WorldWideScience

Sample records for ni hollow fiber

  1. Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co{sub 3}O{sub 4} fibers through centrifugal-spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Cong; Lin, Xuejun; Wang, Xinqiang, E-mail: xqwang@sdu.edu.cn; Liu, Hongjing; Liu, Benxue; Zhu, Luyi; Zhang, Guanghui; Xu, Dong

    2016-02-15

    Highlights: • NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm were prepared through centrifugal-spinning technique. • The evolution mechanism from precursor to crystalline fibers was explored. • Both NiO and hollow Co{sub 3}O{sub 4} fibers show ferromagnetism. • The NiO fibers exhibit good photocatalytic performance. - Abstract: Both NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm have been successfully prepared through spinning high viscous sols into precursor fibers and followed calcination process. The evolution process from precursor to crystalline fibers and the microstructures of the obtained fibers were characterized by TG-DSC, FT-IR, XRD, HRTEM, SEM and the like. The method is facile and cost-effective for mass production of fibers and the obtained fibers are pure phase with high crystallinity. Their magnetic properties were investigated, showing that both the fibers are ferromagnetic. Meanwhile, the NiO fibers exhibit good photocatalytic performance for the removal of Congo red from water under UV light irradiation.

  2. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  3. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  5. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  6. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  7. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  8. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  9. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  10. Hollow optical fiber induced solar cells with optical energy storage and conversion.

    Science.gov (United States)

    Ding, Jie; Zhao, Yuanyuan; Duan, Jialong; Duan, Yanyan; Tang, Qunwei

    2017-11-09

    Hollow optical fiber induced dye-sensitized solar cells are made by twisting Ti wire/N719-TiO 2 nanotube photoanodes and Ti wire/Pt (CoSe, Pt 3 Ni) counter electrodes, yielding a maximized efficiency of 0.7% and good stability. Arising from optical energy storage ability, the solar cells can generate electricity without laser illumination.

  11. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  12. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  13. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  14. High performance methanol-oxygen fuel cell with hollow fiber electrode

    Science.gov (United States)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  15. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  16. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  17. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  18. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  19. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2016-05-01

    Full Text Available A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe, compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ∼14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  20. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  1. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  2. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  3. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  4. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  5. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  6. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  7. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  8. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    Energy Technology Data Exchange (ETDEWEB)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2017-04-18

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  9. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  10. Breaking the glass ceiling: hollow OmniGuide fibers

    Science.gov (United States)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  11. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  12. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  13. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  14. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  15. Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode

    International Nuclear Information System (INIS)

    Ren, Bo; Fan, Meiqing; Liu, Qi; Wang, Jun; Song, Dalei; Bai, Xuefeng

    2013-01-01

    Graphical abstract: The possible formation process of NiO nanofibers without citric acid (a), and modified by citric acid (b). When the nanofibers is modified by citric acid, the nickel citrate is produced by complexing action of citric acid and nickel nitrate. Because of the larger space steric hindrance, the structure is limited by the molecular geometry. Under high temperature, the hollow nanofibers composed of NiO slices formed after the removal of PVP. Highlights: ► The method of obtaining hollow nanofibers is raised for the first time. ► The prepared NiO nanofibers are hollow tube and comprised of many NiO sheets. ► The hollow structure facilitated the electrolyte penetration. ► The hollow NiO nanofibers have good electrochemical properties. -- Abstract: NiO nanofibers modified by citric acid (NiO/CA) for supercapacitor material have been fabricated by electrospinning process. The characterizations of the nanofibers are investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical properties are characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. Results show that the NiO/CA nanofibers are hollow tube and comprised of many NiO sheets. Furthermore, the NiO/CA nanofibers have good electrochemical reversibility and display superior capacitive performance with large capacitance (336 F g −1 ), which is 2.5 times of NiO electrodes. Moreover, the NiO/CA nanofibers show excellent cyclic performance after 1000 cycles

  16. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  17. Sensitive Nonenzymatic Electrochemical Glucose Detection Based on Hollow Porous NiO

    Science.gov (United States)

    He, Gege; Tian, Liangliang; Cai, Yanhua; Wu, Shenping; Su, Yongyao; Yan, Hengqing; Pu, Wanrong; Zhang, Jinkun; Li, Lu

    2018-01-01

    Transition metal oxides (TMOs) have attracted extensive research attentions as promising electrocatalytic materials. Despite low cost and high stability, the electrocatalytic activity of TMOs still cannot satisfy the requirements of applications. Inspired by kinetics, the design of hollow porous structure is considered as a promising strategy to achieve superior electrocatalytic performance. In this work, cubic NiO hollow porous architecture (NiO HPA) was constructed through coordinating etching and precipitating (CEP) principle followed by post calcination. Being employed to detect glucose, NiO HPA electrode exhibits outstanding electrocatalytic activity in terms of high sensitivity (1323 μA mM-1 cm-2) and low detection limit (0.32 μM). The excellent electrocatalytic activity can be ascribed to large specific surface area (SSA), ordered diffusion channels, and accelerated electron transfer rate derived from the unique hollow porous features. The results demonstrate that the NiO HPA could have practical applications in the design of nonenzymatic glucose sensors. The construction of hollow porous architecture provides an effective nanoengineering strategy for high-performance electrocatalysts.

  18. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  19. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  20. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  1. High performance micro-engineered hollow fiber membranes by smart spinneret design

    NARCIS (Netherlands)

    de Jong, J.; Nijdam, W.; van Rijn, C.J.M.; Visser, Tymen; Bolhuis-Versteeg, Lydia A.M.; Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias

    2005-01-01

    Can hollow fiber membranes be produced in other geometries than circular? If so, are membrane properties maintained and what could be the possible benefits of other geometries? This article gives answers and describes the fabrication of micro-structured hollow fiber membranes using micro-fabricated

  2. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  3. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  4. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  5. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  6. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  7. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  8. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  9. Formation and characterization of magnetic barium ferrite hollow fibers with low coercivity via co-electrospun

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gui-fang, E-mail: guifang777@163.com; Zhang, Zi-dong, E-mail: 1986zzd@163.com; Dang, Feng, E-mail: dangfeng@sdu.edu.cn; Cheng, Chuan-bing, E-mail: 807033063@qq.com; Hou, Chuan-xin, E-mail: 710313782@qq.com; Liu, Si-da, E-mail: superliustar@hotmail.com

    2016-08-15

    BaFe{sub 12}O{sub 19} fibers and hollow fibers were successfully prepared by electrospun and co-electrospun. A very interesting result appeared in this study that hollow fibers made by co-electrospun showed low coercivity values of a few hundred oersteds, compared with the coercivity values of more than thousand oersteds for the fibers made by electrospun. So the hollow fibers with high saturation magnetization (M{sub s}) and while comparatively low coercivity (H{sub c}) exhibited strong magnetism and basically showed soft character. And this character for hollow fibers will lead to increase of the permeability for the samples which is favorable for impedance matching in microwave absorption. So these hollow fibers are promised to have use in a number of applications, such as switching and sensing applications, electromagnetic materials, microwave absorber. - Highlights: • BaFe{sub 12}O{sub 19} fibers were prepared via electrospinning successfully. • The coercivity has a value of a few hundred oersteds for the hollow fibers made by coaxial electrospun. • BaFe{sub 12}O{sub 19} with high saturation magnetization and low coercivity shows great potential in microwave absorbing application.

  10. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    International Nuclear Information System (INIS)

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-01-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  11. Realization of low loss and polarization maintaining hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Mangan, Brian Joseph; Lyngsøe, Jens Kristian; Roberts, John

    2008-01-01

    Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm......Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm...

  12. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  13. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the

  14. Synthesis, characterization, and photocatalytic properties of Ni12P5 hollow microspheres

    Science.gov (United States)

    Liu, Shuling; Han, Xiaoli; Zhang, Hongzhe; Liu, Hui

    2017-05-01

    Ni12P5 hollow microspheres were prepared by a simple mixed cetyltrimethyl ammonium bromide/sodium dodecyl sulfate surfactant-assisted hydrothermal route. The as-prepared Ni12P5 microstructures were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). It was interesting to find that cetyltrimethyl ammonium bromide/sodium dodecyl sulfate could form a micro-reactor by the mixed micelles in the aqueous solution, which served as a soft template for Ni12P5 hollow microspheres with a diameter of 2 6 μm. Moreover, the as-prepared Ni12P5 hollow microspheres exhibited a good photocatalytic degradation activity for some organic dyes (such as Rhodamine B, Methylene Blue, Pyronine B, and Safranine T), and the degradation ratio could achieve more than 80%.

  15. One-Step Synthesis of Hollow Titanate (Sr/Ba Ceramic Fibers for Detoxification of Nerve Agents

    Directory of Open Access Journals (Sweden)

    Satya R. Agarwal

    2012-01-01

    Full Text Available Poly(vinyl pyrrolidone(PVP/(strontium/barium acetate/titanium isopropoxide composite fibers were prepared by electrospinning technique via sol-gel process. Diameters of fibers prepared by calcinations of PVP composite fibers were 80–140 nm (solid and 1.2-2.2 μm (hollow fibers prepared by core-shell method. These fibers were characterized using scanning electron microscope (SEM, X-ray diffraction (XRD, and transmission electron microscope (TEM analytical techniques. XRD results showed better crystalline nature of the materials when calcined at higher temperatures. SEM and TEM results clearly showed the formation of hollow submicrometer tubes. The surface area of the samples determined by BET analysis indicated that hollow fibers have ~20% higher surface area than solid fibers. The UV studies indicate better detoxification properties of the hollow fibers compared to solid fibers.

  16. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  17. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  18. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  19. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  20. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  1. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    Science.gov (United States)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  2. Hollow fiber: a biophotonic implant for live cells

    Science.gov (United States)

    Silvestre, Oscar F.; Holton, Mark D.; Summers, Huw D.; Smith, Paul J.; Errington, Rachel J.

