WorldWideScience

Sample records for ni single nucleopolyhedrovirus

  1. The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome

    NARCIS (Netherlands)

    Chen, X.; IJkel, W.F.J.; Tarchini, R.; Sun, X.; Sandbrink, H.; Wang, H.; Peters, S.; Zuidema, D.; Klein Lankhorst, R.; Vlak, J.M.; Hu, Z.

    2001-01-01

    The nucleotide sequence of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) DNA genome was determined and analysed. The circular genome encompasses 131 403 bp, has a G C content of 39.1 molnd contains five homologous regions with a unique pattern of repeats.

  2. Characterization of a single-nucleocapsid nucleopolyhedrovirus of Thysanoplusia orichalcea L. (Lepidoptera: Noctuidae) from Indonesia.

    Science.gov (United States)

    Cheng, X W; Carner, G R

    2000-05-01

    A single-nucleocapsid nucleopolyhedrovirus (NPV) isolated from Thysanoplusia orichalcea L. (Lepidoptera:Noctuidae) (ThorNPV) in Indonesia has tetrahedral occlusion bodies (OBs) with a width of 1. 22 microm (range = 0.803-1.931 microm). The length of the virion with an envelope averaged 0.29 and 0.23 microm without an envelope. ThorNPV was propagated in Pseudoplusia includens (Walker) and its authenticity was confirmed by sequence analysis of the polyhedrin gene of the ThorNPV produced in T. orichalcea and P. includens. Polyhedrin amino acid sequence analysis revealed that ThorNPV belongs to Group II of baculoviruses and is closely related to Trichoplusia ni single nucleocapsid NPV, sharing 97.6% sequence identity. Infectivity of ThorNPV against third instar P. includens was low, with a LD(50) value of 65,636 OBs/larva. Electron microscopy of infected tissues showed many polyhedra without virions embedded, which might explain the low virulence against P. includens. Differences in virion occlusion rates between individual cells in the same tissue suggested that the inoculum consisted of at least two variants that differed in the gene(s) controlling virion occlusion. In a host range test using the LD(50) value to P. includens against Spodoptera exigua, S. frugiperda, S. eridania, Anticarsia gemmatalis, Helicoverpa zea, Trichoplusia ni, and P. includens, P. includens was the only species infected. The virus infected primarily the fat body, tracheal epithelium, and hypodermis. The genomic size of the ThorNPV is 135 kb. Copyright 2000 Academic Press.

  3. Field inactivation of wild-type and genetically modified Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus in cotton

    NARCIS (Netherlands)

    Sun, X.; Sun, X.C.; Werf, van der W.; Vlak, J.M.; Hu, Z.H.

    2004-01-01

    Cotton bollworm (Helicoverpa armigera) is a serious pest on cotton in China. A specific baculovirus, H. armigera nucleopolyhedroviruses (HaSNPV) is used as a commercial biopesticide to control this pest. To improve the pesticidal properties, HaSNPV has been genetically engineered by both deleting

  4. A single amino acid substitution modulates low-pH-triggered membrane fusion of GP64 protein in Autographa californica and Bombyx mori nucleopolyhedroviruses

    International Nuclear Information System (INIS)

    Katou, Yasuhiro; Yamada, Hayato; Ikeda, Motoko; Kobayashi, Michihiro

    2010-01-01

    We have previously shown that budded viruses of Bombyx mori nucleopolyhedrovirus (BmNPV) enter the cell cytoplasm but do not migrate into the nuclei of non-permissive Sf9 cells that support a high titer of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) multiplication. Here we show, using the syncytium formation assay, that low-pH-triggered membrane fusion of BmNPV GP64 protein (Bm-GP64) is significantly lower than that of AcMNPV GP64 protein (Ac-GP64). Mutational analyses of GP64 proteins revealed that a single amino acid substitution between Ac-GP64 H155 and Bm-GP64 Y153 can have significant positive or negative effects on membrane fusion activity. Studies using bacmid-based GP64 recombinant AcMNPV harboring point-mutated ac-gp64 and bm-gp64 genes showed that Ac-GP64 H155Y and Bm-GP64 Y153H substitutions decreased and increased, respectively, the multiplication and cell-to-cell spread of progeny viruses. These results indicate that Ac-GP64 H155 facilitates the low-pH-triggered membrane fusion reaction between virus envelopes and endosomal membranes.

  5. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  6. Bollworm responses to release of genetically modified Helicoverpa armigera nucleopolyhedroviruses in cotton

    NARCIS (Netherlands)

    Sun, X.; Chen, X.; Zhang, Z.; Wang, H.; Bianchi, F.J.J.A.; Peng, H.; Vlak, J.M.; Hu, Z.

    2002-01-01

    Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) has been developed as a commercial biopesticide to control the cotton bollworm, H. armigera, in China. The major limitation to a broader application of this virus has been the relative long time to incapacitate the target insect.

  7. Bulk study of a DyNiAl single crystal

    Czech Academy of Sciences Publication Activity Database

    Prchal, J.; Andreev, Alexander V.; Javorský, P.; Honda, F.; Jurek, Karel

    272-276, - (2004), e419-e420 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943 Keywords : rare-earth * DyNiAl * magnetic anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.031, year: 2004

  8. Double minimum creep of single crystal Ni-base superalloys

    Czech Academy of Sciences Publication Activity Database

    WU, X.; Wollgramm, P.; Somsen, C.; Dlouhý, Antonín; Kostka, A.; Eggeler, G.

    2016-01-01

    Roč. 112, JUN (2016), s. 242-260 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-22834S Institutional support: RVO:68081723 Keywords : Single crystal Ni-base superalloys * Primary creep * Transmission electron microscopy * Dislocations * Stacking faults Subject RIV: JG - Metallurgy Impact factor: 5.301, year: 2016

  9. Characterization of Bombyx mori nucleopolyhedrovirus Bm17.

    Science.gov (United States)

    Shen, Hongxing; Wang, Rudu; Han, Qinggong; Zhang, Wen; Nin, Bin; Zhou, Yang; Shao, Shihe; Yao, Qin; Chen, Keping; Liu, Xiaoyong

    2013-10-01

    Open reading frame17 (Bm17) of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this report, we describe the characterization of Bm17. Reversed transcriptive-PCR (RT-PCR) and Western blot analysis demonstrated that Bm17 was expressed as a late gen. Immunofluorescence analysis by confocal microscopy showed that BM17 protein was localized on cytoplasm and nucleus of infected cells. These results show that BM17 was a late protein localized in cytoplasm and nucleus. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single-particle and collective excitations in Ni-63

    OpenAIRE

    Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.

    2013-01-01

    A study of excited states in Ni-63 up to an excitation energy of 28 MeV and a probable spin of 57/2 was carried out with the Mg-26(Ca-48,2 alpha 3n gamma)Ni-63 reaction at beam energies between 275 and 320 MeV. Three collective bands, built upon states of single-particle character, were identified. For two of the three bands, the transition quadrupole moments were extracted, herewith quantifying the deformation at high spin. The results have been compared with shell-model and cranked Nilsson-...

  11. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    International Nuclear Information System (INIS)

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhy, A.; Eggeler, G.

    2006-01-01

    The present study shows that multiple-step martensitic transformations can be observed in aged Ni-rich NiTi single crystals. Ageing of solution-annealed and water-quenched Ni-rich NiTi single crystals results in a homogeneous precipitation of coherent Ni 4 Ti 3 particles. When the interparticle spacing reaches a critical value (order of magnitude: 200 nm), three distinct transformation processes are observed on cooling from the high-temperature phase using differential scanning calorimetry and in situ transmission electron microscopy. The transformation sequence begins with the formation of R-phase starting from all precipitate/matrix interfaces (first step). The transformation continues with the formation of B19' and its subsequent growth along all precipitate/matrix interfaces (second step). Finally, the matrix in between the precipitates transforms to B19' (third step). Elementary transformation mechanisms which account for two- and three-step transformations in a system with small-scale microstructural heterogeneities were identified

  12. Superconductivity in SrNi2P2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuscon [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory

    2009-01-01

    Heat capacity, magnetic susceptibility, and resistivity of SrNi{sub 2}P{sub 2} single crystals are presented, illustrating the structural transition at 325 K, and bulk superconductivity at 1.4 K. The magnitude of {Tc}, fits to the heat capacity data, the small upper critical field H{sub c2} = 390 Oe, and {kappa} = 2.1 suggests a conventional fully gapped superconductor. With applied pressure we find that superconductivity persists into the so-called 'collapsed tetragonal' phase, although the transition temperature is monotonically suppressed with increasing pressure. This argues that reduced dimensionality can be a mechanism for increasing the transition temperatures of layered NiP, as well as layered FeAs and NiAs, superconductors.

  13. Growth of single-crystal W whiskers during humid H2/N2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide

    International Nuclear Information System (INIS)

    Wang Shiliang; He Yuehui; Zou Jou; Wang Yong; Huang Han

    2009-01-01

    Numbers of W whiskers were obtained by reducing Ni, Ni-Fe, and Ni-Co doped tungsten oxide in a mixed atmosphere of humid H 2 and N 2 . The phases and morphologies of the reduction products were characterized by XRD and SEM. Intensive TEM and EDS analyses showed that the obtained whiskers were W single crystals which typical have alloyed particles (Ni-W, Fe-Ni, or Co-Ni-W) at the growth tips. The formed W whiskers were presumed to be induced by the alloyed particles. Our experimental results revealed that, during the reduction process of tungsten oxide, the pre-reduced Ni, Fe-Ni, or Co-Ni particles not only served as nucleation aids for the initial growth of W phase from W oxide but also played the roles of catalysts during the reductive decomposition of gaseous WO 2 (OH) 2 .

  14. Biological and molecular characterization of a multicapsid nucleopolyhedrovirus from Thysanoplusia orichalcea (L.) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Cheng, Xiao-Wen; Carner, Gerald R; Lange, Martin; Jehle, Johannes A; Arif, Basil M

    2005-02-01

    A multicapsid nucleopolyhedrovirus (ThorMNPV) that was co-isolated with a single nucleocapid ThorSNPV from mixed infected larvae of Thysanoplusia orichalcea L. (Lepidoptea: Noctuidae) is characterized. Scanning electron microscopy of ThorMNPV showed a dodecahedral-shaped occlusion body (OB). The occluded virions contained one to as many as eight nucleocapsids/virion. Virion band profiles in gradient centrifugation were consistent in at least 10 rounds of centrifugation from different virion sample preparations. The ThorMNPV had high virulence to third instar Trichoplusia ni and Pseudoplusia includens with LD50 values of 17 and 242OBs per larva, respectively. However, ThorMNPV did not cause mortality in Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridania, Anticarsia gemmatalis, and Helicoverpa zea. ThorMNPV replicates in cells of various tissues such as the fat body and tracheal epithelium cells. T. ni High 5 cells were permissive to ThorMNPV in terms of infection and viral DNA transfection, but SF-21 was less permissive and the infection process was slower. Production of OBs by ThorMNPV in the nuclei of SF-21 was not well pronounced. The genome size of ThorMNPV was estimated to be 136 kb. The polyhedrin gene open reading frame (ORF) was cloned and completely sequenced. The promoter sequence is identical to that of Autographa californica MNPV. Phylogenetic analyses using partial sequences of the polh, lef-8, and lef-9 revealed that ThorMNPV is a member of the Group I NPVs and is related but distinct from the AcMNPV/Rachiplusia ou NPV/Bombyx mori NPV cluster.

  15. Hard X-ray MCD in GdNi/sub 5/ and TbNi/sub 5/ single crystals

    CERN Document Server

    Galera, R M

    1999-01-01

    XMCD experiments have been performed at the R L/sub 2,3/ and Ni K- edges on magnetically saturated single crystals of GdNi/sub 5/ and Tb Ni/sub 5/ ferromagnetic compounds. The spectra present huge and well structured dichroic $9 signals at both the R L/sub 2,3/ and the Ni K- edges. Structures from the quadrupolar (2p to 4f) transitions are clearly observed at the R L/sub 2,3/-edges. Though Ni is not magnetic, large intensities, up to 0.4, are measured at the $9 Ni K- edge. The Ni K-edge XMCD shows a three-peak structure which intensities dependent on the rare earth. (7 refs).

  16. Plastic deformation of Ni3Nb single crystals

    International Nuclear Information System (INIS)

    Hagihara, Kouji; Nakano, Takayoshi; Umakoshi, Yukichi

    1999-01-01

    Temperature dependence of yield stress and operative slip system in Ni 3 Nb single crystals with the D0 a structure was investigated in comparison with that in an analogous L1 2 structure. Compression tests were performed at temperatures between 20 C and 1,200 C for specimens with loading axes perpendicular to (110), (331) and (270). (010)[100] slip was operative for three orientations, while (010)[001] slip for (331) and [211] twin for (270) orientations were observed, depending on deformation temperature. The critical resolved shear stress (CRSS) for the (010)[100] slip anomaly increased with increasing temperature showing a maximum peak between 400 C and 800 C depending on crystal orientation. The CRSS showed orientation dependence and no significant strain rate dependence in the temperature range for anomalous strengthening. The [100] dislocations with a screw character were aligned on the straight when the anomalous strengthening occurred. The anomalous strengthening mechanism for (010)[100] slip in Ni 3 Nb single crystals is discussed on the basis of a cross slip model which has been widely accepted for some L1 2 -type compounds

  17. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Wang Yanjie; Wu Wenbi; Li Zhaofei; Yuan Meijin; Feng Guozhong; Yu Qian; Yang Kai; Pang Yi

    2007-01-01

    orf18 (ac18) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, an ac18 knockout AcMNPV bacmid was generated to determine the role of ac18 in baculovirus life cycle. After transfection of Sf-9 cells, the ac18-null mutant showed similar infection pattern to the parent virus and the ac18 repair virus with respect to the production of infectious budded virus, occlusion bodies, or the formation of nucleocapsids as visualized by electron microscopy. The deletion mutant did not reduce AcMNPV infectivity for Trichoplusia ni in LD 50 bioassay; however, it did take 24 h longer for deleted mutant to kill T. ni larvae than wild-type virus in LT 50 bioassay. Our results demonstrate that ac18 is not essential for viral propagation both in vitro and in vivo, but it may play a role in efficient virus infection in T. ni larvae

  18. Fabrication and characterization of single segment CoNiP and multisegment CoNiP/Au nanowires

    International Nuclear Information System (INIS)

    Luu Van Thiem; Le Tuan Tu

    2014-01-01

    This paper presents the fabrication of CoNiP single segment and CoNiP/Au multisegment nanowires. We have fabricated these nanowires by electrodeposition method into polycarbonate templates with a nominal pore diameter about 100 nm. The hysteresis loops were measured with the applied magnetic field parallel and perpendicular to the wire axis using a vibrating sample magnetometer (VSM). The structure morphology was observed by Scanning Electron Microscopy (SEM) and the element composition of CoNiP/Au multisegment nanowires were analyzed by EDS. The results show that nanowires are very uniform with the diameter of 100 nm. The observed coercivity (H C ) and squareness (Mr/Ms) of CoNiP single segment nanowires are larger than the CoNiP/Au multisegment nanowires. (author)

  19. Plasticity of decagonal Al-Ni-Co single quasicrystals

    International Nuclear Information System (INIS)

    Schall, P.

    2002-03-01

    Decagonal quasicrystals exhibit quasiperiodic order along two spatial directions and periodic order along the third. Many physical properties of these materials show an anisotropic behaviour. Three different modifications of the decagonal phase in the Al-Ni-Co system were grown as single crystals using the Bridgman and flux growth techniques: quasicrystals of a nickel-rich composition, the so-called basic Ni phase, of a composition of about Al 70 Ni 15 Co 15 and of a cobalt-rich composition, so-called basic Co. Plastic deformation experiments at constant strain rate were carried out on these phases at temperatures of about 70 to 85% of the melting temperature. Stress-relaxation tests and temperature changes were performed during the deformation to study the strain-rate and temperature sensitivity of the flow stress, respectively. Distinct anisotropies are observed in the plastic behaviour, which differ fundamentally for the three modifications. Microstructural investigations of deformed samples by transmission electron microscopy show that plastic deformation is mediated by a dislocation mechanism. Depending on orientation a pure glide, a pure climb or a mixed glide and climb process is observed. Burgers vectors were determined by convergent beam electron diffraction in direction and length. Three different types of dislocations are observed, i.e. dislocations with a periodic, quasiperiodic and a mixed Burgers vector. The Burgers vectors were identified in a current structure model. The dislocations with the periodic and the mixed Burgers vector exhibit reactions which are of fundamental importance for the macroscopic deformation behaviour. In particular, they explain the different plastic behaviours of the three modifications. (orig.)

  20. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J. [Department of Materials Science and Engineering, NC State University, EB-1, Raleigh, North Carolina 27695-7907 (United States)

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  1. Alloying effects of refractory elements in the dislocation of Ni-based single crystal superalloys

    Directory of Open Access Journals (Sweden)

    Shiyu Ma

    2016-12-01

    Full Text Available The alloying effects of W, Cr and Re in the [100] (010 edge dislocation cores (EDC of Ni-based single crystal superalloys are investigated using first-principles based on the density functional theory (DFT. The binding energy, Mulliken orbital population, density of states, charge density and radial distribution functions are discussed, respectively. It is clearly demonstrated that the addition of refractory elements improves the stability of the EDC systems. In addition, they can form tougher bonds with their nearest neighbour (NN Ni atoms, which enhance the mechanical properties of the Ni-based single crystal superalloys. Through comparative analysis, Cr-doped system has lower binding energy, and Cr atom has evident effect to improve the systemic stability. However, Re atom has the stronger alloying effect in Ni-based single crystal superalloys, much more effectively hindering dislocation motion than W and Cr atoms.

  2. Reactive Stresses in Ni49Fe18Ga27Co6 Shape-Memory-Alloy Single Crystals

    Science.gov (United States)

    Averkin, A. I.; Krymov, V. M.; Guzilova, L. I.; Timashov, R. B.; Soldatov, A. V.; Nikolaev, V. I.

    2018-03-01

    The reactive stresses induced in Ni49Fe18Ga27Co6-alloy single crystals during martensitic transformations with a limited possibility of shape-memory-strain recovery have been experimentally studied. The data on these crystals are compared with the results obtained previously for Cu-Al-Ni, Ni-Ti, and Ni‒Fe-Ga crystals. The potential of application of the Ni49Fe18Ga27Co6 single crystals in designing drives and power motors is demonstrated.

  3. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  4. Genomic diversity of Bombyx mori nucleopolyhedrovirus strains.

    Science.gov (United States)

    Xu, Yi-Peng; Cheng, Ruo-Lin; Xi, Yu; Zhang, Chuan-Xi

    2013-07-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects the domestic silkworm. In this study, six BmNPV strains were compared at the whole genome level. We found that the number of bro genes and the composition of the homologous regions (hrs) are the two primary areas of divergence within these genomes. When we compared the ORFs of these BmNPV variants, we noticed a high degree of sequence divergence in the ORFs that are not baculovirus core genes. This result is consistent with the results derived from phylogenetic trees and evolutionary pressure analyses of these ORFs, indicating that ORFs that are not core genes likely play important roles in the evolution of BmNPV strains. The evolutionary relationships of these BmNPV strains might be explained by their geographic origins or those of their hosts. In addition, the total number of hr palindromes seems to affect viral DNA replication in Bm5 cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  6. Molecular characterization of Agrotis segetum nucleopolyhedrovirus from Poland

    NARCIS (Netherlands)

    Jakubowska, A.K.; Oers, van M.M.; Ziemnicka, J.; Lipa, J.J.; Vlak, J.M.

    2005-01-01

    The turnip moth, Agrotis segetum (Lepidoptera, Noctuidae), is an important pest insect in Europe, Asia, and Africa. We have genetically characterized and classified a nucleopolyhedrovirus isolated from A. segetum larvae in Poland (AgseNPV-P). The restriction pattern of AgseNPV-P was distinct from an

  7. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction

    OpenAIRE

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-01-01

    Tetrataenite (L10-FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L10-FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L10-FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to ...

  8. Insecticidal Efficacy of Azadirachta indica, Nucleopolyhedrovirus and Chlorantraniliprole Singly or Combined against Field Populations fo Helicoverpa armigera Hübner (Lepidoptera: Noctuidae Eficacia Insecticida de Azadirachta indica, Nucleopolihedrovirus y Clorantraniliprol solo y sus Aplicaciones Integradas contra Poblaciones de Campo de Helicoverpa armigera Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Waqas Wakil

    2012-03-01

    Full Text Available The development of resistance in cosmopolitan insect Helicoverpa armigera Hubner (Lepidoptera: Noctuidae forced the researchers for alternative control measures. In the present study, insecticidal efficacy of formulations of Azadirachta indica, a Nucleopolyhedrovirus (NPV, and new anthranilic diamide insecticide (chlorantraniliprole formulations was determined against 2nd, through 5th larval instars of H. armigera collected from diverse geographical locations in the Punjab province, Pakistan. Azadirachta indica was applied at 5 μL L-1; NPV at 2.1 x 10(5 polyhedral occlusion bodies (POB mL4 and chlorantraniliprole at 0.01 μL L-1, either alone or in combinations with each other. The bioassays were conducted at 27 ± 1 °C and 65 ± 5% relative humidity. The mortality varied greatly among treatments, larval instars, and locations. The combinations of NPV with A. indica and chlorantraniliprole caused higher mortality, pupation and produced an additive effect compared to their application singly in all the tested populations. The population from Rawalpindi was always susceptible while the Gujranwala was the resistant. The results herein suggest that the effectiveness of NPV and A. indica can be improved by the presence of chlorantraniliprole against the larvae of H. armigera.Se determinó la eficacia insecticida de formulaciones de Azadirachta indica, Nucleopolihedrovirus (VPN y el nuevo insecticida diamida antranílico (clorantraniliprol en contra de segundo, tercero, cuarto y quinto estadios larvales de Helicoverpa armigera Hubner (Lepidoptera: Noctuidae recogidos de diversas ubicaciones geográficas de la provincia de Punjab, Pakistán. Azadirachta indica se aplicó en dosis de 5 μL L-1; VPN en dosis 2.1 x 10(5 POB mL-1 y clorantraniliprol fue 0,01 μL L-1 ya sea solos o en combinaciones. Los bioensayos se realizaron a 27 ± 1 °C y 65 ± 5% de humedad relativa. La mortalidad fue notablemente variada entre los tratamientos, estadios larvales y

  9. A Comparison of Infectivity between Polyhedra of the Spodoptera litura Multiple Nucleopolyhedrovirus Before and After Passage Through the Gut of the Stink Bug, Eocanthecona furcellata

    OpenAIRE

    Gupta, R. K.; Gani, Mudasir; Jasrotia, P.; Srivastava, K.; Kaul, V.

    2014-01-01

    Infectivity of polyhedra of Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the predatory stink bug, Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) was compared through field bioassay studies. Three sets of E. furcellata were used for bioassays and these were allowed to feed on a single meal of five third instar Oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), that were infected with polyhedra before passage, afte...

  10. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  11. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    Science.gov (United States)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  12. Burner rig hot corrosion of a single crystal Ni-48Al-Ti-Hf-Ga alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, J.A.; Darolia, R.; Cuy, M.D.

    1999-07-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a {gamma}{prime} layer ahead of the advancing oxide fingers.

  13. Modelling of creep curves of Ni3Ge single crystals

    Science.gov (United States)

    Starenchenko, V. A.; Starenchenko, S. V.; Pantyukhova, O. D.; Solov'eva, Yu V.

    2015-01-01

    In this paper the creep model of alloys with L12 superstructure is presented. The creep model is based on the idea of the mechanisms superposition connected with the different elementary deformation processes. Some of them are incident to the ordered structure L12 (anomalous mechanisms), others are typical to pure metals with the fcc structure (normal mechanisms): the accumulation of thermal APBs by means of the intersection of moving dislocations; the formation of APB tubes; the multiplication of superdislocations; the movement of single dislocations; the accumulation of point defects, such as vacancies and interstitial atoms; the accumulation APBs at the climb of edge dislocations. This model takes into account the experimental facts of the wetting antiphase boundaries and emergence of the disordered phase within the ordered phase. The calculations of the creep curves are performed under different conditions. This model describes different kinds of the creep curves and demonstrates the important meaning of the deformation superlocalisation leading to the inverse creep. The experimental and theoretical results coincide rather well.

  14. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  15. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  16. Effect of cobalt on microstructural parameters and mechanical properties of Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Suzuki, Takanobu; Imai, Hachiro; Yokokawa, Tadaharu; Kobayashi, Toshiharu; Koizumi, Yutaka; Harada, Hiroshi

    2007-01-01

    The alloying effect of Cobalt (Co) to microstructural parameters and mechanical properties, such as partitioning ratios of alloying elements and creep strength, of Re-bearing Ni-base single crystal superalloys have been investigated. The second generation single crystal superalloys, TMS-82+, Ni-7.8Co-4.9Cr-1.9Mo-8.7W-5.3Al-6.0Ta-2.4Re-0.1Hf, in mass% (8Co) was compared to a Co-free (0Co) and 15 mass% Co (15Co) alloy which had the same chemical composition as TMS-82+ except that Co was changed. It was shown that the partitioning ratios of alloying elements trend to k(=X γ /X' γ )=1, as the content of Co was increased. Furthermore, it was found that there was suitable content of Co for the creep strength under various temperature-stress conditions. (author)

  17. Single-crystal study of the charge density wave metal LuNiC2

    Science.gov (United States)

    Steiner, S.; Michor, H.; Sologub, O.; Hinterleitner, B.; Höfenstock, F.; Waas, M.; Bauer, E.; Stöger, B.; Babizhetskyy, V.; Levytskyy, V.; Kotur, B.

    2018-05-01

    We report on single-crystal growth, single-crystal x-ray diffraction, physical properties, and density functional theory (DFT) electronic structure as well as Fermi surface calculations for two ternary carbides, LuCoC2 and LuNiC2. Electrical resistivity measurements reveal for LuNiC2 a charge density wave (CDW) transition at TCDW≃450 K and, for T >TCDW , a significant anisotropy of the electrical resistivity, which is lowest along the orthorhombic a axis. The analysis of x-ray superstructure reflections suggest a commensurate CDW state with a Peierls-type distortion of the Ni atom periodicity along the orthorhombic a axis. DFT calculations based on the CDW modulated monoclinic structure model of LuNiC2 as compared to results of the orthorhombic parent type reveal the formation of a partial CDW gap at the Fermi level which reduces the electronic density of states from N (EF)=1.03 states/eV f.u. without CDW to N (EF)=0.46 states/eV f.u. in the CDW state. The corresponding bare DFT Sommerfeld value of the latter, γDFTCDW=0.90 mJ/mol K2, reaches reasonable agreement with the experimental value γ =0.83 (5 ) mJ/mol K2 of LuNiC2. LuCoC2 displays a simple metallic behavior with neither CDW ordering nor superconductivity above 0.4 K. Its experimental Sommerfeld coefficient, γ =5.9 (1) mJ/mol K2, is in realistic correspondence with the calculated, bare Sommerfeld coefficient, γDFT=3.82 mJ/mol K2, of orthorhombic LuCoC2.

  18. Ductility and fracture of single crystaliine Ni3Al with boron additions

    International Nuclear Information System (INIS)

    Heredia, F.E.; Pope, D.P.

    1989-01-01

    Low and high temperature tensile tests were performed on single crystals of pure Ni 3 Al and Ni 3 Al+B in order to determine the effect of B additions on the ductility and fracture behavior. Tests were carried out in air at a constant strain rate of 1/3 x 10 -3 s -1 . The orientation tested were [001] for whic the yield stress in tension is always greater than in compression, and those for wich the tension/compression asymmetry is zero ([T=C]) for each particular composition. At room temperature, the results show a positive effect of B additions on both the fracture stress and on the ductility. The ductility at 800K appears to decrease monotonically with B additions. The largest ductilities are found for [T=C] at room temperature where an improvement of about 26% (resolved strain) for an addition of 0.2 at % B was obtained. However, the most dramatic increase in ductility occurs for the [001] oriented samples at room temperature where a 55% improvement was measured over that of pure Ni 3 Al. Fracture surfaces show a combinaton of massive slip, some clevage, and heavily dimpled areas. These observations show that B additions not only increase the ductility of polycrystalline Ni 3 Al, as has been previously observed by many investigators, but also that the already-ductile single crystalline material, indicating that a bulk effect should be added to the grain boundary strengthening effect of B when explaining the improvement in ductility of polycrystalline Ni 3 Al due to B additions

  19. XPS Analysis of Ni and Oxygen in Single-Sintered SrTiO3 Multifunction Ceramic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    XPS analyses have been performed to investigate the chemical conditions of Ni and oxygen on grain surfaces in single-sintered SrTiO3 capacitor-varistor ceramic doped with Nb2O5 and NiO. It is ascertained that Ni is in form of Ni2+ ions, which substitute for Ti4+ ions on grain surfaces during the oxidizing annealing. Moreover, it is confirmed that three kinds of chemically adsorbed oxygen such as O2-, O- and O~ are formed on grain surfaces. It is proposed that these behaviors contribute greatly to the generation of multiple types of grain boundary acceptor states in the ceramic.

  20. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  1. Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction.

    Science.gov (United States)

    Goto, Sho; Kura, Hiroaki; Watanabe, Eiji; Hayashi, Yasushi; Yanagihara, Hideto; Shimada, Yusuke; Mizuguchi, Masaki; Takanashi, Koki; Kita, Eiji

    2017-10-16

    Tetrataenite (L1 0 -FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L1 0 -FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L1 0 -FeNi, is formed by nitriding A1-FeNi powder with ammonia gas. Subsequently, FeNiN is denitrided by topotactic reaction to derive single-phase L1 0 -FeNi with an order parameter of 0.71. The transformation of disordered-phase FeNi into the L1 0 phase increased the coercive force from 14.5 kA/m to 142 kA/m. The proposed method not only significantly accelerates the development of magnets using L1 0 -FeNi but also offers a new synthesis route to obtain ordered alloys in non-equilibrium states.

  2. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  3. Properties of nano-structured Ni/YSZ anodes fabricated from plasma sprayable NiO/YSZ powder prepared by single step solution combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, B. Shri; Balaji, N.; Kumar, S. Senthil; Aruna, S.T., E-mail: staruna194@gmail.com

    2016-12-15

    Highlights: • Preparation of plasma grade NiO/YSZ powder in single step. • Fabrication of nano-structured Ni/YSZ coating. • Conductivity of 600 S/cm at 800 °C. - Abstract: NiO/YSZ anode coatings are fabricated by atmospheric plasma spraying at different plasma powers from plasma grade NiO/YSZ powders that are prepared in a single step by solution combustion method. The process adopted is devoid of multi-steps that are generally involved in conventional spray drying or fusing and crushing methods. Density of the coating increased and porosity decreased with increase in the plasma power of deposition. An ideal nano-structured Ni/YSZ anode encompassing nano YSZ particles, nano Ni particles and nano pores is achieved on reducing the coating deposited at lower plasma powers. The coating exhibit porosities in the range of 27%, sufficient for anode functional layers. Electronic conductivity of the coatings is in the range of 600 S/cm at 800 °C.

  4. Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire

    International Nuclear Information System (INIS)

    Rabkin, E.; Amram, D.; Alster, E.

    2014-01-01

    In this study, we deposited a 80 nm thick single crystalline Ni film on a sapphire substrate. Heat treatment of this film at 1000 °C followed by slow cooling resulted in the formation of faceted holes, star-like channel instabilities and faceted microwires. The ridges at the rims of faceted holes and channels exhibited a twinning orientation relationship with the rest of the film. A sub-nanometer-high hexagonal topography pattern on the surface of the unperturbed film was observed by atomic force microscopy. No such pattern was observed on the top facets of isolated Ni particles and hole ridges. We discuss the observed dewetting patterns in terms of the effects of Ni surface anisotropy and faceting on solid state dewetting. The hexagonal pattern on the surface of the unperturbed film was attributed to thermal stress relaxation in the film via dislocations glide. This work demonstrates that solid state dewetting of single crystalline metal films can be utilized for film patterning and for producing hierarchical surface topographies

  5. High-quality single crystalline NiO with twin phases grown on sapphire substrate by metalorganic vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    Kazuo Uchida

    2012-12-01

    Full Text Available High-quality single crystalline twin phase NiO grown on sapphire substrates by metalorganic vapor phase epitaxy is reported. X-ray rocking curve analysis of NiO films grown at different temperatures indicates a minimum full width at half maximum of the cubic (111 diffraction peak of 0.107° for NiO film grown at as low as 550 °C. Detailed microstructural analysis by Φ scan X-ray diffraction and transmission electron microscopy reveal that the NiO film consists of large single crystalline domains with two different crystallographic orientations which are rotated relative to each other along the [111] axis by 60°. These single crystal domains are divided by the twin phase boundaries.

  6. Absence of Ni on the outer surface of Sr doped La 2 NiO 4 single crystals

    KAUST Repository

    Burriel, Mó nica; Wilkins, Stuart; Hill, John P.; Muñ oz-Má rquez, Miguel A.; Brongersma, Hidde H.; Kilner, John A.; Ryan, Mary P.; Skinner, Stephen J.

    2014-01-01

    A combination of surface sensitive techniques was used to determine the surface structure and chemistry of La2-xSrxNiO 4+δ. These measurements unequivocally showed that Ni is not present in the outermost atomic layer, suggesting that the accepted model with the B-site cations exposed to the environment is incorrect. © 2014 The Royal Society of Chemistry.

  7. 3D network single-phase Ni0.9Zn0.1O as anode materials for lithium-ion batteries

    DEFF Research Database (Denmark)

    Huang, Guoyong; Guo, Xueyi; Cao, Xiao

    2016-01-01

    A novel 3D network single-phase Ni0.9Zn0.1O has been designed and synthesized by calcining a special metal-organic precursor (MOP) (MeO2C3H6, Me=Ni and Zn, the molar ratio of Ni: Zn=9:1) as the self-sacrificing template for the first time. Comparing with NiO or the mixture of NiO and ZnO, the new...

  8. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    Czech Academy of Sciences Publication Activity Database

    Kröger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhý, Antonín; Eggeler, G.

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 452-456 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] Institutional research plan: CEZ:AV0Z20410507 Keywords : In situ TEM * NiTi single crystal * Martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  9. New method for selection and characterization of single-source events in Ni+Ni collisions at 32 A.MeV

    International Nuclear Information System (INIS)

    Maskay-Wallez, Anne-Marie

    1999-01-01

    The study of heavy ion collisions, with the help of such efficient multi-detectors as INDRA, has shown the persistence of reactions leading to single-source events, up to bombarding energies higher than the Fermi one. These events could help characterizing an expected phase transition in nuclear matter. Whatever interesting they may be, the single-source events correspond to a small part of the total cross section, which makes them difficult to isolate and therefore to analyze. That is why different selection means have been tested - thanks to the 'Simon' event generator - on a simulated Ni + Ni at 32 A·MeV sample, before any application to the INDRA experimental data. As the known methods based on global variables did not prove effective, a set of new 4-dimensional quantities has been built, whose main advantage lies in a better description of physical events. From a Discriminant Analysis performed on 625 of these new 'moments' proceeds a highly discriminant variable, called D 625 . The experimental cross section associated with D 625 -selected single-source events amounts to 170 mb at 32 A·MeV. Such quasi-fusion events are shown to disappear at about 60 A·MeV. As regards the deexcitation mode of the 32 A·MeV Ni + Ni single-source events, an extensive experimental study and comparisons of the data with two reference models seem to confirm the hypothesis of a transition between fusion-evaporation and simultaneous multifragmentation mechanisms. (author)

  10. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Chang, J.X.; Wang, D.; Liu, T.; Zhang, G.; Lou, L.H.; Zhang, J.

    2015-01-01

    Highlights: • Ta is beneficial to hot corrosion resistance. • Ta promoted the formation of a new type sulphide TaS 2 . • Thermodynamic factors affect the constituent of sulphide layer. • Ta can substitute Cr for sulphur catcher in hot corrosion. • The result provides new perspective in hot corrosion resistant superalloys design. - Abstract: Hot corrosion behaviour of a Ni-base single crystal superalloy with low Cr, Ti and high Ta contents in molten sodium sulphate (Na 2 SO 4 ) at 900 °C in static air was investigated using the “deposit recoat” method. The corrosion scale was composed of an outer NiO layer, an inner Al 2 O 3 -dominant oxide network layer and a (CrS x(1.000Ni-sulphides. The formation mechanism and effect of TaS 2 were discussed in detail in the present paper

  11. Nb/NiCu bilayers in single and stacked superconductive tunnel junctions: preliminary results

    International Nuclear Information System (INIS)

    Pepe, G.P.; Ruotolo, A.; Parlato, L.; Peluso, G.; Ausanio, G.; Carapella, G.; Latempa, R.

    2004-01-01

    We present preliminary experimental results concerning both single and stacked tunnel junctions in which one of the electrodes was formed by a superconductor/ferromagnet (S/F) bi-layer. In particular, in the stacked configuration a Nb/NiCu bi-layer was used as the intermediate electrode, and it was probed by tunneling on both sides. Tunnel junctions have been characterized in terms of current-voltage characteristics (IVC), and differential conductance. Preliminary steady-state injection-detection measurements performed in the stacked devices at T=4.2 K are also presented and discussed

  12. Ni-Mn-Ga single crystals with very low twinning stress

    International Nuclear Information System (INIS)

    Straka, L; Haenninen, H; Soroka, A; Sozinov, A

    2011-01-01

    Twinning stress or mechanical hysteresis associated with the twin boundary motion is one of the most essential parameters which determine the actuating performance of magnetic shape memory alloys. Recent effort at AdaptaMat Ltd. to decrease the twinning stress resulted in a consistent production of Ni-Mn-Ga magnetic shape memory single crystals with the twinning stress of about 0.1 MPa, which is much lower than previously reported. In this work, the mechanical and magnetomechanical response of the developed crystals is discussed in detail and the importance of adjustment of the twin microstructure for obtaining an optimal actuating behavior is illustrated.

  13. Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Y.; Panchenko, E.; Kireeva, I.; Karaman, I.; Sehitoglu, H.; Maier, H.J.; Tverdokhlebova, A.; Ovsyannikov, A.

    2008-01-01

    In the present study the effects of crystal axis orientation, stress state (tension/compression) and test temperature on shape memory effect and superelasticity of Ni 54 Fe 19 Ga 27 (I), Co 40 Ni 33 Al 27 (II), Co 49 Ni 21 Ga 30 (III) (numbers indicate at.%) single crystals were investigated. The shape memory effect, the start temperature of superelasticity T 1 and the mechanical hysteresis Δσ were found to be dependent on crystal axis orientation and stress state. Superelasticity was observed at T 1 = A f (A f , reverse transformation-finish temperature) in tension/compression for [0 0 1]-oriented Ni-Fe-Ga crystals and in compression for [0 0 1]-oriented Co-Ni-Ga crystals, which all displayed a small mechanical hysteresis (Δσ ≤ 30 MPa). An increase in Δσ of up to 90 MPa in the Co-Ni-Al and the Co-Ni-Ga crystals lead to stabilization of the stress-induced martensite, and an increase in to T 1 = A f + Δ. The maximal value of Δ (75 K) was found in [0 0 1]-oriented Co-Ni-Al crystals in tension. A thermodynamic criterion describing the dependencies of the start temperature of superelasticity T 1 on crystal axis orientation, stress state and the magnitude of mechanical hysteresis is discussed

  14. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17

    OpenAIRE

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-01-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of ...

  15. Creep in single crystals of γ single phase Ni-20Cr alloy and evolution of dynamic recrystallization

    International Nuclear Information System (INIS)

    Matsuo, T.; Terada, Y.; Takahashi, S.; Ishiwari, Y.

    2000-01-01

    The creep rate - time and the creep rate - strain curves of the single crystals of γ single phase Ni-20 mass%Cr alloy have been investigated at 1173 K under the wide stress range of 19.6 to 98 MPa, and compared with those of polycrystals. The orientation corresponding to the stress axis of the single crystals were chosen within the standard stereographic triangle. The creep curve in the Ni-20 mass%Cr single crystal consists of a transient stage and an accelerating stage without a steady state stage. The transient stage has two steps. In the first step, the creep rate slightly decreases, and in the second step, the decrease in creep rate becomes prominent with increasing the testing time. With decreasing the stress, the extension of transient stage becomes prominent, and by this extension, the decreasing ratio of the creep rate in transient stage is enlarged. At the lowest stress of 19.6 MPa, the most prominent extension of transient stage and the more than two order decrease in creep rate in transient stage are detected. The creep interrupting tests have been conducted at the stress of 29.4 MPa in the strain range of 0.1 to 0.6 to examine the appearance of dynamically recrystallized grains. At the strain of 0.1 corresponding to the end of the first step in transient stage, a straight subboundary parallel to slip plane appears in a wide distance of a few hundreds micrometers. With increasing the strain, the straight subboundary turns to waved one. At the strain showing the minimum creep rate, a lot of evolved subgrains appear. At the strain corresponding to the early stage of accelerating creep, dynamically recrystallized grains appear. It is confirmed that the onset of accelerating creep well corresponds to the appearance of dynamically recrystallized grains. In the single crystal creep ruptured, the whole gage portion turns to polycrystal with equiaxed grains having a diameter of 150 μm. (orig.)

  16. Optical properties of Ni-doped MgGa2O4 single crystals grown by floating zone method

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Hughes, Mark; Ohishi, Yasutake

    2010-01-01

    The single crystal growth conditions and spectroscopic characterization of Ni-doped MgGa 2 O 4 with inverse-spinel structure crystal family are described. Single crystals of this material have been grown by floating zone method. Ni-doped MgGa 2 O 4 single crystals have broadband fluorescence in the 1100-1600 nm wavelength range, 1.6 ms room temperature lifetime, 56% quantum efficiency and 1.05x10 -21 cm 2 stimulated emission cross section at the emission peak. This new material is very promising for tunable laser applications covering the important optical communication and eye safe wavelength region.

  17. Electron spin resonance of Gd in the nuclear cooling agent: PrNi5 single crystals

    International Nuclear Information System (INIS)

    Levin, R.; Davidov, D.; Grayevsky, A.; Shaltiel, D.; Zevin, V.

    1980-01-01

    The ESR of Gd in single crystals of PrNi 5 is observed to exhibit significant angular dependence of the resonance position and linewidth at low temperatures. This is interpreted in terms of the axial spin Hamiltonian which takes the anisotropic susceptibility and the Gd-Pr exchange into consideration. From lineshape analysis the axial crystal field parameter and isotropic Gd-Pr exchange are derived. The Gd ESR linewidth increases with temperature; the thermal broadening is angularly dependent. This is similar to that observed for the Pr NMR in PrNi 5 single crystals. Both the NMR and ESR thermal broadenings are attributed to low-frequency fluctuations of the Pr ions induced by the Pr-Pr exchange coupling. A model for hexagonal Van-Vleck compounds is given and with the linewidth enables the Pr-Pr exchange coupling, under the assumption of a Gaussian or a Lorenzian distribution of the low-frequency fluctuation spectra, to be extracted. It is suggested that the angular dependence of the ESR thermal broadening is due to the Gd-Pr exchange coupling. (UK)

  18. Structure, magnetism, and transport of single-crystalline R NiSi3 (R = Y, Gd-Tm, Lu)

    Science.gov (United States)

    Arantes, Fabiana R.; Aristizábal-Giraldo, Deisy; Masunaga, Sueli H.; Costa, Fanny N.; Ferreira, Fabio F.; Takabatake, Toshiro; Mendonça-Ferreira, Leticie; Ribeiro, Raquel A.; Avila, Marcos A.

    2018-04-01

    We report on the physical properties of the intermetallic series R NiSi3 (R =Y , Gd-Tm, Lu). High quality single crystals with platelike morphology were grown using the Sn flux method. X-ray powder diffraction data show that this series crystallizes in the orthorhombic space group Cmmm, and Laue patterns indicate that the b axis remains perpendicular to the plane of the plates. Magnetization measurements show anisotropic antiferromagnetic ground states for R = Gd-Tm with Néel temperatures ranging from TN=2.6 K (TmNiSi3) up to 32.2 K (TbNiSi3), as well as metamagnetic transitions that in some cases appear together with hysteresis (TbNiSi3,DyNiSi3, and HoNiSi3). The easy axis changes from a axis to b axis on going from R = Gd-Ho to R = Er-Tm. All transitions from antiferromagnetic to paramagnetic states are clearly marked by sharp peaks in specific heat as well as in the derivative of resistivity measurements, which show metallic temperature dependence for all compounds and residual values in the range of 1 μ Ω cm . DyNiSi3 has two close phase transitions, while HoNiSi3 presents distinct critical temperatures for applied fields in the a or c directions (10.4 and 6.3 K, respectively), pointing to possible component-specific ordering of the local magnetic moments.

  19. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys

    International Nuclear Information System (INIS)

    Mathur, Harshal N.; Panwisawas, Chinnapat; Jones, C. Neil; Reed, Roger C.; Rae, Catherine M.F.

    2017-01-01

    Recrystallisation in single crystal Ni-based superalloys during solution heat treatment results in a significant cost to the investment casting industry. In this paper two sources of surface nucleation have been identified in the alloy CMSX-4 ® . Firstly, Electron Backscattered Diffraction (EBSD) has revealed micro-grains of γ′, between 2 and 30 μm diameter in the layer of surface eutectic found in the upper part of the casting. These have high angle boundaries with respect to the bulk single crystal and a fraction coarsen during solution heat treatment. Secondly, in the lower regions where surface eutectic does not form, locally deformed regions, 5–20 μm deep, form where the metal adheres to the mould. The local strain causes misorientations up to ≈20° with respect the bulk single crystal, and after heat treatment these regions develop into small grains of similar low-angle misorientations. However, they also form twins to produce further grains which have mobile high-angle boundaries with respect to the bulk single crystal. Experiments have shown that micro-grains at the surface grow to cause full recrystallisation where there is sufficient strain in the bulk material, and by removing these surface defects, recrystallisation can be completely mitigated. Etching of the cast surface is demonstrated to be an effective method of achieving this.

  20. Magnetism and superconductivity in CeFe2-xTxAs2 (T = Co and Ni) single crystals

    International Nuclear Information System (INIS)

    Thamizhavel, A.

    2010-01-01

    Single crystals of pure and transition metal doped CaFe 2- x T x As 2 (T = Co and Ni) have been grown by flux method using molten Sn as solvent. The magnetic and superconducting properties of the grown crystals were studied by measuring the electrical resistivity, magnetic susceptibility and neutron diffraction measurements. A spin density wave (SDW)/structural transition is observed at 170 K for the pure CaFe 2 As 2 single crystal and it gets suppressed with T (Co and Ni) doping. For an optimum dopant concentration of x = 0.06, the sample becomes superconducting. From the detailed studies on CaFe 2- x Ni x As 2 single crystals we have constructed a magnetic phase diagram. (author)

  1. The Relevant Role of Dislocations in the Martensitic Transformations in Cu-Al-Ni Single Crystals

    Science.gov (United States)

    Gastien, R.; Sade, M.; Lovey, F. C.

    2018-03-01

    The interaction between dislocations and martensitic transformations in Cu-Al-Ni alloys is shortly reviewed. Results from many researchers are critically analyzed towards a clear interpretation of the relevant role played by dislocations on the properties of shape memory alloys in Cu-based alloys. Both thermally and stress-induced transformations are considered and focus is paid on two types of transitions, the β→β' and the formation of a mixture of martensites: β→β' + γ'. After cycling in the range where both martensites are formed, the twinned γ' phase is inhibited and cycling evolves into the formation of only β'. A model which considers the difference in energy of each γ' twin variant due to the introduced dislocations quantitatively explains the inhibition of γ' in both thermally and stress-induced cycling. The type of dislocations which are mainly introduced, mixed with Burgers vector belonging to the basal plane of the β' martensite, enables also to explain the unmodified mechanical behavior during β→β' cycling. The reported behavior shows interesting advantages of Cu-Al-Ni single crystals if mechanical properties are comparatively considered with those in other Cu-based alloys.

