang, Wenchang [School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Mitsuzak, Naotoshi [Qualtec Co., Ltd, Osaka 590-0906 (Japan); Chen, Zhidong, E-mail: zdchen.lab@gmail.com [School of Material Science and Engineering, Jiangsu Key Laboratory of Materials, Surface and Technology, Changzhou University, Changzhou 213164 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Advanced Catalytic Material and Technology, Changzhou University, Changzhou 213164 (China)

    2016-05-30

    Graphical abstract: - Highlights: • ChCl was applied as additive and conducting salt in Watts-type bath. • Progressive addition of ChCl leads to the crystal orientation (1 1 1) predominant. • The grain size and microhardness were refined and enhanced by increasing ChCl. • ChCl could be a good alternative to NiCl{sub 2} and additives for bright Ni electroplating. - Abstract: Electrodeposition of bright nickel (Ni) was carried out in a Watts-type bath. Choline chloride (ChCl) was applied as a multifunctional additive and substitute for nickel chloride (NiCl{sub 2}) in a Watts-type bath. The function of ChCl was investigated through conductivity tests, anodic polarization, and cathodic polarization experiments. The studies revealed that ChCl performed well as a conducting salt, anodic activator, and cathodic inhibitor. The effects of ChCl on deposition rate, preferred orientation, grain size, surface morphology, and microhardness of Ni coatings were also studied. The deposition rate reached a maximum value of greater than 27 μm h{sup −1} when 20 g L{sup −1} ChCl was introduced to the bath. Using X-ray diffraction, it was confirmed that progressive addition of ChCl promoted the preferred crystal orientation modification from (2 0 0) and (2 2 0) to (1 1 1), refined grain size, and enhanced microhardness. The presence of ChCl lowered the roughness of the coating.

  3. Enhancement of Electrochemical Performance of LiMn2O4 Spinel Cathode Material by Synergetic Substitution with Ni and S

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-05-01

    Full Text Available Nickel and sulfur doped lithium manganese spinels with a nominal composition of LiMn2−xNixO4–ySy (0.1 ≤ x ≤ 0.5 and y = 0.01 were synthesized by a xerogel-type sol-gel method followed by subsequent calcinations at 300 and 650 °C in air. The samples were investigated in terms of physicochemical properties using X-ray powder diffraction (XRD, transmission electron microscopy (EDS-TEM, N2 adsorption-desorption measurements (N2-BET, differential scanning calorimetry (DSC, and electrical conductivity studies (EC. Electrochemical characteristics of Li/Li+/LiMn2−xNixO4–ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST, electrochemical impedance spectroscopy (EIS, and cyclic voltammetry (CV. The XRD showed that for samples calcined at 650 °C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive X-ray spectroscopy (EDS mapping confirmed homogenous distribution of nickel and sulfur in the obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1 and sulfur (y = 0.01 in the LiMn2O4 enhances the electrochemical performance along with the rate capability and capacity retention.

  4. Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution

    DEFF Research Database (Denmark)

    Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel

    2009-01-01

    ) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...

  5. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy

    International Nuclear Information System (INIS)

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-01-01

    Composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 was prepared by mechanical milling starting with nanocrystalline Mg 2 Ni and amorphous Mg 50 Ni 50 powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg 50 Ni 50 improved the hydriding and dehydriding kinetics of Mg 2 Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: → First study of the hydriding behavior of composite Mg 2 Ni (25 wt.%) amorphous Mg 50 Ni 50 . → Microstructural characterization of composite material using XRD and SEM was obtained. → An improved effect of Mg 50 Ni 50 on the Mg 2 Ni hydriding behavior was verified. → The apparent activation energy for the hydrogen desorption of composite was obtained.

  6. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Science.gov (United States)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  7. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Directory of Open Access Journals (Sweden)

    Vladislav Yakubov

    2017-08-01

    Full Text Available Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  8. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)

    Science.gov (United States)

    Molenda, Janina; Kulka, Andrzej; Milewska, Anna; Zając, Wojciech; Świerczek, Konrad

    2013-01-01

    LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV) application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV). In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni), solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level. PMID:28809235

  9. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni

    Directory of Open Access Journals (Sweden)

    Konrad Świerczek

    2013-04-01

    Full Text Available LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV. In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni, solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level.

  10. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 1. Structural, Hydrogen Storage, and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-11-01

    Full Text Available The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen absorbing alloy (HAA were studied. Addition of Fe increases the lattice constants and abundance of the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage, Fe incorporation does not change the storage capacity or equilibrium pressure, but it does decrease the change in both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased secondary phase abundance and consequent lower synergetic effect and surface electrochemical reaction (caused by the lower volume of the surface metallic Ni inclusions. In a low-temperature environment (−40 °C, although Fe increases the reactive surface area, it also severely hinders the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance. Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a less active surface. Therefore, further surface treatment methods that are able to increase the surface catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions that Fe provides structurally are worth investigating in the future.

  11. Effects of choline chloride on electrodeposited Ni coating from a Watts-type bath

    Science.gov (United States)

    Wang, Yurong; Yang, Caihong; He, Jiawei; Wang, Wenchang; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-05-01

    Electrodeposition of bright nickel (Ni) was carried out in a Watts-type bath. Choline chloride (ChCl) was applied as a multifunctional additive and substitute for nickel chloride (NiCl2) in a Watts-type bath. The function of ChCl was investigated through conductivity tests, anodic polarization, and cathodic polarization experiments. The studies revealed that ChCl performed well as a conducting salt, anodic activator, and cathodic inhibitor. The effects of ChCl on deposition rate, preferred orientation, grain size, surface morphology, and microhardness of Ni coatings were also studied. The deposition rate reached a maximum value of greater than 27 μm h-1 when 20 g L-1 ChCl was introduced to the bath. Using X-ray diffraction, it was confirmed that progressive addition of ChCl promoted the preferred crystal orientation modification from (2 0 0) and (2 2 0) to (1 1 1), refined grain size, and enhanced microhardness. The presence of ChCl lowered the roughness of the coating.

  12. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  13. Magnetoresistance Effect in NiFe/BP/NiFe Vertical Spin Valve Devices

    Directory of Open Access Journals (Sweden)

    Leilei Xu

    2017-01-01

    Full Text Available Two-dimensional (2D layered materials such as graphene and transition metal dichalcogenides are emerging candidates for spintronic applications. Here, we report magnetoresistance (MR properties of a black phosphorus (BP spin valve devices consisting of thin BP flakes contacted by NiFe ferromagnetic (FM electrodes. The spin valve effect has been observed from room temperature to 4 K, with MR magnitudes of 0.57% at 4 K and 0.23% at 300 K. In addition, the spin valve resistance is found to decrease monotonically as temperature is decreased, indicating that the BP thin film works as a conductive interlayer between the NiFe electrodes.

  14. Effect of cobalt substitution on the magnetic properties of nickel chromite

    Science.gov (United States)

    Mohanty, P.; Sheppard, C. J.; Prinsloo, A. R. E.; Roos, W. D.; Olivi, L.; Aquilanti, G.

    2018-04-01

    It is of interest to study the magneto-structural coupling in geometrically frustrated antiferromagnets, where structural distortion elevates the ground state degeneracy, leading to a long-range magnetic order. In this regard a cubic spinel compound of the form AB2O4 is currently drawing much attention, where A refers to tetrahedral and B to octahedral sites. In the particular case of NiCr2O4 the material undergoes several structural phase transitions associated with the magnetic ordering. It is therefore necessary to study the magnetic behaviour of NiCr2O4 by substituting either A or B sites, or both systematically with suitable cations. The current work therefore aims at the modification of magnetic properties of NiCr2O4 by doping with Co2+ at A sites. In order to achieve the afore mentioned, (Ni1-xCox)Cr2O4 (0 ≤ x ≤ 1) were prepared using chemical co-precipitation techniques. X-ray diffraction (XRD) results indicate that the samples are in the expected phase without any trace of Cr2O3 impurities after calcination. Transmission electron microcopy (TEM) analyses of these samples show that the particles are mostly bi-pyramidal in shape, with sizes ranging from 50 nm to 100 nm. In the present study the ferrimagnetic transition temperatures (TC) of the various samples were determined utilizing magnetization as function of temperature measurements. TC for NiCr2O4 and CoCr2O4 was determined to be 82.4 ± 0.8 K and 99.5 ± 0.5 K, respectively. These values are higher than those previously reported in the literature for both these compounds. Substitution of Ni by Co, results in an increase in the TC, giving values of 89.2 ± 0.7 K and 90.6 ± 0.9 K for (Ni0.5Co0.5)Cr2O4 and (Ni0.25Co0.75)Cr2O4, respectively. The (Ni0.5Co0.5)Cr2O4 sample demonstrated a high coercivity of 3.6 ± 0.1 T and a shift in the hysteresis loop observed under field cooled measurement, not previously reported in literature. X-ray photoelectron spectroscopy (XPS) of (Ni0.5Co0.5)Cr2O4 suggests

  15. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  16. Effects of P/Ni ratio and Ni content on performance of γ-Al_2O_3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    International Nuclear Information System (INIS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO_4 was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H_2 consumption than Ni. - Abstract: γ-Al_2O_3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al_2O_3 was also studied for comparison. It was found that the formation of AlPO_4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni_3P, Ni_1_2P_5 and Ni_2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al_2O_3, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl

  17. Alkyl Substitution Effect on Oxidation Stability of Sulfone-Based Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chi-Cheung [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; He, Meinan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Redfern, Paul [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Curtiss, Larry A. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Liao, Chen [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Lu [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Burrell, Anthony K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA; Zhang, Zhengcheng [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave. Argonne IL 60439 USA

    2016-02-16

    Organic sulfone compounds have been widely used as high-voltage electrolytes for lithium-ion batteries for decades. However, owing to the complexity of the synthesis of new sulfones, only a few commercially available sulfones have been studied. In this paper, we report the synthesis of new sulfone compounds with various substituent groups and the impact of the substituent group on the oxidation stability of sulfones. Electrochemical floating tests using a 5 V LiNi0.5Mn1.5O4 spinel cathode and density functional theory calculations showed that the cyclopentyl-substituted sulfone McPS suffered from oxidation instability, starting from 4.9 V versus Li+/Li, as observed by the large leakage currents. On the other hand, the isopropyl-substituted sulfone MiPS and tetramethylene substituted sulfone TMS showed much improved oxidation stability under identical testing conditions. The substitution structure of the sulfone plays a significant role in the determination of its oxidative stability and should first be considered for the development of new sulfone-based electrolytes for high-voltage, high-energy lithium-ion batteries.

  18. Covalency effects of Te substitution on the antiferromagnetic stability of Cr3Se4-yTey

    International Nuclear Information System (INIS)

    Ohta, S.; Adachi, Y.

    1996-01-01

    Measurements of the magnetic susceptibility χ as a function of temperature T for Te-substituted Cr 3 Se 4-y Te y (0≤y≤1) with the NiAs-like crystal structure (space group I2/m) have been carried out. As y increases, the Neel temperature T N shifts to the lower temperature side. The magnetic transition temperature T A , where a sharp peak is observed in χ versus T plots, decreases with increasing y, in a similar fashion to the concentration dependence of T N . The effective number of Bohr magnetons per Cr takes an intermediate value which is expected in Cr 2+ and Cr 3+ states. Characteristic features of a spin-glass-like phase are observed in the sample with y=1. The results obtained are discussed qualitatively from the viewpoint of antiferromagnetic stability through d-p covalent mixing between Cr 3d and chalcogen p orbitals. (orig.)

  19. Effects of site substitution and metal ion addition on doped manganites

    CERN Document Server

    Pradhan, A K; Roul, B K; Sahu, D R; Muralidhar, M

    2002-01-01

    We report transport, magnetization and transmission electron microscopy studies of the effects of A-and B-site substitution, and the addition of metal ions such as Pt, Ag and Sr, on doped ABO sub 3 perovskites, where A = La, Pr etc and B = Mn. Disorder induced by such substitution changes the behaviour of the charge-ordered (CO) state significantly. A-and B-site substitution suppresses the CO phase due to size mismatch and disorder produced by inhomogeneity. On the other hand, addition of metal ions such as Pt and Ag improves several colossal-magnetoresistance properties significantly due to microstructural effects and enhanced current percolation through grain boundaries.

  20. Large magnetocaloric effect of GdNiAl2 compound

    International Nuclear Information System (INIS)

    Dembele, S.N.; Ma, Z.; Shang, Y.F.; Fu, H.; Balfour, E.A.; Hadimani, R.L.; Jiles, D.C.; Teng, B.H.; Luo, Y.

    2015-01-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl 2 . Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl 2 alloy is CuMgAl 2 -type phase structure with about 1 wt% GdNi 2 Al 3 secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10 2 J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl 2 compound. • The ΔS Mmax and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl 2 comparing with other candidates

  1. Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements

    International Nuclear Information System (INIS)

    Tegus, O.; Brueck, E.; Li, X.W.; Zhang, L.; Dagula, W.; Boer, F.R. de; Buschow, K.H.J.

    2004-01-01

    MnFe(P,As) displays a large magnetocaloric effect around room temperature. Substitution of Cr for Fe results in a reduction of both the ordering temperature and the magnetocaloric effect. Substitution of Co for Fe leads to a decrease of the ordering temperature, whereas 10% extra Fe substituted for Mn leads to an increase of the ordering temperature. Finally, 10% extra Mn substituted for Fe results in an enhanced magnetocaloric effect with hardly any change of ordering temperature

  2. Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys

    Science.gov (United States)

    Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.

    2005-02-01

    Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.

  3. The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate

    DEFF Research Database (Denmark)

    Yanagiya, Shun-ichi; Van Nong, Ngo; Xu, Jianxiao Jackie

    2010-01-01

    Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied......, indicating a significant improvement compared with the non-doped CuAlO2 sample...

  4. Magneto-thermoelectric effects in NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Maximilian

    2015-11-01

    In this thesis magneto-thermoelectric effects are investigated in a systematic way to separate the transverse spin Seebeck effect from other parasitic effects like the anomalous Nernst effect. In contrast to the first studies found in the literature, in NiFe thin films a contribution of the transverse spin Seebeck effect can be excluded. This surprising outcome was crosschecked in a variety of different sample layouts and collaborations with other universities to ensure the validity of these results. In general, this thesis solves a long time discussion about the existence of the transverse spin Seebeck effect in NiFe films and supports the importance of control measurements for the scientific community. Even if such ''negative'' results may not be the award winning ones, new discoveries should be treated with constructive criticism and be checked carefully by the scientific community.

  5. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  6. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  7. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    International Nuclear Information System (INIS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Li, Run-Wei; Wu, Y. H.; Zhang, S.

    2016-01-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y_3Fe_5O_1_2 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  8. On the effect of heterovalent substitutions in ruthenocuprates

    Energy Technology Data Exchange (ETDEWEB)

    Klamut, P.W.; Dabrowski, B.; Mini, S.M.; Maxwell, M.; Mais, J.; Felner, I.; Asaf, U.; Ritter, F.; Shengelaya, A.; Khasanov, R.; Savic, I.M.; Keller, H.; Wisniewski, A.; Puzniak, R.; Fita, I.M.; Sulkowski, C.; Matusiak, M

    2003-05-01

    We discuss the properties of superconducting derivatives of the RuSr{sub 2}GdCu{sub 2}O{sub 8} (1212-type) ruthenocuprate, for which heterovalent doping has been achieved through partial substitution of Cu ions into the RuO{sub 2} planes (Ru{sub 1-x}Sr{sub 2}GdCu{sub 2+x}O{sub 8-{delta}}, 0{<=}x{<=}0.75, T{sub c}{sup max}=72 K for x=0.3-0.4) and Ce ions into the Gd sites (RuSr{sub 2}Gd{sub 1-y}Ce{sub y}Cu{sub 2}O{sub 8}, 0{<=}y{<=}0.1). The measurements of XANES, thermopower, and magnetization under external pressure reveal an underdoped character of all compounds. Muon spin rotation experiments indicate the presence of magnetic order at low temperatures (T{sub m}=14-2 K for x=0.1-0.4). Properties of these two series lead us to the qualitative phase diagram for differently doped 1212-type ruthenocuprates. The difference in temperature of magnetic ordering found for superconducting and non-superconducting RuSr{sub 2}GdCu{sub 2}O{sub 8} is discussed in the context of the properties of substituted compounds. The high pressure oxygen conditions required for synthesis of Ru{sub 1-x}Sr{sub 2}RECu{sub 2+x}O{sub 8-{delta}}, have been extended to synthesis of a Ru{sub 1-x}Sr{sub 2}Eu{sub 2-y}Ce{sub y}Cu{sub 2+x}O{sub 10-{delta}} series. The Cu {yields} Ru doping achieved in these phases is found to decrease the temperature for magnetic ordering as well the volume fraction of the magnetic phase.

  9. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K., E-mail: mayukh.ray@saha.ac.in; Bagani, K.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in

    2014-07-05

    Highlights: • Excess Ni causes an increase in the martensite transition temperature. • The system Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} exhibit multifunctional properties. • The RCP and EB increases continuously with excess Ni concentration in the system. • Antiferromagnetic interaction increases with excess Ni concentration. - Abstract: The martensitic transition, exchange bias (EB) and inverse magnetocaloric effect (IMCE) of bulk Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} (x = 0, 0.06, 0.12, 0.18) Heusler alloy is investigated in this paper. Substitution of Mn by Ni causes an increase in the martensite transition temperature (T{sub M}), decrease in Curie temperature of austenite phase (T{sub C}{sup A}) and also a decrease in the saturation magnetic moment (M{sub sat}). While the decrease in T{sub C}{sup A} and M{sub sat} is explained by the dilution of the magnetic subsystems and on the other hand the increase in T{sub M} is due to the increase of valence electron concentration per atom (e/a). All the alloys shows EB effect below a certain temperature (T{sup ∗}) and EB field (H{sub EB}) value is almost thrice in magnitude for x = 0.18 sample compared to x = 0 sample at 5 K. In these alloys, Ni/Mn atoms at regular site couples antiferromagnetically (AFM) with the excess Ni atoms at Mn or Sn sites and this AFM coupling plays the key role in the observation of EB. For the IMCE, the change in magnetic entropy (ΔS{sub M}) initially increased with excess Ni concentration upto x = 0.12 but then a drastic fall in ΔS{sub M} value is observed for the sample x = 0.18 but the relative cooling power (RCP) value is increased continuously with the excess Ni concentration.

  10. Effects of Ni-5%RExOy Composite Additives on Electrochemical Hydrogen Storage Performances of Mg2Ni

    Directory of Open Access Journals (Sweden)

    ZHANG Guo-fang

    2017-11-01

    Full Text Available The Ni-5%RExOy (CeO2, La2O3, Eu2O3 as composite additives, Mg2Ni-Ni-5%RExOy composites were prepared by the ball milling method. The effects of different additives on the structure, morphology, electrochemistry and kinetic properties of Mg2Ni alloy were studied systematically. The results show that composite additives can improve the proportion of amorphous and nanocrystalline structure of Mg2Ni alloy. The particle size is homogeneous but the agglomeration is observed in the sample with Ni-5%CeO2 additives. The composites with additives show higher maximum discharge capacity and better cycle stabilities. All of these three kinds of composite additives can improve the kinetic properties of the composites effectively, including optimizing the charge-transfer ability, the reversibility of the electrochemical reaction on the alloy surface, and enhancing the diffusion coefficients of H atoms in the bulk of alloy. Among these three kinds of additives, Ni-5%CeO2 additive shows the best catalysis effect on promoting the kinetic properties of the composites.

  11. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  12. Factor substitution and rebound effect in China’s food industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Xie, Xuan

    2015-01-01

    Highlights: • The basic information of China’s food industry is introduced in detail. • Inter-factor substitution relationship in China’s food industry is analyzed. • Direct rebound effect in the industry is measured. • Several relevant policy suggestions about energy conservation are provided. - Abstract: Energy efficiency improvement can reduce the energy consumption of an industry, and thus promote energy conservation. However, the reduction of effective energy prices caused by energy efficiency improvement will lower energy costs for enterprises, making them substitute energy for other input factors. Therefore, energy conservation brought about by efficiency improvement will be partly offset. This offset is called the energy rebound effect of an industry. This paper estimates the system of cost share equations in China’s food industry, analyzes the substitution relationship between each input factor, and calculates the direct rebound effect. The results show that: there exist substitution relationships between energy and other input factors, among which the substitution elasticity between energy and labor is the biggest, and the substitution of energy for capital dominates that of capital for energy. The direct rebound effect is approximately 34.39%, which means that about 34.39% of energy conservation caused by energy efficiency enhancement in the industry has been offset by the rebound effect. The paper proposes some policy suggestions on energy conservation according to the results of substitution relationship among input factors and the rebound effect of the industry. The policy suggestions include reducing the capital and labor costs of the food industry by decreasing financing costs of small businesses, optimizing personnel management, and rationalizing the energy pricing mechanism to form a reasonable energy price.

  13. Tritium aging effect of LaNi5

    International Nuclear Information System (INIS)

    Xiong Yifu; Li Rong; Luo Deli

    2002-01-01

    The influence of tritium aging effect on hydrogen storage feature of LaNi 5 were investigated by dedeuterizing thermodynamics and the equilibrium desorption. The result show that the tritium aging effect changed significantly the features of the equilibrium desorption isotherms for the aged LaNi 5 . The effects include a decrease of 50 percent of the equilibrium desorption pressure at 373 K, an increase of plateau slopes from 0.033 to 0.130, and a reduction of the reversible hydrogen storage capacity 1.3 mmol g -1 , and an increase of formation heats (ΔH) and entropy (ΔS) from 34.5 kJ·mol -1 and 105 J·mol -1 ·K -1 to 42.5 kJ·mol -1 and 128 J·mol -1 ·K -1 respectively

  14. New insight into electrochemical-induced synthesis of NiAl2O4/Al2O3: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd(II)

    International Nuclear Information System (INIS)

    Salleh, N.F.M.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Hameed, B.H.

    2015-01-01

    Graphical abstract: - Highlights: • The introduction of Ni to γ-Al 2 O 3 by electrolysis formed NiAl 2 O 4 spinels and NiO. • Physical mixed of NiO with γ-Al 2 O 3 only produced agglomerated NiO-Ni 0 . • Ni/Al 2 O 3 -E has remarkably higher degree of magnetism than Ni/Al 2 O 3 -PM. • Ni/Al 2 O 3 -E adsorbed Pd 2+ ions more effectively (q m = 40.3 mg/g) than Ni/Al 2 O 3 -PM. • Pd 2+ ions were adsorbed to both samples via magnetic attraction and ion exchange. - Abstract: A new promising adsorbent, Ni supported on γ-Al 2 O 3 was prepared in a simple electrolysis system (Ni/Al 2 O 3 -E) in minutes and was compared with the sample prepared by a physical mixing method (Ni/Al 2 O 3 -PM). The adsorbents were characterized by XRD, TEM, FTIR, 27 Al MAS NMR, XPS, and VSM. The results showed that besides NiO nanoparticles, a NiAl 2 O 4 spinel was also formed in Ni/Al 2 O 3 -E during the electrolysis via the dealumination and isomorphous substitution of Ni 2+ ions. In contrast, only agglomerated NiO was found in the Ni/Al 2 O 3 -PM. Adsorption test on removal of Pd 2+ ions from aqueous solution showed that the Pd 2+ ions were exchanged with the hydrogen atoms of the surface–OH groups of both adsorbents. Significantly, the Ni/Al 2 O 3 -E demonstrated a higher adsorption towards Pd 2+ ions than Ni/Al 2 O 3 -PM due to its remarkably higher degree of magnetism, which came from the NiAl 2 O 4 . The use of 0.1 g L −1 Ni/Al 2 O 3 -E gave the maximum monolayer adsorption capacity (q m ) of 40.3 mg g −1 at 303 K and pH 5. The Ni/Al 2 O 3 -E showed high potential for simultaneous removal of various noble and transition metal ions and could be also used repetitively without affecting the high adsorptivity for Pd 2+ ions. This work may provide promising adsorbents for recovery of various metals as well as other materials for such related applications

  15. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    Science.gov (United States)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  16. Effect of ageing temperatures on pseudoelasticity of Ni-rich NiTi shape memory alloy

    Science.gov (United States)

    Mohamad, Hishamiakim; Mahmud, Abdus Samad; Nashrudin, Muhammad Naqib; Razali, Muhammad Fauzinizam

    2018-05-01

    The shape memory behavior of NiTi alloy is very sensitive to alloy composition and heat treatments, particularly annealing and ageing. This paper analysed the effect of ageing towards the thermomechanical behaviour of Ti-51at%Ni wire. The analysis focused on the effect of ageing at the different temperature on thermal transformation sequence and tensile deformation behaviour with respect to the recoverability of the alloy. It was found that B2-R transformation peak appeared in the differential scanning calorimetry (DSC) measurement when the alloys were aged at the temperature between 400°C to 475°C for 30 minutes. Further ageing at 500°C to 550°C yielded two stage transformation, B2-R-B19' in cooling. All aged wires exhibited good pseudoelastic behaviour when deformed at room temperature and yielded below 1% residual strain upon unloading. Ageing at 450°C resulted the smallest unrecovered strain of about 0.4%.

  17. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  18. Effect of adding Si on shape memory effect in Co-Ni alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weimin [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liu Yan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Bohong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: bhjiang@sjtu.edu.cn; Zhou Pingnan [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-11-25

    In this paper, the effect of adding Si to Co-31.5 mass% Ni alloys on fcc-hcp martensitic transformation is investigated. The Co-Ni-Si ternary alloys with different amount of Si from 1 to 5 mass% were prepared. The stacking fault probability of Co-Ni-Si polycrystalline alloys were determined by X-ray diffraction profile analysis and compared with the binary Co-Ni alloy. The results show that the stacking fault probability of the fcc phase of alloys increases with increasing Si content. The effect of Si on phase transformation and shape memory behavior is evaluated. The experimental results show that both the critical strength and the shape memory effect of the ternary alloys will increase by the addition of Si. The improvement mechanism of the shape memory effect by adding Si to binary Co-Ni alloys is discussed.

  19. Effects of Substitutions on the Biodegradation Potential of Benzotriazole Derivatives

    Science.gov (United States)

    Abu-Dalo, M. A.; O'Brien, I.; Hernandez, M. T.

    2018-02-01

    Fourteen benzotriazole derivatives were subjected to microcosm tests to study the influence of substitutions on their biodegradation potential. Methylated, nitrated, carboxylated, and propionated bezotriazoles, a heterocyclic triazole, as well as methylated benzimidazoles, were introduced to activated sludge and soil enrichment cultures as the only carbon source. Some of the enrichment cultures were derived from airport soils that had been previously contaminated with aircraft deicing fluids and subsequently enriched with the commercially significant corrosion inhibitor methylbenzotriazole. The 5-methylbenzotriazole and only the carboxylated derivatives were degraded by soil or activated sludge biomass regardless of acclimation conditions. Radiotracer studies of [U-14C] 5-methylbenzotriazole, and [U-14C] 5-carboxybenzotriazole confirmed that relatively high concentrations (25mg L-1) of these derivatives can be completely mineralized in relatively short time frames by microbial consortia regardless of prior exposure. Observations suggested that the growth yield on these compounds is likely low. Biodegradation patterns suggested that carboxylated benzotriazole derivatives are more readily biodegradable than their more popular methylated counterparts.

  20. Effect of rare earth substitution in cobalt ferrite bulk materials

    International Nuclear Information System (INIS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O.F.

    2015-01-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm −3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe 2 O 4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples. - Highlights: • Substitution by a large number of rare earth elements was investigated. • First reported results on magnetostriction measurements of RE doped cobalt ferrite. • The doped samples presented an increased porosity and a decreased grain size. • Increased magnetostrctive response was observed for several doped samples

  1. Effect of NiO growth conditions on the bipolar resistance memory switching of Pt/NiO/SRO structure

    International Nuclear Information System (INIS)

    Kurnia, F.; Hadiyawarman, H.; Jung, C. U.; Liu, C. L.; Lee, S. B.; Yang, S. M.; Park, H. W.; Song, S. J.; Hwang, C. S.

    2010-01-01

    We deposited NiO thin films with SrRuO 3 bottom electrodes on SrTiO 3 (001) substrates by using pulsed laser deposition. The growth temperature and the oxygen pressure were varied in order to obtain NiO films with different structural and electrical properties. We investigated the I-V characteristics of the Pt/NiO/SRO structures and observed a strong dependence of bipolar resistance switching on the growth conditions of the NiO thin films. Stable bipolar memory resistance switching was observed only in the devices with NiO films deposited at 400 .deg. C and 10 mTorr of O 2 . The off-state I-V curve of bipolar switching showed a linear fitting to the Schottky effect, indicating its origin in the NiO/SRO interface. Our results suggest that the growth conditions of NiO may affect the bipolar switching behavior through the film's resistance, the film's crystallinity, or the status of the grain boundaries.

  2. Studies on substitutional protein sources for fish meal in the diet of Japanese flounder; Hirame shiryo ni okeru miriyo shigen no riyo

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, K; Furuta, T; Sakaguchi, I [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-08-01

    Effectiveness of livestock industry wastes and vegetable protein added to fish meal in fish farming is tested by feeding the Japanese flounder. In the experiment, a part or the whole of the fish meal protein is replaced by the meat meal (MM), meat and bone meal (MBM), corngluten meal (CGM), or dried silkworm pupa meal (SPM), and fries of the Japanese flounder are fed on the new diets for eight weeks. On a diet containing 60% or less of MM, no change is detected in the fish in terms of increase in weight, protein efficiency ratio, and blood components, indicating that 60% at the highest of fish meal may be replaced by MM. In the case of MBM, it can occupy approximately 20%. As for CGM, the proper substitution rate is approximately 40%. Essential amino acids that the new diets may lack are added for an approximately 10% improvement on the result. The SPM substitution works up to 40%, when, however, the blood components are degraded. The proper substitution rate is therefore placed at approximately 20%. 38 refs., 2 figs., 17 tabs.

  3. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi{sub 0.98}B{sub 0.02}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui, E-mail: huisun3@iflytek.com [Department of Basic Teaching, Anhui Institute of Information Technology, Wuhu, Anhui 241000 (China); Lu, Xu [College of Physics, Chongqing University, Chongqing 401331 (China); Morelli, Donald T. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-07-21

    Boron-added CoSi, CoSi{sub 0.98}B{sub 0.02}, possesses a very high thermoelectric power factor of 60 μW cm{sup −1} K{sup −2} at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms is intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi{sub 0.98}B{sub 0.02} has been studied. Here, we present a study of the substitution of Ge for Si atoms in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands, while Ge substitution only shifts the Fermi level upward into the conduction band. Our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.

  4. Isovalent substitutes play in different ways: Effects of isovalent substitution on the thermoelectric properties of CoSi_0_._9_8B_0_._0_2

    International Nuclear Information System (INIS)

    Sun, Hui; Lu, Xu; Morelli, Donald T.

    2016-01-01

    Boron-added CoSi, CoSi_0_._9_8B_0_._0_2, possesses a very high thermoelectric power factor of 60 μW cm"−"1 K"−"2 at room temperature, which is among the highest power factors that have ever been reported for near-room-temperature thermoelectric applications. Since the electrical properties of this material have been tuned properly, isovalent substitution for its host atoms is intentionally employed to reduce the lattice thermal conductivity while maintaining the electronic properties unchanged. In our previous work, the effect of Rh substitution for Co atoms on the thermoelectric properties of CoSi_0_._9_8B_0_._0_2 has been studied. Here, we present a study of the substitution of Ge for Si atoms in this compound. Even though Ge and Rh are isovalent with their corresponding host atoms, they play different roles in determining the electrical and thermal transport properties. Through the evaluation of the lattice thermal conductivity by the Debye approximation and the comparison between the high-temperature Seebeck coefficients, we propose that Rh substitution leads to a further overlapping of the conduction and the valence bands, while Ge substitution only shifts the Fermi level upward into the conduction band. Our results show that the influence of isovalent substitution on the electronic structure cannot be ignored when the alloying method is used to improve thermoelectric properties.