    2009-02-01

    The technical objective of this study has been to design, build and validate biocompatible hollow fiber implants based on fluorescence with integrated biophotonics components to enable in fiber kinetic cell based assays. A human osteosarcoma in vitro cell model fiber system has been established with validation studies to determine in fiber cell growth, cell cycle analysis and organization in normal and drug treated conditions. The rationale for implant development have focused on developing benchmark concepts in standard monolayer tissue culture followed by the development of in vitro hollow fiber designs; encompassing imaging with and without integrated biophotonics. Furthermore the effect of introducing targetable biosensors into the encapsulated tumor implant such as quantum dots for informing new detection readouts and possible implant designs have been evaluated. A preliminary micro/macro imaging approach has been undertaken, that could provide a mean to track distinct morphological changes in cells growing in a 3D matrix within the fiber which affect the light scattering properties of the implant. Parallel engineering studies have showed the influence of the optical properties of the fiber polymer wall in all imaging modes. Taken all together, we show the basic foundation and the opportunities for multi-modal imaging within an in vitro implant format.

  3. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  4. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  5. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  6. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  7. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiberhollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  8. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  9. Confinement less spectral behavior in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Foroni, M.; Passaro, D.; Poli, F.

    2007-01-01

    The influence of each cross-section geometric parameter on hollow-core Bragg fiber guiding properties has been numerically investigated. Fabricated fibers have been modeled, giving insight into the spectral behavior of the confinement loss. It has been verified that, by changing the amount...

  10. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  11. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  12. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  13. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  14. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  15. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  16. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  17. Polymeric hollow fiber heat exchanger as an automotive radiator

    International Nuclear Information System (INIS)

    Krásný, Ivo; Astrouski, Ilya; Raudenský, Miroslav

    2016-01-01

    Highlights: • Polymeric hollow fiber heat exchanger as an automotive radiator is proposed. • The mechanism of heat transfer (HT) relies on diameter of polymeric hollow fiber. • Grimson equation is sufficient for approximate prediction of the heat transfers. - Abstract: Nowadays, different automotive parts (tubing, covers, manifolds, etc.) are made of plastics because of their superior characteristics, low weight, chemical resistance, reasonable price and several other aspects. Manufacturing technologies are already well-established and the application of plastics is proven. Following this trend, the production of compact and light all-plastic radiators seems reasonable. Two plastic heat exchangers were manufactured based on polypropylene tubes of diameter 0.6 and 0.8 mm (so-called fibers) and tested. The heat transfer performance and pressure drops were studied with hot (60 °C) ethyleneglycol-water brine flowing inside the fibers and air (20 °C) outside because these conditions are conventional for car radiator operation. It was observed that heat transfer rates (up to 10.2 kW), overall heat transfer coefficients (up to 335 W/m"2 K), and pressure drops are competitive to conventional aluminium finned-tube radiators. Moreover, influence of fiber diameter was studied. It was observed that air-side convective coefficients rise with a decrease of fiber diameter. Air-side pressure drops of plastic prototypes were slightly higher than of aluminium radiator but it is expected that additional optimization will eliminate this drawback. Experimentally obtained air-side heat transfer coefficients were compared with the theoretical prediction using the Grimson equation and the Churchill and Bernstein approach. It was found that the Grimson equation is sufficient for approximate prediction of the outer HTCs and can be used for engineering calculations. Further work will concentrate on optimizing and developing a polymeric hollow fiber heat exchanger with reduced size

  18. Electrochemical performance of Ni/TiO_2 hollow sphere in proton exchange membrane water electrolyzers system

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar

    2013-01-01

    This work presents the electrocatalytic evaluation of Ni/TiO_2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm"−"2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO_2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm"−"2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO_2 hollow sphere electrocatalyst was evaluated up to 140 mA cm"−"2 at comparatively lower over-potential value. 20 wt% Ni/TiO_2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer

  19. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  20. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren

    2011-09-01

    Carbon molecular sieve (CMS) membranes have shown promising separation performance compared to conventional polymeric membranes. Translating the very attractive separation properties from dense films to hollow fibers is important for applying CMS materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation performance for several gas pairs, especially high selectivity for C2H4/C2H6. Our comparative study between dense film and hollow fiber revealed very similar selectivity for both configurations; however, a significant difference exists in the effective separation layer thickness between precursor fibers and their resultant CMS fibers. SEM results showed that the deviation was essentially due to the collapse of the porous substructure of the precursor fiber. Polymer chain flexibility (relatively low glass transition temperature (Tg) for Matrimid® relative to actual CMS formation) appears to be the fundamental cause of substructure collapse. This collapse phenomenon must be addressed in all cases involving intense heat-treatment near or above Tg. We also found that the defect-free property of the precursor fiber was not a simple predictor of CMS fiber performance. Even some precursor fibers with Knudsen diffusion selectivity could be transformed into highly selective CMS fibers for the Matrimid® precursor. To overcome the permeance loss problem caused by substructure collapse, several engineering approaches were considered. Mixed gas permeation results under realistic conditions demonstrate the excellent performance of CMS hollow fiber membrane for the challenging ethylene/ethane separation. © 2011 Elsevier B.V.

  1. Self-Assembled Hollow Spheres of β-Ni(OH) 2 and Their Derived Nanomaterials

    KAUST Repository

    Zhang, Shengmao

    2009-03-10

    This paper describes a novel solution-based chemical process to architect hollow spheres of β-Ni(OH) 2 with controllable sizes in submicrometer and micrometer regimes. In the synthesis, starting nickel salt (nitrate) is first converted to 6-coordinated nickel ion complex [Ni(EDA) 3] 2+ (bidentate ligand EDA = C 2H 4(NH 2) 2) to avoid rapid solid formation. Hollow and core - shell β-Ni(OH) 2 spheres can be obtained with this template-free approach under one-pot conditions. The β-Ni(OH) 2 spheres are constructed from petal-like nanobuilding units which in turn are formed from even smaller nanocrystallites. The obtained porous β-Ni(OH) 2 spheres have a large specific surface area and show a unimodal pore-size distribution. Several preparative parameters have been examined and optimized. In particular, the concentration of divalent nickel in the starting solutions plays an important role in controlling thickness of the petal-like β-Ni(OH) 2 flakes and diameter of spheres. The β-Ni(OH) 2 flakes self-assemble into final spherical products through a donut-like structural intermediate. Furthermore, the β-Ni(OH) 2 hollow spheres can be used as solid precursors to synthesize other nanostructured derivatives. In this work, phase pure inorganic nanostructures, carbon nanotube (CNT) - inorganic nanocomposites, and inorganic - inorganic nanocom-posites (e.g., NiO, Ni, NiO/Ni, Ni/β-Ni(OH) 2, CNTs/NiO, CNTs/Ni, Ni@CNTs, Fe(OH) 3/β-Ni(OH) 2, Co(OH) 2/β-Ni(OH) 2, and Mg(OH) 2/β-Ni(OH) 2) have been prepared via solid-state thermal decomposition, gas-phase reduction, solution-based reduction, surface oxidation, chemical vapor deposition, and liquid-phase deposition. A greater picture for general synthesis of Ni-containing nanomaterials is thus obtained. © 2009 American Chemical Society.

  2. Hollow spiny shell of porous Ni-Mn oxides: A facile synthesis route and their application as electrode in supercapacitors

    Science.gov (United States)

    Wan, Houzhao; Lv, Lin; Peng, Lu; Ruan, Yunjun; Liu, Jia; Ji, Xiao; Miao, Ling; Jiang, Jianjun

    2015-07-01

    Hollow spiny shell Ni-Mn precursors composed of one-dimensional nanoneedles were synthesized via a simple hydrothermal method without any template. The hollow Spiny shell Ni-Mn oxides are obtained under thermal treatment at different temperatures. The BET surface areas of Ni-Mn oxides reach up to 112 and 133 m2 g-1 when calcination temperatures occur at 300 and 400 °C, respectively. The electrochemical performances of as-synthesized hollow spiny shell Ni-Mn oxides gradually die down with annealing temperatures increasing. The porous hollow spiny shell Ni-Mn oxide obtained at 300 °C delivers a maximum capacitance of 1140 F g-1 at a high current density of 1 A g-1 after 1000th cycles and the specific capacitance of Ni-Mn oxide will increase with cycling times increasing. So, porous hollow spiny shell Ni-Mn oxide obtained at low annealing temperature can form a competitive electrode material for supercapacitors.

  3. Towards a generic method for inorganic porous hollow fibers preparation with shrinkage-controlled small radial dimensions, applied to Al2O3, Ni, SiC, stainless steel, and YSZ

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Raaijmakers, Michiel; Winnubst, Aloysius J.A.; Bor, Teunis Cornelis; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2012-01-01

    A versatile method is presented for the preparation of porous inorganic hollow fibers with small tunable radial dimensions, down to ∼250 μm outer diameter. The approach allows fabrication of thin hollow fibers of various materials, as is demonstrated for alumina, nickel, silicon carbide, stainless

  4. Broadband micro-Michelson interferometer with multi-optical-path beating using a sphered-end hollow fiber.

    Science.gov (United States)

    Chen, Nan-Kuang; Lu, Kuan-Yi; Shy, Jow-Tsong; Lin, Chinlon

    2011-06-01

    We demonstrate a high-sensitivity broadband (1250-1650 nm) fiber micro-Michelson interferometer using a single-mode fiber end-spliced with a sphered-end hollow-core fiber. The hollow core is slightly smaller than the solid core of a single-mode fiber, so the fractional power of the core mode is converted into cladding modes. The excited cladding modes propagate at distinct optical paths along the hollow-core fiber and have individual foci outside the spherical lens. The reflected core mode, generated at the solid core-air interface, and the reflected cladding modes, generated at external material, interfere with each other to produce beating in the interference signals. © 2011 Optical Society of America

  5. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  6. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chance, Ronald [Georgia Tech Research Corporation, Atlanta, GA (United States); Chen, Grace [Georgia Tech Research Corporation, Atlanta, GA (United States); Dai, Ying [Georgia Tech Research Corporation, Atlanta, GA (United States); Fan, Yanfang [Georgia Tech Research Corporation, Atlanta, GA (United States); Jones, Christopher [Georgia Tech Research Corporation, Atlanta, GA (United States); Kalyanaraman, Jayashree [Georgia Tech Research Corporation, Atlanta, GA (United States); Kawajiri, Yoshiaki [Georgia Tech Research Corporation, Atlanta, GA (United States); Koros, William [Georgia Tech Research Corporation, Atlanta, GA (United States); Lively, Ryan [Georgia Tech Research Corporation, Atlanta, GA (United States); McCool, Benjamin [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States); Realff, Matthew [Georgia Tech Research Corporation, Atlanta, GA (United States); Rezaei, Fateme [Georgia Tech Research Corporation, Atlanta, GA (United States); Searcy, Katherine [Georgia Tech Research Corporation, Atlanta, GA (United States); Sholl, David [Georgia Tech Research Corporation, Atlanta, GA (United States); Subramanian, Swernath [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-03-31

    This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the project is to develop a process based on composite amine-functionalized oxide / polymer hollow fibers for use as contactors in a rapid temperature swing adsorption post-combustion carbon dioxide capture process. The hollow fiber morphology allows coupling of efficient heat transfer with effective gas contacting, potentially giving lower parasitic loads on the power plant compared to traditional contacting strategies using solid sorbents.