  2. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    Science.gov (United States)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  3. Creep characteristics of single crystalline Ni3Al(Ta,B)

    International Nuclear Information System (INIS)

    Wolfenstine, J.; Earthman, J.C.

    1994-01-01

    The creep characteristics, including the nature of the creep transient after a stress reduction and activation energy for creep of single crystalline Ni 3 Al(Ta,B) in the temperature range 1,083 to 1,388 K, were investigated. An inverse type of creep transient is exhibited during stress reduction tests in the creep regime where the stress exponent is equal to 3.2. The activation energy for creep in this regime is equal to 340 kJ mol -1 . A normal type of creep transient is observed during stress reduction tests in the regime where the stress exponent is equal to 4.3. The activation energy for creep in this regime is equal to 530 kJ mol -1 . The different transient creep behavior and activation energies for creep observed in this investigation are consistent with the previous suggestion that the n = 4.3 regime is associated with creep by dislocation climb, whereas the n = 3.2 regime is associated with a viscous dislocation glide process for Ni 3 Al at high temperatures

  4. Characterization of the Bm61 of the Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Shen, Hongxing; Chen, Keping; Yao, Qin; Zhou, Yang

    2009-07-01

    orf61 (bm61) of Bombyx mori Nucleopolyhedrovirus (BmNPV) is a highly conserved baculovirus gene, suggesting that it performs an important role in the virus life cycle whose function is unknown. In this study, we describe the characterization of bm61. Quantitative polymerase chain reaction (qPCR) and western blot analysis demonstrated that bm61 was expressed as a late gene. Immunofluorescence analysis by confocal microscopy showed that BM61 protein was localized on nuclear membrane and in intranuclear ring zone of infected cells. Structure localization of the BM61 in BV and ODV by western analysis demonstrated that BM61 was the protein of both BV and ODV. In addition, our data indicated that BM61 was a late structure protein localized in nucleus.

  5. Interactions between Meteorus pulchricornis and Spodoptera exigua multiple nucleopolyhedrovirus.

    Science.gov (United States)

    Guo, Hui-Fang; Fang, Ji-Chao; Zhong, Wan-Fang; Liu, Bao-Sheng

    2013-01-01

    Baculoviruses may interact with parasitoids in the same host. A previous study has shown that infection of larvae with Spodoptera litura nucleopolyhedrovirus (SpltNPV) was deleterious to the survival and development of Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae). In this paper, the interactions between M. pulchricornis and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), a permissive host of the virus and parasitoid, were investigated. The results showed that the effect of M. pulchricornis on SeMNPV and the effect of the virus on the parasitoid both depended on the concentration of the virus and the interval between viral infection and parasitism. Whether S. exigua was treated with the parasitoid and virus simultaneously or 1 day apart, the biological activities of 10(5), 10(6), and 10(7) OBs/mL SeMNPV were all significantly improved by M. pulchricornis. In contrast, the biological activity of 10(3) OBs/mL SeMNPV was significantly decreased when the host was exposed to the virus and parasitoid simultaneously. Regarding the impact of SeMNPV on M. pulchricornis, exposing the host to the parasitoid and SeMNPV with concentrations lower than 10(6) occlusion bodies (OBs)/mL produced no negative effects on the parasitoid. The results also showed that ingestion of SeMNPV by adult stage M. pulchricornis significantly increased the number of parasitoid offspring that successfully emerged from the host. Furthermore, M. pulchricornis was found to transmit SeMNPV among populations of S. exigua. Taken together, these findings indicate that M. pulchricornis integrated with an appropriate concentration of SeMNPV has the potential to improve the efficacy of biological control against S. exigua.

  6. Preparation of hcp-Ni(112-bar 0) epitaxial thin films on Au(100) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Ni epitaxial films with an hcp structure are successfully obtained on Au(100) single-crystal underlayers formed on MgO(100) substrates at temperatures lower than 300 {sup 0}C by molecular beam epitaxy. With increasing the substrate temperature, the volume ratio of more stable fcc phase inc{sub r}eases in the film. The Ni film prepared at 100 {sup 0}C consists primarily of hcp crystal with the (112-bar 0) plane parallel to the substrate surface coexisting with a small amount of fcc-Ni(100) crystal. The lattice constant of hcp-Ni crystal is determined as a = 0.249 nm, c = 0.398 nm, and c/a = 1.60.

  7. Preparation of hcp-Ni(112-bar 0) epitaxial thin films on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni epitaxial films with an hcp structure are successfully obtained on Au(100) single-crystal underlayers formed on MgO(100) substrates at temperatures lower than 300 0 C by molecular beam epitaxy. With increasing the substrate temperature, the volume ratio of more stable fcc phase inc r eases in the film. The Ni film prepared at 100 0 C consists primarily of hcp crystal with the (112-bar 0) plane parallel to the substrate surface coexisting with a small amount of fcc-Ni(100) crystal. The lattice constant of hcp-Ni crystal is determined as a = 0.249 nm, c = 0.398 nm, and c/a = 1.60.

  8. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  9. Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Jakob, A M; Müller, M; Rauschenbach, B; Mayr, S G

    2012-01-01

    Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed. (paper)

  10. Host-range expansion of Spodoptera exigua multiple nucleopolyhedrovirus to Agrotis segetum larvae when the midgut is bypassed

    NARCIS (Netherlands)

    Jakubowska, A.K.; Lynn, D.E.; Herrero, S.; Vlak, J.M.; Oers, van M.M.

    2010-01-01

    Given the high similarity in genome content and organization between Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum nucleopolyhedrovirus (AgseNPV), as well as the high percentages of similarity found between their 30 core genes, the specificity of these NPVs was

  11. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G. [University of Delaware, Delaware Environmental Institute; Sparks, Donald L. [University of Delaware, Delaware Environmental Institute

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates using WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.

  12. Sol-gel synthesis and characterization of single-phase Ni ferrite nanoparticles dispersed in SiO2 matrix

    International Nuclear Information System (INIS)

    Nadeem, K.; Traussnig, T.; Letofsky-Papst, I.; Krenn, H.; Brossmann, U.; Wuerschum, R.

    2010-01-01

    Nanoparticles of NiFe 2 O 4 dispersed in SiO 2 (25 wt%) matrix were synthesized by sol-gel method using tetraethyl orthosilicate (TEOS), as a precursor for SiO 2 . The sol-gel method for nanocomposites normally provides multi-phase nanoparticles. We investigated by a synopsis of different analysis methods, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SQUID-magnetometry, how the various chemical phases are transformed to a single-phase spinel structure during the various stages of annealing from 300 to 900 o C. We have developed a full phase diagram of chemical phases as a function of annealing temperature. The average particle size lies in the range 16-27 nm. The chemical phases formed below 900 o C are NiFe, NiO, γ-Fe 2 O 3 , α-Fe 2 O 3 , and NiFe 2 O 4 , respectively. The role of the TEOS prepared SiO 2 matrix is to restrict the particle size in a small range in order to rule out particle size effects. In the mid-infrared, a shift of the vibrational Fe-O bond is observed from 568 to 586 cm -1 for annealing between 500 and 700 o C which indicates an increasing NiFe 2 O 4 phase formation. A systematic study of coercivity field (ranging from 32 to 200 Oe) and saturation magnetic moment (ranging from 12.2 to 32.1 emu/g) for differently annealed samples supports our findings about the evolution of single-phase NiFe 2 O 4 at 900 o C. The opposite trend of saturation magnetic moment and coercivity with respect to annealing temperature clearly separates the different phases of metallic, antiferromagnetic, and finally single-phase spinel NiFe 2 O 4 .

  13. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  14. Observation of martensitic structure evolution in Cu-Al-Ni single crystals with shape memory effect under external load using photoacoustic microscopy

    International Nuclear Information System (INIS)

    Muratikov, K.L.; Glazov, A.L.; Nikolaev, V.I.; Pul'nev, S.A.

    2006-01-01

    Photoacoustic microscopy is applied to observe the surface structure of Cu-Al-Ni shape-memory single crystals in both the loaded and unloaded states. Visualizing the early stages of the loading-induced martensitic transformation in Cu-Al-Ni single crystals is demonstrated to be feasible. The photoacoustic images are distinguished to advantage from the corresponding optical images by a higher contrast between different phases of the Cu-Al-Ni shape-memory alloy [ru

  15. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  16. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloys

    International Nuclear Information System (INIS)

    Chen, J.Y.; Feng, Q.; Cao, L.M.; Sun, Z.Q.

    2011-01-01

    Research highlights: → Cr improved the stress-rupture life of single crystal superalloys significantly. → Cr increased the Re partitioning ratio and resulted in more negative misfit. → Mechanism for improving the stress-rupture life by Cr addition is addressed here. - Abstract: The effects of Cr addition on the microstructure and stress-rupture property have been investigated in three experimental Ni-based single crystal superalloys containing various levels of Cr addition (0-5.7 wt.%). The Re partitioning ratio increased and the lattice misfit became more negative with increasing the Cr addition in both dendrite core and interdendritic region. The changes of elemental partitioning behaviors and the lattice misfit show good agreement with the change of γ' morphology. Cr addition increased the stress-rupture life at 1100 deg. C/140 MPa significantly due to higher γ' volume fraction, more negative lattice misfit and a well rafting structure as well as less width of γ channels. High Cr addition (5.7 wt.%) increased the degree of Re and Cr supersaturation in the γ phase and promoted the formation of topologically close-packed (TCP) phases significantly under thermal exposure and creep deformation at 1100 deg. C.

  17. Epitaxial growth of fcc-CoxNi100-x thin films on MgO(110) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    Co x Ni 100-x (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co x Ni 100-x film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co x Ni 100-x films are in agreement within ±0.5% with the values of the respective bulk Co x Ni 100-x crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110) fcc film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  18. Martensitic transformations of Cu-Al-Ni single crystals in tension/compression

    Energy Technology Data Exchange (ETDEWEB)

    Novak, V.; Sittner, P. [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Physics; Humbeeck, J. van [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Physics; Catholic Univ. of Leuven, Heverlee (Belgium). MTM Dept.

    2001-11-01

    Cu-Al-Ni alloys, similarly as other Cu-base shape memory alloys, transform into more martensitic structures {alpha}{sub 1}' (6R), {beta}{sub 1}' (18R) and {gamma}{sub 1}' (2H), depending on the temperature, stress, load axis orientation, sense of loading and composition. The transformation stress-temperature conditions at which individual transitions take place are beneficially represented in so called non-equilibrium stress-temperature phase diagrams. On the basis of the {sigma}-T diagrams, complex history dependent thermomechanical behaviors of SMA single crystals undergoing sequentially multiple solid state transitions can be easily understood and predicted. Since chemical composition of the alloy crystals affects mainly the equilibrium transformation temperatures, T{sub 0}, and only slightly the slopes of the transformation lines in the {sigma}-T diagrams, the diagrams mainly shift in the temperature range (over {proportional_to}200K) with the compositional variations. The shape of the diagrams, however, may change significantly when the T{sub 0} shifts for individual transitions are different. Knowledge of the compositional dependence of {sigma}-T diagrams would be beneficial for the development of shape memory alloys with specific required thermomechanical properties. The aim of the present work is experimental investigation of the martensitic transformations and construction of the {sigma}-T diagram for Cu-Al-Ni alloy with lower Al content (T{sub 0}>363K) and comparison with our previous results obtained on alloys with higher Al content (T{sub 0}<263K). (orig.)

  19. Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, G A; Freeman, G B; Chao, J L.R.

    1980-01-01

    A Ni(111) crystal with small angle boundaries was used to examine the adsorption of CO. The adsorption of CO on a perfect Ni(111) single crystal was used for reference. Auger spectra show that the boundary lines on the sample surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25/sup 0/C. The post-dissociation carbon appears mostly in the form of a nickel carbide on the surface. After heating the crystal to 850/sup 0/C, sulfur diffused to the surface and blocked the surface adsorption sites uniformly. The boundary-enhanced dissociation of absorbed CO is no longer observed after the diffusion of sulfur to the crystal surface. AES depth profiling of sulfur concentration at different positions on the crystal with respect to the boundary lines show no evidence that the boundary lines provide an enhanced path for sulfur diffusion. 7 figures.

  20. First principles study of the diffusional phenomena across the clean and Re-doped γ -Ni/ γ ’-Ni3Al interface of Ni-based single crystal superalloy

    International Nuclear Information System (INIS)

    Sun Min; Wang Chong-Yu

    2016-01-01

    Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys. We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ’ phases along the direction perpendicular to the interface. The diffusion mechanisms and the expressions of the diffusion coefficients are presented. The vacancy formation energies, the migration energies, and the activation energies for the diffusing Ni and Al atoms are estimated, and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7 (002) layers. The local density-of-states profiles of atoms in each (002) layer in the γ and γ ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior. (paper)

  1. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  2. Improved mechanical properties of Ni-rich Ni3Al coatings produced by EB-PVD for repairing single crystal blades

    Institute of Scientific and Technical Information of China (English)

    Jing-Yong Sun; Yan-Ling Pei; Shu-Suo Li; Hu Zhang; Sheng-Kai Gong

    2017-01-01

    Active control of turbine blade tip clearance for aircraft engine continues to be a concern in engine operation,because turbine blades are subjected to wear and therefore cause an increasing tip clearance between the rotating blades and the shroud and also reduce the engine efficiency.In this work,a Ni-rich Ni3Al coating with γ'/γtwo-phase microstructure was deposited by electron beam physical vapor deposition (EB-PVD),which worked as repairing the worn blade tips of single crystal blades.Nb molten pool was used to increase the molten pool temperature and thus to enhance the deposition rate.The microstructures and mechanical properties can be modified by the deposition temperatures and the following heat treatments.All coatings consist of γ'and γ phases.At deposition temperature of 600 ℃,a dense microstructure can be achieved to produce a coating with grain size of ~ 1 μm and microhardness of ~HV 477.After being heated for 4 h at a temperature of 1,100 ℃,the coatings have a more uniform microstructure,and microhardness maintains at a high level of ~ HV 292.Effect of Hf and Zr on EB-PVD Ni3Al repair coating will be further investigated.

  3. AC susceptometry on the single-molecule magnet Ni{sub 2}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Pascal; Sundt, Alexander; Waldmann, Oliver [Physikalisches Institut, Universitaet Freiburg (Germany); Khan, Amin; Lan, Yanhua; Powell, Annie K. [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (Germany)

    2013-07-01

    Molecular nanomagnets are molecules which show novel and fascinating magnetic properties. The best known phenomenon is the observation of magnetic hysteresis on the molecular scale in the single-molecule magnets (SMMs), such as Mn{sub 12}ac. In addition, quantum mechanical effects, such as the tunneling of the magnetization, can be observed in bulk samples of SMMs. A key goal for understanding the underlying physics is the measurement of the magnetization dynamics, which can be accomplished using ac susceptometry. However, the magnetic moments of samples of SMMs are weak since the volume density of the magnetic ions is very small as compared to e.g. inorganic compounds. In this talk we will describe the construction of an ac susceptometer suitable for investigating molecular nanomagnets. A particular goal was to reach frequencies of the ac field of 100 kHz, extending the frequency range of commercial devices typically used in this research area by two decades. The device can be operated in the temperature range of 1.5 to 300 K and was characterized by comparing data recorded on Mn{sub 19} with available literature results. Lastly, we will present our experimental results on the novel SMM Ni{sub 2}Dy and discuss the different magnetic relaxation regimes observed in it.

  4. Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi

    International Nuclear Information System (INIS)

    Sehitoglu, H.; Efstathiou, C.; Maier, H.J.; Chumlyakov, Y.

    2005-01-01

    We report on the shape memory characteristics and magnetic behavior of polycrystalline and single crystalline FeNiCoTi. Predeforming the samples in the martensitic state and biasing of the martensite variants produced anisotropy in the magnetization behavior allowing the 'easy axis' to be identified as the 'a-axis' in the martensitic state. Based on these results, we provide an estimate of the magnetic anisotropy energy as 8.34x10 5 ergs/cm 3 . The results confirm the different magnetization behavior in the martensitic and austenitic states, and the shift in transformation temperatures upon application of a magnetic field. Shape memory strains near 2.5% are demonstrated under constant stress temperature cycling and upon heating at zero stress after deformation. We present a thermodynamics based theory that explains the origin of the hysteresis in this class of alloys emanating from the dissipation of energy due to plastic deformation. We predict the thermal hysteresis (135 K), and the shift in transformation temperature (14 K) with applied magnetic fields in agreement with the experimental results. The possibility of utilizing these classes of alloys as magnetic shape memory alloys is discussed

  5. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  6. Hot Corrosion of Single-Crystal NiAl-X Alloys

    Science.gov (United States)

    Nesbitt, James A.

    1998-01-01

    Several single-crystal NiAl-X alloys (X=Hf, Ti, Cr, Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at 900 deg. C for 300 1-hr cycles. The surface morphology after testing consisted of either mounds or an inward, uniform-type of attack which preserved surface features. It was observed that the surface morphology was affected by the surface preparation treatments. Microstructurally, the hot corrosion attack initiated as pits but evolved to a rampant attack consisting of the rapid inward growth of Al2O3. Electropolishing and chemical milling produced many pits and grooves on the surface. However, the presence of pits and grooves did not appear to strongly influence the hot corrosion response. Attack on many samples was strongly localized which was attributed to compositional inhomogeneity within the samples. It was found that increasing the Ti content from 1% to 5 % degraded the hot corrosion response of these alloys. In contrast, the addition of 1-2% Cr reduced the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the 4-5% Ti addition.

  7. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation

    International Nuclear Information System (INIS)

    Poli, G.; Sola, R.; Veronesi, P.

    2006-01-01

    The microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator has been simulated numerically and performed with the aim of achieving the highest yields, energy efficiency and process reproducibility. The electromagnetic field modeling of the microwave system allowed to chose the proper experimental set-up and the materials more suitable for the application, minimising the reflected power and the risks of arcing. In all the experimental conditions tested, conversions of 3-5 g 1:1 atomic ratio Ni and Al powder compacts into NiAl ranged from 98.7% to 100%, requiring from 30 to 180 s with power from 500 to 1500 W. The optimisation procedure allowed to determine and quantify the effects of the main process variables on the ignition time, the NiAl yields and the specific energy consumption, leading to a fast, reproducible and cost-effective process of microwave-assisted combustion synthesis of NiAl intermetallics

  8. Anisotropic magnetoresistance and anomalous Nernst effect in exchange biased permalloy/(1 0 0) NiO single-crystal

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J., E-mail: joseholanda@df.ufpe.br; Maior, D.S.; Azevedo, A.; Rezende, S.M.

    2017-06-15

    Highlights: • We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer Py/(100) NiO single-Crystal. • The shift of the hysteresis loop, measured with the different techniques, yield approximately the same value of H{sub EB}. • In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. • The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films. - Abstract: We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer consisting of a thin film of permalloy deposited on a single crystal antiferromagnetic NiO (1 0 0). The exchange bias field (H{sub EB}) value was obtained by means of AMR, ANE and magnetization hysteresis measurements. The shift of the hysteresis loop, measured with the three different techniques, yield approximately the same value of H{sub EB.} In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films.

  9. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding

    International Nuclear Information System (INIS)

    Vilar, R.; Santos, E.C.; Ferreira, P.N.; Franco, N.; Silva, R.C. da

    2009-01-01

    In the present work single and multiple layer NiCrAlY coatings were produced by laser cladding on (100) single-crystalline substrates of SRR99 Ni-based superalloy. Detailed structural characterisation and texture analysis by optical microscopy, scanning electron microscopy, X-ray diffraction and Rutherford backscattering showed that the NiCrAlY coatings consisted essentially of γ phase with yttrium oxide (Y 2 O 3 ) and a small proportion of yttrium-aluminum garnet (Al 5 Y 3 O 12 ) precipitated in the interdendritic regions. The coatings presented a columnar dendritic structure grown by epitaxial solidification on the substrate and inherited the single-crystalline nature and the orientation of the substrate. The coating material also showed a mosaicity and a defect density similar to those of the substrate. It can be expected that the protective effect of these coatings against oxidation is greatly enhanced compared with polycrystalline coatings because high diffusivity paths, such as grain boundaries, are eliminated in single-crystalline coatings, thus reducing mass transport through the coating.

  10. The Operophtera brumata nucleopolyhedrovirus (OpbuNPV) represents an early, divergent lineage within genus Alphabaculovirus

    Science.gov (United States)

    Operophtera brumata nucleopolyhedrovirus (OpbuNPV) infects larvae of the winter moth, Operophtera brumata. As part of an effort to explore the pesticidal potential of OpbuNPV, an isolate of this virus from Massachusetts (USA), OpbuNPV-MA, was characterized by electron microscopy of OpbuNPV occlusio...

  11. Functional analysis of the Autographa californica nucleopolyhedrovirus IAP1 and IAP2

    NARCIS (Netherlands)

    Zeng, X.D.; Nan, F.; Liang, Ch.Y.; Song, J.H.; Wang, Q.; Vlak, J.M.; Chen, X.W.

    2009-01-01

    The Autographa californica nucleopolyhedrovirus (AcMNPV) contains three apoptosis suppressor genes: p35, iap1 and iap2. AcMNPV P35 functions as a pancaspase inhibitor, but the function of IAP1 and IAP2 has not been entirely resolved. In this paper, we analyze the function of IAP1 and IAP2 in detail.

  12. Diversity and biological activity of nucleopolyhedroviruses of the leafworm Spodoptera litura

    NARCIS (Netherlands)

    Ali, Ghulam

    2018-01-01

    Increased resistance of emerging cotton leafworm Spodoptera litura in Pakistan and elsewhere to chemical insecticides calls for an alternative method of control. Isolates of nucleopolyhedrovirus (NPVs) of S. litura (SpltNPV) were collected from infected larvae in different

  13. Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT–BCT single crystals

    Directory of Open Access Journals (Sweden)

    Haribabu Palneedi

    2017-03-01

    Full Text Available Aimed at developing lead-free magnetoelectric (ME composites with performances as good as lead (Pb-based ones, this study employed (001 and (011 oriented 82BaTiO3-10BaZrO3-8CaTiO3 (BZT–BCT piezoelectric single crystals, fabricated by the cost-effective solid-state single crystal growth (SSCG method, in combination with inexpensive, magnetostrictive base metal Nickel (Ni. The off-resonance, direct ME coupling in the prepared Ni/BZT–BCT/Ni laminate composites was found to be strongly dependent on the crystallographic orientation of the BZT–BCT single crystals, as well as the applied magnetic field direction. Larger and anisotropic ME voltage coefficients were observed for the composite made using the (011 oriented BZT–BCT single crystal. The optimized ME coupling of 1 V/cm Oe was obtained from the Ni/(011 BZT–BCT single crystal/Ni composite, in the d32 mode of the single crystal, when a magnetic field was applied along its [100] direction. This performance is similar to that reported for the Ni/Pb(Mg1/3Nb2/3O3-Pb(Zr,TiO3 (PMN–PZT single crystal/Ni, but larger than that obtained from the Ni/Pb(Zr,TiO3 ceramic/Ni composites. The results of this work demonstrate that the use of lead-free piezoelectric single crystals with special orientations permits the selection of desired anisotropic properties, enabling the realization of customized ME effects in composites.

  14. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  15. On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys

    Czech Academy of Sciences Publication Activity Database

    Jácome, L. A.; Nörtershäuser, P.; Somsen, C.; Dlouhý, Antonín; Eggeler, G.

    2014-01-01

    Roč. 69, MAY (2014), s. 246-264 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Ni-base single crystal superalloys * Creep * Anisotropy * Dislocation * Rafting Subject RIV: JG - Metallurgy Impact factor: 4.465, year: 2014

  16. Rubber bulge forming of single-stage bellows of TiNi shape memory alloy using the displacement control method

    International Nuclear Information System (INIS)

    Senba, Hiromasa; Yamaji, Toru; Okita, Keisuke; Okabe, Nagatoshi; Yamauchi, Kiyoshi; Matsumoto, Kenya

    2005-01-01

    This paper deals with the bulge process for forming the single-stage bellows of TiNi shape memory alloys, which is proposed as a new type of seismic applications, and especially considering the material's special behavior. Thin walled tubes with 20% cold work, whose composition is Ti-51.0 at% Ni, were prepared. First they are appropriately heat-treated and then the rubber bulge process is introduced for the tubes under the condition of austenite phase at room temperature. Displacement control method is adapted to the process. Theoretical prediction of change in outer diameter of the tube on compression is derived, and modified taking into account the progress of the stress-induced martensite transformation on tube's surface by observing the detachment of the oxide layer of the surface. Finally theoretical relationship between compressive displacement and the outer diameter of the tube, which is the most important for the design of the bellows shape, is cleared. (author)

  17. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  18. Autographa californica multiple nucleopolyhedrovirus GP64 protein: Analysis of domain I and V amino acid interactions and membrane fusion activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianlong [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Blissard, Gary W. [Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, United State (United States); Liu, Tong-Xian [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China); Li, Zhaofei, E-mail: zhaofeili73@outlook.com [State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A& F University, Yangling, Shaanxi 712100 (China)

    2016-01-15

    The Autographa californica multiple nucleopolyhedrovirus GP64 is a class III viral fusion protein. Although the post-fusion structure of GP64 has been solved, its pre-fusion structure and the detailed mechanism of conformational change are unknown. In GP64, domain V is predicted to interact with two domain I segments that flank fusion loop 2. To evaluate the significance of the amino acids involved in these interactions, we examined 24 amino acid positions that represent interacting and conserved residues within domains I and V. In several cases, substitution of a single amino acid involved in a predicted interaction disrupted membrane fusion activity, but no single amino acid pair appears to be absolutely required. We identified 4 critical residues in domain V (G438, W439, T452, and T456) that are important for membrane fusion, and two residues (G438 and W439) that appear to be important for formation or stability of the pre-fusion conformation of GP64. - Highlights: • The baculovirus envelope glycoprotein GP64 is a class III viral fusion protein. • The detailed mechanism of conformational change of GP64 is unknown. • We analyzed 24 positions that might stabilize the post-fusion structure of GP64. • We identified 4 residues in domain V that were critical for membrane fusion. • Two residues are critical for formation of the pre-fusion conformation of GP64.

  19. Energy relaxation between low lying tunnel split spin-states of the single molecule magnet Ni4

    Science.gov (United States)

    de Loubens, G.; Chaves-O'Flynn, G. D.; Kent, A. D.; Ramsey, C.; Del Barco, E.; Beedle, C.; Hendrickson, D. N.

    2007-03-01

    We have developed integrated magnetic sensors to study quantum tunneling of magnetization (QTM) in single molecule magnet (SMMs) single crystals. These sensors incorporate a microstrip resonator (30 GHz) and a micro-Hall effect magnetometer. They have been used to investigate the relaxation rates between the 2 lowest lying tunnel split spin-states of the SMM Ni4 (S=4). EPR spectroscopy at 30 GHz and 0.4 K and concurrent magnetization measurements of several Ni4 single crystals are presented. EPR enables measurement of the energy splitting between the 2 lowest lying superposition states as a function of the longitudinal and transverse fields. The energy relaxation rate is determined in two ways. First, in cw microwave experiments the change in spin-population together with the microwave absorption directly gives the relaxation time from energy conservation in steady-state. Second, direct time-resolved measurements of the magnetization with pulsed microwave radiation have been performed. The relaxation time is found to vary by several orders of magnitude in different crystals, from a few seconds down to smaller than 100 μs. We discuss this and the form of the relaxation found for different crystals and pulse conditions.

  20. Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys.

    Science.gov (United States)

    Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul

    2011-02-25

    We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society

  1. Ion backscattering, channeling and nuclear reaction analysis study of passive films formed on FeCrNi and FeCrNiMo (100) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C; Schmaus, D [Paris-7 Univ., 75 (France). Groupe de Physique des Solides de l' ENS; Elbiache, A; Marcus, P [Ecole Nationale Superieure de Chimie, 75 - Paris (France)

    1990-01-01

    The compositions of passive films formed on Fe-17Fr-13Ni (at. %) and Fe-18.5Cr-14Ni-1.5Mo (100) single crystals have been determined and the structure of the alloy under the film has been investigated. The alloys were passivated in 0.05M H{sub 2}SO{sub 4} at 250 mV/SHE for 30 min. The oxygen content was measured by nuclear microanalysis using the {sup 16}O(d,p) {sup 17}O* reaction. The oxygen content in the passive film is similar for the two alloys and equal to (12{plus minus}2) 10{sup 15} O/cm{sup 2}. The cationic compositions of the passive films have been determined by {sup 4}He channeling at two incident beam energies: 0.8 and 2.0 MeV. For the two alloys studied, a total cation content of (5{plus minus}2)10{sup 15} at/cm{sup 2} is found in the passive films. The corresponding thickness is about 12 A. There is an excess of oxygen, which can be attributed to the presence of hydroxyls and sulfate. A strong chromium enrichment is found in the passive film formed on both alloys: chromium represents about 50% of the cations. There is no evidence of molybdenum enrichment in the passive film formed on the Mo-alloyed stainless steel. The comparison of the results obtained at the two different incident beam energies (0.8MeV and 2MeV) reveals the existence of defects at the alloy/passive film interface. (author).

  2. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17.

    Science.gov (United States)

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-12-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.

  3. Keefektifan Bahan Pelindung Alami Dalam Mempertahankan Infektivitas Spodoptera Exigua Nucleopolyhedrovirus (Senpv)' [the Effectiveness of Natural Protectant to Maintain the Spodoptera Exigua Nucleopolyhedrovirus (Senpv) Infectivity

    OpenAIRE

    Samsudin, Samsudin; Santoso, Teguh; Rauf, Aunu; Kusumah, Yayi Munara

    2011-01-01

    Spodoptera exigua nucleopolyhedrovirus (SeNPV) is a viral pathogen of onion caterpillar S. exigua with high pathogenicity. One of the major constraints to the use of SeNPV for biocontrol of onion caterpillar is its sensitivity to ultraviolet (UV) degradation. The purposes of this research were to determine the effect of sunlight exposure on the virulence of SeNPV and to find out the effective natural UV protectant to maintain the SeNPV virulence. The results showed that the sunlight radiation...

  4. Magnetocaloric effect in Ni{sub 2}MnGa single crystal in the vicinity of the martensitic phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Radelytskyi, I., E-mail: radel@ifpan.edu.pl [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Szymczak, R. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Gawryluk, D.J. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Berkowski, M.; Fink-Finowicki, J. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul Ratuszowa 11, 03-450 Warsaw (Poland); Dyakonov, V.; Szymczak, H. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2017-05-15

    The magnetocaloric effect in the vicinity of the martensitic transformation for a single crystalline alloy with a composition close to the stoichiometric Ni{sub 2}MnGa has been determined indirectly by M(T,H) magnetization measurements. It has an inverse character. The magnetocaloric parameters, i.e., the magnetic entropy change, refrigeration capacity and various hysteretic effects have been calculated from the M(T,H) dependences. Besides the martensitic transition a weak entirely separated intermartensitic transition was observed. These two successive magneto-structural transformations give contributions to the observed magnetocaloric effect. Unusual dependence of entropy change as a function of magnetic field has been explained as arising because of two different mechanisms. Additionally, to confirm that studied martensitic transformation is a first order phase transition electrical resistivity and thermoelectric power measurements have been performed. - Highlights: • Inverse magnetocaloric effect in Ni{sub 50.4}Mn{sub 24.9}Ga{sub 24.7} single crystal was measured. • The martensitic and separated intermartensitic transition were investigated. • Anisotropy of measured magnetocaloric effect was discussed.

  5. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  6. Facile synthesis of single-crystal mesoporous CoNiO2 nanosheets assembled flowers as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanguo; Zhao, Yanyan; Yu, Yanlong; Ahmad, Mashkoor; Sun, Hongyu

    2014-01-01

    Highlights: • Mesoporous CoNiO 2 microflowers have been synthesized. • Li-ion batteries performance of CoNiO 2 has been investigated. • CoNiO 2 structure delivers high capacity, good cycling stability and high rate capability. • The electrochemical performance is attributed to the mesoporous nature and the 3D structure. • CoNiO 2 can be considered to be an attractive candidate as an electrode material for LIBs. - Abstract: Mesoporous CoNiO 2 microflowers assembled with single-crystal nanosheets were successfully synthesized by a hydrothermal method and subsequent annealing process and their lithium storage capacity were investigated. The structural and compositional analysis of the mesoporous CoNiO 2 microflowers has been studied by X-ray diffraction, field emission scanning electron microscopy and high-resolution transmission electron microscopy. The Bruauer–Emmett–Teller specific surface area of CoNiO 2 microflowers has been calculated by the nitrogen isotherm curve and pore size distribution has been determined by the Barret–Joyner–Halenda method. It has been found that the as-prepared CoNiO 2 electrodes delivered satisfied capacity, good cycling stability and rate capability. The improved electrochemical performance is attributed to the mesoporous nature and the 3D assembled structure. Therefore, such a structure can be considered to be an attractive candidate as an electrode material for lithium-ion batteries

  7. Modeling the anomalous flow behavior of Ni3Al intermetallic single crystals

    International Nuclear Information System (INIS)

    Choi, Y.S.; Parthasarathy, T.A.; Dimiduk, D.M.; Uchic, M.D.

    2004-01-01

    In this study we present a new constitutive model for Ni3Al and Ni3(Al, X) alloys that was developed to represent many of the unusual plastic flow behavior found in L12 intermetallics while maintaining consistency with the experimentally-observed evolution of dislocation substructure. In particular, we sought to develop a model that would not only predict the anomalous increase of the yield strength with increasing temperature, but would also capture other important flow characteristics such as extremely high work-hardening rates that change anomalously with temperature, and a flow stress that is partially to fully reversible with temperature. For this model, we have treated work-hardening as arising from two different sources. Thermally-reversible work hardening is accounted for using the description of screw dislocation motion proposed by Caillard, which involves exhaustion of mobile dislocations by cross-slip locking of the dislocation core and athermal unlocking. Thermally-irreversible work hardening is accounted for using an approach consistent with the theoretical framework proposed by Ezz and Hirsch, which involves both the multiplication of Frank-Reed sources and the interaction of edge-dislocation segments with cross-slip locking events and the dislocation forest. Both work-hardening contributions were incorporated into the rate formulation for thermally-activated plastic flow proposed by Kocks, Argon and Ashby. We will show simulation results for the flow response of Ni3(Al, X) crystals over a wide range of temperatures in the anomalous flow regime, and we will compare these findings with experimental data

  8. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus.

    Science.gov (United States)

    Zhu, Shimao; Wang, Wei; Wang, Yan; Yuan, Meijin; Yang, Kai

    2013-10-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.

  9. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides

    Directory of Open Access Journals (Sweden)

    Bruce D. Hammock

    2007-06-01

    Full Text Available The entomopathogenic Autographa californica (Speyer nucleopolyhedrovirus (AcMNPV has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 x 1012 PIBs/feddan, feddan = 4,200 m2 and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field, AcMNPV, and SlNPV using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 μg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%, AcAaIT-field (1.2%, and SlNPV (4.0%. Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal

  10. Genomic sequencing and analyses of HearMNPV—a new Multinucleocapsid nucleopolyhedrovirus isolated from Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Tang Ping

    2012-08-01

    Full Text Available Abstract Background HearMNPV, a nucleopolyhedrovirus (NPV, which infects the cotton bollworm, Helicoverpa armigera, comprises multiple rod-shaped nucleocapsids in virion(as detected by electron microscopy. HearMNPV shows a different host range compared with H. armigera single-nucleocapsid NPV (HearSNPV. To better understand HearMNPV, the HearMNPV genome was sequenced and analyzed. Methods The morphology of HearMNPV was observed by electron microscope. The qPCR was used to determine the replication kinetics of HearMNPV infectious for H. armigera in vivo. A random genomic library of HearMNPV was constructed according to the “partial filling-in” method, the sequence and organization of the HearMNPV genome was analyzed and compared with sequence data from other baculoviruses. Results Real time qPCR showed that HearMNPV DNA replication included a decreasing phase, latent phase, exponential phase, and a stationary phase during infection of H. armigera. The HearMNPV genome consists of 154,196 base pairs, with a G + C content of 40.07%. 162 putative ORFs were detected in the HearMNPV genome, which represented 90.16% of the genome. The remaining 9.84% constitute four homologous regions and other non-coding regions. The gene content and gene arrangement in HearMNPV were most similar to those of Mamestra configurata NPV-B (MacoNPV-B, but was different to HearSNPV. Comparison of the genome of HearMNPV and MacoNPV-B suggested that HearMNPV has a deletion of a 5.4-kb fragment containing five ORFs. In addition, HearMNPV orf66, bro genes, and hrs are different to the corresponding parts of the MacoNPV-B genome. Conclusions HearMNPV can replicate in vivo in H. armigera and in vitro, and is a new NPV isolate distinguished from HearSNPV. HearMNPV is most closely related to MacoNPV-B, but has a distinct genomic structure, content, and organization.

  11. Cobalt and magnesium impurity diffusion in Ni1-δO single crystals

    International Nuclear Information System (INIS)

    Boussetta, H.; Tabet, N.; Monty, C.

    1992-01-01

    Co and Mg diffusion coefficients have been measured in NiO as a function of temperature at constant oxygen partial pressures p O2 =0.21 atm and 10 -4 atm and as a function of psub(O 2 ) at T=1 245degC. The results are well represented by the relations: D Mg (cm 2 s -1 )≅1.45x10 -2 p O2 (atm) 0.172 exp[-2.58 (eV)/kt]; D Co (cm 2 s -1 )≅5.15x10 -2 p O2 (atm) 0.175 exp[-2.54 (eV)/kT]. Analyzing these results by comparison to nickel self-diffusion and to data on vacancy/impurity binding enthalpies, on correlation factors and on migration enthalpies, leads to a detailed analysis of the impurity/vancancy interactions. It shows that cobalt and magnesium interact rather tightly with V Ni '' during the exchange jumps and practically no when they are in stable positions. (orig.)

  12. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    Science.gov (United States)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  13. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    Science.gov (United States)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of and single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the and samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a mixed brittle-ductile character

  14. Single-neutron orbits near {sup 78}Ni: Spectroscopy of the N=49 isotope {sup 79}Zn

    Energy Technology Data Exchange (ETDEWEB)

    Orlandi, R., E-mail: orlandi.riccardo@jaea.go.jp [Instituto de Estructura de la Materia, IEM-CSIC, Madrid, E-28006 (Spain); KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Heverlee (Belgium); School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (SUPA) (United Kingdom); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan); Mücher, D. [Physik Department E12, Technische Universität München, D-85748 Garching (Germany); Raabe, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Heverlee (Belgium); Jungclaus, A. [Instituto de Estructura de la Materia, IEM-CSIC, Madrid, E-28006 (Spain); Pain, S.D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bildstein, V. [Physik Department E12, Technische Universität München, D-85748 Garching (Germany); Chapman, R. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (SUPA) (United Kingdom); Angelis, G. de [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, I-35020 (Italy); Johansen, J.G. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus (Denmark); Van Duppen, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Heverlee (Belgium); Andreyev, A.N. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (SUPA) (United Kingdom); Department of Physics, University of York, Heslington, YO10 5DD (United Kingdom); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan); and others

    2015-01-05

    Single-neutron states in the Z=30, N=49 isotope {sup 79}Zn have been populated using the {sup 78}Zn(d, p){sup 79}Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by {sup 79}Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ-ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2{sup +} configuration was assigned to a state at 983 keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for {sup 78}Ni. These data constitute an important step towards the understanding of the magicity of {sup 78}Ni and of the structure of nuclei in the region.

  15. Ultrasonic characterization of Cu-Al-Ni single crystals lattice stability in the vicinity of the phase transition.

    Science.gov (United States)

    Landa, Michal; Novák, Václav; Sedlák, Petr; Sittner, Petr

    2004-04-01

    Measurements of elastic constants of the austenite phase when approaching the phase transformation either upon cooling or stressing is of the crucial interest for the shape memory alloy field. Acoustic properties (wave velocity and also attenuation changes) of the Cu-Al-Ni single crystal were investigated in situ during stress-induced martensitic transformation at constant (room) temperature. The parent austenite cubic lattice of the Cu-Al-Ni exhibits very high elastic anisotropy (anisotropy factor A approximately 12). The measurements were made using nine combinations of (i) applied uniaxial compression in a given crystal direction, (ii) the wave propagation and (iii) polarization vectors. The chosen configurations are sufficient for evaluation of all independent third order elastic constants (TOEC). The longitudinal modes were also measured by the immersion technique, using the transducer pair in a water tank installed on the testing machine. The device works as "a ultrasonic extensometer" measuring a transverse strain of the specimen. The dependencies of both natural and initial wave velocities on the applied stress may be evaluated. Three elastic constants of the stress-induced martensite were determined. The elastic properties were found to vary with the increasing stress above the Ms transformation temperature, which is interpreted as a precursor for the martensitic transformation. The onset of the transformation was additionally identified from the acoustic emission measurement.

  16. Evolution of single-particle structure and beta-decay near 78Ni

    Directory of Open Access Journals (Sweden)

    Borzov I. N.

    2012-12-01

    Full Text Available The extended self-consistent beta-decay model has been applied for bet-decay rates and delayed neutron emission probabilities of spherical neutron-rich isotopes near the r-process paths. Unlike a popular global FRDM+RPA model, in our fully microscopic approach, the Gamow-Teller and first-forbidden decays are treated on the same footing. The model has been augmented by blocking of the odd particle in order to account for important ground-state spin-parity inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni. Finally, a newly developed form of density functional DF3a has been employed which gives a better spin-orbit splitting due to the modified tensor components of the density functional.

  17. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    Science.gov (United States)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  18. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    International Nuclear Information System (INIS)

    Locci, I.E.; Noebe, R.D.; Bowman, R.R.; Miner, R.V.; Nathal, M.V.

    1991-01-01

    In this paper the possibility of producing NiAl reinforced with the G-phase (Ni 16 X 6 Si 7 ), where X is Zr or Hf, has been investigated. The microstructures of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and non-uniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles (≤10 nm) in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures ≥1000 K compared to binary NiAl single crystals

  19. Thermal and pseudoelastic cycling in Cu-14.1Al-4.2Ni (wt%) single crystals

    International Nuclear Information System (INIS)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.

    2005-01-01

    Thermally and stress induced martensitic transformations between β and a mixture of martensitic structures, β' and γ', were studied in Cu-14.1Al-4.2Ni (wt%) single crystals. In this way information on the relative stability between β' and γ' martensites, compared to the β phase, was obtained. The measurement of electrical resistance as a function of temperature was used to follow the evolution of thermally induced transitions. The stress induced transformations were analyzed in the small temperature range at which the pseudoelastic behavior between β and a mixture of both martensites plays the main role. A clear inhibition of the γ' martensite is detected as the number of cycles increases, no matter which thermodynamic coordinate is varied to induce the phase transition, i.e., temperature or stress. An evaluation of the magnitude of the relative stabilization of the β' martensite compared with γ' was obtained by a suitably designed experiment

  20. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations

    Institute of Scientific and Technical Information of China (English)

    Fahamsyah H.Latief; Koji Kakehi; El-Sayed M.Sherif

    2014-01-01

    An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at 1100 1C. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.

  1. Orientation dependence of shape memory and super elastic effects in Ti-30% Ni-20% Cu single crystals

    International Nuclear Information System (INIS)

    Chumlyakov, Yu.I.; Kireeva, I.V.

    1999-01-01

    Single crystals of Ti-30% Ni-20% Cu (at.%) alloy experiencing B2-B19 martensitic transformation are used to study the dependence of deforming stress σ cr , shape memory effect and super elasticity on test temperature, crystal orientation and the sign of tension/compression stresses. It is shown that experimental values of shape memory effect and super elasticity as well as their dependences on orientation and loading regime are described within the frameworks of the model taking into account lattice distortions only. The orientation dependence and axial stress asymmetry in the temperature range of stress-induced martensite formation are determined by the dependence of lattice distortion during B2-B19 martensitic transformations on the orientation and the sign of applied stresses [ru

  2. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

    2016-01-01

    The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

  3. First-principle study of SO{sub 2} molecule adsorption on Ni-doped vacancy-defected single-walled (8,0) carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Lu, Xiao-Min; Li, Guo-Qing; Ma, Juan-Juan; Zeng, Peng-Yu; Chen, Jun-Fang; Pan, Zhong-Liang; He, Qing-Yu

    2016-02-28

    Graphical abstract: These two figures reflect the orbital bonding between SO{sub 2} molecule and the SV-2-CNT and Ni-SV-2-CNT. Which indicated the feasibility of making the sensors for SO{sub 2} molecule detecting with introducing vacancies, Ni atoms or combination of them. - Highlights: • The paper reports the effects of vacancy and Ni doping vacancy on CNT adsorbing SO{sub 2}. • Vacancies and Ni doping vacancies both can improve the sensitivity of CNT to SO{sub 2}. • Vacancies and Ni-doped vacancies CNTs are candidate material for SO{sub 2} detecting. - Abstract: To explore the possible way of detecting the poisonous gas SO{sub 2}, we have investigated the interactions between SO{sub 2} molecule and modified (8,0) single-walled carbon nanotubes by using the density functional theory (DFT) method. The adsorption energies, interaction distances, changes of geometric and electronic structures were all analyzed to investigate the sensitivity of variety of models of CNTs with Ni doping, vacancies, and a combination of them toward SO{sub 2} molecule. From our investigations, we found that SO{sub 2} molecule was more likely to be absorbed on vacancy-defected CNTs with relatively higher adsorption energy and shorter binding distance compared with the perfect CNTs. In addition, after doping Ni atom on the vacancies, the modified CNTs which were not very much sensitivity to SO{sub 2} molecule could become much sensitivity to it. In other words, the number of sensitive adsorption sites increased. The partial density of states (PDOS) and the electron concentration of the adsorption systems suggested the strong electrons interaction between SO{sub 2} molecule and defected or Ni-doped defected CNTs. Therefore the vacancies and Ni-doped vacancies CNTs had the potential capacities to make the sensors for SO{sub 2} molecule detecting.

  4. Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Hashimoto, K.; Kato, M.; Tokuda, M.