  5. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy

    International Nuclear Information System (INIS)

    Tian, Chenggang; Han, Guoming; Cui, Chuanyong; Sun, Xiaofeng

    2014-01-01

    Highlights: • The decrease of SFE could promote the dislocation dissociation. • The creep mechanisms were significantly affected by the SFE of the alloys. • The creep properties of the alloys improved with the decrease of SFE by facilitating the microtwinning process. - Abstract: Cobalt in a 23 wt.% Co containing Ni-base superalloys was systematically substituted by Ni in order to study the effects of stacking fault energy (SFE) on the creep mechanisms. The deformation microstructures of the alloys during different creep stages at 725 °C and 630 MPa were investigated by transmission electron microscopy (TEM). The results showed that the creep life increased as the SFE decreased corresponding to the increase of Co content in the alloys. At primary creep stage, the dislocation was difficult to dissociate independent of SFE. In contrast, at secondary and tertiary creep stages the dislocations dissociated at γ/γ′ interface and the partial dislocation started to shear γ′ precipitates, leaving isolated faults (IFs) in high SFE alloy, while the dislocations dissociated in the matrix and the partials swept out the matrix and γ′ precipitates creating extended stacking faults (ESFs) or deformation microtwins which were involved in diffusion-mediated reordering in low SFE alloy. It is suggested that the deformation microtwinning process should be favorable with the decrease of SFE, which could enhance the creep resistance and improve the creep properties of the alloys

  6. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    Science.gov (United States)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  7. Si effects on radiation induced segregation in high purity Fe-18Cr-14Ni alloys irradiated by Ni ions

    International Nuclear Information System (INIS)

    Ohta, Joji; Kako, Kenji; Mayuzumi, Masami; Kusanagi, Hideo; Suzuki, Takayoshi

    1999-01-01

    To illustrate the effects of the element Si on radiation induced segregation, which causes irradiation assisted stress corrosion cracking (IASCC), we investigated grain boundary chemistry of high purity Fe-18Cr-14Ni-Si alloys irradiated by Ni ions using FE-TEM. The addition of Si up to 1% does not affect the Cr depletion at grain boundaries, while it slightly enhances the depletion of Fe and the segregation of Ni and Si. The addition of 2% Si causes the depletion of Cr and Fe and the segregation of Ni and Si at grain boundaries. Thus, the Si content should be as low as possible. In order to reduce the depletion of Cr at grain boundaries, which is one of the major causes of IASCC, Si content should be less than 1%. (author)

  8. Effect of the substitution of F on the photoswitching behavior in single molecular device

    Science.gov (United States)

    Bian, Baoan; Zheng, Yapeng; Yuan, Peipei; Liao, Bin; Chen, Wei; An, Xiuhua; Mo, Xiaotong; Ding, Yuqiang

    2017-09-01

    We carry out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a 5-arylidenehydantoin molecule sandwiched between two Au electrodes. A reversible switching behavior between E and Z isomerization can be observed in the device through light irradiation, and their currents display different characteristic. Furthermore, it is found that the substitution of F in the molecule enlarges the switching ratio of device. The different characteristics of currents for E/Z forms and E/Z with the substitution of F are discussed by the transmission spectra and the molecular projected self-consistent Hamiltonian states. We discuss the change of Fermi level alignment due to the substitution of F, and the polarization effect under bias. We find the negative differential resistance effect in the E form with the substitution of F, which is explained by change of molecule-electrode coupling with the varied bias. The results suggest that the 5-arylidenehydantoin molecule with the substitution of F that improves the performance of device, becoming one of the methods for improving single molecular photoswitching performance in the future.

  9. Magnetoimpedance effects in a CoNiFe nanowire array

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, S., E-mail: selcuk.atalay@inonu.edu.tr [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey); Kaya, H.; Atalay, F.E.; Aydogmus, E. [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey)

    2013-06-05

    Highlights: ► CoNiFe nanowires were produced by electrodeposition method. ► Magnetoimpedance effect of nanowires arrays were investigated. ► Single peak behaviour was observed in the magnetoimpedance curve. ► Nanowire arrays exhibit uniaxial magnetic anisotropy along the wire axis. -- Abstract: This report describes the growth of CoNiFe nanowires into highly ordered porous anodic alumina oxide (AAO) templates by DC electrodeposition at a pH value of 2.6. Scanning electron microscopy (SEM) observations revealed that the wires have diameters of approximately 270–290 nm and a length of 25 μm. The energy dispersive X-ray (EDX) analysis indicated that the composition of the nanowires is Co{sub 12}Ni{sub 64}Fe{sub 24}. Electrical contacts were created on both sides of the nanowire array, and their magnetoimpedance (MI) properties were investigated. The impedance value was initially 1.2 ohm at low frequency and increased to approximately 1000 ohm for a 33-MHz driving current frequency under no applied magnetic field. All the MI curves exhibited single peak behaviour due to the high shape anisotropy. The maximum MI change at the 33-MHz driving current frequency was 2.72%. The maximum resistance change was 5.4% at 33 MHz.

  10. Tuna Species Substitution in the Spanish Commercial Chain: A Knock-On Effect.

    Directory of Open Access Journals (Sweden)

    Ana Gordoa

    Full Text Available Intentional mislabelling of seafood is a widespread problem, particularly with high-value species like tuna. In this study we examine tuna mislabelling, deliberate species substitution, types of substitution and its impact on prices. The survey covered the commercial chain, from Merca-Barna to fishmongers and restaurants in the Spanish Autonomous Community of Catalonia. To understand the geographic extent of the problem we also sampled Merca-Madrid, Europe's biggest fish market, and Merca-Málaga for its proximity to the bluefin tuna migratory route and trap fishery. Monthly surveys were carried out over one year. The results showed a high deficiency in labelling: 75% of points of sale and 83% of restaurants did not specify the species, and in those cases the name of the species had to be asked. A total of 375 samples were analysed genetically, the largest dataset gathered in Europe so far. The identified species were Thunnus albacares, Thunnus thynnus and Thunnus obesus. Species substitution began at suppliers, with 40% of observed cases, increasing to 58% at fishmongers and 62% at restaurants. The substitution was mainly on bluefin tuna (T. thynnus, 73% of cases. At restaurants, only during the bluefin fishing season, we observed a decrease of Bluefin tuna substitution and an increase of reverse substitution revealing some illegal fishing. The effect of species substitution on species prices was relevant: T. obesus increased its price by around €12 kg-1 when it was sold as bluefin. In view of the deficiency of labelling, the abuse of generic names and the lack of the bluefin catch document, we conclude that the Spanish regulations are ineffective, highlighting the need for policy execution, and the urgent need for information campaigns to Spanish consumers.

  11. Bath temperature effect on magnetoelectric performance of Ni-lead zirconate titanate-Ni laminated composites synthesized by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Y.G., E-mail: yingang.wang@nuaa.edu.c [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Bi, K. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2011-03-15

    Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient {alpha}{sub E,31} was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents. - Research Highlights: Laminated composites without interlayer are prepared by electroless deposition. Bath temperature affects the grain size of the deposited Ni layers. Higher bath temperature is beneficial to obtain stronger ME response.

  12. Estimating intertemporal and intratemporal substitutions when both income and substitution effects are present: the role of durable goods

    Czech Academy of Sciences Publication Activity Database

    Pakoš, Michal

    2011-01-01

    Roč. 29, č. 3 (2011), s. 439-454 ISSN 0735-0015 Institutional research plan: CEZ:AV0Z70850503 Keywords : durable goods * intertemporal substitution * nonhomotheticity Subject RIV: AH - Economics Impact factor: 1.779, year: 2011

  13. Substituent effects on mono-substituted and poly-substituted nitriles; Efeitos dos substituintes em nitrilas mono- e polissubstituidas

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Raquel C.R.; Carneiro, Paulo I.B.; Rittner, Roberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica; Fabi, Marino T [Rhodia S.A., Sao Paulo, SP (Brazil)

    1992-12-31

    This work studies various mono substituted aliphatic nitriles, Y C H{sub 2} (Y=H, F, Cl, Br, I, OMe, S Me, SEt{sub 2}, Me and Ph), and some reference nitriles (Y=Et, n-Pr, n-Bu, n-Am, n-Hex and n-Hept) 12 refs., 3 tabs.

  14. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  15. Substitution effect on metal-insulator transition of K2V8O16

    International Nuclear Information System (INIS)

    Isobe, Masahiko; Koishi, Shigenori; Yamazaki, Satoshi; Yamaura, Jun-ichi; Gotou, Hirotada; Yagi, Takehiko; Ueda, Yutaka

    2009-01-01

    The effect of the substitution of various ions on the metal-insulator (MI) transition at 170 K in K 2 V 8 O 16 has been investigated. Both Rb and Ti form complete solid solution systems: K 2-x Rb x V 8 O 16 and K 2 V 8-y Ti y O 16 , respectively. The substitution of Rb for K or of Ti for V splits the transition into two transitions: the high-temperature transition is a first-order MI transition from a tetragonal structure to a tetragonal structure, and the low-temperature transition is a second-order transition to a monoclinic structure. In K 2-x Rb x V 8 O 16 , the former terminates to an MI transition at around 220 K in Rb 2 V 8 O 16 , while the latter disappears at x > 0.6. In K 2 V 8-y Ti y O 16 , both transitions disappear at y > 0.5. The substitution of Cr for V also results in a similar splitting of the transition and the rapid disappearance of both transitions. The substitution of Na or Ba for K suppresses the MI transition without any splitting of the transition, although the solubility of both ions is limited. These substitution effects reveal that the MI transition of K 2 V 8 O 16 consists of two parts: a first-order MI transition and a parasitic second-order structural transition; the substitution of some ions causes a clear splitting of these transitions, probably due to the difference between the chemical pressure effects on the two transitions. The first-order MI transition is very sensitive to charge randomness, suggesting the charge ordering nature of the MI transition, while the second-order structural transition is very sensitive to both charge and structural randomnesses. (author)

  16. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  17. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    Science.gov (United States)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  18. Two-way substitution effects on inventory in configure-to-order production systems

    DEFF Research Database (Denmark)

    Myrodia, Anna; Bonev, Martin; Hvam, Lars

    2015-01-01

    In designing configure-to-order productionsystems for a growing product variety, companies arechallenged with an increased complexity for obtaining highproductivity levels and cost-effectiveness. In academiaseveral optimization methods and conceptual frameworksfor substituting components......, or increasing storage capacityhave been proposed. Our study presents a practicalframework for quantifying the impact of a two-waysubstitution at different production stages and its impact oninventory utilization. In a case study we quantify the relationbetween component substitution, and inventory...... capacityutilization, while maintaining the production capacity as wellas the external product variety....

  19. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  20. Effect of the element substitutions in Cu position on positron annihilation spectra

    International Nuclear Information System (INIS)

    Zhou Xianyi

    1991-01-01

    The effect of the element substitutions in Cu position on positron annihilation spectra was studied systematically by the measurement of one-dimensional angular correlation spectra of positron annihilation radiation for YBa 2 Cu 3-x M x O y (M = Sn, Al) samples. The results show that 1D ACPAR of YBaCuO superconductor is constituted by two Gaussian parts, corresponding to annihilation position sampled in the Cu-O plane and Cu-O chain respectively. The parabola like the positron annihilation with Fermi electron gas in metals and alloys is not found out. Positron annihilation spectra are sensitive to the element substitution in Cu positions, especially in Cu-chains, and could be used to probe the substituting positions in Y-Ba-Cu-O superconductors

  1. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    Science.gov (United States)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    2007-09-01

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25Fe2O3 and Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gd)O·5.25Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  2. Effect of chromone-substituted benzothiazolium halides on photosynthetic processes

    International Nuclear Information System (INIS)

    Kralova, K.; Sersen, F.; Gasparova, R.; Lacova, M.

    1998-01-01

    The effects of 3-R 2 -2[2-(6-R 1 -chromone-3-yl)ethenyl]benzothiazolium halides (CBH) on photosynthetic electron transport in spinach chloroplasts and in the legal suspension of Chlorella vulgaris were investigated. Using EPR spectroscopy it was confirmed that these compounds containing in their molecules two heterocyclic skeletons, namely benzothiazole and chromone, interact with the intermediate D + , corresponding to the tyrosine radical Tyr D situated in D 2 protein on the donor side of photosystem 2. Consequently, higher concentrations of CBH inhibited oxygen evolution rate in Chlorella vulgaris and the inhibitory effectiveness depended on the lipophilicity of the of the compound. (authors)

  3. Analysis of the ortho effect:: basicity of 2-substituted benzonitriles

    Czech Academy of Sciences Publication Activity Database

    Exner, Otto; Böhm, S.

    2006-01-01

    Roč. 71, č. 8 (2006), s. 1239-1255 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40550506 Keywords : isodesmic reactions * steric effects * ab initio calculations Subject RIV: CC - Organic Chemistry Impact factor: 0.881, year: 2006

  4. Effect of Cassava Flour Processing Methods and Substitution Level ...

    African Journals Online (AJOL)

    The consumption of bread is globally increasing. However, due to increased costs associated with production of bread from 100% wheat flour especially in developing countries, other cereal based flours are now being blended with wheat flour to produce bread. This study was carried out to assess the effect of using two ...

  5. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    In the present work, the effect of addition of nickel oxide that annualizes the .... for required dimension using grinding machine, then sam- ples were subjected to ... the hardness testing machine, the size of the sample was. 10 × 10 × 10 mm ...

  6. Effects of phase transformation and interdiffusion on the exchange bias of NiFe/NiMn

    International Nuclear Information System (INIS)

    Lai, Chih-Huang; Lien, W. C.; Chen, F. R.; Kai, J. J.; Mao, S.

    2001-01-01

    The correlation between the exchange field of NiFe/NiMn and the phase transformation of NiMn was investigated. Transmission electron microscopy (TEM) dark-field images, contributed by the order phase of NiMn, were used to identify the location and volume fraction of the order phase. TEM selected area diffraction patterns showed the (110) superlattice diffraction rings of NiMn, verifying the existence of the order phase in the annealed samples. The order volume fraction can be calculated by the dark field image contributed by the (110) diffraction. The exchange field increased almost linearly with increasing order volume fraction. Energy dispersive x-ray spectroscopy attached to TEM indicated that Mn diffused into NiFe for annealing at 280 degreeC, leading to a larger coercivity and small coercivity squareness. Part of the NiMn still maintains the paramagnetic phase even after annealing at 280 degreeC. [copyright] 2001 American Institute of Physics

  7. Estimated allele substitution effects underlying genomic evaluation models depend on the scaling of allele counts

    NARCIS (Netherlands)

    Bouwman, Aniek C.; Hayes, Ben J.; Calus, Mario P.L.

    2017-01-01

    Background: Genomic evaluation is used to predict direct genomic values (DGV) for selection candidates in breeding programs, but also to estimate allele substitution effects (ASE) of single nucleotide polymorphisms (SNPs). Scaling of allele counts influences the estimated ASE, because scaling of

  8. Effect of partial substitution of dried plantain flour on the sensory and ...

    African Journals Online (AJOL)

    Effect of partial substitution of dried plantain flour on the sensory and functional properties of maize flour based snack ( Kokoro ) ... It is concluded that plantain flour can be successfully blended with maize flour for the production of good kokoro product. Recommendation is made for the large scale production of fortified ...

  9. Analysis of the ortho effect: acidity of 2-substituted benzoic acids

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Fiedler, Pavel; Exner, Otto

    2004-01-01

    Roč. 28, - (2004), s. 67-74 ISSN 1144-0546 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : 2-substituted benzoic acids * steric effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.735, year: 2004

  10. [Toxicity effects of phthalate substitute plasticizers used in toys].

    Science.gov (United States)

    Hirata-Koizumi, Mutsuko; Takahashi, Mika; Matsumoto, Mariko; Kawamura, Tomoko; Ono, Atsushi; Hirose, Akihiko

    2012-01-01

    Phthalate esters are widely used as plasticizers in polyvinyl chloride products. Because of human health concerns, regulatory authorities in Japan, US, Europe and other countries control the use of di(2-ethylhexyl) phthalate, diisononyl phthalate, di-n-butyl phthalate, butylbenzyl phthalate, diisodecyl phthalate and di-n-octyl phthalate for the toys that can be put directly in infants' mouths. While these regulatory actions will likely reduce the usage of phthalate esters, there is concern that other plasticizers that have not been sufficiently evaluated for safety will be used more frequently. We therefore collected and evaluated the toxicological information on di(2-ethylhexyl) terephthalate (DEHT), 1,2-cyclohexanedicarboxylic acid, diisononyl ester (DINCH), diisononyl adipate (DINA), 2,2,4-trimetyl-1,3-pentanediol diisobutyrate (TXIB), tri-n-butyl citrate (TBC) and acetyl tri-n-butyl citrate (ATBC) which were detected at a relatively high frequency in toys. The collected data have shown that chronic exposure to DEHT affects the eye and nasal turbinate, and DINCH exerts effects on the thyroid and kidney in rats. DINA and TXIB have been reported to have hepatic and renal effects in dogs or rats, and ATBC slightly affected the liver in rats. The NOAELs for repeated dose toxicity are relatively low for DINCH (40 mg/kg bw/day) and TXIB (30 mg/kg bw/day) compared with DEHT, DINA and ATBC. DEHT, TXIB and ATBC have been reported to have reproductive/developmental effects at relatively high doses in rats. For DINA and TBC, available data are insufficient for assessing the hazards, and therefore, adequate toxicity studies should be conducted. In the present review, the toxicity information on 6 alternatives to phthalate plasticizers is summarized, focusing on the effects after oral exposure, which is the route of most concern.

  11. Substitution effect and effect of axle’s flexibility at (pseudo-rotaxanes

    Directory of Open Access Journals (Sweden)

    Friedrich Malberg

    2014-06-01

    Full Text Available This study investigates the effect of substitution with different functional groups and of molecular flexibility by changing within the axle from a single C–C bond to a double C=C bond. Therefore, we present static quantum chemical calculations at the dispersion-corrected density functional level (DFT-D3 for several Leigh-type rotaxanes. The calculated crystal structure is in close agreement with the experimental X-ray data. Compared to a stiffer axle, a more flexible one results in a stronger binding by 1–3 kcal/mol. Alterations of the binding energy in the range of 5 kcal/mol could be achieved by substitution with different functional groups. The hydrogen bond geometry between the isophtalic unit and the carbonyl oxygen atoms of the axle exhibited distances in the range of 2.1 to 2.4 Å for six contact points, which shows that not solely but to a large amount the circumstances in the investigated rotaxanes are governed by hydrogen bonding. Moreover, the complex with the more flexible axle is usually more unsymmetrical than the one with the stiff axle. The opposite is observed for the experimentally investigated axle with the four phenyl stoppers. Furthermore, we considered an implicit continuum solvation model and found that the complex binding is weakened by approximately 10 kcal/mol, and hydrogen bonds are slightly shortened (by up to 0.2 Å.

  12. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  13. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution

    International Nuclear Information System (INIS)

    Wang Liping; Zhang Junyan; Gao Yan; Xue Qunji; Hu Litian; Xu Tao

    2006-01-01

    Effects of grain size reduction on the electrochemical corrosion behavior of nanocrystalline Ni produced by pulse electrodeposition were characterized using potentiodynamic polarization testing and electrochemical impedance spectroscopy; X-ray photoelectron spectroscopy were used to confirm the electrochemical measurements and the suggested mechanisms. The corrosion resistance of Ni coatings in alkaline solutions considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The higher corrosion resistance of NC Ni may be due to the more rapid formation of continuous Ni(OH) 2 passive films compared with coarse-grained Ni coatings

  14. Cation distribution in Ni-substituted Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} nanoparticles: A Raman, Mössbauer, X-ray diffraction and electron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Thota, Suneetha [Microwave Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kashyap, Subhash C., E-mail: skashyap@physics.iitd.ac.in [Microwave Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Sharma, Shiv K. [Hawaii Institute of Geophysics and Planetology, University of Hawaii (UH), Honolulu, HI 96822 (United States); Reddy, V.R. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore 452017 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesized Mn{sub 0.5−x}Ni{sub x}Zn{sub 0.5}Fe{sub 2}O{sub 4}, nanoparticles (0.05 ≤ x ≤ 0.45) at low temperature. • Raman studies established that Fe and Zn ions occupy A site in equal fraction. • {sup 57}Fe Mossbauer study revealed that Ni and Mn ions occupy nearly 25% of B sites. • Electron spectroscopy (XPS) confirmed that nearly 25% Fe{sup 3+} dwells at A sites. • Diffraction peak intensity (X-ray) quantified cations distribution at A- and B-sites. - Abstract: In this paper we report the structural, vibration, and electronic-structure parameters (bonding and valence of cations) of single phase cubic mixed spinel nanoparticles of (Zn{sub δ}Mn{sub γ}Fe{sub 1−(γ+δ)})[Ni{sub x}Zn{sub 0.5−δ}Mn{sub 0.5−γ−x}Fe{sub 1+(γ+δ)}]O{sub 4} where x = 0.05–0.45 with an aim to determine cation-distribution i.e. δ and γ in these samples. The Raman spectroscopy has established that only Fe and Zn cations occupy tetrahedral interstitial sites in a FCC anion lattice in nearly equal fraction, and Mössbauer spectra have shown that Fe{sup 3+} cations are present at both, tetrahedral and octahedral interstitial sites and Ni{sup 2+} cations are situated at the octahedral sites in all the substituted samples. The photoelectron spectra also revealed the presence of Fe{sup 3+} cations at both the interstitial sites. The best possible cationic distribution in Ni substituted Mn–Zn ferrites has been estimated by reiteratively calculating the intensity ratios of various pairs of X-ray diffraction peaks and matching with the observed intensity ratios.

  15. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.

    2013-03-28

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagnetic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as −40 J kg−1 K−1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1− x Co x NiGe to become a potential magnetic refrigerant.

  16. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  17. Research report on the trend of preventive measures against global warming by substituting CFCs; Daitai freon no chiku ondanka taisaku doko ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper reports the research results on the present state and future trend of protective measures for the ozone layer, and the trend of preventive measures against global warming by substituting CFCs such as HFC, through international conferences, meetings and lecture meetings, and literature survey. In the 8th meeting of the parties to the Montreal Protocol, it was presented that refrigerator producers in Thailand phased out CFCs from their products earlier than the schedule in cooperation with Japan. The final draft including the approval of essential use from 1997 to 2002 was reviewed, and reported to the technology/economy assessment panel. Reduction of ozone depleting substances was guided in Thailand, Indonesia and Philippines. The latest trend of substituting technologies of HCFC was surveyed, and the control trend of F-containing greenhouse effect gas emission was also surveyed through the conference of the parties of climate change in fiscal 1996. Based on the IPCC report in 1995, the emission amount of greenhouse gases of nearly 10% in contribution such as CO2, methane and fluorocarbon was arranged. R and D on destruction of CFCs was also surveyed. 35 refs., 54 figs., 32 tabs.

  18. Moessbauer effect measurements on the intermetallic compounds Ni3Al and Ni3Ge

    International Nuclear Information System (INIS)

    Drijver, J.W.; Woude, F. van der

    1975-01-01

    Moessbauer parameters obtained from room temperature emission and absorption spectra of Ni 3 Al and Ni 3 Ga processed by a computer assuming a singlet and a doublet are given. The doublet is due to iron or cobalt atoms at the nickel site. Quadrupole splitting at 57 Fe nuclei in Ni 3 Ga is larger than in Ni 3 Al, viz. 0.52 and 0.37 mm/sec, respectively. Isomer shift at the Al/Ga position is very close to -0.02 mm/sec found in metallic nickel. Also given are the hyperfine magnetic fields at 4.2 K. Considering the preference of 57 Co and 57 Fe atoms in the lattice, the field intensities at the nickel and aluminium sites are found to be 227 +- 1 and 238 +- 1 kOe, respectively. (Z.S.)

  19. Substitution effects on the absorption spectra of nitrophenolate isomers.

    Science.gov (United States)

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  20. Tunable magnetostructural coupling and large magnetocaloric effect in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.L., E-mail: zhangcl@jiangnan.edu.cn [School of Science, Jiangnan University, WuXi 214122 (China); Nie, Y.G.; Shi, H.F.; Ye, E.J.; Zhao, J.Q. [School of Science, Jiangnan University, WuXi 214122 (China); Han, Z.D. [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Xuan, H.C. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, D.H. [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-06-15

    Highlights: • Realizing FM/PM-type magnetostructural transition by co-substitution at both three atomic sites of MnNiSi. • Magnetostructural transition temperature is tunable in a broad temperature window of 285 K spanning room temperature. • Relatively high M{sub S} for the orthorhombic phase and large ΔM across the magnetostructural transition. • Relatively large magnetic entropy changes and broad working temperature span. - Abstract: A common method of realizing a magnetostructural coupling for MnNiSi is chemically alloying it with a ternary compound possessing a stable Ni{sub 2}In-type structure. In this way, the substituting elements and levels are determined by the stoichiometry of counterpart compounds. In this work, chemical co-substitutions of Fe and Ga at three different atomic sites of MnNiSi were performed. The selections of substitution elements and levels were based on the site occupation rule and an analysis of the site-dependent substitutional effects on structural stability, Curie temperatures, and magnetic moment of MnNiSi. A broad Curie temperatures window of 285 K spanning room temperature was established in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}. Strong magnetostructural transformations with large magnetization difference were realized in this window. A relatively large magnetic entropy change of −38.1 J/kg K was observed for a field change of 5 T near room temperature in the alloy with x = 0.15.

  1. Nutrient intake disparities in the US: modeling the effect of food substitutions.

    Science.gov (United States)

    Conrad, Zach; Johnson, LuAnn K; Roemmich, James N; Juan, WenYen; Jahns, Lisa

    2018-05-17

    Diet quality among federal food assistance program participants remains low, and little research has assessed the diet quality of food insecure non-participants. Further research is needed to assess the extent to which food substitutions can improve the nutritional status of these vulnerable populations. Substituting egg dishes for other commonly consumed dishes at certain eating occasions may be an effective strategy for improving the daily nutrient intake among these groups. Eggs are rich in many important nutrients, and are low-cost and part of a wide range of cultural food menus, which are important considerations for low-income and ethnically diverse populations. To help guide the focus of targeted nutrition interventions and education campaigns for vulnerable populations, the present work begins by 1) estimating the prevalence of nutrient inadequacy among these groups, and then models the effect of consuming egg dishes instead of commonly consumed dishes at each eating occasion on 2) the prevalence of nutrient inadequacy, and 3) the mean intake of nutrients. Dietary data from 34,741 adults ≥ 20 y were acquired from the National Health and Nutrition Examination Survey, 2001-2014. Diet pattern modeling was used to substitute commonly consumed egg dishes for commonly consumed main dishes at breakfast, lunch, and dinner. National Cancer Institute usual intake methods were used to estimate the prevalence of inadequate intake of 31 nutrients pre- and post-substitution, and a novel index was used to estimate change in intake of all nutrients collectively. Substituting eggs for commonly consumed main dishes at lunch or dinner did not change total daily nutrient intake for each group (P > 0.05), but decreased the prevalence of vitamin D inadequacy by 1-4 percentage points (P diet costs, which may be an important driver of food purchasing decisions among low income individuals with limited food budgets.

  2. Drastic effect of the Mn-substitution in the strongly correlated semiconductor FeSb2.

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2017-06-01

    We report the effects of Mn substitution, corresponding to hole doping, on the electronic properties of the narrow gap semiconductor, FeSb2, using single crystals of Fe1- x Mn x Sb2 grown by the Sb flux method. The orthorhombic Pnnm structure was confirmed by powder X-ray diffraction (XRD) for the pure and Mn-substituted samples. Their crystal structure parameters were refined using the Rietveld method. The chemical composition was investigated by wavelength-dispersive X-ray spectroscopy (WDX). The solubility limit of Mn in FeSb2 is x max ˜ 0.05 and the lattice constants change monotonically with increasing the actual Mn concentration. A drastic change from semiconducting to metallic electronic transports was found at very low Mn concentration at x ˜ 0.01. Our experimental results and analysis indicate that the substitution of a small amount of Mn changes drastically the electronic state in FeSb2 as well as the Co-substitution does: closing of the narrow gap and emergence of the density of states (DOS) at the Fermi level.

  3. Effects of cationic substitution on the electronic and magnetic properties of manganocuprate with a layered Eu3Ba2Mn2Cu2O12 structure

    International Nuclear Information System (INIS)

    Matsubara, Ichiro; Funahashi, Ryoji; Ueno, Kazuo; Ishikawa, Hiroshi; Kida, Noriaki; Ohno, Nobuhito

    1998-01-01

    Systematic studies on the effect of substitutions on the layered manganocuprate Eu 3 Ba 2 Mn 2 Cu 2 O 12 have been conducted. To introduce holes, the authors have made substitutions of Ca for Eu and/or Sc for Mn, (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 . Single-phase compounds are obtained over a fairly wide range of x and y values for x ≤ 0.7 (y = 0), x ≤ 0.5 (y = 0.5), and x ≤ 0.1 (y = 1.0). The doped holes are received predominantly at the Mn-O site and change the charge of Mn from 3+ to 4+, and no superconductivity has been obtained for any sample. The electronic ground state of (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 is discussed by comparing with that of the three-dimensional perovskite La 1-x Ca x MnO 3 and K 2 NiF 4 -type La 1-x Sr 1+x MnO 4 compounds. The substitution of Sr for Ba gives rise to a different crystal structure, the Sr 3 Ti 2 O 7 structure

  4. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect

    Directory of Open Access Journals (Sweden)

    Irina V. Deliy

    2017-10-01

    Full Text Available Two sets of silica-supported nickel phosphide catalysts with a nickel content of about 2.5 and 10 wt % and Ni/P molar ratio 2/1, 1/1 and 1/2 in each set, were prepared by way of a temperature-programmed reduction method using (Ni(CH3COO2 and ((NH42HPO4 as a precursor. The NixPy/SiO2 catalysts were characterized using chemical analysis N2 physisorption, XRD, TEM, 31P MAS NMR. Methyl palmitate hydrodeoxygenation (HDO was performed in a trickle-bed reactor at 3 MPa and 290 °C with LHSV ranging from 0.3 to 16 h−1. The Ni/P ratio was found to affect the nickel phosphide phase composition, POx groups content and catalytic properties in methyl palmitate HDO with the TOF increased along with a decline of Ni/P ratio and a growth of POx groups’ content. Taking into account the possible routes of methyl palmitate conversion (metal-catalyzed hydrogenolysis or acid-catalyzed hydrolysis, we proposed that the enhancement of acid POx groups’ content with the Ni/P ratio decrease provides an enhancement of the rate of methyl palmitate conversion through the acceleration of acid-catalyzed hydrolysis.

  5. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  6. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  7. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  8. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    Science.gov (United States)

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (Palloy (Palloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Study of substitution in the systems UNi5sub(-)sub(x)Msub(x) and ZrNi5sub(-)sub(x)Msub(x) (M = In, Sn, Zn)

    International Nuclear Information System (INIS)

    Blazina, Z.; Drasner, A.; Ban, Z.; Zagreb Univ.

    1981-01-01

    X-ray powder diffraction studies and metallographic examinations in the systems UNi 5 sub(-)sub(x)Msub(x) and ZrNi 5 sub(-)sub(x)Msub(x) (M = In, Sn, Zn) revealed the existence of single phase regions up to the composition 1 : 4 : 1, i.e. up to UNi 4 M and ZrNi 4 M, respectively. Comparison between calculated and observed intensity values showed that nickel atoms, in the crystallographic positions 4(c) of the isostructural binary compounds UNi 5 or ZrNi 5 (UNi 5 -type, S.G. F43m), are substituted by M atoms. Vegard's rule is obeyed in the single phase regions of all investigated systems. The crystal structures of UNi 4 M and ZrNi 4 M are superlattice structures of the MgSnCu 4 -type (S.G. F43m). Structural correlations of these phases with corresponding binary prototypes are made in terms of stacking sequences. (orig.)

  10. The Effect of (Ag, Ni, Zn-Addition on the Thermoelectric Properties of Copper Aluminate

    Directory of Open Access Journals (Sweden)

    Jianxiao Xu

    2010-01-01

    Full Text Available Polycrystalline bulk copper aluminate Cu1-x-yAgxByAlO2 with B = Ni or Zn were prepared by spark plasma sintering and subsequent thermal treatment. The influence of partial substitution of Ag, Ni and Zn for Cu-sites in CuAlO2 on the high temperature thermoelectric properties has been studied. The addition of Ag and Zn was found to enhance the formation of CuAlO2 phase and to increase the electrical conductivity. The addition of Ag or Ag and Ni on the other hand decreases the electrical conductivity. The highest power factor of 1.26 × 10-4 W/mK2 was obtained for the addition of Ag and Zn at 1,060 K, indicating a significant improvement compared with the non-doped CuAlO2 sample.

  11. The effect of Ni and Fe doping on YBCO powder prepared by sol gel method

    Directory of Open Access Journals (Sweden)

    F Saeb

    2009-08-01

    Full Text Available  We fabricated YBa2Cu3-xMxO7- d (M=Ni, Fe bulk samples, with stochiometric amount 0≤x≤0.045 by sol-gel method. The phase analysis and microstructure of specimens were examined by XRD and SEM. The electrical resistivity was measured using standard four probe technique for 77-300K. Investigation of XRD spectrum by MAUD shows Ni and Fe ions substitute in Cu(2 and Cu(1 site, respectively. Transition temperature decreases in 93-87K for Ni-doped samples and 93-92K for Fe-doped series. It seems that the suppression of superconductivity has no direct correlation with the magnetism of ions itself .

  12. The effects of a novel-reinforced bone substitute and Colloss®E on bone defect healing in sheep

    DEFF Research Database (Denmark)

    Ding, Ming; Røjskjaer, Jesper; Cheng, Liming

    2012-01-01

    Hydroxyappatite-β-tricalciumphosphate (HA/β-TCP) was reinforced with poly(D,L)-lactic acid (PDLLA) to overcome its weak mechanical properties. Two substitutes with porosities of 77% and 81% HA/β-TCP reinforced with 12 wt % PDLLA were tested in compression. The effects of allograft, substitute (HA...

  13. Synthesis, Characterization and Inhibition Effects of Vanadium Substituted Dawson-type Heteropoly Acids(Mo, P)

    Institute of Scientific and Technical Information of China (English)

    YIN Yan-bing; YANG Yu-lin; FAN Rui-qing; ZHU Yang-qing; SUN Ji-ru

    2011-01-01

    Four new vanadium substituted Dawson-type heteropoly acids H7[P2Mo17VO62]·39H2O(1),H8[P2Mo16V2O62]·41H2O(2), H9[P2Mo15V3O62]·51H2O(3) and H8[P2Mo14V4O62H2]·45H2O(4) were prepared respectively. Their structures were determined by IR and ICP. The inhibition effects of vanadium substituted Dawson-type heteropoly acids(Mo, P) on free radical polymerization of methyl methacrylate(MMA) were investigated by dilatometry. The results show that the rate of the polymerization of MMA decreases and the inhibition effects of the four heteropoly acids reach the inhibitor performance of hydroquinone at a certain ratio.