  7. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  8. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  9. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  10. Electrochemical performance of Ni/TiO{sub 2} hollow sphere in proton exchange membrane water electrolyzers system

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar [Birla Institute of Technology, Jharkhand (India)

    2013-08-15

    This work presents the electrocatalytic evaluation of Ni/TiO{sub 2} hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm{sup −2} peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO{sub 2} electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm{sup −2}. In the anodic polarization curves, the performance of 15 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst was evaluated up to 140 mA cm{sup −2} at comparatively lower over-potential value. 20 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.

  11. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  12. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  13. Development of Novel ECTFE Coated PP Composite Hollow-Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Sergio Santoro

    2016-09-01

    Full Text Available In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP with a thin layer of ethylene–chlorotrifluoroethylene copolymer (ECTFE. The employment of N-methyl pyrrolidone (NMP as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C. Scanning electron microscopy (SEM analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size. ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.

  14. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2016-01-01

    In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...

  15. Porous stainless steel hollow fiber membranes via dry-wet spinning

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Winnubst, Aloysius J.A.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Porous stainless steel hollow fibers have been prepared via the dry–wet spinning process, based on phase inversion of a particle loaded polymer solution, followed by sintering. The morphology of the green fibers combines sponge like structures and macro voids, and is related to the dynamics of the

  16. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang; Zhang, Sui; Chung, Neal Tai-Shung

    2015-01-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  17. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  18. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    International Nuclear Information System (INIS)

    Wu, Hongjing; Wu, Guanglei; Wu, Qiaofeng; Wang, Liuding

    2014-01-01

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H 2 or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that the defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H 2 and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H 2 , an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H 2 and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated

  19. Hollow fiber structures, methods of use thereof, methods of making, and pressure-retarded processes

    KAUST Repository

    Le, Lieu Ngoc; Bettahalli, Narasimha Murthy Srivatsa; Nunes, Suzana Pereira; Chung, Neal Tai-Shung

    2016-01-01

    Embodiments of the present disclosure provide for composite materials, methods of making composite materials, methods of using composite materials, and the like. In particular, the present application relates to hollow fibers and to pressure-retarded osmosis systems comprising said fibers. The hollow fibers have an inside layer and an outside layer, wherein the outside layer covers an outside surface of the inside layer, wherein the inside layer forms a boundary around the lumen, wherein the inside layer includes a bi-layer structure, wherein the bi-layer structure includes a sponge-like layer and a finger-like layer, wherein the sponge-like layer is disposed closer to the lumen of the hollow fiber and the finger-like layer is disposed on the sponge-like layer on the side opposite the lumen, wherein the outside layer includes a polyamide layer.

  20. Hollow fiber structures, methods of use thereof, methods of making, and pressure-retarded processes

    KAUST Repository

    Le, Lieu Ngoc

    2016-12-08

    Embodiments of the present disclosure provide for composite materials, methods of making composite materials, methods of using composite materials, and the like. In particular, the present application relates to hollow fibers and to pressure-retarded osmosis systems comprising said fibers. The hollow fibers have an inside layer and an outside layer, wherein the outside layer covers an outside surface of the inside layer, wherein the inside layer forms a boundary around the lumen, wherein the inside layer includes a bi-layer structure, wherein the bi-layer structure includes a sponge-like layer and a finger-like layer, wherein the sponge-like layer is disposed closer to the lumen of the hollow fiber and the finger-like layer is disposed on the sponge-like layer on the side opposite the lumen, wherein the outside layer includes a polyamide layer.

  1. Self-Assembled 3D Flower-Like Hierarchical β-Ni(OH2Hollow Architectures and their In Situ Thermal Conversion to NiO

    Directory of Open Access Journals (Sweden)

    Liao Gui-Hong

    2009-01-01

    Full Text Available Abstract Three-dimensional (3D flower-like hierarchicalβ-Ni(OH2hollow architectures were synthesized by a facile hydrothermal route. The as-obtained products were well characterized by XRD, SEM, TEM (HRTEM, SAED, and DSC-TGA. It was shown that the 3D flower-like hierarchicalβ-Ni(OH2hollow architectures with a diameter of several micrometers are assembled from nanosheets with a thickness of 10–20 nm and a width of 0.5–2.5 μm. A rational mechanism of formation was proposed on the basis of a range of contrasting experiments. 3D flower-like hierarchical NiO hollow architectures with porous structure were obtained after thermal decomposition at appropriate temperatures. UV–Vis spectra reveal that the band gap of the as-synthesized NiO samples was about 3.57 eV, exhibiting obviously red shift compared with the bulk counterpart.

  2. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    Science.gov (United States)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  3. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  4. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  5. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  6. Fabrication and formation mechanism of poly (L-lactic acid ultrafine multi-porous hollow fiber by electrospinning

    Directory of Open Access Journals (Sweden)

    Q. Z. Yu

    2013-01-01

    Full Text Available Poly(L-lactic acid (PLLA ultrafine multi-porous hollow fibers are fabricated by electrospinning with methylene dichloride as solvent. The Kirkendall effect has been widely applied for the fabrication of hollow structure in metals and inorganic materials. In this study, a conceptual extension is proposed for the formation mechanism: the development of porous hollow fiber undergoes three stages. The initial stage is the generation of small voids or pits on the surface of the fiber via surface diffusion and phase separation; the second stage is the formation of multi-pores penetrating the core of the fiber through the interaction of Kirkendall effect, surface diffusion and phase separation; the third stage is dominated by surface diffusion of the core material along the pore surface. To explore the formation conditions, the factors including ambient temperature, relativity humidity (R. H., molecular weight and fiber diameter are studied. The longitudinal and cross sectional morphologies of these fibers are examined by scanning electron micrograph (SEM. The results show that the prerequisite for the formation of uniform porous hollow PLLA fibers include moderate ambient temperature (10~20°C and appropriate molecular weight for the PLLA, as well as the diameter of the fiber in the range of several micrometers to about 100 nanometers.

  7. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors

    Science.gov (United States)

    Chen, Haichao; Fan, Meiqiang; Li, Chao; Tian, Guanglei; Lv, Chunju; Chen, Da; Shu, Kangying; Jiang, Jianjun

    2016-10-01

    Hollow NiSe-CoSe samples have been synthesized for the first time via a one-pot solvothermal approach. The strategy is robust enough to synthesize NiSe-CoSe nanoparticles with different NiSe to CoSe ratios but with a similar hollow structure. Co ions in the NiSe-CoSe nanoparticles play decisive role for formation of the hollow structure; otherwise, the nanoparticles become solid for the NiSe sample. When used as the positive electroactive materials for energy storage, the NiSe-CoSe samples show excellent electrochemical activity in alkaline electrolyte. Using the synergistic effect between NiSe and CoSe, the electrochemical performance of NiSe-CoSe can be tuned by varying the NiSe to CoSe ratios. The NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 shows the best electrochemical performance in terms of superior specific capacity, improved rate capability and excellent cycling stability. In addition, the electrochemical performance of NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 is also evaluated via assembling hybrid supercapacitors with RGO, and the hybrid supercapacitor delivers both high power and energy densities (41.8 Wh kg-1 at 750 W kg-1 and 20.3 Wh kg-1 at 30 kW kg-1).

  8. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  9. Hollow fiber ultrafiltration membranes with microstructured inner skin

    NARCIS (Netherlands)

    Culfaz, P.Z.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    Hollow fiber membranes with microstructured inner surfaces were fabricated from a PES/PVP blend using a spinneret with a microstructured needle. The effect of spinning parameters such as polymer dope flow rate, bore liquid flowrate, air gap and take-up speed on the microstructure and shape of the

  10. Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.

    Science.gov (United States)

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong

    2015-09-01

    Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.

  11. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  12. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....... After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non...

  13. Fabrication of Polybenzimidazole/Palladium Nanoparticles Hollow Fiber Membranes for Hydrogen Purification

    KAUST Repository

    Villalobos, Luis Francisco

    2017-09-13

    A novel scheme to fabricate polybenzimidazole (PBI) hollow fiber membranes with a thin skin loaded with fully dispersed palladium nanoparticles is proposed for the first time. Palladium is added to the membrane during the spinning process in the form of ions that coordinate to the imidazole groups of the polymer. This is attractive for membrane production because agglomeration of nanoparticles is minimized and the high-cost metal is incorporated in only the selective layer—where it is required. Pd-containing membranes achieve three orders of magnitude higher H2 permeances and a twofold improvement in H2/CO2 selectivity compared to pure PBI hollow fiber membranes.

  14. Modeling of hydrodynamics in hollow fiber membrane bioreactor for mammalian cells cultivation

    Directory of Open Access Journals (Sweden)

    N. V. Menshutina

    2016-01-01

    Full Text Available The mathematical modelling in CFD-packages are powerfull instrument for design and calculation of any engineering tasks. CFD-package contains the set of programs that allow to model the different objects behavior based on the mathematical lows. ANSYS Fluent are widely used for modelling of biotechnological and chemical-technological processes. This package is convenient to describe their hydrodynamics. As cell cultivation is one of the actual scientific direction in modern biotechnology ANSYS Fluent was used to create the model of hollow fiber membrane bioreactor. The fibers are hollow cylindrical membrane to be used for cell cultivation. The criterion of process effectiveness for cell growth is full filling of the membrane surface by cells in the bioreactor. While the cell growth the fiber permeability is decreased which effects to feed flow through membrane pores. The specific feature of this process is to ensure such feed flow to deliver the optimal nutrition for the cells on the external membrane surface. The velocity distribution inside the fiber and in all bioreactor as a whole has been calculated based on mass an impulse conservation equations taking into account the mathematical model assumptions. The hydrodynamics analysis in hollow fiber membrane bioreactor is described by the three-dimensional model created in ANSYS Fluent. The specific features of one membrane model are considered and for whole bioreactor too.