    2003-01-01

    Roč. 48, - (2003), s. 1153-1159 ISSN 1359-6462 R&D Projects: GA AV ČR IAA1048107 Institutional research plan: CEZ:AV0Z1010914 Keywords : shape memory alloys(SMAs) * martensitic phase transformation * single crystal tube * tension test * torsion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.633, year: 2003

  5. New method for selection and characterization of single-source events in Ni+Ni collisions at 32 A.MeV; Nouvelle methode de selection et caracterisation des evenements monosource dans les collisions Ni+Ni a 32 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maskay-Wallez, Anne-Marie [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1999-07-13

    The study of heavy ion collisions, with the help of such efficient multi-detectors as INDRA, has shown the persistence of reactions leading to single-source events, up to bombarding energies higher than the Fermi one. These events could help characterizing an expected phase transition in nuclear matter. Whatever interesting they may be, the single-source events correspond to a small part of the total cross section, which makes them difficult to isolate and therefore to analyze. That is why different selection means have been tested - thanks to the 'Simon' event generator - on a simulated Ni + Ni at 32 A{center_dot}MeV sample, before any application to the INDRA experimental data. As the known methods based on global variables did not prove effective, a set of new 4-dimensional quantities has been built, whose main advantage lies in a better description of physical events. From a Discriminant Analysis performed on 625 of these new 'moments' proceeds a highly discriminant variable, called D{sub 625}. The experimental cross section associated with D{sub 625}-selected single-source events amounts to 170 mb at 32 A{center_dot}MeV. Such quasi-fusion events are shown to disappear at about 60 A{center_dot}MeV. As regards the deexcitation mode of the 32 A{center_dot}MeV Ni + Ni single-source events, an extensive experimental study and comparisons of the data with two reference models seem to confirm the hypothesis of a transition between fusion-evaporation and simultaneous multifragmentation mechanisms. (author)

  6. New method for selection and characterization of single-source events in Ni+Ni collisions at 32 A.MeV; Nouvelle methode de selection et caracterisation des evenements monosource dans les collisions Ni+Ni a 32 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maskay-Wallez, Anne-Marie [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1999-07-13

    The study of heavy ion collisions, with the help of such efficient multi-detectors as INDRA, has shown the persistence of reactions leading to single-source events, up to bombarding energies higher than the Fermi one. These events could help characterizing an expected phase transition in nuclear matter. Whatever interesting they may be, the single-source events correspond to a small part of the total cross section, which makes them difficult to isolate and therefore to analyze. That is why different selection means have been tested - thanks to the 'Simon' event generator - on a simulated Ni + Ni at 32 A{center_dot}MeV sample, before any application to the INDRA experimental data. As the known methods based on global variables did not prove effective, a set of new 4-dimensional quantities has been built, whose main advantage lies in a better description of physical events. From a Discriminant Analysis performed on 625 of these new 'moments' proceeds a highly discriminant variable, called D{sub 625}. The experimental cross section associated with D{sub 625}-selected single-source events amounts to 170 mb at 32 A{center_dot}MeV. Such quasi-fusion events are shown to disappear at about 60 A{center_dot}MeV. As regards the deexcitation mode of the 32 A{center_dot}MeV Ni + Ni single-source events, an extensive experimental study and comparisons of the data with two reference models seem to confirm the hypothesis of a transition between fusion-evaporation and simultaneous multifragmentation mechanisms. (author)

  7. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000 {sup o}C in air

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T., E-mail: liuchunting76@yahoo.com.c [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Ma, J. [College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061 (China); Sun, X.F. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2010-02-18

    The oxidation behavior of a single-crystal Ni-base superalloy DD32 was studied in air at 900 and 1000 {sup o}C and analyzed by X-ray diffraction (XRD), scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy (SEM/EDS). At 900 and 1000 {sup o}C, two oxidation steps appear in the oxidation kinetics. The first one is controlled by NiO growth and the second by Al{sub 2}O{sub 3} growth until a continuous Al{sub 2}O{sub 3} layer formed under the previously grown NiO layer after a critical time. The variations in the chemical composition due to segregations, which resulted from the solidification process, led to the formation of different kinds of oxide scale on the dendritic and interdendritic area during oxidation between 900 and 1000 {sup o}C. The scales formed between 900 and 1000 {sup o}C were complicated, and consisted of three layers: an outer columnar NiO layer with a small amount of CoO, an intermediate layer mainly composed of W{sub 20}O{sub 58}, CrTaO{sub 4}, a small amount of spinels NiCr{sub 2}O{sub 4}, NiAl{sub 2}O{sub 4} and CoAl{sub 2}O{sub 4}, an inner continuous layer of {alpha}-Al{sub 2}O{sub 3}.

  8. Computer Aided Design of Ni-Based Single Crystal Superalloy for Industrial Gas Turbine Blades

    Science.gov (United States)

    Wei, Xianping; Gong, Xiufang; Yang, Gongxian; Wang, Haiwei; Li, Haisong; Chen, Xueda; Gao, Zhenhuan; Xu, Yongfeng; Yang, Ming

    The influence of molybdenum, tungsten and cobalt on stress-rupture properties of single crystal superalloy PWA1483 has been investigated using the simulated calculation of JMatPro software which ha s been widely used to develop single crystal superalloy, and the effect of alloying element on the stability of strengthening phase has been revealed by using the Thermo-Calc software. Those properties calculation results showed that the increasing of alloy content could facilitate the precipitation of TCP phases and increase the lattice misfit between γ and γ' phase, and the effect of molybdenum, tantalum was the strongest and that of cobalt was the weakest. Then the chemical composition was optimized, and the selected compositions showed excellent microstructure stability and stress-rupture properties by the confirmation of d-electrons concept and software calculation.

  9. TEM microstructural analysis of creep deformed CM186LC single crystal Ni-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Dubiel, B.; Czyrska-Filemonowicz, A. [AGH Univ. of Science and Technology, Krakow (Poland); Blackler, M. [Howmet Ltd., Exeter (United Kingdom); Barnard, P.M. [ALSTOM Power Turbo-Systems Technology Centre, Rugby (United Kingdom)

    2006-07-01

    The nickel based single crystal superalloy CM186LC was extensively investigated as a potential low cost material for industrial gas turbine vanes within the COST522 programme. The alloy exhibits inhomogeneous structure consisting of dendritic regions and eutectic colonies. In the present work attention is focused on microstructural changes observed in single crystal CM186LC following creep deformation at 750 C. Creep tests were conducted at 750 C with an applied stress of 560 or 675 MPa for up to 11440 hours. The microstructure o ruptured and terminated specimens was investigated by scanning (SEM) and transmission (TEM) electron microscopy. TEM analysis revealed the microstructural changes in the CM186LC at primary and secondary creep as well as after creep rupture. (orig.)

  10. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Melilli, G.; Madon, B.; Wegrowe, J.-E., E-mail: jean-eric.wegrowe@polytechnique.edu; Clochard, M.-C., E-mail: clochard@cea.fr

    2015-12-15

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α{sub irrad}) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  11. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  12. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    International Nuclear Information System (INIS)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-01-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α irrad ) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  13. Martensitic transformations of Cu-Al-Ni single crystals in tension/compresion

    Czech Academy of Sciences Publication Activity Database

    Novák, Václav; Šittner, Petr; VanHumbeeck, J.

    2001-01-01

    Roč. 11, - (2001), s. Pr8-191 - Pr8-196 ISSN 1155-4339 R&D Projects: GA AV ČR IAA1010909; GA MŠk ME 186 Institutional research plan: CEZ:AV0Z1010914 Keywords : shape memory alloy * single crystal modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.401, year: 2001

  14. Single crystals of the anisotropic Kagome staircase compounds Ni3V2O8 and Co3V2O8

    OpenAIRE

    Balakrishnan, G.; Petrenko, O. A.; Lees, M. R.; Paul, D. McK.

    2004-01-01

    Compounds with a Kagome type lattice are known to exhibit magnetic frustration. Large single crystals of two compounds Ni3V2O8 and Co3V2O8, which are variants of a Kagome net lattice, have been grown successfully by the floating zone technique using an optical image furnace. The single crystals are of high quality and exhibit intriguing magnetic properties.

  15. Effect of two-step aging on spatial distribution of γ-phase particles and mechanical properties of Ni-14at.% Al single crystals

    International Nuclear Information System (INIS)

    Tyapkin, Yu.D.; Travina, N.T.; Ugarova, E.V.

    1977-01-01

    Electron microscope images were processed by statistical methods to investigate the space distribution of particles of the γ'-phase (formation of ''quasiperiodic micro-lattices'') after various conditions of single- and double-stage aging of the Ni-14 at.% Al alloy. Mechanical properties in uniaxial tension of single crystals were studied. Parameters of the space distribution of particles have been correlated with the mechanical properties

  16. Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV

    NARCIS (Netherlands)

    Jakubowska, A.K.; Peters, S.A.; Ziemnicka, J.; Vlak, J.M.; Oers, van M.M.

    2006-01-01

    The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147 544 bp and has a G+C content of 45¿7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins

  17. Spodoptera exigua nucleopolyhedrovirus is not infectious for Agrotis segetum larvae per os, but only after intrahemocoelic injection

    NARCIS (Netherlands)

    Jakubowska, A.K.; Ince, I.A.; Herrero, S.; Vlak, J.M.; Oers, van M.M.

    2009-01-01

    Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Agrotis segetum NPV are close relatives, but distinct baculovirus species. Their genomic organization is remarkably similar. The cross infectivity of these two viruses for S. exigua and A. segetum larvae has been analyzed. AgseNPV was able

  18. Betabaculovirus F proteins showed different efficiencies when rescuing the infectivity of gp64-null Autographa californica nucleopolyhedrovirus

    NARCIS (Netherlands)

    Yin, F.; Wang, M.; Ying, T.; Deng, F.; Vlak, J.M.; Hu, Z.; Wang, H.

    2013-01-01

    The Agrotis segetum granulovirus (AgseGV) F protein was previously identified as the first betabaculovirus F protein with functional homology to Autographa californica nucleopolyhedrovirus (AcMNPV) GP64. In the current study, F proteins from Xestia c-nigrum granulovirus (XecnGV), Cydia pomonella

  19. A comparison of the adaptations of strains of Lymantria dispar multiple nucleopolyhedrovirus to hosts from spatially isolated populations

    Science.gov (United States)

    V.V. Martemyanov; J.D. Podgwaite; I.A. Belousova; S.V. Pavlushin; J.M. Slavicek; O.A. Baturina; M.R. Kabilov; A.V. Ilyinykh

    2017-01-01

    The adaptation of pathogens to either their hosts or to environmental conditions is the focus of many current ecological studies. In this work we compared the ability of six spatially-distant Lymantria dispar (gypsy moth) multiple nucleopolyhedrovirus (LdMNPV) strains (three from eastern North America and three from central Asia) to induce acute...

  20. A study of the phase transition and magnetocaloric effect in multiferroic La{sub 2}MnNiO{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: mohamed.balli@usherbrooke.ca; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, Quebec J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, Quebec J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8 (Canada); Gospodinov, M. M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2014-05-07

    Magnetic and magnetocaloric properties of single crystal double perovskite La{sub 2}MnNiO{sub 6} have been investigated in details. Its ordered phase with a high Curie temperature (T{sub C} = 280 K) exhibits a significant refrigerant capacity around room temperature. A model based on the mean field theory approximation has been used in order to quantify the magnetic and magnetocaloric properties in the ordered La{sub 2}MnNiO{sub 6}. The magnetization and entropy changes were satisfactorily simulated as a function of temperature and magnetic field. On the other hand, the presence of cationic disorder in La{sub 2}MnNiO{sub 6} phases allows to shift the Curie point to low temperature without a significant change in the magnetocaloric performance.

  1. Bombyx mori nucleopolyhedrovirus ORF79 is a per os infectivity factor associated with the PIF complex.

    Science.gov (United States)

    Dong, Zhan-Qi; Zhang, Jun; Chen, Xue-Mei; He, Qian; Cao, Ming-Ya; Wang, La; Li, Hai-Qing; Xiao, Wen-Fu; Pan, Cai-Xia; Lu, Cheng; Pan, Min-Hui

    2014-05-12

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF79 (Bm79) encodes an occlusion-derived virus (ODV)-specific envelope protein, which is a homologue of the per os infectivity factor 4 (PIF4) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To investigate the role of ORF79 in the BmNPV life cycle, a Bm79 knockout virus (vBm(Bm79KO)) was constructed through homologous recombination in Escherichia coli. Viral DNA replication, budded virus (BV) production and polyhedra formation were unaffected by the absence of BM79. However, results of the larval bioassay demonstrated that the Bm79 deletion resulted in a complete loss of per os infection. Immunofluorescence analysis showed that BM79 localized at the innernuclear membrane of infected cells through its N-terminal sorting motif (SM). Further bimolecular fluorescence protein complementation and co-immunoprecipitation assays demonstrated the interaction of BM79 with PIF1, PIF2, PIF3 and ODV-E66. Thus, BM79 plays an important role in per os infection and is associated with the viral PIF complex of BmNPV. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Bombyx mori nucleopolyhedrovirus Bm111 affects virulence but not virus replication.

    Science.gov (United States)

    Han, Yingying; Xia, Hengchuan; Tang, Qi; Lü, Peng; Ma, Shangshang; Yang, Yanhua; Shao, Dandan; Ma, Quanbing; Chen, Keping

    2014-07-01

    The Bm111 of Bombyx mori nucleopolyhedrovirus (BmNPV) encodes a small polypeptide (70 amino acids) of which the function remains unknown. To characterize its function, multiple sequence alignments were performed, and the predicted protein was found to share amazingly high (98 %) sequence identity with the Bombyx mandarina nucleopolyhedrovirus ORF110 (Boma110) but negligible with proteins of other insect viruses, indicating the close relationship between these two NPVs with silkworm larvae. The transcription of Bm111 was detected as early as 3 hpi in BmNPV-infected BmN cells, suggesting it is an early gene. To investigate the role of Bm111 in baculovirus life cycle, a Bm111-knockout virus was constructed by bacmid recombination in Escherichia coli. The results showed that knockout of the Bm111 did not affect the replication of virus DNA, but significantly extended the death time of infected silkworm larvae compared to the wild-type or rescued viruses. We also successfully expressed the recombinant protein Bm111 in E. coli to provide sufficient material for subsequent studies. Taken together, our data indicate that Bm111 only affects the virulence of BmNPV, but not its replication.

  3. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  4. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Science.gov (United States)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  5. Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473 K

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, V.E.A., E-mail: aaraujo@citedef.gob.ar [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Gastien, R. [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Zelaya, E. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Beiroa, J.I.; Corro, I. [Departamento de Investigaciones en Sólidos, CITEDEF, UNIDEF (MINDEF-CONICET), J.B. de La Salle 4397, (1603) Villa Martelli, Buenos Aires (Argentina); Sade, M. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina); Lovey, F.C. [División Física de Metales, Centro Atómico Bariloche–CNEA, S.C. Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo (Argentina)

    2015-08-25

    Highlights: • Thermally induced martensitic transformations are studied after ageing at 473 K. • β ↔ β′ stress induced martensitic transformations were analysed after ageing at 473 K. • Pseudoelastic cycling was studied after ageing at 473 K. • Microstructure before and after ageing at 473 K was analysed using TEM. • Effect of γ precipitates and ordering processes is discussed. - Abstract: Isothermal treatments at 473 K were performed in CuAlNi single crystals to study their effects on the main properties of this shape memory material. Both the stress and thermally induced martensitic transformations were monitored after these ageing treatments. An increase of the critical transformation temperature was detected and the type of induced martensite changed from γ′ into β′ after a long enough ageing time. Pseudoelastic cycling was studied after thermal ageing; mechanical behaviour evolved on cycling and a repetitive behaviour was obtained after a small number of cycles. Changes in microstructure were analysed in the β phase by transmission electron microscopy which allowed observing the morphology and distribution of γ precipitates. The changes obtained in shape memory properties were discussed considering the atomic ordering evolution and characteristics of the precipitates.

  6. Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bonda, N.R.

    1985-01-01

    Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclic history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.

  7. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  8. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  9. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  10. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  11. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-01-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs

  12. Comparative evaluation of apically extruded debris during root canal instrumentation using two Ni-Ti single file rotary systems: An in vitro study.

    Science.gov (United States)

    Singbal, Kiran; Jain, Disha; Raja, Kranthi; Hoe, Tan Ming

    2017-01-01

    Apical extrusion of debris during instrumentation is detrimental to the patient. The aim of this study was to evaluate the apical extrusion of debris during root canal instrumentation using two single file rotary Ni-Ti systems. Thirty freshly extracted mandibular premolars with straight roots were sterilized and divided into two groups instrumented using: One Shape rotary Ni-Ti system with Endoflare orifice shaper (Group 1) and Neo-Niti rotary Ni-Ti system with C1 orifice shaper (Group 2). Preweighed Eppendorf tubes fitted for each tooth before instrumentation. During instrumentation, 1 mL of distilled water with a 30-gauge needle was used to irrigate after every instrument. Tips of the tooth were irrigated with 2 ml distilled water after removal from Eppendorf tubes. The total volume of irrigant in each group was the same 8 ml. All tubes were incubated at 68°C for 15 days and subsequently weighed. The difference between pre- and post-debris weights was calculated, and statistical analysis was performed using independent t -test and level of significance was set at 0.05. The difference between pre- and post-weights was significantly greater for the One Shape system. The Neolix Niti single file was associated with less extrusion compared to One Shape single file system.

  13. In Situ Neutron Diffraction Analyzing Stress-Induced Phase Transformation and Martensite Elasticity in [001]-Oriented Co49Ni21Ga30 Shape Memory Alloy Single Crystals

    Science.gov (United States)

    Reul, A.; Lauhoff, C.; Krooß, P.; Gutmann, M. J.; Kadletz, P. M.; Chumlyakov, Y. I.; Niendorf, T.; Schmahl, W. W.

    2018-02-01

    Recent studies demonstrated excellent pseudoelastic behavior and cyclic stability under compressive loads in [001]-oriented Co-Ni-Ga high-temperature shape memory alloys (HT-SMAs). A narrow stress hysteresis was related to suppression of detwinning at RT and low defect formation during phase transformation due to the absence of a favorable slip system. Eventually, this behavior makes Co-Ni-Ga HT-SMAs promising candidates for several industrial applications. However, deformation behavior of Co-Ni-Ga has only been studied in the range of theoretical transformation strain in depth so far. Thus, the current study focuses not only on the activity of elementary deformation mechanisms in the pseudoelastic regime up to maximum theoretical transformation strains but far beyond. It is shown that the martensite phase is able to withstand about 5% elastic strain, which significantly increases the overall deformation capability of this alloy system. In situ neutron diffraction experiments were carried out using a newly installed testing setup on Co-Ni-Ga single crystals in order to reveal the nature of the stress-strain response seen in the deformation curves up to 10% macroscopic strain.

  14. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    International Nuclear Information System (INIS)

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-01

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  15. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  16. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    Science.gov (United States)

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  17. BM61 of Bombyx mori nucleopolyhedrovirus: its involvement in the egress of nucleocapsids from the nucleus.

    Science.gov (United States)

    Shen, Hongxing; Chen, Keping

    2012-04-05

    All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Standard method for detecting Bombyx mori nucleopolyhedrovirus disease-resistant silkworm varieties

    Directory of Open Access Journals (Sweden)

    Yang Qiong

    Full Text Available ABSTRACT Bombyx mori nucleopolyhedrovirus (BmNPV disease is one of the most serious silkworm diseases, and it has caused great economic losses to the sericulture industry. So far, the disease has not been controlled effectively by therapeutic agents. Breeding resistant silkworm varieties breeding may be an effective way to improve resistance to BmNPV and reduce economic losses. A precise resistance-detection method will help to accelerate the breeding process. For this purpose, here we described the individual inoculation method (IIM. Details of the IIM include pathogen BmNPV preparation, mulberry leaf size, pathogen volume, rearing conditions, course of infection, and breeding conditions. Finally, a resistance comparison experiment was performed using the IIM and the traditional group inoculation method (GIM. The incidence of BmNPV infection and the within-group variance results showed that the IIM was more precise and reliable than the GIM.

  19. Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption.

    Science.gov (United States)

    Tang, Xu-Dong; Xu, Yi-Peng; Yu, Lin-Lin; Lang, Guo-Jun; Tian, Cai-Hong; Zhao, Jin-Fang; Zhang, Chuan-Xi

    2008-12-01

    A BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower. These results suggest that Bmvp80 is essential for normal budded virus production and nucleocapsid maturation, and is functionally divergent between baculovirus species.

  20. Transmission of Different Nucleopolyhedroviruses by Two Ectoparasitoids – Bracon hebetor Say (Hymenoptera: Braconidae) and Euplectrus plathypenae (Howard) (Hymenoptera: Eulophidae)

    OpenAIRE

    Emanouela E. Stoianova; Nikolay A. Balevski

    2010-01-01

    The transmission of nucleopolyhedroviruses (NPVs) of Autographa gamma (AgNPV), Mamestra brassicae (MbNPV), Lacanobia oleraceae (LoNPV), Helicoverpa armigera (HaNPV) and Xantia c-nigrum (XnNPV) to their relevant larvae by the ectoparasitoid Bracon hebetor and the transmission of the multiple-enveloped NPVs of Spodoptera exigua (SeMNPV) and Spodoptera frugiperda (SfMNPV) by the ectoparasitoid Euplectrus plathypenae was examined. Two methods of contamination of the both parasitoids (exposure to ...

  1. Effect of transient liquid phase (TLP) bonding on the ductility of a Ni-base single crystal superalloy in a stress rupture test

    International Nuclear Information System (INIS)

    Liu, J.D.; Jin, T.; Zhao, N.R.; Wang, Z.H.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2008-01-01

    A Ni-base single crystal superalloy was transient liquid phase (TLP) bonded using a Ni-Cr-B amorphous foil at 1230 deg. C for 8 h. Stress rupture tests of the TLP joint and a matrix sample were carried out at 982 deg. C/248 MPa and 1010 deg. C/248 MPa. The microstructures and fracture surfaces were studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) investigations were performed after creep rupture testing to examine the deformation substructures. The results show that the stress rupture ductility of TLP joints is significantly decreased compared to the matrix sample. This reduction of the ductility of TLP joints can be attributed to solid solution strengthening by boron atoms, subgrain boundaries formed in the bonding zone and the concentration of creep cavities formed during the last stage of the stress rupture test

  2. Characterization of the Buzura suppressaria single-nucleocapsid nucleopolyhedrovirus genome : a (phylo)genetic study

    NARCIS (Netherlands)

    Hu, Z.

    1998-01-01

    Baculoviruses are attractive biological alternatives to chemical insecticides for insect pest control. So far, more than 600 baculoviruses have been isolated from different insect species which provide a rich resource for developing new viral insecticides. Most baculoviruses are host

  3. A comparison of infectivity between polyhedra of the Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the stink bug, Eocanthecona furcellata.

    Science.gov (United States)

    Gupta, R K; Gani, Mudasir; Jasrotia, P; Srivastava, K; Kaul, V

    2014-01-01

    Infectivity of polyhedra of Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the predatory stink bug, Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) was compared through field bioassay studies. Three sets of E. furcellata were used for bioassays and these were allowed to feed on a single meal of five third instar Oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), that were infected with polyhedra before passage, after passage, and healthy (control) larvae 1 day prior to the trial. The predators were subsequently released on cabbage plants that were infested with 100 healthy S. litura larvae. The median lethal dose (LD50) and survival time (ST50) values before and after passage through the gut were not significantly different. Additional mortality due to virus infection increased 13- 17% before and after treatments but within these treatments the mortality did not vary significantly. It was concluded that E. furcellata disseminated the virus through their feces into the ecosystem and infectivity of the SpltMNPV was not altered after passage through the gut of the predator. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  4. The differential expression of BmGlcNAcase2 in strains of Bombyx mori (Lepidoptera: Bombycidae) with different susceptibility to Bombyx mori (Lepidoptera: Bombycidae) nucleopolyhedrovirus infection.

    Science.gov (United States)

    Hao, Zhu; Quanbing, Ma; Xiaoyong, Liu

    2015-01-01

    GlcNAcase is a glycosyl hydrolase located in the lysosomes of numerous organisms. Levels of the protein, β-N-acetylglucosaminidase 2 (GlcNAcase2), which is a member of the GlcNAcase family, are different in two strains of the silkworm Bombyx mori that have different resistance to Bombyx mori nucleopolyhedroviruses (BmNPVs). We identified six single-nucleotide differences in the GlcNAcase2 coding sequence between the 306 and NB strains. Five are silent changes, but one is a nonsynonymous mutation. Reverse transcription-polymerase chain reaction analysis showed that GlcNAcase2 mRNA levels in the NB strain were nearly 2.57 times higher compared with those in the 306 strain. In addition, GlcNAcase2 enzyme activity was much higher in the NB strain compared with that in the 306 strain. Together, these results indicate that GlcNAcase2 may be involved in variable BmNPV resistance in B. mori. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  5. In situ TEM observation of stress-induced martensitictransformations and twinning processes in CuAlNi single crystals

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gemperle, Antonín; Dlabáček, Zdeněk; Šittner, Petr; Novák, Václav

    2010-01-01

    Roč. 58, č. 15 (2010), s. 5109-5119 ISSN 1359-6454 R&D Projects: GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi shape memory alloy * martensitic transformation * in situ TEM straining Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  6. Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal studied by neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Lukáš, Petr; Hannula, S.-P.; Heczko, O.

    2008-01-01

    Roč. 17, č. 3 (2008), 035014/1-035014/5 ISSN 0964-1726 Institutional research plan: CEZ:AV0Z10480505 Keywords : NI2MNGA * Transformation * Alloy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.743, year: 2008

  7. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  8. X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni-Mn-Ga alloys

    International Nuclear Information System (INIS)

    Martynov, V.V.

    1995-01-01

    Using in-situ single crystal X-ray diffraction methods, thermally- and stress-induced crystal structure evolution was investigated in two Ni-Mn-Ga Heusler-type alloys. For the 51at.%Ni-24at.%Mn-25at.%Ga alloy it was found that application of external stress in a temperature range ∼20 C above the M s at first causes intensity changes of X-ray diffuse scattering peaks in β-phase. Further stressing results in stress-induced phase transformations and under the appropriate conditions three successive martensitic transformations (one is parent-to-martensite and two are martensite-to-martensite transformations) can be stress induced. Of these only the parent-to-martensite transformation can be thermally-induced. Two successive structural transformations (thermally-induced parent-to-martensite and stress-induced martensite-to-martensite transformations) were found in 52at.%Ni-25at.%Mn-23at.%Ga alloy. Crystal structure, lattice parameters, type of modulation, and the length of modulation period for all martensites were identified. (orig.)

  9. YbNi{sub 4}P{sub 2}. Single crystal growth by the Czochralski method and high-field magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kliemt, Kristin; Krellner, Cornelius [Goethe-University, Frankfurt (Germany); Foerster, Tobias [HLD, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Brando, Manuel [MPI for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    We have investigated a new generation of YbNi{sub 4}P{sub 2} single crystals that were grown from a levitating melt by the Czochralski method. With T{sub C}= 0.17 K, this ferromagnetic material has the lowest Curie temperature ever observed among stoichiometric compounds. A quantum critical point occurs in the substitution series YbNi{sub 4}(P{sub 1-x}As{sub x}){sub 2} at x ∼ 0.1. The hybridization between localized f-electrons and the conduction electrons leads to a Fermi-liquid ground state with narrow bands and strongly enhanced effective electronic masses (heavy fermion system, Kondo temperature 8 K). An external magnetic field can split the bands, deform the Fermi surface and simultaneously suppress the Kondo interaction. If such a deformation changes the topology, it is called a Lifshitz transition. Previous thermodynamic and electrical transport studies have found indications for Lifshitz transitions in this Kondo lattice system. We report on results of high-field magnetization measurements at low temperature to further investigate the putative Lifshitz transitions in YbNi{sub 4}P{sub 2}.

  10. Influence of heat-treatment on microstructure and plastic deformation behavior in Ni3V single crystals with the D022 structure

    International Nuclear Information System (INIS)

    Hagihara, K; Mori, M; Kishimoto, T; Umakoshi, Y

    2009-01-01

    The control of microstructure in Ni 3 V single crystals such as variant and anti-phase boundary (APD) was attempted by quenching from the disordered state followed by annealing at several temperatures. In the heat-treatments, the microstructure strongly varied depending on the quenching speed from the disordered state. In slow-quenching, the lamellar structure composed of two variants was developed after annealing, as reported in many polycrystalline samples. However, only one of three variants was preferentially grown in the specimen rapidly quenched from the disordered state followed by annealing. The yield stress of slow-quenched specimen showed more than twice the value of the fast-quenched specimen.

  11. Effects of magnetic order on the superconducting length scales and critical fields in single crystal ErNi2B2C

    DEFF Research Database (Denmark)

    Gammel, P.L.; Barber, B.P.; Ramirez, A.P.

    1999-01-01

    The flux line form factor in small angle neutron scattering and transport data determines the superconducting length scares and critical fields in single crystal ErNi2B2C. For H parallel to c, the coherence length xi increases and the penetration depth lambda decreases when crossing T-N = 6.0 K......, the Neel transition. The critical fields show corresponding anomalies near T-N. For H perpendicular to c, the fourfold modulation of the upper critical field H-c2 is strongly temperature dependent, changing sign near T-N, and can be modeled using the anisotropy of the sublattice magnetization....

  12. The effect of internal and external stress on two-way shape-memory behaviour in Co49Ni21.6Ga29.4 single crystals

    International Nuclear Information System (INIS)

    Liu, G D; Dai, X F; Luo, H Z; Liu, H Y; Meng, F B; Li, Y; Yu, X; Chen, J L; Wu, G H

    2011-01-01

    The effect of the internal stress on the two-way shape memory in Co 49 Ni 21.6 Ga 29.4 single crystals has been investigated. We found that the internal stress generated natively by the solidifying process works as a tensile force along the growth direction. Applying different compressive pre-stresses along the [0 0 1] direction, the shape-memory strain can be continuously changed from +1.0% to -2.3%. In the [1 1 0] direction, the strain monotonically increases from -2.0% to -4.0% due to a strong detwinning produced by the consistent effect of the external and internal stresses.

  13. Magnetic domains and twin microstructure of single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš

    2015-01-01

    Roč. 51, č. 11 (2015), s. 1-4, č. článku 2505304. ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.277, year: 2015

  14. Magnetic domains and twin microstructure of single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Kopecký, Vít; Fekete, Ladislav; Jurek, Karel; Kopeček, Jaromír; Straka, L.; Seiner, Hanuš

    2015-01-01

    Roč. 51, č. 11 (2015), s. 7150406 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic domain * magnetic shape memory * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  15. Tuning avalanche criticality: acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Baró, J.; Heczko, Oleg; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2012-01-01

    Roč. 86, č. 21 (2012), "214101-1"-"214101-6" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional research plan: CEZ:AV0Z10100520 Keywords : stress -induced martensitic transformation * Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * acoustic emission during transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  16. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magneticshape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Drahokoupil, Jan; Straka, L.

    2015-01-01

    Roč. 117, č. 17 (2015), "17E703-1"-"17E703-4" ISSN 0021-8979 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : field-induced strain * temperature-dependence * alloy * martensite * Ni 2 MnGa * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.101, year: 2015

  17. Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda.

    Science.gov (United States)

    Barrera, Gloria Patricia; Belaich, Mariano Nicolás; Patarroyo, Manuel Alfonso; Villamizar, Laura Fernanda; Ghiringhelli, Pablo Daniel

    2015-11-25

    Baculoviruses are insect-associated viruses carrying large, circular double-stranded-DNA genomes with significant biotechnological applications such as biological pest control, recombinant protein production, gene delivery in mammals and as a model of DNA genome evolution. These pathogens infect insects from the orders Lepidoptera, Hymenoptera and Diptera, and have high species diversity which is expressed in their diverse biological properties including morphology, virulence or pathogenicity. Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall armyworm, represents a significant pest for agriculture in America; it is a host for baculoviruses such as the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Colombia strain, genotype A) having been classified as a Group II alphabaculovirus making it a very attractive target for bioinsecticidal use. Genome analysis by pyrosequencing revealed that SfMNPV ColA has 145 ORFs, 2 of which were not present in the other sequenced genotypes of the virus (SfMNPV-NicB, SfMNPV-NicG, SfMNPV-19 and SfMNPV-3AP2). An in-depth bioinformatics study showed that ORF023 and ORF024 were acquired by a recent homologous recombination process between Spodoptera frugiperda and Spodoptera litura (the Oriental leafworm moth) nucleopolyhedroviruses. Auxiliary genes are numerous in the affected locus which has a homologous region (hr3), a repetitive sequence associated with genome replication which became lost in SfColA along with 1 ORF. Besides, the mRNAs associated with two acquired genes appeared in the virus' life-cycle during the larval stage. Predictive studies concerning the theoretical proteins identified that ORF023 protein would be a phosphatase involved in DNA repair and that the ORF024 protein would be a membrane polypeptide associated with cell transport. The SfColA genome was thus revealed to be a natural recombinant virus showing evidence of recent horizontal gene transfer between different baculovirus species occurring

  18. A micro-computed tomographic evaluation of dentinal microcrack alterations during root canal preparation using single-file Ni-Ti systems.

    Science.gov (United States)

    Li, Mei-Lin; Liao, Wei-Li; Cai, Hua-Xiong

    2018-01-01

    The aim of the present study was to evaluate the length of dentinal microcracks observed prior to and following root canal preparation with different single-file nickel-titanium (Ni-Ti) systems using micro-computed tomography (micro-CT) analysis. A total of 80 mesial roots of mandibular first molars presenting with type II Vertucci canal configurations were scanned at an isotropic resolution of 7.4 µm. The samples were randomly assigned into four groups (n=20 per group) according to the system used for root canal preparation, including the WaveOne (WO), OneShape (OS), Reciproc (RE) and control groups. A second micro-CT scan was conducted after the root canals were prepared with size 25 instruments. Pre- and postoperative cross-section images of the roots (n=237,760) were then screened to identify the lengths of the microcracks. The results indicated that the microcrack lengths were notably increased following root canal preparation (Pfiles. Among the single-file Ni-Ti systems, WO and RE were not observed to cause notable microcracks, while the OS system resulted in evident microcracks.

  19. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets.

    Science.gov (United States)

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude

    2002-10-30

    We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization

  20. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System

    Directory of Open Access Journals (Sweden)

    Zhanqi Dong

    2018-02-01

    Full Text Available The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV immediate early-1 (ie-1 gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-/sgRNA(-, Cas9(+/sgRNA(-, Cas9(-/sgRNA(+, and Cas9(+/sgRNA(+. We demonstrated that the Cas9(+/sgRNA(+ transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+/sgRNA(+ transgenic lines shows that the median lethal dose (LD50 is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+/sgRNA(+ transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

  1. Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System.

    Science.gov (United States)

    Dong, Zhanqi; Dong, Feifan; Yu, Xinbo; Huang, Liang; Jiang, Yaming; Hu, Zhigang; Chen, Peng; Lu, Cheng; Pan, Minhui

    2018-01-01

    The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 ( ie-1 ) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization: Cas9(-)/sgRNA(-), Cas9(+)/sgRNA(-), Cas9(-)/sgRNA(+), and Cas9(+)/sgRNA(+). We demonstrated that the Cas9(+)/sgRNA(+) transgenic lines effectively edited the target site of the BmNPV genome, and large fragment deletion was observed after BmNPV infection. Further antiviral analysis of the Cas9(+)/sgRNA(+) transgenic lines shows that the median lethal dose (LD50) is 1,000-fold higher than the normal lines after inoculation with occlusion bodies. The analysis of economic characters and off-target efficiency of Cas9(+)/sgRNA(+) transgenic hybrid line showed no significant difference compared with the normal lines. Our findings indicate that CRISPR/Cas9-mediated genome engineering more effectively targets the BmNPV genomes and could be utilized as an insect antiviral treatment.

  2. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection.

    Science.gov (United States)

    Yu, Qian; Xiong, Youhua; Gao, Hang; Liu, Jianliang; Chen, Zhiqiang; Wang, Qin; Wen, Dongling

    2015-08-04

    Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood. In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component. The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.

  3. Genome sequence and organization of a nucleopolyhedrovirus isolated from the smaller tea tortrix, Adoxophyes honmai

    International Nuclear Information System (INIS)

    Nakai, Madoka; Goto, Chie; Kang, Won Kyung; Shikata, Masamitsu; Luque, Teresa; Kunimi, Yasuhisa

    2003-01-01

    Adoxophyes honmai nucleopolyhedrovirus (AdhoNPV) has a distinctive pathology in A. honmai larvae, killing the host more slowly than other NPVs. To further understand the pathology of AdhoNPV, its genome was completely sequenced and compared with those of other baculoviruses. The AdhoNPV genome is 113,220 bp, with a G + C content of 35.6%. It contains 125 putative open reading frames (ORFs), of which 8 are unique to AdhoNPV, and 4 homologous regions. The other 117 ORFs display similarity to previously characterized baculovirus genes involved in early and late gene expression, DNA replication, and structural and auxiliary functions. The phylogenetic position of AdhoNPV, in relation to 15 other baculoviruses whose genomes have been completely sequenced, was assessed by three different analyses: gene sequence, gene order, and gene content. Although gene content analysis failed to support the group II NPVs, phylogenetic trees based on gene sequence and gene order showed AdhoNPV to be closely related to the group II NPVs

  4. Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Feng, Fan; Yuan, Yi; Chen, Keping

    2013-01-01

    Orf65 (Bm65) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes an unknown 104-amino acid protein. In the present study, we have shown the role of Bm65 in the baculovirus life cycle. 5'-RACE analysis showed that the transcription start site of Bm65 was 14 nucleotides upstream of the start codon ATG. The transcription profile of Bm65 was detected from 6 to 72 h postinfection (p. i.) by RT-PCR. A Bm65-knockout bacmid was constructed by homologous recombination to characterize the role of Bm65 in viral life cycle. Fluorescence microscopy showed that Bm65-knockout virus was unable to generate infectious budded virus in BmN cells. Furthermore, quantitative real-time PCR analysis demonstrated that Bm65 deletion did not affect the viral DNA replication. To conclude, Bm65 is essential for the propagation of BmNPV, but is unnecessary for the replication of viral DNA.

  5. Sublethal dose of phoxim and Bombyx mori nucleopolyhedrovirus interact to elevate silkworm mortality.

    Science.gov (United States)

    Gu, ZhiYa; Li, FanChi; Hu, JingSheng; Ding, Chao; Wang, Chaoqian; Tian, JiangHai; Xue, Bin; Xu, KaiZun; Shen, WeiDe; Li, Bing

    2017-03-01

    Silkworm (Bombyx mori) is an economically important insect. It is relatively less resistant to certain chemicals and environment exposures such as pesticides and pathogens. After pesticide exposures, the silkworms are more susceptible to microbial infections. The mechanism underlying the susceptibility might be related to immune response and oxidative stress. A sublethal dose of phoxim combined with Bombyx mori nucleopolyhedrovirus (BmNPV) elevated the silkworm mortality at 96 h. We found a higher content of H 2 O 2 and increased levels of genes related to oxidative stress and immune response after treatment with a sublethal dose of phoxim for 24 h or 48 h. However, such response decreased with longer pesticide treatment. Mortality increased by 44% when B. mori was exposed to combined treatment with BmNPV and phoxim rather than BmNPV alone. The level of examined immune-related and oxidative-stress-related genes significantly decreased in the combined treatment group compared with the BmNPV group. Our results indicated that, with long-term exposure to pesticides such as OPs, even at sublethal dose, the oxidative stress response and immune responses in silkworm were inhibited, which may lead to further immune impairment and accumulation of oxidative stress, resulting in susceptibility to the virus and harm to the silkworm. Our study provided insights for understanding the susceptibility to pathogen after pesticide exposures, which may promote the development of better pesticide controls to avoid significant economic losses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    International Nuclear Information System (INIS)

    Kokusho, Ryuhei; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  7. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi; Tsuneishi, Eiko; Ponnuvel, Kangayam M.; Furukawa, Seiichi; Asaoka, Ai; Tanaka, Hiromitsu; Ishibashi, Jun; Yamakawa, Minoru

    2004-01-01

    A protein showing strong antiviral activity against Bombyx mori nucleopolyhedrovirus (BmNPV) was purified from the digestive juice of B. mori larvae. The molecular mass of this protein was 24 271 Da. Partial N-terminal amino acid sequence of the protein was determined and cDNA was cloned based on the amino acid sequence. A homology search of the deduced amino acid sequence of the cDNA showed 94% identity with B. mori serine protease so the protein was designated B. mori serine protease-2 (BmSP-2). Analysis of BmSP-2 gene expression showed that this gene is expressed in the midgut but not in other tissues. In addition, BmSP-2 gene was shown to not be expressed in the molting and wandering stages, indicating that the gene is hormonally regulated. Our results suggest that BmSP-2, an insect digestive enzyme, can be a potential antiviral factor against BmNPV at the initial site of viral infection

  8. Bombyx mori nucleopolyhedrovirus BM5 protein regulates progeny virus production and viral gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kokusho, Ryuhei, E-mail: kokusho@ss.ab.a.u-tokyo.ac.jp; Koh, Yoshikazu; Fujimoto, Masaru; Shimada, Toru; Katsuma, Susumu, E-mail: katsuma@ss.ab.a.u-tokyo.ac.jp

    2016-11-15

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf5 (Bm5) is a core gene of lepidopteran baculoviruses and encodes the protein with the conserved amino acid residues (DUF3627) in its C-terminus. Here, we found that Bm5 disruption resulted in lower titers of budded viruses and fewer numbers of occlusion bodies (OBs) in B. mori cultured cells and larvae, although viral genome replication was not affected. Bm5 disruption also caused aberrant expression of various viral genes at the very late stage of infection. Immunocytochemical analysis revealed that BM5 localized to the nuclear membrane. We also found that DUF3627 is important for OB production, transcriptional regulation of viral genes, and subcellular localization of BM5. Compared with wild-type BmNPV infection, larval death was delayed when B. mori larvae were infected with Bm5 mutants. These results suggest that BM5 is involved in progeny virus production and regulation of viral gene expression at the very late stage of infection. -- Highlights: •The role of BmNPV BM5 protein was examined in B. mori cultured cells and larvae. •BM5 contributes to efficient production of budded viruses and occlusion bodies. •BM5 regulates viral gene expression at the very late stage of infection. •BM5 dominantly localizes to the nuclear membrane. •Bm5 mutant showed v-cath down-regulation and resulting delay of larval death.

  9. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    International Nuclear Information System (INIS)

    Liu Chao; Li Zhaofei; Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai; Pang Yi

    2008-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc ac53KO-PH-GFP ) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc ac53KO-PH-GFP could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production

  10. Identification of nucleopolyhedrovirus that infect Nymphalid butterflies Agraulis vanillae and Dione juno.

    Science.gov (United States)

    Rodríguez, Vanina Andrea; Belaich, Mariano Nicolás; Gómez, Diego Luis Mengual; Sciocco-Cap, Alicia; Ghiringhelli, Pablo Daniel

    2011-02-01

    Dione juno and Agraulis vanillae are very common butterflies in natural gardens in South America, and also bred worldwide. In addition, larvae of these butterflies are considered as pests in crops of Passiflora spp. For these reasons, it is important to identify and describe pathogens of these species, both for preservation purposes and for use in pest control. Baculoviridae is a family of insect viruses that predominantly infect species of Lepidoptera and are used as bioinsecticides. Larvae of D. juno and A. vanillae exhibiting symptoms of baculovirus infection were examined for the presence of baculoviruses by PCR and transmission electron microscopy. Degenerate primers were designed and used to amplify partial sequences from the baculovirus p74, cathepsin, and chitinase genes, along with previously designed primers for amplification of lef-8, lef-9, and polh. Sequence data from these six loci, along with ultrastructural observations on occlusion bodies isolated from the larvae, confirmed that the larvae were infected with nucleopolyhedroviruses from genus Alphabaculovirus. The NPVs from the two different larval hosts appear to be variants of the same, previously undescribed baculovirus species. Phylogenetic analysis of the sequence data placed these NPVs in Alphabaculovirus group I/clade 1b. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Unit-cell design for two-dimensional phase-field simulation of microstructure evolution in single-crystal Ni-based superalloys during solidification

    Directory of Open Access Journals (Sweden)

    Dongjia Cao

    2017-12-01

    Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.

  12. Field-dependent transport critical current in single crystals of Ba(Fe1-xTMx)2As2 (TM = Co, Ni) superconductors

    International Nuclear Information System (INIS)

    Tanatar, M A; Ni, N; Bud'ko, S L; Canfield, P C; Prozorov, R

    2010-01-01

    Critical current density was studied by direct electrical transport measurements in single crystals of Ba(Fe 1-x TM x ) 2 As 2 under magnetic fields up to 9 T. To understand the relation of the critical current to the structural transformations in the material, the electron doping level was controlled by the amount of TM = Co (underdoped x = 0.054 versus optimally doped x = 0.074) and by the nature of the dopant (optimally doped TM = Co versus TM = Ni). It is found that the suppression of the critical current density by the magnetic field is much slower for Ni and underdoped Co compositions than for an optimally doped Co composition. We relate this difference to the proximity to the orthorhombic/antiferromagnetic phase boundary in the T(x) phase diagram. Structural domains formed in this area of the phase diagram create favorable conditions for pinning and not only increase critical current densities, but also hamper the degradation of the critical current under magnetic field.

  13. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy

    International Nuclear Information System (INIS)

    Al-Jarba, K.A.; Fuchs, G.E.

    2004-01-01

    In an effort to reduce grain defects in large single crystal Ni-base superalloy components, carbon is intentionally added. In this study, the effect of carbon additions on the microstructure and solidification defect formation of a model Ni-based superalloy, LMSX-1, was examined. The results show that the tendency of the alloy to form all types of solidification defects decreased as the carbon content increased. The as-cast microstructures also exhibited a decrease in the amount of γ-γ' eutectic structure and an increase in the volume fraction of carbides and porosity, as the carbon content was increased. The carbides formed in these alloys were mostly of script-type MC carbides which formed continuous, dendritic networks in the interdendritic region. Microprobe analysis of the as-cast structures showed that the partitioning coefficients did not change with carbon additions. Therefore, the reduction in defect formation with increasing carbon content could not be attributed to changes in segregation behavior of alloying elements. Instead, the presence of these carbides in the interdendritic regions of the alloy appeared to have prevented the thermosolutal fluid flow

  14. Phenotypic and genetic analysis of Lymantria dispar nucleopolyhedrovirus few polyhedra mutants: Mutations in the 25K FP gene may be caused by DNA replication errors

    Science.gov (United States)

    David S. Bischoff; James M. Slavicek

    1997-01-01

    We previously demonstrated that polyhedron formation (PF) mutants arise at a high frequency during serial passage of the Lymantria dispar nucleopolyhedrovirus (LdMNPV) in the L. dispar 652Y cell line (J.M. Slavicek, N. Hayes-Plazolles, and M.E. Kelly, Biol. Control 5:251-261, 1995). Most of these PF mutants...

  15. Autographa californica Multicapsid Nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH

    NARCIS (Netherlands)

    Dong, S.; Wang, M.; Qiu, Z.; Deng, F.; Vlak, J.M.; Hu, Z.H.; Wang, H.L.

    2010-01-01

    The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue

  16. A cell clone strain from Mythimna separata (Lepidoptera: Noctuidae) highly susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata NPV (MsNPV).

    Science.gov (United States)

    Meng, Xiang-Qian; Zheng, Gui-Ling; Zhao, Chuan-De; Wan, Fang-Hao; Li, Chang-You

    2017-08-01

    In this study, we describe a cell line, Ms-10C, cloned from the line QAU-Ms-E-10 (simplified Ms-10), an embryonic line from Mythimna separata. The cloned cell line was significantly more sensitive to nucleopolyhedrovirus (NPV). Ms-10C cells were mainly spherical with a diameter of 14.42 ± 2.23 μm. DNA amplification fingerprinting (DAF) confirmed the profile of PCR-amplified bands of the cloned cell line was consistent with those of the parental cell line, Ms-10. The sequencing result of the mitochondrial cytochrome c oxidase I (mtCO I) fragment confirmed that the amplified 636-bps mtCOI fragment was 100% identical to that of M. separata. Its chromosomes exhibited the typical characters of lepidopteran cell lines. Its population doubling time was 42.2 h at 27°C. Ms-10C was more sensitive than Ms-10 to both Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata nucleopolyhedrovirus (MsNPV). At 4 d post infection, the infection rates of two viruses reached 94.2 and 92.3%, respectively. The availability of this cell clone strain will provide a useful tool for the basic research on nucleopolyhedrovirus and for potential application in expression of recombinant proteins with baculovirus expression vector system.

  17. Pseudotyping Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV): F Proteins from Group II NPVs are functionally analogous to AcMNPV GP64

    NARCIS (Netherlands)

    Lung, O.; Westenberg, M.; Vlak, J.M.; Zuidema, D.; Blissard, G.W.

    2002-01-01

    GP64, the major envelope glycoprotein of budded virions of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), is involved in viral attachment, mediates membrane fusion during virus entry, and is required for efficient virion budding. Thus, GP64 is essential for viral

  18. Decay of 57Ni

    International Nuclear Information System (INIS)

    Santos Scardino, A.M. dos.

    1987-01-01

    The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt

  19. Identification of the partitioning characteristics of refractory elements in σ and γ phases of Ni-based single crystal superalloys based on first principles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-10-15

    The impurity formation energies of the σ and γ phases of Ni-based single crystal superalloys doped with W, Cr and Co in different sublattices have been investigated using first-principles based on the density functional theory. The bonding characteristics of the doped σ phase were analyzed with the valence charge densities and the density of the states. The results of the calculations indicated that the typical refractory element W, which has a large atomic size, preferentially partitions into the σ phase due to the nature of the bonding and the unique crystal structure with close-packed planes and large interstitial spaces. In addition, the site preference of refractory elements in γ phase was in the order of W, Cr and Co. - Highlights: • A reasonable σ phase model was adopted in our calculation. • The site preference of refractory elements in σ and γ phases was investigated. • The bonding characteristic was analyzed on the basis of electronic microstructures.