  14. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  15. The pressure effect on magnetic properties of YNi5, LaNi5 i CeNi5 compounds

    International Nuclear Information System (INIS)

    Grechnev, G.E.; Logosha, A.V.; Panfilov, A.S.; Kuchin, A.G.; Vasil'ev, A.N.

    2012-01-01

    The pressure effect on electronic structure and magnetic properties of YNi 5 , LaNi 5 and CeNi 5 compounds is studied. For these systems high values of the magneto volume effect for magnetic susceptibility χ , d lnχ / d lnV ∼ 4-7, are obtained at low temperatures. The experimental data and ab initio calculated results of electronic structure and paramagnetic contributions to susceptibility indicate a close proximity of YNi 5 , LaNi 5 and CeNi 5 to the quantum critical point. It is found that in these exchange-enhanced itinerant paramagnets the orbital Van Vleck contribution to susceptibility amounts to 15-20% and should be taken into account for description of experimental χ and d ln V / d lnV values. The calculated spin and orbital paramagnetic moments, induced by an external magnetic field for atoms in the YNi 5 unit cell, demonstrate a nonuniform distribution of magnetization density and nontrivial competition between spin and orbital moments.

  16. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  17. SELECTION OF LINEAR DEMAND FUNCTION PARAMETERS FOR ENSURING THE CORRECT SUBSTITUTION EFFECT CALCULATION

    Directory of Open Access Journals (Sweden)

    V. Popov

    2013-03-01

    Full Text Available In the course of microeconomics it is convenient to use additive functions of requirements in educational purposes, in which the volume of requirements is set by the linear function of the price, revenue and other factors. But in arriving at the substitution effect there is a number of problems in which impossible answers come out. The formula adjustment concluded by the author, which will allow to avoid contradictions, is described in the article.

  18. Effects of substituting energy with capital on China's aggregated energy and environmental efficiency

    International Nuclear Information System (INIS)

    Yang Mian; Yang Fuxia; Chen Xingpeng

    2011-01-01

    Substituting energy with capital (SEC) in economic productions has become a common practice both for business owners and policy-makers to improve their energy and environmental efficiency. However, seldom previous studies on energy efficiency and/or environmental performance evaluation took this role into account. This paper aims to shed some light on the effects of SEC on China's aggregated energy and environmental efficiency (AEEE) within a parametric stochastic frontier analysis framework. Moreover, influencing factors of regional efficiency score are also discussed using a pooled regression model. The results indicate that SEC poses significant effects on improving China's AEEE, and this impact appears obvious regional variation that regions with lower efficiency scores hold more extensive potential to improve their AEEE by means of SEC. Furthermore, upgrading industrial structure and decreasing the proportion of coal in energy consumption make great sense to improve China's AEEE. - Highlights: → We examine the effects of substituting energy with capital on China's energy and environmental efficiency. → The efficiency value considering this substitution is higher than that without considering it. → Hebei and Shanxi hold the largest potential of energy saving and SO 2 emissions reduction. → China's energy and environmental efficiency is affected by its energy mix and industrial structure.

  19. Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Xiaoru Li

    2015-04-01

    Full Text Available Ni-based catalysts as replacement for noble metal catalysts are of particular interest in the catalytic conversion of biomass due to their cheap and satisfactory catalytic activity. The Ni/SiO2 catalyst has been studied for the hydrogenolysis of glycerol, and doping with phosphorus (P found to improve the catalytic performance significantly because of the formation of Ni2P alloys. However, in the present work we disclose a different catalytic phenomenon for the P-doped Ni/Al2O3 catalyst. We found that doping with P has a significant effect on the state of the active Ni species, and thus improves the selectivity to 1,2-propanediol (1,2-PDO significantly in the hydrogenolysis of glycerol, although Ni-P alloys were not observed in our catalytic system. The structure and selectivity correlations were determined from the experimental data, combining the results of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, hydrogen temperature-programmed reduction (H2-TPR and ammonia temperature-programmed desorption (NH3-TPD. The presence of NiO species, formed from P-doped Ni/Al2O3 catalyst, was shown to benefit the formation of 1,2-PDO. This was supported by the results of the Ni/Al2O3 catalyst containing NiO species with incomplete reduction. Furthermore, the role the NiO species played in the reaction and the potential reaction mechanism over the P-doped Ni/Al2O3 catalyst is discussed. The new findings in the present work open a new vision for Ni catalysis and will benefit researchers in designing Ni-based catalysts.

  20. Effects of Undercooling and Cooling Rate on Peritectic Phase Crystallization Within Ni-Zr Alloy Melt

    Science.gov (United States)

    Lü, P.; Wang, H. P.

    2018-04-01

    The liquid Ni-16.75 at. pct Zr peritectic alloy was substantially undercooled and containerlessly solidified by an electromagnetic levitator and a drop tube. The dependence of the peritectic solidification mode on undercooling was established based on the results of the solidified microstructures, crystal growth velocity, as well as X-ray diffraction patterns. Below a critical undercooling of 124 K, the primary Ni7Zr2 phase preferentially nucleates and grows from the undercooled liquid, which is followed by a peritectic reaction of Ni7Zr2+L → Ni5Zr. The corresponding microstructure is composed of the Ni7Zr2 dendrites, peritectic Ni5Zr phase, and inter-dendritic eutectic. Nevertheless, once the liquid undercooling exceeds the critical undercooling, the peritectic Ni5Zr phase directly precipitates from this undercooled liquid. However, a negligible amount of residual Ni7Zr2 phase still appears in the microstructure, indicating that nucleation and growth of the Ni7Zr2 phase are not completely suppressed. The micromechanical property of the peritectic Ni5Zr phase in terms of the Vickers microhardness is enhanced, which is ascribed to the transition of the peritectic solidification mode. To suppress the formation of the primary phase completely, this alloy was also containerlessly solidified in free fall experiments. Typical peritectic solidified microstructure forms in large droplets, while only the peritectic Ni5Zr phase appears in smaller droplets, which gives an indication that the peritectic Ni5Zr phase directly precipitates from the undercooled liquid by completely suppressing the growth of the primary Ni7Zr2 phase and the peritectic reaction due to the combined effects of the large undercooling and high cooling rate.

  1. A DFT study of solvation effects and NBO analysis on the tautomerism of 1-substituted hydantoin

    Directory of Open Access Journals (Sweden)

    Meisam Shabanian

    2016-09-01

    Full Text Available 1-Substituted hydantoins (1-SH have been known as a benefit intermediate for producing agricultural and pharmaceuticals. The effect of solvent polarity on the tautomeric equilibria of 1-substituted hydantoin ring is studied by the density functional theory calculation (B3LYP/6–31++G(d,p level for predominant tautomeric forms of hydantoin derivatives (1-NO2, 1-CF3, 1-Br, 1-H, 1-CHCH2, 1-OH, 1-CH3 in the gas phase and selected solvents (benzene (non-polar solvent, tetrahydrofuran (THF (polar aprotic solvent and water (protic solvent. For electron withdrawing and releasing derivatives in the gas phase and solution Hy1 forms is more stable and dominant form. In addition variation of dipole moments and charges on atoms in the solvents are studied.

  2. Effect of methyl substitution on optoelectronic properties of 1,3,6,8-tetraphenyl pyrenes

    Directory of Open Access Journals (Sweden)

    LIU Yanling

    2014-06-01

    Full Text Available Geometric structures of the ground states and excited states,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption and emission spectra of three novel methyl-substituted 1,3,6,8-tetra-phenylpyrenes were studied theoretically by quantum-chemical methods,such as density functional theory (DFT.The results show that the position of methyl substituent on benzene ring has much effect on the optoelectronic properties of methyl-substituted 1,3,6,8-tetra-phenylpyrenes.Interestingly,the geometric structures and optoelectronic properties of the designed compound 1,3,6,8-tetra-p-tolylpyrene (TPPy are similar to those of 1,3,6,8-tetrakis(3,5-dimethylphenylpyrene (TDMPPy,which is worthy of being further researched.

  3. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles for oil/water separation

    Science.gov (United States)

    Luo, Zhi-Yong; Lyu, Shu-Shen; Fu, Yuan-Xiang; Heng, Yi; Mo, Dong-Chuan

    2017-07-01

    Janus effect has been studied for emerging materials like Janus membranes, Janus nanoparticles, etc., and the applications including fog collection, oil/water separation, CO2 removal and stabilization of multiphasic mixtures. However, the Janus effect on oil/water separation is still unclear. Herein, Janus Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles is synthesized via selective electrodeposition, in which we keep one side of Cu mesh (Janus A) to be superhydrophilic, while manipulate the wettability of another side (Janus B) from hydrophobic to superhydrophilic. Experimental results indicate that Cu mesh with both-side superhydrophilic shows the superior oil/water separation performance (separation efficiency >99.5%), which is mainly due to its higher water capture percentage as well as larger oil intrusion pressure. Further, we demonstrate the orientation of Janus membranes for oil/water separation, and summarize that the wettability of the upper surface plays a more important role than the lower surface to achieve remarkable performance. Our work provides a clear insight of Janus effect on oil/water separation, it is significative to design high-performance membranes for oil/water separation and many other applications.

  4. Antiseptic Effects of New 3'-N-Substituted Carbazole Derivatives In Vitro and In Vivo.

    Science.gov (United States)

    Lee, Wonhwa; Kwak, Soyoung; Yun, Eunju; Lee, Jee Hyun; Na, MinKyun; Song, Gyu-Yong; Bae, Jong-Sup

    2015-08-01

    Inhibition of high-mobility group box 1 (HMGB1) protein and restoration of endothelial integrity are emerging as attractive therapeutic strategies in the management of sepsis. Here, new five structurally related 3'-N-substituted carbazole derivatives were examined for their effects on lipopolysaccharide (LPS)-mediated or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. We accessed this question by monitoring the effects of posttreatment carbazole derivatives on LPS- and CLP-mediated release of HMGB1 and HMGB1-mediated regulation of proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. The new 3'-N-substituted carbazole derivatives 1-5 inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. New compounds also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with each compound reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that the new 3'-N-substituted carbazole derivatives could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway.

  5. Sulfur Poisoning of Ni/stabilized-zirconia Anodes – Effect on Long-Term Durability

    DEFF Research Database (Denmark)

    Hauch, Anne; Hagen, Anke; Hjelm, Johan

    2013-01-01

    Sulfur impurities in carbon containing fuels for solid oxide fuel cells (SOFC), e.g. natural gas and biogas, can lead to significant losses in performance due to the sulfur sensitivity of Ni/YSZ SOFC anodes. Full cells having Ni/YSZ and Ni/ScYSZ anodes have been characterized during long-term gal...... to focus on the long-term effect over a few hundred of hours. This work describes and correlates the observed evolution of anode performance, over hundreds of hours, with sulfur poisoning with the different operating conditions.......Sulfur impurities in carbon containing fuels for solid oxide fuel cells (SOFC), e.g. natural gas and biogas, can lead to significant losses in performance due to the sulfur sensitivity of Ni/YSZ SOFC anodes. Full cells having Ni/YSZ and Ni/ScYSZ anodes have been characterized during long...

  6. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Wada, Kei [Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692 (Japan); Daifuku, Takashi; Yoneda, Yasuko [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Fukuyama, Keiichi [Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Sako, Yoshihiko, E-mail: sako@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan)

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  7. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    International Nuclear Information System (INIS)

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-01-01

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys 295 and His 261 . •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His 261 , which coordinates one of the Fe atoms with Cys 295 , is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys 295 , we constructed CODH-II variants. Ala substitution for the Cys 295 substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys 295 indirectly and His 261 together affect Ni-coordination in the C-cluster

  8. Effect of terbium substitution on the magnetocaloric properties of Gd3Ga5O12

    International Nuclear Information System (INIS)

    Reshmi, C.P.; Savitha Pillai, S.; Varma, Manoj Raama; Suresh, K.G.

    2011-01-01

    The magnetic refrigeration is an environment friendly cooling technology based on magnetocaloric effect. The most crucial ingredient behind a magnetic refrigerator is a magnetic material which possesses large magnetocaloric effect. Certain materials when placed in a magnetic field suddenly get heats up and suddenly cooled down by the application and the removal of magnetic field due to their change in entropy. This is measured either in terms of isothermal entropy change and adiabatic temperature change observed when the applied magnetic field is varied. The refrigerators which operate below 15K have applications in liquefying helium and for the development of space based cooling system for the space crafts. The material of choice in this temperature range is rare earth gallium garnets. Rare earth garnets are complex ceramic oxides having the chemical formula A 3 B 2 C 3 O 12 have attracted attention due to their interesting magnetic properties. The magnetism in R 3 Ga 5 O 12 is due to the exchange interaction between the rare earth spins. In the proposed work we have chosen Gd 3 Ga 5 O 12 as parent material, substituted Tb systematically in the place of Gd. The structural studies were done by using Rietveld analysis of X-Ray diffraction. There is a systematic variation of volume and lattice parameter upon substitution of Tb. The magnetic characterizations were done by a vibrating sample magnetometer. The experimental magnetic moments of the materials were calculated from the M-T curve by using Curie-Weiss fit and are good agreement with the theoretical values. There is a systematic increase of magnetic moments by Tb substitution. The magnetocaloric effect is calculated by using the integrated Maxwell's relation from the magnetization data. At low magnetic fields the Tb substituted compounds show good MCE values than GGG. Tb substitution enhances the magnetocaloric effect at low magnetic fields and the ΔS M values are higher for x = 1 and 3 at 1T. Hence these

  9. Effective atomic numbers of some tissue substitutes by different methods: A comparative study

    Directory of Open Access Journals (Sweden)

    Vishwanath P Singh

    2014-01-01

    Full Text Available Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Z eff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Z eff , direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Z eff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Z eff , direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV. The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV. The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.

  10. The effect of compositional changes on the structural and hydrogen storage properties of (La–Ce)Ni5 type intermetallics towards compounds suitable for metal hydride hydrogen compression

    International Nuclear Information System (INIS)

    Odysseos, M.; De Rango, P.; Christodoulou, C.N.; Hlil, E.K.; Steriotis, T.; Karagiorgis, G.; Charalambopoulou, G.; Papapanagiotou, T.; Ampoumogli, A.; Psycharis, V.; Koultoukis, E.; Fruchart, D.; Stubos, A.

    2013-01-01

    Graphical abstract: The effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Highlights: ► Absorption-based systems exploit the properties of reversible metal hydrides. ► AB5 intermetallics are mostly popular for thermal desorption compressors. ► Investigation of H2 absorption/desorption properties of LaNi5 and its derivatives. ► LaNi5 thermodynamic properties adjustment by partially replacing La with rare earths. -- Abstract: The present work has been aiming at the synthesis and study of a series of La 1−x Ce x Ni 5 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) alloys in an attempt to investigate possible alterations of the hydrogen absorption/desorption properties The alloys were prepared by induction melting of the constituent elements. The systematic characterization of all new compounds by means of XRD and hydrogen sorption measurements revealed the effect of the partial substitution of La with Ce on the crystal structure and the final hydrogen storage properties of the alloys. Extensive absorption/desorption experiments (Van’t Hoff diagrams) have shown that such alloys can be used to build a metal hydride compressor (MHC), compressing H 2 gas from 0.2 MPa to 4.2 MPa using cold (20 °C) and hot (80 °C) water

  11. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, D., E-mail: danny.guzman@uda.cl [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama y Centro Regional de Investigacion y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapo (Chile); Ordonez, S. [Departamento de Ingenieria Metalurgica, Facultad de Ingenieria, Universidad de Santiago de Chile, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Fernandez, J.F.; Sanchez, C. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Serafini, D. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Chile and Center for Interdisciplinary Research in Materials, CIMAT, Av. Lib. Bernardo O' Higgins 3363, Santiago (Chile); Rojas, P.A. [Escuela de Ingenieria Mecanica, Facultad de Ingenieria, Av. Los Carrera 01567, Quilpue, Pontificia Universidad Catolica de Valparaiso, PUCV (Chile); Aguilar, C. [Departamento de Ingenieria Metalurgica y Materiales, Universidad Tecnica Federico Santa Maria, Av. Espana 1680, Valparaiso (Chile); Tapia, P. [Departamento de Ingenieria en Metalurgia, Facultad de Ingenieria, Universidad de Atacama, Av. Copayapu 485, Copiapo (Chile)

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  12. Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    Garbarz-Glos B.

    2016-06-01

    Full Text Available The investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM. The morphology of BaTi0.96Si0.04O3 (BTSi04 ceramics was characterised by means of a scanning electron microscopy (SEM. It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition of the synthesized material. The dielectric properties of the ceramics were also determined within the temperature range (ΔT=130-500K. It was found that the substitution of Si+4 ions had a significant influence on temperature behavior of the real (ε’ and imaginary (ε” parts of electric permittivity as well as the temperature dependence of a.c. conductivity. Temperature regions of PTCR effect (positive temperature coefficient of resistivity were determined for BTSi04 ceramics in the vicinity of structural phase transitions typical for barium titanate. No distinct maximum indicating a low-temperature structural transition to a rhombohedral phase in BTSi04 was found. The activation energy of conductivity was determined from the Arrhenius plots. It was found that substitution of Si ions in amount of 4wt.% caused almost 50% decrease in an activation energy value.

  13. Effect of local atomic and electronic structures on thermoelectric properties of chemically substituted CoSi

    Science.gov (United States)

    Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.

    2014-05-01

    We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.

  14. Effects of Gd substitution on the structural and magnetic properties of strontium hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Litsardakis, G. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)]. E-mail: Lits@eng.auth.gr; Manolakis, I. [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Serletis, C. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Efthimiadis, K.G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2007-09-15

    The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr{sub 1-x}Gd{sub x})O.5.25Fe{sub 2}O{sub 3} and Sr{sub 1-x}Gd{sub x}Fe{sub 12-x}Co{sub x}O{sub 19}, both prepared by the ceramic method, where x=0-0.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr{sub 0.95}Gd{sub x0.05})O.5.25Fe{sub 2}O{sub 3} is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr-Gd samples, coercivity showed a maximum value of 305kA/m (3.8kOe) for x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr-Gd-Co series decreased steadily with substitution degree.

  15. Effect of isocaloric substitution of chocolate cake for potato in type I diabetic patients.

    Science.gov (United States)

    Peters, A L; Davidson, M B; Eisenberg, K

    1990-08-01

    Traditional dietary advice given to people with diabetes includes eliminating simple sugars (primarily sucrose) from the diet. Many people have difficulty following this recommendation. Because patients with type I (insulin-dependent) diabetes do not need overall calorie restriction, there is no caloric reason to restrict sucrose. In this study, we looked at the effect of the isocaloric substitution of a piece of chocolate cake for a baked potato in a mixed meal to determine whether this would increase the blood glucose in patients with type I diabetes. The glucose response to a cake-added meal was significantly greater than to a standard meal. The glucose response was no different between a cake-substitution meal and a standard meal. The reproducibility studies showed no difference between repeated standard meals. The urinary glucose excretion was significantly greater after a cake-added meal but was no different with the other pairs. There were no significant differences in the counterregulatory hormone responses at baseline between any of the paired studies. In conclusion, patients with type I diabetes may substitute a sucrose-containing dessert for another carbohydrate in their diet without compromising their postprandial glucose response. These data suggest that a dessert exchange may be helpful and not harmful in the management of diabetic patients. There is an inherent variability (at least 16%) in an insulin-requiring patient's response to a meal, making self-monitoring of blood glucose and adjustment of insulin doses necessary to achieve near euglycemia.

  16. Effect of 2-methyl-substituted nitroimidazoles on the hydrolysis of 4-nitrophenyl esters. Suffield report

    Energy Technology Data Exchange (ETDEWEB)

    Clewley, R.G.; Adie, C.P.; Brouwer, B.H.

    1994-03-01

    Prior to investigating nitroimidazole surfactants for use in a new catalytic chemical agent decontaminant, the catalysis afforded by simple nitroimidazoles in hydrolysis reactions has been examined. The effect of 2-methyl-5-nitroimidazole on the hydrolysis of 4-nitrophenyl diphenylphosphinate and of 2-methyl-5-nitrobenzimidazole on the hydrolyses of both 4-nitrophenyl diphenylphosphinate and 4-nitrophenyl acetate has been determined. In all three cases there is a simple linear dependency of the reaction rate on the concentration of the anionic form of the nitroimidazole. Previous results had suggested self-inhibition by the nucleophile occurred in the 2-methyl-5-nitroimidazole catalysed hydrolysis of 4-nitrophenyl diphenylphosphinate; this hypothesis is no longer tenable. Comparison of the reactivity of 2-methyl -substituted nitroimidazolides to that of the corresponding unsubstituted species suggests that 2-alkyl-substituted nitroionidazole surfactants would not be significantly worse catalysts of the hydrolysis of organophosphorus species than their 4-substituted analogues. Decontamination, Chemical reactivity, Displacement reactions, Nucleophilic reactions, Imidazoles, Nitroimidazoles, Phenoxides, Simulants, UV Spectrophotometry, Mechanism.

  17. The effect of inulin as a fat substitute on the physicochemical and sensory properties of chicken sausages.

    Science.gov (United States)

    Alaei, Fereshteh; Hojjatoleslamy, Mohammad; Hashemi Dehkordi, Seyyed Majid

    2018-03-01

    Due to its high thermal resistance and compatibility with the sausage emulsion system, the long-chain inulin can be used as a fat substitute in the formulation of this product. This study was conducted to investigate the effect of inulin on the physicochemical, textural, and sensory properties of chicken sausages. The study included treatments of 25%, 50%, 75%, and 100% substitution. After preparing the samples, their physicochemical, textural, calorimetric, and sensory properties were evaluated. The treatment of 100% substitution of inulin had the maximum amount of sugar (29.90%), moisture (72.63%), protein (51.34), ash (6.95%), and salt (4.02%) (dry basis). The fat content was decreased with the increased levels of inulin substitution (p inulin reduced hardness, cohesiveness, gumminess, and stringiness, but increased springiness and chewiness up to the 25% substitution of inulin. The highest color difference and hue angle were related to 100% substitution treatment. The sensory evaluation of the samples showed that with the increase in the amount of inulin, the mean scores of the factors including color, appearance, and texture were increased, but the mean scores of smell and mouthfeel were decreased. Overall, the substitution of the entire fat existing in the formulation of the sausage with inulin led to the best physicochemical, textural, colorimetric, and sensory results. The use of inulin could be recommended as a fat substitute in the formulation of chicken sausages.

  18. Magnetic versus nonmagnetic ion substitution effects on Tc in the La-Sr-Cu-O and Nd-Ce-Cu-O systems

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Wang, E.; Kivelson, S.; Bagley, B.G.; Hull, G.W.; Ramesh, R.

    1990-01-01

    The effects of a substitution for Cu by other 3d metals (Ni, Co, and Zn) on T c in the Nd-Ce-Cu-O system was studied and compared with effects of the same ions on T c in the La-Sr-Cu-O system. We found (1) Zn suppresses T c more slowly in the Nd than in the La systems, so the disorder produced by the nonmagnetic ions is less important in the Nd system, (2) Ni and Co depress T c more quickly in the Nd than in the La system, showing that the magnetic pair breaking is stronger in the Nd system, and (3) in the La system the magnetism of the dopant has no effect on T c . Thus, within the same chemical system (cuprates) we find that as the correlation length is increased one obtains more familiar BCS-type behavior. We suggest that much of the behavior of the various high-T c oxides may be simply a function of the correlation length

  19. A real support effect on the hydrodeoxygenation of methyl oleate by sulfided NiMo catalysts

    NARCIS (Netherlands)

    Coumans, A.E.; Hensen, E.J.M.

    2017-01-01

    The effect of the support on the catalytic performance of sulfided NiMo in the hydrodeoxygenation of methyl oleate as a model compound for triglyceride upgrading to green diesel was investigated. NiMo sulfides were prepared by impregnation and sulfidation on activated carbon, silica, γ-alumina and

  20. Effect of Si and Co on the crystallization of Al-Ni-RE amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.H. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China); Bian, X.F. [Key Lab of Liquid structure and Heredity of Materials, Ministry of Education, South Campus of Shandong University, Jinan 250061 (China)], E-mail: xfbian@sdu.edu.cn

    2008-04-03

    Crystallization of Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 7}Nd{sub 6} and Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} amorphous alloys has been studied by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The multiple transition metal (TM) (containing metalloid element) have significant effect on the crystallization behavior. A small addition of Si transforms a eutectic crystallization (Al{sub 85}Ni{sub 10}Ce{sub 5}) to a primary crystallization (Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}); while a small addition of Co transforms a primary crystallization (Al{sub 87}Ni{sub 7}Nd{sub 6}) to a eutectic crystallization (Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6}). In addition, the activation energies for crystallization (E{sub a}) are obtained to be 191, 290, 221 and 166 kJ/mol for the Al{sub 83}Ni{sub 10}Si{sub 2}Ce{sub 5}, Al{sub 85}Ni{sub 10}Ce{sub 5}, Al{sub 87}Ni{sub 5}Co{sub 2}Nd{sub 6} and Al{sub 87}Ni{sub 7}Nd{sub 6} amorphous alloys based on the Kissinger method, respectively. It is found that the primary crystallization of fcc-Al is characteristic of a lower E{sub a}, as compared with eutectic crystallization.

  1. Effect of gamma-irradiation on some structural characteristics of NiO

    International Nuclear Information System (INIS)

    El-Shabiny, A.M.; El-Shobaky, G.A.; Dessouki, A.M.; Ramadan, A.A.

    1989-01-01

    Pure NiO specimens were prepared by the thermal decomposition of pure basic nickel carbonate in air at 400 and 600 0 C. The obtained solids were exposed to different doses of γ-irradiation ranging between 10-80 Mrad. The change in residual microstrain, lattice parameter and crystallite size due to the irradiation process were investigated by X-ray diffraction analyses. The results revealed that γ-irradiation effected important changes in the structural characteristics of NiO lattice. No detectable change was observed for the crystallite size of NiO-400 0 C; however, the crystallite size of NiO-600 0 C decreased by increasing the dose up to 20 Mrad and increased at higher doses but still remaining smaller than that measured for the unirradiated specimen. The lattice parameters of NiO preheated at 400 or 600 0 C were found to increase as a function of the dose. These results were attributed to progressive removal of Ni 3+ ions acting as lattice defects in NiO solid. The microstrains in NiO specimens precalcined either at 400 or 600 0 C were found to decrease progressively by increasing the dose falling to minimum values at doses of 40 and 80 Mrad for the solids preheated at 600 and 400 0 C, respectively. The augmentation of the exposure dose above 40 Mrad for NiO-600 0 C resulted in an increase in microstrain which, however, remained always smaller than those found for the unirradiated solid. The strain-relief in NiO-600 0 C due to γ-irradiation took place, mainly, via splitting of its crystallites. On the other hand, the progressive removal of lattice defects (Ni 3+ ions) due to the irradiation process might account for the observed strain-relief in NiO-400 0 C. (author)

  2. In-situ observation of equilibrium transitions in Ni films; agglomeration and impurity effects

    Energy Technology Data Exchange (ETDEWEB)

    Thron, Andrew M., E-mail: AMThron@lbl.gov [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Greene, Peter; Liu, Kai [Department of Physics, University of California, Davis, CA 95616 (United States); Benthem, Klaus van [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2014-02-01

    Dewetting of ultra-thin Ni films deposited on SiO{sub 2} layers was observed, in cross-section, by in situ scanning transmission electron microscopy. Holes were observed to nucleate by voids which formed at the Ni/SiO{sub 2} interface rather than at triple junctions at the free surface of the Ni film. Ni islands were observed to retract, in attempt to reach equilibrium on the SiO{sub 2} layer. SiO{sub 2} layers with 120 nm thickness were found to limit in situ heating experiments due to poor thermal conductivity of SiO{sub 2}. The formation of graphite was observed during the agglomeration of ultra-thin Ni films. Graphite was observed to wet both the free surface and the Ni/SiO{sub 2} interface of the Ni islands. Cr forms surface oxide layers on the free surface of the SiO{sub 2} layer and the Ni islands. Cr does not prevent the dewetting of Ni, however it will likely alter the equilibrium shape of the Ni islands. - Highlights: • In Situ observation of dewetting in ultra-thin Ni films sputtered on SiO{sub 2} layers. • Dewetting is observed in an edge-on position by in situ STEM. • Characterization of interface structure pre and post in situ annealing by STEM and EELS. • Analyze the effects of Cr{sub 1−x}O{sub x} and graphite impurities on the Ni film agglomeration. • Examine influence of the SiO{sub 2} layers on the dewetting process.

  3. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  4. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  5. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Magnetic properties and magnetocaloric effect in the HoNi1−xCuxIn (x=0, 0.1, 0.3, 0.4) intermetallic compounds

    International Nuclear Information System (INIS)

    Mo, Zhao-Jun; Shen, Jun; Yan, Li-Qin; Tang, Cheng-Chun; He, Xiao-Nan; Zheng, Xinqi; Wu, Jian-Feng; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    The magnetic properties and magnetocaloric effect (MCE) in HoNi 1−x Cu x In (x=0, 0.1, 0.3, 0.4) compounds have been investigated. With the substitution of Cu for Ni, the Ho magnetic moment will cant from the c-axis, and form a complicated magnetic structure. These compounds exhibit two successive magnetic transitions with the increase in temperature. The large reversible magnetocaloric effects have been observed in HoNi 1−x Cu x In compounds around T ord , with no thermal and magnetic hysteresis loss. The large reversible isothermal magnetic entropy change (−ΔS M ) is 20.2 J/kg K and the refrigeration capacity (RC) reaches 356.7 J/kg for field changes of 5 T for HoNi 0.7 Cu 0.3 In. Especially, the value of −ΔS M (12.5 J/kg K) and the large RC (132 J/kg) are observed for field changes of 2 T for HoNi 0.9 Cu 0.1 In. Additionally, the values of RC are improved to 149 J/K for the field changes of 2 T due to a wide temperature span for the mix of HoNi 0.9 Cu 0.1 In and HoNi 0.7 Cu 0.3 In compounds with the mass ratio of 1:1. These compounds with excellent MCE are expected to have effective applications in magnetic refrigeration around 20 K. - Highlights: • For magnetic-field changes of 2 T, the values of RC are improved to 149 J/K. • MCEs of these compounds show no thermal and magnetic hysteresis. • Compounds show two successive magnetic transitions with the increase in temperature. • With the substitution of Cu for Ni, compounds form a complicated magnetic structure

  7. Effects of Co{sup 2+} doping on physicochemical behaviors of hierarchical NiO nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Caihua [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Gao, WenChao [College of Engineering, Peking University, Beijing, 100871 (China); Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhao, Yuzhen; Zhou, Heping [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Li, Jingbo; Jin, Haibo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China)

    2016-12-30

    Highlights: • A series of Co{sup 2+} doped NiO materials were synthesized by a facile hydrothermal method. • Co{sup 2+} doping would bring about a series influence to the as-obtained NiO products. • Hierarchical NiO nanostructure transformed from nanosheets to nanoneedles with Co{sup 2+} doping. • The catalytic properties of NiO were significantly improved via the introduction of Co{sup 2+}. • Excellent catalytic activity was ascribed to the synergistic effect between Co{sup 2+} and NiO. - Abstract: A series of Co{sup 2+} doped NiO materials (Ni{sub 1−x}Co{sub x}O with x = 0, 0.125, 0.25 and 0.5) were synthesized using a facile hydrothermal method followed by a calcination process. The effects of Co{sup 2+} doping on the structural, morphological, magnetic and catalytic properties of NiO were systematically investigated. The results indicated that Co{sup 2+} doping would bring about a series influence to the as-obtained NiO product. The XRD results indicated that within the region of 0 ≤ x ≤ 0.25 the doped products revealed a pure NiO phase. The elementary unit for the hierarchy NiO gradually transformed from nanosheets to nanoneedles with the increase of Co{sup 2+} doping content. As-obtained Co{sup 2+} doped NiO products showed ferromagnetism at room temperature and the magnetization value was increased with the increase of Co{sup 2+} doping content. The catalytic properties of NiO concerning the thermal decomposition of ammonium perchlorate (AP) were significantly improved via the introduction of Co{sup 2+}. The Ni{sub 1−x}Co{sub x}O products with x = 0.25 showed the best catalytic performance to AP, which could decrease the beginning and ending decomposition temperature of AP by 44 and 108 °C. The change of morphology, enhancement of electrical conductivity and the synergistic effect between Co{sup 2+} and NiO were the main factors responsible for the improvement of physicochemical behaviors.

  8. Effect of γ-(Fe,Ni) crystal-size stabilization in Fe-Ni-B amorphous ribbon

    Science.gov (United States)

    Gorshenkov, M. V.; Glezer, A. M.; Korchuganova, O. A.; Aleev, A. A.; Shurygina, N. A.

    2017-02-01

    The effect of stabilizing crystal size in a melt-quenched amorphous Fe50Ni33B17 ribbon is described upon crystallization in a temperature range of 360-400°C. The shape, size, volume fraction, and volume density have been investigated by transmission electron microscopy and X-ray diffraction methods. The formation of an amorphous layer of the Fe50Ni29B21 compound was found by means of atomic-probe tomography at the boundary of the crystallite-amorphous phase. The stabilization of crystal sizes during annealing is due to the formation of a barrier amorphous layer that has a crystallization temperature that exceeds the crystallization temperature of the matrix amorphous alloy.