  15. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    Science.gov (United States)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  16. Optimization of Deacetylation Process for Regenerated Cellulose Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2017-01-01

    Full Text Available Cellulose acetate (CA hollow fibers were spun from a CA+ Polyvinylpyrrolidone (PVP/N-methyl-2-pyrrolidone (NMP/H2O dope solution and regenerated by deacetylation. The complete deacetylation time of 0.5 h was found at a high concentration (0.2 M NaOH ethanol (96% solution. The reaction rate of deacetylation with 0.5 M NaOH was faster in a 50% ethanol compared to a 96 vol.% ethanol. The hydrogen bond between CA and tertiary amide group of PVP was confirmed. The deacetylation parameters of NaOH concentration, reaction time, swelling time, and solution were investigated by orthogonal experimental design (OED method. The degree of cross-linking, the residual acetyl content, and the PVP content in the deacetylated membranes were determined by FTIR analysis. The conjoint analysis in the Statistical Product and Service Solutions (SPSS software was used to analyze the OED results, and the importance of the deacetylation parameters was sorted as Solution > Swelling time > Reaction time > Concentration. The optimal deacetylation condition of 96 vol.% ethanol solution, swelling time 24 h, the concentration of NaOH (0.075 M, and the reaction time (2 h were identified. The regenerated cellulose hollow fibers under the optimal deacetylation condition can be further used as precursors for preparation of hollow fiber carbon membranes.

  17. Slow-light enhanced absorption in a hollow-core fiber

    DEFF Research Database (Denmark)

    Grgic, Jure; Xiao, Sanshui; Mørk, Jesper

    2010-01-01

    Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate...

  18. Mixed matrix microporous hollow fibers with ion-exchange functionality

    NARCIS (Netherlands)

    Kiyono, R.; Kiyono, R.; Koops, G.H.; Wessling, Matthias; Strathmann, H.

    2004-01-01

    Heterogeneous hollow fiber membranes with cation exchange functionality are prepared using a wet spinning technique. The spinning dope solutions are prepared by dispersing finely ground cation ion-exchange resin (CER) particles in an N-methyl pyrrolidone solution of polysulfone (PSF). The polymer

  19. Interference Cancellation for Hollow-Core Fiber Reference Cells

    DEFF Research Database (Denmark)

    Seppä, Jeremias; Merimaa, Mikko; Merimaa, Mikko

    2015-01-01

    Doppler-free saturated absorption spectroscopy of gases in hollow-core fiber (HCF)-based cells can be used for realizing new compact, robust, and portable frequency standards. In this paper, methods for cancelling interferences resulting from the optical connections between standard fiber and HCF...... and other factors such as varying coupling to HCF modes are investigated. Laser power modulation with simultaneous detection of ac and dc signal is used to separate saturated absorption from interferences. In addition, a technique of two piezoelectric stack actuators stretching the fiber at different...... locations is described. The presented experimental results demonstrate that 99% interference attenuation is readily attainable with the techniques. Frequency comb-referenced measurement of saturated acetylene absorption features near 1.54 μm, with fiber length and power modulation, is presented...

  20. Polysulfone coating for hollow fiber artificial lungs operated at hypobaric and hyperbaric pressures.

    Science.gov (United States)

    High, K M; Snider, M T; Panol, G R; Richard, R B; Gray, D N

    1996-01-01

    Carbon dioxide transfer is increased when the gas phase of a hollow fiber membrane lung is operated at hypobaric pressures. Oxygen transfer is augmented by hyperbaric pressures. However, uncoated hollow fibers transmit gas bubbles into the blood when operated at a pressure greater than 800 mmHg and may have increased plasma leakage when operated at hypobaric pressures. Ultrathin polymer coatings may avoid this problem while reducing thrombogenicity. The authors coated microporous polypropylene hollow fibers with 380 microns outer diameter and 50 microns walls using 1, 2, 3, and 4% solutions of polysulfone in tetrahydrofuran by dipping or continuous pull through. These fibers were mounted in small membrane lung prototypes having surface areas of 70 and 187 cm2. In gas-to-gas testing, the longer the exposure time to the solution and the greater the polymer concentration, the less the permeation rate. The 3% solutions blocked bulk gas flow. The coating was 1 micron thick by mass balance calculations. During water-to-gas tests, hypobaric gas pressures of 40 mmHg absolute were tolerated, but CO2 transfer was reduced to 40% of the bare fibers. Hyperbaric gas pressures of 2,100 mmHg absolute tripled O2 transfer without bubble formation.

  1. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Directory of Open Access Journals (Sweden)

    Jonathan Dale Shephard

    2015-04-01

    Full Text Available The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included.High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications.In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical

  2. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  3. Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range....

  4. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang

    2011-10-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  5. Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide

    KAUST Repository

    Chen, Chien-Chiang; Qiu, Wulin; Miller, Stephen J.; Koros, William J.

    2011-01-01

    Decarboxylation-induced thermal crosslinking has been demonstrated to be effective for stabilizing membranes against plasticization in dense films. This study extends this promising crosslinking approach from dense films to industrially relevant asymmetric hollow fiber membranes. Crosslinkable asymmetric hollow fiber membranes were spun from a carboxylic acid containing polyimide, 6FDA-DAM:DABA. Dope and spinning conditions were optimized to obtain fibers with a defect-free selective skin layer. It is found that slightly defective fibers suffered severe selectivity loss after thermal crosslinking, suggesting that defect-free property is essential to the performance of the resulting crosslinked hollow fiber membranes. The crosslinked fibers were tested for CO 2/CH 4 separation. The excellent plasticization resistance under high pressure feeds (with highest CO 2 partial pressure of 400psia) suggests that these robust membranes are promising for aggressive natural gas purification. © 2011 Elsevier B.V.

  6. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  7. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  8. Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance

    International Nuclear Information System (INIS)

    Fan, Meiqing; Ren, Bo; Yu, Lei; Song, Dalei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Jing, Xiaoyan; Liu, Lianhe

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The NiO hollow spheres were decorated by Co 3 O 4 nanowires. • The NiO hollow spheres were comprised of many NiO particles. • The Co 3 O 4 nanowires were composed of nanoparticles. • The NiO/Co 3 O 4 core/shell nanocomposites have good electrochemical properties. - Abstract: The NiO/Co 3 O 4 core/shell composites as a promising supercapacitor material have been fabricated by facile hydrothermal process. The structure and morphology of the NiO/Co 3 O 4 core/shell composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that the NiO hollow spheres were decorated by Co 3 O 4 nanowires, and the nanowires were composed of nanoparticles. Electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The results suggested that the NiO/Co 3 O 4 core/shell composites had good electrochemical reversibility and displayed superior capacitive performance with large capacitance (510 F g −1 ). Moreover, NiO/Co 3 O 4 core/shell composites showed excellent cyclic performanceafter 1000 cycles

  9. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren; Rungta, Meha; Koros, William J.

    2011-01-01

    materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation

  10. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  11. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  12. Core–Shell Electrospun Hollow Aluminum Oxide Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Jonathan W. Rajala

    2015-10-01

    Full Text Available In this work, core–shell electrospinning was employed as a simple method for the fabrication of composite coaxial polymer fibers that became hollow ceramic tubes when calcined at high temperature. The shell polymer solution consisted of polyvinyl pyrollidone (PVP in ethanol mixed with an aluminum acetate solution to act as a ceramic precursor. The core polymer was recycled polystyrene to act as a sacrificial polymer that burned off during calcination. The resulting fibers were analyzed with X-ray diffraction (XRD and energy dispersive spectroscopy (EDS to confirm the presence of gamma-phase aluminum oxide when heated at temperatures above 700 °C. The fiber diameter decreased from 987 ± 19 nm to 382 ± 152 nm after the calcination process due to the polymer material being burned off. The wall thickness of these fibers is estimated to be 100 nm.

  13. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  14. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  15. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying; Johnson, J.R.; Karvan, Oğuz; Sholl, David S.; Koros, W.J.

    2012-01-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  16. Synthesis of Porous Inorganic Hollow Fibers without Harmful Solvents

    NARCIS (Netherlands)

    Shukla, Sushumna; de Wit, Patrick; Luiten-Olieman, Maria W.J.; Kappert, Emiel; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal

  17. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  18. Preparation and performance of biofouling resistant PAN/chitosan hollow fiber membranes.

    Science.gov (United States)

    Shanthana Lakshmi, D; Jaiswar, Santlal; Saxena, Mayank; Tasselli, Franco; Raval, Hiren D

    2017-07-01

    The preparation of polyacrylonitrile (PAN) hollow fiber (HF) membranes has been carried out by dry-jet wet spinning. PAN HF membranes were coated with chitosan biopolymers 2 wt% by dip coating and further crosslinked by chemical reagents (Tri sodium polyphosphate). PAN HF (Virgin) and PAN/chitosan coated membrane were characterized by SEM and tested for water flux. Proteins Pepsin, Albumin, and Clay of 1000 ppm concentration were tested for separation efficiency. In addition, bacterial species Escherichia coli and Bacillus subtilis were tested for fouling control efficiency and found out that PAN/chitosan membranes were quite superior to virgin PAN fibers. The adhesion of bacterial cells on the surface of the hollow fiber membranes assessed through alcian blue staining and SEM analysis. It was observed that PAN/chitosan membranes (310A and 310C) possessed best antibacterial activities (based on SEM results), qualifying them as a very promising candidates for anti-biofouling coatings.