  20. A σ-T diagram analysis regarding the γ' inhibition in β ↔ β' + γ' cycling in CuAlNi single crystals

    International Nuclear Information System (INIS)

    Gastien, R.; Corbellani, C.E.; Sade, M.; Lovey, F.C.

    2006-01-01

    An effect of inhibition of the γ' martensitic structure in thermal and pseudoelastic β ↔ β' + γ' cycling in CuAlNi single crystals was reported previously [Gastien R, Corbellani CE, Alvarez Villar HN, Sade M, Lovey FC. Mater Sci Eng A 2003;349:191], and an experiment to determine the new thermodynamic parameters to obtain the stress-induced γ' structure was performed [Gastien R, Corbellani CE, Sade M, Lovey FC. Acta Mater 2005;53:1685]. In this paper, a thermodynamic analysis of this effect using σ-T diagrams is proposed, in order to obtain a proper estimation of the energy involved in the inhibition process for pseudoelastic β ↔ β' + γ' cycling

  1. Temperature dependent tunneling study of CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anirban, E-mail: adatta@iitk.ac.in; Gupta, Anjan K. [Department of Physics, IIT Kanpur, Kanpur-208 016 (India); Thamizhavel, A. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2014-04-24

    We report on temperature dependent scanning tunneling microscopy and spectroscopy studies on CaFe{sub 1.96}Ni{sub 0.04}As{sub 2} single crystals in 5.4 – 19.7 K temperature range across the normal metal - superconductor transition temperature, T{sub C} = 14K. The in-situ cleaved crystals show reasonably flat surface with signatures of atomic resolution. The tunnel spectra show significant spatial inhomogeneity below T{sub C}, which reduces significantly as the temperature goes above the T{sub C}. We discuss these results in terms of an inhomogeneous electronic phase that may exist due to the vicinity of this composition to the quantum critical point.

  2. Quantitative and ultrastructural changes in the haemocytes of Spodoptera littoralis (Boisd.) treated individually or in combination with Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and azadirachtin.

    Science.gov (United States)

    Shaurub, El-Sayed H; Abd El-Meguid, Afaf; Abd El-Aziz, Nahla M

    2014-10-01

    The total haemocyte count (THC) and the possible ultrastructural alterations induced in the haemocytes of the fourth larval instars of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), 96 h post-feeding on a semi-synthetic diet, treated with the LC50 of Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV) and the LC50 of azadirachtin alone, and the LC25 of SpliMNPV combined with the LC25 of azadirachtin were studied and compared to the control. Single treatment with the virus and azadirachtin or combined treatment significantly decreased the THC compared to the control. There are five types of haemocytes in S. littoralis: prohaemocytes, plasmatocytes, granulocytes, spherulocytes and oenocytoids. The most common symptoms in granulocytes and plasmatocytes, the main affected cell types, due to viral infection were the presence of virogenic stroma, peripheral dispersion of the chromatin and disappearance of the nucleoli. However, the most common symptoms in these two types of haemocytes due to treatment with azadirachtin were the presence of rough endoplasmic reticulum filled with fibrous materials, due to probably apoptosis, in their cisternae and disorganization of mitochondria (looped, vacuolated and swollen). In addition, the cytoplasm of granulocytes was vacuolated with the appearance of autophagic lysosomes, while plasmatocytes showed ruptured cell membrane and folded nuclear envelope. Combined treatment with the NPV and azadirachtin induced the same pathological changes which were recorded from individual treatment with the virus or azadirachtin to the same haemocytes. It can be concluded that the change in the THC and ultrastructure of granulocytes and plasmatocytes may affect the cellular-mediated immune response in S. littoralis. Moreover, it seems likely that mitochondria were the target site of azadirachtin, as they were affected in both granulocytes and plasmatocytes treated with azadirachtin alone or in

  3. Autographa californica multiple nucleopolyhedrovirus ac75 is required for egress of nucleocapsids from the nucleus and formation of de novo intranuclear membrane microvesicles.

    Directory of Open Access Journals (Sweden)

    Ya-Jun Guo

    Full Text Available In this study, Autographa californica multiple nucleopolyhedrovirus ac75 was functionally characterized. Ac75 has homologs in all sequenced genomes of alphabaculoviruses, betabaculoviruses, and gammabaculoviruses. It was determined to encode a protein that is associated with the nucleocapsid of budded virus and with both envelope and nucleocapsids of occlusion-derived virus. Sf9 cells transfected by an ac75-knockout bacmid resulted in the infection being restricted to single cells. No budded virus were detected although viral DNA replication and late gene expression were unaffected. Electron microscopy revealed that the virogenic stroma, nucleocapsids and occlusion bodies appeared normal in the cells transfected by an ac75-knockout bacmid. However, the nucleocapsids were unenveloped, the occlusion bodies did not contain any virions or nucleocapsids, and no nucleocapsids were found outside the nucleus or spanning the nuclear membrane. In addition, de novo intranuclear membrane microvesicles that are the precursor of occlusion-derived virus envelopes were absent in the nuclei of transfected cells. Confocal microscopy showed that AC75 protein appeared in the cytoplasm as early as 6 hours post infection. It localized to the ring zone at the periphery of the nucleus from 15 to 24 hours post infection and demonstrated light blocky cloud-like distribution in the center of the nucleus. AC75 was found to co-immunoprecipitate with BV and ODV associated envelope protein ODV-E25. The data from this study suggest that ac75 is essential for induction of the intranuclear membrane microvesicles, it appears to be required for the intranuclear envelopment of nucleocapsids, and is also essential for egress of nucleocapsids from the nuclei, in infected cells.

  4. Bombyx mori nucleopolyhedrovirus ORF54, a viral desmoplakin gene, is associated with the infectivity of budded virions.

    Science.gov (United States)

    Zhang, Min-Juan; Tian, Cai-Hong; Fan, Xiao-Ying; Lou, Yi-Han; Cheng, Ruo-Lin; Zhang, Chuan-Xi

    2012-07-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) ORF54 (Bm54), a member of the viral desmoplakin N-terminus superfamily, is homologous to Autographa californica nucleopolyhedrovirus (AcMNPV) ORF66, which is required for the efficient egress of nucleocapsids from the nucleus and occlusion body formation. In this paper, we generated a bacmid with the Bm54 gene deleted via homologous recombination in Escherichia coli and characterized the mutant virus using a transfection-infection assay and transmission electron microscopy analysis. Our results demonstrated that the cells transfected with viral DNA lacking Bm54 produced non-infectious budded viruses (BVs). Electron microscopy showed that although the deletion of Bm54 did not affect assembly and release of nucleocapsids, it severely affected polyhedron formation. In conclusion, deletion of Bm54 resulted in non-infectious BV and defective polyhedra. Although the sequences of Bm54 and Ac66 are very similar, the two genes function quite differently in the regulation of viral life cycle.

  5. Genomic sequence, organization and characteristics of a new nucleopolyhedrovirus isolated from Clanis bilineata larva

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2009-02-01

    Full Text Available Abstract Background Baculoviruses are well known for their potential as biological agents for controlling agricultural and forest pests. They are also widely used as expression vectors in molecular cloning studies. The genome sequences of 48 baculoviruses are currently available in NCBI databases. As the number of sequenced viral genomes increases, it is important for the authors to present sufficiently detailed analyses and annotations to advance understanding of them. In this study, the complete genome of Clanis bilineata nucleopolyhedrovirus (ClbiNPV has been sequenced and analyzed in order to understand this virus better. Results The genome of ClbiNPV contains 135,454 base pairs (bp with a G+C content of 37%, and 139 putative open reading frames (ORFs of at least 150 nucleotides. One hundred and twenty-six of these ORFs have homologues with other baculovirus genes while the other 13 are unique to ClbiNPV. The 30 baculovirus core genes are all present in ClbiNPV. Phylogenetic analysis based on the combined pif-2 and lef-8 sequences places ClbiNPV in the Group II Alphabaculoviruses. This result is consistent with the absence of gp64 from the ClbiNPV genome and the presence instead of a fusion protein gene, characteristic of Group II. Blast searches revealed that ClbiNPV encodes a photolyase-like gene sequence, which has a 1-bp deletion when compared with photolyases of other baculoviruses. This deletion disrupts the sequence into two small photolyase ORFs, designated Clbiphr-1 and Clbiphr-2, which correspond to the CPD-DNA photolyase and FAD-binding domains of photolyases, respectively. Conclusion ClbiNPV belongs to the Group II Alphabaculoviruses and is most closely related to OrleNPV, LdMNPV, TnSNPV, EcobNPV and ChchNPV. It contains a variant DNA photolyase gene, which only exists in ChchNPV, TnSNPV and SpltGV among the baculoviruses.

  6. Effects of cetyltriethylammonium bromide on the replication of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Zhou, Yajing; Zhang, Zhifang; He, Jialu; Zhang, Yuanxing

    2002-05-01

    An experimental study was undertaken to quantify the effects of cetyltriethylammonium bromide (CTAB) on the replication of Bombyx mori nucleopolyhedrovirus (BmNPV) and the transcriptionalactivity of BmNPV ie-1 promoter. The results demonstrated that the budded virus (BV) titer rose about 3.7-fold by adding CTAB to the culture media up to 0.1 mu g ml(-1) in infected Bm-N cells with a wild-type BmNPV. The transient expression level of luciferase driven by BmNPV ie-1 promoter was enhanced by more than 3-fold in the presence of 0.1 mu g ml(-1) of CTAB in uninfected insect cells via a transient expression system. Contrary to the rise in BV titer, the polyhedra inside the nucleus of infected cells dropped linearly from 4.0 x 10(6) ml(-1) down to 2.1 x 10(6) ml(-1) with in a range of CTAB concentrations from 0 to 0.25 mu g ml(-1). The same trend in expression level of beta -galactosidase or phytase was given when the Bm-N cells or fifth-instar silkworm larvae infected with a recombinant BmNPV containing the beta -galactosidase or phytase reporter gene driven by the polyhedrin promoter. We deduced that CTAB appeared to affect the virus bi-phasic life cycle stages and production pathways, resulting in an enhancement in BV production and a suppression of occluded virus (OV) production and expression of foreign genes controlled by the polyhedrin promoter.

  7. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    Science.gov (United States)

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  8. A hypothetical model of crossing Bombyx mori nucleopolyhedrovirus through its host midgut physical barrier.

    Directory of Open Access Journals (Sweden)

    Yang Cheng

    Full Text Available Bombyx mori nucleopolyhedrovirus (BmNPV is a primary pathogen of silkworm (B. mori that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV.

  9. Proteomic analysis of BmN cell lipid rafts reveals roles in Bombyx mori nucleopolyhedrovirus infection.

    Science.gov (United States)

    Hu, Xiaolong; Zhu, Min; Liang, Zi; Kumar, Dhiraj; Chen, Fei; Zhu, Liyuan; Kuang, Sulan; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2017-04-01

    The mechanism of how Bombyx mori nucleopolyhedrovirus (BmNPV) enters cells is unknown. The primary components of membrane lipid rafts are proteins and cholesterol, and membrane lipid rafts are thought to be an active region for host-viral interactions. However, whether they contribute to the entry of BmNPV into silkworm cells remains unclear. In this study, we explored the membrane protein components of lipid rafts from BmN cells with mass spectrometry (MS). Proteins and cholesterol were investigated after establishing infection with BmNPV in BmN cells. In total, 222 proteins were identified in the lipid rafts, and Gene Ontology (GO) annotation analysis showed that more than 10% of these proteins had binding and catalytic functions. We then identified proteins that potentially interact between lipid rafts and BmNPV virions using the Virus Overlay Protein Blot Assay (VOPBA). A total of 65 proteins were analyzed with MS, and 7 were predicted to be binding proteins involved in BmNPV cellular invasion, including actin, kinesin light chain-like isoform X2, annexin B13, heat-shock protein 90, barrier-to-autointegration factor B-like and serine/arginine-rich splicing factor 1 A-like. When the cholesterol of the lipid rafts from the membrane was depleted by methyl-β-cyclodextrin (MβCD), BmNPV entry into BmN cells was blocked. However, supplying cholesterol into the medium rescued the BmNPV infection ability. These results show that membrane lipid rafts may be the active regions for the entry of BmNPV into cells, and the components of membrane lipid rafts may be candidate targets for improving the resistance of the silkworm to BmNPV.

  10. A Hypothetical Model of Crossing Bombyx mori Nucleopolyhedrovirus through Its Host Midgut Physical Barrier

    Science.gov (United States)

    Cheng, Yang; Wang, Xue-Yang; Hu, Hao; Killiny, Nabil; Xu, Jia-Ping

    2014-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a primary pathogen of silkworm (B. mori) that causes severe economic losses each year. However, the molecular mechanisms of silkworm-BmNPV interactions, especially the silkworm proteins that can interact with the virus, are still largely unknown. In this study, the total and membrane proteins of silkworm midguts were displayed using one- and two-dimensional electrophoresis. A virus overlay assay was used to detect B. mori proteins that specifically bind to BmNPV particles. Twelve proteins were located and identified using mass spectrometry, and the different expression of the corresponding genes in BmNPV susceptible and resistant silkworm strains also indicated their involvement in BmNPV infection. The 12 proteins are grouped based on their potential roles in viral infection, for example, endocytosis, intracellular transportation, and host responses. Based on these results, we hypothesize the following: I) vacuolar ATP synthase catalytic subunit A and subunit B may be implicated in the process of the membrane fusion of virus and the release of the nucleocapsid into cytoplasm; II) actin, enolase and phosphoglycerate kinase are cytoskeleton associated proteins and may play an important role in BmNPV intracellular transportation; III) mitochondrial prohibitin complex protein 2, ganglioside-induced differentiation-associated protein, calreticulin, regucalcin-like isoform X1 and 60 kDa heat shock protein are involved in cell apoptosis regulation during BmNPV infection in larvae midguts; IV) ribosomal P0 may be associated with BmNPV infection by regulating gene expression of BmNPV; V) arginine kinase has a role in the antiviral activities against BmNPV. Our work should prove informative by providing multiple protein targets and a novel direction to investigate the molecular mechanisms of the interactions between silkworms and BmNPV. PMID:25502928

  11. V-ATPase Is Involved in Silkworm Defense Response against Bombyx mori Nucleopolyhedrovirus.

    Directory of Open Access Journals (Sweden)

    Peng Lü

    Full Text Available Silkworms are usually susceptible to the infection of Bombyx mori (B. mori nucleopolyhedrovirus (BmNPV, which can cause significant economic loss. However, some silkworm strains are identified to be highly resistant to BmNPV. To explore the silkworm genes involved in this resistance in the present study, we performed comparative real-time PCR, ATPase assay, over-expression and sub-cellular localization experiments. We found that when inoculated with BmNPV both the expression and activity of V-ATPase were significantly up-regulated in the midgut column cells (not the goblet cells of BmNPV-resistant strains (NB and BC8, the main sites for the first step of BmNPV invasion, but not in those of a BmNPV-susceptible strain 306. Furthermore, this up-regulation mainly took place during the first 24 hours post inoculation (hpi, the essential period required for establishment of virus infection, and then was down-regulated to normal levels. Amazingly, transient over-expression of V-ATPase c subunit in BmNPV-infected silkworm cells could significantly inhibit BmNPV proliferation. To our knowledge this is the first report demonstrating clearly that V-ATPase is indeed involved in the defense response against BmNPV. Our data further suggests that prompt and potent regulation of V-ATPase may be essential for execution of this response, which may enable fast acidification of endosomes and/or lysosomes to render them competent for degradation of invading viruses.

  12. Kinetic analysis of in vitro production of wild-type Spodoptera frugiperda nucleopolyhedrovirus

    Directory of Open Access Journals (Sweden)

    Andréa Farias de Almeida

    2010-04-01

    Full Text Available In this study, the kinetic behavior of Sf9 and Sf21 cells used in the production of a baculovirus biopesticide to control the pest of corn Spodoptera frugiperda was analyzed. Kinetic variables such as maximum specific growth rate, cell productivity, mean rate of infection, as well as the mean rate of occlusion body production were determined during the infection of these cell-lines with the extracellular virus of the S. frugiperda nucleopolyhedrovirus (SfMNPV. The Sf9 cell-line resulted in better viral production results (5.0 x 10(8 OB/mL than the Sf21 cell-line (2.5 x 10(8 OB/mL.Neste trabalho, analisou-se o comportamento cinético das células Sf9 e Sf21 utilizadas na produção de biopesticida para o controle de Spodoptera frugiperda. Variáveis cinéticas, como velocidade específica máxima de crescimento, produtividade em células, velocidade média de infecção e a velocidade média de produção de OB foram determinadas durante a infecção destas linhagens com o vírus extracelular do nucleopoliedrovirus de S. frugiperda. A linhagem Sf9 resultou em melhores resultados de produção do baculovírus (5 x 10(8 OB/mL, quando comparada à linhagem Sf21 (2,5 x 10(8 OB/mL e outras linhagens da literatura.

  13. Nucleopolyhedrovirus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine.

    Science.gov (United States)

    Hewson, Ian; Brown, Julia M; Gitlin, Shari A; Doud, Devin F

    2011-07-01

    Viruses in aquatic ecosystems comprise those produced by both autochthonous and allochthonous host taxa. However, there is little information on the diversity and abundance of viruses of allochthonous origin, particularly from non-anthropogenic sources, in freshwater and marine ecosystems. We investigated the presence of nucleopolyhedroviruses (NPV) (Baculovirus), which commonly infect terrestrial lepidopteran taxa, across the landscape of Appledore Island, Gulf of Maine. PCR and qPCR primers were developed around a 294-bp fragment of the polyhedrin (polH) gene, which is the major constituent protein of NPV multivirion polyhedral occlusion bodies. polH was successfully amplified from several aquatic habitats, and recovered polH sequences were most similar to known lepidopteran NPV. Using quantitative PCR designed around a cluster of detected sequences, we detected polH in Appledore Island soils, supratidal freshwater ponds, nearshore sediments, near- and offshore plankton, and in floatsam. This diverse set of locations suggests that NPVs are widely dispersed along the terrestrial--marine continuum and that free polyhedra may be washed into ponds and eventually to sea. The putative hosts of detected NPVs were webworms (Hyphantria sp.) which form dense nests in late summer on the dominant Appledore Island vegetation (Prunus virginiana). Our data indicate that viruses of terrestrial origin (i.e., allochthonous viruses) may be dispersed widely in coastal marine habitats. The dispersal of NPV polH and detection within offshore net plankton (>64 μm) demonstrates that terrestrial viruses may interact with larger particles and plankton of coastal marine ecosystem, which further suggests that viral genomic information may be transported between biomes.

  14. Nanoscale Origins of the Size Effect in the Compression Response of Single Crystal Ni-Base Superalloy Micro-Pillars

    Directory of Open Access Journals (Sweden)

    Siqi Ying

    2018-04-01

    Full Text Available Nickel superalloys play a pivotal role in enabling power-generation devices on land, sea, and in the air. They derive their strength from coherent cuboidal precipitates of the ordered γ’ phase that is different from the γ matrix in composition, structure and properties. In order to reveal the correlation between elemental distribution, dislocation glide and the plastic deformation of micro- and nano-sized volumes of a nickel superalloy, a combined in situ nanoindentation compression study was carried out with a scanning electron microscope (SEM on micro- and nano-pillars fabricated by focused ion beam (FIB milling of Ni-base superalloy CMSX4. The observed mechanical response (hardening followed by softening was correlated with the progression of crystal slip that was revealed using FIB nano-tomography and energy-dispersive spectroscopy (EDS elemental mapping. A hypothesis was put forward that the dependence of material strength on the size of the sample (micropillar diameter is correlated with the characteristic dimension of the structural units (γ’ precipitates. By proposing two new dislocation-based models, the results were found to be described well by a new parameter-free Hall–Petch equation.

  15. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

    2006-01-01

    The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

  16. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  17. Laws of evolution of slip trace pattern and its parameters with deformation in [1.8.12] – single crystals of Ni{sub 3}Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of the distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.

  18. Single-layer and double-layer microwave absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Zhongzhu, E-mail: wangzz@ahu.edu.cn [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Peihong; Liao, Yanlin [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Bi, Hong [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China)

    2017-03-01

    Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were synthesized by hydrothermal method. The complex permeability and complex permittivity of the as-prepared powders dispersing in wax (60 wt% powder) were measured using a vector network analyzer in 2–18 GHz frequency range. The calculated microwave absorption of single-layer and double-layer absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were analyzed in 2–18 GHz frequency range. The results show that the Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}nanocrystals with the relatively low permittivity and Co{sub 67}Ni{sub 33} microspheres with the relatively high dielectric loss and magnetic loss can be used as proper matching layer and excellent absorption layer, respectively. The double-layer absorber with a coating thickness of 2.1 mm exhibits a maximum reflection loss of −43.8 dB as well as a bandwidth (reflection loss less than −10 dB) of 5 GHz. Moreover, their absorption peak and the absorption intensity can be adjusted easily through changing the stacking order and each layer thickness. - Highlights: • Ni-Zn ferrite nanocrystals can use as matching layer in double-layer absorbers. • Co{sub 67}Ni{sub 33} microspheres with high dielectric loss can use as absorption layer. • Double-layer absorbers exhibits an excellent microwave absorption in 2–18 GHz.

  19. Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach.

    Science.gov (United States)

    Samaeeaghmiyoni, Vahid; Idrissi, Hosni; Groten, Jonas; Schwaiger, Ruth; Schryvers, Dominique

    2017-03-01

    Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation-controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis of Monodispersed Spherical Single Crystalline Silver Particles by Wet Chemical Process; Shisshiki kagakuho ni yoru tanbunsankyujo tankesshoginryushi no gose

    Energy Technology Data Exchange (ETDEWEB)

    Ueyama, Ryousuke.; Harada, Masahiro.; Ueyama, Tamotsu.; Harada, Akio. [Daiken Chemistry Industry Corporation, Osaka (Japan); Yamamoto, Takashi. [National Defence Academy, Kanagawa (Japan). Dept. of Electrical Engineering; Shiosaki, Tadashi. [Nara Institute of Science and Technology, Nara (Japan). Graduate School of Materials Science; Kuribayashi, Kiyoshi. [Teikyo University of Science and Technology, Yamanashi (Japan). Dept. of Materials

    1999-01-01

    Ultrafine silver monodispersed particle were prepared by wet chemical process. To decrease the reduction speed, an important factor in generating monodispersed particles is to control the following three factors: synthesis temperature, concentration of aggregation-relaxing agent added, and concentration of silver nitrate solution. Synthesis of monodispersed spherical Ag particles, used as metal powders for electrode, became possible using the nucleus grouwth reaction method. This process also allowed the control of the diameter of the powder particles. The silver particles were distributed in ta narrow particle diameter range with on average of 0.5 {mu}m. Transmission electron microscopy (TEM) revealed that single-crystalline silver particles were prepared by the present method. (author)

  1. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy

    International Nuclear Information System (INIS)

    Liu, L.R.; Jin, T.; Zhao, N.R.; Sun, X.F.; Guan, H.R.; Hu, Z.Q.

    2003-01-01

    Creep tests of a nickel-base single crystal superalloy with minor C addition and non-carbon were carried out at different temperatures and stresses. Correlations between microstructural change and testing temperature and stress were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the rafting microstucture and carbides precipitation. The results showed that minor carbon addition prolonged the second stage of creep strain curves and improved creep properties. Some carbide was precipitated during creep tests in modified alloy. M 23 C 6 carbide precipitated at lower temperature (871-982 deg. C), while (M 6 C) 2 carbide precipitated at higher temperature (>1000 deg. C), all of which was considered to be beneficial to creep properties. A small amount of MC carbide formed during solidification and its decomposition product (M 6 C) 1 were detrimental to mechanical properties, which together with micropores provided the site of initiation of cracks and led to the final fracture

  2. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    International Nuclear Information System (INIS)

    Kang, Won Kyung; Kurihara, Masaaki; Matsumoto, Shogo

    2006-01-01

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

  3. Effect of Low Angle Grain Boundaries on Mechanical Properties of DD5 Single Crystal Ni-base Superalloy

    Directory of Open Access Journals (Sweden)

    QIN Jianchao

    2017-06-01

    Full Text Available The effects of low angle grain boundaries on the mechanical properties of second generation single crystal superalloy DD5 were investigated and the test specimens were prepared by using seeds. The results show that at 870 ℃, the yield strength and breaking strength showed no difference when the angle is below 16.1°. The elongation is higher than 15% when the angle is below 11.4°, but the elongation decreases quickly when angle is above 11.4°. At 980 ℃/250 MPa, the rupture life is higher than 130 h when the angle is below 5.1°, and decreased slowly when the angle is above 5.1°. The rupture life still remaines 85% when the angle is 14.8°. But the rupture life decreases quickly when the angle is above 14.8°.At 1093 ℃/158 MPa, the rupture life is higher than 30 h when the angle is below 5.1°, and decreases when the angle is above 5.1°.

  4. Effect of single and double austenitization treatments on the microstructure and mechanical properties of 16Cr-2Ni steel

    Science.gov (United States)

    Balan, K. P.; Reddy, A. Venugopal; Sarma, D. S.

    1999-06-01

    Double austenitization (DA) treatment is found to yield the best combination of strength and toughness in both low-temperature as well as high-temperature tempered conditions as compared to single austenitization (SA) treatments. Obtaining the advantages of double austenitization (DA) to permit dissolution of alloy carbides without significant grain coarsening was attempted in AISI 431 type martensitic stainless steel. Structure-property correlation after low-temperature tempering (200 °C) as well as high-temperature double tempering (650+600 °C) was carried out for three austenitization treatments through SA at 1000 °C, SA at 1070 °C, and DA at 1070+1000 °C. While the increase in strength after DA treatment and low-temperature tempering at 200 °C is due to the increased amount of carbon in solution as a result of dissolution of alloy carbides during first austenitization, the increased toughness is attributable to the increased quantity of retained austenite. After double tempering (650+600 °C), strength and toughness are mainly found to depend on the precipitation and distribution of carbides in the microstructure and the grain size effect.

  5. Effect of holes on the room temperature tensile behaviors of thin wall specimens with (210) side surface of Ni-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.J.; Liu, T.; Pu, S. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Xu, H. [Materials Fatigue and Fracture Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Wang, L., E-mail: wangli@imr.ac.cn [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China); Lou, L.H. [Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang 110016 (China)

    2015-10-25

    Tensile properties of Ni-base single crystal superalloy plate specimens with and without a hole at room temperature were studied in the present paper. During the testing process, an ARAMIS system based on the digital image correlation technique and in-situ scanning electron microscopy were employed to in-situ observe the strain distribution and slip traces development on the sample surfaces. It was demonstrated that the yield stress was decreased with the appearance of a hole due to the stress concentration. The results were analyzed based on the stress and strain states of specimens and the slip traces development observed on specimen surfaces. - Graphical abstract: The strain distribution for samples without and with a hole, respectively. - Highlights: • Tensile tests of plate specimens without and with a hole were performed. • Surface strain fields were in-situ observed by ARAMIS system. • Slip traces development on sample surfaces was in-situ observed by SEM. • The hole deteriorated both the tensile strength and elongation of the samples. • Tensile strength of specimens without and with a hole was discussed respectively.

  6. Ganoderma-Like MoS2 /NiS2 with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst.

    Science.gov (United States)

    Guan, Yongxin; Feng, Yangyang; Wan, Jing; Yang, Xiaohui; Fang, Ling; Gu, Xiao; Liu, Ruirui; Huang, Zhengyong; Li, Jian; Luo, Jun; Li, Changming; Wang, Yu

    2018-05-27

    Herein, a unique ganoderma-like MoS 2 /NiS 2 hetero-nanostructure with isolated Pt atoms anchored is reported. This novel ganoderma-like heterostructure can not only efficiently disperse and confine the few-layer MoS 2 nanosheets to fully expose the edge sites of MoS 2 , and provide more opportunity to capture the Pt atoms, but also tune the electronic structure to modify the catalytic activity. Because of the favorable dispersibility and exposed large specific surface area, single Pt atoms can be easily anchored on MoS 2 nanosheets with ultrahigh loading of 1.8 at% (the highest is 1.3 at% to date). Owing to the ganoderma-like structure and platinum atoms doping, this catalyst shows Pt-like catalytic activity for the hydrogen evolution reaction with an ultralow overpotential of 34 mV and excellent durability of only 2% increase in overpotential for 72 h under the constant current density of 10 mA cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    Science.gov (United States)

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  8. The influence of microstructure on the measurement of γ-γ'lattice mismatch in single-crystal Ni-base superalloys

    International Nuclear Information System (INIS)

    Faehrmann, M.; Wolf, J.G.; Pollock, T.M.

    1996-01-01

    Lattice mismatch in multicomponent high refractory single-crystalline Ni-base superalloys has been measured in situ by hot-stage X-ray diffraction. Prior to X-ray examination, all samples were subjected to long-term aging treatments at 1120 C to relieve coherency stresses. The resolution of the individual γ and γ' peaks at high Bragg angles in the X-ray spectra and the magnitude of the misfit was found to be sensitive to the microstructure of the material. When the precipitation of coherent γ' during cooling from the aging temperature could largely be suppressed, the corresponding matrix peaks were narrower and of higher intensity as compared with samples where cooling γ'was present. Also, a slightly larger misfit, 0.04%, was measured in the microstructures where the cooling γ' was not present. Procedures for deconvoluting X-ray data are outlined in detail, and the experimental results are discussed in terms of changes in phase compositions and misfit strains produced by the cooling γ'. (orig.)

  9. Special cases of martensite compatibility: A near single-variant habit-plane and the martensite of nanocrystalline NiTi

    Directory of Open Access Journals (Sweden)

    Petersmann Manuel

    2015-01-01

    Full Text Available Lattice parameters measured near the high temperature (~1000°C bcc α to hcp β transformation in an intermetallic Mo-containing γ-TiAl based alloy indicate a middle valued eigenvalue of the corresponding deformation gradient near 1. Habit-planes calculated under the assumption of a simple slip as lattice invariant shear, agree with experimentally determined orientations of the lens like plates recorded via electron backscattering. By contrast, twinning as invariant lattice shear has been investigated in nanocrystalline NiTi. Here the grain size causes the formation mechanism of the martensite to change from a “herring-bone” morphology faciliting a habit-plane between two twinned laminates and the austenite to a single laminate, which in the nonlinear theory formally cannot form a habit-plane with the austenite. Since this might cause high accommodation strains, the effectiveness of stress accommodation of martensite formed in neighboring grains of a polycrystal is investigated. Subsequent numerical microstructural modeling is outlined. The resulting energetically most favorable transformation sequence yields the transformation kinetics.

  10. Synthesis of a single phase of high-entropy Laves intermetallics in the Ti-Zr-V-Cr-Ni equiatomic alloy

    Science.gov (United States)

    Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.

    2017-12-01

    The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.

  11. The ternary Ni—Al—Co embedded-atom-method potential for γ/γ' Ni-based single-crystal superalloys: Construction and application

    International Nuclear Information System (INIS)

    Du Jun-Ping; Wang Chong-Yu; Yu Tao

    2014-01-01

    An Ni—Al—Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni 3 Al) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, Al) random solid solutions are calculated as a function of the concentrations of Co and Al. The calculated SFEs decrease with increasing concentrations of Co and Al, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co

  12. One-Step Condensation and Hydrogenation of Furfural-Acetone Using Mixed and Single Catalyst Based on Ni/M-Oxide [M=Al; Mg

    Science.gov (United States)

    Ulfa, S. M.; Pramesti, I. N.; Mustafidah, H.

    2018-01-01

    Modification of furfural by condensation and hydrogenation reaction is a promising approach to produce higher alkane derivatives (C8-C13) as diesel fraction. This research investigated the catalytic activity of Ni/MgO as bifunctional catalyst compared with MgO-Ni/Al2O3 mixed catalyst for condensation-hydrogenation reaction. The Ni/MgO and Ni/Al2O3 with 20% Ni loading were prepared by wet impregnation methods using Ni(NO3)2.6H2O salt, calcined and reduced at 500°C. The catalyst performance was tested for one-step condensation-hydrogenation reaction using autoclave oil batch reactor. The reaction was conducted by reacting furfural and acetone in 1:1 ratio using water as solvent. Condensation reaction was performed at 100°C for 8 hours, followed by hydrogenation at 120°C during 7 hours. Analysis by gas chromatography showed that C=C double bond of furfurylidene acetone were successfully hydrogenated. Using Ni/MgO catalyst at 120°C, the products were identified as 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (2.68%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (trace amount). On the other hand, reaction using mixed catalyst, MgO-Ni/Al2O3 showed better activity over bifunctional Ni/MgO at the same reaction temperature. The products were identified as 4-(2-furanyl)-3-butan-2-one (27.30%); 1,5-bis-(2-furanyl)-1,4-penta-1-ene-3-one (3.82%) and 1,5-bis-(2-furanyl)-1,4-pentan-3-one (1.11%). The impregnation of Ni on MgO decrease the physical properties of catalyst, confirmed by surface area analysis (SAA).

  13. A new family of 1D exchange biased heterometal single-molecule magnets: observation of pronounced quantum tunneling steps in the hysteresis loops of quasi-linear {Mn2Ni3} clusters.

    Science.gov (United States)

    Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc

    2011-03-16

    First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

  14. The sf32 unique gene of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV is a non-essential gene that could be involved in nucleocapsid organization in occlusion-derived virions.

    Directory of Open Access Journals (Sweden)

    Inés Beperet

    Full Text Available A recombinant virus lacking the sf32 gene (Sf32null, unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV, was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac. Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration, speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.

  15. Numerical simulation on vacuum solution heat treatment and gas quenching process of a low rhenium-containing Ni-based single crystal turbine blade

    Directory of Open Access Journals (Sweden)

    Zhe-xin Xu

    2016-11-01

    Full Text Available Numerical heat-transfer and turbulent flow model for an industrial high-pressure gas quenching vacuum furnace was established to simulate the heating, holding and gas fan quenching of a low rhenium-bearing Ni-based single crystal turbine blade. The mesh of simplified furnace model was built using finite volume method and the boundary conditions were set up according to the practical process. Simulation results show that the turbine blade geometry and the mutual shielding among blades have significant influence on the uniformity of the temperature distribution. The temperature distribution at sharp corner, thin wall and corner part is higher than that at thick wall part of blade during heating, and the isotherms show a toroidal line to the center of thick wall. The temperature of sheltered units is lower than that of the remaining part of blade. When there is no shelteration among multiple blades, the temperature distribution for all blades is almost identical. The fluid velocity field, temperature field and cooling curves of the single and multiple turbine blades during gas fan quenching were also simulated. Modeling results indicate that the loading tray, free outlet and the location of turbine blades have important influences on the flow field. The high-speed gas flows out from the nozzle is divided by loading tray, and the free outlet enhanced the two vortex flow at the end of the furnace door. The closer the blade is to the exhaust outlet and the nozzle, the greater the flow velocity is and the more adequate the flow is. The blade geometry has an effect on the cooling for single blade and multiple blades during gas fan quenching, and the effects in double layers differs from that in single layer. For single blade, the cooing rate at thin-walled part is lower than that at thick-walled part, the cooling rate at sharp corner is greater than that at tenon and blade platform, and the temperature at regions close to the internal position is

  16. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy

    International Nuclear Information System (INIS)

    Fu, Zhiqiang; Chen, Weiping; Wen, Haiming; Zhang, Dalong; Chen, Zhen; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.

    2016-01-01

    We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (∼130–700 MPa). Compared to those of the bulk coarse-grained (CG) Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co 25 Ni 25 Fe 25 Al 7.5 Cu 17.5 HEA.

  17. A study of the magnetic resonance in a single-crystal Ni50.47Mn28.17Ga21.36 alloy

    International Nuclear Information System (INIS)

    Gavriljuk, V G; Dobrinsky, A; Shanina, B D; Kolesnik, S P

    2006-01-01

    The single-crystal non-stoichiometric magnetic shape memory alloy Ni 1-x-y Mn x Ga y with x = 0.2817, y = 0.2136 is studied using magnetic resonance spectroscopy: ferromagnetic resonance (FMR) and conduction electron spin resonance (CESR). The temperature dependence of the integral intensity, the resonance field and the line-width are measured across the wide temperature interval from 4.2 to 570 K. Three phase transformations are found in this alloy: paramagnetic ↔ ferromagnetic with a Curie temperature of 360 K, austenite-to-martensite (direct with T ms = 312 K and reverse with T as = 313 K), and a transformation at T = 45 K, suggestive of the spin-glass state. The angular dependence of the FMR signals is measured in the martensitic and austenitic states before and after the martensite-to-austenite transition. The experimental data are used for determination of the magnetization M m and anisotropy parameters K 1 and K 2 in the martensitic state. The obtained coefficient K 2 is determined to be not small and, moreover, it is comparable with K 1 . The temperature dependence of the resonance signals is also investigated at temperatures significantly higher than T C , where FMR was transformed to CESR. In the paramagnetic austenitic state (above T C ) the alloy reveals an extremely intensive signal of CESR, which suggests a high concentration of conduction electrons and correlates with the large value of the magnetic-field-induced strain observed in the alloys of such composition. The temperature dependence of the skin layer depth is found from the sharp decay of the CESR signal with temperature, which is related to the disappearing large magnetic resistance after transformation to the paramagnetic state

  18. Carbonized polydopamine coated single-crystalline NiFe2O4 nanooctahedrons with enhanced electrochemical performance as anode materials in a lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Xinxin; Zhang, Tong; Qu, Yue; Tian, Ge; Yue, Huijuan; Zhang, Dong; Feng, Shouhua

    2017-01-01

    Graphical abstract: NiFe 2 O 4 @ NCweresuccessfullyfabricatedviaasubsequentcarbonizationofpolydopamine.(*) A nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance. - Highlights: • NiFe 2 O 4 nanooctahedrons were synthesized by a facile hydrothermal process. • A phase formation mechanism was studied by time-dependent experiments. • NiFe 2 O 4 with N-doped carbon shell was fabricated via carbonization of polydopamine. • NiFe 2 O 4 @NC 20 showed the best rate capability and cycle stability. - Abstract: Combining nanostructure engineering with conductive carbonaceous material is a promising strategy to obtain high-performance lithium ion batteries (LIBs). In this work, spinel NiFe 2 O 4 nanooctahedrons were initially synthesized at a low temperature without further annealing. We investigated the phase formation mechanism by time-dependent experiments. Next, octahedral NiFe 2 O 4 with a nitrogen-doped carbon shell (NiFe 2 O 4 @NC) were successfully fabricated via a subsequent carbonization of polydopamine (PDA). We systematically varied the dopamine content in the NiFe 2 O 4 /carbon nanocomposites and found that a nanocomposite containing 20% mass fraction of dopamine exhibited enhanced lithium ion battery performance with high reversible cycle capacity and good rate retention performance compared with the pure material. Remarkably, the hybrid nanocomposite delivered a high reversible capacity of 1297 mAh g −1 even after 50 cycles at a current density of 100 mA g −1 . Additionally, a high capacity of 1204 mAh g −1 was retained at a high current density of 500 mA g −1 after 300 cycles. This improvement in electrochemical performance is attributed to the enhanced structural stability and electrical conductivity caused by the carbon layer, and is supported by TEM and EIS measurements.

  19. Magnetic excitations in single crystals of Cu1-xNixGeO3

    DEFF Research Database (Denmark)

    Coad, S.; Petrenko, O.; Paul, D.M.

    1997-01-01

    Ni2+ is substituted for Cu2+ in CuGeO3, the 1D chains are broken into finite segments, suppressing the S-P phase and inducing a tow-temperature transition to coexistence with antiferromagnetic order. We show that for the 1.7% Ni-doped crystal the S-P gap is renormalised to approximate to 1.7 me...

  20. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: Defective nuclear transport of the virions

    International Nuclear Information System (INIS)

    Katou, Yasuhiro; Ikeda, Motoko; Kobayashi, Michihiro

    2006-01-01

    Despite close genetic relationship, Bombyx mori nucleopolyhedrovirus (BmNPV) and Autographa californica multicapsid NPV (AcMNPV) display a distinct host range property. Here, BmNPV replication was examined in Sf9 and High Five cells that were nonproductive for BmNPV infection but supported high titers of AcMNPV replication. Recombinant BmNPV, vBm/gfp/lac, containing bm-ie1 promoter-driven egfp showed that few Sf9 and High Five cells infected with vBm/gfp/lac expressed EGFP, while large proportion of EGFP-expressing cells was observed when transfected with vBm/gfp/lac DNA. Immunocytochemical analysis showed that BmNPV was not imported into the nucleus of these two cell lines, while recombinant BmNPV, vBmΔ64/ac-gp64 possessing AcMNPV gp64 was imported into the nucleus, yielding progeny virions in High Five cells, but not Sf9 cells. These results indicate that the defective nuclear import of infected virions due to insufficient BmNPV GP64 function is involved in the restricted BmNPV replication in Sf9 and High Five cells

  1. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  2. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus.

    Science.gov (United States)

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Lv, Peng; Lian, Chaoqun; Chen, Keping

    2013-05-01

    Orf91 (Bm91) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes a predicted 105-amino-acid protein, but its function remains unknown. In the current study, 5'-RACE revealed that the transcription initiation site of Bm91 was - 12 nucleotides upstream of the start codon ATG, transcription of Bm91 was detected from 12 to 96 h postinfection (p.i.) and Bm91 protein was detected from 24 to 96 h p.i. in BmNPV-infected BmN cells. Furthermore, Western blot analysis revealed that Bm91 was in occlusion-derived virus (ODV) but not in budded virus (BV). To investigate the role of Bm91 in baculovirus life cycle, a Bm91-knockout virus was constructed by bacmid recombination in E. coli. Fluorescence and light microscopy showed that the production of BV and occlusion bodies (OBs) in Bm91-deficient-virus-infected BmN cells were similar to those in wild-type-virus-infected ones. Bioassay results showed that genetic deletion of Bm91 did not significantly affect BmNPV infectivity, but extended the median lethal time (LT50). Taken together, these results indicate that Bm91 is not essential for viral propagation in vitro, but absence of the gene may affect the virulence of ODVs in silkworm larvae. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The Bombyx mori nucleopolyhedrovirus (BmNPV) ODV-E56 envelope protein is also a per os infectivity factor.

    Science.gov (United States)

    Xiang, Xingwei; Chen, Lin; Guo, Aiqin; Yu, Shaofang; Yang, Rui; Wu, Xiaofeng

    2011-01-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) odv-e56 gene is a late gene and encodes an occlusion-derived virus (ODV)-specific envelope protein, ODV-E56. To determine its role in the BmNPV life cycle, an odv-e56 null virus, BmE56D, was constructed through homologous recombination. A repaired virus was also constructed, named BmE56DR. The production of budded virion (BV) and polyhedra, the replication of viral DNA, and the morphological of infected BmN cells were analyzed, revealing no significant difference among the BmE56D, the wild-type (WT), and the BmE56DR virus. Larval bioassays demonstrated that injection of BmE56D BV into the hemocoel could kill B. mori larvae as efficiently as repaired and WT viruses, however BmE56D was unable to infect the B. mori larvae when inoculated per os. Thus, these results indicated that ODV-E56 envelope protein of BmNPV is also a per os infectivity factor (PIF), but is not essential for virus replication. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    Science.gov (United States)

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  5. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  6. Reactive Ni/Ti nanolaminates

    International Nuclear Information System (INIS)

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-01-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between ∼0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T ig )∼300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T ig . Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19 ' NiTi (martensite), hexagonal NiTi 2 , and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  7. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Cheng, Yuxian; Yang, Lanlan; Bao, Zebin; Liu, Li; Zhu, Shenglong; Wang, Fuhui

    2017-01-01

    Highlights: •Hot corrosion of three metallic coatings was investigated. •NiCrAlY coating loses protectiveness against hot corrosion due to scale spallation. •The two nanocrystalline coatings perform better than NiCrAlY in hot corrosion. •Ta oxidation leads to scale pitting and corrosion of the nanocrystalline coating. •Y addition in the nanocrystalline coating reduces such harmful effect of Ta. -- Abstract: Hot corrosion in sulfate salt at 850 °C of three metallic coatings is investigated comparatively. The NiCrAlY coating loses its protectiveness after 200 h corrosion. Its oxide scale spalls off partly and becomes porous as a consequence of basic fluxing. The nanocrystalline coating (SN) performs better than the NiCrAlY one, but its scale is porous as well. Oxidation and/or sulfidation of Ta account for the formation of pores. The yttrium modified nanocrystalline coating (SNY) provides the highest corrosion resistance. Yttrium completely inhibits oxidation and sulfidation of Ta. Its scale is intact and adherent, and exclusively composted of alumina.

  8. Electrosynthesised metal (Ni, Fe, Co) oxide films on single-walled carbon nanotube platforms and their supercapacitance in acidic and neutral pH media

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-07-01

    Full Text Available of the modified electrodes in H2SO4 and Na2SO4 electrolytes was investigated using cyclic voltammetry (CV), galvanostatic constant current charge-discharge (CD) and the electrochemical impedance spectroscopy (EIS) techniques. SWCNT-NiO nanocomposite modified...

  9. Dose responses of in vivo- and in vitro-produced strains of gypsy moth (Lepidoptera: Lymantriidae) nucleopolyhedrovirus (LdMNPV) applied with and without the virus enhancer Blankophor BBH

    Science.gov (United States)

    John D. Podgwaite; James M. Slavicek; Kevin W. Thorpe; Ralph E. Webb; Roger W. Fuester; Vincent D' Amico; Randel A. Peiffer; Michael A. Valenti

    2013-01-01

    The gypsy moth, Lymantria dispar L., nucleopolyhedrovirus (LdMNPV) product Gypchek is a microbial pesticide produced by the USDA Forest Service. Gypchek is a mixture of LdMNPV genotypes produced in vivo. Commercial interests prefer to develop a stable, high-potency genotype that can be produced at low cost, preferably in vitro. We sprayed 2 LdMNPV...

  10. Single-step Preparation of Nano-homogeneous NiO/YSZ Comp osite Ano de for Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Song; Mi Young Park; Hye Won Park; Hyung-Tae Lim

    2013-01-01

    Homogeneous co-precipitation and hydrothermal treatment were used to prepare nano-and highly dispersed NiO/YSZ (yttria-stabilized zirconia) composite powders. Composite powders of size less than 100 nm were successfully prepared. This process did not require separate sintering of the YSZ and NiO to be used as the raw materials for solid oxide fuel cells. The performance of a cell fabricated using the new powders (max. power density∼0.87 W/cm2) was higher than that of a cell fabricated using conventional powders (max. power density∼0.73 W/cm2). Co-precipitation and hydrothermal treatment proved to be very effective processes for reducing cell production costs as well as improving cell performance.

  11. Structure and microstructure of Ni-Mn-Ga single crystal exhibiting magnetic shape memory effect analysed by high resolution X-ray diffraction

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Cejpek, P.; Drahokoupil, Jan; Holý, V.