  9. Martensitic transformation and shape memory effect in polycomponent TiNi-based alloys

    International Nuclear Information System (INIS)

    Khachin, V.N.; Voronin, V.P.; Sivokha, V.P.; Pushin, V.G.

    1995-01-01

    The results of martesitic transformation (MT) and shape memory effect (SME) in quaternary Ti 50 (NiCoCu) 50 , Ti 50 (NiFeCu) 50 and (TiAl) 50 (NiCu) 50 alloys studies are generalized in this paper. On alloying TiNi simultaneously by two elements, their individual effect on MT and SME is conserved. Martensitic transformations B2→R and B2→B19' are almost simultaneously realizing in a binary TiNi. One can selectively control each of two MT channels by selecting property of alloying elements. As a result, the alloys having any sequences of MT and their realizations temperatures, including simultaneous realization of two MTs at low temperatures, which was not observed earlier, can be produced. (orig.)

  10. Diffusivities of an Al-Fe-Ni melt and their effects on the microstructure during solidification

    International Nuclear Information System (INIS)

    Zhang Lijun; Du Yong; Steinbach, Ingo; Chen Qing; Huang Baiyun

    2010-01-01

    A systematical investigation of the diffusivities in an Al-Fe-Ni melt was presented. Based on the experimental and theoretical data about diffusivities, the temperature- and composition-dependent atomic mobilities were evaluated for the elements in Al-Ni, Al-Fe, Fe-Ni and Al-Fe-Ni melts via an effective approach. Most of the reported diffusivities can be reproduced well by the obtained atomic mobilities. In particular, for the first time the ternary diffusivity of the liquid in a ternary system is described in conjunction with the established atomic mobilities. The effect of the atomic mobilities in a liquid on microstructure and microsegregation during solidification was demonstrated with one Al-Ni binary alloy. The simulation results indicate that accurate databases of mobilities in the liquid phase are much needed for the quantitative simulation of microstructural evolution during solidification by using various approaches, including DICTRA and the phase-field method.

  11. Effect of Transition Metal Substitution on the Structure and Properties of a Clathrate-Like Compound Eu7Cu44As23

    Directory of Open Access Journals (Sweden)

    Igor V. Plokhikh

    2016-07-01

    Full Text Available A series of substitutional solid solutions—Eu7Cu44−xTxAs23 (T = Fe, Co, Ni—based on a recently discovered clathrate-like compound (Eu7Cu44As23 were synthesized from the elements at 800 °C. Almost up to 50% of Cu can be substituted by Ni, resulting in a linear decrease of the cubic unit cell parameter from a = 16.6707(1 Å for the ternary compound to a = 16.3719(1 Å for the sample with the nominal composition Eu7Cu24Ni20As23. In contrast, Co and Fe can only substitute less than 20% of Cu. Crystal structures of six samples of different composition were refined from powder diffraction data. Despite very small differences in scattering powers of Cu, Ni, Co, and Fe, we were able to propose a reasonable model of dopant distribution over copper sites based on the trends in interatomic distances as well as on Mössbauer spectra for the iron-substituted compound Eu7Cu36Fe8As23. Ni doping increases the Curie temperature to 25 K with respect to the parent compound, which is ferromagnetically ordered below 17.5 K, whereas Fe doping suppresses the ferromagnetic ordering in the Eu sublattice.

  12. Effect of the partial substitution of meat with irradiated sunflower meal on the quality of sausage

    International Nuclear Information System (INIS)

    Afifi, E.A.; Anwar, M.M.

    2007-01-01

    This work aims to study the effect of partial substitution of meat with gamma irradiated sunflower meal in the manufacturing of sausage. On the sensory and physical properties of manufactured sausage, Therefore, sunflower meal sample was divided into four groups and exposed to gamma irradiation at doses 0, 4, 8 and 12 kGy ( for improving the digestibility and functional properties protein of sunflower meal ). The polyphcnol content in-vitro protein digestibility (I.V.P.D), water absorption fat absorption and emulsion capacity of irradiated sunflower meal were determined. The obtained results indicated that the 12 kGy gamma irradiation . dose was the most effective treatment for removing the total polyphenol as the, removal percentage reached to 100%, and sequently increased the protein digestibility of sunflower to 83.24%, also the water fat absorption and emulsion capacity were markedly increased. Therefore the irradiated sample at 12 kGy was chosen for the treatment of sunflower meal using in manufacturing sausage at 2, 4 and 8% substitution level. The organoleptic evaluation of sausage samples under investigation showed that the sausage contained irradiated sunflower meal at dose of 12 kGy at 2% substitution level attained high scores in color and aroma and had the highest scores in taste and texture in comparison with the control (natural sausage ). Also it could be concluded that 2% irradiated sunflower meal at dose of 12 kGy might be used as a replacer of frozen meat in manufacturing of sausage without any adverse effect on its sensory, physical and chemical properties

  13. Effect of the Partial Substitution of Meat with Irradiated Sunflower Meal on the Quality of Sausage

    International Nuclear Information System (INIS)

    Afifi, E. A.M.; Anwar, M.M.

    2007-01-01

    This work aims to study the effect of partial substitution of meat with gamma irradiated sunflower meal in the manufacturing of sausage. On the sensory and physical properties of manufactured sausage, Therefore, sunflower meal sample was divided into four groups and exposed to gamma irradiation at doses 0 , 4 , 8 and 12 kGy ( for improving the digestibility and functional properties protein of sunflower meal ). The polyphenol content in-vitro protein digestibility (I.V.P.D), water absorption fat absorption and emulsion capacity of irradiated sunflower meal were determined .The obtained results indicated that the 12 kGy gamma irradiation dose was the most effective treatment for removing the total polyphenol as the removal percentage reached to 100%, and sequently increased the protein digestibility of sunflower to 83.24%, also the water fat absorption and emulsion capacity were markedly increased. Therefore the irradiated sample at 12 kGy was chosen for the treatment of sunflower meal using in manufacturing sausage at 2, 4 and 8% substitution level .The organoleptic evaluation of sausage samples under investigation showed that the sausage contained irradiated sunflower meal at dose of 12 kGy at 2% substitution level attained high scores in color and aroma and had the highest scores in taste and texture in comparison with the control (natural sausage ). Also it could be concluded that 2% irradiated sunflower meal at dose of 12 kGy might be used as a replacer of frozen meat in manufacturing of sausage without any adverse effect on its sensory, physical and chemical properties.

  14. The Real Effects of Foreign Inflation in the Presence of Currency Substitution

    OpenAIRE

    Charles Engel

    1987-01-01

    The paper explores optimizing models of small open economies that hold foreign money balances. Particular attention is paid to the impact of foreign inflation on the real exchange rate and other real variables. At first, an environment in which foreign money is the only traded asset is explored. This is compared to a more general setting in which many assets can be traded. The effect of foreign inflation on domestic real variables depends on: 1) the degree to which it causes a substitution ou...

  15. Effects of A1 substitution by Fe in CeAl2

    International Nuclear Information System (INIS)

    Takeuchi, A.Y.; Cunha, S.F. da.

    1989-01-01

    Magnetization and electrical resistivity measurements of the CeAl 2 with Al substitution by Fe up to 10% at Fe show that the competition between the increasing Kondo effect and the antiferromagnetism persists. Change of the electronic density is followed by a decreasing Neel temperature and an increasing residual electrical reistivity. The probable appearance of ferromagnetism of the Ce moments, at intermediate temperature range, is discussed. The small decrease of the lattice parameter with Fe concentration or the magnetic behaviour do not show evidence of valence changes in the Ceion. (author) [pt

  16. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  17. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    Science.gov (United States)

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Disorder controlled electrical transport properties of NdCo1−xNiO3

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Rajesh; Shukla, D.K.; Kumar, Ravi

    2013-01-01

    Highlights: •Single phase NdCo 1−x Ni x O 3 were prepared using solid state reaction method. •Drastic improvement in room temperature conductivity for substituted samples. •Arrhenius and VRH conduction models employed to explain electrical transport. •Disorder induced charge carrier localization dominates in the substituted samples. -- Abstract: The effect of Ni substitution on structural and electrical transport has been investigated in NdCo 1−x Ni x O 3 system for 0 ⩽ x ⩽ 0.5. The Rietveld refinement of XRD data confirms orthorhombic, Pbnm symmetry for all the samples. The lattice parameters and hence unit cell volume is found to increase linearly with increase in Ni concentration. Substitution of Ni leads to the increase in conductivity and samples have been found to display semiconducting behavior in measured range of temperature. The explanation for the variation of resistivity with substitution and temperature has been provided on the basis of substitutional disorder and spin state related effects. Arrhenius and variable range hopping conduction approaches have been used to explain the temperature variation of resistivity. These results suggest that disorder-induced localization of charge carriers dominate the electrical transport in the substituted samples

  19. Carbon tax and substitution effects in the French industrial sector: an econometric assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Nicolas; Callonnec, Gael (ADEME (Agence de l' environnement et de la maitrise de l' energie) (France))

    2009-07-01

    Within the political framework of the 'Grenelle de l'environnement' in France, the French government is studying various fiscal measures to encourage actors to reduce CO{sub 2} emissions, among others a carbon tax on every fossil energy source. The efficiency of such a measure is directly linked to the price responsiveness of the actors concerned. In this paper, after a survey of the different possible forms for an energy demand function, we focus on the secondary sector of the French economy (after having removed the industrial sub-sectors concerned with double usage or non-energy use of fuels) and assess the likelihood of industrialists shifting from one energy source to another due to a change in the relative prices of different energy sources (coal, heavy fuel oil, heating oil, natural gas and electricity), besides the improvements in energy efficiency. We conclude that with price variations of the magnitude that was observed between 1986 and 2004 the substitution effects remain low: industrialists were much more likely to improve the energy efficiency of their appliances and processes than to shift energy sources in response to a given increase in prices. Significant substitution effects, for example after applying a carbon tax, would probably only occur for greater price variations. However, the actors' response (interfuel substitution) to an increase in the price of coal is 5 to 10 times higher than for other energy sources. The study also gives us information about the speed at which industrialists adapt to variations in prices, and the results have already been used for the assessment of future fiscal measures in France.

  20. PON-Sol: prediction of effects of amino acid substitutions on protein solubility.

    Science.gov (United States)

    Yang, Yang; Niroula, Abhishek; Shen, Bairong; Vihinen, Mauno

    2016-07-01

    Solubility is one of the fundamental protein properties. It is of great interest because of its relevance to protein expression. Reduced solubility and protein aggregation are also associated with many diseases. We collected from literature the largest experimentally verified solubility affecting amino acid substitution (AAS) dataset and used it to train a predictor called PON-Sol. The predictor can distinguish both solubility decreasing and increasing variants from those not affecting solubility. PON-Sol has normalized correct prediction ratio of 0.491 on cross-validation and 0.432 for independent test set. The performance of the method was compared both to solubility and aggregation predictors and found to be superior. PON-Sol can be used for the prediction of effects of disease-related substitutions, effects on heterologous recombinant protein expression and enhanced crystallizability. One application is to investigate effects of all possible AASs in a protein to aid protein engineering. PON-Sol is freely available at http://structure.bmc.lu.se/PON-Sol The training and test data are available at http://structure.bmc.lu.se/VariBench/ponsol.php mauno.vihinen@med.lu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The effect of substitution therapy on symptoms in patients with hypothyroidism following treatment for laryngeal and hypopharyngeal carcinomas.

    Science.gov (United States)

    Lo Galbo, A M; Verdonck-De Leeuw, I M; Lips, P; Kuik, D J; Leemans, C R; De Bree, R

    2013-08-01

    Hypothyroidism is a well-known complication following treatment of laryngeal or hypopharyngeal carcinomas, and may cause various psychological and physical problems that negatively affect quality of life. The aim of this study was to evaluate the effect of substitution therapy on symptoms in patients with hypothyroidism. A study-specific questionnaire on physical and psychological problems (before and after substitution therapy) was sent to 70 patients who had been treated between 1977 and 2008 with clinical or subclinical hypothyroidism. Ninety-four percent returned the questionnaire. Symptoms on energy levels were reported most often (67% always tired and 70% lack of energy). Moodiness and emotional and physical symptoms were reported more often in substituted (sub)clinical hypothyroidism. Substitution therapy resulted in an improvement of energy (P = 0.013), sense of general interest and enjoyment (P = 0.022) and a reduction of puffy face (P = 0.041). Most symptoms in patients with thyroid dysfunction do not improve after substitution therapy. Nevertheless, due to its impact on health-related quality of life and the low burden of substitution therapy, screening for hypothyroidism and subsequent substitution therapy remains important.

  2. The effect of Sodium hydroxide catalyst in formation of Ni nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Shahbahrami, N.; Reyhani, A.; Afshari, N.; Mortazavi, Z.; Norouzian, Sh.; Hojabri, A.; Novinrooz, A. J.

    2007-01-01

    In this paper, Ni nanoparticles growth is studies by spontaneous auto catalytic reduction in an alcohol- water solution in present NaOH catalysis with various ratio at room temperature. The scanning electron microscopy and XRD analyses have been used for investigation diameter and structure of Ni nanoparticles. Investigation of the analyses show that have not formed Ni Nanoparticles in Ph values 8, 9, 10 and 13, but in Ph values 11 and 12 have formed Ni Nanoparticles with average diameter of about 65 and 90 nm, respectively. The XRD patterns show that samples have face-centered cubic structure with (111),(200).(222) planes. The results show that sodium hydroxide value is very effect on the Ni nanoparticles growth.

  3. Effect of boron on the properties of ordered Ni-Mo alloys

    International Nuclear Information System (INIS)

    Tawancy, H.M.

    1994-01-01

    Ordered alloys and intermetallic compounds have long been known to possess a number of technologically useful properties, however, their structural applications is limited by relatively poor ductility. Efforts to improve the mechanical strength of these materials have led to the recognition that small additions of B improve the ductility of intermetallic compounds, based upon the L1 2 , superlattice such as Ni 3 Al and Ni 3 Si. Also it has been demonstrated that small additions of B improve the ductility of binary ordered Ni-Ni 4 Mo alloys. The objective of this study is to demonstrate that critical additions of B to selected Ni-Mo alloys could significantly improve their ductility and corrosion properties in the ordered state while maintaining a similar level of other properties, particularly, weldability. The effect of B on the ordered microstructure was emphasized

  4. Effect of load deflection on corrosion behavior of NiTi wire.

    Science.gov (United States)

    Liu, I H; Lee, T M; Chang, C Y; Liu, C K

    2007-06-01

    For dental orthodontic applications, NiTi wires are used under bending conditions in the oral environment for a long period. The purpose of this study was to investigate the effect of bending stress on the corrosion of NiTi wires using potentiodynamic and potentiostatic tests in artificial saliva. The results indicated that bending stress induces a higher corrosion rate of NiTi wires in passive regions. It is suggested that the passive oxide film of specimens would be damaged under bending conditions. Auger electron spectroscopic analysis showed a lower thickness of passive films on stressed NiTi wires compared with unstressed specimens in the passive region. By scanning electron microscopy, localized corrosion was observed on stressed Sentalloy specimens after a potentiodynamic test at pH 2. In conclusion, this study indicated that bending stress changed the corrosion properties and surface characteristics of NiTi wires in a simulated intra-oral environment.

  5. The effect of Pd on martensitic transformation and magnetic properties for Ni50Mn38−xPdxSn12Heusler alloys

    Directory of Open Access Journals (Sweden)

    C. Jing

    2016-05-01

    Full Text Available In the past decade, Mn rich Ni-Mn based alloys have attained considerable attention due to their abundant physics and potential application as multifunctional materials. In this paper, polycrystalline Ni50Mn38−xPdxSn12 (x = 0, 2, 4, 6 Heusler alloys have been prepared, and the martensitic phase transformation (MPT together with the shape memory effect and the magnetocaloric effect has been investigated. The experimental result indicates that the MPT evidently shifts to a lower temperature with increase of Pd substitution for Mn atoms, which can be attributed to the weakness of the hybridization between the Ni atom and excess Mn on the Sn site rather than the electron concentration. The physics properties study focused on the sample of Ni50Mn34Pd4Sn12 shows a good two-way shape memory behavior, and the maximum value of strain Δ L/L reaches about 0.13% during the MPT. The small of both entropy change Δ ST and magnetostrain can be ascribed to the inconspicuous influence of magnetic field induced MPT.

  6. Effect of Gamma Radiation and Substitution on some Physical Properties for M-type Hexagonal Ferrites

    International Nuclear Information System (INIS)

    El-Shershaby, H.A.A.

    2014-01-01

    -type hexagonal ferrite (BaFe_1_2O_1_9) molecules. Also, the results explain the structural model, based on the effect of aluminum substitution ―Al-O bond‖. On the other hand, the magnetic behavior of the samples was studied using vibrating sample magnetometer technique. The saturation magnetization (Ms) and magneton number (nB) decrease with increasing Al"3"+ substitution from 61.2 to 28.9 emu/g and from 12.2 to 5.3 μB respectively. Also, all samples in pellet form were characterized using X-ray diffraction and the values of grain size, micro strain and dislocation density of all samples were calculated. The dielectric parameters and ac conductivity measurements were performed within a temperature range 293 to 493 °K. The ac conductivity showed a linear relation with the frequency power law with an exponent s ≈ 0.69 to 0.14 for BaFe_1_2O_1_9. It decreases with increasing temperature, indicating that the heterogeneous structures increase, while the dielectric constant (ε') and the dielectric loss (ε'') decrease with increasing Al substitution. The effect of gamma irradiation on the features of the aluminum substituted barium hexagonal ferrite particles BaAlxFe_1_2_-_xO_1_9 with 0≤ x ≤ 3.5 has been studied. On performing the optical measurements on the samples, several observations were spotted. The fundamental absorption edge dependence on the radiation dose, the proportional relation between the calculated band gap Eg and the Al content within the crystal affecting its size, the decrease in the energy gap caused by the direct transition induced by increasing the radiation dose up to 1 MGy and the generation of excess electronic localized states associated with such behavior are among such observations. Moreover, other characteristic features of the irradiated samples have been studied with the aid of several instruments and techniques. X- ray diffraction to determine the values of crystal size , micro strain and dislocation density, Scanning electron microscope and

  7. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  8. Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation

    Science.gov (United States)

    Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.

    2007-08-01

    Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.

  9. α-Selective Ni-Catalyzed Hydroalumination of Aryl- and Alkyl-Substituted Terminal Alkynes. Practical Syntheses of Internal Vinyl Aluminums, Halides or Boronates

    Science.gov (United States)

    Gao, Fang; Hoveyda, Amir H.

    2010-01-01

    Methods for Ni-catalyzed hydroalumination of terminal alkynes, leading to the formation of α-vinylaluminum isomers efficiently (>98% conv in 2–12 h) and with high selectivity (95% to >98% α), are described. Catalytic α-selective hydroalumination reactions proceed in the presence of a reagent (diisobutylaluminum hydride; dibal–H) and 3.0 mol % metal complex (Ni(dppp)Cl2) that are commercially available and inexpensive. Under the same conditions, but with Ni(PPh3)2Cl2, hydroalumination becomes highly β-selective, and, unlike uncatalyzed transformations with dibal–H, generates little or no alkynylaluminum byproducts. All hydrometallation reactions are reliable, operationally simple and practical, and afford an assortment of vinylaluminums that are otherwise not easily accessible. The derived α-vinyl halides and boronates can be synthesized through direct treatment with the appropriate electrophiles [e.g., Br2 and methoxy(pinacolato)boron, respectively]. Ni-catalyzed hydroaluminations can be performed with as little as 0.1 mol % catalyst and on gram scale with equally high efficiency and selectivity. PMID:20698643

  10. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  11. Effect of trivalent transition metal ion substitution in Dy2O3 system

    International Nuclear Information System (INIS)

    Dhilip, M.; Saravana Kumar, K.; Anbarasu, V.

    2015-01-01

    One of the very promising approaches to create novel materials is to combine different physical properties in one material to achieve rich functionality. Magnetoelectric multiferroics are attracting attention for fundamental physics due to their unique coupling behaviour between ferroelectricity, ferromagnetism and ferroelasticity and also because of their promising applications for devices in spintronics, information storage, sensing and actuation. The existence of spontaneous magnetization in the perovskite like phase (layer of perovskite) has encouraged exploring the possibility of fabrication of a multiferroic material for multifunctional devices using the concept of magnetoelectric effect. The rare earth orthoferrites (LnFeO 3 where, Ln = La, Sm, Gd, Dy, Er and Yb) are a class of materials having potential for various applications. These compounds and metal ion substituted ferrites crystallising in perovskite structure show promise as catalysts gas separators, cathodes in solid oxide fuel cells, sensor materials, magneto-optic materials and as spin valves. In this present work, Fe substituted in Dysprosium Oxide compounds were prepared by standard solid state reaction at a temperature of 1300℃. The structural analysis of the prepared samples was characterized with powder X-Ray Diffraction technique and the lattice parameters were calculated with PodwerX indexing software. The structural analysis reveals that the substitution of Fe in Dy 2 O 3 system leads to change of crystalline structure from Cubic to Tetragonal. Further, decreasing trend of volume of the unit cell confirms the occupation of smaller ionic radii element Fe in the Dy site of Dy 2 O 3 system. Hence the possibilities of incorporation of trivalent transition metal ion in to the host Dy 2 O 3 site were analyzed. (author)

  12. Effect of grain size on yield strength of Ni3Al and other alloys

    International Nuclear Information System (INIS)

    Takeyama, M.; Liu, C.T.

    1988-01-01

    This paper analyzes the effect of grain size on yield stress of ordered Ni 3 Al and Zr 3 Al, and mild steels that show Lueders band propagation after yielding, using the Hall--Petch relation, σ/sub y/ = σ 0 +k/sub y/ d -1 /sup // 2 , and the new relation proposed by Schulson et al., σ/sub y/ = σ 0 +kd/sup -(//sup p//sup +1)/2/ [Schulson et al., Acta Metall. 33, 1587 (1985)]. The major emphasis is placed on the analysis of Ni 3 Al data obtained from published and new results, with a careful consideration of the alloy stoichiometry effect. All data, except for binary stoichiometric Ni 3 Al prepared by powder extrusion, fit the Hall--Petch relation, whereas the data from boron-doped Ni 3 Al and mild steels do not follow the Schulson relation. However, no conclusion can be made simply from the curve fitting using either relation. The results are also discussed in terms of Lueders strain and alloy preparation methods. On the basis of the Hall--Petch analysis, the small slope k/sub y/ is obtained only for hypostoichiometric Ni 3 Al with boron, which would be related to a stronger segregation of boron in nickel-rich Ni 3 Al. In addition, the potency for the solid solution strengthening effect of boron is found to be much higher for stoichiometric Ni 3 Al than for hypostoichiometric alloys

  13. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  14. Effect of lupine as cheese base substitution on technological and nutritional properties of processed cheese analogue.

    Science.gov (United States)

    Awad, Rezik Azab; Salama, Wafaa Mohammed; Farahat, Azza Mahmoud

    2014-01-01

    Healthy foods have been met with marked success in the last two decades. Lupine flours, protein concentrates, and isolates can be applied as a substance for enriching different kinds of food systems such as bakery products, lupine pasta, ice cream, milk substitutes. Imitation processed cheese is made from mixtures of dairy and/or non dairy proteins and fat/oils and is variously labeled analogue, artificial, extruded, synthetic and/or filled. Processed cheese can be formulated using different types of cheese with different degree of maturation, flavorings, emulsifying, salts, and/or several ingredients of non-dairy components. Non-dairy ingredients have been used in processed cheese for many dietary and economic reasons. In this study, lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA). Matured Ras cheese (3 months old) was manufactured using fresh cow milk. Soft cheese curd was manufactured using fresh buffalo skim milk. Emulsifying salts S9s and Unsalted butter were used. Lupine termis paste was prepared by soaking the seeds in tap water for week with changing the water daily, and then boiled in water for 2 hrs, cooled and peeled. The peeled seeds were minced, blended to get very fine paste and kept frozen until used. Lupine paste was used to substitute 25, 50, 75 and 100% of cheese in base formula of processed cheese analogue (PCA). The obtained PCA were analysed when fresh and during storage up to 3 months at 5±2°C for chemical composition, physical and sensory properties. The histopathological effect of lupines on alloxan diabetic albino rats and nutritional parameters were also investigated. Incorporation of lupine paste in PCA increased the ash and protein contents while meltability and penetration values of resultant products were decreased. Adding lupine in PSA formula had relatively increased the oil index and firmness of products. Feeding rats a balanced diet containing processed cheese

  15. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Y.; Panchenko, E.; Kireeva, I.; Karaman, I.; Sehitoglu, H.; Maier, H.J.; Tverdokhlebova, A.; Ovsyannikov, A.

    2008-01-01

    In the present study the effects of crystal axis orientation, stress state (tension/compression) and test temperature on shape memory effect and superelasticity of Ni 54 Fe 19 Ga 27 (I), Co 40 Ni 33 Al 27 (II), Co 49 Ni 21 Ga 30 (III) (numbers indicate at.%) single crystals were investigated. The shape memory effect, the start temperature of superelasticity T 1 and the mechanical hysteresis Δσ were found to be dependent on crystal axis orientation and stress state. Superelasticity was observed at T 1 = A f (A f , reverse transformation-finish temperature) in tension/compression for [0 0 1]-oriented Ni-Fe-Ga crystals and in compression for [0 0 1]-oriented Co-Ni-Ga crystals, which all displayed a small mechanical hysteresis (Δσ ≤ 30 MPa). An increase in Δσ of up to 90 MPa in the Co-Ni-Al and the Co-Ni-Ga crystals lead to stabilization of the stress-induced martensite, and an increase in to T 1 = A f + Δ. The maximal value of Δ (75 K) was found in [0 0 1]-oriented Co-Ni-Al crystals in tension. A thermodynamic criterion describing the dependencies of the start temperature of superelasticity T 1 on crystal axis orientation, stress state and the magnitude of mechanical hysteresis is discussed

  16. Effect of Ni content on stainless steel fabricated by laser melting deposition

    Science.gov (United States)

    Zhang, H.; Zhang, C. H.; Wang, Q.; Wu, C. L.; Zhang, S.; Chen, J.; Abdullah, Adil O.

    2018-05-01

    The novel stainless steel + x wt.% Ni (x = 0, 3.05, 6.10, 9.15) specimens were successfully fabricated by laser melting deposition, aiming at investigating the influence of Ni content on stainless steel structure and property. The effects of Ni content on phase compositions, microstructure, microhardness, wear and electrochemical corrosion resistance of as-deposited stainless steel were studied systematically using XRD, OM, SEM, microhardness tester, friction-wear tester and potentiodynamic polarization measurement, respectively. Experimental results showed that with the increase of Ni content, the constituent phase of the as-deposited specimen changed from ferrite phase (specimen for x = 0) to austenite phase (specimen for x = 9.15). The microstructure growth followed the principle of dendrite growth. However, the dominant microstructure varied from equiaxed dendrite to columnar dendrite with increasing Ni content. Phase transition from ferrite phase to austenite phase with the addition of Ni content resulted in the decrease of microhardness value from 643HV to 289HV. Meanwhile, the wear resistance of as-deposited specimens decreased gradually with the increasing of Ni content, which might be attributed to the fact that the wear resistance is proportional to microhardness according to Archard's law. It was noted that corrosion resistance of as-deposited stainless steel was extremely improved with the increase of Ni content. The higher Ni content specimen (specimen for x = 9.15) exhibited the best corrosion resistance among the tested specimens based on corrosion rate, which was one order of magnitude lower than that of the lower Ni content specimens (specimens for x = 0, 3.05).

  17. Effects of Ni and carbon-coated Ni addition on the thermoelectric properties of 25Bi{sub 2}Te{sub 3}+75Sb{sub 2}Te{sub 3} base composites

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Min; Dharmaiah, Peyala; Femi, Olu Emmanuel; Lee, Chul Hee; Hong, Soon-Jik, E-mail: hongsj@kongju.ac.kr

    2017-07-01

    In this paper, we report the effect of nickel (Ni) and carbon coated nickel (C-Ni) on the thermoelectric and mechanical properties of 25Bi{sub 2}Te{sub 3}+75Sb{sub 2}Te{sub 3} (GA) base composites. Ni and C-Ni powders were synthesized using pulse wire evaporation and mixed with 25Bi{sub 2}Te{sub 3}+75Sb{sub 2}Te{sub 3} in a planetary ball mill. The morphology of the Ni and C-Ni powders and GA + x (x = none, Ni, or C-Ni) composites were examined using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The thermoelectric properties of the GA + x (x = none, Ni, or C-Ni) composites shows that the addition of Ni increases the carrier concentration while the presence of C-Ni reduces the carrier concentration to a level comparable to the bare sample (x = 0). Subsequently, the Seebeck coefficient of the GA + C-Ni sample increases by about 18% more than in the bare sample. The thermal conductivity of the GA + Ni and GA + C-Ni samples was considerably lower at room temperature compared to the bare sample. The mechanical properties of the GA + Ni and GA + C-Ni composite samples show a three-fold improvement compared to the bare sample. - Highlights: • Ni and carbon-coated Ni nanoparticles were incorporated into 25Bi{sub 2}Te{sub 3}+75Sb{sub 2}Te{sub 3} (BST) matrix. • Seebeck coefficient increased by 18% for BST/carbon coated Ni composites. • BST/carbon coated Ni composite reduces the thermal conductivity (21%). • The Vickers hardness of the BST/C-Ni composite samples significantly improved.

  18. An organic cosmo-barometer: Distinct pressure and temperature effects for methyl substituted polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Montgomery, Wren; Watson, Jonathan S.; Sephton, Mark A.

    2014-01-01

    There are a number of key structures that can be used to reveal the formation and modification history of organic matter in the cosmos. For instance, the susceptibility of organic matter to heat is well documented and the relative thermal stabilities of different isomers can be used as cosmothermometers. Yet despite being an important variable, no previously recognized organic marker of pressure exists. The absence of a pressure marker is unfortunate considering our ability to effectively recognize extraterrestrial organic structures both remotely and in the laboratory. There are a wide variety of pressures in cosmic settings that could potentially be reflected by organic structures. Therefore, to develop an organic cosmic pressure marker, we have used state-of-the-art diamond anvil cell (DAC) and synchrotron-source Fourier transform infrared (FTIR) spectroscopy to reveal the effects of pressure on the substitution patterns for representatives of the commonly encountered methyl substituted naphthalenes, specifically the dimethylnaphthalenes. Interestingly, although temperature and pressure effects are concordant for many isomers, pressure appears to have the opposite effect to heat on the final molecular architecture of the 1,5-dimethylnaphthalene isomer. Our data suggest the possibility of the first pressure parameter or 'cosmo-barometer' (1,5-dimethylnaphthalene/total dimethylnaphthalenes) that can distinguish pressure from thermal effects. Information can be obtained from the new pressure marker either remotely by instrumentation on landers or rovers or directly by laboratory measurement, and its use has relevance for all cases where organic matter, temperature, and pressure interplay in the cosmos.

  19. Effect of Isomorphous Substitution on the Thermal Decomposition Mechanism of Hydrotalcites

    Directory of Open Access Journals (Sweden)

    Sergio Crosby

    2014-10-01

    Full Text Available Hydrotalcites have many important applications in catalysis, wastewater treatment, gene delivery and polymer stabilization, all depending on preparation history and treatment scenarios. In catalysis and polymer stabilization, thermal decomposition is of great importance. Hydrotalcites form easily with atmospheric carbon dioxide and often interfere with the study of other anion containing systems, particularly if formed at room temperature. The dehydroxylation and decomposition of carbonate occurs simultaneously, making it difficult to distinguish the dehydroxylation mechanisms directly. To date, the majority of work on understanding the decomposition mechanism has utilized hydrotalcite precipitated at room temperature. In this study, evolved gas analysis combined with thermal analysis has been used to show that CO2 contamination is problematic in materials being formed at RT that are poorly crystalline. This has led to some dispute as to the nature of the dehydroxylation mechanism. In this paper, data for the thermal decomposition of the chloride form of hydrotalcite are reported. In addition, carbonate-free hydrotalcites have been synthesized with different charge densities and at different growth temperatures. This combination of parameters has allowed a better understanding of the mechanism of dehydroxylation and the role that isomorphous substitution plays in these mechanisms to be delineated. In addition, the effect of anion type on thermal stability is also reported. A stepwise dehydroxylation model is proposed that is mediated by the level of aluminum substitution.

  20. Synthesis of 4-(2-substituted hydrazinyl)benzenesulfonamides and their carbonic anhydrase inhibitory effects.

    Science.gov (United States)

    Gul, Halise Inci; Kucukoglu, Kaan; Yamali, Cem; Bilginer, Sinan; Yuca, Hafize; Ozturk, Iknur; Taslimi, Parham; Gulcin, Ilhami; Supuran, Claudiu T

    2016-08-01

    In this study, 4-(2-substituted hydrazinyl)benzenesulfonamides were synthesized by microwave irradiation and their chemical structures were confirmed by (1)H NMR, (13)CNMR, and HRMS. Ketones used were: Acetophenone (S1), 4-methylacetophenone (S2), 4-chloroacetophenone (S3), 4-fluoroacetophenone (S4), 4-bromoacetophenone (S5), 4-methoxyacetophenone (S6), 4-nitroacetophenone (S7), 2-acetylthiophene (S8), 2-acetylfuran (S9), 1-indanone (S10), 2-indanone (S11). The compounds S9, S10 and S11 were reported for the first time, while S1-S8 was synthesized by different method than literature reported using microwave irradiation method instead of conventional heating in this study. The inhibitory effects of 4-(2-substituted hydrazinyl)benzenesulfonamide derivatives (S1-S11) against hCA I and II were studied. Cytosolic hCA I and II isoenzymes were potently inhibited by new synthesized sulphonamide derivatives with Kis in the range of 1.79 ± 0.22-2.73 ± 0.08 nM against hCA I and in the range of 1.72 ± 0.58-11.64 ± 5.21 nM against hCA II, respectively.