  19. Porous Hollow Superlattice NiMn2O4/NiCo2O4 Mesocrystals as a Highly Reversible Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Lingjun Li

    2018-05-01

    Full Text Available As a promising high-capacity anode material for Li-ion batteries, NiMn2O4 always suffers from the poor intrinsic conductivity and the architectural collapse originating from the volume expansion during cycle. Herein, a combined structure and architecture modulation is proposed to tackle concurrently the two handicaps, via a facile and well-controlled solvothermal approach to synthesize NiMn2O4/NiCo2O4 mesocrystals with superlattice structure and hollow multi-porous architecture. It is demonstrated that the obtained NiCo1.5Mn0.5O4 sample is made up of a new mixed-phase NiMn2O4/NiCo2O4 compound system, with a high charge capacity of 532.2 mAh g−1 with 90.4% capacity retention after 100 cycles at a current density of 1 A g−1. The enhanced electrochemical performance can be attributed to the synergistic effects of the superlattice structure and the hollow multi-porous architecture of the NiMn2O4/NiCo2O4 compound. The superlattice structure can improve ionic conductivity to enhance charge transport kinetics of the bulk material, while the hollow multi-porous architecture can provide enough void spaces to alleviate the architectural change during cycling, and shorten the lithium ions diffusion and electron-transportation distances.

  20. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation.

    Science.gov (United States)

    Mao, Yiyin; Li, Junwei; Cao, Wei; Ying, Yulong; Sun, Luwei; Peng, Xinsheng

    2014-03-26

    The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

  1. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    Science.gov (United States)

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  3. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  4. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Amy, Gary L.

    2014-01-01

    the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules

  5. Polyethyleneimine-Functionalized Polyamide Imide (Torlon) Hollow-Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-05-24

    Carbon dioxide emitted from existing coal-fired power plants is a major environmental concern due to possible links to global climate change. In this study, we expand upon previous work focused on aminosilane-functionalized polymeric hollow-fiber sorbents by introducing a new class of polyethyleneimine (PEI)-functionalized polymeric hollow-fiber sorbents for post-combustion carbon dioxide capture. Different molecular weight PEIs (Mn≈600, 1800, 10 000, and 60 000) were studied as functional groups on polyamide imide (PAI, Torlon) hollow fibers. This imide ring-opening modification introduces two amide functional groups and was confirmed by FTIR attenuated total reflectance spectroscopy. The carbon dioxide equilibrium sorption capacities of PEI-functionalized Torlon materials were characterized by using both pressure decay and gravimetric sorption methods. For equivalent PEI concentrations, PAI functionalized with lower molecular weight PEI exhibited higher carbon dioxide capacities. The effect of water in the ring-opening reaction was also studied. Up to a critical value, water in the reaction mixture enhanced the degree of functionalization of PEI to Torlon and resulted in higher carbon dioxide uptake within the functionalized material. Above the critical value, roughly 15 % w/w water, the fiber morphology was lost and the fiber was soluble in the solvent. PEI-functionalized (Mn≈600) PAI under optimal reaction conditions was observed to have the highest CO2 uptake: 4.9 g CO2 per 100 g of polymer (1.1 mmol g-1) at 0.1 bar and 35°C with dry 10 % CO2/90 % N2 feed for thermogravimetric analysis. By using water-saturated feeds (10 % CO2/90 % N2 dry basis), CO2 sorption was observed to increase to 6.0 g CO2 per 100 g of sorbent (1.4 mmol g-1). This material also demonstrated stability in cyclic adsorption-desorption operations, even under wet conditions at which some highly effective sorbents tend to lose performance. Thus, PEI-functionalized PAI fibers can be

  6. Hollow fiber membrane lumen modified by polyzwitterionic grafting

    KAUST Repository

    Le, Ngoc Lieu

    2016-08-24

    In this study, we demonstrate an effective way to modify the lumen of polyetherimide hollow fibers by grafting zwitterionic poly(sulfobetaine) to increase the membrane resistance to fouling. Surface-selective grafting of the protective hydrogel layers has been achieved in a facile two-step process. The first step is the adsorption of a macromolecular redox co-initiator on the lumen-side surface of the membrane, which in the second step, after flushing the lumen of the membrane with a solution comprising monomers and a complementary redox initiator, triggers the in situ cross-linking copolymerization at room temperature. The success of grafting reaction has been verified by the surface elemental analyses using X-ray photoelectron spectroscopy (XPS) and the surface charge evaluation using zeta potential measurements. The hydrophilicity of the grafted porous substrate is improved as indicated by the change of contact angle value from 44° to 30°, due to the hydration layer on the surface produced by the zwitterionic poly(sulfobetaine). Compared to the pristine polyetherimide (PEI) substrate, the poly(sulfobetaine) grafted substrates exhibit high fouling resistance against bovine serum albumin (BSA) adsorption, E. coli attachment and cell growth on the surface. Fouling minimization in the lumen is important for the use of hollow fibers in different processes. For instance, it is needed to preserve power density of pressure-retarded osmosis (PRO). In high-pressure PRO tests, a control membrane based on PEI with an external polyamide selective layer was seriously fouled by BSA, leading to a high water flux drop of 37%. In comparison, the analogous membrane, whose lumen was modified with poly(sulfobetaine), not only had a less water flux decline but also had better flux recovery, up to 87% after cleaning and hydraulic pressure impulsion. Clearly, grafting PRO hollow fiber membranes with zwitterionic polymeric hydrogels as a protective layer potentially sustains PRO

  7. Hollow fibers made from a poly(3-hydroxybutyrate/poly-ε-caprolactone blend

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Since poly(3-hydroxybutyrate (PHB is inherently brittle and possesses poor elastic properties, hollow fibers produced by melt spinning from pure PHB, as described in our earlier study [Macromolecular Materials and Engineering, 2010, 295/6, 585–594], do not meet the required needs regarding the mechanical performance. Besides hardly available PHB copolymers, also blend systems are known to enhance material properties and have thus been considered to be eligible to fabricate flexible or rather pliable hollow fibers based on PHB. Blends of PHB and poly-!-caprolactone (PCL are promising for the application in tissue engineering due to the inherent biocompatibility and biodegradability. A wide range of PHB/PCL compositions have been prepared by melt extrusion. Thermal and mechanical properties of the obtained specimens were analyzed in order to identify miscibility and degree of dispersion as well as to determine the influence on the overall mechanical performance. Even though these constituents are known to be immiscible, PHB/PCL 70/30 was proven to be an adequate composition. This blend showed a highly increased elongation and was found to be easily processable by melt spinning compared to pure PHB. From this blend well defined dimensionally stable bendable hollow fibers were fabricated.

  8. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  9. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  10. Characterization of Thermally Cross-Linkable Hollow Fiber Membranes for Natural Gas Separation

    KAUST Repository

    Chen, Chien-Chiang

    2013-01-23

    The performance of thermally cross-linkable hollow fiber membranes for CO2/CH4 separation and the membrane stability against CO2 plasticization was investigated. The fiber membranes were thermally cross-linked at various conditions. Cross-linking temperature was found to have a significant effect, while shorter soak time and the presence of trace oxidizer (O2 or N2O) had a negligible effect. The cross-linked fibers were tested using high CO2 content feeds (50-70% CO2) at a variety of feed pressures (up to 1000 psia), temperatures, and permeate pressures (up to 100 psia) to evaluate membrane performance under various realistic operating conditions. The results demonstrated that cross-linking improves membrane selectivity and effectively eliminates swelling-induced hydrocarbon loss at high pressures. Excellent stability under aggressive feeds (with CO2 partial pressure up to 700 psia) suggests that cross-linked hollow fiber membranes have great potential for use in diverse aggressive applications, even beyond the CO2/CH4 example explored in this work. © 2012 American Chemical Society.

  11. Increasing the Performance of Vacuum Membrane Distillation Using Micro-Structured Hydrophobic Aluminum Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Chia-Chieh Ko

    2017-04-01

    Full Text Available This study develops a micro-structured hydrophobic alumina hollow fiber with a high permeate flux of 60 Lm−2h−1 and salt rejection over 99.9% in a vacuum membrane distillation process. The fiber is fabricated by phase inversion and sintering, and then modified with fluoroalkylsilanes to render it hydrophobic. The influence of the sintering temperature and feeding temperature in membrane distillation (MD on the characteristics of the fiber and MD performance are investigated. The vacuum membrane distillation uses 3.5 wt % NaCl aqueous solution at 70 °C at 0.03 bar. The permeate flux of 60 Lm−2h−1 is the highest, compared with reported data and is higher than that for polymeric hollow fiber membranes.

  12. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  13. Kinetic aspects of hollow fiber liquid-phase microextraction and electromembrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Jensen, Henrik; Rasmussen, Knut Einar

    2012-01-01

    In this paper, extraction kinetics was investigated experimentally and theoretically in hollow fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) with the basic drugs droperidol, haloperidol, nortriptyline, clomipramine, and clemastine as model analytes. In HF...

  14. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng

    2016-08-03

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  15. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO)

    KAUST Repository

    Wan, Chun Feng; Li, Bofan; Yang, Tianshi; Chung, Neal Tai-Shung

    2016-01-01

    Pressure retarded osmosis (PRO) is a promising technology to harvest the renewable osmotic energy from salinity gradients. There are great progresses in the fabrication of PRO membranes in the last decade. Thin-film composite (TFC) hollow fibers have been widely studied and demonstrated superior performance. However, the lack of effective TFC hollow fiber modules hinders the commercialization of the PRO technology. Knowledge and experiences to fabricate TFC hollow fiber modules remain limited in the open literature. In this study, we aim to reveal the engineering and science on how to fabricate TFC hollow fiber modules including the formation of inner-selective polyamide layers and the repair of leakages. TFC-PES hollow fiber modules with 30% and 50% packing densities have been successfully fabricated, showing peak power densities of 20.0 W/m2 and 19.4 W/m2, respectively, at 20 bar using 1 M NaCl solution and DI water as feeds. The modules may be damaged during handling and high pressure testing. The repaired modules have a power density of 18.2 W/m2, 91% of the power densities of the undamaged ones. This study would make up the gap between TFC membrane fabrication and TFC membrane module fabrication in the membrane industry. © 2016 Elsevier B.V.

  16. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    Science.gov (United States)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  17. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuliang [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Xiao Changfa, E-mail: xiaotjpu@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Hu Xiaoyu; Bai Qianqian [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. Black-Right-Pointing-Pointer The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. Black-Right-Pointing-Pointer The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  18. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    International Nuclear Information System (INIS)

    Zhang Xuliang; Xiao Changfa; Hu Xiaoyu; Bai Qianqian

    2013-01-01

    Highlights: ► The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. ► The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. ► The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  19. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  20. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  1. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  2. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    Science.gov (United States)

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ~20 d......B in the wavelength range 480-900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ~45 dB m-1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C-1, defined as the red-shift of the resonances per °C, which is three times higher than...... the sensitivity of polymer fiber Bragg gratings....