    2016-01-01

    Roč. 115, Aug (2016), s. 250-258 ISSN 1359-6454 R&D Projects: GA ČR GA13-30397S; GA ČR GA15-00262S Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic shape memory effect * X-ray diffraction * structure of Ni-Mn-Ga Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.301, year: 2016

  12. Effect of Individual and Combined Treatment with Azadirachtin and Spodoptera littoralis Multicapsid Nucleopolyhedrovirus (SpliMNPV, Baculoviridae on the Egyptian Cotton Leafworm Spodoptera littoralis (Boisduval (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    El-Sayed H. Shaurub

    2014-12-01

    Full Text Available The tetranortriterpenoid, azadirachtin, and the entomopathogenic virus, nucleopolyhedrovirus, are used as safe and new control measures for combating agricultural insect pests instead of the use of synthetic insecticides. They can be mixed together as an integrated pest management strategy. Thus, the current investigation was designed to determine the mortality, duration and weight gain of Spodoptera littoralis (Boisduval (Lepidoptera: Noctuidae larvae, and the yield of Spodoptera littoralis multicapsid nucleopolyhedrovirus (SpliMNPV (Baculoviridae when the fourth larval instars were treated individually with the LC50 of azadirachtin and of SpliMNPV, and in combination with each other using the LC25, compared to non-treated larvae (control. The results obtained showed that combined treatment significantly enhanced the larval mortality by about 58.40 %, i.e. potentiation. Both individual and combined treatment significantly decreased the larval weight gain, whereas the larval duration was significantly increased, with the highest change in case of combined treatment. Azadirachtin–NPV mixture significantly decreased the viral yield (number of polyhedral inclusion bodies/g fresh larval body weight by about 36.05 % compared to the individual treatment with the NPV. It can be concluded that although azadirachtin enhanced the pathogenicity (% larval kill of SpliMNPV to S. littoralis, azadirachtin–SpliMNPV mixture is unlikely to be useful for the mass production of this viral isolate. Thus, these laboratory observations require validation in field studies under commercial growing conditions.

  13. Production of recombinant Bombyx mori nucleopolyhedrovirus in silkworm by intrahaemocoelic injection with invasive diaminopimelate auxotrophic Escherichia coli containing BmNPV-Bacmid.

    Science.gov (United States)

    Sun, Jingchen; Yao, Lunguang; Yao, Ning; Xu, Hua; Jin, Pengfei; Kan, Yunchao

    2010-12-01

    The present study elaborates a cost-effective and transfectant-free method for generating recombinant Bombyx mori (silkworm) nucleopolyhedrovirus in silkworm larvae and pupae by injecting invasive Escherichia coli carrying BmBacmid [BmNPV (B. mori nucleopolyhedrovirus)-Bacmid] into larval haemocoel. Up to 109 PFU (plaque-forming units)/ml of infective recombinant baculovirus was generated in the silkworm by intrahaemocoelic injection with 106 DAP (diaminopimelic acid) auxotrophic and BmBacmid containing E. coli cells expressing both invasin and listeriolysin. Thus 1 ml of overnight culture of E. coli is sufficient to inject more than 2000 larvae, while DAP costing up to $1 is enough to inject about 4000 larvae. Recombinant proteins can be controlled to be expressed mainly in pupae by adjusting the injection dose, too. In this new method, many original manipulations have been eliminated, including BmBacmid preparation and the subsequent complex transfection procedures. Hence it is a time- and cost-saving means for large-scale injection of B. mori for recombinant baculovirus production in comparison with the traditional transfection methods, which may play an important role in the industrial development of the BmNPV-silkworm bioreactor.

  14. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains.

    Science.gov (United States)

    Harrison, Robert L; Rowley, Daniel L; Keena, Melody A

    2016-06-01

    Isolates of the baculovirus species Lymantria dispar multiple nucleopolyhedrovirus have been formulated and applied to suppress outbreaks of the gypsy moth, L. dispar. To evaluate the genetic diversity in this species at the genomic level, the genomes of three isolates from Massachusetts, USA (LdMNPV-Ab-a624), Spain (LdMNPV-3054), and Japan (LdMNPV-3041) were sequenced and compared with four previously determined LdMNPV genome sequences. The LdMNPV genome sequences were collinear and contained the same homologous repeats (hrs) and clusters of baculovirus repeat orf (bro) gene family members in the same relative positions in their genomes, although sequence identities in these regions were low. Of 146 non-bro ORFs annotated in the genome of the representative isolate LdMNPV 5-6, 135 ORFs were found in every other LdMNPV genome, including the 37 core genes of Baculoviridae and other genes conserved in genus Alphabaculovirus. Phylogenetic inference with an alignment of the core gene nucleotide sequences grouped isolates 3041 (Japan) and 2161 (Korea) separately from a cluster containing isolates from Europe, North America, and Russia. To examine phenotypic diversity, bioassays were carried out with a selection of isolates against neonate larvae from three European gypsy moth (Lymantria dispar dispar) and three Asian gypsy moth (Lymantria dispar asiatica and Lymantria dispar japonica) colonies. LdMNPV isolates 2161 (Korea), 3029 (Russia), and 3041 (Japan) exhibited a greater degree of pathogenicity against all L. dispar strains than LdMNPV from a sample of Gypchek. This study provides additional information on the genetic diversity of LdMNPV isolates and their activity against the Asian gypsy moth, a potential invasive pest of North American trees and forests. Published by Elsevier Inc.

  15. P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

    Science.gov (United States)

    Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko

    2017-04-02

    We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Deletion Genotypes Reduce Occlusion Body Potency but Increase Occlusion Body Production in a Colombian Spodoptera frugiperda Nucleopolyhedrovirus Population

    Science.gov (United States)

    Barrera, Gloria; Williams, Trevor; Villamizar, Laura; Caballero, Primitivo; Simón, Oihane

    2013-01-01

    A Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host. PMID:24116220

  17. Comparative proteomics analysis of apoptotic Spodoptera frugiperda cells during p35 knockout Autographa californica multiple nucleopolyhedrovirus infection.

    Science.gov (United States)

    Yu, Qian; Xiong, Youhua; Liu, Jianliang; Wang, Qin; Qiu, Yuanxin; Wen, Dongling

    2016-06-01

    Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Proteomics of the 26S proteasome in Spodoptera frugiperda cells infected with the nucleopolyhedrovirus, AcMNPV.

    Science.gov (United States)

    Lyupina, Yulia V; Zatsepina, Olga G; Serebryakova, Marina V; Erokhov, Pavel A; Abaturova, Svetlana B; Kravchuk, Oksana I; Orlova, Olga V; Beljelarskaya, Svetlana N; Lavrov, Andrey I; Sokolova, Olga S; Mikhailov, Victor S

    2016-06-01

    Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 β subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transmission of Different Nucleopolyhedroviruses by Two Ectoparasitoids – Bracon hebetor Say (Hymenoptera: Braconidae and Euplectrus plathypenae (Howard (Hymenoptera: Eulophidae

    Directory of Open Access Journals (Sweden)

    Emanouela E. Stoianova

    2010-01-01

    Full Text Available The transmission of nucleopolyhedroviruses (NPVs of Autographa gamma (AgNPV,Mamestra brassicae (MbNPV, Lacanobia oleraceae (LoNPV, Helicoverpa armigera (HaNPVand Xantia c-nigrum (XnNPV to their relevant larvae by the ectoparasitoid Bracon hebetorand the transmission of the multiple-enveloped NPVs of Spodoptera exigua (SeMNPV andSpodoptera frugiperda (SfMNPV by the ectoparasitoid Euplectrus plathypenae was examined.Two methods of contamination of the both parasitoids (exposure to infected hostsand total body surface and two subsequent transmissions of the viruses by Bracon hebetorto healthy hosts were tested. The results showed that both parasitoids were capable tobe mechanical vectors of the tested NPVs. Every Bracon hebetor female was able to transmitsubsequently twice the virus in 27% to 52.2% of the five Noctuidae species by preliminaryexposing to infected larvae. The second method of contamination (applying virus suspensionto the total body surface of the parasitoid was also efficient causing virus infection inbetween 29.4% and 54.15% of the larvae.The parasitoid E. plathypenae transmited the virus from infected to noninfected larvaein 20% and 25.57% of the S. frugiperda and S. exigua larvae, and 6.43% and 11.10%, respectivelyof them died from the virus infection. The same observation was established by thesecond method of contamination – respectively 33.33% and 40% infection and between13.23% and 16.67% mortality. The mortality of all tested larvae exposed to virus contaminated parasitoids was higherwhen the parasitoid entire body surface had been artificially contaminated with the virusthan when the parasitoid itself was previously allowed to oviposit the larvae.

  20. The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene.

    Science.gov (United States)

    Durantel, D; Croizier, L; Ayres, M D; Croizier, G; Possee, R D; López-Ferber, M

    1998-03-01

    Autographa californica nucleopolyhedrovirus (AcMNPV) ORF 86, located within the HindIII C fragment, potentially encodes a protein which shares sequence similarity with two T4 bacteriophage gene products, RNA ligase and polynucleotide kinase. This AcMNPV gene has been designated pnk/pnl but has yet to be assigned a function in virus replication. It has been classified as an immediate early virus gene, since the promoter was active in uninfected insect cells and mRNA transcripts were detectable from 4 to 48 h post-infection and in the presence of cycloheximide or aphidicolin in virus-infected cells. The extremities of the transcript have been mapped by primer extension and 3' RACE-PCR to positions -18 from the translational start codon and +15 downstream of the stop codon. The function of pnk/pnl was investigated by producing a recombinant virus (Acdel86lacZ) with the coding region replaced with that of lacZ. This virus replicated normally in Spodoptera frugiperda (Sf 21) cells, indicating that pnk/pnl is not essential for propagation in these cells. Virus protein production in Acdel86lacZ-infected Sf 21 cells also appeared to be unaffected, with normal synthesis of the IE-1, GP64, VP39 and polyhedrin proteins. Shut-down of host protein synthesis was not abolished in recombinant infection. When other baculovirus genomes were examined for the presence of pnk/pnl by restriction enzyme digestion and PCR, a deletion was found in AcMNPV 1.2, Galleria mellonella NPV (GmMNPV) and Bombyx mori NPV (BmNPV), suggesting that in many isolates this gene has either never been acquired or has been lost during genome evolution. This is one of the first baculovirus immediate early genes that appears to be nonessential for virus survival.

  1. Entry into Midgut Epithelial Cells is a Key Step in the Selection of Genotypes in a Nucleopolyhedrovirus

    Institute of Scientific and Technical Information of China (English)

    Gabriel Clavijo; Trevor Williams; Delia Mu(n)oz; Miguel L(o)pez-Ferber; Primitivo Caballero

    2009-01-01

    An isolate of the Spodoptera frugiperda multiple nucleopolyhedrovirus comprises a stable proportion of deletion genotypes (e.g., SfNIC-C), that lack pif1 and pif2 rendering them noninfectious per os, and that survive by complementation with a complete genotype (SfNIC-B) in coinfected cells. To determine whether selection for particular ratios of complete and deletion genotypes occurs mainly during the establishment of the primary infection in insect midgut cells or during subsequent systemic infection, we examined genotype frequencies in insects that fed on OBs comprising different co-occluded mixtures of genotypes. Dramatic changes in genotype frequencies were observed between the OB inoculum and budded virus (BV) samples taken from larvae inoculated with OBs comprising 10% SfNIC-B + 90% SfNIC-C indicating that a marked reduction of SfNIC-C genotype had occurred in the insect midgut due to the immediate elimination of all OBs that originated from cells that had been infected only by SfNIC-C. In contrast, immediate changes were not observed in OBs comprising mixtures of 50% SfNIC-B + 50% SfNIC-C or those comprising 10% SfNIC-B + 90% SfNIC-C as most of the OBs in these mixtures originated from cells that had been infected by both genotypes. Subsequent changes in genotypic frequencies during five days of systemic infection were fairly small in magnitude for all genotypic mixtures. We conclude that the prevalence of defective genotypes in the SfNIC population is likely determined by a balance between host selection against OBs produced in cells infected by SfNIC-C alone and within-host selection for fast-replicating deletion genotypes. The strength of intra-host selection is likely modulated by changes in MOI during the infection period.

  2. Plutella xylostella granulovirus late gene promoter activity in the context of the Autographa californica multiple nucleopolyhedrovirus genome.

    Science.gov (United States)

    Ren, He-Lin; Hu, Yuan; Guo, Ya-Jun; Li, Lu-Lin

    2016-06-01

    Within Baculoviridae, little is known about the molecular mechanisms of replication in betabaculoviruses, despite extensive studies in alphabaculoviruses. In this study, the promoters of nine late genes of the betabaculovirus Plutella xylostella granulovirus (PlxyGV) were cloned into a transient expression vector and the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, and compared with homologous late gene promoters of AcMNPV in Sf9 cells. In transient expression assays, all PlxyGV late promoters were activated in cells transfected with the individual reporter plasmids together with an AcMNPV bacmid. In infected cells, reporter gene expression levels with the promoters of PlxyGV e18 and AcMNPV vp39 and gp41 were significantly higher than those of the corresponding AcMNPV or PlxyGV promoters, which had fewer late promoter motifs. Observed expression levels were lower for the PlxyGV p6.9, pk1, gran, p10a, and p10b promoters than for the corresponding AcMNPV promoters, despite equal numbers of late promoter motifs, indicating that species-specific elements contained in some late promoters were favored by the native viral RNA polymerases for optimal transcription. The 8-nt sequence TAAATAAG encompassing the ATAAG motif was conserved in the AcMNPV polh, p10, and pk1 promoters. The 5-nt sequence CAATT located 4 or 5 nt upstream of the T/ATAAG motif was conserved in the promoters of PlxyGV gran, p10c, and pk1. The results of this study demonstrated that PlxyGV late gene promoters could be effectively activated by the RNA polymerase from AcMNPV, implying that late gene expression systems are regulated by similar mechanisms in alphabaculoviruses and betabaculoviruses.

  3. Development of a Recombination System for the Generation of Occlusion Positive Genetically Modified Anticarsia Gemmatalis Multiple Nucleopolyhedrovirus

    Directory of Open Access Journals (Sweden)

    Santiago Haase

    2015-03-01

    Full Text Available Anticarsia gemmatalis is an important pest in legume crops in South America and it has been successfully controlled using Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV in subtropical climate zones. Nevertheless, in temperate climates its speed of kill is too slow. Taking this into account, genetic modification of AgMNPV could lead to improvements of its biopesticidal properties. Here we report the generation of a two-component system that allows the production of recombinant AgMNPV. This system is based on a parental AgMNPV in which the polyhedrin gene (polh was replaced by a bacterial β-galactosidase (lacZ gene flanked by two target sites for the homing endonuclease I-PpoI. Co-transfection of insect cells with linearized (I-PpoI-digested parental genome and a transfer vector allowed the restitution of polh and the expression of a heterologous gene upon homologous recombination, with a low background of non-recombinant AgMNPV. The system was validated by constructing a recombinant occlusion-positive (polh+ AgMNPV expressing the green fluorescent protein gene (gfp. This recombinant virus infected larvae normally per os and led to the expression of GFP in cell culture as well as in A. gemmatalis larvae. These results demonstrate that the system is an efficient method for the generation of recombinant AgMNPV expressing heterologous genes, which can be used for manifold purposes, including biotechnological and pharmaceutical applications and the production of orally infectious recombinants with improved biopesticidal properties.

  4. Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population.

    Directory of Open Access Journals (Sweden)

    Gloria Barrera

    Full Text Available A Colombian field isolate (SfCOL-wt of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J. SfCOL-A was the most prevalent (71±2%; mean ± SE showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F. Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.

  5. Orientation-dependent Kondo resonance of the Ni{sub 2}(hfaa){sub 4}(bpm) and Mn{sub 2}(hfaa){sub 4}(bpm) single molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Schackert, Michael; Miyamachi, Toshio; Yamada, Toyokazu; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institut of Technology (Germany); Schramm, Frank; Ruben, Mario [Institut of Nanotechnology, Karlsruhe Institut of Technology (Germany)

    2011-07-01

    Single molecular magnets (SMM) attract much interest due to their potential applications in spintronics. We investigated metal organic molecules based on (hfaa){sub 4}(bpm) containing two 3d ions (Ni or Mn) using low temperature scanning tunneling microscopy (STM) at 1 K in ultra-high vacuum. In the bulk, the two metallic ions couple antiferromagnetically leading to an S=0 ground state. The Ni{sub 2} and Mn{sub 2} molecules were sublimed onto atomically clean Cu(100) surfaces resulting in two different absorptions configurations. Scanning tunneling spectroscopy (STS) with a high energy resolution of 0.3 meV showed a strong Kondo resonance on the position of the metal ions inside the molecules indicating that the hybridization of the local spins with the substrate is more efficient than their antiferromagnetic coupling. The Fano resonance showed a pronounced dependence on the adsorption geometry indicating different Kondo temperatures and q-parameters. This is explained by a adsorption dependent hybridization between SMM and the substrate.

  6. Single-crystal LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} as high performance cathode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environment Science and Engineering, Beijing 100081 (China); Wu, Borong, E-mail: wubr@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environment Science and Engineering, Beijing 100081 (China); Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials, Beijing 100081 (China); Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 (China); Mu, Daobin, E-mail: mudb@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environment Science and Engineering, Beijing 100081 (China); Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials, Beijing 100081 (China); Liu, Xiaojiang [Institute of Electric Engineering, China Academy of Engineering Physics, Mianyang 621900 (China); Peng, Yiyuan [Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education, Jiangxi Normal University, Nanchang 330022 (China); Xu, Hongliang; Liu, Qi; Gai, Liang [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environment Science and Engineering, Beijing 100081 (China); Wu, Feng [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environment Science and Engineering, Beijing 100081 (China); Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials, Beijing 100081 (China); Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 (China)

    2016-07-25

    Single-crystal nickel-high materials (ST-LNCMO) LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} have been synthesized using a versatile hydrothermal method. The as-prepared samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and selected area electron diffraction (SAED). The results show that the sample annealed at an optimized temperature of 850 °C reveals uniform fine well-crystallized single-particles with diameters of ~800 nm. Electrochemical data demonstrate that the cell using this nickel-high material as the cathode exhibits excellent performance. The sample displays a high capacity of 183.7 mA h·g{sup −1} at 36 mA·g{sup −1} (0.2 C) and excellent cycling stability at different rates. It yields an initial discharge capacity of 153.6 mA h·g{sup −1} at a rate of 10C-rate and a voltage of 2.8 V – 4.3 V. The sample also has an outstanding rate capacity at a high cut-off voltage (4.6 V). This superior performance is attributed to the merits of the single-crystal structure, which may be beneficial to the transportation of the Li{sup +} ion along the grain. - Highlights: • A single-crystal LiNi{sub 0.6}Co{sub 0.2}Mn{sub 0.2}O{sub 2} is prepared by a hydrothermal method. • A high discharge capacity of 183.7 mA h·g{sup −1} at 0.2 C and good cycling stability. • It yields an initial discharge capacity of 153.6 mA h·g{sup −1} at 10 C-rate under 2.8 V–4.3 V. • Superior electrochemical performance may be obtained attributed to the single-crystal structure.

  7. Bombyx mori nucleopolyhedrovirus (BmNPV) Bm64 is required for BV production and per os infection.

    Science.gov (United States)

    Chen, Lin; Shen, Yunwang; Yang, Rui; Wu, Xiaofeng; Hu, Wenjun; Shen, Guoxin

    2015-10-24

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf64 (Bm64, a homologue of ac78) is a core baculovirus gene. Recently, Li et al. reported that Ac78 was not essential for budded viruses (BVs) production and occlusion-derived viruses (ODVs) formation (Virus Res 191:70-82, 2014). Conversely, Tao et al. demonstrated that Ac78 was localized to the BV and ODV envelopes and was required for BV production and ODV formation (J Virol 87:8441-50, 2013). In this study, the function of Bm64 was characterized to determine the role of Bm64 in the BmNPV infection cycle. The temporal expression of Bm64 was examined using total RNA extracted from BmNPV-infected BmN cells at different time points by reverse-transcription PCR (RT-PCR) and 5' RACE analysis. To determine the functions of Bm64 in viral replication and the viral phenotype throughout the viral life cycle, a deletion virus (vBm(64KO)) was generated via homologous recombination in Escherichia coli. Viral replication and BV production were determined by real-time PCR. Electron microscopy was used to detect virion morphogenesis. The subcellular localization of Bm64 was determined by microscopy, and per os infectivity was used to determine its role in the baculovirus oral infection cycle. Viral plaque and titer assay results showed that a few infectious BVs were produced by vBm(64KO), suggesting that deletion of Bm64 affected BV production. Viral DNA replication was detected and polyhedra were observed in vBm(64KO)-transfected cells. Microscopy analysis revealed that Bm64 was predominantly localized to the ring zone of the nuclei during the infection cycle. Electron microscopy showed that Bm64 was not essential for the formation of ODVs or the subsequent occlusion of ODV into polyhedra. The per os infectivity results showed that the polyhedra of vBm(64KO) were unable to infect silkworm larvae. In conclusion, our results suggest that Bm64 plays an important role in BV production and per os infection, but is not required for viral DNA

  8. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  9. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    Science.gov (United States)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  10. The "11K" gene family members sf68, sf95 and sf138 modulate transmissibility and insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus.

    Science.gov (United States)

    Beperet, Inés; Simón, Oihane; Williams, Trevor; López-Ferber, Miguel; Caballero, Primitivo

    2015-05-01

    The "11K" gene family is notable for having homologs in both baculoviruses and entomopoxviruses and is classified as either type 145 or type 150, according to their similarity with the ac145 or ac150 genes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). One homolog of ac145 (sf138) and two homologs of ac150 (sf68 and sf95) are present in Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV). Recombinant bacmids lacking sf68, sf95 or sf138 (Sf68null, Sf95null and Sf138null, respectively) and the respective repair bacmids were generated from a bacmid comprising the complete virus genome. Occlusion bodies (OBs) of the Sf138null virus were ∼15-fold less orally infective to insects, which was attributed to a 100-fold reduction in ODV infectious titer. Inoculation of insects with Sf138null OBs in mixtures with an optical brightener failed to restore the pathogenicity of Sf138null OBs to that of the parental virus, indicating that the effects of sf138 deletion on OB pathogenicity were unlikely to involve an interaction with the gut peritrophic matrix. In contrast, deletion of sf68 and sf95 resulted in a slower speed-of-kill by 9h, and a concurrent increase in the yield of OBs. Phylogenetic analysis indicated that sf68 and sf95 were not generated after a duplication event of an ancestral gene homologous to the ac150 gene. We conclude that type 145 genes modulate the primary infection process of the virus, whereas type 150 genes appear to have a role in spreading systemic infection within the insect. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  12. L12-phase cutting during high temperature and low stress creep of a Re-containing Ni-base single crystal superalloy

    Czech Academy of Sciences Publication Activity Database

    Kostka, A.; Maelzer, G. (ed.); Eggeler, G.; Dlouhý, Antonín; Reese, S.; Mack, T.

    2007-01-01

    Roč. 42, č. 11 (2007), s. 3951-3957 ISSN 0022-2461 Institutional research plan: CEZ:AV0Z20410507 Keywords : nickel-base superalloys * single crystals * creep Subject RIV: JG - Metallurgy Impact factor: 1.081, year: 2007

  13. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  14. Ni hombres ni mujeres providenciales

    OpenAIRE

    Montaño Virreira, Sonia

    2000-01-01

    Debo advertir a la y el lector de este texto que lo que a continuación se presenta no es, ni de lejos, una propuesta realista, si por ella entendemos la traducción, enclave mujer, de las actuales tendencias de liderazgo político vigentes en la región. Por el contrario, intento argumentaren favor de un liderazgo que supere el caudillismo como estilo y se aproxime al máximo hacia el respeto de las formas, entendiendo que sin ellas no es posible construir la democracia. Para hacerlo reviso rápid...

  15. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    Science.gov (United States)

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  16. Microplasticity and dislocation mobility in copper-nickel single crystals evaluated from strain-amplitude-dependent internal friction. [CuNi

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Y.; Okada, Y.; Asano, S. (Dept. of Materials Science and Engineering, Nagoya Inst. of Tech. (Japan))

    1992-02-16

    Internal friction in copper-0.4 to 7.6 at% nickel single crystals is measured as a function of strain amplitude at various temperatures. Analysis of the data on the amplitude-dependent internal friction yields the relation of effective stress and microplastic strain of the order of 10{sup -9}. The stress-strain responses thus obtained exhibit that the microplastic flow stress increases more rapidly on alloying than the macroscopic yield stress. The mean dislocation velocity is also evaluated from the internal-friction data, which corresponds well to the etch-pit data. It is shown that the dislocation motion is impeded by friction due to dispersed solute atoms. (orig.).

  17. Simulation study on single family house with solar floor and domestic hot water heating system by EESLISM; EESLISM ni yoru taiyonetsu danbo kyuto jutaku no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H; Udagawa, M [Kogakuin University, Tokyo (Japan)

    1997-11-25

    Indoor thermal conditions and energy performance were simulated, by the aid of EESLISM as a common simulation program for indoor thermal conditions and energy systems, for an actual two-storied single family house equipped with solar-heated floors and a domestic hot water (DHW) heating system, in order to investigate applicability of the simulation program. The house, built in Shibuya Ward in Tokyo, has a total floor area of 164m{sup 2}, with a living room, dining room and study heated by the solar system for a total floor area of 35m{sup 2}. A heat-storage tank is provided, dedicated to the DHW system. The solar collector is of flat type, with selectively light-absorbing planes, having a total collector area of 11.46m{sup 2}. The operating conditions of the floor-heating and DHW systems are almost reproduced. It is necessary to take surrounding conditions into consideration; solar radiation in daytime will be overestimated if adjacent buildings are neglected to give higher temperature in the space and on the wall on the south than the observed level. 6 refs., 5 figs., 1 tab.

  18. Superstructure of NiAs

    International Nuclear Information System (INIS)

    Nozue, Tatsuhiro; Kobayashi, Hisao; Kamimura, Takashi; Yamaguchi, Yasuo

    2001-01-01

    The structural transition in NiAs was studied by neutron diffraction on the single crystalline sample. The crystal structure of NiAs has been reported to be bottom-centered orthorhombic with Cmc2 1 symmetry (niccolite-type). The measurement of temperature dependence of the powder X-ray diffraction revealed that NiAs undergoes a structural transition to the NiAs-type at T t =335 K. In present neutron diffraction experiment at room temperature, we observed the reflections indexed on the basis of the orthorhombic unit cell. The intensities of these reflections are qualitatively explained in terms of the niccolite-type structure with taking account of three domain structures, except for the weak reflections indexed as (001), (003) and (012). Then, the intensities of (001), (002) and (004) reflections were measured in temperature range of 20 to 420 K. The temperature dependences of (002) and (004) reflections qualitatively agree with those of the calculated intensities using the atomic positions of niccolite-type structure. However, the temperature dependence of (001) reflection shows the anomaly around T t , which suggests the symmetry of crystal structure of NiAs is not the Cmc2 1 symmetry. (author)

  19. Evaluation of deformation and fracture of three single-file NiTi rotary instruments: ProTaper F2, WaveOne Primary and OneShape in simulated curved canals

    Directory of Open Access Journals (Sweden)

    Mina A. Shenouda

    2018-06-01

    Full Text Available Purpose. The aim of the current study was to compare the incidence of deformation and fracture in three single-file NiTi instruments: ProTaper F2, WaveOne Primary and OneShape. Methods. Fifteen instruments were equally divided into three groups: ProTaper F2 in reciprocation, WaveOne Primary in reciprocation and OneShape in continuous rotation. Each instrument was used to prepare standardized simulated curved canals in resin blocks until fracture had occurred. Following each canal preparation, the instruments were examined for deformation both by naked eye inspection and stereomicroscopic examination. The average number of canals prepared until the first incidence of cracks and the average lifespan of the instruments were calculated. Data were analysed using one-way ANOVA and two-sample t-test. Results. There was no statistically significant difference between ProTaper and WaveOne instruments in both the incidence of cracks and the average lifespan (P > 0.05. OneShape instruments had a significantly delayed incidence of cracks and a longer lifespan than both ProTaper and WaveOne instruments (P < 0.05; however, OneShape instruments showed a noticeable early plastic deformation. Conclusion: PT F2 instrument was comparable to WO Primary instrument in terms of fracture resistance, while OS instrument had more fracture resistance than both PT F2 and WO Primary instruments.

  20. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage

    Energy Technology Data Exchange (ETDEWEB)

    Graverend, Jean-Briac le, E-mail: jblgpublications@gmail.com [Texas A& M University, Department of Aerospace Engineering and Materials Science Engineering, TAMU 3141, College Station, TX 77843 (United States); Adrien, Jérome [Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Cormier, Jonathan [Institut Pprime, CNRS-ENSMA-Université de Poitiers, UPR CNRS 3346, Département Physique et Mécanique des Matériaux, ISAE-ENSMA, 1 avenue Clément Ader, BP 40109, F86961 Futuroscope Chasseneuil cedex (France)

    2017-05-17

    Creep damage by void nucleation and growth limits the lifetime of components subjected to mechanical loads at high temperatures. For the first time, the porosity of a Ni-based single crystal superalloy subjected to high temperature creep tests (T≥1000 °C) is followed by ex-situ X-ray computed tomography. A large experimental campaign consisting of nine temperature/stress conditions is carried out to determine the kinetics of the damage accumulation by voids. It is, indeed, essential to characterize their evolution to create internal variables describing properly the evolution of damage in a Continuum Damage Mechanics framework. Nonetheless, it is pointed out that the increase in the plastic strain rate during the tertiary creep stage is not necessarily related to the increase in the pore volume fraction for the alloy and temperature range explored (1000–1100 °C). Therefore, it seems that the changes in the microstructure, i.e. precipitation coarsening and γ/γ′ topological inversion, and the shearing of the γ′ particles have to be considered further to properly describe the damage evolution. Thus, the Continuum Damage Mechanics theory is undermined and should be replaced by a transformative paradigm taken into consideration microstructural evolutions in order to improve the predictability of further damage models.

  1. Effect of Squareness of Initial γ' Precipitates on Creep-Rupture Life of a Ni-Base Single Crystal Superalloy at 760/982 °C

    Science.gov (United States)

    Shi, Zhenbin; Peng, Zhifang; Luo, Yushi; Xie, Hongji; Jin, Haipeng; Zhao, Yunsong; Mei, Qingsong

    2018-05-01

    An approach to determination of squareness of initial γ' precipitates (S 2D) is proposed to evaluate its effect on creep-rupture life (t r) of nickel-base single crystal (SC) superalloys. It is found that the 760/982 °C rupture life varied with the change in regional S 2D caused by redistribution of W when 1st-step aging temperature changed in full heat treatment on superalloy DD83 investigated. The longest creep-rupture life occurred at the highest value/the lowest difference in S 2D in the interdendritic regions/between the typical dendritic regions in DD83. It is also found that S 2D is a weighted function of the area fraction (F 2D), spacing (h), and size (d) of γ' precipitates and is closely related to t r in a series of SC superalloys. In addition, the variation of S 2D with F 2D (here, thermodynamic mole fraction is approximately expressed by F 2D) through lattice misfit (δ) in the SC superalloys with F 2D ranging from 60 to 75 pct is well correlated. Therefore, to reveal and to better understand these relationships and correlations may help to optimize the phase variables in order to achieve a long rupture life of SC superalloys. In addition, functions to reveal the interrelationships of F 2D, volume fraction (F 3D), S 2D, and cuboidness (S 3D) of initial γ' precipitates are derived considering their shape changes. All of these are hoped to be helpful in practical applications and in understanding the true meaning of the related variables.

  2. Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation

    International Nuclear Information System (INIS)

    Ke Jianhao; Wang Jinwen; Deng Riqiang; Wang Xunzhang

    2008-01-01

    Although orf66 (ac66) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is conserved in all sequenced lepidopteran baculovirus genomes, its function is not known. This paper describes generation of an ac66 knockout AcMNPV bacmid mutant and analyses of the influence of ac66 deletion on the virus replication in Sf-9 cells so as to determine the role of ac66 in the viral life cycle. Results indicated that budded virus (BV) yields were reduced over 99% in ac66-null mutant infected cells in comparison to that in wild-type virus infected cells. Optical microscopy revealed that occlusion body synthesis was significantly reduced in the ac66 knockout bacmid-transfected cells. In addition, ac66 deletion interrupted preoccluded virion synthesis. The mutant phenotype was rescued by an ac66 repair bacmid. On the other hand, real-time PCR analysis indicated that ac66 deletion did not affect the levels of viral DNA replication. Electron microscopy revealed that ac66 is not essential for nucleocapsid assembly, but for the efficient transport of nucleocapsids from the nucleus to the cytoplasm. These results suggested that ac66 plays an important role for the efficient exit of nucleocapsids from the nucleus to the cytoplasm for BV synthesis as well as for preoccluded virion and occlusion synthesis

  3. Heterologous expression, purification and characterization of human β-1,2-N-acetylglucosaminyltransferase II using a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system.

    Science.gov (United States)

    Miyazaki, Takatsugu; Kato, Tatsuya; Park, Enoch Y

    2018-02-03

    β-1,2-N-Acetylglucosaminyltransferase II (GnTII, EC 2.4.1.143) is a Golgi-localized type II transmembrane enzyme that catalyzes the transfer of N-acetylglucosamine to the 6-arm of the trimanosyl core of N-glycans, an essential step in the conversion of oligomannose-type to complex-type N-glycans. Despite its physiological importance, there have been only a few reports on the heterologous expression and structure-function relationship of this enzyme. Here, we constructed a silkworm-based Bombyx mori nucleopolyhedrovirus bacmid expression system and expressed human GnTII (hGnTII) lacking the N-terminal cytosolic tail and transmembrane region. The recombinant hGnTII was purified from silkworm larval hemolymph in two steps by using tandem affinity purification tags, with a yield of approximately 120 μg from 10 mL hemolymph, and exhibited glycosyltransferase activity and strict substrate specificity. The enzyme was found to be N-glycosylated by the enzymatic cleavage of glycans, while hGnTII expressed in insect cells had not been reported to be glycosylated. Although insects typically produce pauci-mannosidic-type glycans, the structure of N-glycans in the recombinant hGnTII was suggested to be of the complex type, and the removal of the glycans did not affect the enzymatic activity. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Disruption of Bombyx mori nucleopolyhedrovirus ORF71 (Bm71) results in inefficient budded virus production and decreased virulence in host larvae.

    Science.gov (United States)

    Zhang, Min-Juan; Cheng, Ruo-Lin; Lou, Yi-Han; Ye, Wan-Lu; Zhang, Tao; Fan, Xiao-Ying; Fan, Hai-Wei; Zhang, Chuan-Xi

    2012-08-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) is a baculovirus that selectively infects domestic silkworm. BmNPV ORF71 (Bm71) is not a core set gene in baculovirus and shares 92 % amino acid sequence identity with Autographa californica multinucleocapsid NPV ORF88 (Ac88/cg30). Previously, it has been reported that virus lacking Ac88 had no striking phenotypes in cell lines or host larvae. However, the exact role of Bm71 during BmNPV life cycle remains unknown. In the present study, we constructed a Bm71-disrupted (Bm71-D) virus and assessed the effect of the Bm71 disruption on viral replication and viral phenotype throughout the viral life cycle. Results showed that the Bm71-D bacmid could successfully transfect Bm5 cell lines and produce infectious budded virus (BV). But the BV titer was 10- to 100-fold lower than that of the wild-type (WT) virus during infection, and the decreased BV titer was rescued by Bm71 gene repair virus (Bm71-R). A larval bioassay showed that Bm71-D virus took 7.5 h longer than the WT to kill Bombyx mori larvae. Transmission electron microscopy analysis indicated that the Bm71-D virus-infected cells had typical virogenic stroma, bundles of nucleocapsids and polyhedra. Taken together, these results suggest that Bm71 has important implications for determining BV yield and virulence in viral life cycle even though it is not an essential gene for replication of BmNPV.

  5. Transgenic Clustered Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus.

    Science.gov (United States)

    Chen, Shuqing; Hou, Chengxiang; Bi, Honglun; Wang, Yueqiang; Xu, Jun; Li, Muwang; James, Anthony A; Huang, Yongping; Tan, Anjiang

    2017-04-15

    We developed a novel antiviral strategy by combining transposon-based transgenesis and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system for the direct cleavage of Bombyx mori nucleopolyhedrovirus (BmNPV) genome DNA to promote virus clearance in silkworms. We demonstrate that transgenic silkworms constitutively expressing Cas9 and guide RNAs targeting the BmNPV immediate early-1 ( ie-1 ) and me53 genes effectively induce target-specific cleavage and subsequent mutagenesis, especially large (∼7-kbp) segment deletions in BmNPV genomes, and thus exhibit robust suppression of BmNPV proliferation. Transgenic animals exhibited higher and inheritable resistance to BmNPV infection than wild-type animals. Our approach will not only contribute to modern sericulture but also shed light on future antiviral therapy. IMPORTANCE Pathogen genome targeting has shown its potential in antiviral research. However, transgenic CRISPR/Cas9 system-mediated viral genome targeting has not been reported as an antiviral strategy in a natural animal host of a virus. Our data provide an effective approach against BmNPV infection in a real-world biological system and demonstrate the potential of transgenic CRISPR/Cas9 systems in antiviral research in other species. Copyright © 2017 Chen et al.

  6. The role of the PI3K-Akt signal transduction pathway in Autographa californica multiple nucleopolyhedrovirus infection of Spodoptera frugiperda cells

    International Nuclear Information System (INIS)

    Xiao Wei; Yang Yi; Weng Qingbei; Lin Tiehao; Yuan Meijin; Yang Kai; Pang Yi

    2009-01-01

    Many viruses activate the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, thereby modulating diverse downstream signaling pathways associated with antiapoptosis, proliferation, cell cycling, protein synthesis and glucose metabolism, in order to augment their replication. To date, the role of the PI3K-Akt pathway in Baculovirus replication has not been defined. In the present study, we demonstrate that infection of Sf9 cells with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) elevated cellular Akt phosphorylation at 1 h post-infection. The maximum Akt phosphorylation occurred at 6 h post-infection and remained unchanged until 18 h post-infection. The PI3K-specific inhibitor, LY294002, suppressed Akt phosphorylation in a dose-dependent manner, suggesting that AcMNPV-induced Akt phosphorylation is PI3K-dependent. The inhibition of PI3K-Akt activation by LY294002 significantly reduced the viral yield, including a reduction in budded viruses and occlusion bodies. The virus production was reduced only when the inhibitor was added within 24 h of infection, implying that activation of PI3K occurred early in infection. Correspondingly, both viral DNA replication and late (VP39) and very late (POLH) viral protein expression were impaired by LY294002 treatment; LY294002 had no effect on immediate-early (IE1) and early-late (GP64) protein expression. These results demonstrate that the PI3K-Akt pathway is required for efficient Baculovirus replication.

  7. Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Alayo, W., E-mail: willian.rodriguez@ufpel.edu.br [Departamento de Física – IFM, Universidade Federal de Pelotas, 96010-900 Rio Grande do Sul (Brazil); Pelegrini, F. [Instituto de Física, Universidade Federal de Goiás, Goiânia, 74001-970 (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2015-03-01

    The Ni{sub 81}Fe{sub 19}/V/Ni{sub 81}Fe{sub 19} heterostructures has been produced by magnetron sputtering and analyzed by ferromagnetic resonance. Two systems were investigated: the non symmetrical NiFe(50 Å)/V(t)/NiFe(30 Å) trilayers and the symmetrical NiFe(80 Å)/V(t)/NiFe(80 Å) trilayers, with variable ultrathin V thickness t. Ferromagnetic exchange coupling was evidenced for t below 10 Å by the excitation of the optic mode, in the case of the non symmetrical samples, and by the observation of a single resonance mode for the symmetrical trilayers. For larger V thickness, all samples exhibited two modes, which were attributed to the resonance of the individual NiFe layers with different effective magnetizations. The analysis with the equilibrium and resonance conditions provided the exchange coupling constants and effective magnetizations. - Highlights: • We present a study of symmetrical and non symmetrical NiFe/V/NiFe trilayers deposited on Si single crystals by ferromagnetic resonance (FMR) at room temperature. • For the non symmetrical trilayers, the FMR spectra show the optic and acoustic modes for samples with very thin V layer thicknesses, evidencing ferromagnetic exchange coupling, whereas, for larger V thickness, the spectra exhibited two well resolved modes associated to each independent NiFe layer. For the symmetrical trilayers, strong ferromagnetic exchange coupling is evidenced by the observation of a single resonance mode. • The analysis with the equilibrium condition and dispersion relation provides the exchange coupling constants and effective magnetizations.

  8. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  9. CLASSICAL AREAS OF PHENOMENOLOGY: First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    Science.gov (United States)

    Wang, Yun-Jiang; Wang, Chong-Yu

    2009-10-01

    A model system consisting of Ni[001](100)/Ni3Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni3Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni3Al multilayer can be well predicted by the Voigt-Reuss-Hill rule of mixtures.

  10. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  11. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  12. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21

    International Nuclear Information System (INIS)

    Berretta, Marcelo F.; Deshpande, Mandar; Crouch, Erin A.; Passarelli, A. Lorena

    2006-01-01

    We compared the abilities of late gene transcription and DNA replication machineries of the baculoviruses Autographa californica nucleopolyhedrovirus (AcMNPV) and Bombyx mori NPV (BmNPV) in SF-21 cells, an insect-derived cell line permissive for AcMNPV infection. It has been well established that 19 AcMNPV late expression factors (lefs) stimulate substantial levels of late gene promoter activity in SF-21 cells. Thus, we constructed a set of clones containing the BmNPV homologs of the AcMNPV lefs under control of the constitutive Drosophila heat shock 70 protein promoter and tested their ability to activate an AcMNPV late promoter-reporter gene cassette in SF-21 cells. We tested the potential of individual or predicted functional groups of BmNPV lefs to successfully replace the corresponding AcMNPV gene(s) in transient late gene expression assays. We found that most, but not all, BmNPV lefs were able to either fully or partially substitute for the corresponding AcMNPV homolog in the context of the remaining AcMNPV lefs with the exception of BmNPV p143, ie-2, and p35. BmNPV p143 was unable to support late gene expression or be imported into the nucleus of cells in the presence of the AcMNPV or the BmNPV LEF-3, a P143 nuclear shuttling factor. Our results suggest that host-specific factors may affect the function of homologous proteins

  13. Sf29 Gene of Spodoptera frugiperda Multiple Nucleopolyhedrovirus Is a Viral Factor That Determines the Number of Virions in Occlusion Bodies▿

    Science.gov (United States)

    Simón, Oihane; Williams, Trevor; Asensio, Aaron C.; Ros, Sarhay; Gaya, Andrea; Caballero, Primitivo; Possee, Robert D.

    2008-01-01

    The genome of Spodoptera frugiperda multiple nucleopolyhedrovirus (NPV) was inserted into a bacmid (Sfbac) and used to produce a mutant lacking open reading frame 29 (Sf29null). Sf29null bacmid DNA was able to generate an infection in S. frugiperda. Approximately six times less DNA was present in occlusion bodies (OBs) produced by the Sf29null bacmid in comparison to viruses containing this gene. This reduction in DNA content was consistent with fewer virus particles being packaged within Sf29null bacmid OBs, as determined by fractionation of dissolved polyhedra and comparison of occlusion-derived virus (ODV) infectivity in cell culture. DNA from Sfbac, Sf29null, or Sf29null-repair, in which the gene deletion had been repaired, were equally infectious when used to transfect S. frugiperda. All three viruses produced similar numbers of OBs, although those from Sf29null were 10-fold less infectious than viruses with the gene. Insects infected with Sf29null bacmid died ∼24 h later than positive controls, consistent with the reduced virus particle content of Sf29null OBs. Transcripts from Sf29 were detected in infected insects 12 h prior to those from the polyhedrin gene. Homologs to Sf29 were present in other group II NPVs, and similar sequences were present in entomopoxviruses. Analysis of the Sf29 predicted protein sequence revealed signal peptide and transmembrane domains, but the presence of 12 potential N-glycosylation sites suggest that it is not an ODV envelope protein. Other motifs, including zinc-binding and threonine-rich regions, suggest degradation and adhesion functions. We conclude that Sf29 is a viral factor that determines the number of ODVs occluded in each OB. PMID:18550678

  14. Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

    Directory of Open Access Journals (Sweden)

    Chie Goto

    2015-03-01

    Full Text Available Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV, and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%. In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides.

  15. Microstructure and Corrosion Behavior of Ni-Alloy/CrN Nanolayered Coatings

    Directory of Open Access Journals (Sweden)

    Hao-Hsiang Huang

    2011-01-01

    Full Text Available The Ni-alloy/CrN nanolayered coatings, Ni-Al/CrN and Ni-P/CrN, were deposited on (100 silicon wafer and AISI 420 stainless steel substrates by dual-gun sputtering technique. The influences of the layer microstructure on corrosion behavior of the nanolayered thin films were investigated. The bilayer thickness was controlled approximately 10 nm with a total coating thickness of 1m. The single-layer Ni-alloy and CrN coatings deposited at 350∘C were also evaluated for comparison. Through phase identification, phases of Ni-P and Ni-Al compounds were observed in the single Ni-alloy layers. On the other hand, the nanolayered Ni-P/CrN and Ni-Al/CrN coatings showed an amorphous/nanocrystalline microstructure. The precipitation of Ni-Al and Ni-P intermetallic compounds was suppressed by the nanolayered configuration of Ni-alloy/CrN coatings. Through Tafel analysis, the corr and corr values ranged from –0.64 to –0.33 V and 1.42×10−5 to 1.14×10−6 A/cm2, respectively, were deduced for various coating assemblies. The corrosion mechanisms and related behaviors of the coatings were compared. The coatings with a nanolayered Ni-alloy/CrN configuration exhibited a superior corrosion resistance to single-layer alloy or nitride coatings.

  16. Level density of radioactive doubly-magic nucleus 56Ni

    International Nuclear Information System (INIS)

    Santhosh Kumar, S.; Rengaiyan, R.; Victor Babu, A.; Preetha, P.

    2012-01-01

    In this work the single particle energies are obtained by diagonalising the Nilsson Hamiltonian in the cylindrical basis and are generated up to N =11 shells for the isotopes of Ni from A = 48-70, emphasizing the three magic nuclei viz, 48 Ni, 56 Ni and 68 Ni. The statistical quantities like excitation energy, level density parameter and nuclear level density which play the important roles in the nuclear structure and nuclear reactions can be calculated theoretically by means of the Statistical or Partition function method. Hence the statistical model approach is followed to probe the dynamical properties of the nucleus in the microscopic level

  17. CVD Graphene/Ni Interface Evolution in Sulfuric Electrolyte

    DEFF Research Database (Denmark)

    Yivlialin, Rossella; Bussetti, Gianlorenzo; Duò, Lamberto

    2018-01-01

    Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely...... chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when...... immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified....

  18. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  19. Energetic Mapping of Ni Catalysts by Detailed Kinetic Modeling

    DEFF Research Database (Denmark)

    Bjørgum, Erlend; Chen, De; Bakken, Mari G.

    2005-01-01

    Temperature-programmed desorption (TPD) of CO has been performed on supported and unsupported nickel catalysts. The unsupported Ni catalyst consists of a Ni(14 13 13) single crystal which has been studied under ultrahigh vacuum conditions. The desorption energy for CO at low CO surface coverage...... was found to be 119 kJ/mol, and the binding energy of C to the Ni(111) surface of the crystal was 703 kJ/mol. The supported catalysts consist of nickel supported on hydrotalcite-like compounds with three different Mg2+/Al3+ ratios. The experimental results show that for the supported Ni catalysts TPD of CO...... precursor seems to result in more steplike sites, kinks, and defects for carbon monoxide dissociation. A detailed kinetic modeling of the TPO results based on elementary reaction steps has been conducted to give an energetic map of supported Ni catalysts. Experimental results from the ideal Ni surface fit...