  1. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    Science.gov (United States)

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Aluminum and carbon substitution in MgB2. Electron doping and scattering effects

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Pribulova, Z.; Angst, M.; Bud'ko, S.L.; Canfield, P.C.; Klein, T.; Lyard, L.; Marcus, J.; Marcenat, C.; Kang, B.W.; Kim, H.-J.; Lee, H.-S.; Lee, H.-K.; Lee, S.I.

    2007-01-01

    The point-contact spectroscopy is used to address the evolution of two superconducting energy gaps in the Al- and C-doped magnesium diboride polycrystals and single crystals with T c 's from 39 to 22 K prepared by different techniques. The obtained evolution of two gaps does not show any anomalous behavior but can be consistently described by the combination of the (prevailing) band filling effect and a (minor) increased interband scattering as proposed by Kortus et al. [Kortus et al., Phys. Rev. Lett. 94 (2005) 027002]. The approaching of two gaps is stronger in the Al-doped systems but interband scattering is still not large enough to merge two gaps. The full merging can expected only for higher dopings with T c 's below 10-15 K. In-magnetic-field measurements are used to analyze the intraband scatterings introduced by these two substitutions. It is shown that the carbon doping introduces significant disorder mainly by decreasing the diffusion coefficient in the π band while the Al substitution leaves the samples in the clean limit

  3. Effect of lanthanum substitution on dielectric relaxation, impedance response, conducting and magnetic properties of strontium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in; Bhat, Bilal Hamid; Ahmad, Bhat Zahoor

    2015-04-05

    Highlights: • The substitution of La affects the dielectric and magnetic properties of strontium hexaferrite. • The electric behaviour of the compound follows the Koop’s phenomenological theory. • The impedance study shows the role of grain boundaries to the electric properties of the compound. • The substitution of La to strontium hexaferrite reduces the resistive nature of grain boundaries. - Abstract: Lanthanum strontium hexaferrite Sr{sub 1−x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.08, 0.13 , 0.18) has been successfully synthesized by using citrate-precursor method and characterized by different techniques. The X-ray diffraction results revealed that the sample is crystalline in nature and is of single phase with the space group P63/mmc. The dielectric, conducting and impedance related studies have been carried out as a function of frequency and concentration of lanthanum in the frequency ranges of 20 Hz–3 MHz. Impedance studies were performed in the frequency domain to distinguish between bulk and grain boundary contributions of the material to the overall dielectric response. The electric response of the material was also modeled by an equivalent circuit and different circuit parameters were calculated. Magnetic characterization of the material was also performed and the effect of lanthanum concentration was studied. The hysteresis loop obtained from the magnetometer showed that with the increase of lanthanum concentration, the saturation magnetisation decreases while as coercivity increases.

  4. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India); Madanapalle Institute of Technology and Science, Department of Physics, Madanapalle, Chittoor, Andhra Pradesh (India); Kaur, Davinder [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India)

    2016-12-15

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L2{sub 1} structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization (M-T) and resistance (R-T) results confirmed that the monotonous increase in martensitic transformation temperatures (T{sub M}) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness (H), elastic modulus (E), plasticity index (H/E) and resistance to plastic deformation (H{sup 3}/E {sup 2}) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H{sup 3}/E{sup 2} (0.261) of Ni{sub 50.4}Mn{sub 34.96}In{sub 13.56}Cr{sub 1.08} film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications. (orig.)

  5. New insight into electrochemical-induced synthesis of NiAl{sub 2}O{sub 4}/Al{sub 2}O{sub 3}: Synergistic effect of surface hydroxyl groups and magnetism for enhanced adsorptivity of Pd(II)

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, N.F.M. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Efendi, J. [Department of Chemistry, Universitas Negeri Padang, Jl. Prof. Hamka, Air Tawar, Padang, West Sumatera (Indonesia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No 10, Bandung 40132 (Indonesia); Hameed, B.H. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-09-15

    Graphical abstract: - Highlights: • The introduction of Ni to γ-Al{sub 2}O{sub 3} by electrolysis formed NiAl{sub 2}O{sub 4} spinels and NiO. • Physical mixed of NiO with γ-Al{sub 2}O{sub 3} only produced agglomerated NiO-Ni{sup 0}. • Ni/Al{sub 2}O{sub 3}-E has remarkably higher degree of magnetism than Ni/Al{sub 2}O{sub 3}-PM. • Ni/Al{sub 2}O{sub 3}-E adsorbed Pd{sup 2+} ions more effectively (q{sub m} = 40.3 mg/g) than Ni/Al{sub 2}O{sub 3}-PM. • Pd{sup 2+} ions were adsorbed to both samples via magnetic attraction and ion exchange. - Abstract: A new promising adsorbent, Ni supported on γ-Al{sub 2}O{sub 3} was prepared in a simple electrolysis system (Ni/Al{sub 2}O{sub 3}-E) in minutes and was compared with the sample prepared by a physical mixing method (Ni/Al{sub 2}O{sub 3}-PM). The adsorbents were characterized by XRD, TEM, FTIR, {sup 27}Al MAS NMR, XPS, and VSM. The results showed that besides NiO nanoparticles, a NiAl{sub 2}O{sub 4} spinel was also formed in Ni/Al{sub 2}O{sub 3}-E during the electrolysis via the dealumination and isomorphous substitution of Ni{sup 2+} ions. In contrast, only agglomerated NiO was found in the Ni/Al{sub 2}O{sub 3}-PM. Adsorption test on removal of Pd{sup 2+} ions from aqueous solution showed that the Pd{sup 2+} ions were exchanged with the hydrogen atoms of the surface–OH groups of both adsorbents. Significantly, the Ni/Al{sub 2}O{sub 3}-E demonstrated a higher adsorption towards Pd{sup 2+} ions than Ni/Al{sub 2}O{sub 3}-PM due to its remarkably higher degree of magnetism, which came from the NiAl{sub 2}O{sub 4}. The use of 0.1 g L{sup −1} Ni/Al{sub 2}O{sub 3}-E gave the maximum monolayer adsorption capacity (q{sub m}) of 40.3 mg g{sup −1} at 303 K and pH 5. The Ni/Al{sub 2}O{sub 3}-E showed high potential for simultaneous removal of various noble and transition metal ions and could be also used repetitively without affecting the high adsorptivity for Pd{sup 2+} ions. This work may provide promising

  6. Thermoelectric properties of the intermediate valent cerium intermetallic Ce2Ni3Si5 doped with Pd, Co, and Cu

    International Nuclear Information System (INIS)

    Proctor, K.J.; Regan, K.A.; Littman, A.; DiSalvo, F.J.

    1999-01-01

    The nickel site of Ce 2 Ni 3 Si 5 , which has the orthorhombic U 2 Co 3 Si 5 structure type, can be fully substituted with palladium and cobalt and partially substituted with copper. The volume of the lattice expands from 635 A 3 to 704 A 3 upon substitution with palladium while the volume contraction with cobalt and copper substitutions are much smaller. The thermopower of Ce 2 Ni 3 Si 5 is 32 μV/K at room temperature and increases to 60 μV/K at 40 K. This relatively high thermopower is decreased by substitution of the three metals studied here. The relatively temperature independent thermal conductivity of between 50 and 60 mW/Kcm for Ce 2 Ni 3 Si 5 is decreased in magnitude by substitution of the heavier palladium, especially at temperatures below 150 K, and is changed to typical metallic behavior by cobalt substitution. Upon cooling from room temperature, the electrical resistivity of Ce 2 Ni 3 Si 5 displays a broad plateau of 300 μΩcm until a precipitous drop below 120 K, indicative of coherence effects in the Kondo interactions between the cerium moments and conduction electrons. Copper and palladium substitutions result in a gradual reduction in the effects of cerium intermediate valence, whereas cobalt substitution drives the resistivity to metallic behavior but with a relatively large room temperature resistivity of 400 μΩcm. (orig.)

  7. The large magnetoelectric effect in Ni-lead zirconium titanate-Ni trilayers derived by electroless deposition

    International Nuclear Information System (INIS)

    Bi, K; Wang, Y G; Wu, W; Pan, D A

    2010-01-01

    Magnetoelectric (ME) Ni-lead zirconium titanate-Ni trilayers with neither electrodes nor bonding layers have been derived by electroless deposition. The structure and magnetic properties of the electroless deposited Ni layers with different pH values are characterized by x-ray diffraction and vibrating sample magnetometer. The influence of the bias magnetic field and the magnetic field frequency (f) on ME coupling is discussed. It is seen that α E,31 depends strongly on H dc and f. The value of the ME coefficient increases as the thickness of the Ni layer and the pH of the bath increase. A maximum of the ME voltage coefficient α E,31 = 5.77 V cm -1 Oe -1 at resonance frequency with a deposited Ni layer thickness t Ni = 302 μm is obtained. The large ME coefficient makes these Ni-PZT-Ni trilayers suitable for applications in sensors, actuators and transducers. (fast track communication)

  8. Effects of Bundle Type and Substitution with Spent Laying Hen Surimi on Quality Characteristics of Imitation Crabsticks.

    Science.gov (United States)

    Jin, Sang-Keun; Choi, Jung-Seok; Kim, Gap-Don

    2017-01-01

    The purpose of this study was to evaluate the effects of bundle type (BT) and substitution with spent laying hen (SH) surimi on quality characteristics of imitation crabsticks made from Alaska Pollack (AP) during 6 wk of cold storage. Diagonally bundled samples had poorer gel characteristics and more lipid oxidation when compared with straight bundled ones ( p imitation crabsticks deteriorated with storage time ( p 0.05). SH substitution had an effect on most quality characteristics of imitation crabsticks; darker and poorer gel characteristics were observed and its effect on sensory evaluation was seen at the initial storage. Thus, BT and SH substitution can be considered to have a slight effect on eating quality of imitation crabsticks, despite their negative effects on color, gel characteristics, and lipid oxidation.

  9. Nursing home staffing requirements and input substitution: effects on housekeeping, food service, and activities staff.

    Science.gov (United States)

    Bowblis, John R; Hyer, Kathryn

    2013-08-01

    To study the effect of minimum nurse staffing requirements on the subsequent employment of nursing home support staff. Nursing home data from the Online Survey Certification and Reporting (OSCAR) System merged with state nurse staffing requirements. Facility-level housekeeping, food service, and activities staff levels are regressed on nurse staffing requirements and other controls using fixed effect panel regression. OSCAR surveys from 1999 to 2004. Increases in state direct care and licensed nurse staffing requirements are associated with decreases in the staffing levels of all types of support staff. Increased nursing home nurse staffing requirements lead to input substitution in the form of reduced support staffing levels. © Health Research and Educational Trust.

  10. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H.

    2017-02-01

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  11. Effects of C+ ion implantation on electrical properties of NiSiGe/SiGe contacts

    International Nuclear Information System (INIS)

    Zhang, B.; Yu, W.; Zhao, Q.T.; Buca, D.; Breuer, U.; Hartmann, J.-M.; Holländer, B.; Mantl, S.; Zhang, M.; Wang, X.

    2013-01-01

    We have investigated the morphology and electrical properties of NiSiGe/SiGe contact by C + ions pre-implanted into relaxed Si 0.8 Ge 0.2 layers. Cross-section transmission electron microscopy revealed that both the surface and interface of NiSiGe were improved by C + ions implantation. In addition, the effective hole Schottky barrier heights (Φ Bp ) of NiSiGe/SiGe were extracted. Φ Bp was observed to decrease substantially with an increase in C + ion implantation dose

  12. Effects of adding lanthanum to Ni/ZrO2 catalysts on ethanol steam reforming

    International Nuclear Information System (INIS)

    Profeti, Luciene Paula Roberto; Habitzheuter, Filipe; Assaf, Elisabete Moreira

    2012-01-01

    The catalytic performance of Ni/ZrO 2 catalysts loaded with different lanthanum content for steam reforming of ethanol was investigated. Catalysts were characterized by BET surface area, X-ray diffraction, UV-vis spectroscopy, temperature programmed reduction, and X-ray absorption fine structure techniques. Results showed that lanthanum addition led to an increase in the degree of reduction of both NiO and nickel surface species interacting with the support, due to the higher dispersion effect. The best catalytic performance at 450 deg C was found for the Ni/12LZ catalyst, which exhibited an effluent gaseous mixture with the highest H 2 yield. (author)

  13. Anisotropy of the magnetocaloric effect in DyNiAl

    Czech Academy of Sciences Publication Activity Database

    Kaštil, J.; Javorský, P.; Andreev, Alexander V.

    2009-01-01

    Roč. 321, č. 15 (2009), s. 2318-2321 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetocaloric effec * DyNiAl * magnetism * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  14. Hydrogen insertion effects on the electronic structure of equiatomic MgNi traced by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Matar, Samir F. [CNRS, ICMCB, UPR 9048, Pessac (France); Bordeaux Univ., Pessac (France). ICMCB, UPR 9048; Al Alam, Adel F.; Ouaini, Naim [Univ. Saint Esprit de Kaslik (USEK), Jounieh (Lebanon). URA GREVE, CSR-USEK

    2013-01-15

    For equiatomic MgNi which can be hydrogenated up to the composition MgNiH{sub 1.6} at an absorption/desorption temperature of 200 C, the effects of hydrogen absorption are approached with the model structures MgNiH, MgNiH{sub 2} and MgNiH{sub 3}. From full geometry optimization and calculated cohesive energies obtained within DFT, the MgNiH{sub 2} composition close to the experimental limit is identified as most stable. Charge density analysis shows an increasingly covalent character of hydrogen: MgNiH(H{sup -0.67}) {yields} MgNiH{sub 2}(H{sup -0.63}) {yields} MgNiH{sub 3}(H{sup -0.55}). While Mg-Ni bonding prevails in MgNi and hydrogenated model phases, extra itinerant low-energy Ni states appear when hydrogen is introduced signaling Ni-H bonding which prevails over Mg-H as evidenced from total energy calculations and chemical bonding analyses. (orig.)

  15. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  16. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  17. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  18. Structural and dielectric properties of Zr and Cu co-substituted Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jalaiah, K., E-mail: kjalu4u@gmail.com [Department of Physics, Andhra University, Visakhapatnam 530 003 (India); Chandra mouli, K. [Department of Engineering Physics, Andhra University, Visakhapatnam 530 003 (India); Subba Rao, P.S.V. [Department of Physics, Andhra University, Visakhapatnam 530 003 (India); Sreedhar, B. [IICT, Hyderabad (India)

    2017-06-15

    Highlights: • The porosity was increased with increasing dopant concentration of Zr and Cu from the 10.57% to 20.11%. • The force constant and wave numbers in octahedral and tetrahedral site is increased with increasing the dopant concentration of Zr and Cu. • The compositional dielectric constant at 100 kHz is increased from the 9.85 to 86.53, with increasing dopant concentration of Zr and Cu. - Abstract: Zr and Cu Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ferrites have been prepared by the sol-gel auto combustion method using the nitrates. The ethylene glycol and citric acid were mixed as the combustion agents. The synthesized powders were calcinate at 800 °C for 3 h and they are pressed in desired shaped and sintered at 1200 °C for 2 h in air atmosphere. The X-ray diffraction analysis confirms the single phase cubic spinel structure. The SEM pictures revels that the substitution of higher valence ions results fine grained intragranular pore free microstructure. The dielectric properties of substituted ferrites exhibits decreasing trend at lower frequencies up to 1000 Hz beyond which it should in stable response. All the results are explained in terms of compositional and frequency variation.

  19. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  20. Effect of minor elements on microstructure evolution in Ni alloys irradiated with neutrons

    International Nuclear Information System (INIS)

    Xu, Q.; Yoshiie, T.

    2001-01-01

    The minor elements, Si (-5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) were chosen to investigate the effects of volume size factor as shown in the parentheses on void swelling in neutron irradiated Ni alloys. Neutron irradiation temperature and dose were changed widely from 473 K to 703 K, and 0.001 dpa to 1 dpa, respectively. Voids were observed by transmission electron microscopy (TEM) in Ni even after a very small irradiation dose of 0.026 dpa at 573 K. With increasing dose, the number density of voids was nearly constant while void size increased. The microstructure evolution in Ni-2 at%Cu and Ni-2 at%Ge alloys was similar to that in Ni. However, in Ni-2 at%Si and Ni-2 at%Sn alloys, no voids were observed by TEM even at 703 K to 1 dpa. The minor elements, Si and Sn, play an important role for the suppression of vacancy clusters. Vacancies are annihilated by mutual recombination with interstitials in Si and Sn added alloys. (orig.)

  1. The effect of Ni on concentration of the most abundant essential cations in several Brassica species

    Directory of Open Access Journals (Sweden)

    Putnik-Delić Marina I.

    2014-01-01

    Full Text Available Some plants from the genus Brassica have the ability to tolerate excessive concentrations of heavy metals, including Ni. Considering the fact that Ni is a very toxic element for living beings we wanted to examine its influence on some species from genus Brassicaceae. The aim of this study was to investigate the effect of Ni on distribution and accumulation of essential macronutrients from the standpoint of food quality and phytoremediation potential. Experiments were performed using winter (W and spring (S varieties of rapeseed (Brassica napus, L., white mustard (Brassica alba, L., black mustard (Brassica nigra, L. and turnip (Brassica rapa, L.. The seeds were exposed to 10 μM Ni from the beginning of germination. Plants were grown in water cultures, in semi-controlled conditions of a greenhouse, on ½ strength Hoagland solution to which was added Ni in the same concentration as during germination. Concentrations and distribution of Ca, Mg, K in leaf and stem were altered in the presence of increased concentration of Ni. Significant differences were found between the control and Ni-treated plants as well as among the genotypes. [Projekat Ministarstva nauke Republike Srbije, br. TR 31036 i br. TR 31016

  2. Effects on artificial blood substitute (Fluosol-DA) by 60Co gamma-ray irradiation

    International Nuclear Information System (INIS)

    Hishikawa-Itoh, Youko; Ayakawa, Yoshio; Miyata, Nobuki

    1982-01-01

    It had been demonstrated the high oxygen solubility of perfluorochemical emulsion (Fluosol-DA), and Fluosol-DA is going to apply as an oxygen carrier, namely artificial blood substitutes for clinical application. There have been many reports on physical, chemical and biological aspects of Fluosol-DA, but not have been reported on irradiation effects. In this paper, we investigated the effects on Fluosol-DA by 60 Co γ-ray irradiation. 1. pH of Fluosol-DA was increased apparently, this effect was not by irradiation, but by thermal effect. 2. Optical density of Fluosol-DA at 620 nm which meaned an effect on particles of Fluosol-DA was not changed by γ-irradiation. 3. F - ion concentration of Fluosol-DA which meaned an effect on structure of perfluorochemical was not changed merkedly. 4. The solubility of oxygen of Fluosol-DA was slightly increased by γ-irradiation at 25 0 C and 11 0 C, but this effect was disregarded. These results suggested that 60 Co γ-irradiation did not effect on pH, size or aggregation of particles, release of F - ion from Fluosol-DA and solubility of oxygen of Fluosol-DA. (author)

  3. Pseudo-elasticity and shape memory effect on the TiNiCoV alloy

    International Nuclear Information System (INIS)

    Hsu, S.E.; Yeh, M.T.; Hsu, I.C.; Chang, S.K.; Dai, Y.C.; Wang, J.Y.

    2000-01-01

    Unlike most of the structural intermetallic compound, TiNi is an exceptional case of inherent ductility. Besides its amusing behavior of high damping capacity due to martensitic transformation, the duel properties of shape memory and pseudo-elasticity co-exhibited in the same V and Co-modified TiNi-SMA at various temperature will attract another attention in modern manufacturing technology. The objective of this paper is to investigate the pseudo-elasticity and strain rate effect on TiNiCoV-SMA. The presence of dual behavior of super-elasticity and shape memory effect is technological significant for application of advanced materials on the structural component. An illustration of application of TiNiCoV shape memory alloy on the face of golf club head will be presented in this paper. (orig.)

  4. Ni3d-Gd4f correlation effects on the magnetic behaviour of GdNi

    Energy Technology Data Exchange (ETDEWEB)

    Paulose, P L [Tata Inst. of Fundamental Research, Bombay (India); Patil, Sujata [Tata Inst. of Fundamental Research, Bombay (India); Mallik, R [Tata Inst. of Fundamental Research, Bombay (India); Sampathkumaran, E V [Tata Inst. of Fundamental Research, Bombay (India); Nagarajan, V [Tata Inst. of Fundamental Research, Bombay (India)

    1996-07-01

    The results of magnetization and heat-capacity measurements on the alloys, Gd{sub 1-x}Y{sub x}Ni (x=0.0, 0.25, 0.5, 0.75 and 0.9) are reported. The data suggest that there is a Gd induced magnetic moment on Ni, which may in turn enhance Gd-Gd exchange interaction strength in GdNi. The induced moment (on Ni) apparently exhibits itinerant ferromagnetism in the magnetically ordered state of GdNi. (orig.).

  5. Effects of Substituting Palm Olein with Carbohydrates on Insulin Sensitivity: A Review

    International Nuclear Information System (INIS)

    Kim-Tiu, T.; Faun, C.L.

    2016-01-01

    The role of palm olein on insulin resistance, which predisposes to disease progression of type 2 diabetes, is unclear. This article summarises the effects of substituting palm olein with carbohydrates on insulin sensitivity. Two intervention studies have reported conflicting findings. The RISCK (Reading, Imperial, Surreys, Cambridge and King's) study suggested that saturated fat-enriched diet consisting of mainly palm oil and milk fat did not differ from both high and low glycemic carbohydrates on insulin sensitivity in subjects at risk of developing metabolic syndrome. However, another study reported reduced insulin sensitivity after a diet enriched with palm olein and butter compared with high carbohydrate intake. No epidemiological data exists in this context. More clinical trials using solely palm olein in this area are needed. Further well-controlled large scale studies are needed to furnish the information on palm olein replacement with carbohydrates in diabetes prevention. (author)

  6. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  7. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Maffei, Luna Pratali; Cruciani, Federico; Mü ller, Michael A.; Liu, Shengjian; Lopatin, Sergei; Wehbe, Nimer; Ngongang Ndjawa, Guy Olivier; Amassian, Aram; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  8. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  9. Effect of Cr{sup 3+} substitution on electric and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panda, R.K., E-mail: physics.panda@gmail.com [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Muduli, R. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Jayarao, G. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769 008 (India); Sanyal, D. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Behera, D. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India)

    2016-06-05

    This work describes the effect of incorporation of Cr{sup 3+} into CoFe{sub 2}O{sub 4} nanoparticles on its magnetic and electric properties, prepared by auto combustion method. The samples of CoFe{sub 2-x}Cr{sub x}O4 (x = 0, 0.15, 0.3) series were characterized by x-ray diffraction and field emission scanning electron microscopy to find out the average particle size. The substitution of Cr{sup 3+} caused a significant reduction in particle size of the modified systems. Room temperature Moessbauer spectroscopy and magnetic characterization were performed. Analysis of extracted parameters concluded that Cr{sup 3+} replaced the Fe{sup 3+} at B-site (octahedral). The decrease in magnetization at B-site was found responsible for the observed reduced saturation magnetization and coercivity. Impedance spectroscopic analysis has revealed the suppression of electrode-sample surface conduction effect and enhancement of material resistivity. The latter was confirmed by dc resistivity measurement. All these results were explained on the basis of occupancy of Cr{sup 3+} at B-site, surface anisotropy potential and reduced particle size. - Highlights: • Cr substitution reduced the particle size in nano-cobalt ferrite. • Mossbauer study revealed that the Cr{sup 3+} replaced the Fe{sup 3+} at B-site. • Decrease in saturation magnetization and coercivity with the addition of Cr{sup 3+}. • Reduction of surface conduction and rise in resistance observed in modified systems.

  10. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    Science.gov (United States)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure

  11. Effect of Ni content on microwave absorbing properties of MnAl powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-zhong; Lin, Pei-hao, E-mail: gllph2002@163.com; Huang, Wei-chao; Pan, Shun-kang; Liu, Ye; Wang, Lei

    2016-09-01

    MnAlNi powder was prepared by the process of vacuum levitation melting and high-energy ball milling, The morphology and phase structure of the powder were analyzed by Scanning Electron Microscope(SEM), X-ray diffraction(XRD) and the effect of the Ni content on microwave absorbing properties of MnAl powder was investigated by an vector network analyzer. The addition of Ni, which improved the microwave absorbing properties of MnAl powder but not changed the composition of Al{sub 8}Mn{sub 5} alloy. The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder with a coating thickness (d) of 1.8 mm was about −40.8 dB and has better bandwidth effect, the absorbing mechanism of AlMnNi powders on the electromagnetic was related to the electromagnetic loss within the absorbing coatings and the effect of coating thickness on the interference loss of electromagnetic wave. - Highlights: • The grain size and cell volume of Al{sub 8}Mn{sub 5} alloy phase were decreased with the increasing of Ni. • ε″ and μ″ of powder moves toward low frequency region at the beginning then moves high. • The minimum reflectivity of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} powder was −40.8 dB with 1.8 mm thickness. • The lowest reflection loss peak of (Al{sub 8}Mn{sub 5}){sub 0.95}Ni{sub 0.05} was −46.3 dB with 2.2 mm thickness.

  12. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  13. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, Mahdi [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Abdollahifar, Mozaffar [Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of); Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz (Iran, Islamic Republic of)

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  14. Centrality dependence of isospin effect signatures in 124Sn+64Ni and 112Sn+58Ni reactions

    International Nuclear Information System (INIS)

    Planeta, R.; Brzychczyk, J.; Majka, Z.; Sochocka, A.; Amorini, F.; Cavallaro, S.; Toro, M. Di; Giustolisi, F.; Lanzalone, G.; Anzalone, A.; Bonasera, A.; Colonna, M.; Maiolino, C.; Porto, F.; Rizzo, F.; Russotto, P.; Auditore, L.; Trifiro, A.; Trimarchi, M.; Baran, V.

    2008-01-01

    Signatures of isospin effects were investigated for neutron-rich ( 124 Sn+ 64 Ni) and neutron-poor ( 112 Sn+ 58 Ni) systems at 35 MeV/nucleon for noncentral collisions. The centrality dependence of these signatures was tested for several impact parameter estimators. Our main observations are (i) the yields of 1 H and 3 He particles in the neutron-poor system are strongly enhanced with respect to the neutron-rich system, and the yields of 3 H, 6 He, and 7,8 Li are suppressed at all impact parameters, (ii) the yields of 2 H, 4 He, and 6 Li particles are almost the same for both systems, (iii) the N/Z ratio of intermediate mass fragments is correlated with the neutron richness of the system and is weakly dependent on the centrality of the collision, and (iv) the neutron richness of the detected fragments increases strongly with decreasing rapidity in the range from that of the projectile-like fragment to the c.m. region. The gross features of experimental data are reproduced by quantum molecular dynamics model calculations. A comparison between model calculations and the data indicates that the fragments produced in the c.m. regions are weakly excited

  15. Effect of storage on the brewing properties of tropical hop substitutes

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Conclusively, tropical hop substitutes stored at 5 ± 1oC to 27 ± 1oC can still be used for brewing even after three to six months storage. .... which is associated with the oxidative depreciation of the soft resins to hard resins ... Changes in the soft resin levels of hop substitutes with storage. Soft resin levels (%).

  16. Effects of annealing and pulse plating on soft magnetic properties of electroplated Fe-Ni films

    Directory of Open Access Journals (Sweden)

    T. Yanai

    2016-05-01

    Full Text Available We have already reported that Fe-Ni films prepared in citric-acid-based plating baths show good soft magnetic properties. In this paper, we investigated the effect of the grain size of the Fe-Ni crystalline phase in the films on magnetic properties, and employed an annealing and a pulse plating method in order to vary the grain size. The coercivity of the annealed Fe-Ni films at 600 °C shows large value, and good correlation between the grain growth and the coercivity was observed. The pulse plating enables us to reduce the grain size of the as-plated Fe-Ni films compared with the DC plating method, and we realized smooth surface and low coercivity of the Fe-Ni films using the pulse plating method. From these results, we confirmed the importance of the reduction in the grain size, and concluded that a pulse plating is an effective method to improve the good soft magnetic properties for our previously-reported Fe-Ni films.

  17. Substitution effects of a carbonated hydroxyapatite biomaterial against intoxication chloride nickel-exposed rats.

    Science.gov (United States)

    Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed

    2015-03-01

    This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).

  18. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangfei [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Wang Jing, E-mail: wangjingbio@yahoo.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China); Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental and Biological Science and Technology, Dalian University of Technology, Linggong Road No. 2, Dalian 116024 (China)

    2009-11-15

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L{sup -1}, the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  19. Effects of reduction products of ortho-hydroxyl substituted azo dyes on biodecolorization of azo dyes

    International Nuclear Information System (INIS)

    Liu Guangfei; Wang Jing; Lu Hong; Jin Ruofei; Zhou Jiti; Zhang Long

    2009-01-01

    The mediated effects of reduction products of some ortho-hydroxyl substituted azo dyes on biodecolorization were investigated. The results indicated that the addition of reduction products could effectively accelerate dye decolorization by Shigella sp. QRZ-1. The best accelerating effect was obtained with the addition of reduction products of Acid Red 14 (AR14), resulting in an over 3-fold increase in decolorization efficiency of many azo dyes. In sequencing batch reactor experiments, the accelerating effect of reduction products of AR14 was more obvious (1.5-fold) during the startup of the system. When the dye concentration was increased to 500 mg L -1 , the accelerated decolorization efficiency was still maintained around 95%. The presence of AR14 in the feed enhanced the decolorization performance of anaerobic sludge, indicating that the strategy may be beneficial for practical application. 1-Naphthol-2-amino-4-sulfonic acid, which is one of the reduction products of AR14, may function as redox mediator to speed up azo dye biodecolorization.

  20. Configurational energies and effective cluster interactions in substitutionally disordered binary alloys

    International Nuclear Information System (INIS)

    Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.

    1987-01-01

    The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams

  1. Effect of Ni and Cr on IGSCC growth rate of Ni-Cr-Fe alloys in PWR primary water

    International Nuclear Information System (INIS)

    Arioka, K.; Yamada, T.; Aoki, M.; Miyamoto, T.

    2015-01-01

    The purpose of this research is to examine the dependence of SCC (Stress Corrosion Crack) growth on nickel and chromium in PWR primary water; the objective is to obtain the basic knowledge to understand SCC behavior of steam generator tubing materials. The second objective is to understand whether accelerated testing at higher temperatures is appropriate for predicting SCC initiation and growth at lower temperatures. For these objectives, SCC growth was measured in PWR primary water at 290, 320, 330, 340, and 360 C. degrees under static load conditions. Tests were performed using 0.5 T compact tension type specimen using 20%CW X%Ni-16%Cr-Fe alloys in the range of nickel concentration between 16 to 60% and laboratory melted nuclear grade 20% cold worked Alloy 800 (USN N08800, CW800NG). Four important patterns were observed. First, significant effect of nickel on IGSCC resistance was observed at 340 and 360 C. degrees. The rate of IGSCC growth decreases with increasing nickel concentration in the range of nickel concentration between 10% to 25% nickel; and then, the rate of IGSCC increases with increasing nickel concentration in the range of Ni content between 50% and 76%. This trend is quite similar to the results reported by Coriou and Staehle tested in deaerated pure water at 350 C. degrees. However, no significant dependence of Ni content on IGSCC in PWR water at 320 and 290 C. degrees was observed. The change in SCC growth dependence on nickel concentration suggested that the main rate limiting processes on IGSCC growth seems to change between 320 and 340 C. degrees. Secondly, significant beneficial effects of chromium in alloys were observed at 320 C. degrees. However, no beneficial effect of chromium addition in alloys was observed at 360 C. degrees. Thirdly, peak temperatures in growth rate of IGSCC were observed in almost all test materials except for 20%CW Alloy 600. Finally, intergranular attack was observed in some alloys at lower temperature, and the

  2. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  3. Ni doping effect on the electronic and sensing properties of 2D SnO2

    Science.gov (United States)

    Patel, Anjali; Roondhe, Basant; Jha, Prafulla K.

    2018-05-01

    In the present work using state of art first principles calculations under the frame work of density functional theory the effect of Nickel (Ni) doping on electronic as well as sensing properties of most stable two dimensional (2D) T-SnO2 phase towards ethanol (C2H5OH) has been observed. It has been found that Ni atom when dope on T-SnO2 causes prominent decrement in the band gap from 2.26 eV to 1.48 eV and improves the sensing phenomena of pristine T-SnO2 towards C2H5OH by increasing the binding energy from -0.18eV to -0.93eV. The comparative analysis of binding energy shows that Ni improves the binding of C2H5OH by 5.16 times the values for pristine T-SnO2. The doping of Ni into 2D T-SnO2 reduces the band gap through lowering of the conduction band minimum, thereby increasing the electron affinity which increases the sensing performance of T-SnO2. The variation in the electronic properties after and before the exposure of ethanol reinforced to use Ni:SnO2 nano structure for sensing applications. The results indicate that the Ni doped T-SnO2 can be utilized in improved optoelectronic as well as sensor devices in the future.