  4. Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... be tuned by simply changing the pressure of the gas [1]. The emission of efficient dispersive wave (DW) in the deep-UV has been already observed in a uniform Ar-filled hollow-core fiber with tunability from 200 to 320 nm by changing the gas pressure and pulse energy [2]. In the quest of optimizing...

  5. "The blood pressure and dermal sensitivity effects of Nylon hollow fiber releasing Glycerin Trinitrate in vivo "

    Directory of Open Access Journals (Sweden)

    "Ostad SN

    2002-09-01

    Full Text Available In order to improve patient's compliance in taking glycerine trinitrate (GTN nylon hollow fiber which has been successfully used for release of chlorhexidine diacetate and levonorgestrel was employed to make nylon hollow fiber releasing GTN. Hollow nylon fibres of external diameter 0.63 mm, 75 mm long with an internal capacity of 16 μl, were filled with GTN (190 mg/ml in 70% ethanol (v/v or vehicle alone and the ends were heat-sealed. The fibers were then immersed in 10 ml of 0.9% (w/v saline in a separating funnel. The GTN release pattern from fiber, the effect of the product on blood pressure and its potential dermal toxicity were assessed. The release of GTN from the fibres was approximately 2.7 μg/min when the fibres contained 16 mg of drug. The results showed that the amount of GTN within the single fibre was enough to reduce blood pressure significantly, while it did not show significant dermal toxicity. It is concluded that GTN fiber, if used as monofilament, is not an alternative method for GTN delivery.

  6. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N. [Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia); Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada H3C 3A7 (Canada); Frequency Standards and Metrology, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia)

    2011-11-15

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{mu}m-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  7. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  8. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  9. Towards single step production of multi-layer inorganic hollow fibers

    NARCIS (Netherlands)

    de Jong, J.; Benes, Nieck Edwin; Koops, G.H.; Wessling, Matthias

    2004-01-01

    In this work we propose a generic synthesis route for the single step production of multi-layer inorganic hollow fibers, based on polymer wet spinning combined with a heat treatment. With this new method, membranes with a high surface area per unit volume ratio can be produced, while production time

  10. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  11. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng; Chung, Neal Tai-Shung

    2013-01-01

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  12. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  13. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  14. Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiao-Hua; Bai, Yu; Cao, Yue; Xu, Zhen-Liang [East China University of Science and Technology, Shanghai (China)

    2014-08-15

    Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3x10{sup 5} L·m{sup -2}·h{sup -1}·Pa{sup -1}). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.

  15. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina

    2017-09-18

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  16. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina; Kim, Dooli; Katuri, Krishna; Saikaly, Pascal; Nunes, Suzana Pereira

    2017-01-01

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  17. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    NARCIS (Netherlands)

    Diban-Ibrahim Gomez, Nazely; Stamatialis, Dimitrios

    2014-01-01

    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of

  18. Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber

    International Nuclear Information System (INIS)

    Markos, Christos; Nielsen, Kristian; Bang, Ole

    2015-01-01

    Strong antiresonant reflecting optical waveguiding is demonstrated in a novel poly (methyl-methacrylate) (PMMA) hollow-core fiber. The transmission spectrum of the fiber was characterized using a supercontinuum source and it revealed distinct resonances with resonant dips as strong as ∼20 dB in the wavelength range 480–900 nm, where PMMA has low absorption. The total propagation loss of the fiber was measured to have a minimum of ∼45 dB m −1 at around 500 nm. The thermal sensitivity of the fiber is 256 ± 16 pm °C −1 , defined as the red-shift of the resonances per °C, which is three times higher than the sensitivity of polymer fiber Bragg gratings. (paper)

  19. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  20. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  2. Porous stainless steel hollow fibers with shrinkage-controlled small radial dimensions

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Raaijmakers, Michiel; Raaijmakers, Michiel J.T.; Winnubst, Aloysius J.A.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2011-01-01

    A method is presented for the preparation of thin (∼250 μm) porous stainless steel hollow fiber membranes based on dry–wet spinning of a particle-loaded polymer solution followed by heat treatment. Extraordinarily small radial dimensions were achieved by controlled shrinkage during thermal

  3. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  4. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  5. Sensing Features of Long Period Gratings in Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Agostino Iadicicco

    2015-04-01

    Full Text Available We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs fabricated in hollow core photonic crystal fibers (HC-PCFs by the pressure assisted Electric Arc Discharge (EAD technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index.

  6. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2013-01-01

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  7. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo

    2013-11-26

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  8. Transport of strontium and some 1. and 2. group's cations through hollow fiber supported liquid membranes using crowns

    International Nuclear Information System (INIS)

    Mackova, J.

    1996-01-01

    Models which describe the permeation of strontium cation through liquid membranes are shown in this paper. Partition coefficients have been determined radiometrically, using Sr-85 tracer. The results were treated according to the theory developed by Danesi using simple equation. The permeation of Sr 2+ using 18-crown-6 crown ether (18C6) and picric acid in bulk liquid toluene membrane systems with and without surface/active substances (SPAN 80, ECA 4360) has been studied. The transport of Sr 2+ using 18-C-6 ether as a carrier and picrate as a co-counter ion through hollow fiber supported dichlorobenzene liquid membrane has been studied too. A polypropylene hollow fiber ACCUREL PP type S6/ENKA and a permeation device with a single hollow fiber module with on-line radiometric detection of strontium using Sr-85 tracer, was used. This type of permeation system has shown reproducible results, fast and effective permeation. Results prove the possible mechanism of strontium cation transport though liquid membrane. Another subject of study was the transport of metal ions (Ca 2+ , Sr 2+ , Ba 2+ , Na + , K + , Cs + ) using (18C6) as a carrier and picrate as co/counter ion through hollow fiber supported dichlorobenzene liquid membrane using capillary isotachophoresis (ITP) measurement of the cations concentration. The experimental results obtained using ITP method for Sr 2+ concentration determination are in good agreement with those obtained by on-line radiometric detection using Sr-85 tracer, under the same conditions (feed, membrane, strip, hollow fiber and the same pertraction device). The ITP method could be successfully used for analyses of samples containing a mixture of all separated cations. The results of this study indicate that the polypropylene hollow fiber supported dichlorobenzene membrane is suitable for studied metal cation transport using 18C6 as a carrier and a picrate as co-counter ion. This combination enables fast and effective cation separation. The

  9. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  10. A piezo-resistive graphene strain sensor with a hollow cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Atsushi, E-mail: nakamura.atsushi@ipc.shizuoka.ac.jp [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Hamanishi, Toshiki [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Kawakami, Shotaro [Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Takeda, Masanori [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2017-05-15

    Highlights: • A hollow tubing graphene fiber was synthesized from CVD-grown graphene on Ni wire. • The strain sensor showed the gauge factor 34.3–48.9 at 8% tensile strain. • The TGF sensors performed a writing finger motion assessment. - Abstract: We propose a resistance-type strain sensor consists of hollow tubing graphene fibers (TGFs) with dimethylpolysiloxane (PDMS) coating for millimeters-scale strain/bending detection applications. The TGFs were synthesized via graphene films grown on Ni wire by chemical vapor deposition (CVD). The TGFs are fundamentally folded continuous few-layered graphene films without edges maintained cylindrical tube supported by PDMS coating. Sensing properties were studied comparing with a multi-wall carbon nanotube (MWCNT)/PDMS composites (CNTCs) and the mechanism were discussed. In terms of the gauge factor, the sensor made of TGF is estimated to be in the range of 34.3–48.9 against 8% tensile strain. For a feasibility study, we demonstrate the human finger monitoring by means of bending angle detection on a finger joint.

  11. Hydrometallurgical minor actinide separation in hollow fiber modules

    International Nuclear Information System (INIS)

    Geist, A.; Weigl, M.; Gompper, K.

    2004-01-01

    Hollow fiber modules (HFM) were used as phase contacting devices for hydrometallurgical minor actinide separation in the Partitioning and Transmutation context. Two single-HFM setups, one using commercially available HFM, the other one using miniature HFM, have been developed and manufactured. Several very successful DIAMEX and SANEX once-through tests were performed. The major advantage of the new miniature HFM is their size drastically reducing chemicals consumption: only several 10 mL of feed phases are required for a test. (authors)

  12. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.; Johnson, J. R.; Williams, P. J.; Koros, W. J.

    2012-01-01

    research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system

  13. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    Science.gov (United States)

    2015-07-09

    scheme is that the generation of carrier-envelope offset frequency f0 can be avoided, which reduces the system complexity . However, a high performance RF...Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). 56. C

  14. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  15. Synthesis of La2O3 doped Zn2SnO4 hollow fibers by electrospinning method and application in detecting of acetone

    Science.gov (United States)

    Yang, H. M.; Ma, S. Y.; Yang, G. J.; Chen, Q.; Zeng, Q. Z.; Ge, Q.; Ma, L.; Tie, Y.

    2017-12-01

    Hollow porous pure and La2O3 doped Zn2SnO4 fibers were synthesized via single capillary electrospinning technology and used for obtaining of gas sensors. The as-prepared samples were characterized by microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy and UV-vis absorption spectra. The newly obtained gas sensors were investigated for acetone detection. Compared with pure Zn2SnO4 hollow fibers, the La2O3 doped Zn2SnO4 hollow fibers not only exhibited perfect sensing performance toward acetone with excellent selectivity, high response and fast response/recovery capability (7 s for adsorption and 9 s for desorption), but also the operating temperature was reduced from 240 °C to 200 °C. These results demonstrated that the special hollow porous La doped Zn2SnO4 fibers structures were used as the sensing material for fabricating high performance acetone sensors. The acetone sensing mechanism of La2O3 doped Zn2SnO4 hollow fibers was discussed too.

  16. Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash.