  20. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  1. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    Science.gov (United States)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  2. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Levo, E. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Granberg, F., E-mail: fredric.granberg@helsinki.fi [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Fridlund, C.; Nordlund, K. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Djurabekova, F. [Department of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland); Helsinki Institute of Physics, P.O. Box 43, FIN-00014, University of Helsinki (Finland)

    2017-07-15

    Single-phase multicomponent alloys of equal atomic concentrations (“equiatomic”) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  3. High-titer preparation of Bombyx mori nucleopolyhedrovirus (BmNPV displaying recombinant protein in silkworm larvae by size exclusion chromatography and its characterization

    Directory of Open Access Journals (Sweden)

    Tanaka Shigeyasu

    2009-06-01

    Full Text Available Abstract Background Budded baculoviruses are utilized for vaccine, the production of antibody and functional analysis of transmembrane proteins. In this study, we tried to produce and purify the recombinant Bombyx mori nucleopolyhedrovirus (rBmNPV-hPRR that displayed human (prorenin receptor (hPRR connected with FLAG peptide sequence on its own surface. These particles were used for further binding analysis of hPRR to human prorenin. The rBmNPV-hPRR was produced in silkworm larvae and purified from its hemolymph using size exclusion chromatography (SEC. Results A rapid method of BmNPV titer determination in hemolymph was performed using quantitative real-time PCR (Q-PCR. A correlation coefficient of BmNPV determination between end-point dilution and Q-PCR methods was found to be 0.99. rBmNPV-hPRR bacmid-injected silkworm larvae produced recombinant baculovirus of 1.31 × 108 plaque forming unit (pfu in hemolymph, which was 2.8 × 104 times higher than transfection solution in Bm5 cells. Its purification yield by Sephacryl S-1000 SF column chromatography was 264 fold from larval hemolymph at 4 days post-injection (p.i., but 35 or 39 fold at 4.5 or 5 days p.i., respectively. Protein patterns of rBmNPV-hPRR purified at 4 and 5 days were the same and ratio of envelope proteins (76, 45 and 35 kDa to VP39, one of nucleocapsid proteins, increased at 5 days p.i. hPRR was detected in only purified rBmNPV-hPRR at 5 days p.i.. Conclusion The successful purification of rBmNPV-hPRR indicates that baculovirus production using silkworm larvae and its purification from hemolymph by Sephacryl S-1000 SF column chromatography can provide an economical approach in obtaining the purified BmNPV stocks with high titer for large-scale production of hPRR. Also, it can be utilized for further binding analysis and screening of inhibitors of hPRR.

  4. Combining Ru, Ni and Ni(OH){sub 2} active sites for improving catalytic performance in benzene hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Sun, Hanlei; Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-05-01

    In this study, the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were successfully prepared by the simple methods of hydrazine-reduction and galvanic replacement, where 0.04/0.96 and T represented the Ru/Ni atomic ratio and reducing temperature of the catalyst in N{sub 2}+10%H{sub 2}, respectively. The nanostructures of the Ru{sub 0.04}Ni{sub 0.96} nanoparticles in the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts were controlled by modulating their annealing temperature in N{sub 2}+10%H{sub 2} and characterized by an array of techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy energy dispersive X-ray spectroscopy (STEM-EDS) mapping and high-sensitivity low-energy ion scattering (HS-LEIS). The Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, which was composed of Ru clusters or single atoms supported on Ni/Ni(OH){sub 2} nanoparticles, exhibited much better catalytic performance for benzene hydrogenation than the Ru{sub 0.04}Ni{sub 0.96}/C(T) catalysts reduced at above 30 °C, such as Ru{sub 0.04}Ni{sub 0.96}/C(160) with the nanostructure of partial Ru{sub 0.04}Ni{sub 0.9} alloy and Ru{sub 0.04}Ni{sub 0.96}/C(280) with the nanostructure of complete Ru{sub 0.04}Ni{sub 0.9} alloy. The reason was that the synergistic effect of multiple active sites – Ru, Ni and Ni(OH){sub 2} sites was present in the Ru{sub 0.04}Ni{sub 0.96}/C(30) catalyst, where hydrogen was preferentially activated at Ru sites, benzene was probably activated at Ni(OH){sub 2} surface and Ni acted as a “bridge” for transferring activated H{sup ∗} species to activated benzene by hydrogen spillover effect, hydrogenating and forming product – cyclohexane. This study also provided a typical example to illustrate that the synergy effect of multiple active sites can largely improve the catalytic hydrogenation performance. - Highlights: • The Ru

  5. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    Science.gov (United States)

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  6. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  7. OpenNI cookbook

    CERN Document Server

    Falahati, Soroush

    2013-01-01

    This is a Cookbook with plenty of practical recipes enriched with explained code and relevant screenshots to ease your learning curve. If you are a beginner or a professional in NIUI and want to write serious applications or games, then this book is for you. Even OpenNI 1 and OpenNI 1.x programmers who want to move to new versions of OpenNI can use this book as a starting point. This book uses C++ as the primary language but there are some examples in C# and Java too, so you need to have about a basic working knowledge of C or C++ for most cases.

  8. Facile in situ synthesis of hierarchical porous Ni/Ni(OH)₂ hybrid sponges with excellent electrochemical energy-storage performances for supercapacitors.

    Science.gov (United States)

    Wang, Wanren; Wang, Wenhua; Wang, Mengjiao; Guo, Xiaohui

    2014-09-01

    Herein, we report the in situ growth of single-crystalline Ni(OH)2 nanoflakes on a Ni support by using facile hydrothermal processes. The as-prepared Ni/Ni(OH)2 sponges were well-characterized by using X-ray diffraction (XRD), SEM, TEM, and X-ray photoelectron spectroscopy (XPS) techniques. The results revealed that the nickel-skeleton-supported Ni(OH)2 rope-like aggregates were composed of numerous intercrossed single-crystal Ni(OH)2 flake-like units. The Ni/Ni(OH)2 hybrid sponges served as electrodes and displayed ultrahigh specific capacitance (SC=3247 F g(-1)) and excellent rate-capability performance, likely owing to fast electron and ion transport, sufficient Faradic redox reaction, and robust structural integrity of the Ni/Ni(OH)2 hybrid electrode. These results support the promising application of Ni(OH)2 nanoflakes as advanced pseudocapacitor materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  10. Fragmentation of neutron-hole strengths in 59Ni observed in the 60Ni(p, d) 59Ni reaction at 65 MeV

    International Nuclear Information System (INIS)

    Matoba, M.; Ohgaki, H.; Kugimiya, H.; Ijiri, H.; Maki, T.; Nakano, M.

    1995-01-01

    The 60 Ni(p, d) 59 Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in 59 Ni up to the excitation energies of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta l, j and spectroscopic factors for thirty-nine transitions. The nuclear damping mechanism of the single hole states is discussed. ((orig.))

  11. Anomalous jump of stress upon the variation of the rate of deformation of single crystals of the Ni3Ge alloys with L12 superstructure under the conditions of cubic slip

    International Nuclear Information System (INIS)

    Starenchenko, V.A.; Solov'eva, Yu.V.; Gettinger, M.V.; Kovalevskaya, T.A.

    2005-01-01

    Experimental results are given on variations of plastic strain rate for Ni 3 Ge alloy with L1 2 superstructure possessing anomalous temperature dependence of mechanical properties. For the first time an anomalous strain rate dependence of mechanical properties of the alloy is revealed under conditions of cubic slip. The mechanism is proposed to explain the observed form of stress jump. Using the mechanism proposed normal and anomalous constituents of stress jump are separated. Temperature dependences of stress jump, normal and anomalous constituents of stress jump are analyzed [ru

  12. Instrumentation for BESSY II and temperature programmed desorption of CO, NO and water of the (100)-single crystal cleavage planes of the metal oxides NiO and MgO

    OpenAIRE

    Wichtendahl, Ralph

    2010-01-01

    For the spectromicroscope SMART, an independent preparation chamber and a vibration isolation system accurate to 2 mm in spite of lateral forces have been set up. Placed in a row with the SMART at BESSY, a spectrometer system has been built. It contains a high-resolution energy analyser, a partial-yield- and a fluorescence detector, sample preparation tools and helium cooling. XPS investigations on tantalum deposits on Al2O3/NiAl(110) thin films revealed that submonolayer deposits show ...

  13. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Vats, Prashant; Gautam, S.; Gupta, V.P.; Verma, K.D.; Chae, K.H.; Hashim, Mohd; Choi, H.K.

    2014-01-01

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L 3,2 edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L 3,2 -edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L 3,2 -edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior

  14. Physical and mechanical metallurgy of NiAl

    Science.gov (United States)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  15. Fast diffusion and nucleation of the amorphous phase in Ni--Zr films

    International Nuclear Information System (INIS)

    Ehrhart, P.; Averback, R.S.; Hahn, H.; Yadavalli, S.; Flynn, C.P.

    1988-01-01

    The nucleation of the amorphous phase by solid-state reactions has been investigated on single-crystal Zr films grown by molecular beam epitaxy and covered in situ with either polycrystalline Ni, amorphous (a-) NiZr, or single-crystalline Zr 99 N 01 films. Interfacial reactions were investigated by backscattering analysis or secondary ion mass spectroscopy. The amorphizing reaction occurred only in the specimen with the a-NiZr overlayer, although fast Ni diffusion through the single-crystalline Zr layer was observed in all three specimens. The nucleation behavior of a-NiZr is attributed to the combination of high-Ni and low-Zr mobility in crystalline Zr

  16. Lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite for electrochemical supercapacitor materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingnan [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wen, Ming, E-mail: m_wen@tongji.edu.cn [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China); Chen, Shipei [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Wu, Qingsheng [Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092 (China)

    2015-10-15

    Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure with a single lamellar spacing of ∼5 nm was effectively constructed through two-phase-interface reaction process followed by the CNTs crossed among the lamellar-nanostructured Ni(OH){sub 2}. The resultant nanocomposite can offer large active surface areas and short diffusion paths for electrons and ions, and is investigated as a potential pseudocapacitor electrode material for electrochemical energy storage applications. Electrochemical data demonstrate that the as-prepared nanocomposite exhibits a high specific capacitance of ∼1600 F g{sup −1} at the scan rate of 1 mV s{sup −1} in 6 M KOH solution at normal pressure and temperature, which is great higher than Ni(OH){sub 2} (∼1200 F g{sup −1}). Furthermore, Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposite shows a higher energy density (∼125 Wh kg{sup −1}, 2 A g{sup −1}) and has a slightly decrease of 5% in specific capacitance after 1000 continuous charge/discharge cycles. - Graphical abstract: As-constructed Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructure exhibits remarkable enhancement in electrochemical stability and high specific capacity of ∼1600 F g{sup −1} at a scan rate of 1 mV s{sup −1}, suggesting promising potential for supercapacitor applications. - Highlights: • New designed lamellar-crossing-structured Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have been firstly reported in this work. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} lamellar-crossing-nanostructures show firm nanostructure and excellent electrochemical stability. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites exhibit excellent specific capacitance. • Ni(OH){sub 2}/CNTs/Ni(OH){sub 2} nanocomposites have the potential application in electrochemical energy storage applications.

  17. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  18. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  19. Reliable and cost effective design of intermetallic Ni2Si nanowires and direct characterization of its mechanical properties

    OpenAIRE

    Seung Zeon Han; Joonhee Kang; Sung-Dae Kim; Si-Young Choi; Hyung Giun Kim; Jehyun Lee; Kwangho Kim; Sung Hwan Lim; Byungchan Han

    2015-01-01

    We report that a single crystal Ni2Si nanowire (NW) of intermetallic compound can be reliably designed using simple three-step processes: casting a ternary Cu-Ni-Si alloy, nucleate and growth of Ni2Si NWs as embedded in the alloy matrix via designing discontinuous precipitation (DP) of Ni2Si nanoparticles and thermal aging, and finally chemical etching to decouple the Ni2Si NWs from the alloy matrix. By direct application of uniaxial tensile tests to the Ni2Si NW we characterize its mechanica...

  20. Internal carbonitriding behavior of Ni-V, Ni-Cr, and Ni-3Nb alloys

    International Nuclear Information System (INIS)

    Allen, A.T.; Douglass, D.L.

    1999-01-01

    Ni-2V, Ni-5V, Ni-12V, Ni-10Cr, Ni-20Cr, and Ni-3Nb alloys were carbonitrided in C 3 H 6 and NH 3 gas mixtures (bal H 2 ) over the range 700--1,000 C. Carbonitridation of Ni-12V and Ni-20Cr in C 3 H 6 /NH 3 /H 2 (1.5/1.5/97 v/o) and (1.5/10/88.5 v/o) produced duplex subscales consisting of near-surface nitrides with underlying carbides. Growth of each zone obeyed the parabolic rate law under most conditions. The presence of carbon generally did not effect the depth of the nitride zones compared to nitriding the alloys in NH 3 /H 2 (10/90 v/o). However, at 700 C, the nitride zones were deeper in the carbonitrided Ni-V alloys and Ni-20Cr. The presence of nitrogen generally increased the depth of the carbide zones in Ni-12V and Ni-20Cr compared to carburizing these alloys in C 3 H 6 /H 2 (1.5/98.5 v/o). VN, CrN, and NbN formed in Ni-V, Ni-Cr, and Ni-Nb alloys, respectively, whereas the underlying carbide layers contained V 4 C 3 in Ni-12V, Cr 3 C 2 above a zone of Cr 7 C 3 in Ni-20Cr, and NbC in Ni-3Nb. The solubilities and diffusivities of nitrogen and carbon in nickel were determined. Nitrogen and carbon each exhibited retrograde solubility with temperature in pure Ni in both carbonitriding environments. Nitrogen diffusion in nickel was generally lower in each carbonitriding mixture compared to nitrogen diffusion in a nitriding environment, except at 700 C when nitrogen diffusion was higher. Carbon diffusion in nickel was generally higher in the carbonitriding environments compared to carbon diffusion in a carburizing environment

  1. Nickel-metal hydride (Ni-MH) battery using Mg{sub 2}Ni-type hydrogen storage alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luo, J.L.; Chuang, K.T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering

    2000-04-28

    The performance of a sealed prismatic prototype Ni-MH battery having a Mg-Ni-Y-Al alloy anode was investigated. The materials were characterized using X-ray diffraction (XRD). The laboratory tests run on this prototype battery as well as the single electrode was compared. The electrochemical behavior was determined using electrochemical impedance spectroscopy (EIS). The battery has a good dischargeability but a high self-discharge rate during storage at open-circuit state. (orig.)

  2. Pitting Corrosion of Ni3(Si,Ti+2Cr Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-05-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 2 at% Cr containing two regions of a Ni3(Si,Ti single-phase of L12 structure and a mixture phase of of (L12 +Niss was investigated as function of chloride concentrations by using a polarization method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  The pitting corrosion of Ni3(Si,Ti with and without the addition of aluminium and type C276 alloy were also studied under the same experimental condition for the comparison.  The pitting potential obtained for the Ni3(Si,Ti with 2 at% Cr decreased with increasing chloride concentration.  The specific pitting potentials and the pitting potentials were decreased in the order of C276 alloy > Ni3(Si,Ti > Ni3(Si,Ti + 2Cr > Ni3(Si,Ti + 4Al, which means that the pitting corrosion resistance of Ni3(Si,Ti with 2 at% Cr was higher than Ni3(Si,Ti with 4 at% Al, but lower than that of Ni3(Si,Ti.  A critical chloride concentration of Ni3(Si,Ti with 2 at% Cr was found to be higher than that of Ni3(Si,Ti with at% Al. In addition, the presence of high concentration for oxygen indicates the occurrence of pit formation.

  3. Nipah Virus (NiV)

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Nipah Virus (NiV) Note: Javascript is disabled or is not ... gov . Recommend on Facebook Tweet Share Compartir Nipah virus (NiV) is a member of the family Paramyxoviridae , ...

  4. Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)

    2017-06-01

    The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.

  5. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  6. Intrinsic ductility and environmental embrittlement of binary Ni3Al

    International Nuclear Information System (INIS)

    George, E.P.; Liu, C.T.; Pope, D.P.

    1993-01-01

    Polycrystalline, B-free Ni 3 Al (23.4 at.% Al), produced by cold working and recrystallizing a single crystal, exhibits room temperature tensile ductilities of 3-5% in air and 13-16% in oxygen. These ductilities are considerably higher than anything previously reported, and demonstrate that the 'intrinsic' ductility of Ni 3 Al is much higher than previously thought. They also show that the moisture present in ordinary ambient air can severely embrittle Ni 3 Al (ductility decreasing from a high of 16% in oxygen to a low of 3% in air). Fracture is predominantly intergranular in both air and oxygen. This indicates that, while moisture can further embrittle the GBs in Ni 3 Al, they persist as weak links even in the absence of environmental embrittlement. However, they are not 'intrinsically brittle' as once thought, since they can withstand relatively large plastic deformations prior to fracture. Because B essentially eliminates environmental embrittlement in Ni 3 Al - and environmental embrittlement is a major cause of poor ductility in B-free Ni 3 Al - it is concluded that a significant portion of the so-called B effect must be related to suppression of moisture-induced environmental embrittlement. However, since B-doped Ni 3 Al fractures transgranularly, whereas B-free Ni 3 Al fractures predominantly intergranularly, B must have the added effect that it strengthens the GBs. A comparison with the earlier work on Zr-doped Ni 3 Al shows that Zr improves the ductility of Ni 3 Al, both in air and (and even more dramatically) in oxygen. While the exact mechanism of this ductility improvement is not clear at present, Zr appears to have more of an effect on (enhancing) GB strength than on (suppressing) environmental embrittlement

  7. Structure cristalline du composé intermétallique Ni18Ge12

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2015-03-01

    Full Text Available Single crystals of octadecanickel dodecagermanide were grown by chemical transport reaction. The intermetallic compound crystallizes in a superstructure of the hexagonal NiAs type (B8 type. All atoms in the asymmetric unit lie on special positions except one Ni atom (two Ni atoms have site symmetry -6.. and another one has site symmetry .2. while the Ge atoms have site symmetries 32., m.. and 3... In the structure, the Ni atoms are arranged in 11- or 13-vertex polyhedra (CN = 11–13. The coordination polyhedra of the Ge atoms are bicapped square antiprisms (CN = 10 or 11-vertex polyhedra (CN = 11. The structure exhibits strong Ge...Ni interactions, but no close Ge...Ge contacts are observed. The Ni atoms with CN = 13 form infinite chains along [001] with an Ni—Ni distance of 2.491 (2 Å.

  8. Magnetic domain structure and domain-wall energy in UFe8Ni2Si2 and UFe6Ni4Si2 intermetallic compounds

    International Nuclear Information System (INIS)

    Wyslocki, J.J.; Suski, W.; Wochowski, K.

    1994-01-01

    Magnetic domain structures in the UFe 8 Ni 2 Si 2 and UFe 6 Ni 4 Si 2 compounds were studied using the powder pattern method. The domain structure observed is typical for uniaxial materials. The domain-wall energy density γ was determined from the average surface domain width D s observed on surfaces perpendicular to the easy axis as equal to 16 erg/cm 2 for UFe 8 Ni 2 Si 2 and 10 erg/cm 2 for UFe 6 Ni 4 Si 2 . Moreover, the critical diameter for single domain particle D c was calculated for the studied compounds

  9. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  10. CoCr/NiFe double layers studied by FMR and VSM

    NARCIS (Netherlands)

    Stam, M.T.H.C.W.; Gerritsma, G.J.; Lodder, J.C.; Popma, T.J.A.

    1987-01-01

    CoCr/NiFe double layers were investigated by FMR and VSM. The FMR linewidth of NiFe of the double layer is about twice that of a single NiFe layer. The resonance field is the same in both cases. Using the VSM the coercive field of the CoCr layer of the double layer was obtained. It is approximately

  11. FY 1997 report on the study on the formation condition of hetero-structure of single-crystalline semiconductor thin films; 1997 nendo chosa hokokusho (tankessho no handotai usumaku hetero kozo no keisei joken ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Since ion implantation causes material degradation by formation of crystalline defects, and hydrogen embrittlement deteriorates material strength, reduction of such defects has been positively studied. Study was made on a new active application of hydrogen separation into ion implantation defects. After H ion implantation of a proper depth into single-crystalline Si and SiC and successive annealing, single-crystalline films of sub-micron to several micron thick were obtained by hydrogen-induced delamination at the implantation depth due to hydrogen embrittlement in crystalline defects. The implantation depth is dependent on implantation energy. H atom forms (111) face defect through connection with dangling bond of crystalline defects. This crystal face defect forms a delamination plane through (100) face cleavage. This hydrogen embrittlement delamination by ion implantation is applicable to production of light-weight high-efficiency single-crystalline Si solar cells, and large single-crystalline SiC wafers as new resource saving process. 33 refs., 19 figs., 2 tabs.

  12. Ni República parlamentaria ni presidencialista

    OpenAIRE

    Álvarez Tardío, Manuel

    2004-01-01

    Revista de Estudios Políticos (Nueva Época), Núm. 123. Enero-Marzo 2004 Este trabajo está dedicado al estudio de un aspecto básico del sistema político de la II República española (1931-1936): el modelo de presidencia de la República y de relaciones de la misma con el parlamento y el gobierno. Aquí se sostiene que la Segunda República, de acuerdo con su Constitución, no fue un régimen parlamentario ni presidencial. Combinó de forma extraña y ambigua elementos de ambos modelos. Probablement...

  13. Germline TP53 mutations and single nucleotide polymorphisms in children Mutaciones y polimorfismos de un único nucleótido del gen TP53 en línea germinal en niños

    Directory of Open Access Journals (Sweden)

    Pamela Valva

    2009-02-01

    Full Text Available Mutations in the gene TP53, which codifies the tumor suppressor protein p53, are found in about 50% of tumors. These mutations can occur not only at somatic level, but also in germline. Pediatric cancer patients, mostly with additional family history of malignancy, should be considered as potential TP53 germline mutation carriers. Germline TP53 mutations and polymorphisms have been widely studied to determine their relation with different tumors' pathogenesis. Our aim was to analyze the occurrence frequency of germline TP53 mutations and polymorphisms and to relate these to tumor development in a pediatric series. Peripheral blood mononuclear cell samples from 26 children with solid tumors [PST] and 21 pediatric healthy donors [HD] were analyzed for germline mutations and polymorphisms in TP53 gene spanning from exon 5 to 8 including introns 5 and 7. These PCR amplified fragments were sequenced to determine variations. A heterozygous mutation at codon 245 was found in 1/26 PST and 0/21 HD. Comparative polymorphisms distribution, at position 14181 and 14201(intron 7, between HD and PST revealed a trend of association (p= 0.07 with cancer risk. HD group disclosed a similar polymorphism distribution as published data for Caucasian and Central/South American populations. This is the first study about TP53 variant frequency and distribution in healthy individuals and cancer patients in Argentina.El gen que codifica para la proteína supresora de tumor p53 (TP53 se encuentra mutado en aproximadamente el 50% de los tumores. Estas mutaciones pueden presentarse como somáticas o en línea germinal. Los niños con tumores, sobre todo aquellos con historia familiar de enfermedad oncológica, deben considerarse potenciales portadores de mutaciones en línea germinal. Las mutaciones de TP53 y los polimorfismos son estudiados para determinar su relación con la patogénesis de diferentes tumores. El objetivo del trabajo fue analizar la frecuencia de

  14. Ni{sub 5}TiO{sub 7}” is Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, V.B.

    2017-05-15

    It is shown that the compound known as Ni{sub 5}TiO{sub 7} and considered as a promising catalyst and oxidation product of alloys does not exist and its XRD pattern actually corresponds to Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} - Graphical abstract: XRD pattern of “Ni{sub 5}TiO{sub 7}” (top) is identical to that for Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2} (bottom) based on single-crystal structural data. - Highlights: • Popular catalyst known as Ni{sub 5}TiO{sub 7} is actually Ni{sub 5}TiO{sub 4}(BO{sub 3}){sub 2}. • B{sub 2}O{sub 3} came from the flux used for crystal growth. • Some authors reporting this phase did not use any boron compounds.

  15. Paramagnetic probes to study PrNi5?

    International Nuclear Information System (INIS)

    Hutchinson, W.D.; Harker, S.J.; Stewart, G.A.; Chaplin, D.H.; Kaplan, N.

    1996-01-01

    The Van-Vleck paramagnet PrNi 5 has been the focus of many studies in the past as a result of its usefulness as a nuclear cooling agent. Extensive continuous wave praseodymium NMR measurements have been carried out on this compound. However pulsed NMR and therefore precise relaxation measurements particularly at mK temperatures have proved elusive. In this work we have proposed to use radiative gamma-ray detection to indirectly measure Pr NMR in PrNi 5 via cross relaxation to suitable paramagnetic impurity probes placed at Ni lattice sites. 57 Co was chosen as the most compatible nuclear orientation isotope with an appropriate nuclear g-factor. The choice of 57 Co also allows the use of Moessbauer spectroscopy to check the site occupancy. This poster details the production of a 57 Co doped PrNi 5 single crystal specimen including the specimen preparation problems encountered, 57 Fe Moessbauer and preliminary nuclear orientation measurements

  16. Electrodeposited Ni-W magnetic thin films with columnar nanocrystallites

    International Nuclear Information System (INIS)

    Sulitanu, N.; Brinza, F.

    2002-01-01

    Nanocrystalline Ni-W thin films (140 nm) containing from zero to 18 wt % W were electrolytically prepared and structural and magnetic characterized. XRD, SEM and TEM investigations have revealed that all segregated Ni columns are fcc-type whose [111] axis is oriented perpendicular to the film plane and have 140 nm in height and 6-27 nm in diameter. Depending on film composition, two types of nanostructures were observed: (a) single-phase nanostructure ( i nterphases , namely W enriched particles boundaries, and (b) two-phase nanostructure (7-18 wt %) in which a second Ni-W amorphous phase or even amorphous-disordered mixture separates the magnetic columnar Ni nanocrystallites (d = 6-14 nm). The columnar crystallites have an easy magnetization direction along their long axis mainly due to the in-plane internal biaxial stresses. Magnetic characteristics of prepared thin films are presented. (Authors)

  17. Explosive anisotropic grain growth of delta-NiMo by solid-state diffusion

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.

    1991-01-01

    Anomalous, anisotropic grain growth has been observed in delta(δ)-NiMo intermetallic compound during the annealings of Mo/Ni thin-film diffusion couples at 700 and 800 degree C. Two layered microstructures showing median-sized, equiaxed grains and large columnar single crystalline grains were generated. The growth direction of the columnar grains was parallel to the direction of Ni diffusion flux. Electron diffraction indicated that both the median-sized and the columnar grains were δ-NiMo. The composition of δ-NiMo was determined to be Ni48-Mo52 (at.%). According to the thickness of reaction-formed δ-NiMo, the apparent interdiffusion coefficient was measured to be about 10 -10 cm 2 /s which is 4 to 5 orders of magnitude greater than literature data. The enhanced diffusion rate in Ni-Mo, and the anomalous anisotropic grain growth of δ-NiMo compound are discussed on the basis of exothermic reactions between Ni and Mo during diffusional intermixing. The enthalpy of the formation of δ-NiMo is calculated and demonstrated to be sufficient to cause melting/solidification of the compound

  18. Pitting Corrosion of Ni3(Si,Ti+4Al Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2014-04-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti with 4 at% Al consisting of two regions of a Ni3(Si,Ti single-phase of L12 structure and two phases of L12 and fcc Niss was investigated as function of chloride concentrations by using electrochemical method, scanning electron microscope and energy dispersive X-Ray spectroscopy in neutral sodium chloride solutions at 293 K.  In addition, the pitting corrosion of Ni3(Si,Ti and  type C276 alloy were also studied under the same experimental condition for comparison.  The pitting potential obtained for the Ni3(Si,Ti with 4 at%Al decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti with 4at%, Ni3(Si,Ti and C276 were the lowest, the moderate and the highest, respectively, which means that the pitting corrosion resistance of Ni3(Si,Ti was higher than Ni3(Si,Ti with 4at% Al, but lower than that of C276.  A critical chloride concentration of Ni3(Si,Ti with 4at% Al was found to be lower than that of Ni3(Si,Ti.  The Pitting corrosion of Ni3(Si,Ti with 4at% Al occurred in the two phase mixture (L12 + Niss.

  19. Resonant Ni and Fe KLL Auger spectra photoexcited from NiFe alloys

    International Nuclear Information System (INIS)

    Koever, L.; Cserny, I.; Berenyi, Z.; Egri, S.; Novak, M.

    2005-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metal atoms in solid environment, measured using high energy resolution, give an insight into the details of the local electronic structure surrounding the particular atoms emitting the signal Auger electrons. Fine tuning the energy of the exciting monochromatic photons across the K-absorption edge, features characteristic to resonant phenomena can be identified in the spectra. The shapes of the resonantly photoexcited KLL Auger spectra induced from 3d transition metals and alloys are well interpreted by the single step model of the Auger process, based on the resonant scattering theory. The peak shapes are strongly influenced by the 4p partial density of unoccupied electronic states around the excited atom. High energy resolution studies of KLL Auger spectra of 3d transition metals using laboratory X-ray sources, however, request very demanding experiments and yield spectra of limited statistical quality making the evaluation of the fine details in the spectra difficult. The Tunable High Energy XPS (THE- XPS) instrument at BW2 offers optimum photon x and energy resolution for spectroscopy of deep core Auger transitions. For the present measurements high purity polycrystalline Ni and Fe sheets as well as NiFe alloy samples of different compositions (Ni 80 Fe 20 , Ni 50 Fe 50 , Ni 20 Fe 80 ) were used. The surfaces of the samples were cleaned by in-situ argon ion sputtering. The measurements of the Ni and Fe KL 23 L 23 Auger spectra of the metal and alloy samples were performed with the THE-XPS instrument using high electron energy resolution (0.2 eV). In Fig.1, the measured Fe KL 23 L 23 spectrum, photoexcited at the Fe K absorption edge from Fe metal, is compared with the respective spectrum excited from a Ni 50 Fe 50 alloy. A significant broadening of the 1 D 2 peak and an enhancement of the spectral intensity at the low energy loss part of this peak observed in the alloy sample, while the

  20. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  1. Microstructural development in NiAl/Ni-Si-B/Ni transient liquid phase bonds

    International Nuclear Information System (INIS)

    Gale, W.F.; Orel, S.V.

    1996-01-01

    A transmission electron microscopy (TEM) based investigation of microstructural development during transient liquid phase bonding of near-stoichiometric NiAl to commercial purity nickel is presented in this article. The work described employed Ni-4.5 wt pct Si-3.2 wt pct B (BNi-3) melt-spun interlayers. The precipitation of both Ni-Al based phases and borides within the joint and adjacent substrate regions is discussed. The article considers martensite formation (within the NiAl substrate) and the precipitation of L1 2 type phases (both within the joint and at the interface with the NiAl substrate). The relative roles of the two substrate materials (NiAl and Ni) in the isothermal resolidification process are identified. The preferential formation of Ni 3 B boride phases in the Ni substrate near the original location of the Ni substrate-joint interface is discussed and contrasted with the absence of similar events in the NiAl substrate

  2. Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Mason, T.E.

    1997-01-01

    The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...

  3. Ni landsbyer i Danmark

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    Denne rapport beskriver en evaluering af statsstøttede forsøg med at styrke og udvikle mindre lokalsamfund. Forsøgene er gennemført i ni kommuner. Da der i disse år er stor opmærksomhed om de små byers og samfunds udviklingsmuligheder, har erfaringerne fra forsøgsprojekterne bred interesse. Forsø...

  4. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Study of shell evolution in the Ni isotopes via one-neutron transfer reaction in $^{70}$Ni

    CERN Multimedia

    This proposal aims at the study of the single particle properties of the neutron-rich nickel isotopes, specifically of the $^{71}$Ni isotope via a $^{70}$Ni(d,p) $^{71}$Ni reaction. The $^{70}$Ni beam will be delivered by HIE-ISOLDE at 5.5 MeV/u onto a 1.0 mg/cm$^{2}$ CD$_{2}$ target. The protons produced in the (d,p) reaction will be detected with the T-REX silicon array either in singles or in coincidence with $\\gamma$- rays recorded by MINIBALL. The experimental results will be compared with large-scale shell-model calculations using effective interactions that involve large valence spaces for protons and neutrons, with excitations beyond the Z =28 and N=50 shell gap. This comparison will permit the study of the single-particle orbital d$_{5/2}$ that together with the quasi-SU3 partner g$_{9/2}$ gives rise to the collectivity in this region and has direct implications on the $^{78}$Ni.

  6. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2016-11-15

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50–300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (T{sub A}) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing T{sub A}, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing T{sub A} and changing annealing conditions. - Highlights: • Preparation of highly strained single layer NiO films with different thicknesses. • Study the effects of annealing under different environments on crystal structure. • Understanding the origin of thickness dependent thermal decomposition reaction. • Investigate the role of thermal decomposition reaction on the magnetic properties. • Study the interaction between NiO and Ni phases on the exchange bias mechanism.

  7. Micro-Structures and High-Temperature Friction-Wear Performances of Laser Cladded Cr–Ni Coatings

    Directory of Open Access Journals (Sweden)

    Li Jiahong

    2018-01-01

    Full Text Available Cr–Ni coatings with the mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni were fabricated on H13 hot work mould steel using a laser cladding (LC. The surface–interface morphologies, chemical elements, surface roughness and phase composition of the obtained Cr–Ni coatings were analysed using a scanning electron microscope (SEM, energy disperse spectroscopy (EDS, atomic force microscope (AFM and X–ray diffractometer (XRD, respectively. The friction–wear properties and wear rates of Cr–Ni coatings with the different mass ratios of Cr and Ni at 600 °C were investigated, and the worn morphologies and wear mechanism of Cr–Ni coatings were analysed. The results show that the phases of Cr–Ni coatings with mass ratios of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni are composed of Cr + Ni single-phases and their compounds at the different stoichiometry, the porosities on the Cr–Ni coatings increase with the Cr content increasing. The average coefficient of friction (COF of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% coatings are 1.10, 0.33 and 0.87, respectively, in which the average COF of 20% Cr–80% Ni coating is the lowest, exhibiting the better anti-friction performance. The wear rate of 17% Cr–83% Ni, 20% Cr–80% Ni and 24% Cr–76% Ni coatings is 4.533 × 10−6, 5.433 × 10−6, and 1.761 × 10−6 N−1·s−1, respectively, showing the wear resistance of Cr–Ni coatings at a high temperature increases with the Cr content, in which the wear rate is 24% Cr–76% Ni coating with the better reducing wear. The wear mechanism of 17% Cr–83% Ni and 20% Cr–80% Ni and 24% Cr–76% coatings at 600 °C is primarily adhesive wear, and that of 24% Cr–76% coating is also accompanied by oxidative wear.

  8. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    Science.gov (United States)

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  9. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  10. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    Science.gov (United States)

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  11. Formation of anomalous eutectic in Ni-Sn alloy by laser cladding

    Science.gov (United States)

    Wang, Zhitai; Lin, Xin; Cao, Yongqing; Liu, Fencheng; Huang, Weidong

    2018-02-01

    Ni-Sn anomalous eutectic is obtained by single track laser cladding with the scanning velocity from 1 mm/s to 10 mm/s using the Ni-32.5 wt.%Sn eutectic powders. The microstructure of the cladding layer and the grain orientations of anomalous eutectic were investigated. It is found that the microstructure is transformed from primary α-Ni dendrites and the interdendritic (α-Ni + Ni3Sn) eutectic at the bottom of the cladding layer to α-Ni and β-Ni3Sn anomalous eutectic at the top of the cladding layer, whether for single layer or multilayer laser cladding. The EBSD maps and pole figures indicate that the spatially structure of α-Ni phase is discontinuous and the Ni3Sn phase is continuous in anomalous eutectic. The transformation from epitaxial growth columnar at bottom of cladding layer to free nucleation equiaxed at the top occurs, i.e., the columnar to equiaxed transition (CET) at the top of cladding layer during laser cladding processing leads to the generation of anomalous eutectic.

  12. Experimental study of the $^{66}$Ni$(d,p)^{67}$Ni one-neutron transfer reaction

    CERN Document Server

    Diriken, J.; Andreyev, A.N.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I.G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V.N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B.A.; Mertzimekis, T.; Muecher, D.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.

    2015-01-01

    The quasi-SU(3) sequence of the positive parity $νg_{9/2}, d_{5/2}, s_{1/2}$ orbitals above the N=40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z=26) and Cr (Z=24) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of $^{68}$Ni (Z=28,N=40) through the $^{66}$Ni($d,p$)$^{67}$Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball $\\gamma$-array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-$\\mu$s isomer at 1007 keV in $^{67}$Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the $νg_{9/2}$ (1007 keV) and $νd_{5/2}$ (2207 keV and 3277 keV) positive-parity neutron states and negative parity ($νpf$) states have been observed at low excitation energy. The extracted relativ...

  13. g-factor of the 9/2+ isomeric state in 65Ni from transfer reaction

    International Nuclear Information System (INIS)

    Georgiev, G.; Matea, I.; Balabanski, D.L.; Daugas, J.M.; Meot, V.; Morel, P.; Oliveira Santos, F. de; Lewitowicz, M.; Franchoo, S.; Ibrahim, F.; Le Blanc, F.; Sorlin, O.; Stanoiu, M.; Verney, D.; Lo Bianco, G.; Saltarelli, A.; Lukyanov, S.; Penionzhkevich, Yu.E.; Neyens, G.; Vermeulen, N.; Yordanov, D.; Tarisien, M.

    2006-01-01

    We report a measurement of the g-factor of the I π =9/2 + , t 1/2 =22 ns isomer in 65 Ni. The state of interest was populated and spin-oriented using a single-neutron transfer on an enriched 64 Ni target. The value, which was obtained, g(9/2 + , 65m Ni)=-0.296(3) is well in agreement with the g-factors of the other 9/2 + states in the region and with large-basis shell model calculations. The known g-factor of the 9/2 + isomer in 63 Ni was used in order to verify the strength of the hyperfine field of Ni(Ni) at room temperature. (orig.)

  14. Growth of linear Ni-filled carbon nanotubes by local arc discharge in liquid ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Takuya [Department of Electric Engineering, Graduated School of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Kurumi, Satoshi [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan); Suzuki, Kaoru, E-mail: kaoru@ele.cst.nihon-u.ac.jp [Department of Electric Engineering, College of Science and Technology, Nihon University, 1-8-14 Surugadai Kanda, Chiyoda, Tokyo 101-8308 (Japan)

    2014-02-15

    The cylindrical geometry of carbon nanotubes (CNTs) allows them to be filled with metal catalysts; the resulting metal-filled CNTs possess different properties depending on the filler metal. Here we report the synthesis of Ni-filled CNTs in which Ni is situated linearly and homogeneously by local arc discharge in liquid ethanol. The structural characteristics of synthesized Ni-filled CNTs were determined by transmission electron microscopy (TEM), and the relationship between pyrolysis conditions and the length and diameter of Ni-filled CNTs was examined. The encapsulated Ni was identified by a TEM-equipped energy-dispersive X-ray spectroscope and found to have a single-crystal fcc structure by nano-beam diffraction. The features of linear Ni-filled CNT are expected to be applicable to probes for magnetic force microscopy.

  15. Revisiting Mg–Mg2Ni System from Electronic Perspective

    Directory of Open Access Journals (Sweden)

    Zhao Qian

    2017-11-01

    Full Text Available Both Mg and Mg2Ni are promising electrode materials in conversion-type secondary batteries. Earlier studies have shown their single-phase prospects in electro-devices, while in this work, we have quantitatively reported the electronic properties of their dual-phase materials, that is, Mg–Mg2Ni alloys, and analyzed the underlying reasons behind the property changes of materials. The hypoeutectic Mg–Mg2Ni alloys are found to be evidently more conductive than the hypereutectic Mg–Mg2Ni system. The density functional theory (DFT calculations give the intrinsic origin of electronic structures of both Mg2Ni and Mg. The morphology of quasi-nanoscale eutectics is another factor that can affect the electronic properties of the investigated alloy system; that is, the electrical property change of the investigated alloys system is due to a combination of the intrinsic property difference between the two constituting phases and the change of eutectic microstructures that affect electron scattering. In addition, regarding the Mg–Mg2Ni alloy design for device applications, the electronic property and mechanical aspect should be well balanced.

  16. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  17. Reduction mechanism of Ni2+ into Ni nanoparticles prepared from ...

    Indian Academy of Sciences (India)

    journal of. March 2009 physics pp. 577–586. Reduction mechanism of Ni2+ into Ni ..... and at high field, no domain wall is available and hence, the system becomes a .... [23] J Ding, T Tsuzuki, P G McCormick and R Street, J. Phys. D: Appl.

  18. Structure and phase transformation behavior of electroless Ni-P alloys containing tin and tungsten

    International Nuclear Information System (INIS)

    Balaraju, J.N.; Jahan, S. Millath; Jain, Anjana; Rajam, K.S.

    2007-01-01

    Autocatalytic ternary Ni-Sn-P, Ni-W-P and quaternary Ni-W-Sn-P films were prepared using alkaline citrate-based baths and compared with binary Ni-P coatings. Energy dispersive analysis of X-ray (EDAX) showed that binary Ni-P deposit contained 11.3 wt.% of phosphorus. Codeposition of tungsten in Ni-P matrix resulted in ternary Ni-W-P with 5 wt.% P and 7.8 wt.% of tungsten. Incorporation of tin led to ternary Ni-Sn-P deposit containing 0.4 wt.% Sn and 10.3 wt.% P. Presence of both sodium tungstate and sodium stannate in the basic bath had resulted in quaternary coating with 6.9 wt.% W, traces of Sn and 6.4 wt.% P. X-ray diffraction patterns of all the deposits revealed a single, broad peak which showed the nanocrystalline nature of the deposits. For the first time in related literature, the presence of a metastable phase Ni 12 P 5 in ternary deposits is reported in the present study. Metallographic cross-sections of all the deposits revealed the banded/lamellar structure. Scanning electron microscopy (SEM) studies of the deposits showed smooth nodules for ternary deposits, but coarse and well-defined nodules for quaternary deposits. DSC studies of phase transformation behavior of the ternary Ni-Sn-P deposit revealed a single sharp exothermic peak at 365 o C. However, ternary Ni-W-P and quaternary Ni-W-Sn-P deposits exhibited a low temperature peak at 300 o C, a split type high temperature peak at 405 and 440 o C and a very high temperature peak at 550 o C. Higher activation energy values were obtained for W-based alloy deposits. Presence of W and Sn has helped to retain high microhardness values even at higher temperatures indicating an improved thermal stability

  19. Estimation of Rayleigh-wave spectral ratio from microtremors using a three-component single-station seismograph; Itten sanseibun bido kansoku ni motozuita Rayleigh ha shinpukuhi no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.

  20. Wetting - Dewetting Transitions of Au/Ni Bilayer Films

    Science.gov (United States)

    Cen, Xi

    Thin films deposited at low temperatures are often kinetically constrained and will dewet the underlying substrate when annealed. Solid state dewetting is driven by the minimization of the total free energy of thin film-substrate interface and free surface, and mostly occurs through surface diffusion. Dewetting is a serious concern in microelectronics reliability. However, it can also be utilized for the self-assembly of nanostructures with potentials in storage, catalysis, or transistors. Therefore, a fundamental understanding of the dewetting behavior of thin metal films is critical for improving the thermal stability of microelectronics and controlling the order of self-assembled nanostructures. Mechanisms for dewetting of single layer films have been studied extensively. However little work has been reported on multilayer or alloyed thin films. In the thesis, the solid state dewetting of Au/Ni bilayer films deposited on SiO2/Si substrates was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and aberration corrected scanning TEM (STEM). Ex-situ SEM and TEM studies were performed with in-situ TEM heating characterization to identify the mechanisms during the dewetting process of Au/Ni bilayer films. The solid state dewetting of Au/Ni bilayer films from SiO2/Si substrates exhibits both homogeneous and localized dewetting of Ni and long-edge retraction for Au under isothermal annealing condition. The top Au layer retracts up to 1 mm from the edge of the substrate wafer to reduce the energetically unfavored Au/Ni interface. In contrast, Ni dewets and agglomerates locally due to its limited diffusivity compared to Au. Film morphology and local chemical composition varies significantly across hundreds of microns along the direction normal to the retracting edge. Besides long range edge receding, localized dewetting shows significant changes in film morphology and chemical distribution. Both Au and Ni shows texturing. Despite

  1. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    Science.gov (United States)

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni.

    Science.gov (United States)

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J

    2017-12-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electroplated Ni on the PN Junction Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm{sup 2}. The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased.

  4. Electroplated Ni on the PN Junction Semiconductor

    International Nuclear Information System (INIS)

    Kim, Jin Joo; Uhm, Young Rang; Son, Kwang Jae; Kim, Jong Bum; Choi, Sang Moo; Park, Jong Han; Hong, Jintae

    2015-01-01

    Nickel (Ni) electroplating was implemented by using a metal Ni powder in order to establish a Ni-63 plating condition on the PN junction semiconductor needed for production of betavoltaic battery. PN junction semiconductors with a Ni seed layer of 500 and 1000 A were coated with Ni at current density from 10 to 50 mA cm 2 . The surface roughness and average grain size of Ni deposits were investigated by XRD and SEM techniques. The roughness of Ni deposit was increased as the current density was increased, and decreased as the thickness of Ni seed layer was increased

  5. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    Science.gov (United States)

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  6. Investigation of microstructure, electrical and photoluminescence behaviour of Ni-doped Zn0.96Mn0.04O nanoparticles: Effect of Ni concentration

    Science.gov (United States)

    Rajakarthikeyan, R. K.; Muthukumaran, S.

    2017-07-01

    ZnO, Zn0.96Mn0.04O and Ni-doped Zn0.96Mn0.04O nanoparticles with different Ni concentrations (0%, 2% and 4%) have been synthesized successfully by sol-gel method. The effects of Ni doping on the structural and optical properties were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and photoluminescence (PL) spectroscopy. The XRD pattern confirmed the existence of single phase wurtzite-like hexagonal structure throughout the Ni concentrations without any additional phases. The substitution of Ni created the lattice distortion due to the disparity of ionic radius between Zn and Ni which reduced the crystallite size. The microscopic images showed that the size of ZnO nanoparticles reduced by Ni-doping while the shape remains almost spherical/hexagonal type. The electrical conductivity found to be maximum at Ni = 2% due to the availability of more charge carriers generated by Ni. The decrease of electrical conductivity at higher doping (Ni = 4%) is due to the fact that the generation of more defects. The enhanced band gap from 3.73 eV (Ni = 0%) to 3.79 eV (Ni = 4%) by the addition of Ni explained by Burstein-Moss effect. The change in infra-red (IR) intensity and full width at half maximum (FWHM) corresponding to the frequency around defect states were caused by the difference in the bond lengths that occurs when Ni ion replaces Zn ion. The observed blue band emission from 474 nm to 481 nm is due to a radiative transition of an electron from the deep donar level of Zni to an acceptor level of neutral VZn and the origin of green band may be due to oxygen vacancies and intrinsic defects. The tuning of the band gap and the visible emission bands by Ni doping concluded that Ni-doped Zn0.96Mn0.04O is suitable for various nano-photo-electronics applications.

  7. 11C-radioisotope study of methanol co-reaction with ethanol over Ni-MCM-41 silica-alumina and Ni-alumina

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Tsoncheva, T.; Kumar, N.; Murzin, D.Yu.

    2009-01-01

    Complete text of publication follows. The Ni modifies the properties of acidic alumina and light acidic MCM-41 silica-alumina supports. The radioisotopic method is a suitable tool for distinction of the 11 Cradioisotopic methanol and its co-derivates from derivates of non-radioactive ethanol on these catalysts. Experimental. The Ni/A l 2O 3 (5 wt % Ni) is commercially available while H-MCMN-41 (Si/Al=20) and Ni-ion-exchanged MCM-41 silica-alumina (5 wt % Ni) were prepared and characterized in previous works. Before catalysis the Ni/Al 2 O 3 and Ni-MCM-41 were pre-reduced. The 11 C-methanol was formed by a radiochemical process from 11 C-carbon dioxide produced at cyclotron (T 1/2 = 20.4 min). The mixture of equivalent volume of radioactive methanol and non-radioactive ethanol was introduced into glass tube micro-flow reactor at ambient temperature. After adsorption, the valves were closed and the catalyst was heated up to the required temperatures. The desorption rate of the remaining 11 C-derivatives on catalysts were continuously followed by radiodetectors and the derivatives of methanol with ethanol were analyzed by Radio/FID-gas chromatography (FID is coupled on-line with a radiodetector). The ethanol and its derivates were identified by FID while the 11 C-methanol and its co-derivates (with ethanol) were detected by both of FID and radiodetector. Results The 11 C-dimethyl ether was the common product of the single 11 C-methanol transformation on H-MCM-41, Ni-MCM-41 and Ni- Al 2 O 3 at low temperature (200-280 degC) due to middle strong acid sites. At higher temperature (280-350 degC), the dimethyl ether and hydrocarbons were the dominant products on H-MCM-41 while dimethyl ether selectivity decreased on Ni-alumina and Ni-MCM-41 in favor of methane. The selectivities of methanol to formaldehyde and methane were the highest on Ni-MCM-41. During co-reaction of 11 C-methanol with non-radioactive ethanol, the 11 C-labeled coethers, namely 11 C-methyl ethyl ether

  8. The Niśvāsamukha, the Introductory book of the Niśvāsatattvasaṃhitā : critical edition, with an introduction and annotated translation appended by Śivadharmasaṅgraha 5–9

    NARCIS (Netherlands)

    Kafle, Nirajan

    2015-01-01

    A single 9th-century Nepalese palm-leaf manuscript transmits what appears to be the oldest surviving Śaiva tantra, called the Niśvāsatattvasaṃhitā. The manuscript consists of five separate books: Niśvāsamukha, Mūlasūtra, Nayasūtra, Uttarasūtra and Guhyasūtra. The Niśvāsamukha, which is divided into

  9. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    Science.gov (United States)

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  10. Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection.