  4. Soy-Milk Waste with Soybean Meal Dietary Substitution: Effects on Growth Performance and Meat Quality of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    N. D. Dono

    2017-06-01

    Full Text Available Sixty male broiler chickens was used to investigate the effects of dietary soybean meal (SBM with soy-milk waste (SMW substitution using growth performance, protein-energy efficiency ratio, and physical meat quality as response criteria. The birds were given control diet (SMW-0, or a control diets with 5% (SMW-1, 10% (SMW-2, and 15% (SMW-3 soy-milk waste substitutions. Each treatment was replicate 3 times, with 5 birds per replication. The obtained data were subjected to Oneway arrangement of ANOVA, and continued subsequently with Duncan’s new Multiple Range Test. Results showed that substituting SBM with SMW did not influence protein and energy consumption, as well as feed consumption and energy efficiency ratio. However, dietary substitution with 10% SMW improved (P<0.05 protein efficiency ratio, body weight gain, and slaughter weight, resulting in lower (P<0.05 feed conversion ratio. The meat pH, water holding capacity, cooking loss, and tenderness values did not influence by 5-15% SMW substitution.

  5. Size effects on cation heats of formation. I. Methyl substitutions in nitrogenous compounds

    International Nuclear Information System (INIS)

    Leach, Sydney

    2012-01-01

    Graphical abstract: Heat of formation of cations as a function of ln(n) where n is the number of atoms in the ion: methyl substituted immonium cations. N = substitution at nitrogen sites, C = substitution at carbon sites. Highlights: ► Heats of formation of nitrogenous cations by graphical method relating to ion size. ► Methyl substitution in formamides, acetamides, immonium, amine, and imine cations. ► Methyl substitution in ammonium and amino cations. ► New studies ionization energies and heats of formation required in several cases. - Abstract: The heats of formation of molecular ions are often not known to better than 10 or 20 kJ/mol. The present study on nitrogenous compounds adopts the graphical approach of Holmes and Lossing which relates cation heats of formation to cation size. A study of methyl substitution in formamides and acetamides is followed by an examination of heat of formation data on carbon-site and nitrogen-site methyl substitution in immonium, amine, imine, ammonium and amino cations. The results provide tests of the validity of this graphical method and also suggest investigating or re-investigating the ionization energies and the heats of formation of several of the molecules studied.

  6. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Motemani, Y. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Nili-Ahmadabadi, M. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of); Tan, M.J. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: mmjtan@ntu.edu.sg; Bornapour, M.; Rayagan, Sh. [School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, 14395-731 Tehran (Iran, Islamic Republic of)

    2009-02-05

    TiNi alloy is a well-known shape memory alloy and has been widely used for bio-medical, mechanical and electrical applications. In this study, a Ni-rich NiTi alloy was prepared by vacuum arc melting in a water-cooled copper crucible. Three samples of this alloy were heated to 1000 deg. C and cooled in three media: furnace, water, and dry-ice bath. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), hardness measurement and tensile test were carried out to investigate the effect of cooling rate on transformation temperature and mechanical properties. The results show that Ni{sub 3}Ti intermetallic compounds have a great influence on martensitic phase transformation temperature. These tests clearly showed the correlation between cooling rate and properties of the alloy.

  7. The enhanced drying effect of Central-Pacific El Niño on US winter

    International Nuclear Information System (INIS)

    Yu Jinyi; Zou Yuhao

    2013-01-01

    In what is arguably one of the most dramatic phenomena possibly associated with climate change or natural climate variability, the location of El Niño has shifted more to the central Pacific in recent decades. In this study, we use statistical analyses, numerical model experiments and case studies to show that the Central-Pacific El Niño enhances the drying effect, but weakens the wetting effect, typically produced by traditional Eastern-Pacific El Niño events on the US winter precipitation. As a result, the emerging Central-Pacific El Niño produces an overall drying effect on the US winter, particularly over the Ohio–Mississippi Valley, Pacific Northwest and Southeast. The enhanced drying effect is related to a more southward displacement of tropospheric jet streams that control the movements of winter storms. The results of this study imply that the emergence of the Central-Pacific El Niño in recent decades may be one factor contributing to the recent prevalence of extended droughts in the US. (letter)

  8. Shape memory effect and microstructures of sputter-deposited Cu-Al-Ni films

    International Nuclear Information System (INIS)

    Minemura, T.; Andoh, H.; Kita, Y.; Ikuta, I.

    1985-01-01

    The shape memory effect has been found in many alloy systems which exhibit a thermoelastic martensite transformation. Cu-Al-Ni alloys exhibit an excellent shape memory effect in single crystalline states, but they have not yet been commercially used due to their brittle fracture along the grain boundaries in polycrystalline states. This letter reports the shape memory effect and microstructures of the sputter-deposited Cu-Al-Ni films. Cu-14%Al-4%Ni alloy ingot was prepared. A target for sputter deposition was cut from the ingot. Aluminium foils (20 μm thick) were used for the substrates of sputter deposition. The microstructures and crystal structures of the films were investigated by transmission electron microscopy (TEM) and X-ray diffraction using CuKα radiation, respectively. The effect of the sputtering conditions such as substrate temperature, partial pressure of argon gas, and the sputtering power on the structures of sputter-deposited Cu-14%Al-4%Ni films were investigated by X-ray diffraction. Results are shown and discussed. Photographs demonstrate shape memory behaviour of Cu-14%Al-4%Ni films sputter-deposited on aluminium foils from (a) liquid nitrogen temperature to (d) room temperature. (author)

  9. The effect of Al substitution on thermal and mechanical properties of Fe-based bulk metallic glass

    International Nuclear Information System (INIS)

    Ma, R.D.; Zhang, H.F.; Yu, H.S.; Hu, Z.Q.

    2008-01-01

    In this paper, a systematic investigation about the effect of Al substitution on properties of Fe-Cr-Mo-Er-C-B amorphous material, including glass-forming ability (GFA), thermal properties, and mechanical properties was presented. It was found out by X-ray diffraction (XRD) that the glass-forming ability decreased with the increase of Al, when Al reached 7 at%, fully amorphous specimen was not obtained. With regard to thermal parameters, such as glass transition temperature T g , crystallization temperature T x , supercooled liquid region ΔT x , and reduced glass temperature T rg were checked by differential scanning calorimeter. A rather wide supercooled liquid region more than 40 K was found. During compression test, results showed Al substitution slightly improved the fracture strength from 3.4 to 3.7 GPa. The fracture morphology was observed by scanning electron microscopy. Micrographs showed the same cleavage-like fracture in spite of different Al substitution

  10. Effect of symmetric substitution on the phenyl groups of Eu{sup 3+}-dibenzoyl methane complexes on their luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P. [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sudarsan, V.; Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Nayak, S.K. [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Chattopadhyay, S., E-mail: schatt@barc.gov.i [Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2010-10-15

    Complexes of Eu{sup 3+} ion and ligands like dibenzoylmethane (DBM) as well as flouro- and methoxy-substituted DBMs have been prepared and characterized. Peak maxima and line shapes of the {pi}-{pi}{sup *} transitions arising from the ligands in these complexes were very sensitive to the nature of the substituents attached to the phenyl groups of DBM. Symmetric substitution at both the phenyl groups led to improved luminescence in terms of higher quantum yields of emission and longer lifetime of the excited state ({sup 5}D{sub 0}) of Eu{sup 3+} ions. Effective averaging/cancellation of the dipole-dipole interactions in symmetrically substituted ligands and the associated decrease in the extent of quenching were responsible for the improved luminescence from such complexes.

  11. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  12. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mukhtar, E-mail: mukhtarahmad25@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, M. [Department of Physics, The Islamia University of Bahawalpur 63100 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan); Rana, M.U., E-mail: mazharrana@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2013-12-15

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba{sub 2−x}Sr{sub x}Ni{sub 2}Fe{sub 12}O{sub 22} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr{sup 2+} ions at Ba{sup 2+} sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications.

  13. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Ahmad, Mukhtar; Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq; Azhar Khan, M.; Akhtar, Majid Niaz; Murtaza, G.; Rana, M.U.

    2013-01-01

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba 2−x Sr x Ni 2 Fe 12 O 22 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr 2+ ions at Ba 2+ sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications

  14. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    International Nuclear Information System (INIS)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S.; Ilyushina, Natalia A.; Kaverin, Nikolai V.

    2013-01-01

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects

  15. Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants

    Energy Technology Data Exchange (ETDEWEB)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.; Shilov, Aleksandr A.; Krylov, Petr S. [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation); Ilyushina, Natalia A., E-mail: Natalia.Ilyushina@fda.hhs.gov [FDA CDER, 29 Lincoln Drive, Bethesda, MD 20892 (United States); Kaverin, Nikolai V., E-mail: nik.kaverin@gmail.com [D.I. Ivanovsky Institute of Virology, 123098 Moscow (Russian Federation)

    2013-12-15

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and in vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.

  16. Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2016-01-01

    Full Text Available The catalysts Ni/Al2O3 and CaO modified Ni/Al2O3 were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2 adsorption/desorption, temperature-programmed reduction of H2 (H2-TPR, X-ray diffraction (XRD, and temperature-programmed desorption of CO2 and H2 (CO2-TPD and H2-TPD techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2 and H2 adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3 showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3 showed high CO2 conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4 was very close to 1. The high CO2 conversion over Ni/CaO-Al2O3 was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3 surface.

  17. Effects of substitutions at position 180 in the Escherichia coli RNA ...

    Indian Academy of Sciences (India)

    Escherichia coli RNA polymerase, two mutant variants of the protein with substitutions for either alanine or glutamic .... promoter signals utilized for in vitro transcription assays and ..... free recombinant protein using a self-cleavable affinity tag.

  18. Inhibitory effect of isoprenoid-substituted flavonoids isolated from Artocarpus heterophyllus on melanin biosynthesis.

    Science.gov (United States)

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-07-01

    Isoprenoid-substituted flavonoids were isolated from the wood of Artocarpus heterophyllus by means of activity-guided fractionation. Artocarpin (1), cudraflavone C (2), 6-prenylapigenin (3), kuwanon C (4), norartocarpin (5) and albanin A (6) inhibited melanin biosynthesis in B16 melanoma cells without inhibiting tyrosinase. A structure-activity investigation indicated that the presence of the isoprenoid-substituted moiety enhanced the inhibitory activity on melanin production in B16 melanoma cells.

  19. Governance systems in family SMEs: the substitution effects between family councils and corporate governance mechanisms

    OpenAIRE

    L. Gnan; D. Montemerlo; M. Huse

    2015-01-01

    The main objective of this paper is to explore the role of family councils vis-à-vis corporate governance mechanisms. Particularly, the paper explores whether family councils perform only their distinctive family governance role or if they also substitute for the roles performed by corporate governance control mechanisms. Based on a sample of 243 Italian family SMEs, our research findings show that the family council partially substitutes the shareholders' meeting and the board of directors i...

  20. Testing of currency substitution effect on exchange rate volatility in Serbia

    Directory of Open Access Journals (Sweden)

    Petrović Predrag

    2016-01-01

    Full Text Available Despite numerous different definitions existing in the literature, currency substitution is generally understood as a phenomenon when domestic residents prefer to use foreign currency rather than domestic currency. The main reasons for such phenomenon include high and volatile inflation, strong depreciation of national currency and high interest rate differential in favour of foreign currency. Currency substitution, as a monetary phenomenon, is widely spread in Latin American, Eastern European and some Asian countries. This paper is dedicated to the influence of currency substitution on exchange rate volatility in Serbia. The research included testing of three hypotheses: (i currency substitution positively affects depreciation rate volatility, (ii depreciation rate volatility has stronger responses to the past negative than to the past positive depreciation shocks, and (iii currency substitution positively affects expected depreciation rate. The analysis was implemented for the period 2002:m1-2015:m12 (2004:m1- 2015:m12, applying modified EGARCH-M model. Based on the obtained results, all three hypotheses have been supremely rejected regardless of the manner of quantification of currency substitution.

  1. THE EFFECT OF EXPIRED BREAD MEAL AS CORN SUBSTITUTION IN DIET ON BROILER PERFORMANCE

    Directory of Open Access Journals (Sweden)

    S. Kismiati

    2014-10-01

    Full Text Available An experiment was conducted to investigate the expired bread meal used as corn substitution in thebroiler diets to optimally the product performance. One hundred day old chick (DOC male broilerswere given the same diet until 2 weeks old, and then given the treatment diet until 7 weeks of age. ACompletely Randomized Design was used in this study. Data were analyzed by variance of analysis, andfollowed by Duncan’s Multiple Range Test The treatments were : T0 = control feed (without expiredbread meal, T1 = corn substituted with 10% expired bread meal, T2 = corn substituted with 20%expired bread meal, T3 = corn substituted with 30% expired bread meal and T4 = corn substituted with40% expired bread meal. The result indicated that corn substituted with expired bread meal up to 40%has not significantly affected on carcass weight, carcass percentage and feed conversion, but decreasedsignificantly on feed consumption and body weight gain. It can be concluded that the use of expiredbread meal 30% of the proportion of corn produced the most optimal broiler performance. Thesubstitution corn with expired bread meal 40% was decreased body weight gain.

  2. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  3. Effect of Ni and Urea on Growth, Nitrate and Nutrients Concentration in Lettuce (Lactuca sativa Grown in Hydroponics

    Directory of Open Access Journals (Sweden)

    Hosein Nazari Mamaqani

    2017-02-01

    Full Text Available Introduction: The N source used in commercial hydroponic culture of vegetables is mainly NO3-N. The rate of NO3- uptake is usually high, particularly in leafy vegetables and it can be markedly increased when the NO3- supply in the environment is high. An abundant N supply leads to a high NO3-N absorption and accumulation in plants. When NO3- rich vegetables are consumed, various harmful effects on human health may occur such as met-hemoglobinemia (Blue Baby Syndrome and cancer. Keeping levels of NO3- below limits of FAO seems to be impossible without changing conventional fertilizer application techniques. The suitability of urea for the cultivation of field crops has been well documented. Urea is used as the main source of N fertilizer for crops grown in soil. Its use as N source for crops grown under the hydroponic system has yet to be evaluated. To hydrolyze urea, the enzyme urease requires Ni as a component. Substitution of urea for commonly used N03-N fertilizers in hydroponic culture of vegetables would not only enable to avoid excessive accumulation of N03- in plants but would also reduce the cost of production. Leafy vegetable crops, such as lettuce and spinach, contain large amounts of N03-N. Therefore, it is important to reduce N03- concentrations in hydroponically grown with lowest negative effects on yield. Materials and Methods: The experiments were carried outin greenhouse hydroponicsResearchFaculty of Agriculture, University of Tabriz in randomized complete block designwithtwo factors ureaatfivelevels of 0,25, 50, 75and100milligrams perliter(U0, U25,U50, U75, U100andnickelattwo levels of0and2mg per liter (Ni0, Ni2ofnickelsulfate(NiSO4in4replicatesusinglettuce(Lactuca sativa cv. Siyahoo. Plants fed with the modifiedHoagland solutionorhalf theconcentration. Treatments added to nutrient solution when plants were in four leaf stage. Plants were harvested 50 days after treatment. Different organs (leaves, stems and roots were separated

  4. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yiwei; Zhang, Jingyan, E-mail: jyzhang@ustb.edu.cn; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua, E-mail: ghyu@mater.ustb.edu.cn

    2016-12-15

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO{sub 2} capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO{sub 2} capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO{sub 2} capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment. - Highlights: • The perpendicular magnetic anisotropy and anomalous Hall effect of Co/Ni multilayer films were studied. • The PMA thermal stability of the Co/Ni ML can be enhanced by HfO{sub 2} capping layer and Pt insertion. • The anomalous Hall resistivity of Co/Ni ML covered by HfO{sub 2} was enhanced by post-annealing treatment.

  5. Coordination-induced spin crossover (CISCO) through axial bonding of substituted pyridines to nickel-porphyrins: sigma-donor versus pi-acceptor effects.

    Science.gov (United States)

    Thies, Steffen; Bornholdt, Claudia; Köhler, Felix; Sönnichsen, Frank D; Näther, Christian; Tuczek, Felix; Herges, Rainer

    2010-09-03

    Nickel-porphyrins, with their rigid quadratic planar coordination framework, provide an excellent model to study the coordination-induced spin crossover (CISCO) effect because bonding of one or two axial ligands to the metal center leads to a spin transition from S=0 to S=1. Herein, both equilibrium constants K(1S) and K(2), and for the first time also the corresponding thermodynamic parameters DeltaH(1S), DeltaH(2), DeltaS(1S), and DeltaS(2), are determined for the reaction of a nickel-porphyrin (Ni-tetrakis(pentafluorophenyl)porphyrin) with different 4-substituted pyridines by temperature-dependent NMR spectroscopy. The association constants K(1S) and K(2) are correlated with the basicity of the 4-substituted pyridines (R: OMe>H>CO(2)Et>NO(2)) whereas the DeltaH(1S) values exhibit a completely different order (OMeCO(2)Et>NO(2)). 4-Nitropyridine exhibits the largest binding enthalpy, which, however, is overcompensated by a large negative binding entropy. We attribute the large association enthalpy of nitropyridine with porphyrin to the back donation of electrons from the Ni d(xz) and d(yz) orbitals into the pi orbitals of pyridine, and the negative association entropy to a decrease in vibrational and internal rotation entropy of the more rigid porphyrin-pyridine complex. Back donation for the nitro- and cyanopyridine complexes is also confirmed by IR spectroscopy, and shows a shift of the N-O and C-N vibrations, respectively, to lower wave numbers. X-ray structures of 2:1 complexes with nitro-, cyano-, and dimethylaminopyridine provide further indication of a back donation. A further trend has been observed: the more basic the pyridine the larger is K(1S) relative to K(2). For nitropyridine K(2) is 17 times larger than K(1S) and in the case of methoxypyridine K(2) and K(1S) are almost equal.

  6. Substitutional analysis

    CERN Document Server

    Rutherford, Daniel Edwin

    2013-01-01

    Classic monograph, suitable for advanced undergraduates and graduate students. Topics include calculus of permutations and tableaux, semi-normal representation, orthogonal and natural representations, group characters, and substitutional equations. 1968 edition.

  7. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Weng, Shayuan; Zhao, Yinbo; Gao, Fengshan; Deng, Lijun; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of the indentation on pure Cu and Ni films and Cu/Ni multilayered films with a cylindrical indenter, aimed to investigate the effects of the cubic-on-cubic interface and hetero-twin interface on their mechanical properties. We also investigate systematically the formation of twin boundary in the pure metals and the effects of the cubic-on-cubic and hetero-twin interface on mechanical properties of the multilayers. We find that the slip of the horizontal stacking fault can release the internal stress, resulting in insignificant strengthening. The change in the crystal orientation by horizontal movement of the atoms in a layer-by-layer manner is found to initiate the movement of twin boundary, and the hetero-twin interface is beneficial to the hardening of multilayers. Moreover, we also find that increasing number of hetero-twin interfaces can harden the Cu/Ni multilayers.

  8. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    Science.gov (United States)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  9. Beta radiation effects in sup 1 sup 3 sup 7 Cs-substituted pollucite

    CERN Document Server

    Hess, N J; Conradson, S D; Weber, W J

    2000-01-01

    The effect of high-energy beta radiation on the long-range and local structure of sup 1 sup 3 sup 7 Cs-substituted CsAlSi sub 2 O sub 6 (pollucite) was studied by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques at the Cs K-edge. Analysis of the XRD pattern of pollucite with an absorbed dose of 10 sup 1 sup 8 beta decays/g using Rietveld analysis indicates a 0.5-1% volume expansion of the tetrahedral structure as measured at 50 K and a minor displacement of the Cs cation toward the face of one of the six-membered rings. Analysis of the real-space pair-distribution function obtained from Fourier transformation of the diffraction pattern indicates significant correlated movement of the (Si,Al)-O pairs and large static disorder between Cs-O pairs. Analysis of the Cs K-edge XAS revealed substantial contributions from the Cs atomic X-ray absorption. This likely results from the exceedingly long Cs-O bond distances in the pollucite structure, which diminish the fine structure of the XAS os...

  10. The effect of NaCl substitution by KCl on telemea cheese properties

    Directory of Open Access Journals (Sweden)

    Mihai ANGHELOIU

    2016-12-01

    Full Text Available The effect of partial or total substitution of sodium chloride by potassium chloride on the chemical composition, texture profile and sensory properties of Telemea cheese during 28 days of ripening at 4°C was evaluated in the current study. Telemea cheese was ripened in 4 different brine solutions (20%, wt/wt made from different NaCl:KCl ratios as follows: (NaCl (A, KCl (B, 1NaCl:1KCl (C and 1NaCl:2KCl (D. The physicochemical properties of Telemea cheese (dry matter, fat, protein, ash, pH, total nitrogen (TN, water soluble nitrogen (WSN and ripening degree values were determined after 1, 7, 14, 21 and 28 days of ripening. Dry matter, pH and ripening degree values were significantly (p < 0.05 affected during ripening. The results of this study indicated that replacing 66% NaCl with KCl influenced the texture profile and sensorial characteristics of Telemea cheese.

  11. Effect of bismuth ion substitution on structural properties of zinc ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    Naraavula Suresh Kumar

    2016-06-01

    Full Text Available Bismuth doped nano zinc ferrite particles having the general formula ZnFe2-xBixO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 were synthesized by sol-gel combustion method. The effect of bismuth doping on structural properties were investigated. The X-ray diffraction (XRD spectra confirm the single phase cubic spinel structure. The average crystallite sizes of all the samples were determined by Debye-Scherrer equation and are in the range 16–20 nm. The lattice parameter increases with the increase of bismuth ion concentration. This is due to the larger ionic radius of Bi3+ ions substituting smaller Fe3+ ions at octahedral sites (B-sites. The surface morphology of all compounds was studied by scanning electron microscope (SEM. The microstructure analysis and the particle size were examined by transmission electron microscope (TEM. The compositional stoichiometry of these samples was verified by energy dispersive spectroscopy (EDS analysis.

  12. Effect of Various Organic Fertilizers Substitute Chemical Fertilizer on Cucumber Productions

    International Nuclear Information System (INIS)

    Piadang, Nattayana; Ratanapanit, Sittisuk; Chaowanklang, Pratuang; Ratanapanit; Nadtinee; Jaipakdee, Putinee; Ongsakitboriboon

    2006-09-01

    The effect of using the various organic fertilizer to substitute on the chemical fertilizer on cucumber, was carried out at Tambol Pattananikom, Amphur Pattananikom, Lopburi, Thailand, from December 1, 2005 to February 1, 2006 By using Randomized Comp let Block Design (RCBD), Contain with 4 treatments, chemical fertilizer: 16-16-16: 40 Kg/rai (Control), Pillet organic fertilizer: 50 Kg/rai, Bio extract from cow milk: 300 cc./ water 20 Ltr,.+ compost mixed in soil and bio fertilizer from the office of Atomic Energy Peace : 300 cc./water 20 Ltr. + campost mixed in soil (15 m. 2 /plot) were compared. Experiment result indicate that there were no significant differences on the yield. The highest yield of 25.91 kg/plot (27663.73 kg/rai) was obtained from chemical fertilizer, Fertilizer, followed by pillet organic fertilizer 22.88 kg/plot (2440.53 kg/rai), bio fertilizer 22.34 kg/pot (2382.93 kg/rai) and bio extract 19.03 kg/plot) (2029.87 kg/rai.

  13. Effect of sulfhydryls on potentiation of radiation-induced cell lethality by substituted anthraquinones

    International Nuclear Information System (INIS)

    Kimler, B.F.

    1984-01-01

    The effects of various substituted anthraquinones (SAQ's) and Adriamycin (ADR) were investigated in cultured Chinese hamster V79 cells. These drugs cause a potentiation of radiation-induced cell lethality, albeit by different mechanisms. One possibility is that these components operate through the production of free radicals which then produce DNA strand breaks and crosslinks. If so, then one should be able to change the degree of cell kill by modifying sulfhydryl (SH) levels such that free radical processes are altered. Diamide, buthionine-S, R-sulfoximine, and N-ethylmaleimide (NEM) were used to reduce intracellular SH levels. Cysteamine and dithiotheitol were used to increase SH levels. In general, altered SH levels did not affect SAQ-induced cytotoxicity at low drug concentrations. When drug-tested cells were also irradiated, survival levels were generally those predicted from assuming purely additive interactions. On the other hand, survival after treatment with high concentrations of ADR and one other SAQ were decreased by concomitant treatment with NEM. Since altered SH levels do not produce changes in the potentiation of radiation-induced cell lethality by SAQs, it is concluded that free radicals are not involved in this potentiation. A free radical-mediated process may be involved in the cytotoxicity induced by ADR and other SAQs; however, it is not a simple process

  14. Effects of substituting D2O for H2O on SANS measurements of hydrating cement

    International Nuclear Information System (INIS)

    Sabine, T.M.; Prior, M.J.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) measurements of cement have been found useful in the investigation of the shape and growth of particles formed during hydration. Calorimetric measurements of hydrating cement samples have shown that the substitution of D 2 O for H 2 O has the effect of slowing the hydration process. In order to throw some light on this phenomenon, we have measured SANS profiles from cement samples hydrating in H 2 O and D 2 O. This involved obtaining SANS profiles at half-hourly intervals during the initial stage of hydration. The only instruments capable of this at present are located at the Hahn-Meitner Institute in Berlin and at the Nuclear Physics Institute at Rez near Prague. Initial experiments carried out on the V12a UltraSANS diffractometer at The Hahn-Meitner Institute were only partially successful owing to excessive multiple scattering in the D 2 O samples. Subsequent measurements were therefore carried out on the similar instrument at Rez near Prague which operates at a shorter neutron wavelength. Results from these measurements show profound differences in the evolution of cements hydrating in D 2 O and those hydrating in H 2 O

  15. Substituted galacturonan from starfruit: Chemical structure and antinociceptive and anti-inflammatory effects.

    Science.gov (United States)

    Leivas, Carolina L; Nascimento, Leandro F; Barros, Wellinghton M; Santos, Adair R S; Iacomini, Marcello; Cordeiro, Lucimara M C

    2016-03-01

    Starfruit (Averrhoa carambola L.) is an edible tropical fruit, which is usually consumed as a fresh table fruit or as fruit juice. It also exhibits various pharmacological activities. In this study, polysaccharides were extracted with boiling water and purified by freeze-thawing and Fehling treatments. After purification steps, a homogenous fraction was obtained. It was analyzed by sugar composition, gel permeation chromatography, methylation, and two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy analyses. It comprised arabinose (Ara), galactose (Gal), and galacturonic acid (GalA) in a molar ratio of 12.3:1.7:86.0. Methylation and NMR spectroscopy analyses showed that it contained a substituted galacturonan composed of (1→4)-linked α-D-Galp A units branched at O-2 by (1→5)-linked α-L-Araf and terminal α-L-Araf and α-D-Galp A units. The effect of PFSCW (10-300mg/kg, i.p.) on nocifensive behavior induced by intraplantar injection of formalin in mice was evaluated. The fraction demonstrated antinociceptive and anti-inflammatory properties, suggesting that it may be useful in therapeutic intervention for the management of inflammatory pain. Copyright © 2015. Published by Elsevier B.V.

  16. Effects of saliva substitutes on oral status in patients with Type 2 diabetes.

    Science.gov (United States)

    Montaldo, L; Montaldo, P; Papa, A; Caramico, N; Toro, G

    2010-11-01

    To assess oral status in a sample of Type 2 diabetic patients before and after therapy with saliva substitutes and oral status in a control group of diabetic patients who were not given saliva substitutes. Salivary flow rate was determined in 134 patients (mean age 47.9 ± 2.9 years) with Type 2 diabetes. Mean salivary rate was significantly low compared with a healthy control group. The sample of 134 patients was randomly divided into two groups of 67 people each. One group was given immunologically active salivary substitutes for 6 months, the other group was given nothing. Each patient of the two groups underwent a dental and periodontal examination at the beginning of the study and 6 months later. As regards carious teeth and teeth loss, there was no statistical difference between the first group after 6 months of treatment with salivary substitutes and the control group (P>0.01). Salivary substitutes did not significantly reduce the periodontal disease (P>0.01). In the group treated with salivary substitutes, after 6 months of therapy, the average dental plaque index decreased from 2.3 ± 0.73 to 1.6 ± 0.56, patients with gingivitis decreased from 66 to 43% and patients with positive yeast counts decreased from 60 to 37%. These differences were statistically significant (Pdiabetes, in the case of hyposalivation, a therapy with immunologically active saliva substitutes can be of help in reducing the amount of plaque, gingivitis and positive yeast counts. © 2010 The Authors. Diabetic Medicine © 2010 Diabetes UK.

  17. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni-Mn-In and Ni-Mn-Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni{sub 50}Mn{sub 50-x}In{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 35}In{sub 15}, Ni{sub 50}Mn{sub 35-x}Co{sub x}In{sub 15}, Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge), Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 25+y}Ga{sub 25-y}, and Ni{sub 50-x}Co{sub x}Mn{sub 32-y}FeyGa{sub 18}. It was found that the magnetic entropy change, {Delta}S, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change {Delta}H=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni{sub 50}Mn{sub 50-x}In{sub x} (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition {Delta}S=24 J/(kg K) was detected for {Delta}H=5 T at T=350 K. The variation in composition of Ni{sub 2}MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni{sub 42}Co{sub 8}Mn{sub 32-y}FeyGa{sub 18} system. The adiabatic change of temperature ({Delta}T{sub ad}) in the vicinity of TC and TM of Ni{sub 50}Mn{sub 35}In{sub 15} and Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge) was found to be {Delta}T{sub ad}=-2 K and 2 K for {Delta}H=1.8 T, respectively. It was observed that |{Delta}T{sub ad}| Almost-Equal-To 1 K for {Delta}H=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall

  18. Computational modelling of Ti50Pt50-xMx shape memory alloys (M: Ni, Ir or Pd and x = 6.25-43.75 at.%)

    CSIR Research Space (South Africa)

    Modiba, Rosinah M

    2017-09-01

    Full Text Available The ab initio density functional theory approach was employed to study the effect of Ni, Ir or Pd addition to the TiPt shape memory alloy. The supercell approach in VASP was used to substitute Pt with 6.25, 18.75, 25.00, 31.25 and 43.75 at.% Ni, Ir...

  19. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    International Nuclear Information System (INIS)

    Atli, K C; Karaman, I; Noebe, R D; Bigelow, G; Gaydosh, D

    2015-01-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni 50.3 Ti 29.7 Hf 20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni 49.9 Ti 50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni 50.3 Ti 29.7 Hf 20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g −1 , compared to a maximum value of 0.06 J g −1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni 50.3 Ti 29.7 Hf 20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni 50.3 Ti 29.7 Hf 20 , in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation. (paper)

  20. Large magnetocaloric effect of GdNiAl{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Dembele, S.N.; Ma, Z.; Shang, Y.F. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, H., E-mail: fuhao@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Balfour, E.A. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R.L.; Jiles, D.C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Teng, B.H.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-10-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl{sub 2}. Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl{sub 2} alloy is CuMgAl{sub 2}-type phase structure with about 1 wt% GdNi{sub 2}Al{sub 3} secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10{sup 2} J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl{sub 2} compound. • The ΔS{sub Mmax} and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl{sub 2} comparing with other candidates.

  1. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  2. Effect of Silicon Nitride Incorporation on Microstructure and Hardness of Ni-Co Metal Matrix Nanocomposite

    Directory of Open Access Journals (Sweden)

    Ridwan

    2015-01-01

    Full Text Available Ni-Co-Si3N4 nanocomposite coatings were prepared by electrodeposition technique. The deposition was performed at 50 mA cm-2 on copper substrate. The working temperature of electrodepostion was constant at 500C in an acidic environment of pH 4. The effects of silicon in the nickel-cobalt metal matrix composite were investigated. Energy dispersive X-ray spectroscopy was used to determine the composition. The Co content in the coatings is in the range 27-49 at.%. The phase present in the Ni-Co-Si3N4 were examined with an X-ray diffraction analysis. All the reflection patterns indicate that the coatings are having face-centered cubic (fcc structure. The microhardness of the Ni-Co-Si3N4 nanocomposite coating increases with increasing silicon content. The microhardness of the Ni-Co-Si3N4 nanocomposite coating increased from 549 HV for Nickel-cobalt alloy coating to 641 HV for Ni-Co-Si3N4 nanocomposite coating with 5.47 at.% Si.

  3. The effect of nanocrystalline Ni-W coating on the tensile properties of copper

    Directory of Open Access Journals (Sweden)

    E. P. Georgiou

    2016-03-01

    Full Text Available Nanostructured Ni-W alloy coatings containing approximately 40 wt.% tungsten were electrodeposited onto copper substrates. The effect of the coatings thickness on the surface topography, microstructure and grain size was investigated with the aid of Atomic Force Microscopy (AFM, Scanning Electron Microscopy (SEM and X-ray Diffraction (XRD techniques respectively. In addition, this research work aims in understanding the influence and correlation between microstructure and thickness of these Ni-W coatings with the bulk mechanical properties of coated specimens. The experimental results indicated that the micro-hardness and Ultimate Tensile Strength (UTS of the Ni-W coated copper were higher than that of bare copper, whereas both slightly increased with increasing coating thickness up to 21 μm. On the other hand, the ductility of Ni-W coated copper decreased significantly with increasing coating thickness. Thus it could be said that when applying Ni-W coatings there are certain limitations not only in terms of their composition, but their thickness, grain size and coating structure should be also taken into consideration, in order to obtain an understanding of their mechanical behavior.