    Science.gov (United States)

    Zhu, Li; Ji, Jiayou; Wang, Shulin; Xu, Chenxi; Yang, Kun; Xu, Man

    2018-09-01

    Al 2 O 3 -NaA zeolite composite hollow fiber membranes were successfully fabricated via hydrothermal synthesis by using industrial solid waste coal fly ash and porous Al 2 O 3 hollow fiber supports. The as-synthesized Al 2 O 3 -NaA zeolite composite hollow fiber membranes were then characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The hollow fiber membranes were used to remove lead ions (Pb(II), 50 mg L -1 ) from synthetic wastewater with a removal efficiency of 99.9% at 0.1 MPa after 12 h of filtration. This study showed that the Al 2 O 3 -NaA zeolite composite hollow fiber membranes (the pore size of the membrane was about 0.41 nm in diameter) synthesized from coal fly ash could be efficiently used for treating low concentration Pb(II) wastewater. It recycled solid waste coal fly ash not only to solve its environment problems, but also can produce high-value Al 2 O 3 -NaA zeolite composite hollow fiber membranes for separation application in treating wastewater containing Pb(II). Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. High-Temperature Performance and Multiscale Damage Mechanisms of Hollow Cellulose Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Liping Guo

    2016-01-01

    Full Text Available Spalling resistance properties and their damage mechanisms under high temperatures are studied in hollow cellulose fiber-reinforced concrete (CFRC used in tunnel structures. Measurements of mass loss, relative dynamic elastic modulus, compressive strength, and splitting tensile strength of CFRC held under high temperatures (300, 600, 800, and 1050°C for periods of 2.5, 4, and 5.5 h were carried out. The damage mechanism was analyzed using scanning electron microscopy, mercury intrusion porosimetry, thermal analysis, and X-ray diffraction phase analysis. The results demonstrate that cellulose fiber can reduce the performance loss of concrete at high temperatures; the effect of holding time on the performance is more noticeable below 600°C. After exposure to high temperatures, the performance of ordinary concrete deteriorates faster and spalls at 700–800°C; in contrast, cellulose fiber melts at a higher temperature, leaving a series of channels in the matrix that facilitate the release of the steam pressure inside the CFRC. Hollow cellulose fibers can thereby slow the damage caused by internal stress and improve the spalling resistance of concrete under high temperatures.

  18. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  19. Self-sacrifice Template Formation of Hollow Hetero-Ni7S6/Co3S4 Nanoboxes with Intriguing Pseudo-capacitance for High-performance Electrochemical Capacitors

    Science.gov (United States)

    Hua, Hui; Liu, Sijia; Chen, Zhiyi; Bao, Ruiqi; Shi, Yaoyao; Hou, Linrui; Pang, Gang; Hui, Kwun Nam; Zhang, Xiaogang; Yuan, Changzhou

    2016-02-01

    Herein, we report a simple yet efficient self-sacrifice template protocol to smartly fabricate hollow hetero-Ni7S6/Co3S4 nanoboxes (Ni-Co-S NBs). Uniform nickel cobalt carbonate nanocubes are first synthesized as the precursor via solvothermal strategy, and subsequently chemically sulfidized into hollow heter-Ni-Co-S NBs through anion-exchange process. When evaluated as electrode for electrochemical capacitors (ECs), the resultant hetero-Ni-Co-S NBs visually exhibit attractive pesudo-capacitance in KOH just after continuously cyclic voltammetry (CV) scanning for 100 cycles. New insights into the underlying energy-storage mechanism of the hollow hetero-Ni-Co-S electrode, based on physicochemical characterizations and electrochemical evaluation, are first put forward that the electrochemically induced phase transformation gradually occurrs during CV sweep from the hetero-Ni-Co-S to bi-component-active NiOOH and CoOOH, which are the intrinsic charge-storage phases for the appealing Faradaic capacitance (~677 F g-1 at 4 A g-1) of hollow Ni-Co-S NBs at high rates after cycling. When further coupled with negative activated carbon (AC), the AC//hetero-Ni-Co-S asymmetric device with extended electrochemical window of 1.5 V demonstrates high specific energy density of ~31 Wh kg-1. Of significance, we strongly envision that hollow design concept and new findings here hold great promise for enriching synthetic methodologies, and electrochemistry of complex metal sulfides for next-generation ECs.

  20. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  1. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  2. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography.

    Science.gov (United States)

    Song, Xin-Yue; Shi, Yan-Ping; Chen, Juan

    2012-10-15

    A novel design of carbon nanotubes reinforced hollow fiber solid/liquid phase microextraction (CNTs-HF-SLPME) was developed to determine piroxicam and diclofenac in different real water samples. Functionalized multi-walled carbon nanotubes (MWCNTs) were held in the pores of hollow fiber with sol-gel technology. The pores and lumen of carbon nanotubes reinforced hollow fiber were subsequently filled with a μL volume of organic solvent (1-octanol), and then the whole assembly was used for the extraction of the target analytes in direct immersion sampling mode. The target analytes were extracted from the sample by two extractants, one of which is organic solvent placed inside the pores and lumen of hollow fiber and the other one is CNTs held in the pores of hollow fiber. After extraction, the analytes were desorbed in acetonitrile and analyzed using high performance liquid chromatography. This novel extraction mode showed more excellent extraction performance in comparison with conventional hollow fiber liquid microextraction (without adding CNTs) and carbon nanotubes reinforced hollow fiber solid microextraction (CNTs held in the pores of hollow fiber, but no organic solvents placed inside the lumen of hollow fiber) under the respective optimum conditions. This method provided 47- and 184-fold enrichment factors for piroxicam and diclofenac, respectively, good inter-fiber repeatability and batch-to-batch reproducibility. Linearity was observed in the range of 20-960 μg L(-1) for piroxicam, and 10-2560 μg L(-1) for diclofenac, with correlation coefficients of 0.9985 and 0.9989, respectively. The limits of detection were 4.58 μg L(-1) for piroxicam and 0.40 μg L(-1) for diclofenac. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Evaluation of Hollow Fiber And Miniperm Bioreactors as An Alternative to Murine Ascites for Small Scale Monoclonal Antibody Production

    International Nuclear Information System (INIS)

    Abedalla, O. M.

    2007-01-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, miniPERM bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, miniPERM bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1X10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and miniPERM) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg; vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in miniPERM. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and miniPERM bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (< 1 g) monoclonal antibody production.

  4. Outer-selective thin film composite (TFC) hollow fiber membranes for osmotic power generation

    KAUST Repository

    Le, Ngoc Lieu

    2016-01-14

    The pressure-retarded osmosis (PRO) process is a green technique for power generation to respond the world\\'s need of energy sustainability. In this study, we have developed the vital component of the process, i.e. membrane, in the configuration of the outer-selective thin-film composite (TFC) hollow fiber, which is more practical than other configurations in the real applications. The support layer morphology and the formation of the selective polyamide layer have been optimized for a good PRO performance. The results show that the bore fluid with higher amount of the solvent N-methyl-2-pyrrolidone leads to full finger-like hollow fibers, which provide higher flux but lower pressure tolerance. The addition of higher amount of diethylene glycol into the dope solution, improves the pore formation and suppresses the macrovoid formation, while properly lowering the take-up speed increases their wall thickness and pressure tolerance. A simple alcohol-pre-wetting approach on the fiber support leads to a smooth and thin polyamide layer, which is favorable for a high water flux and power density. Its efficiency follows this order: n-propanol>ethanol>methanol>water. The n-propanol pre-wetted TFC membrane can tolerate 17 bar with a peak power density of 9.59 W/m2 at room temperature, using 1 M NaCl solution as the draw solution and DI water as feed. This work demonstrates the potential of outer-selective TFC hollow fiber membranes for energy conversion via PRO process, provides useful database to fabricate suitable support morphology and raise a simple technique to practically form a thin and smooth polyamide layer.

  5. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  6. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  7. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia; Zuo, Jian; Chung, Tai-Shung

    2016-01-01

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  8. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.

    Science.gov (United States)

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji

    2018-03-27

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.

  9. Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation

    KAUST Repository

    Lu, Kang-Jia

    2016-04-26

    Membranes with good mechanical strength, high vapor flux and outstanding anti-wetting properties are essential for membrane distillation (MD) applications. In this work, porous polyvinylidene fluoride (PVDF) tri-bore hollow fiber membranes with super-hydrophobicity are developed to achieve these desired properties. The tri-bore hollow fiber offers better mechanical strength than the conventional single-bore fiber. To improve its anti-wetting properties, Teflon® AF 2400 is coated on the membrane surface. The effects of coating on membrane morphology, performance and anti-wetting properties have been thoroughly investigated. With an optimal coating condition (0.025 wt% of Teflon® AF 2400, 30 s), a super-hydrophobic surface with a contact angle of 151o is achieved. The resultant membrane shows an increase of 109% in liquid entry pressure (LEP) with a slight sacrifice of 21% in flux. Long term direct contact MD tests have confirmed that the Teflon® AF 2400 coated membrane has enhanced stability with an average flux of 21 kg m-2 h-1 and rejection of 99.99% at 60 °° C for desalination application.

  10. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  11. Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...... frequency shift. Analytical expressions for this limit are derived and compared with results of detailed numerical simulations for a realistic fiber structure....

  12. Curvature and position of nested tubes in hollow-core anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers where a symmetric distribution of cladding tubes compose a “negative-curvature” core boundary have extraordinary optical properties, such as low transmission loss, wide transmission bands and weak power overlap between the core modes and the silica parts [1...

  13. High-rate sputter deposition of NiAl on sapphire fibers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, K.; Martinez, C.; Cremer, R.; Neuschuetz, D. [Lehrstuhl fuer Theoretische Huettenkunde, RWTH Aachen, Aachen (Germany)

    2002-07-01

    Once the fiber-matrix bonding has been optimized to meet the different requirements during fabrication and operation of the later composite component, sapphire fiber reinforced NiAl will be a potential candidate to substitute conventional superalloys as structural material for gas turbine blades. To improve the composite fabrication process, a direct deposition of the intermetallic matrix material onto hBN coated sapphire fibers prior to the consolidation of the fiber-matrix composite is proposed. It is believed that this will simplify the fabrication process and prevent pore formation during the diffusion bonding. In addition, the fiber volume fraction can be quite easily adjusted by varying the NiAl coating thickness. For this, a high-rate deposition of NiAl is in any case necessary. It has been achieved by a pulsed DC magnetron sputtering of combined Al-Ni targets with the fibers rotating between the two facing cathodes. The obtained nickel aluminide coatings were analyzed as to structure and composition by means of X-ray (GIXRD) as well as electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS), respectively. The morphology of the NiAl coatings was examined by SEM. (orig.)