    Science.gov (United States)

    Wang, Guobao; Zhang, Jianjia; Shen, Yunwang; Zheng, Qin; Feng, Min; Xiang, Xingwei; Wu, Xiaofeng

    2015-06-01

    Baculoviruses have been known to induce hyperactive behavior in their lepidopteran hosts for over a century. As a typical lepidopteran insect, the silkworm Bombyx mori displays enhanced locomotor activity (ELA) following infection with B. mori nucleopolyhedrovirus (BmNPV). Some investigations have focused on the molecular mechanisms underlying this abnormal hyperactive wandering behavior due to the virus; however, there are currently no reports about B. mori. Based on previous studies that have revealed that behavior is controlled by the central nervous system, the transcriptome profiles of the brains of BmNPV-infected and non-infected silkworm larvae were analyzed with the RNA-Seq technique to reveal the changes in the BmNPV-infected brain on the transcriptional level and to provide new clues regarding the molecular mechanisms that underlies BmNPV-induced ELA. Compared with the controls, a total of 742 differentially expressed genes (DEGs), including 218 up-regulated and 524 down-regulated candidates, were identified, of which 499, 117 and 144 DEGs could be classified into GO categories, KEGG pathways and COG annotations by GO, KEGG and COG analyses, respectively. We focused our attention on the DEGs that are involved in circadian rhythms, synaptic transmission and the serotonin receptor signaling pathway of B. mori. Our analyses suggested that these genes were related to the locomotor activity of B. mori via their essential roles in the regulations of a variety of behaviors and the down-regulation of their expressions following BmNPV infection. These results provide new insight into the molecular mechanisms of BmNPV-induced ELA. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV): Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands.

    Science.gov (United States)

    Fuentes, Ernesto Gabriel; Hernández-Suárez, Estrella; Simón, Oihane; Williams, Trevor; Caballero, Primitivo

    2017-01-01

    Chrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Baculoviridae) as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chalcites populations was 2.3% (103 infected larvae out of 4,438 sampled), but varied from 0-4.8% on Tenerife and was usually low (0-2%) on the other islands. On Tenerife, infected larvae were present at 11 out of 17 plantations sampled. The prevalence of infection in larvae on bananas grown under greenhouse structures was significantly higher (3%) than in open-field sites (1.4%). The ChchNPV-TF1 isolate was the most abundant and widespread of four genetic variants of the virus. Application of 1.0x109 viral occlusion bodies (OBs)/l of ChchNPV-TF1 significantly reduced C. chalcites foliar damage in young banana plants as did commonly used pesticides, both in greenhouse and open-field sites. The insecticidal efficacy of ChchNPV-TF1 was similar to that of indoxacarb and a Bacillus thuringiensis (Bt)-based insecticide in one year of trials and similar to Bt in the following year of trails in greenhouse and field crops. However, larvae collected at different time intervals following virus treatments and reared in the laboratory experienced 2-7 fold more mortality than insects from conventional insecticide treatments. This suggests that the acquisition of lethal dose occurred over an extended period (up to 7 days) compared to a brief peak in larvae on plants treated with conventional insecticides. These results should prove useful for the registration of a ChchNPV-based insecticide for integrated management of this pest in banana crops on the Canary Islands.

  12. Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV: Natural occurrence and efficacy as a biological insecticide on young banana plants in greenhouse and open-field conditions on the Canary Islands.

    Directory of Open Access Journals (Sweden)

    Ernesto Gabriel Fuentes

    Full Text Available Chrysodeixis chalcites, an important pest of banana crops on the Canary Islands, is usually controlled by chemical insecticides. The present study aimed to evaluate the efficacy of the most prevalent isolate of the Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV, Baculoviridae as a biological insecticide. Overall the prevalence of ChchNPV infection in C. chalcites populations was 2.3% (103 infected larvae out of 4,438 sampled, but varied from 0-4.8% on Tenerife and was usually low (0-2% on the other islands. On Tenerife, infected larvae were present at 11 out of 17 plantations sampled. The prevalence of infection in larvae on bananas grown under greenhouse structures was significantly higher (3% than in open-field sites (1.4%. The ChchNPV-TF1 isolate was the most abundant and widespread of four genetic variants of the virus. Application of 1.0x109 viral occlusion bodies (OBs/l of ChchNPV-TF1 significantly reduced C. chalcites foliar damage in young banana plants as did commonly used pesticides, both in greenhouse and open-field sites. The insecticidal efficacy of ChchNPV-TF1 was similar to that of indoxacarb and a Bacillus thuringiensis (Bt-based insecticide in one year of trials and similar to Bt in the following year of trails in greenhouse and field crops. However, larvae collected at different time intervals following virus treatments and reared in the laboratory experienced 2-7 fold more mortality than insects from conventional insecticide treatments. This suggests that the acquisition of lethal dose occurred over an extended period (up to 7 days compared to a brief peak in larvae on plants treated with conventional insecticides. These results should prove useful for the registration of a ChchNPV-based insecticide for integrated management of this pest in banana crops on the Canary Islands.

  13. Synthesis and characterization of NiO nanoparticles by Pechini method; Sintese e caracterizacao de nanoparticulas de NiO pelo metodo Pechini

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, A; Ribeiro, M A; Costa, A C.F.M.; Gama, L [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais; Bernardi, M I.B. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2009-07-01

    In recent years, ultrafine magnetic particles of NiO have attracting the attention because of its unknown behavior, enormous scientific potential and technological application. Some of its more important properties are accented magnetic moments, double dynamic exchange, quantization of wave of spin and etc. In this context, this work has for objective to synthesize and to characterize nanoparticles of NiO for the Pechini method. The powder was analyzed by X-rays diffraction. The results of scanning electron microscopy, adsorption of nitrogen. The analysis of X-rays diffraction of the sample showed single-phase peaks of NiO, with crystallite size close to 38 nm. The surface area was 6.44 m{sup 2}/g. The image from scanning electron microscopy shows soft homogeneous agglomerates. The Pechini synthesis was efficient in the production of powders of NiO nano metrics and single-phase. (author)

  14. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    International Nuclear Information System (INIS)

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-01-01

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 μW m -1 K -2 at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  15. Hydrothermal synthesis and magneto-optical properties of Ni-doped ZnO hexagonal columns

    International Nuclear Information System (INIS)

    Xu, Xingyan; Cao, Chuanbao

    2015-01-01

    Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns have been synthesized by a simple hydrothermal route. The hexagonal columns of the products are about 3 μm in diameter and about 2 μm in thickness. X-ray diffraction (XRD), Ni K-edge XANES spectra and TEM indicate that the as-prepared samples are single-crystalline wurtzite structure and no metallic Ni or other secondary phases are found in the hexagonal columns. Optical absorption and Raman results further confirm the incorporation of Ni 2+ ions in the ZnO lattice. Magnetic measurements indicate that the Zn 1−x Ni x O hexagonal columns exhibited obvious ferromagnetic characteristic at room temperature. The coercive fields (H c ) were obtained to be 135.3, 327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. The ferromagnetism was assumed to originate from the exchange interaction between free carriers (holes or electrons) from the valence band and the localized d spins on the Ni ions. - Highlights: • Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns were synthesized by a simple hydrothermal method. • The layer-by-layer growth manner of the Zn 1−x Ni x O hexagonal columns was proposed. • Obvious room-temperature ferromagnetic characteristic of Zn 1−x Ni x O are observed and the coercivity (H c ) are 135.3,327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. • The exchange interaction between local-spin polarized electrons and conduction electrons is responsible for the room-temperature ferromagnetism in the Zn 1−x Ni x O hexagonal columns

  16. El Niño indices based on subareas of SST in Pacific

    Science.gov (United States)

    Song, Wanjiao; Dong, Qing; Xue, Cunjin; Hou, Xueyan; Qin, Lijuan

    2014-11-01

    El Niño continues the most important coupled ocean-atmosphere phenomenon to cause global climate variability on seasonal to inter annual time scales. The first independent spatial mode which carried out by EOF analysis of tropical and north Pacific sea surface temperature (SST) for the period of 1985-2009 in AVHRR dataset is found to be associated with well-known regional climate phenomena: the El Niño. This paper addresses the need for a reliable El Niño index that allows for the historical definition of El Niño events in the instrumental record back to 1985-2009 with a new perspective. For quantitative purposes, possible definitions are explored that match the El Niño identified historically in 1985-2009, and it is suggested that an El Niño can be said to occur if difference of sea surface temperature (SST) anomalies between the tropical and north Pacific exceeds 0.6 times standard deviation for 5 months or more. An advantage of such a definition is that it combines the characteristics between tropical and north Pacific. Through seasonal analysis of SST in El Niño event, we found that the El Niño events are almost beginning in boreal spring or perhaps boreal summer and peak from November to February. It provides a more complete and flexible description of the El Niño phenomenon than single area in tropical Pacific.

  17. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  18. Magnetic properties of La2NiO4.16 and La2-xPrxNiO4+δ

    International Nuclear Information System (INIS)

    Poirot, N.J.; Allancon, Ch.; Odier, P.; Simon, P.; Bassat, J.M.; Loup, J.P.

    1998-01-01

    Magnetic properties of La 2 NiO 4.16 and La 2-x Pr x NiO 4+δ are studied by dc susceptibility in a wide temperature range, i.e., 4--1,200 K. The principal aim is to investigate the modifications of magnetic interactions in the NiO 2 plane by inserting a magnetic ion in the LaO layer. Magnetic properties are considerably different with and without praseodymium. When 0 0.5, a single Pr 3+ effect might dominate

  19. Magnetic properties of Fe-doped NiO nanoparticles

    Science.gov (United States)

    Kurokawa, A.; Sakai, N.; Zhu, L.; Takeuchi, H.; Yano, S.; Yanoh, T.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Ichiyanagi, Y.

    2013-08-01

    Ni1- x Fe x O ( x = 0, 0.05, 0.1) nanoparticles with several nanometers encapsulated with amorphous SiO2 were prepared by our novel preparation method. A NiO single phase structure was confirmed using the X-ray diffraction measurements. It is considered that Ni ions are replaced by Fe ions because it is observed that the lattice constant decreases. The temperature dependence behavior of the magnetization revealed that the blocking temperature, T B , shifted from 17 to 57 K as the amount of Fe ions increased, and that below T B , ferromagnetic behaviors were exhibited. The coercive force, H C , increased from 0.8 to 1.5 kOe as the amount of Fe ions increased.

  20. Ni-doped zinc oxide nanocombs and phonon spectra properties

    International Nuclear Information System (INIS)

    Zhang Bin; Zhang Xingtang; Gong Hechun; Wu Zhishen; Zhou Shaomin; Du Zuliang

    2008-01-01

    Ni-doped comb-like zinc oxide (ZnO) semiconductor nanostructures have been synthesized by a simple chemical vapor-deposition method (CVD) at relatively low temperature. The as-synthesized ZnO nanocombs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline nanobelts (nanowires) with periods of about several tens of nanometers. X-ray diffraction and Raman spectra results provide the evidence that Ni is incorporated into the ZnO lattice at Zn site. Photoluminescence spectra of the as-obtained samples have been detected, in which the incorporation of donor Ni leads to the increases of the ultraviolet emission intensity and a blueshift of emission peak. This technique can be used to prepare other semiconductors and morphology-controlled doping nanocombs

  1. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  2. Validation of site-specific soil Ni toxicity thresholds with independent ecotoxicity and biogeochemistry data for elevated soil Ni

    International Nuclear Information System (INIS)

    Hale, Beverley; Gopalapillai, Yamini; Pellegrino, Amanda; Jennett, Tyson; Kikkert, Julie; Lau, Wilson; Schlekat, Christian; McLaughlin, Mike J.

    2017-01-01

    The Existing Substances Regulation Risk Assessments by the European Union (EU RA) generated new toxicity data for soil organisms exposed to Ni added to sixteen field-collected soils with low background concentration of metals and varying physico-chemical soil characteristics. Using only effective cation exchange capacity (eCEC) as a bioavailability correction, chronic toxicity of Ni in soils with a wide range of characteristics could be predicted within a factor of two. The objective of the present study was to determine whether this was also the case for three independent data sets of Ni toxicity thresholds. Two of the data sets were from Community Based Risk Assessments in Port Colborne ON, and Sudbury ON (Canada) for soils containing elevated concentrations of Ni, Co and Cu arising from many decades of Ni mining, smelting and refining. The third data set was the Metals in Asia study of soluble Ni added to field soils in China. These data yielded 72 leached and aged EC 10 /NOEC values for soil Ni, for arthropods, higher plants and woodlot structure and function. These were reduced to nine most sensitive single or geometric mean species/function endpoints, none of which were lower than the HC 5 predicted for a soil with an eCEC of 20 cmol/kg. Most of these leached and aged EC 10 /NOEC values were from soils co-contaminated with Cu, in some cases at its median HC 5 as predicted by the EU RA from soil characteristics. We conclude that the EU RA is protective of Ni toxicity to higher-tier ecological endpoints, including in mixture with Cu, before the assessment factor of 2 is applied. We suggest that for prospective risk assessment, the bioavailability based PNEC (HC 5 /2) be used as a conservative screen, but for retrospective and site-specific risk assessment, the bioavailability based HC 5 is sufficient. - Highlights: • Higher-tier ecotoxicity thresholds calculated for field soils with elevated Ni. • Adjusted for Ni bioavailability using soil eCEC and species

  3. Radiochemical method for 63Ni

    International Nuclear Information System (INIS)

    Holm, E.; Nilsson, U.; Hallstadius, L.

    1985-01-01

    A radianalytical method for the determination of 63 Ni content in environmental samples of activated corrosion products is described. After chemical separation and electrodepositing of 63 Ni on silver briquets, the chemical yield is determined by X-ray fluorescence analysis. For the detection of low-energy beta activity, an open gas flow GM-counter with an anticoincidence guard counter is put to use

  4. Combinatorial search for hydrogen storage alloys: Mg-Ni and Mg-Ni-Ti

    Energy Technology Data Exchange (ETDEWEB)

    Oelmez, Rabia; Cakmak, Guelhan; Oeztuerk, Tayfur [Dept. of Metallurgical and Materials Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2010-11-15

    A combinatorial study was carried out for hydrogen storage alloys involving processes similar to those normally used in their fabrication. The study utilized a single sample of combined elemental (or compound) powders which were milled and consolidated into a bulk form and subsequently deformed to heavy strains. The mixture was then subjected to a post annealing treatment, which brings about solid state reactions between the powders, yielding equilibrium phases in the respective alloy system. A sample, comprising the equilibrium phases, was then pulverized and screened for hydrogen storage compositions. X-ray diffraction was used as a screening tool, the sample having been examined both in the as processed and the hydrogenated state. The method was successfully applied to Mg-Ni and Mg-Ni-Ti yielding the well known Mg{sub 2}Ni as the storage composition. It is concluded that a partitioning of the alloy system into regions of similar solidus temperature would be required to encompass the full spectrum of equilibrium phases. (author)

  5. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  6. Improvement in ductility of high strength polycrystalline Ni-rich Ni{sub 3}Al alloy produced by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.Y.; Pei, Y.L.; Li, S.S.; Zhang, H.; Gong, S.K., E-mail: gongsk@buaa.edu.cn

    2014-11-25

    Highlights: • High strength and high ductility of polycrystalline Ni-rich Ni{sub 3}Al alloy sheets were produced. • The elongation could be enhanced from ∼0.5% to ∼14.6% by microstructural control. • The fracture strength (∼820 MPa) was enhanced by the precipitation strengthening. • This work provides a general processing for repairing the worn single crystal blades. - Abstract: A 300 μm Ni-rich Ni{sub 3}Al sheet was produced by electron beam physical vapor deposition (EB-PVD) and followed by different heat treatments to obtain fine γ′/γ two-phase structures with large elongation. Tensile testing was performed at room-temperature, and the corresponding mechanisms were investigated in detail. Results indicated that the as-deposited Ni{sub 3}Al alloy exhibited non-equilibrium directional columnar crystal, and transited to equiaxed crystal with uniformly distributed tough γ phase after heat treatment. Meanwhile, the fracture mechanism transited from brittleness to a mixture of ductility and brittleness modes. With an appropriate heat treatment, high strength (ultimate tensile strength obtained 828 MPa) and high ductility (elongation obtained 14.6%) Ni{sub 3}Al alloy has been achieved, which was due to the mesh network microstructure. A series of transmission electron microscope (TEM) characterizations confirmed that the increasing flow stress of Ni{sub 3}Al alloy was attributed to the cubical secondary γ′ phase precipitates (25–50 nm) within the γ phase. This work provides a potential strategy for repairing the worn tip of single crystal engine blades using Ni-rich Ni{sub 3}Al alloy by EB-PVD.

  7. Electronic structure of Ni/sub 3/Al and Ni/sub 3/Ga alloys

    CERN Document Server

    Pong, W F; Chang, Y K; Tsai, M H; Hsieh, H H; Pieh, J Y; Tseng, P K; Lee, J F; Hsu, L S

    1999-01-01

    This work investigates the charge transfer and Al(Ga) p-Ni d hybridization effects in the intermetallic Ni/sub 3/Al(Ni/sub 3/Ga) alloy using the NiL/sub 3.2/- and K-edge and Al(Ga)K X-ray absorption near edge structure (XANES) measurements. We find that the intensity of white-line features at the NiL/sub 3.2/-edge in the Ni/sub 3/Al(Ni /sub 3/Ga) alloy decreased in comparison with that of pure Ni, which can be attributed to the enhancement of Ni3d states filling and the depletion of the density of Ni 3d unoccupied states in the Ni/sub 3 /Al(Ni/sub 3/Ga) alloy. Two clear features are also observed in the Ni/sub 3/Al(Ni/sub 3/Ga) XANES spectrum at the Al(Ga) K-edge, which can be assigned to the Al(Ga) unoccupied 3p (4p) states and their hybridized states with the Ni 3d/4sp states above the Fermi level in Ni/sub 3/Al(Ni/sub 3/Ga). The threshold at Al K-edge XANES for Ni/sub 3/Al clearly shifts towards higher photon energies relative to that of pure Al, indicating that Al loses charges upon forming Ni/sub 3 /Al. ...

  8. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  9. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  10. Observation of the structural, optical and magnetic properties during the transformation from hexagonal NiS nano-compounds to cubic NiO nanostructures due to thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Linganiso, E.C., E-mail: elinganiso@csir.co.za [National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); DST/NRF Centre of Excellence in Strong Materials, Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mwakikunga, B.W., E-mail: bmwakikunga@csir.co.za [National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Coville, N.J. [DST/NRF Centre of Excellence in Strong Materials, Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Johannesburg, Wits 2050 (South Africa); Mhlanga, S.D. [Department of Applied Chemistry, University of Johannesburg, PO Box 17011, Doornfontein, 2028 Johannesburg (South Africa)

    2015-04-25

    Graphical abstract: The transition temperature of 350 °C for the formation of c-NiO from h-NiS oxidation was obtained from structural and optical property studies and by calculating the number of spins obtained from the EPR data. Vibrating sample magnetometry (VSM) shows that this pure NiS has both ferromagnetic ordering and paramagnetic domains. Further, the transition temperature of −9 °C of the pure α-NiS nano-alloys was confirmed by performing electrical measurements on the as-synthesized material. - Highlights: • Single hexagonal phase NiS obtained by microwave assisted hydrothermal synthesis. • NiS nanoalloys show both ferromagnetic and paramagnetic domains by VSM. • Structural evolution of annealed NiS and temperature dependent NiS oxidation presented. • Phase transition from NiS to NiO studied and correlated to the EPR spin population data and crystallite size. • Ferromagnetic and paramagnetic ordering observed for the raw NiS nanostructures. - Abstract: Single phase α-NiS nano-compounds with uniformly distributed hierarchical networks were synthesized by a microwave-assisted hydrothermal technique. The materials were evaluated for thermal stability under an oxidative environment and at temperatures between 150 °C and 600 °C. NiS materials showed stability at 300 °C and NiO formation was observed from 350 °C to 600 °C. The annealing effect on the crystalline size and IR absorption of the annealed samples is reported by XRD and FTIR studied. The EPR properties of the annealed materials were studied and compared to the oxidized materials. The transition temperature of 350 °C for the formation of NiO from NiS oxidation was confirmed by calculating the number of spins obtained from the EPR data. Vibrating sample magnetometry (VSM) shows that this pure NiS has both ferromagnetic ordering and paramagnetic domains. Further, the transition temperature of −9 °C of the pure α-NiS nano-compounds was confirmed by performing electrical

  11. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Holec, D.; Bojda, O.; Dlouhy, A.

    2008-01-01

    Non-uniform distributions of Ni 4 Ti 3 precipitate crystallographic variants are investigated in a Ni-rich NiTi shape memory alloy after aging, assisted by external stress. A finite-element method model is presented that considers the elastic anisotropy of the B2 parent phase and also mutual misorientations of grains in a polycrystalline sample. On loading by the external stress, the stress is redistributed in the microstructure and the precipitation of some Ni 4 Ti 3 crystallographic variants becomes distinctly favorable in grain boundary regions since these variant configurations minimize the elastic interaction energy. The volume fraction of the affected grain boundary regions is calculated and the numerical results are compared with the data obtained by differential scanning calorimetry and transmission electron microscopy

  12. Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates

    Czech Academy of Sciences Publication Activity Database

    Michutta, J.; Somsen, Ch.; Yawny, A.; Dlouhý, Antonín; Eggeler, G.

    2006-01-01

    Roč. 54, č. 13 (2006), s. 3525-3542 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : multiple-step martensitic transformations * differential scanning calorimetry * in situ cooling transmission electron microscopy Subject RIV: JG - Metallurgy Impact factor: 3.549, year: 2006

  13. Ni4Ti3 precipitate structures in Ni-rich NiTi shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Holec, David; Bojda, Ondřej; Dlouhý, Antonín

    2008-01-01

    Roč. 481, Sp. Iss. (2008), s. 462-465 ISSN 0921-5093. [ESOMAT 2006. Bochum, 10.09.2006-15.09.2006] R&D Projects: GA ČR(CZ) GA106/05/0918 Institutional research plan: CEZ:AV0Z20410507 Keywords : NiTi shape memory alloys * Ni4Ti3 precipitates * Multi-step martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  14. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  15. Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface

    DEFF Research Database (Denmark)

    Brooke, Richard J.; Jin, Chengjun; Szumski, Doug S.

    2015-01-01

    Using a scanning tunnelling microscope break-junction technique, we produce 4,4′-bipyridine (44BP) single-molecule junctions with Ni and Au contacts. Electrochemical control is used to prevent Ni oxidation and to modulate the conductance of the devices via nonredox gating - the first time this has...... been shown using non-Au contacts. Remarkably the conductance and gain of the resulting Ni-44BP-Ni electrochemical transistors is significantly higher than analogous Au-based devices. Ab-initio calculations reveal that this behavior arises because charge transport is mediated by spin-polarized Ni d...

  16. Electronic structure of Ni-- and Ni2--ethylene cluster complexes

    International Nuclear Information System (INIS)

    Basch, H.; Newton, M.D.; Moskowitz, J.W.

    1978-01-01

    The electronic structure of metal cluster--ethylene complexes has been investigated by carrying out ab initio bonding pair-correlated, self-consistent field, and configuration interaction (CI) calculations on the NiC 2 H 4 and Ni 2 C 2 H 4 species. The π-NiC 2 H 4 and π-Ni 2 C 2 H 4 cluster complexes are found to be bound, the former only with CI, while disigma-Ni 2 C 2 H 4 has only a repulsive Ni 2 --C 2 H 4 ground state potential curve. The bonding in the π-type cluster complexes can be described as follows: The metal atom configuration is 3d 9 4s 1 with the 4s hybridized (by the metal 4p) away from the ethylene molecule, thereby allowing the π orbital to form a dative sigma bond with the metal atom. The bonding interaction is promoted by the presence of a second nickel atom behind the first one, leading to a 4s orbital electron deficiency of the bonded nickel atom and thus making this nickel atom a better electron acceptor. Back donation from the occupied metal 3d into the ethylene π* molecular orbital also takes place to some extent, and thus both features of the classical Dewar--Chatt--Duncanson model are observed. The π-Ni 2 C 2 H 4 species is analyzed in terms of the addition of a bare nickel atom to a π-NiC 2 H 4 cluster complex, with concomitant stabilization of the orbitals of the bonded nickel atom. A study of the excited electronic states of π-NiC 2 H 4 shows that low-lying 4s→π* and 3d→π* (M→L) charge transfer transitions are predicted. The former is not observed experimentally, probably due to the diffuse nature of the 4s orbital. The relationship between small cluster--ethylene complex systems and ethylene chemisorption on a nickel metal surface is discussed

  17. Synthesis and characterization of NiO nanoparticles by Pechini method

    International Nuclear Information System (INIS)

    Nascimento, A.; Ribeiro, M.A.; Costa, A.C.F.M.; Gama, L.; Bernardi, M.I.B.

    2009-01-01

    In recent years, ultrafine magnetic particles of NiO have attracting the attention because of its unknown behavior, enormous scientific potential and technological application. Some of its more important properties are accented magnetic moments, double dynamic exchange, quantization of wave of spin and etc. In this context, this work has for objective to synthesize and to characterize nanoparticles of NiO for the Pechini method. The powder was analyzed by X-rays diffraction. The results of scanning electron microscopy, adsorption of nitrogen. The analysis of X-rays diffraction of the sample showed single-phase peaks of NiO, with crystallite size close to 38 nm. The surface area was 6.44 m 2 /g. The image from scanning electron microscopy shows soft homogeneous agglomerates. The Pechini synthesis was efficient in the production of powders of NiO nano metrics and single-phase. (author)

  18. Fabrication and current–voltage characteristics of NiOx/ZnO based MIIM tunnel diode

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aparajita, E-mail: asing044@fiu.edu [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States of America (United States); Ratnadurai, Rudraskandan [Global Foundaries, Malta, New York 12020 (United States); Kumar, Rajesh [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Department of Physics, Panjab University, Chandigarh 160014 (India); Krishnan, Subramanian [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States); Emirov, Yusuf [Advanced Materials Engineering Research Institute, Florida International University, Miami, Florida 33174 (United States); Bhansali, Shekhar [BioMEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174 (United States)

    2015-04-15

    Highlights: • Fabrication of single and bilayer tunnel diodes by sputter deposition. • Current–voltage characteristics study. • Enhanced asymmetry and non-linearity. • Study of tunneling mechanism. - Abstract: Enhanced asymmetric and non-linear characteristics of Ni–NiOx based MIM diode has been reported by the addition of a second insulator layer ZnO to form MIIM configuration. These properties are required for applications like energy-harvesting devices, terahertz electronics, macro electronics, etc. In this work, single insulator layer Ni–NiOx–Cr and double insulator Ni–NiOx–ZnO–Cr tunnel diodes were fabricated and their I–V characteristics were studied. A significant increase by one order of magnitude in asymmetry has been observed in case of bilayer NiOx/ZnO dielectric configuration at low voltages. The sensitivity of the NiOx and NiOx/ZnO dielectric configuration in MIM stack was 11 V{sup −1} and 16 V{sup −1}. The improved performance of the bilayer insulator diode is due to the second insulator which enables resonant tunneling or step-tunneling. Resonant tunneling was found to be dominant through trap assisted tunneling in the NiOx/ZnO diode.

  19. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  20. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  1. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    Science.gov (United States)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  2. 3D flexible NiTi-braided elastomer composites for smart structure applications

    International Nuclear Information System (INIS)

    Heller, L; Vokoun, D; Šittner, P; Finckh, H

    2012-01-01

    While outstanding functional properties of thin NiTi wires are nowadays well recognized and beneficially utilized in medical NiTi devices, development of 2D/3D wire structures made out of these NiTi wires remains challenging and mostly unexplored. The research is driven by the idea of creating novel 2D/3D smart structures which inherit the functional properties of NiTi wires and actively utilize geometrical deformations within the structure to create new/improved functional properties. Generally, textile technology provides attractive processing methods for manufacturing 2D/3D smart structures made out of NiTi wires. Such structures may be beneficially combined with soft elastomers to create smart deformable composites. Following this route, we carried out experimental work focused on development of 3D flexible NiTi-braided elastomer composites involving their design, laboratory manufacture and thermomechanical testing. We describe the manufacturing technology and structural properties of these composites; and perform thermomechanical tests on the composites, focusing particularly on quasistatic tensile properties, energy absorption, damping and actuation under tensile loading. Functional thermomechanical properties of the composites are discussed with regard to the mechanical properties of the components and architecture of the composites. It is found that the composites indeed inherit all important features of the thermomechanical behavior of NiTi wires but, due to their internal architecture, outperform single NiTi wires in some features such as the magnitude of recoverable strain, superelastic damping capacity and thermally induced actuation strain. (paper)

  3. Mutual control of axial and equatorial ligands: model studies with [Ni]-bacteriochlorophyll-a.

    Science.gov (United States)

    Yerushalmi, Roie; Noy, Dror; Baldridge, Kim K; Scherz, Avigdor

    2002-07-17

    Modification of the metal's electronic environment by ligand association and dissociation in metalloenzymes is considered cardinal to their catalytic activity. We have recently presented a novel system that utilizes the bacteriochlorophyll (BChl) macrocycle as a ligand and reporter. This system allows for charge mobilization in the equatorial plane and experimental estimate of changes in the electronic charge density around the metal with no modification of the metal's chemical environment. The unique spectroscopy, electrochemistry and coordination chemistry of [Ni]-bacteriochlorophyll ([Ni]-BChl) enable us to follow directly fine details and steps involved in the function of the metal redox center. This approach is utilized here whereby electro-chemical reduction of [Ni]-BChl to the monoanion [Ni]-BChl(-) results in reversible dissociation of biologically relevant axial ligands. Similar ligand dissociation was previously detected upon photoexcitation of [Ni]-BChl (Musewald, C.; Hartwich, G.; Lossau, H.; Gilch, P.; Pollinger-Dammer, F.; Scheer, H.; Michel-Beyerle, M. E. J. Phys. Chem. B 1999, 103, 7055-7060 and Noy, D.; Yerushalmi, R.; Brumfeld, V.; Ashur, I.; Baldridge, K. K.; Scheer, H.; Scherz, A. J. Am. Chem. Soc. 2000, 122, 3937-3944). The electrochemical measurements and quantum mechanical (QM) calculations performed here for the neutral, singly reduced, monoligated, and singly reduced, monoligated [Ni]-BChl suggest the following: (a) Electroreduction, although resulting in a pi anion [Ni]-BChl(-) radical, causes electron density migration to the [Ni]-BChl core. (b) Reduction of nonligated [Ni]-BChl does not change the macrocycle conformation, whereas axial ligation results in a dramatic expansion of the metal core and a flattening of the highly ruffled macrocycle conformation. (c) In both the monoanion and singly excited [Ni]-BChl ([Ni]-BChl*), the frontier singly occupied molecular orbital (SOMO) has a small but nonnegligible metal character. Finally, (d

  4. Combined experimental and ab-initio investigation of the physical properties of Ni{sub 3}Ge and Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    Dinkel, Markus; Janisch, Rebecca; Pyczak, Florian; Goeken, Mathias [Institute General Materials Properties, University Erlangen-Nuernberg, Erlangen (Germany)

    2008-07-01

    Germanium is a promising element for brazing alloys to repair single crystalline ni-base superalloys. Germanium has the advantage that it forms an ordered Ni{sub 3}Ge phase with the same crystal structure as Ni{sub 3}Al ({gamma}' phase). The {gamma}' phase is responsible for the excellent mechanical properties of Ni-base superalloys at high temperature. Interdiffusion between the braze and the base material causes a decreasing concentration of germanium from the brazing zone to the base material and vice versa for aluminum. In the {gamma}' precipitates germanium is more and more substituted by aluminum, which should lead to changing properties of the {gamma}' phase between brazing zone center and base material. In our investigations we determined the chemical composition of binary Ni-Ge by energy dispersive spectroscopy in the electron microscope, the lattice constants using X-ray diffraction investigated the mechanical properties by nanoindentation in an atomic force microscope. Additionally, equilibrium lattice constants, energies of formation, bulk moduli and defect energies of pure Ni{sub 3}Ge and Ni{sub 3}Al phases were calculated by means of a spin-polarized ab initio density-functional method in the general-gradient approximation. The results are discussed in the light of the experimental data.

  5. Synthesis, structure and DFT conformation analysis of CpNiX(NHC) and NiX2(NHC)2 (X = SPh or Br) complexes

    Science.gov (United States)

    Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé

    2017-11-01

    The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.

  6. Moessbauer spectroscopy and X-ray diffraction studies of Fe-Ni order-disorder processes in a 35% Ni meteorite (Santa Catharina)

    International Nuclear Information System (INIS)

    Scorzelli, R.B.; Danon, J.

    1985-01-01

    The composition and structure of iron-nickel alloys in the Santa Catharina iron meteorite were investigated by metallographic techniques, electron microprobe analysis, Moessbauer spectroscopy and X-ray diffraction. The occurence of an ordered Fe-Ni phase with non-cubic symmetry is demonstrated. This phase is present in large proportions in the Santa Catharina meteorite, and has been identified by its asymmetric Moessbauer spectrum, arising from the presence of a quadrupolar splitting superposed on the magnetic hyperfine splitting. The other major Fe-Ni phase in Santa Catharina gives rise to a single line Moessbauer spectrum with no hyperfine components. X-ray diffraction confirms the presence of the Fe-Ni Llo superstructure in this meteorite. Lattice parameter variations with temperature were found to be identical for the meteorite and for electron irradiated Fe-Ni alloys of the sample composition. Detailed Moessbauer spectroscopy studies from room temperature to liquid helium, and in the presence of external magnetic field show the presence of a smaller amount of another ferromagnetic Fe-Ni phase, probably with disordered structure. The destruction of the superstructure in the Santa Catharina meteorite was investigated after heating the samples. Partial ordering seems to coexist with the disordered phase at intermediate annealing temperatures. At higher temperatures the samples are homogeneous and similar to laboratory produced Fe-Ni alloys with 35% Ni. Order-disorder transformations produced by shock waves and by mechanical treatment are also described. (orig.)

  7. Coherence Kondo gap in CeNiSn and CeRhSb

    International Nuclear Information System (INIS)

    Takabatake, T.; Nakamoto, G.; Tanaka, H.; Bando, Y.; Fujii, H.; Nishigori, S.; Goshima, H.; Suzuki, T.; Fujita, T.; Oguro, I.; Hiraoka, T.; Malik, S.K.

    1994-01-01

    CeNiSn and CeRhSb are Kondo-lattice compounds showing the behavior of a small-gap semiconductor at temperatures below 7 K. We review and discuss the magnetic, transport and specific-heat measurements performed on single crystals of CeNiSn and polycrystals of CeRhSb. Prerequisites for gap formation are deduced from the effects of substitution and application of a magnetic field and pressure on the gapped state. ((orig.))

  8. Radioactive 63Ni in biological research

    International Nuclear Information System (INIS)

    Kasprzak, K.S.; Sunderman, F.W. Jr.

    1979-01-01

    Applications of 63 Ni in biological research are reviewed, with emphasis upon recent investigations of nickel metabolism and toxicology in experimental animals. The radiochemistry of 63 Ni is summarized, including consideration of the preparation of certain 63 Ni compounds (e.g. 63 Ni(CO) 4 and 63 Ni 3 S 2 ) that are of current interest in toxicology, teratology and cancer research. Practical guidance is given regarding the detection and determination of 63 Ni in biological materials by autoradiography and liquid scintillation spectrometry. (author)

  9. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  10. One nucleon transfer reactions around $^{68}$Ni at REX-ISOLDE

    CERN Multimedia

    Blazhev, A A; Kruecken, R; Mertzimekis, T; Darby, I G; Lagogiannis, A; Habs, D; Diriken, J V J; Patronis, N

    2008-01-01

    We intend to investigate the single particle properties of the neutron-rich Ni isotopes in the mass region around $^{68}$Ni and at a later stage towards the doubly-magic $^{78}$Ni. As a first experiment we propose to study the single particle character of the ground and first excited states of $^{67}$Ni. This nucleus will be the projectile-like reaction product for the one-neutron transfer reaction. A $^{66}$Ni beam at 3A MeV delivered from REX-ISOLDE will be directed on a CD$_{2}$ target. Protons produced from the (d,p) reaction will be detected either in singles or in coincidence with ${\\gamma}$-rays recorded by the MINIBALL array. The particles will be detected by the newly-built Si position-sensitive barrel configuration. The objectives of this work are the unambiguous determination of the spins and parities of the first excited states of $^{67}$Ni and measurement of the relative spectroscopic factors of those states as well as of the ground state. The experimental results will be compared with those from...

  11. High Ni in Archean tholeiites

    Science.gov (United States)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  12. The new ternary pnictides Er12Ni30P21 and Er13Ni25As19: Crystal structures and magnetic properties

    International Nuclear Information System (INIS)

    Oryshchyn, Stepan; Babizhetskyy, Volodymyr; Zhak, Olga; Zelinska, Mariya; Pivan, Jean-Yves; Duppel, Viola; Simon, Arndt; Kienle, Lorenz

    2010-01-01

    The new ternary pnictides Er 12 Ni 30 P 21 and Er 13 Ni 25 As 19 have been synthesized from the elements. They crystallize with hexagonal structures determined from single-crystal X-ray data for Er 12 Ni 30 P 21 (space group P6 3 /m, a=1.63900(3) nm, c=0.37573(1) nm, Z=1, R F =0.062 for 1574 F-values and 74 variable parameters), and for Er 13 Ni 25 As 19 (Tm 13 Ni 25 As 19 -type structure, space group P6-bar , a=1.6208(1) nm, c=0.38847(2) nm, Z=1, R F =0.026 for 1549 F-values and 116 variable parameters). These compounds belong to a large family of hexagonal structures with a metal-metalloid ratio of 2:1. HRTEM investigations were conducted to probe for local ordering of the disordered structure at the nanoscale. The magnetic properties of the phosphide Er 12 Ni 30 P 21 have been studied in the temperature of range 2 eff =9.59 μ B corresponds to the theoretical value of Er 3+ . - Graphical abstract: The new ternary pnictides Er 12 Ni 30 P 21 and Er 13 Ni 25 As 19 have been synthesized from the elements. They crystallize with hexagonal structures determined from single-crystal X-ray data. The compounds belong to a large family of structures with a metal-metalloid ratio of 2:1. HRTEM investigations were conducted to probe for local ordering of the disordered structure at the nanoscale. Display Omitted

  13. Relation between shape of Ni-particles and Ni migration in Ni-YSZ electrodes – a hypothesis

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hauch, Anne; Sun, Xiufu

    2016-01-01

    This is an attempt to explain a phenomenon of total depletion of Ni next to the electrolyte in Ni-YSZ cermet electrodes in solid oxide electrolysis cells during electrolysis at high current density/overpotential. Intuitively, we would think that Ni would always migrate down the steam partial...

  14. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    Science.gov (United States)

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  15. CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY

    NARCIS (Netherlands)

    TANAKA, A; JO, T; SAWATZKY, GA

    We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray

  16. Iodine capture by Hofmann-type clathrate Ni(II)(pz)[Ni(II)(CN)_4

    International Nuclear Information System (INIS)

    Massasso, Giovanni; Long, Jerome; Haines, Julien; Devautour-Vinot, Sabine; Maurin, Guillaume; Larionova, Joulia; Guerin, Christian; Guari, Yannick; Grandjean, Agnes; Onida, Barbara; Donnadieu, Bruno

    2014-01-01

    The thermally stable Hofmann-type clathrate framework Ni(II)(pz)[Ni(II)(CN)_4] (pz = pyrazine) was investigated for the efficient and reversible sorption of iodine (I_2) in the gaseous phase and in solution with a maximum adsorption capacity of 1 mol of I_2 per 1 mol of Ni(II)pz)[Ni(II)(CN)_4] in solution. (authors)

  17. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    International Nuclear Information System (INIS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-01-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni 3 Si particles in Ni-Ni 3 Si eutectic alloy, the work of adhesion (W ad ), fracture toughness (G), interfacial energy (γ i ), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni 3 Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni 3 Si. Since OM stacking interfaces have larger W ad , G and γ i than that of the top site stacking (OT) interfaces. The Ni/Ni 3 Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni 3 Si eutectic alloy. The calculated interfacial energy of Ni/Ni 3 Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni 3 Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  18. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  19. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    International Nuclear Information System (INIS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P.A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F.P.

    2012-01-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m 2 /g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: ► Fast synthesis of surfactant-free NiO nanoparticles with controllable size. ► High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. ► Strong reduction of the thermal conductivity with decreasing particle size. ► NiO as nanoinclusions in high performance materials for energy conversion.

  20. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Pranati [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Misra, Dinesh K. [The Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Salvador, Jim [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, Warren, MI 48090 (United States); Makongo, Julien P.A. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Chaubey, Girija S. [Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Takas, Nathan J. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Wiley, John B. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2012-06-15

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

  1. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  2. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  3. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  4. Charge-transport in Josephson-junctions with ferromagnetic Ni3Al-interlayer

    International Nuclear Information System (INIS)

    Born, F.

    2006-01-01

    The present dissertation reports on experimental studies about superconducting coupling through a thin Ni 76 Al 24 film. A new patterning process has been developed, which allows in combination with the wedge shaped deposition technique the in situ deposition of 20 single Nb/Al/Al 2 O 3 /Ni 3 Al/Nb multilayers, each with its own well defined Ni 3 Al thickness. Every single multilayer consists of 10 different sized Josephson junctions, showing a high reproducibility and scaling with its junction area. Up to six damped oscillations of the critical current density against F-layer thickness were observed, revealing three single 0-π-transitions in the ground state of Josephson junctions. Contrary to former experimental studies, the exponential decay length is one magnitude larger than the oscillation period defining decay length. The theoretical predictions based on linearised Eilenberger equations results in excellent agreement of theory and experimental results. (orig.)

  5. Enhancement of room temperature ferromagnetic behavior of rf sputtered Ni-CeO_2 thin films

    International Nuclear Information System (INIS)

    Murugan, R.; Vijayaprasath, G.; Mahalingam, T.; Ravi, G.

    2016-01-01

    Highlights: • Ni-CeO_2 thin films deposited by using rf Magnetron sputtering with different concentrations of Ni. • Deposited thin films have single crystalline and uniform surface morphology. • Photoluminescence and micro-Raman spectra were interpreted for Ni-CeO_2 thin films. • XPS spectra confirmed Ni ions were present in the doped CeO_2 thin films. • Ni ions induced ferromagnetic behavior of Ni-CeO_2 films were confirmed through VSM. - Abstract: Ni-doped CeO_2 thin films were prepared under Ar"+ atmosphere on glass substrates using rf magnetron sputtering. To assess the properties of the prepared thin films, the influence of various amounts of Ni dopant on structural, morphological, optical, vibrational, compositional and magnetic properties of the CeO_2 films were studied by using X-Ray diffraction (XRD), atomic force microscope (AFM), photoluminescence (PL), micro-Raman, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). XRD patterns for all the samples revealed the expected CeO_2 cubic fluorite-type structure and Ni ions were uniformly distributed in the samples. AFM images of the prepared samples indicate high dense, columnar structure with uniform distribution of CeO_2. Room-temperature photoluminescence (PL) and micro-Raman spectroscopic studies revealed an increase of oxygen vacancies with higher concentration of Ni in CeO_2. XPS results confirm the presence of Ni_2_p, O_1_s and Ce and depict that cerium is present as both Ce"4"+ and Ce"3"+ oxidation states in Ce_1_−_xNi_xO_2 (x = 15%) thin film. Field dependent magnetization measurements revealed a paramagnetic behavior for pure CeO_2, while a ferromagnetic behavior appeared when Ni is doped in CeO_2 films. Doping dependent magnetization measurements suggest that the observed ferromagnetism is due to the presence of metallic Ni clusters with nanometric size and broad size distribution.