  4. Negative and positive magnetocaloric effect in Ni-Fe-Mn-Ga alloy

    International Nuclear Information System (INIS)

    Duan Jingfang; Huang Peng; Zhang Hu; Long Yi; Wu Guangheng; Rongchang Ye; Chang Yongqin; Farong Wan

    2007-01-01

    The phase transition process and magnetic entropy change ΔS of Ni 54.5 FeMn 20 Ga 24.5 alloy were studied. Substitution of Fe for Ni increases the Curie temperature and decreases the temperature of martensitic phase transition. The transition from ferromagnetic martensitic to ferrormagnetic austenitic state leads to an abrupt increase of magnetization below 0.5T and an abrupt decrease of magnetization above 0.5T. The sign of ΔS changes from positive to negative with increasing the applied field from 0.5 to 2T. The maximal value of the positive magnetic entropy change ΔS is about 3.1J/kgK for the applied field from 0 to 0.5T. The increase of applied field from 1.5T results in a negative ΔS. The peak of negative ΔS is -2.1J/kgK for a field change of 2T

  5. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.; Fratila-Apachitei, L.E., E-mail: e.l.fratila-apachitei@tudelft.nl; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel–titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  6. Effect of Nb doping on electrochemical properties of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} at high cutoff voltage for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiefan [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); Liu, Hongguang, E-mail: hongguangliu_01@163.com [School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 (China); CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131 (China); Ye, Xuehai; Xia, Jiping; Lu, Yang; Lin, Chaowang; Yu, Xiaowei [CNOOC Tianjin Chemical Research & Design Institute, Tianjin 300131 (China)

    2015-09-25

    Highlights: • Nb substituted LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3−x}Nb{sub x}O{sub 2} (x = 0–0.03) was prepared by sol–gel method. • 2% Nb-substituted sample showed better cycle performance at high cutoff voltage. • Ex situ analysis was used to show the structure changes of Nb-doped samples. - Abstract: Nb doped cathode materials with the formula LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3−x}Nb{sub x}O{sub 2} (x = 0, 0.01, 0.02, 0.03) have been prepared successfully by sol–gel method. The effect of Nb substitution on the crystal structure and electrochemical properties of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} were studied systematically by X-ray diffraction (XRD) and various electrochemical measurements. The results showed Nb substitution played an important role in the good cycling performance of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2}. Charge/discharge tests revealed that LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3–0.02}Nb{sub 0.02}O{sub 2} showed a capacity retention of 94.1% at 1 C after 50 cycles in a high cutoff voltage range (3.0–4.6 V), while discharge capacity of LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} remains only 89.4% of that at 1 C. Ex-situ XRD analysis and EIS analysis indicated that the improved electrochemical properties of Nb-doped sample result from the more stable structure and lower resistance during the electrochemical cycling.

  7. Regioselective photoisomerizations of bridgehead substituted dibenzobarrelenes and benzonorbornadienes. The implication of excited-state secondary deuterium isotope effects of benzo-vinyl bridging

    International Nuclear Information System (INIS)

    Paquette, L.A.; Bay, E.

    1982-01-01

    Replacement of a bridgehead hydrogen by deuterium in substituted dibenzobarrelenes and benzonorbornadienes leads to k/sub H//k/sub D/ values of 1.11-1.27 (cyclopropyl substitution disfavored); these effects are opposite to those seen with other substitutents (except bromine) and demand that bridged radicals be formed reversibly or not at all. Since results demonstrate that the influence of bridgehead substitutents is clearly large, it is possible that pendant functional groups at each of the available sites exert their influence in a direct concerted manner. At least three intriguing studies now become worthy of immediate attention. In the first, benzonorbornadienes that are differently substituted at the bridgehead sites may serve as exceptionally sensitive probes of relative radical stabilization capabilities in the excited state. Direct competition experiments of this sort are unprecedented. Secondly, it becomes important to assess the relative controlling powers of bridgehead/aryl and bridgehead/vinyl substitutent combinations

  8. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  9. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    Science.gov (United States)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  10. Soft X-Ray Magneto-optical Faraday Effect around Ni M2,3 Edges

    International Nuclear Information System (INIS)

    Kai, Chen; Ming-Qi, Cui; Fen, Yan; Li-Juan, Sun; Lei, Zheng; Chen-Yan, Ma; Shi-Bo, Xi; Yi-Dong, Zhao; Jia, Zhao

    2008-01-01

    We present magneto-optical (MO) Faraday spectra measured around the M 2,3 edges (60–70eV) of Ni films at the Beijing Synchrotron Radiation Facility (BSRF). A polarization analysis of the final state of the transmitted radiation from the Ni film is employed to determine the Faraday rotation at the edges. The MO effect becomes resonantly enhanced at the M 2,3 edges, and accordingly large values for the rotation angle β of 1.85 ± 0.19° for this ferromagnetic Ni film with thickness of 31 nm are measured. Without the magnetic field, the azimuthal angles do not shift; with parallel and antiparallel magnetic field the rotation angles shift in the opposite way and they are symmetrical. The uncertainty of Faraday rotation angles mainly comes from the data fitting and the state change of the beamline when the angles are measured

  11. Steam reforming of ethanol over Ni-based catalysts: Effect of feed composition on catalyst stability

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2014-01-01

    In this work the effects of steam-to-carbon ratio (S/C), and addition of H2 or O2 to the feed on the product yields and carbon deposition in the steam reforming (SR) of ethanol over Ni/MgAl2O4, Ni/Ce0.6Zr0.4O2, and Ni/CeO2 at 600 °C have been investigated. Increasing the S/C-ratio from 1.6 to 8.3...... showed stable behavior and an average rate of carbon deposition of less than 7 μg C/gCat h. The results indicate that stable operation of ethanol SR is only possible under oxidative conditions....

  12. Defects of Al-Ni joints caused by Kirkendall – Frenkel effect

    Directory of Open Access Journals (Sweden)

    K. Garbala

    2010-01-01

    Full Text Available In this paper Kirkendall – Frenkel effects occurring in bimetallic Al-Ni couples has been subjected detailed analysis. The aim of this work was to conduct the model research describing the mechanism of connection zone formation at the aluminum-nickel contact. Al-Ni samples were annealed at temperatures below the melting point of aluminum for a specified periods of time. In the sample annealed at 640°C for 48 hours Frenkel porosity occurrence has been observed. Maximum pore surfaces share in this area is 35÷40%. Diffusion influences in this case can be divided into three zones differing values of component elements concentrations. Microhardness test of these zones reviled that the greatest hardness has Al3Ni2 phase equal to 1533HV0,1.

  13. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, J. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of); Zebarjad, S.M. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)], E-mail: Zebarjad@um.ac.ir; Sajjadi, S.A. [Department of Materials Science and Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111, Mashhad (Iran, Islamic Republic of)

    2008-01-25

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase.

  14. Effect of pre-strain on microstructure of Ni-Ti orthodontic archwires

    International Nuclear Information System (INIS)

    Jafari, J.; Zebarjad, S.M.; Sajjadi, S.A.

    2008-01-01

    One of the most important applications of shape memory alloy is in medicine, especially orthodontic archwires. In this category Ni-Ti orthodontic archwires is one of the oldest used materials. Biocompatibility, corrosion resistance, super elasticity, etc. are its outstanding properties. In spite of the importance of dependency of pre-strain on microstructure of Ni-Ti there are limited sources concentrated on the subject. For this reason the main purpose of the current study is determination of the effect of pre-strain on microstructure of Ni-Ti orthodontic archwires. In this regard, three-point bending was performed on the orthodontic archwire specimens to apply different amount of strain. The microstructures were compared with the un-strained wire using optical and scanning electron microscopes. The results showed that the stable phase depends strongly on the value of pre-strain. Increasing pre-strain causes to decrease martensite laths and leads the microstructure toward austenite phase

  15. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Natalia Cooper

    Full Text Available Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound are easier to present than others (object weight, vestibular cues so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times and subjective (ratings of presence performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.

  16. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment

    Science.gov (United States)

    Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as ‘presence’, when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user’s overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience. PMID:29390023

  17. The effects of substitute multisensory feedback on task performance and the sense of presence in a virtual reality environment.

    Science.gov (United States)

    Cooper, Natalia; Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg

    2018-01-01

    Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.

  18. Role of copper/vanadium on the optoelectronic properties of reactive RF magnetron sputtered NiO thin films

    Science.gov (United States)

    Panneerselvam, Vengatesh; Chinnakutti, Karthik Kumar; Thankaraj Salammal, Shyju; Soman, Ajith Kumar; Parasuraman, Kuppusami; Vishwakarma, Vinita; Kanagasabai, Viswanathan

    2018-04-01

    In this study, pristine nickel oxide (NiO), copper-doped NiO (Cu-NiO) and vanadium-doped NiO (V-NiO) thin films were deposited using reactive RF magnetron co-sputtering as a function of dopant sputtering power. Cu (0-8 at%) and V (0-1 at%) were doped into the NiO lattice by varying the sputtering power of Cu and V in the range of 5-15 W. The effect of dopant concentration on optoelectronic behavior is investigated by UV-Vis-NIR spectrophotometer and Hall measurements. XRD analysis showed that the preferred orientation of the cubic phase for undoped NiO changes from (200) to (111) plane when the sputtering parameters are varied. The observed changes in the lattice parameters and bonding states of the doped NiO indicate the substitution of Ni ions by monovalent Cu and trivalent V ions. The optical bandgap of pristine NiO, Cu-NiO, and V-NiO was found to be 3.6, 3.45, and 3.05 eV, respectively, with decreased transmittance and resistivity. Further analysis using SEM and AFM described the morphological behavior of doped NiO thin films and Raman spectroscopy indicated the structural changes on doping. These findings would be helpful in fabricating solid-state solar cells using doped NiO as efficient hole transporting material.

  19. THE STUDY OF FISH SUPPLEMENT AND BUTTERFAT SUBSTITUTE EFFECT ON EXPIRY DATE OF PROCESSED CHEESE PRODUCT

    Directory of Open Access Journals (Sweden)

    NATALIYA LOTYSH

    2015-02-01

    Full Text Available The sector of functional products has top-priority meaning – it is the most convenient and natural form of introduction and enrichment of the human organism with vitamins, mineral substances, microelements and other components. Attraction into the branch of raw materials of non-milk origin – fish supplements and substitutes of butterfat – served the basis of technology development of processed cheese products of combined content, which in accordance with acting terminology are called processed cheese products. The technology of processed cheese products allows easily regulating their content by introduction of corresponding supplement that facilitates obtainment of product with set properties and content. Inclusion of meat and fish as the raw materials in the processed cheese content results in enrichment of the product with macro- and microelements, unsaturated fatty acids, except for regulation of fatty acid content of cheese products is executed by substitution of butterfat by butterfat substitute.

  20. Double dividend effectiveness of energy tax policies and the elasticity of substitution: A CGE appraisal

    International Nuclear Information System (INIS)

    Sancho, Ferran

    2010-01-01

    There is a considerable body of literature that has studied whether or not an adequately designed tax swap, whereby an ecotax is levied and some other tax is reduced while keeping government income constant, may achieve a so-called double dividend, that is, an increase in environmental quality and an increase in overall efficiency. Arguments in favor and against are abundant. Our position is that the issue should be empirically studied starting from an actual, non-optimal tax system structure and by way of checking the responsiveness of equilibria to revenue neutral tax regimes under alternate scenarios regarding technological substitution. With the use of a CGE model, we find that the most critical elasticity for achieving a double dividend is the substitution elasticity between labor and capital whereas the elasticity that would generate the highest reduction in carbon dioxide emissions is the substitution elasticity among energy goods.

  1. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    Science.gov (United States)

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  2. Double dividend effectiveness of energy tax policies and the elasticity of substitution. A CGE appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Sancho, Ferran [Departament d' Economia, Universitat Autonoma de Barcelona, 08193-Bellaterra (Spain)

    2010-06-15

    There is a considerable body of literature that has studied whether or not an adequately designed tax swap, whereby an ecotax is levied and some other tax is reduced while keeping government income constant, may achieve a so-called double dividend, that is, an increase in environmental quality and an increase in overall efficiency. Arguments in favor and against are abundant. Our position is that the issue should be empirically studied starting from an actual, non-optimal tax system structure and by way of checking the responsiveness of equilibria to revenue neutral tax regimes under alternate scenarios regarding technological substitution. With the use of a CGE model, we find that the most critical elasticity for achieving a double dividend is the substitution elasticity between labor and capital whereas the elasticity that would generate the highest reduction in carbon dioxide emissions is the substitution elasticity among energy goods. (author)

  3. Irradiation effects in Fe-30%Ni alloy during Ar ion implantation

    International Nuclear Information System (INIS)

    Soukieh, Mohamad; Al-Mohamad, Ali

    1993-12-01

    The use of metallic thin films for studying the processes which take place during ion irradiation has recently increased. For example, ion implantation is widely used to study the structural defects in transition metallic thin films such as (Fe, Ni, Co), because it can simulate the effects occurring in nuclear reactors during neutron irradiation especially the swelling of reactor materials. The swelling of metals and alloys is strongly related to the material structure and to the irradiation conditions. The general feature of formation of structural defects as a function of irradiation dosage and annealing temperature is well known. However, the detailed mechanisms are still not well understood. For example, the swelling of iron alloy with 30-35% nickel is very small in comparison with other Ni concentrations, and there is no clear information on the possibility of phase transitions in fe-Ni alloys during irradiation. The aim of this work is to study the phase-structural changes in Fe-30% Ni implanted by high dose of argon ions. The effect of irradiation with low energy argon ions (40 KeV, and fluences of 10.E15 to 10.E17 ions/cm) on the deposited thin films of Fe-30% Ni alloy was investigated using RBS and TEM techniques. The thicknesses of these films were about 65+-10 nm deposited on ceramic, KBr, and Be fiols substrates. Gas bubble formation and profile distribution of the implanted argon ions were investigated. Formation of an ordered phase Fe 3 Ni during irradiation appears to inhibit gas bubble formations in the film structure. (author). 17 refs., 15 figs., 7 tabs

  4. Multidimensional effects in dissociative chemisorption: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Engdahl, C.; Lundqvist, Bengt; Nielsen, U.

    1992-01-01

    It is shown that, in order to describe and understand the trends found experimentally for the variation of the H2 sticking probability with crystal face on Cu and Ni surfaces, the dynamics of all six molecular degrees of freedom must be included. The effective-medium theory is used to estimate...

  5. Pressure effects on Al89La6Ni5 amorphous alloy crystallization

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Jiang, Jianzhong; Zhou, T. J.

    2000-01-01

    The pressure effect on the crystallization of the Al89La6Ni5 amorphous alloy has been investigated by in situ high-pressure and high-temperature x-ray powder diffraction using synchrotron radiation. The amorphous alloy crystallizes in two steps in the pressure range studied (0-4 GPa). The first p...

  6. Effect of neutron irradiation on the cellular stage of Ni-Be alloy decomposition

    International Nuclear Information System (INIS)

    Larikov, L.N.; Borimskaya, S.T.

    1981-01-01

    Effects of neutron irradiation on the cellular stage of decomposition are investigated in deformed supersaturated solid solution Ni-1.92%Be by the X-ray structural and metallographic analyses. Radiation-initiated stimulation of the recovery properties in the deformed alloy and a lower rate of the cellular decomposition in irradiated samples are discovered [ru

  7. Fiscal 1994 report on the survey of making models for introducing petroleum substituting energy systems; 1994 nendo chosa hokokusho (sekiyu daitai energy system donyu model sakusei ni kansuru chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    In the promotion of measures taken for energy conservation, it is necessary to give local governments, entrepreneurs, etc. appropriate and concrete guidance for introducing energy systems which meet with features of the areas and buildings and courses for how to construct infrastructures of towns or cities in case of development and redevelopment. Recently, also in local governments, etc., there are seen attitudes toward positive study of introduction of energy conservation systems and petroleum substituting energy systems in case of redevelopment, and the situation is that the spread and expansion are expected by giving appropriate guidance for the introduction. Accordingly, the study makes analyses of the trend and characteristics of developmental projects and makes/arranges models of promising petroleum substituting energy systems, aiming at contributing to promotion of guidance for the introduction to local governments, entrepreneurs, etc. Approximately 20 models of petroleum substituting energy systems were made which are thought to be promising. For each, the following were arranged: outline of system, introduction target, introduction effects, the point of promotion of the introduction, related subsidy systems, actual results, etc. 22 figs., 34 tabs.

  8. Effects of P/Ni ratio and Ni content on performance of γ-Al{sub 2}O{sub 3}-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-01-01

    Graphical abstract: - Highlights: • The formation of AlPO{sub 4} was unfavorable for that of nickel phosphides. • The phase compositions of nickel phosphide depended on the amount of reduced P. • Catalytic activity was determined by surface Ni site density and catalyst acidity. • HDO pathway was promoted by increasing P/Ni ratio and Ni content. • Nickel phosphide gave much higher carbon yield and lower H{sub 2} consumption than Ni. - Abstract: γ-Al{sub 2}O{sub 3}-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0–2.5) and Ni content (m = 5–15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al{sub 2}O{sub 3} was also studied for comparison. It was found that the formation of AlPO{sub 4} in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni{sub 3}P, Ni{sub 12}P{sub 5} and Ni{sub 2}P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al{sub 2}O{sub 3}, the mNi-Pn catalysts showed much lower activities for decarbonylation, C−C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and

  9. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Padalia, Diwakar, E-mail: Padalia.diwakar@gmail.com [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Johri, U.C. [Department of Physics, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India); Zaidi, M.G.H. [Supercritical Fluid Processing Laboratory, Department of Chemistry, G.B.Pant University of Agriculture & Technology, Pantnagar, Uttrakhand (India)

    2016-02-01

    The current work presents the synthesis and properties of cerium doped magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized by standard chemical co-precipitation method using NH{sub 4}OH as co-precipitating agent. The effects of cerium ion substitution on structural and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles were reported. These materials were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The cerium content has a significant influence on structural and magnetic properties. The X-ray diffraction study confirmed the formation of single-phase magnetite with space group Fd3m and crystallite size ranging from 39 to 58 nm. The addition of cerium resulted in a reduction of crystallite size and an increase of cell parameters. FTIR measurements confirmed the formation of different samples and suggested that the reduction of Fe{sup +3} to Fe{sup +2} preferred on a site adjacent to Ce{sup +4}. Magnetic measurements revealed that the saturation magnetization (Ms) and remanence (M{sub r}) decreased while the coercivity (H{sub C}) and squareness (M{sub r}/M{sub S}) increased with increasing cerium content. - Highlights: • There is an increase in cell parameters and strain with Ce-content. • Samples show the presence of secondary phase after 1.0% doping level. • Ce-ions prefer octahedral sites and charge neutrality is accompanied by Fe{sup +3} → Fe{sup +2}. • Magnetization decreases due to weakening of the super exchange interactions. • Squareness and coercivity start to increase with Ce content.

  10. Alloying effect on hardening of martensite stainless steels of the Fe-Cr-Ni and Fe-Cr-Co systems

    International Nuclear Information System (INIS)

    Fel'dgandler, Eh.G.; Savkina, L.Ya.

    1975-01-01

    The effect of alloying elements is considered on the γ → a-transformation and hardening of certain compositions of the ternary Fe-Cr-Ni- and Fe-Cr-Co alloy systems with the martensite structure. In martensite Fe-(10 to 14)% Cr base steels the elements Co, Cu, W, Ni, Mo, Si, Cr decrease, Mn, Si, Mo, Cu increase, and Cr, Ni, Co decrease the temperature of α → γ-transition. The tempering of martensite steels of the Fe-Cr-Ni- and Fe-Cr-Co-systems containing 10 to 14% Cr, 4 to 9% Ni, and 7 to 12% Co does not lead to hardening. Alloyage of the martensite Fe-Cr-Ni-, Fe-Cr-Co- and Fe-Cr-Ni-Co base separately with Mo, W, Si or Cu leads to a hardening during tempering, the hardening being the higher, the higher is the content of Ni and, especially, of Co. The increase in the content of Mo or Si produces the same effect as the increase in the Co content. In on Fe-Cr-Co or Fe-Cr-Ni-Co based steels alloyed with Mo or Si, two temperature ranges of ageing have been revealed which, evidently, have different hardening natures. The compositions studied could serve as the base material for producing maraging stainless steels having a complex variety of properties

  11. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D

    2008-09-01

    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  12. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys

    Science.gov (United States)

    Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; Zhang, Yanwen

    2018-01-01

    The role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably, the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding eg to t2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.

  13. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.

    2012-01-01

    This paper addresses the problem of R314a substitution with a natural refrigerant fluid. Attention is devoted to the evaluation of the environmental impact, in terms of greenhouse effect. R134a and R744 (CO 2 ) are compared to one another. The hydrofluorocarbon R134a has a large direct warming impact (GWP), whereas the R744 contribution is negligible. The greenhouse effect is determined by the experimental evaluation of the TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. This paper compares a commercial R134a refrigeration plant and a prototype R744 system working in a trans-critical cycle. The experimental results clearly show that the latter has a larger TEWI than the system operating with R134a. The indirect contribution to global warming provided by R744 is always greater than that of R134a. This contribution prevails in most cases. Only few operating conditions corresponding to a refrigerating plant working as a classical split system benefits, in terms of greenhouse effect, of the substitution of R134a with R744. -- Highlights: ► A comparison between a classical vapour compression plant and a trans-critical cycle. ► Evaluation of the greenhouse effect in R134a substitution with R744. ► Evaluation of direct and indirect contribution to global warming. ► Minimization of the global warming impact of a R744 transcritical cycle.

  14. Effects of El Niño on distribution and reproductive performance of Black Brant.

    Science.gov (United States)

    Sedinger, James S; Ward, David H; Schamber, Jason L; Butler, William I; Eldridge, William D; Conant, Bruce; Voelzer, James E; Chelgren, Nathan D; Herzog, Mark P

    2006-01-01

    Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Niño and non-El Niño years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Niño event since 1965. Fewer brant were observed on the principal breeding area following each El Niño since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter. Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Niño event in the winter of 1997-1998 than in non-El Niño years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska.

  15. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    Science.gov (United States)

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Dairy Cattle Breeding Effectiveness Analysis under the Conditions of Import Substitution

    Science.gov (United States)

    Tokarev, Yuri A.; Merkushova, Nina I.; Bakanach, Olga V.; Proskurina, Natalya V.; Sazhina, Natalia S.

    2016-01-01

    The relevance of the research problem is inspired by the strategic importance of dairy farming to the national economy, which is especially evident in the context of the EU economic sanctions against the Russian Federation and carrying out the import substitution policy. First and foremost, this policy applies to food commodities, including milk.…

  17. Effect of storage on the brewing properties of tropical hop substitutes ...

    African Journals Online (AJOL)

    Tropical hop substitute from utazi (UTZ) Gongronema latifolium, bitter cola (BTC), Garcinia kola, bitter leaf (BTL), Vernonia amygdalina and a blend (1:1.41:2.89) of the three (HSB) respectively, were produced. Stability studies were carried out to predict their suitability for brewing after one to six months storage at 5 ± 1oC ...

  18. Space can substitute for time in predicting climate-change effects on biodiversity

    Science.gov (United States)

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  19. Pharmacological mechanisms in the cardiovascular effects of DCLHb, a hemoglobin based blood substitute

    NARCIS (Netherlands)

    A. Gulati (Anil)

    1996-01-01

    textabstractThe search for a clinically useful blood substitute has been stimulated by the inherent limitations of the homologous blood transfusion system, particularly its sufficiency, safety and costs. Blood has been described as the "most complicated fluid in animals" (Winslow, 1992). An attempt

  20. Effect of Mg substitution on the magnetic properties of Ni–Zn ferrites

    Indian Academy of Sciences (India)

    Y Ramesh Babu

    2017-05-31

    May 31, 2017 ... C for 6h in air to investigate their structural and magnetic properties. X-ray diffraction ... The tetrava- lent substitutions have been found to improve the .... ducted on ferrites prepared by ceramic method [11] and wet chemical ...

  1. The effect of La and Y substitution on the magnetic properties of CeIn3

    International Nuclear Information System (INIS)

    Dijkman, W.H.; Groot, W.H. de; Boer, F.R. de; Chatel, P.F. de

    1982-01-01

    CeIn 3 is known to be a 'concentrated Kondo system', that is, its properties give indications of the instability of the trivalent state of cerium. To test the stability of the valence state of Ce in this compound, the authors have prepared La- and Y-substituted quasibinary compounds and performed lattice-constant, susceptibility and magnetization measurements. (Auth.)

  2. Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors.

    Science.gov (United States)

    Geng, Hua; Niu, Yingli; Peng, Qian; Shuai, Zhigang; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2011-09-14

    Chemical substitutions are powerful molecular design tools to enhance the performance of organic semiconductors, for instance, to improve solubility, intermolecular stacking, or film quality. However, at the microscopic level, substitutions in general tend to increase the molecular reorganization energy and thus decrease the intrinsic charge-carrier mobility. Through density functional theory calculations, we elucidate strategies that could be followed to reduce the reorganization energy upon chemical substitution. Specific examples are given here for hole-transport materials including indolo-carbazoles and several triarylamine derivatives. Through decomposition of the total reorganization energy into the internal coordinate space, we are able to identify the molecular segment that provides the most important contributions to the reorganization energy. It is found that when substitution reduces (enhances) the amplitude of the relevant frontier molecular orbital in that segment, the total reorganization energy decreases (increases). In particular, chlorination at appropriate positions can significantly reduce the reorganization energy. Several other substituents are shown to play a similar role, to a greater or lesser extent. © 2011 American Institute of Physics

  3. Space can substitute for time in predicting climate-change effects on biodiversity.

    Science.gov (United States)

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  4. Effect of a home-made pollen substitute on honey bee colony development

    NARCIS (Netherlands)

    Steen, van der J.J.M.

    2007-01-01

    In 2001 and 2002, studies were conducted on a pollen substitute formulated for easy home preparation. Tests were done with free flying honey bee colonies. In 2001, pollen supply was restricted with pollen traps in 9 experimental colonies. Colonies were then equally divided among three treatments:

  5. Effect of intramolecular hydrogen bonding and electron donation on substituted anthrasemiquinone characteristics

    International Nuclear Information System (INIS)

    Pal, H.; Mukherjee, T.

    1994-01-01

    The acid-base and redox characteristics of the semiquinones of a number of hydroxy and amino-substituted anthraquinones have been investigated. Results are explained on the basis of electron-donating properties and intramolecular hydrogen bond forming capabilities of the substituents. (author). 4 refs., 1 tab., 1 fig

  6. Effect of substitution of Ce on superconducting properties of Bi1 ...

    Indian Academy of Sciences (India)

    not satisfactorily explained yet. Some have suggested reasons such as change in copper valency or anisotropy of the c-axis. Substitution of yttrium in 2223 system gives very interesting results, such as increase in transition temperature with low concentration related to a change of the average oxidation state of copper [13].

  7. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    International Nuclear Information System (INIS)

    Chang, Ting-Huan; Su, Hsin-Mei

    2010-01-01

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  8. The substitutive effect of biofuels on fossil fuels in the lower and higher crude oil price periods

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ting-Huan [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310 (China); Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China); Su, Hsin-Mei [Department of Banking and Finance, Tamkang University, No.151, Ying-Chuan Road, Taipei County 251 (China)

    2010-07-15

    Various biofuels, including bioethanol and biodiesel are technologically being considered replacements for fossil fuels, such as the conventional gasoline and diesel. This paper aims to measure whether economic substitutability can be generated during periods of higher and/or lower prices of crude oil. The empirical results of the bivariate EGARCH model prove that this substitutive effect was occurred during the higher crude oil price period due to the significant price spillover effects from crude oil futures to corn and soybean futures, indicating that the increase in food prices can be attributed to more consumption of biofuels. We suggest more extensive research in the search for fuel alternatives from inedible feedstock such as pongamia, jojoba, jatropha, especially the 2nd generation biofuel technologies such as algae-based biofuels. (author)

  9. Comparison of the effectiveness of two different bone substitute materials for socket preservation after tooth extraction: a controlled clinical study.

    Science.gov (United States)

    Shakibaie-M, Behnam

    2013-01-01

    The aim of this study was to compare the effectiveness of two bone substitute materials for socket preservation after tooth extraction. Extraction sockets in 10 patients were filled with either inorganic bovine bone material (Bio-Oss) or with synthetic material consisting of hydroxyapatite and silicon dioxide (NanoBone). Extraction sockets without filling served as the control. The results demonstrate the effectiveness of the presented protocol for socket preservation and that the choice of a suitable bone substitute material is crucial. The dimensions of the alveolar ridge were significantly better preserved with Bio-Oss than with NanoBone or without treatment. Bio-Oss treatment resulted in better bone quality and quantity for successful implant placement.

  10. The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.; Tavakoli, R.

    2015-01-01

    Superparamagnetic Y-substituted magnetite (Y x Fe 3–x O 4 ,with x=0.00, 0.10, 0.15, 0.20 and 0.40) nanoparticles were synthesized via hydrothermal reduction route in the presence of citric acid. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM) and gradient field thermomagnetic measurement. The results showed that a minimum amount of citric acid is required to obtain single phase Y-substituted magnetite nanoparticles. Citric acid acts as a modulator and reducing agent in the formation of spinel structure and controls nanoparticle size and crystallinity. Mean crystallite sizes of the single-phase powders were estimated by Williamson–Hall method. Curie temperature measurement of the samples shows that as yttrium content increases, the Curie temperature decreases. Magnetic measurements show that the saturation magnetization of the samples decreases as x increases up to 0.15 and then increases to x=0.20 and finally decreases again for x=0.40. - Highlights: • Single phase yttrium substituted magnetite nanoparticles were synthesized by hydrothermal-reduction route. • Citric acid plays a key role in reduction of Fe 3+ to Fe 2+ , which is necessary for the formation of magnetite phase. • It is possible to substitute yttrium ions for iron ones as high as x=0.4 by hydrothermal reduction route. • Pure magnetite nanoparticles prepared by this route has a high saturation magnetization. • Yttrium substituted magnetite nanoparticles are superparamagnet at room temperature

  11. The effect of wound dressings on a bio-engineered human dermo-epidermal skin substitute in a rat model

    OpenAIRE

    Hüging, Martina; Biedermann, Thomas; Sobrio, Monia; Meyer, Sarah; Böttcher-Haberzeth, Sophie; Manuel, Edith; Horst, Maya; Hynes, Sally; Reichmann, Ernst; Schiestl, Clemens; Hartmann-Fritsch, Fabienne

    2017-01-01

    Autologous bio-engineered dermo-epidermal skin substitutes are a promising treatment for large skin defects such as burns. For their successful clinical application, the graft dressing must protect and support the keratinocyte layer and, in many cases, possess antimicrobial properties. However, silver in many antimicrobial dressings may inhibit keratinocyte growth and differentiation. The purpose of our study is to evaluate the effect of various wound dressings on the healing of a human hydro...

  12. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  13. Effect of Carbon Content on the Microstructure and Mechanical Properties of NbC-Ni Based Cermets

    Directory of Open Access Journals (Sweden)

    Shuigen Huang

    2018-03-01

    Full Text Available The aim of this work was to correlate the overall carbon content in NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo starting powders with the resulting microstructure, hardness, and fracture toughness of Ni-bonded NbC cermets. A series of NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo cermets with different carbon content were prepared by conventional liquid phase sintering for 1 h at 1420 °C in vacuum. Microstructural analysis of the fully densified cermets was performed by electron probe microanalysis (EPMA to assess the effect of carbon and VC or Mo additions on the NbC grain growth and morphology. A decreased carbon content in the starting powder mixtures resulted in increased dissolution of Nb, V, and Mo in the Ni binder and a decreased C/Nb ratio in the NbC based carbide phase. The Vickers hardness (HV30 and Palmqvist indentation toughness were found to decrease significantly with an increasing carbon content in the Mo-free cermets, whereas an antagonistic correlation between hardness and toughness was obtained as a function of the Mo-content in Mo-modified NbC cermets. To obtain optimized mechanical properties, methods to control the total carbon content of NbC-Ni mixtures were proposed and the prepared cermets were investigated in detail.

  14. Operator substitution

    NARCIS (Netherlands)

    Hautus, M.L.J.

    1994-01-01

    Substitution of an operator into an operator-valued map is defined and studied. A Bezout-type remainder theorem is used to derive a number of results. The tensor map is used to formulate solvability conditions for linear matrix equations. Some applications to system theory are given, in particular

  15. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  16. Tonemic Substitution

    African Journals Online (AJOL)

    Ezenwafor

    grammatical constructions. The choice of substitutable tonemes as observed from the analyzed data is highly. Ezenwafordependent on the intuitive judgement of the native speaker. This work shows with adequate data, that regular tonemic changes are not always meaningful in Ekwulobia lect. Such tonemic alternations are ...

  17. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  18. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line.

    Directory of Open Access Journals (Sweden)

    Muhammad Hammad Aziz

    Full Text Available Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs were tested in an in vitro cervical cancer model (HeLa cell line to optimize the parameters of photodynamic therapy (PDT for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM, an energy dispersive X-ray analysis (EDAX and a vibrating sample magnetometer (VSM analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA; this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA and by detection of intracellular reactive oxygen species (ROS production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.

  19. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    Science.gov (United States)

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  20. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  1. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.; Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2014-01-01

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of different substitution position on the switching behavior in single-molecule device with carbon nanotube electrodes

    Science.gov (United States)

    Yang, Jingjuan; Han, Xiaoxiao; Yuan, Peipei; Bian, Baoan; Wang, Yixiang

    2018-01-01

    We investigate the electronic transport properties of dihydroazulene (DHA) and vinylheptafulvene (VHF) molecule sandwiched between two carbon nanotubes using density functional theory and non-equilibrium Green's function. The device displays significantly switching behavior between DHA and VHF isomerizations. It is found the different substitution position of F in the molecule influences the switching ratio of device, which is analyzed by transmission spectra and molecular projected self-consistent Hamiltonian. The observed negative differential resistance effect is explained by transmission spectra and transmission eigenstates of transmission peak in the bias window. The observed reverse of current in VHF form in which two H atoms on the right side of the benzene ring of the molecule are replaced by F is explained by transmission spectra and molecule-electrode coupling with the varied bias. The results suggest that the reasonable substitution position of molecule may improve the switching ratio, displaying a potential application in future molecular circuit.

  3. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.

    2014-07-18

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    International Nuclear Information System (INIS)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-01-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S 0 -state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S 1 /S 0 conical intersection from the Franck-Condon region of the S 1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system

  5. Effect of chemical substitutions on photo-switching properties of 3-hydroxy-picolinic acid studied by ab initio methods

    Science.gov (United States)

    Rode, Michał F.; Sobolewski, Andrzej L.

    2014-02-01

    Effect of chemical substitutions to the molecular structure of 3-hydroxy-picolinic acid on photo-switching properties of the system operating on excited-state intramolecular double proton transfer (d-ESIPT) process [M. F. Rode and A. L. Sobolewski, Chem. Phys. 409, 41 (2012)] was studied with the aid of electronic structure theory methods. It was shown that simultaneous application of electron-donating and electron-withdrawing substitutions at certain positions of the molecular frame increases the height of the S0-state tautomerization barrier (ensuring thermal stability of isomers) and facilitates a barrierless access to the S1/S0 conical intersection from the Franck-Condon region of the S1 potential-energy surface. Results of study point to the conclusion that the most challenging issue for practical design of a fast molecular photoswitch based on d-ESIPT phenomenon are to ensure a selectivity of optical excitation of a given tautomeric form of the system.

  6. Effect of phase formation on valence band photoemission and photoresonance study of Ti/Ni multilayers using synchrotron radiation

    International Nuclear Information System (INIS)

    Bhatt, Pramod; Chaudhari, S.M.

    2006-01-01

    This paper presents investigation of Ti-Ni alloy phase formation and its effect on valence band (VB) photoemission and photoresonance study of as-deposited as well as annealed Ti/Ni multilayers (MLs) up to 600 deg. C using synchrotron radiation. For this purpose [Ti (50 A)/Ni (50 A)]X 10 ML structures were deposited by using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions. Formation of different phases of Ti-Ni alloy due to annealing treatment has been confirmed by the X-ray diffraction (XRD) technique. The XRD pattern corresponding as-deposited ML sample shows crystalline nature of both Ti and Ni deposited layers, whereas 300 deg. C annealed ML sample show solid-state reaction (SSR) leading to amorphization and subsequent recrystallisation at higher temperatures of annealing (≥400 deg. C) with the formation of TiNi, TiNi 3 and Ti 2 Ni alloy phases. The survey scans corresponding to 400, 500 and 600 deg. C annealed ML sample shows interdiffusion and intermixing of Ni atoms into Ti layers leading to chemical Ti-Ni alloys phase formation at interface. The corresponding recorded VB spectra using synchrotron radiation at 134 eV on as-deposited ML sample with successive sputtering shows alternately photoemission bands due to Ti 3d and Ni 3d, respectively, indicating there is no mixing of the consequent layers and any phase formation at the interface during deposition. However, ML samples annealed at higher temperatures of annealing, particularly at 400, 500 and 600 deg. C show a clear shift in Ni 3d band and its satellite peak position to higher BE side indicates Ti-Ni alloy phase formation. In addition to this, reduction of satellite peak intensity and Ni 3d density of states (DOS) near Fermi level is also observed due to Ti-Ni phase formation with higher annealing temperatures. The variable photon energy VB measurements on as-deposited and ML samples annealed at 400 deg. C confirms existence and BE position of observed Ni 3d satellite

  7. Selective hydrogenation of acetylene on SiO{sub 2} supported Ni-In bimetallic catalysts: Promotional effect of In

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanjun; Chen, Jixiang, E-mail: jxchen@tju.edu.cn

    2016-11-30

    Graphical abstract: A suitable Ni/In ratio remarkably enhanced the acetylene conversion, the selectivity to ethylene and the catalyst stability. Display Omitted - Highlights: • There was a promotional effect of In on the performance of Ni/SiO{sub 2}. • A suitable Ni/In ratio was required for good performance of Ni{sub x}In/SiO{sub 2}. • Both geometrical and electronic effects of In contributed to good performance. • Ni/SiO{sub 2} deactivation is mainly owing to phase change from Ni to nickel carbide. • The carbonaceous deposit was the main reason for Ni{sub x}In/SiO{sub 2} deactivation. - Abstract: Ni/SiO{sub 2} and the bimetallic Ni{sub x}In/SiO{sub 2} catalysts with different Ni/In ratios were tested for the selective hydrogenation of acetylene, and their physicochemical properties before and after the reaction were characterized by means of N{sub 2}-sorption, H{sub 2}-TPR, XRD, TEM, XPS, H{sub 2} chemisorption, C{sub 2}H{sub 4}-TPD, NH{sub 3}-TPD, FT-IR of adsorbed pyridine, and TG/DTA and Raman. A promotional effect of In on the performance of Ni/SiO{sub 2} was found, and Ni{sub x}In/SiO{sub 2} with a suitable Ni/In ratio gave much higher acetylene conversion, ethylene selectivity and catalyst stability than Ni/SiO{sub 2}. This is ascribed to the geometrical isolation of the reactive Ni atoms with the inert In ones and the charge transfer from the In atoms to Ni ones, both of which are favorable for reducing the adsorption strength of ethylene and restraining the C−C hydrogenolysis and the polymerizations of acetylene and the intermediate compounds. On the whole, Ni{sub 6}In/SiO{sub 2} and Ni{sub 10}In/SiO{sub 2} had better performance. Nevertheless, with increasing the In content, the selectivity to the C4+ hydrocarbons tended to increase due to the enhanced catalyst acidity because of the charge transfer from the In atoms to Ni ones. As the Lewis acid ones, the In sites could promote the polymerization. The catalyst deactivation was also analyzed

  8. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Peter, E-mail: peter.savin@urfu.ru [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Guzmán, Jorge [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Lepalovskij, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Svalov, Andrey; Kurlyandskaya, Galina [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Vizcaya (Spain); Asenjo, Agustina [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Vas’kovskiy, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Vazquez, Manuel [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain)

    2016-03-15

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer. - Highlights: • FeNi/FeMn bilayers and FeNi/FeMn/FeNi trilayers were prepared by magnetron sputtering. • Post-deposition heat treatments at the temperatures below 200 °C during 5 min were made. • Annealing reduces the exchange field for the first FeNi layer in trilayers. • The exchange field value for the second FeNi layer was not substantially changed. • Exchange field changes are most likely caused by a modification of interface roughness.

  9. Partial substitution of barley for corn: effect on "Hamra" lamb growth performance, carcass and meat characteristics.

    Science.gov (United States)

    Ziani, Kaddour; Khaled, Méghit Boumédiène

    2016-03-01

    The aim of this study was to investigate the effect of two kinds of given diets on growth, on some carcass characteristics and on the major meat nutrients of local Algerian sheep breed. The investigated sheep breed called "Hamra" is one of the most famous breeds in Algeria. Among one 106 animals, 40 lambs were selected according to their age, similar livestock characteristics and body weight. The samples were divided into two equal groups: control and experimental lambs according to their live weight; 24.63 ± 0.47 and 24.35 ± 0.64 kg, respectively. Both groups were fed with two varieties of concentrate diets: corn diet based for the first group of control lambs (n = 20) and corn substituted by barley (Variety Saïda 183) for the second experimental group lambs (n = 20). Both diets were supplemented with 200 g straw of barley/animal/ration. The chemical analysis of diets showed an elevated crude fibre content in the commercial concentrate. However, the experimental concentrate contained higher amounts of calcium. After 59 days of fattening, no significant difference was found among the two studied groups on the growth performance (p > 0.05), showing the same final body weight. In contrast, a significant difference was found (p ≤ 0.001) in relation to the cost of the given diet. This could affect the price of the produced meat. At 37.85 ± 0.78 kg live weight, 10 lambs fed with experimental concentrate were slaughtered. The dressing percentage was 46.65 %, with 2.49 % of carcass shrink. Furthermore, an interesting percentage of total muscle was obtained (63.73 %) with a good carcass conformation scoring 9.56. Compared to other breed sheep, Hamra carcass could be considered as the most valuable one economically.

  10. Effects of pore shape and porosity on the properties of porous LNKN ceramics as bone substitute

    International Nuclear Information System (INIS)

    Wang Qi; Chen Qiang; Zhu Jianguo; Huang Chunpeng; Darvell, Brian W.; Chen Zhiqing

    2008-01-01

    A porous lead-free piezoelectric ceramic is investigated as direct bone substitute. Porous lithium sodium potassium niobate (Li 0.06 Na 0.5 K 0.44 )NbO 3 specimens were prepared by pore-forming method. Different volume fraction of ammonium oxalate monohydrate and poly(methyl methacrylate) were used as porogens to obtain different pore shape and porosity. Scanning electron microscopy showed a bicontinuous 3-3 structure of interconnected pores 150-250 μm in size. The piezoelectric constants and electromechanical coupling coefficients may be controlled by both size and shape of the porogens to tune for the best biological response. Such materials show promise for use as a piezoelectric composite bone substitute

  11. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Silveyra, J.M.; Chromcikova, M.; Janickovic, D.; Sitek, J.; Svec, P.; Vlasak, G.

    2010-01-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  12. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P., E-mail: pavol.butvin@savba.s [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Butvinova, B. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Silveyra, J.M. [Instituto de Technologias y Ciencias de la Ingenieria H.F. Long, Facultad de Ingenieria, UBA-CONICET, Buenos Aires (Argentina); Chromcikova, M. [Vitrum Laugaricio - Joint Glass Centre of the Inst. of Inorg. Chem., SAS Bratislava and A. Dubcek University of Trencin, 911 50 Trencin (Slovakia); Janickovic, D. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, J. [Dept. of Nuclear Phys. and Technol., FEI, Slovak University of Technology, 812 19 Bratislava (Slovakia); Svec, P.; Vlasak, G. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2010-10-15

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  13. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Science.gov (United States)

    Butvin, P.; Butvinová, B.; Silveyra, J. M.; Chromčíková, M.; Janičkovič, D.; Sitek, J.; Švec, P.; Vlasák, G.

    2010-10-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  14. Effect of substitution on aniline in inducing growth of anionic micelles

    International Nuclear Information System (INIS)

    Garg, Gunjan; Kulshreshtha, S.K.; Hassan, P.A.; Aswal, V.K.

    2004-01-01

    Small-angle neutron scattering (SANS) measurements were carried out on sodium dodecyl sulfate (SDS) micelles in the presence of three different hydrophobic salts, i.e. aniline hydrochloride, o-toluidine hydrochloride and m-toluidine hydrochloride. All these salts induce a uniaxial growth of micelles to form prolate ellipsoidal structures. A progressive decrease in the surface charge of the micelles was observed with the addition of salts followed by a rapid growth of the micelles. The presence of a methyl substitution at the ortho position of aniline does not alter the growth behavior significantly. However, when the substitution is at meta position micellar growth is favored at lower salt concentration than that is observed for aniline. This can be explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions. (author)

  15. Effect of Pb and Cr Substitutions on Phase Formation and Excess Conductivity of Bi-2212 Superconductor

    International Nuclear Information System (INIS)

    Khir, F. L. M.; Mohamed, Z.; Yusuf, A. A.; Yusof, M. I. M.; Yahya, A. K.

    2010-01-01

    The influence of Pb and Cr substitutions on the superconducting properties of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) superconductors is reported. The samples were prepared from Bi 2-x Pb x Sr 2 Ca 2-y Cr y Cu 3 O 10-δ (x = 0-0.3, y = 0-0.3) starting composition by the solid-state-reaction method. XRD analysis showed formation of pure Bi-2212 for (x = 0, y = 0), (x = 0.3, y = 0.2,) and (x = 0.3, y = 0.2,) starting compositions. Excess conductivity analysis based on Asmalazov-Larkin theory on single-phased Bi2212 samples showed 2D to 3D transition in superconducting fluctuation behavior (SFB) for all the samples. Highest 2D-3D transition temperature, T 2D-3D was observed at Pb and Cr substitutions of x = 0.3, and x = 0.2, respectively.

  16. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  17. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  18. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite

    Science.gov (United States)

    Sai Vandana, C.; Hemalatha Rudramadevi, B.

    2018-04-01

    The pure and copper (Cu) substituted Gadolinium orthoferrites, GdFeO3, GdCu0.1Fe0.9O3, GdCu0.2Fe0.8O3 and GdCu0.3Fe0.7O3 were synthesized by conventional solid state method. The structural, morphological, dielectric, magnetic and impedance properties of Cu substituted Gadolinium orthoferrites have been investigated. The crystallographic phase as well as the substitution of Cu2+ ions in the lattice of GdFeO3 is confirmed from the x-ray diffraction patterns. The Fourier transform infrared spectra exhibit two prominent fundamental absorption peaks at ∼417 cm‑1 and 545 cm‑1. These bands are related to inherent stretching vibrations of metals at octahedral and tetrahedral sites respectively. The coercivity (Hc) and saturation magnetization (Ms) of the synthesized samples at different temperatures were determined from the hysteresis plots. Higher coercive values, 598 Oe and 600 Oe were achieved in GdCu0.1Fe0.9O3 ferrites compared to 527 Oe and 360 Oe in pure GdFeO3 at room temperature (300 K) and low temperature (20 k) respectively. Dielectric dispersion has been observed for gadolinium ferrite samples with Maxwell–Wagner type interfacial polarization. The decrease of dielectric constant and dielectric loss tangent with an increase in frequency was observed. The conduction due to charge hopping between localized states was confirmed from AC conductivity measurements. The composition dependent cationic distributions estimated from XRD, magnetic and electrical studies are in good agreement with each other. The achieved results indicate that the substitution of Cu in gadolinium orthoferrite strongly influences the crystal structure, magnetic and electrical properties thereby making them suitable as multiple state memory devices, transducers, electronic field controlled ferromagnetic resonance devices and spintronic devices.

  19. The Intertemporal Substitution and Income Effects of a VAT Rate Increase: Evidence from Japan

    OpenAIRE

    David CASHIN; UNAYAMA Takashi

    2011-01-01

    One of the biggest political issues in Japan is an increase in the rate of value added tax (VAT). In this paper, we evaluate its impact on household expenditure, using Japan's April 1997 VAT rate increase from three to five percent as a case study. A rate increase induces price hikes, and provided this increase in price levels is anticipated, households should engage in intertemporal substitution of purchases. In addition, if households are not compensated for the rate increase, it has the po...

  20. Structural and dielectric studies of Zr and Co co-substituted Ni0.5Zn0.5Fe2O4 using sol-gel auto combustion method

    Science.gov (United States)

    Jalaiah, K.; Vijaya Babu, K.; Rajashekhar Babu, K.; Chandra Mouli, K.

    2018-06-01

    Zr and Co substituted Ni0.5Zn0.5 ZrxCuxFe2-2xO4 with x values varies from the 0.0 to 0.4 in steps of 0.08 wt% ferrites synthesized by using sol-gel auto combustion method. The XRD patterns give evidence for formation of the single phase cubic spinel. The lattice constant was initially decreased from 8.3995 Å to 8.3941 Å with dopant concentration for x = 0.00-0.08 thereafter the lattice parameter steeply increased up to 8.4129 Å fox x = 0.4 with increasing dopant concentration. The estimated crystallite size and measured particle sizes are in comparable nano size. The grain size initially increased 2.3137-3.0430 μm, later it decreased to 2.2952 μm with increasing dopant concentration. The prepared samples porosity shows the opposite trend to grain size. The FT-IR spectrum for prepared samples shows the Fd3m (O7h). The wavenumber for tetrahedral site increased from 579 cm-1 to 593 cm-1 with increasing dopant concentration and the wavenumber of octahedral site are initially decreased from 414 cm-1 to 400 cm-1 for x = 0.00 to x = 0.08 later increased to 422 cm-1 with increasing dopant concentration. The dielectric constant increased from 8.85 to 34.5127 with dopant increasing concentration. The corresponding loss factor was fallows the similar trend as dielectric constant. The AC conductivity increased with increasing dopant concentration from 3.0261 × 10-7 S/m to 4.4169 × 10-6 S/m.

  1. Coherence Kondo gap in CeNiSn and CeRhSb

    International Nuclear Information System (INIS)

    Takabatake, T.; Nakamoto, G.; Tanaka, H.; Bando, Y.; Fujii, H.; Nishigori, S.; Goshima, H.; Suzuki, T.; Fujita, T.; Oguro, I.; Hiraoka, T.; Malik, S.K.

    1994-01-01

    CeNiSn and CeRhSb are Kondo-lattice compounds showing the behavior of a small-gap semiconductor at temperatures below 7 K. We review and discuss the magnetic, transport and specific-heat measurements performed on single crystals of CeNiSn and polycrystals of CeRhSb. Prerequisites for gap formation are deduced from the effects of substitution and application of a magnetic field and pressure on the gapped state. ((orig.))

  2. Tuning the mesomorphic properties of phenoxy-terminated smectic liquid crystals: the effect of fluoro substitution.

    Science.gov (United States)

    Thompson, Matthew; Carkner, Carolyn; Mosey, Nicholas J; Kapernaum, Nadia; Lemieux, Robert P

    2015-05-21

    The mesomorphic properties of phenoxy-terminated 5-alkoxy-2-(4-alkoxyphenyl)pyrimidine liquid crystals can be tuned in a predictable fashion with fluoro substituents on the phenoxy end-group. We show that an ortho-fluoro substituent promotes the formation of a tilted smectic C (SmC) phase whereas a para-fluoro substituent promotes the formation of an orthogonal smectic A (SmA) phase. The balance between SmA and SmC phases may be understood in terms of the energetic preference of the phenoxy end-groups to self-assemble via arene-arene interactions in a parallel or antiparallel geometry, and how these non-covalent interactions may cause either a suppression or enhancement of out-of-layer fluctuations at the interface of smectic layers. Calculations of changes in the potential energy of association ΔE for non-covalent dimers of fluoro-substituted n-butyloxybenzene molecules in parallel and antiparallel geometries support this hypothesis. We also show how mesomorphic properties can be further tuned by difluoro and perfluoro substitution, including difluoro substitution at the ortho positions, which uniquely promotes the formation of a SmC-nematic phase sequence.

  3. Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China

    Directory of Open Access Journals (Sweden)

    Xiaoxia Zhang

    2017-06-01

    Full Text Available Small hydropower substituting fuel (SHSF is an ecological environment protection program to improve regional ecosystems and alleviate poverty. However, the sustainability of SHSF programs remains controversial due to lingering doubts about its potential for socioeconomic development and its environmental impacts. The sustainability of SHSF was examined based on field investigations and household questionnaire surveys. The results were as follows: (1 Biomass of SHSF protected masson pine (Pinus massoniana and weeping cypress (Platycladus orientalis plantations were 11.06 t·ha−1 and 7.15 t·ha−1 higher than unprotected plantations, respectively. Furthermore, the differences in ecosystem biomass were mainly derived from arbor biomass. While the energy conversion efficiency based on field investigations was merely 1.28 kg (kWh−1, which was only 64% of the empirical value and 54% of the guideline for accounting for the ecological benefit of small hydropower substituting fuel. (2 Households’ total income in SHSF villages was higher than in households with access to a hydropower plant but no substituting fuel or households with no hydropower plant. (3 Most of the households had a positive attitude towards SHSF because of its cheaper electricity and associated ecological environmental improvements. Overall, our results suggest optimistic and sustainable prospects for the SHSF program; however, continued education and policy communications are needed to sustain program success.

  4. Effects of In and Ni Addition on Microstructure of Sn-58Bi Solder Joint

    Science.gov (United States)

    Mokhtari, Omid; Nishikawa, Hiroshi

    2014-11-01

    In this study, the effect of adding 0.5 wt.% and 1 wt.% In and Ni to Sn-58Bi solder on intermetallic compound (IMC) layers at the interface and the microstructure of the solder alloys were investigated during reflow and thermal aging by scanning electron microscopy and electron probe micro-analysis. The results showed that the addition of minor elements was not effective in suppressing the IMC growth during the reflow; however, the addition of 0.5 wt.% In and Ni was effective in suppressing the IMC layer growth during thermal aging. The thickening kinetics of the total IMC layer was analyzed by plotting the mean thickness versus the aging time on log-log coordinates, and the results showed the transition point from grain boundary diffusion control to a volume diffusion control mechanism. The results also showed that the minor addition of In can significantly suppress the coarsening of the Bi phase.

  5. Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials

    Science.gov (United States)

    Kong, Fantai; Liang, Chaoping; Longo, Roberto C.; Zheng, Yongping; Cho, Kyeongjae

    2018-02-01

    As the next-generation high energy capacity cathode materials for Li-ion batteries, Ni-rich oxides face the problem of obtaining near-stoichiometric phases due to excessive Ni occupying Li sites. These extra-Ni-defects drastically affect the electrochemical performance. Despite of its importance, the fundamental correlation between such defects and the key electrochemical properties is still poorly understood. In this work, using density-functional-theory, we report a comprehensive study on the effects of non-stoichiometric phases on properties of Ni-rich layered oxides. For instance, extra-Ni-defects trigger charge disproportionation reaction within the system, alleviating the Jahn-Teller distortion of Ni3+ ions, which constitutes an important reason for their low formation energies. Kinetic studies of these defects reveal their immobile nature, creating a "pillar effect" that increases the structural stability. Ab initio molecular dynamics revealed Li depletion regions surrounding extra-Ni-defects, which are ultimate responsible for the arduous Li diffusion and re-intercalation, resulting in poor rate performance and initial capacity loss. Finally, the method with combination of high valence cation doping and ion-exchange synthesis is regarded as the most promising way to obtain stoichiometric oxides. Overall, this work not only deepens our understanding of non-stoichiometric Ni-rich layered oxides, but also enables further optimizations of high energy density cathode materials.

  6. Electron paramagnetic resonance study of conformational effects in alkyl-substituted 2-cyclohexanonyl radicals in an adamantane matrix

    International Nuclear Information System (INIS)

    Walter, H.F.

    1975-01-01

    Electron paramagnetic resonance spectra have been obtained for radicals produced by x-irradiation of cyclohexanone and various alkyl-substituted cyclohexanones trapped in an adamantane matrix. Temperature variation of these spectra permits determination of the enthalpy and entropy of activation for interconversion between the two half-chair conformations. In those cases where the two conformations have intrinsically different energies, the enthalpy and entropy differences between conformations are determined. For 2-cyclohexanonyl radical, the enthalpy of activation is 3.90 +- 0.07 kcal/mole and the entropy of activation is -2.3 +- 0.3 e.u. Methyl substitution on C 3 or C 5 gives a radical with activation parameters similar to the parent radical, indicating moderate realignment of atoms during the conformational change. Methyl substitution on C 4 gives a radical with lower activation parameters, which are interpreted to indicate conformational change mainly be a folding along the diagonal through the radical site. Larger groups attached to C 3 influence enthalpy and entropy differences between conformations much less than when they are attached to C 5 . Very large groups attached to C 5 apparently flatten the ring; it is not known whether or not this is a matrix effect. Deuteration seems to cause a slight reduction in the activation parameters for 2-cyclohexanonyl radical

  7. Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers.

    Science.gov (United States)

    Yao, Huifeng; Zhang, Hao; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Hou, Jianhui

    2016-02-17

    Dialkylthio-substituted thienyl-benzodithiophene (BDT-DST) was designed and synthesized as a building block to modulate the molecular levels of the conjugated polymers, and three copolymers named PDST-BDD, PDST-TT and PDST-DPP were prepared and applied in polymer solar cells (PSCs). Theoretical calculations and electrochemical cyclic voltammetry (CV) measurement suggested that the dialkylthio group could decrease the molecular energy levels of the resulting polymers distinctly. The open-circuit voltage (VOC) of PSC devices based on PDST-BDD, PDST-TT, and PDST-DPP are as high as 1.0, 0.98, and 0.88 V, respectively, which are ∼0.15 V higher than those of the corresponding alky-substituted analogues. Moreover, the influence of the dialkylthio group on the absorption spectra, crystalline properties, hole mobilities, and blend morphologies of the polymers was also investigated. The results indicate that the dialkythio substitution is an effective method to modulate the molecular energy levels and that the BDT-DST unit has potential for constructing high-efficiency photovoltaic polymers.

  8. Effects of structure and number of heteroatom on the π-π stacking inte-ractions of benzene with N-substituted coronenes: A theoretical study

    Directory of Open Access Journals (Sweden)

    Pouya Karimi

    2014-07-01

    Full Text Available Stability of the π-π stacking interactions in the Ben||N-substituted-coronene complexes was stu-died using the computational quantum chemistry methods (where Ben is benzene and || denotes π-π stacking interaction, and N-substituted-coronene is coronene molecule which substituted with different number of N atoms. The results reveal simultaneous effects of structure and number of Heteroatom on the π-π stacking interactions with N-substituted-coronenes. Changing the number of Heteroatom N in N-substituted-coronenes and substitution of 8N-coronene with electron-withdrawing or electron-donating X groups alter the electron charge density at rings of this molecule and leads to different binding energies in the Ben||X-8N-substituted-coronene com-plexes. Results indicate that electron-withdrawing groups lead to higher π–π stacking binding energies compared to electron-donating ones in the Ben||X-8N-substituted-coronene complexes.

  9. Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kore, R. M.; Ghadge, T. S.; Ambare, R. C.; Lokhande, B. J., E-mail: bjlokhande@yahoo.com [School of Physical Sciences, Solapur University, Solapur-413 255, M.S. (India)

    2016-04-13

    In the present study, the effect of nickel precursors containing different anions like nitrate, chloride and sulphate on the morphology and pseudocapacitance behavior of NiO is investigated. The NiO samples were prepared by using a potentiondynamic electrodeposition technique in the three electrode cell. Cyclic voltammetry technique was exploited for potentiodynamic deposition of the films. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The XRD reveals the cubic crystal structure for all samples. The SEM micrograph shows nanoflakelike, up grown nanoflakes and honeycomb like nanostructured morphologies for nitrate, chloride and sulphate precursors respectively. The capacitive behavior of these samples was recorded using cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 1 M KOH electrolyte. The specific capacitance values of NiO samples obtained using CV for nitrate, chloride and sulphate precursors were 136, 214 and 893 Fg{sup −1} respectively, at the scan rate of 5 mVs{sup −1}. The charge discharge study shows high specific energy for the sample obtained from sulphate (23.98 Whkg{sup −1}) as compared to chloride (9.67 Whkg{sup −1}) and nitrate (4.9 Whkg{sup −1}), whereas samples of cholride (13.9 kWkg{sup −1} and nitrate (10.5 kWkg{sup −1}) shows comparatively more specific power than samples obtained from sulphate (7.6 kWkg{sup −1}). The equivalent series resistance of NiO samples observed from EIS study are 1.34, 1.29 and 1.27 Ω respectively for nitrate, chloride and sulphate precursors. These results emphasizes that the samples obtained from sulphate precursors provides very low impedance through honeycomb like nanostructured morphology which supports good capacitive behavior of NiO.

  10. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys.

    Science.gov (United States)

    Yu, Weiqiang; Qian, Chao; Weng, Weimin; Zhang, Songmei

    2016-08-01

    Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (Palloy corrosion (Pcorrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (Palloy. LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4

    Science.gov (United States)

    Joshi, Seema; Kumar, Manoj; Chhoker, Sandeep; Kumar, Arun; Singh, Mahavir

    2017-03-01

    Nanoparticles of CoGdxFe2-xO4 with x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.15 were synthesized by co-precipitation method. Gd3+ substitution effect on different properties of nanocrystalline CoFe2O4 has been studied. X-ray diffraction and Raman spectroscopy confirmed the formation of single phase cubic mixed spinel structure. Cation distribution has been proposed from Rietveld refined data. Mössbauer spectra at room temperature showed two ferrimagnetic Zeeman sextets with one superparamagnetic doublet. Mössbauer parameters suggested that Gd3+ ions occupy the octahedral site in CoFe2O4. Room temperature magnetic measurements exhibited that the saturation magnetization decreased from 91 emu/gm to 54 emu/gm for x=0.0 to 0.15 samples. The coercivity decreased from 1120 Oe to 340 Oe for x=0.0 to 0.07 samples and increased from 400 Oe to 590 Oe for x=0.10 and 0.15 samples, respectively. Raman analysis showed that the degree of inversion with Gd3+ substitution supporting the variation of coercivity. Electron spin resonance spectra revealed the dominancy of superexchange interactions in these samples. Optical band gap measurement suggested that all samples are indirect band gap materials and band gap has been decreased with Gd3+ substitution. Both dielectric constant and dielectric loss is found to decrease because of the decrease in hopping rate with the Gd3+ substitution for Fe3+ at the octahedral sites. Low dielectric loss suggested the applicability of Gd3+ doped CoFe2O4 nanoparticles for high frequency microwave device applications.

  12. Effect of five-membered ring and heteroatom substitution on charge transport properties of perylene discotic derivatives: A theoretical approach

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Amparo, E-mail: anavarro@ujaen.es; Fernández-Liencres, M. Paz; Peña-Ruiz, Tomás; Granadino-Roldán, José M.; Fernández-Gómez, Manuel [Departamento de Química Física y Analítica, Universidad de Jaén, Campus Las Lagunillas, E23071 Jaén (Spain); García, Gregorio [Instituto de Energía Solar and Departamento TFB, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, Madrid 28040 (Spain)

    2016-08-07

    Density functional theory calculations were carried out to investigate the evolvement of charge transport properties of a set of new discotic systems as a function of ring and heteroatom (B, Si, S, and Se) substitution on the basic structure of perylene. The replacement of six-membered rings by five-membered rings in the reference compound has shown a prominent effect on the electron reorganization energy that decreases ∼0.2 eV from perylene to the new carbon five-membered ring derivative. Heteroatom substitution with boron also revealed to lower the LUMO energy level and increase the electron affinity, therefore lowering the electron injection barrier compared to perylene. Since the rate of the charge transfer between two molecules in columnar discotic systems is strongly dependent on the orientation of the stacked cores, the total energy and transfer integral of a dimer as a disc is rotated with respect to the other along the stacking axis have been predicted. Aimed at obtaining a more realistic approach to the bulk structure, the molecular geometry of clusters made up of five discs was fully optimized, and charge transfer rate and mobilities were estimated for charge transport along a one dimensional pathway. Heteroatom substitution with selenium yields electron transfer integral values ∼0.3 eV with a relative disc orientation of 25°, which is the preferred angle according to the dimer energy profile. All the results indicate that the tetraselenium-substituted derivative, not synthetized so far, could be a promising candidate among those studied in this work for the fabrication of n-type semiconductors based on columnar discotic liquid crystals materials.

  13. Ni-doping effect of Mg(0 0 0 1) surface to use it as a hydrogen storage material

    International Nuclear Information System (INIS)

    Kuklin, Artem V.; Kuzubov, Alexander A.; Krasnov, Pavel O.; Lykhin, Aleksandr O.; Tikhonova, Lyudmila V.

    2014-01-01

    Highlights: • Magnesium surface interaction with nickel at different it location was investigated. • A possibility of nickel migration on magnesium surface was examined. • A possibility of the nickel atoms to aggregate, producing the cluster was investigated. • A step by step diagram of the cluster formation was calculated and constructed. • The final step was the investigation of a hydrogenation process on the Ni cluster. - Abstract: A detailed study of Ni-doped Mg(0 0 0 1) surface performed by PAW method and the gradient corrected density functional GGA-PBE within the framework of generalized Kohn–Sham density functional theory (DFT) is presented in this work. Structural and electronic properties of magnesium surface interaction with nickel for the purpose of such compounds use for creation of hydrogen storage matrixes were investigated here. Choice of the PBE functional was caused by the good accordance of its prediction of the cell parameters with experimental results. It was shown that Ni atoms prefer to substitute for Mg atoms. Using NEB method, the diffusion barrier was calculated, and the most probable reaction path was established. In particular, when the Ni atom dopes the magnesium surface, it can migrate to the bulk and substitute for Mg in subsurface layers. Also a possibility of nickel cluster formation on clean surface of magnesium was examined. The kinetic factors hinder the movement of the nickel atoms to each other and make problematic the formation of clusters. The studies presented here showed that the diffusion barriers of the nickel atom migration from the cluster on the surface to the bulk of magnesium are 1.179 eV and 1.211 eV for the forward and reverse reactions, respectively. Therefore an improvement of the hydrogenation properties of Ni-doped magnesium surface depends on deposition not of the individual atoms, but their clusters. Hydrogenation of Ni cluster doping the magnesium surface was investigated. Initially Kubas

  14. Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    Science.gov (United States)

    Ušák, Elemír; Ušáková, Mariana; Dosoudil, Rastislav; Šoka, Martin; Dobročka, Edmund

    2018-04-01

    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer compos