  6. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  7. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  8. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Kim, Seung-Goo; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Lim, Tae Hoon; Oh, In-Hwan; Hong, Seong-Ahn

    2004-01-01

    The chemical stabilities of modified NiO cathodes doped with 1.5 mol% CoO and 1.5 mol% LiCoO 2 fabricated by a conventional tape casting method were evaluated through the real MCFC single cell operation. The heat-treated samples before oxidation had proper porosities and microstructures for a MCFC cathode. At 150 mA cm -2 in current density, the MCFC single cell using a CoO-doped NiO cathode showed stable cell voltages in the range of 0.833-0.843 V for 1000 h. In contrast, the cell using a LiCoO 2 -doped NiO cathode with a maximum of 0.836 V at 500 h degraded to 0.826 V at 1000 h due to a wet seal breakdown at the cathode side. The amounts of nickel precipitated in the electrolytes of the cells using modified NiO cathodes doped with CoO and LiCoO 2 after the operation for 1000 h were 1.2 and 1.4 wt.%, respectively, which were about 60% lower than that of the standard cells using pure NiO cathodes. The enhanced chemical stability of modified NiO cathodes seems to be attributed to the fact that the presence of cobalt increases the lithium content in the cathodes by converting Ni 2+ to Ni 3+ , resulting in stabilizing the layered crystal structure

  9. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    Science.gov (United States)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  10. Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, Jean-Luc, E-mail: mattei@univ-brest.fr [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); Le Guen, Emmanuel, E-mail: emmanuel.leguen@hotmail.fr [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); IETR, Université de Rennes 1, 263 Avenue General Leclerc, 35042 Rennes Cedex (France); Chevalier, Alexis, E-mail: alexis.chevalier@univ-brest.fr [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); Tarot, Anne-Claude, E-mail: anne-claude.tarot@univ-rennes1.fr [IETR, Université de Rennes 1, 263 Avenue General Leclerc, 35042 Rennes Cedex (France)

    2015-01-15

    This study investigates the magnetocrystalline anisotropy constants (K{sub 1}) and the saturation magnetostriction constants (λ{sub S}) of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (NiZn) and Ni{sub 0.8−x}Zn{sub x}Co{sub 0.2}Fe{sub 1.98}O{sub 4−δ} (NiZnCo) ferrites intended to be used for antenna downsizing. Composite materials constituted of soft ferrite nanosized particles (NiZn or NiZnCo ferrites) embedded in an epoxy matrix are realized. Measurements of their magnetic permeability in the frequency range of 200 MHz–6 GHz are performed. The influence of compressive stress (in the range of 32–96 MPa) on their Ferrimagnetic Resonance (FMR) is demonstrated. An analytical modeling of stress-induced FMR changes is proposed that allows simultaneous determinations of the Natural Ferrimagnetic Resonance (NFMR, F{sub 0}), K{sub 1} and λ{sub S} of Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} and Ni{sub 0.8−x}Zn{sub x}Co{sub 0.2}Fe{sub 1.98}O{sub 4−δ} ferrites. The obtained results for NiZn ferrites are in agreement with literature data, validating both the experimental process and the proposed modeling of the stress-induced FMR changes. Regarding NiZnCo ferrites, extended data on K{sub 1} and λ{sub S} are presented for the first time. Increasing zinc content (x) induces a spin disorder that reduces in a same time K{sub 1} and the magnetization at saturation M{sub S}. The rapid variation of K{sub 1}(x) is related to that of the magnetization M{sub S}(x) through a power law. The single-ion anisotropy model allows a satisfactory interpretation of K{sub 1} dependence on zinc content. The unexpected low values of λ{sub S} got for NiZnCo ferrites, compared to those got for NiZn ferrites, are also discussed. Application of compressive stress lowers noticeably magnetic losses of Ni{sub 0.6}Zn{sub 0.2}Co{sub 0.2}Fe{sub 1.98}O{sub 4−δ} at given frequency, thereby enhancing the ability of this spinel ferrite to be used as a substrate in the aim of antenna

  11. Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization

    International Nuclear Information System (INIS)

    Mattei, Jean-Luc; Le Guen, Emmanuel; Chevalier, Alexis; Tarot, Anne-Claude

    2015-01-01

    This study investigates the magnetocrystalline anisotropy constants (K 1 ) and the saturation magnetostriction constants (λ S ) of Ni 1−x Zn x Fe 2 O 4 (NiZn) and Ni 0.8−x Zn x Co 0.2 Fe 1.98 O 4−δ (NiZnCo) ferrites intended to be used for antenna downsizing. Composite materials constituted of soft ferrite nanosized particles (NiZn or NiZnCo ferrites) embedded in an epoxy matrix are realized. Measurements of their magnetic permeability in the frequency range of 200 MHz–6 GHz are performed. The influence of compressive stress (in the range of 32–96 MPa) on their Ferrimagnetic Resonance (FMR) is demonstrated. An analytical modeling of stress-induced FMR changes is proposed that allows simultaneous determinations of the Natural Ferrimagnetic Resonance (NFMR, F 0 ), K 1 and λ S of Ni 1−x Zn x Fe 2 O 4 and Ni 0.8−x Zn x Co 0.2 Fe 1.98 O 4−δ ferrites. The obtained results for NiZn ferrites are in agreement with literature data, validating both the experimental process and the proposed modeling of the stress-induced FMR changes. Regarding NiZnCo ferrites, extended data on K 1 and λ S are presented for the first time. Increasing zinc content (x) induces a spin disorder that reduces in a same time K 1 and the magnetization at saturation M S . The rapid variation of K 1 (x) is related to that of the magnetization M S (x) through a power law. The single-ion anisotropy model allows a satisfactory interpretation of K 1 dependence on zinc content. The unexpected low values of λ S got for NiZnCo ferrites, compared to those got for NiZn ferrites, are also discussed. Application of compressive stress lowers noticeably magnetic losses of Ni 0.6 Zn 0.2 Co 0.2 Fe 1.98 O 4−δ at given frequency, thereby enhancing the ability of this spinel ferrite to be used as a substrate in the aim of antenna miniaturization. - Highlights: • We measure permeability of ferrite-based composites from 0.1 GHz to 6 GHz. • The influence of compressive stress on the FMR of

  12. Non-basic solution eco-routes to nano-scale NiO with different shapes: Synthesis and application

    International Nuclear Information System (INIS)

    Wang Xiangyan; Wan Lijuan; Yu Tao; Zhou Yong; Guan Jie; Yu, Zhentao; Li, Zhaosheng; Zou Zhigang

    2011-01-01

    Research highlights: → NiO nanodiscs and nanoflowers have been controllably fabricated via the thermal decomposition of Ni(OH) 2 by using different Ni sources in non-basic solution for anion-assisted effect. → The route is environment-friendly. → The nanoflowers exhibit better performance than the nanodiscs when they are applied in electrochemical test and water treatment. - Abstract: The assembly of NiO nanodiscs (namely nanoflowers) as well as the dispersed NiO nanodiscs have been successfully synthesized via the thermal decomposition of Ni(OH) 2 obtained from different Ni sources in non-basic solution. The route is environment-friendly. The materials were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and N 2 adsorption-desorption. The porous structures with pore size around 6 nm can be observed on the single NiO disc. The nanoflowers exhibit better performance than nanodiscs in the electrochemical test and water treatment experiments, due to much more available surface areas and spaces formed in the NiO nanoflowers.

  13. Synthesis of supported and unsupported NiMo carbides and their properties for the catalytic hydrocracking of n-octane

    International Nuclear Information System (INIS)

    Torre, A I Reyes de la; Banda, J A Melo; Alamilla, R GarcIa; Sandoval Robles, G; Rojas, E Terres; Lopez Ortega, A; Dominguez, J M

    2004-01-01

    Unsupported and γ-Al 2 O 3 -, MCM-41-supported (Ni, Mo) carbides were prepared and modified by 'in situ' polymer (PAN: polyacrylonitrile) pyrolysis. The supported catalysts were impregnated with Ni and Mo metals, i.e. 2.8 atom Mo/nm 2 , whose atomic ratio was Ni/Ni+Mo = 0.5. X-ray diffraction (XRD) showed single NiC, MoC phases in all cases, with relatively low surface areas, as verified by N 2 adsorption (BET). The catalytic behaviour of the supported (Ni, Mo)C phases for n-C 8 hydrocracking depended on the support type. (Ni, Mo)C/MCM41-PAN-P (P = pyrolyzed) showed a total conversion of 40% while it was only 15% on Ni,MoC/γ-Al 2 O 3 . The most active catalysts were (Ni, Mo)C unsupported catalysts, i.e., 90% total conversion. In all cases the hydrocracking selectivity favoured lighter hydrocarbons (C 1 -C 4 )

  14. Synthesis and Spectral Studies of Ni(II Dithiocarbamate Complexes and Their Use as Precursors for Nickel Sulphides Nanocrystals

    Directory of Open Access Journals (Sweden)

    Azile Nqombolo

    2016-01-01

    Full Text Available Ni(II dithiocarbamate complexes have been synthesized and characterized by UV-Vis, FTIR, and NMR spectroscopic techniques. Electronic spectra measurements indicate that the complexes are four-coordinate square planar geometry while the FTIR confirmed that the dithiocarbamates act as bidentate chelating ligands. The compounds were used as single source precursors and thermolysed at 220°C to prepare HDA-capped NiS nanocrystals which were characterized by absorption and photoluminescence (PL spectra measurements, powder X-ray diffraction (PXRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and energy dispersive spectroscopy (EDS. Absorption spectra studies showed that the synthesized NiS nanoparticles are blue-shifted relative to the bulk material and PL studies showed emission maxima that are red-shifted compared to the absorption band edges. The XRD patterns of the as-prepared NiS nanoparticles revealed cubic crystalline phases. TEM images showed spherical and close-to-spherical nanocrystals with the size in the range 12–38 nm for NiS1, 8–11 nm for NiS2, and 9–16 nm for NiS3. SEM images showed homogeneous surface morphology and EDS confirmed the presence of Ni and S and the formation of NiS nanoparticles.

  15. Synthesis, crystal structure and magnetic characterization of a cyanide-bridged Mo-Ni nanosized molecular wheel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Daopeng; Zhang, Hongyan; Wang, Ping [Shandong Univ. of Technology, College of Chemical Engineering, Zibo (China); Kong, Lingqian [Liaocheng Univ. (China). Dongchang College

    2015-11-01

    By using K{sub 4}[Mo(CN){sub 8}] and [Ni(L)(H{sub 2}O){sub 2}][ClO{sub 4}]{sub 2} as reagents (L = 2,12-dimethyl-3,7,11,17-tetraazabicyclo [11.3.1]heptadeca-1(17),13,15-triene), a new cyanide-bridged Mo-Ni complex containing the building blocks [Ni(H{sub 2}O)(L)]{sup 2+} and [Ni(L)]{sup 2+} bridged by [Mo(CN){sub 8}]{sup 4-} units has been obtained. The complex with the formula {[Ni(H_2O)(L)][Ni(L)][Mo(CN)_8]}{sub 6} . 36H{sub 2}O . 2CH{sub 3}OH (1) was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The structure determination reveals an octadecanuclear cluster in the form of a 36-membered macrocycle, in which the largest intramolecular W..W and Ni..Ni distances are 16.5 and 14.4 Aa, respectively, indicating that complex 1 is a nanosized molecular wheel. Investigation of its magnetic properties has shown weak antiferromagnetic coupling between the adjacent Ni(II) ions bridged by the diamagnetic [Mo(CN){sub 8}]{sup 4-} ions.

  16. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    Science.gov (United States)

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  17. Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells

    International Nuclear Information System (INIS)

    Zhao, Juan; Sarkar, Arindam; Manthiram, Arumugam

    2010-01-01

    Carbon-supported Pd-Ni nanoalloy electrocatalysts with different Pd/Ni atomic ratios have been synthesized by a modified polyol method, followed by heat treatment in a reducing atmosphere at 500-900 deg. C. The samples have been characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), rotating disk electrode (RDE) measurements, and single-cell proton exchange membrane fuel cell (PEMFC) tests for oxygen reduction reaction (ORR). XRD and TEM data reveal an increase in the degree of alloying and particle size with increasing heat-treatment temperature. XPS data indicate surface segregation with Pd enrichment on the surface of Pd 80 Ni 20 after heat treatment at ≥500 deg. C, suggesting possible lattice strains in the outermost layers. Electrochemical data based on CV, RDE, and single-cell PEMFC measurement show that Pd 80 Ni 20 heated at 500 deg. C has the highest mass catalytic activity for ORR among the Pd-Ni samples investigated, with stability and catalytic activity significantly higher than that found with Pd. With a lower cost, the Pd-Ni catalysts exhibit higher tolerance to methanol than Pt, offering an added advantage in direct methanol fuel cells (DMFC).

  18. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Manzoni, A., E-mail: anna.manzoni@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany); Daoud, H.; Völkl, R.; Glatzel, U. [Metals and Alloys, University Bayreuth, Ludwig-Thoma-Strasse 36b, D-95447 Bayreuth (Germany); Wanderka, N. [Helmholtz-Zentrum Berlin, Institute of Applied Materials, D-14109 Berlin (Germany)

    2013-09-15

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al–Ni rich matrix and Cr–Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr–Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr–Fe-rich precipitates. - Highlights: ► The Alloy separates into an Al–Ni rich matrix and Cr–Fe-rich precipitates. ► Concentration depth profiles in the Cr–Fe rich regions show opposite fluctuations. ► They have been attributed to the spinodal decomposition of Fe- and Cr-rich phases. ► The Al–Ni rich region corresponds well to the Al–Ni rich phases observed in the 6 component AlCoCrCuFeNi alloy.

  19. Magnetoimpedance effects in a CoNiFe nanowire array

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, S., E-mail: selcuk.atalay@inonu.edu.tr [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey); Kaya, H.; Atalay, F.E.; Aydogmus, E. [Inonu University, Science and Arts Faculty, Physics Department, Malatya (Turkey)

    2013-06-05

    Highlights: ► CoNiFe nanowires were produced by electrodeposition method. ► Magnetoimpedance effect of nanowires arrays were investigated. ► Single peak behaviour was observed in the magnetoimpedance curve. ► Nanowire arrays exhibit uniaxial magnetic anisotropy along the wire axis. -- Abstract: This report describes the growth of CoNiFe nanowires into highly ordered porous anodic alumina oxide (AAO) templates by DC electrodeposition at a pH value of 2.6. Scanning electron microscopy (SEM) observations revealed that the wires have diameters of approximately 270–290 nm and a length of 25 μm. The energy dispersive X-ray (EDX) analysis indicated that the composition of the nanowires is Co{sub 12}Ni{sub 64}Fe{sub 24}. Electrical contacts were created on both sides of the nanowire array, and their magnetoimpedance (MI) properties were investigated. The impedance value was initially 1.2 ohm at low frequency and increased to approximately 1000 ohm for a 33-MHz driving current frequency under no applied magnetic field. All the MI curves exhibited single peak behaviour due to the high shape anisotropy. The maximum MI change at the 33-MHz driving current frequency was 2.72%. The maximum resistance change was 5.4% at 33 MHz.

  20. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  1. Room temperature ferromagnetism in (In{sub 1-x}Ni{sub x}){sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sai Krishna, N. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603104,Tamilnadu (India); Madhusudhana Rao, N.; Krishnamoorthi, C.; Rigana Begam, M. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632014, Tamilnadu (India); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Sreekantha Reddy, D. [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-06-15

    Polycrystalline (In{sub 1−x}Ni{sub x}){sub 2}O{sub 3} thin films (x=0.00, 0.03, 0.05 and 0.07) were deposited on glass substrates by electron beam evaporation technique. The effect of Ni concentration on composition, structural and magnetic properties of (In{sub 1−x}Ni{sub x}){sub 2}O{sub 3} thin films was studied. Increment in the Ni concentration does increase the oxygen vacancies and ferromagnetic strength in (In{sub 1−x}Ni{sub x}){sub 2}O{sub 3} thin films. X-ray photoelectron spectroscopy (XPS) studies indicate the dopant Ni exists in Ni (II) state in In{sub 2}O{sub 3} host. Ferromagnetism was attributed to intrinsic nature of the sample rather than any secondary magnetic phases exist in the films. The observed ferromagnetism in (In{sub 1−x}Ni{sub x}){sub 2}O{sub 3} was attributed to ferromagnetic exchange interaction between Ni{sup 2+} ions via single free electron trapped in oxygen vacancy. Increase in oxygen vacancies with Ni concentration lead to increase in such an oxygen vacancy mediated ferromagnetic pairs resulting in increase in ferromagnetic strength with Ni concentration.

  2. Modelling Ni diffusion in bentonite using different sorption models

    International Nuclear Information System (INIS)

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    Document available in extended abstract form only. An important component of the multi barrier disposal concept for a radioactive waste repository is the bentonite backfill surrounding the canisters containing vitrified high-level waste and spent fuel located in the tunnels deep within the chosen host rock. The effectiveness of the compacted bentonite barrier is such that calculations have indicated that many radionuclides have decayed to insignificant levels before having diffused through the thickness of bentonite. These calculations are performed using the simple Kd sorption concept in which the values are taken from batch type experiments performed on dispersed systems performed for a single metal at a time, usually at trace concentrations. However, in such complex systems many radionuclides, inactive metal contaminants/ground water components may be simultaneously present in the aqueous phase at a range of concentrations varying with time during the temporal evolution of the repository system. An important aspect influencing the sorption of any radioactive metal under a set of given geochemical conditions is its competition with other metals present, and how this may vary as a function of concentration. Competitive sorption effects are not currently included in safety assessments and are thus an issue which needs to be addressed. Here we provide some first estimates of the potential influence of competitive sorption effects on the migration of radioactive metals through compacted bentonite as a function of their concentration and the concentration of competing metals. Ni(II) and Fe(II) were chosen as possible competing cations since their concentration levels are expected to have values greater than trace levels and effects might be maximal and canister corrosion represents a permanent Fe source at the bentonite interface which could influence bivalent radionuclide diffusion. The modelling of the Ni(II) diffusion/sorption has been carried out using three

  3. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    Science.gov (United States)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  4. Histopathology of Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae treated with Nucleopolyhedrovirus and Bacillus thuringiensis serovar kurstaki Histopatologia de Anticarsia gemmatalis Hübner (Lepidoptera; Noctuidae tratadas com Virus de Poliedrose Nuclear e Bacillus thuringiensis sorovar kurstaki

    Directory of Open Access Journals (Sweden)

    Neiva Knaak

    2005-06-01

    Full Text Available The Anticarsia gemmatalis is responsible for the use of chemical insecticides in the soybean culture, causing a significant increase in the costs of farming and a great unbalance in the ecosystem. The use of microbial agents, like Bacillus thuringiensis serovar kurstaki (Btk and Anticarsia gemmatalis nucleopolyhedrovirus (AgNPV, they are an alternative to chemical control of the pest insects. In the interaction analysis of the entomopathogenic bacteria and virus it is considered important the in vitro action mode of these microbiology control agents. Therefore, the present study aims the histopathological analysis of the A. gemmatalis larvae digestive system after the interaction in vivo of the entomopathogenic Btk and AgNPV, represented the Dipel and Baculovirus anticarsia formulations, respectively. The evaluations were realized in larvae of 2nd instar, in which the mortality was evaluated daily, and a histopathology was done with collected larvae in time of 1, 3, 6, 12 and 24 hours after the treatments application. The results of the in vivo assays reveal that the treatment using the association of AgNPV-Btk (98.68% of mortality was more efficient than using AgNPV isolatedly (81.28% of mortality, but the Btk when used isolatedly had a mortality of 100%. The treatments showed significant (PA Anticarsia gemmatalis é responsável pelo uso de inseticidas químicos na cultura da soja, ocasionando um significativo aumento nos custos das lavouras e um grande desequilíbrio no ecossistema. O uso de agentes microbianos, como Bacillus thuringiensis sorovar kurstaki (Btk e Vírus de Poliedrose Nuclear de Anticarsia gemmatalis (VPNAg, é uma alternativa para o controle químico de insetos-praga. Na análise da interação de bactérias e vírus entomopatogênicos, considera-se importante o modo de ação in vitro desses agentes de controle microbiano. Assim, o presente trabalho objetiva a análise histopatológica do sistema digestivo das lagartas de A

  5. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Nan [Iowa State Univ., Ames, IA (United States)

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at

  6. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  7. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  8. Facile synthesis of ferromagnetic Ni doped CeO{sub 2} nanoparticles with enhanced anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University Islamabad (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Naqvi, M. Sajjad H. [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Malik, Maaza [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-12-01

    Highlights: • The synthesized undoped and Ni doped CeO{sub 2} nanoparticles exhibited RTFM. • Oxygen vacancies and magnetic ions both were believed to be responsible for RTFM. • The prepared nanoparticles exhibited selective cytotoxicity. • Ni doping enhanced the anticancer activity of CeO{sub 2} nanoparticles. • Differential ROS generation was observed to control their cytotoxicity. - Abstract: Ni{sub x}Ce{sub 1−x}O{sub 2} (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV–vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO{sub 2} crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO{sub 2} nanoparticles. The synthesized Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO{sub 2} nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO{sub 2} nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic Ni{sub x}Ce{sub 1−x}O{sub 2} nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  9. Flowsheet for 63Ni production

    International Nuclear Information System (INIS)

    Williams, D.F.; Knauer, J.B.; O'Kelley, G.D.; Wiggins, J.T.; Porter, C.E.

    1992-01-01

    The production of large quantities of high specific activity 63 Ni (>10Ci/g) requires both a highly enriched 62 Ni target and a long irradiation period at high neutron flux. Trace impurities in the nickel and associated target materials are also activated and account for a significant fraction of the discharged activity and essentially all of the gamma activity. While most of these undesirable activation products (mainly transition metals) can be easily removed as chloride complexes during anion exchange, chromium, present as 51 Cr, and manganese, present as 54 Mn, are exceptions and require solvent extraction of the in-cell product to achieve the desired purity. In addition to summarizing the current development and production experience, optimized flowsheets are discussed

  10. Microstructural investigations of Ni and Ni2Al3 coatings exposed in biomass power plants

    DEFF Research Database (Denmark)

    Wu, D. L.; Dahl, K. V.; Christiansen, T. L.

    2018-01-01

    The present work investigates the corrosion resistance of Ni and Ni2Al3 coated austenitic stainless steel (TP347H) tubes, which were exposed in a biomass-fired boiler with an outlet steam temperature of 540 °C for 6757 h. The Ni2Al3 coating was produced by electroplating Ni followed by low...... temperature pack cementation. After exposure, microstructural investigations were performed by light optical and electron microscopy (SEM-EDS). Electroplated Ni coatings were not protective in straw firing power plants and exhibited similar corrosion morphology as uncoated tubes. For Ni2Al3 coatings...

  11. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  12. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  13. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition; Etude exclusive des collisions centrales Ni+Ni et Ni+Au: coexistence de phase et decomposition spinodale

    Energy Technology Data Exchange (ETDEWEB)

    Guiot, B

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  14. niños preescolares

    Directory of Open Access Journals (Sweden)

    Claudia Rosario Portilla Ramírez

    2007-01-01

    Full Text Available Este estudio explora la relación entre la escritura y la comprensión de la referencia a través de una tarea de sinonimia en niños entre 5 y 6 años de edad, de origen latinoamericano, escolarizados en Barcelona (España. Las variables relacionadas con la tarea de sinonimia fueron (a la comprensión de la entidad lingüística nombre y (b el nivel de conceptualización de la escritura de los niños y la presencia de etiquetas escritas durante la tarea. Para la tarea de sinonimia se utilizaron pares de sinónimos dialectales del español (de Latinoamérica y de la Península Ibérica. Los resultados mostraron una diferenciación en el razonamiento de los niños, la cual dependía de la comparación entre lenguaje oral y lenguaje escrito en el desarrollo de la tarea, evidenciando una mayor aceptación de la sinonimia en la modalidad de lenguaje oral que en la modalidad de lenguaje escrito.

  15. Reinvestigation of 56Ni decay

    International Nuclear Information System (INIS)

    Sur, B.; Norman, E.B.; Lesko, K.T.; Browne, E.; Larimer, R.

    1990-01-01

    In a series of experiments, we have reinvestigated the decay of the doubly magic nucleus 56 Ni, which is believed to be copiously produced in supernovae. We have confirmed its previously known decay scheme and half-life, and have searched for several rare decay modes. We establish an upper limit of 5.8x10 -7 for the branching ratio of the second forbidden unique β + decay to the 158-keV level in 56 Co, leading to a lower limit of 2.9x10 4 yr for the half-life of fully ionized 56 Ni nuclei in cosmic rays. We also establish an upper limit of 5.0x10 -3 for the branching ratio of the isospin forbidden Fermi electron capture transition to the 1451-keV level in 56 Co, which in turn leads to an upper limit of 124 keV for the isospin mixing Coulomb matrix element of the 56 Ni ground state

  16. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    Science.gov (United States)

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  17. Synthesis of Ni core NiO shell nanostructure and magnetic investigation for shell thickness determination

    International Nuclear Information System (INIS)

    Arabi, H.; Bruck, E.; Tichelaar, F.D.

    2007-01-01

    Full text: Nickel oxide has received a considerable amount of attention in recent years for its catalytic, electronic and magnetic properties. Ni nanoparticles with an average size of 8 nm were prepared by dc - arc discharge in argon atmosphere. A current of 130 A and 300 milli bar pressure of argon have been applied. The produced Ni nanoparticles were annealed for oxidizing in air at 350 for six hours to produce antiferromagnetic NiO particles. The structure of Ni and NiO nanoparticles and size estimation of them studied by means of X-ray diffraction. The size and morphology of the particles were also characterized by high resolution transmission microscopy (TEM). The Ni core NiO shell structure, resulting from the oxidation process, were studied by magnetic properties measurements. A quantum design squid magnetometer, model MPMS5S was used for measuring saturation magnetization of both nanoparticles of Ni with and without NiO layer. By knowing the density of Ni and NiO, we were able to deduce the thickness of the Ni core and NiO outer layer. They are around 3 and 5 nanometers respectively. (authors)

  18. Changes of surface structure of Ni, W and chromium-nickel steel Cr18Ni10 irradiated by high fluences of krypton ions with high energies

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Semina, V.K.; Khalil, A.; Suvorov, A.L.; Stepanov, A.Eh.; Cheblukov, Yu.N.

    1999-01-01

    The surfaces of W single crystal, Ni polycrystal and chromium-nickel steel, irradiated by Kr ions with energy 305 and 245 MeV up to the fluences 2*10 15 and 3*10 15 ion/cm 2 , were studied by means of scanning electron microscopy. The evaporation coefficients of material surfaces were estimated on the base of changes of surface relief. The values of these coefficients turned out much more than ones predicted by the inelastic sputtering model. The method of 'step' was offered and realized for the more correct estimations evaporation coefficient on the Ni example. The phenomenological model explaining the observed phenomena is introduced

  19. Transport of potential vorticity and Eliassen-Palm fluxes for two contrasting years: 1995–1996 (La Niña and 1997–1998 (El Niño

    Directory of Open Access Journals (Sweden)

    S. H. Franchito

    2002-05-01

    Full Text Available Potential vorticity transport (PV-Eliassen and Palm (EP cross sections are studied for two contrasting years: 1995–1996 (La Niña and 1997–1998 (El Niño. The results show that the largest differences in PV transport-EP fluxes between El Niño and La Niña events occur in winter in both hemispheres, but the changes are higher in the Northern Hemisphere. PV transport-EP fluxes are stronger in both July 1997 and January 1998 than in July 1995 and January 1996, respectively, indicating stronger baroclinic activity in the El Niño year compared to the La Niña year. The changes in PV transport seem to be due mainly to the changes in eddy heat fluxes. Due to the increase in the wind shear the Eady growth rate is stronger in the 1997–1998 El Niño compared to 1995–1996 La Niña. Consequently, the zonal winds are stronger in the El Niño event, although the location of the jet streams is almost the same in both the contrasting years. However, in the Southern Hemisphere, there are two regions of maxima Eady growth rate in July 1997 and a double jet is observed while a single jet is seen in July 1995 associated with only one maximum of Eady growth rate. In the case of summer, there is little difference in PV transport-EP fluxes between the two contrasting years in the hemispheres, although they are slightly higher in the El Niño event than in the La Niña event.Key words. Meteorology and atmospheric dynamics (climatology; general circulation

  20. Exclusive study of Ni+Ni and Ni+Au central collisions: phase coexistence and spinodal decomposition

    International Nuclear Information System (INIS)

    Guiot, B.

    2002-12-01

    The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)

  1. Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces

    International Nuclear Information System (INIS)

    Baskes, M.I.; Angelo, J.E.; Moody, N.R.

    1995-01-01

    Embedded Atom Method (EAM) potentials have been developed for the Ni/Al/H system. The potentials have been fit to numerous properties of this system. For example, these potentials represent the structural and elastic properties of bulk Ni, Al, Ni 3 Al, and NiAl quite well. In addition the potentials describe the solution and migration behavior of hydrogen in both nickel and aluminum. A number of calculations using these potentials have been performed. It is found that hydrogen strongly prefers sites in Ni 3 Al that are surrounded by 6 Ni atoms. Calculations of the trapping of hydrogen to a number of grain boundaries in Ni 3 Al have been performed as a function of hydrogen chemical potential at room temperature. The failure of these bicrystals under tensile stress has been examined and will be compared to the failure of pure Ni 3 Al boundaries. Boundaries containing a preponderance of nickel are severely weakened by hydrogen. In order to investigate the potential embrittlement of γ/γ' alloys, trapping of hydrogen to a spherical Ni 3 Al precipate in nickel as a function of chemical potential at room temperature has been calculated. It appears that the boundary is not a strong trap for hydrogen, hence embrittlement in these alloys is not primarily due to interactions of hydrogen with the γ/γ interface

  2. Fabrication and performance of the Pt-Ru/Ni-P/FTO counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma, Huanmei; Tian, Jianhua; Bai, Shuming; Liu, Xiaodong; Shan, Zhongqiang

    2014-01-01

    Highlights: • Pt-Ru alloy acts as the catalyst of counter electrodes in dye-sensitized solar cell. • Ni-P/FTO (fluorine-doped SnO 2 ) substrate is prepared by electroless plating method. • Pt-Ru/Ni-P/FTO counter electrode is fabricated by electrodeposition method. • The Ni-P sublayer improves the conductivity and light reflectance of FTO substrate. • The cell with Pt-Ru/Ni-P/FTO counter electrode exhibits an improved efficiency. - Abstract: In this paper, Pt-Ru/Ni-P/FTO has been designed and fabricated as the counter electrode for dye-sensitized solar cells. The Pt-Ru catalytic layer and Ni-P alloy sublayer are prepared by traditional electrodeposition method and a simple electroless plating method, respectively, and the preparation conditions have been optimized. The scanning electron microscopy (SEM) images show that the Pt-Ru particles are evenly distributed on FTO and Ni-P/FTO substrate. By X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it is confirmed that the Ni-P amorphous alloy has been formed, and no other compounds involved Ni and P have been formed. The electrochemical measurement results reveal that the Pt-Ru electrode has higher catalytic activity and stability towards tri-iodine reduction reaction than Pt electrode in the organic medium. The Ni-P sublayer deposited on FTO glasses increases the conductivity and light-reflection ability of the counter electrode, and this contributes to lowering the inner resistance of the cell and improving the light utilization efficiency. Through the photovoltaic test, it is confirmed that the energy conversion efficiency of a single DSSC with the optimized Pt-Ru/Ni-P/FTO counter electrode is increased by 29% compared with that of the cell based on the Pt/FTO counter electrode under the same conditions

  3. Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion

    International Nuclear Information System (INIS)

    Chiu, K.Y.; Cheng, F.T.; Man, H.C.

    2005-01-01

    Being part of a larger project on using different forms of nickel titanium (NiTi) in the surface modification of stainless steel for enhancing cavitation erosion resistance, the present study employs NiTi strips as the cladding material. Our previous study shows that laser surfacing using NiTi powder can significantly increase the cavitation erosion resistance of AISI 316 L stainless steel [K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 392 (2005) 348-358]. However, from an engineering point of view, NiTi strips are more attractive than powder because NiTi powder is very expensive due to high production cost. In the present study, NiTi strips were preplaced on AISI 316 L samples and remelted using a high-power CW Nd:YAG laser to form a clad layer. To lower the dilution due to the substrate material, samples doubly clad with NiTi were prepared. The volume dilution ratio in the singly clad sample was high, being in the range of 13-30% depending on the processing parameters, while that of the doubly clad sample was reduced to below 10%. Analysis by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffractometry (XRD) reveals that the clad layer is composed of a NiTi B2 based matrix together with fine precipitates of a tetragonal structure. Vickers indentation shows a tough cladding/substrate interface. The microhardness of the clad layer is increased from 200 HV of the substrate to about 750 HV due to the dissolution of elements like Fe, Cr and N in the matrix. Nanoindentation tests record a recovery ratio near to that of bulk NiTi, a result attributable to a relatively low dilution. The cavitation erosion resistance of the doubly clad samples is higher than that of 316-NiTi-powder (samples laser-surfaced with NiTi powder) and approaches that of NiTi plate. The high erosion resistance is attributed to a high hardness, high indentation recovery ratio and the absence of cracks or pores

  4. Impact of El Niño events on pelagic fisheries in Peruvian waters

    Science.gov (United States)

    Ñiquen, Miguel; Bouchon, Marilú

    2004-03-01

    Using data from stock assesment surveys on pelagic resources during El Niño events of 1972/73, 1982/83, 1997/98, we analyze biological changes on pelagic ecosystems and pelagic fisheries during different stages of development of El Niño phenomenon: emergence, full, final and post-Niño. Results indicate changes in spatial distribution of resources, their concentration and size structure. In anchovy (Engraulis ringens) a decrease in biomass was observed, which was estimated at 1.2 million tons in September 1998, the lowest throughout the 1990s. This resource showed an asymmetric distribution towards the south of Peru. Other pelagic resources increased their biomass during or after Niño events, primarily sardine (Sardinops sagax), jack mackerel (Trachurus murphyi), pacific mackerel (Scomber japonicus), and longnose anchovy (Anchoa nasus). At the end of the El Niño phenomenon we found less productivity but more diversity in the pelagic ecosystem. During the 1997/98 El Niño, the diversity index (Manual de Ecologia, 1a Edition, Editorial Trillas, Mexico, 267pp) increased from 0.87 to 1.23-1.70. In both the emergence stage and fully developed stages of El Niño we found large numbers of sardine and longnose anchovy present simultaneously. Size structure of sardine, jack mackerel, and pacific mackerel showed an increase in juveniles. Anchovy during El Niño showed a single modal group composed of adults, but the post-Niño phase indicated an increase in juveniles with an average length of 6-7 cm. In El Niño conditions spawning among anchovy was low, but among sardine and pacific mackerel it was high. We observed, for the first time during full spawning, juvenile sardines with a total length of 18-20 cm. The anchovy spawning season during the post-Niño phase was considerably lengthened, from April to December 1998. Drastic change occurred in fisheries when monospecific fisheries, based on anchovy before El Niño, became multispecific fisheries based on sardine, jack

  5. Structural features in Ni-Al alloys

    International Nuclear Information System (INIS)

    Abylkalykova, R.B.; Kveglis, L.I.; Rakhimova, U.A.; Nasokhova, Sh.B.; Tazhibaeva, G.B.

    2007-01-01

    Purpose of the work is study of structural transformations under diverse memory effect in Ni-Al alloys. Examination were conducted in following composition samples: Ni -75 at.% and Al - 25 at.%. The work is devoted to clarification reasons both formation atom-ordered structures in inter-grain boundaries of bulk samples under temperature action and static load. Revealed inter-grain inter-boundary layers in Ni-Al alloy both bulk and surface state have complicated structure

  6. Compositional and structural characterisation of Ni-phyllosilicates in hydrous silicate type Ni-laterite deposits

    OpenAIRE

    Villanova de Benavent, Cristina

    2015-01-01

    Ni-bearing Mg-phyllosilicates (commonly known as garnierites) are significant ore minerals in many Ni-laterite deposits worldwide. However, the characterisation of these mineral phases is complex, as well as their classification and nomenclature, due to their fine-grained nature, low crystallinity and frequent occurrence as mixtures. The aim of this study is to shed some light to the nature of the Ni-bearing Mg-phyllosilicates occurring at the Falcondo Ni-laterite. In this deposit, these ...

  7. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  8. Formation enthalpy of NiBe and Ni5Be21

    International Nuclear Information System (INIS)

    Ivanov, M.I.; Karpova, T.F.; Dalago, N.Yu.

    1981-01-01

    The method of dissolution calorimetry is used to determine standard enthalpies of NiBe and Ni 5 Be 21 formation, which are 84.8+-2.2 and (-669+-37)kJ/mol. The enthalpy values of NiBe and Ni 5 Be 21 at 331 K are shown to coincide (within the limits of errors of these values) with the values at the standard temperature of 298.15 K [ru

  9. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production

    KAUST Repository

    Qurashi, Ahsanulhaq

    2015-12-01

    A facile direct surfactant-free template-less hydrothermal method is employed for the growth of high surface-area NiO nanoflowers made up of complex and assembled nanosheets network.Field emission scanning electron microscopy revealed that each nanosheet is about 50-60nm thick. Detailed structural analysis reveals single-crystalline nature of NiO nanoflowers with cubic crystal structure. The optical absorption bands in the wavelength range of 350-800nm illustrated in terms of ligand field theory. The photoelectrochemical (PEC), water splitting performance on the NiO nanoflowers were also investigated. © 2015 Hydrogen Energy Publications, LLC.

  10. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production

    KAUST Repository

    Qurashi, Ahsanulhaq; Zhang, Zhongai; Asif, M.; Yamazaki, Toshinari

    2015-01-01

    A facile direct surfactant-free template-less hydrothermal method is employed for the growth of high surface-area NiO nanoflowers made up of complex and assembled nanosheets network.Field emission scanning electron microscopy revealed that each nanosheet is about 50-60nm thick. Detailed structural analysis reveals single-crystalline nature of NiO nanoflowers with cubic crystal structure. The optical absorption bands in the wavelength range of 350-800nm illustrated in terms of ligand field theory. The photoelectrochemical (PEC), water splitting performance on the NiO nanoflowers were also investigated. © 2015 Hydrogen Energy Publications, LLC.

  11. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua; Wu, Xiaozhi; Wang, Rui; Liu, Qing; Gan, Liyong

    2014-01-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  12. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  13. Creep and shrinkage of Mo(Ni)

    International Nuclear Information System (INIS)

    Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.

    1984-01-01

    To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments

  14. Structure-activity relations for Ni-containing zeolites during NO reduction. II. Role of the chemical state of Ni

    NARCIS (Netherlands)

    Mosqueda Jimenez, B.I.; Jentys, A.; Seshan, Kulathuiyer; Lercher, J.A.

    2003-01-01

    The influence of the metal in Ni-containing zeolites used as catalysts for the reduction of NO with propane and propene was studied. In the fresh catalysts, Ni is located in ion exchange positions for Ni/MOR, Ni/ZSM-5, and Ni/MCM-22. The formation of carbonaceous deposits, the removal of Al from

  15. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    International Nuclear Information System (INIS)

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-01-01

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen

  16. Understanding the effect of steps, strain, poisons, and alloying: Methane activation on Ni surfaces

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    It is shown that a single parameter characterizing the electronic structure of a transition metal surface, the d-band center (epsilon(d)), can be used to provide a unified description of a range of phenomena in heterogeneous catalysis. Using methane activation on Ni surfaces as an example, we show...

  17. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...

  18. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahendiran, C.; Maiyalagan, T.; Scott, K.; Gedanken, A.

    2011-01-01

    Highlights: → Carbon coated on NiO/MgO in a core/shell nanostructure is synthesized by RAPET. → The carbon-coated NiO/MgO is supported by Pd. → The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation studied. - Abstract: Carbon coated on NiO/MgO in a core/shell nanostructure was synthesized by the single-step RAPET (reaction under autogenic pressure at elevated temperatures) technique, and the obtained formation mechanism of the core/shell nanocomposite was presented. The carbon-coated NiO/MgO and its supported Pd catalyst, Pd/(NiO/MgO-C), were characterized by SEM, HR-TEM, XRD and cyclic voltammetry. The X-ray diffraction patterns confirmed the face-centered cubic crystal structure of NiO/MgO. Raman spectroscopy measurements provided structural evidence for the formation of a NiO/MgO composite and the nature of the coated carbon shell. The high-resolution transmission electron microscopy images showed the core and shell morphologies individually. The electrocatalytic properties of the Pd/(NiO/MgO-C) catalyst for ethanol oxidation were investigated in an alkaline solution. The results indicated that the prepared Pd-NiO/MgO-C catalyst has excellent electrocatalytic activity and stability.

  19. Synthesis of nanostructured NiO/Co3O4 through thermal decomposition of a bimetallic (Ni/Co) metal-organic framework as catalyst for cyclooctene epoxidation

    Science.gov (United States)

    Abbasi, Alireza; Soleimani, Mohammad; Najafi, Mahnaz; Geranmayeh, Shokoofeh

    2017-04-01

    Hydrothermal approach has led to the formation of a three-dimensional metal-organic framework (MOF), [NiCo(μ2-tp)(μ4-tp)(4,4‧-bpy)2]n (1) (tp = terephthalic acid and 4,4‧-bpy = 4,4‧-bipyridine) which was characterized by means of single-crystal X-ray diffraction analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, scanning electron microscopy (SEM) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Thermal decomposition of the MOF afforded nanostructured mixed metal oxide, namely NiO/Co3O4. The XRD and SEM analysis confirm the formation of the mixed metal oxide. The nanostructured NiO/Co3O4 demonstrated good catalytic activity and selectivity in the epoxidation of cyclooctene in the presence of tert-butyl hydroperoxide (TBHP) as oxidant.

  20. Corrosion Behavior of Ni3(Si,Ti + 2Mo in Hydrochloric Acid Solution

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The corrosion behavior of Ni3(Si,Ti + 2Mo intermetallic compound (L12 and (L12 + Niss mixture region has been investigated using an immersion test, polarization method and surface analytical method (scanning electron microscope and energy-dispersive X-Ray spectrometry in 0.5 kmol/m3 hydrochloric acid (HCl solution at 303 K.  In addition, the results obtained were compared to those of the L12 single-phase Ni3(Si,Ti intermetallic compound and C 276 alloy.  It was found that Ni3(Si,Ti + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss mixture region.  From the immersion test and polarization curves, Ni3(Si,Ti + 2Mo and C276 showed the lowest corrosion resistance and the highest corrosion resistance in the solution, respectively.  From this work, It implied that unlike C276, Ni3(Si,Ti +2Mo intermetallic compound was difficult to form a stable passive film in HCl solution as well as Ni3(Si,Ti in the same solution.

  1. Effects of Rare Earth Elements on Properties of Ni-Base Superalloy Powders and Coatings

    Directory of Open Access Journals (Sweden)

    Chunlian Hu

    2017-02-01

    Full Text Available NiCrMoY alloy powders were prepared using inert gas atomization by incorporation of rare earth elements, such as Mo, Nb, and Y into Ni60A powders, the coatings were sprayed by oxy-acetylene flame spray and then remelted with high-frequency induction. The morphologies, hollow particle ratio, particle-size distribution, apparent density, flowability, and the oxygen content of the NiCrMoY alloy powders were investigated, and the microstructure and hardness of the coatings were evaluated by optical microscopy (OM. Due to incorporation of the rare earth elements of Mo, Nb, or Y, the majority of the NiCrMoY alloy particles are near-spherical, the minority of which have small satellites, the surface of the particles is smoother and hollow particles are fewer, the particles exhibit larger apparent density and lower flowability than those of particles without incorporation, i.e., Ni60A powders, and particle-size distribution exhibits a single peak and fits normal distribution. The microstructure of the NiCrMoY alloy coatings exhibits finer structure and Rockwell hardness HRC of 60–63 in which the bulk- and needle-like hard phases are formed.

  2. Effect of Zn and Ni substitution on structural, morphological and magnetic properties of tin oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvana, S. [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamilnadu (India); Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamilnadu (India); Ramalingam, H.B.; Vadivel, K. [Department of Physics, Government Arts College, Udumalpet 642126, Tamilnadu (India); Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamilnadu (India); Ayesh, Ahmad I. [Department of Math., Stat. and Physics, Qatar University, Doha (Qatar)

    2016-12-01

    Structural, morphological, optical and magnetic properties of Zn and Zn–Ni co-doped tin oxide (SnO{sub 2}) nanoparticles synthesized by sol-gel method. The influence of doping concentration on phase and particle size of the nanoparticles was determined by X-ray diffraction. The XRD study reveals that the lattice constant and crystallite size of the samples decrease with the increase of doping concentration. The change in the band gap energy of SnO{sub 2} nanoparticles influenced more by doping with Zn and Ni. The external morphology and particle size were recorded by SEM and TEM. The results indicated that Ni{sup 2+} ions would uniformly substituted into the Zn{sup 2+} sites of SnO{sub 2} lattice. The substitution of Ni creates a vital change in magnetic properties that has been measured by vibrating sample magnetometer (VSM). - Highlights: • Sn{sub 2-(x+y)} Ni{sub x}Zn{sub y}O{sub 2}, (x=y=0.07 to 0.10) nano particles are prepared by simple sol gel method. • X-ray diffraction data confirms the single phase rutile tetragonal structure. • The VSM was used to confirm, the codoping of (Ni, Zn) increases the magnetic moment of the sample prepared. • Inducing ferromagnetism in sample makes it suitable for future spintronics applications.

  3. Improved simulation of two types of El Niño in CMIP5 models

    International Nuclear Information System (INIS)

    Kug, Jong-Seong; Ham, Yoo-Geun; Lee, June-Yi; Jin, Fei-Fei

    2012-01-01

    Using the coupled general circulation models (CGCMs) participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), simulations of the two types of El Niño event are evaluated. Previous studies using CMIP3 models pointed out that most of the models tend to simulate a single type of El Niño, and have serious problems in simulating the two types of El Niño independently. On the average, the CGCMs in CMIP5 have slightly better performance in simulating the two types of El Niño event independently with more distinct spatial patterns, compared to those in CMIP3. It is demonstrated that the precipitation response to Cold Tongue El Niño is one of the important factors in simulating the two types of El Niño independently in coupled models, and this precipitation response is closely related to the dry bias over the equatorial eastern Pacific. (letter)

  4. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)

    Science.gov (United States)

    Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime

    2017-10-01

    Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.

  5. X-ray determination of static displacements of atoms in alloyed Ni3Al

    International Nuclear Information System (INIS)

    Morinaga, M.; Sone, K.; Kamimura, T.; Ohtaka, K.; Yukawa, N.

    1988-01-01

    Single crystals of Ni 3 (Al, M) were grown by the Bridgman method, where M is Ti, V, Cr, Mn, Fe, Nb, Mo and Ta. The composition was controlled to be about Ni 75 Al 20 M 5 so that the alloying element, M, substitutes mainly for Al. With these crystals conventional X-ray structural analysis was performed. The measured static displacements of atoms from the average lattice points depended largely on the alloying elements and varied in the range 0.00-0.13 A for Ni atoms and 0.09-0.18 A for Al atoms. It was found that these atomic displacements correlated well with the atomic radius of the alloying element, M. For example, when the atomic radius of M is larger than that of Al, the static displacements are large for the atoms in the Al sublattice but small for the atoms in the Ni sublattice. By contrast, when the atomic radius of M is smaller than that of Al, the displacements are more enhanced in the Ni sublattice than in the Al sublattice. Thus, there is an interesting correlation between the atomic displacements in both the Al and Ni sublattices in the presence of alloying elements. This seems to be one of the characteristics of alloyed compounds with several sublattices. (orig.)

  6. Thermodynamic and transport properties of YbNi 4Cd

    Science.gov (United States)

    Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.

    2018-05-01

    The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.

  7. Polarized neutron study of TbNi2

    International Nuclear Information System (INIS)

    Givord, D.; Givord, F.; Gignoux, D.; Koehler, W.C.; Moon, R.M.

    1976-01-01

    Neutron diffraction experiments have been carried out on a TbNi 2 single crystal. Below the Curie temperature, 42 K, a magnetic contribution is observed only on nuclear scattering peaks. Therefore, the terbium atoms form a ferromagnetic structure. Polarized neutron measurements performed in the paramagnetic state, in an applied magnetic field of 57 kOe, reveal a non-uniform polarization of the conduction band. Within the experimental accuracy, no 3d magnetic moment is observed on nickel atoms. This result is consistent with the assumption of rare earth magnetic ordering occurring through the polarization of conduction electrons. (author)

  8. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D.L.; Xie, W.J.; Wei, B. [Northwestern Polytechnical University, Department of Applied Physics, Xi' an (China)

    2012-10-15

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition. (orig.)

  9. Relaxation peak near 200 K in NiTi alloy

    Science.gov (United States)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  10. Magnetic excitations in modulated PrNi2Si2

    International Nuclear Information System (INIS)

    Blanco, J.A.; Nicklow, R.M.; Schmitt, D.

    1994-01-01

    The magnetic excitations in a single crystal of PrNi 2 Si 2 have been studied by inelastic neutron scattering. Dispersion curves have been followed through the centered tetragonal Brillouin zone. In the paramagnetic phase, at 39 K, the lowest energy magnetic branch exhibits an important dispersion ranging from 1.9 to 3.5 meV, the minimum energy occuring at the wave vector of the ordered phase; from the observed dispersion the inter-ionic isotropic bilinear exchange parameters are deduced. At 4.2 K, in the modulated phase, the same branch presents a dispersion slightly larger, but not significantly different

  11. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  12. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  13. Dynamic recovery in nanocrystalline Ni

    International Nuclear Information System (INIS)

    Sun, Z.; Van Petegem, S.; Cervellino, A.; Durst, K.; Blum, W.; Van Swygenhoven, H.

    2015-01-01

    The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress dislocation slip and bring recovery mechanisms into the foreground. When combined with in situ X-ray diffraction it can be shown that grain boundary recovery mechanisms play an important role in producing plastic strain while hardening the microstructure. This result has a significant consequence for the parameters of thermally activated glide of dislocations, such as athermal stress and activation volume, which are traditionally derived from stress/strain rate change tests

  14. Ni-based amorphous alloy-coating for bipolar plate of PEM fuel cell by electrochemical plating

    International Nuclear Information System (INIS)

    Yamaura, S; Kim, S C; Inoue, A

    2013-01-01

    In this study, the Ni-Cr-P amorphous alloy-coated bipolar plates were produced by electro-plating on the Cu base plates with a flow field. The power generation tests of a single fuel cell with those Ni-Cr-P bipolar plates were conducted at 353 K. It was found that the single fuel cell with those Ni-Cr-P bipolar plates showed excellent I-V performance as well as that with the carbon graphite bipolar plates. It was also found that the single cell with those Ni-Cr-P bipolar plates showed better I-V performance than that with the Ni-P amorphous alloy-coated bipolar plates. Furthermore, the long-time operation test was conducted for 440 h with those Ni-Cr-P bipolar plates at the constant current density of 200 mA·cm −2 . As a result, it was found that the cell voltage gradually decreased at the beginning of the measurement before 300 h and then the voltage was kept constant after 300 h.

  15. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  16. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); C