  14. The effect of the production method on the mechanical strength of an alumina porous hollow fiber

    NARCIS (Netherlands)

    de Wit, Patrick; van Daalen, Frederique S.; Benes, Nieck E.

    2017-01-01

    The mechanical strength of inorganic porous hollow fibers is an important property and is strongly affected by the production method. Three production methods for fibers are compared: non-solvent induced phase separation (NIPS), bio-ionic gelation with an internal multivalent ion source (BIG-I), and

  15. Influence of interfacial reactions on the fiber push-out behavior in sapphire fiber-reinforced-NiAl(Yb) composites

    International Nuclear Information System (INIS)

    Tewari, S.N.; Asthana, R.; Tiwari, R.; Bowman, R.R.

    1993-01-01

    The influence of microstructure of the fiber-matrix interface on the fiber push-out behavior has been examined in sapphire fiber-reinforced NiAl and NiAl(Yb) matrix composites synthesized using powder metallurgy techniques combined with zone directional solidification (DS). The push-out stress-displacement curves were observed to consist of an initial 'pseudoelastic' region, wherein the stress increased linearly with displacement, followed by an 'inelastic' region, where the slope of the stress-displacement plot decreased until a maximum stress was reached, and the subsequent stress drop to a constant 'frictional' stress. Chemical reaction between the fiber and the matrix resulted in higher interfacial shear strength in powder cloth processed sapphire-NiAl(Yb) composites as compared to the sapphire-NiAl composites. Grain boundaries in contact with the fibers on the back face of the push-out samples were the preferred sites for crack nucleation in PM composites. The frictional stress was independent of the microstructure and processing variables for NiAl composites, but showed strong dependence on these variables for the NiAl(Yb) composites. The DS processing enhanced the fiber-matrix interfacial shear strength of feedstock PM-NiAl/sapphire composites. However, it reduced the interfacial shear strength of PM-NiAl(Yb)-sapphire composites

  16. "Chemistry in a spinneret" to fabricate hollow fibers for organic solvent filtration

    NARCIS (Netherlands)

    Dutczak, S.M.; Tanardi, Cheryl; Kopec, K.K.; Wessling, Matthias; Stamatialis, Dimitrios

    2012-01-01

    Organic solvent filtration (OSF) is a very efficient separation technique with high potential in many branches of industry. Currently the choice of the commercial membranes is limited only to a few flat sheet membranes and spiral wound modules. It is generally known that a membrane in hollow fiber

  17. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2015-01-01

    We report on numerical design optimization of hollow-core antiresonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for r...

  18. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  19. Medical Application of Free Electron Laser Trasmittance using Hollow Optical Fiber

    CERN Document Server

    Suzuki, Sachiko; Ishii, Katsonuri

    2004-01-01

    Mid-infrared Free Electron Laser (FEL) is expected as new application for biomedical surgery. However, delivery of MIR-FEL into the body is difficult because the common glass optical fibers have strong absorption at MIR region. A good operational and flexible line for FEL is required at medical field. A Hollow optical fiber is developed for IR laser and high-power laser delivery. We evaluated the fiber for FEL transmission line. This fiber is coated with cyclic olefin polymer (COP) and silver thin film on the inside of glass capillary tube. It is 700 μm-bore and 1m in lengths. The fiber transmission loss of the measured wavelength region of 5.5 μm to 12 μm is less than 1dB/m when the fiber is straight and 1.2 dB/m when bent to radius of 20 cm. Additionally, the output beam profile and the pulse structure is not so different form incidence beam. In conclusion, the fiber is suitable for delivery of the FEL energy for applications in medical and laser surgery.

  20. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie

    2013-07-03

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  1. Aminosilane-Functionalized Hollow Fiber Sorbents for Post-Combustion CO 2 Capture

    KAUST Repository

    Li, Fuyue Stephanie; Lively, Ryan P.; Lee, Jong Suk; Koros, William J.

    2013-01-01

    Increasing carbon dioxide emissions are generally believed to contribute to global warming. Developing new materials for capturing CO2 emitted from coal-fired plants can potentially mitigate the effect of these CO 2 emissions. In this study, we developed and optimized porous hollow fiber sorbents with both improved sorption capacities and rapid sorption kinetics by functionalizing aminosilane (N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane) to cellulose acetate hollow fibers as a "proof of concept". A lumen-side barrier layer was also developed in the aminosilane-functionalized cellulose acetate fiber sorbent to allow for facile heat exchange without significant mass transfer with the bore-side heat transfer fluid. The functionalized cellulose acetate fiber sorbents were characterized by pressure decay sorption measurements, multicomponent column chromatography, FT-IR, elemental analysis, and scanning electron microscopy. The carbon dioxide sorption capacity at 1 atm is 0.73 mmol/g by using the pressure decay apparatus. Multicomponent column chromatography measurements showed that aminosilane functionalized cellulose acetate fiber sorbent has a CO2 sorption capacity of 0.23 mmol/g at CO2 partial pressure 0.1 atm and 35 C in simulated flue gas. While this capacity is low, our proof of concept positions the technology to move forward to higher capacity with work that is underway. The presence of silicon and nitrogen elements in the elemental analysis confirmed the success of grafting along with FT-IR spectra which showed the absorbance peak (∼810 cm-1) for Si-C stretching. A cross-linked Neoprene material was used to form the lumen-side barrier layer. Preliminary data showed the required reduction in gas permeance to eliminate mixing between shell side and bore side fluid flows. Specifically the permeance was reduced from 10 000 GPUs for the neat fibers to 6.6 ± 0.1 and 3.3 ± 0.3 GPUs for the coated fibers. The selected lumen layer formation materials

  2. Evaluation of hollow fiber and mini perm bioreactors as an alternative to murine ascites for small scale monoclonal antibody production

    International Nuclear Information System (INIS)

    Abdalla, O. M.

    2006-12-01

    The objective of this study was to compare monoclonal antibody production in hollow fiber, mini perm bioreactor systems and murine ascites to determine the feasibility of the bioreactor system as a potential alternative to the use of mice. One hybridoma cell line was grown in hollow fiber, mini perm bioreactor systems and in groups of 5 mice. Mice were primed with 0.5 ml pristane intraperitoneally 14 days prior to inoculation of 1x10 7 hybridoma cells. Each mouse was tapped a maximum of three times for collection of ascites. Bioreactors were harvested three times weekly for 30 days and were monitored by cell counts, cell viability and media consumption. Time and materials logs were maintained. The total quantity of monoclonal antibody produced in 5 mice versus the total production for the two different bioreactors (hollow fiber and mini perm) in 30 days was as follows: cell line 2AC10E6C7 produce 158 mg vs.97.5 mg, vs 21.54 mg respectively. Mean monoclonal antibody concentration ranged from 4.07 to 8.37 mg/ml in murine ascites, from 0.71 to 3.8 mg/ml in hollow fiber bioreactor system, and from 0.035 to 1.06 in mini perm. Although time and material costs were generally greater for the bioreactors, these results suggest that hollow fiber and mini perm bioreactor systems merit further investigations as potentially viable in vitro alternatives to the use of mice for small scale (<1mg) monoclonal antibody production.(Author)

  3. Hollow-fiber micro-extraction combined with HPLC for the determination of sitagliptin in urine samples

    Directory of Open Access Journals (Sweden)

    Rezaee Raheme

    2015-01-01

    Full Text Available This study successfully developed a three-phase hollow-fiber liquid phase micro extraction coupled with high performance liquid chromatography for determination of trace levels of an anti-diabetic drug, sitagliptin (STG, in urine samples. Sitagliptin was extracted from 15 mL of the basic sample solution with a pH of 8.5 into an organic extracting solvent (n-octanol impregnated in the pores of a hollow fiber and then back extracted into an acidified aqueous solution in the lumen of the hollow fiber with a pH of 3. After extraction, 20 µL of the acceptor phase was injected into HPLC. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, type of organic phase, ionic strength, stirring rate, extraction time, the volume ratio of donor phase to acceptor phase and temperature were studied and optimized. Under the optimized conditions, enrichment factors up to 88 were achieved and the relative standard deviation of the method was in the range of 3 % to 6%. The results indicated that HF-LPME method has an excellent clean-up capacity and a high preconcentration factor and can serve as a simple and sensitive method for monitoring the drug in the urine samples.

  4. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  5. Fabrication of Shatter-Proof Metal Hollow-Core Optical Fibers for Endoscopic Mid-Infrared Laser Applications

    Directory of Open Access Journals (Sweden)

    Katsumasa Iwai

    2018-04-01

    Full Text Available A method for fabricating robust and thin hollow-core optical fibers that carry mid-infrared light is proposed for use in endoscopic laser applications. The fiber is made of stainless steel tubing, eliminating the risk of scattering small glass fragments inside the body if the fiber breaks. To reduce the inner surface roughness of the tubing, a polymer base layer is formed prior to depositing silver and optical-polymer layers that confine light inside the hollow core. The surface roughness is greatly decreased by re-coating thin polymer base layers. Because of this smooth base layer surface, a uniform optical-polymer film can be formed around the core. As a result, clear interference peaks are observed in both the visible and mid-infrared regions. Transmission losses were also low for the carbon dioxide laser used for medical treatments as well as the visible laser diode used for an aiming beam. Measurements of bending losses for these lasers demonstrate the feasibility of the designed fiber for endoscopic applications.

  6. Photoacoustic imaging of hidden dental caries by using a bundle of hollow optical fibers

    Science.gov (United States)

    Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji

    2018-02-01

    Photoacoustic imaging system using a bundle of hollow-optical fibers to detect hidden dental caries is proposed. Firstly, we fabricated a hidden caries model with a brown pigment simulating a common color of caries lesion. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating Nd:YAG laser light with a 532 nm wavelength to occlusal surface of model tooth. We calculated by Fourier transform and found that the waveform from the carious part provides frequency components of approximately from 0.5 to 1.2 MHz. Then a photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for clinical applications. From intensity map of frequency components in 0.5-1.2 MHz, photoacoustic images of hidden caries in the simulated samples were successfully obtained.

  7. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  8. Fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wei; Cao, Yang; Chen, Yong [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China); Peng, Juan; Lai, Xiaoyong [Laboratory Cultivation Base of Natural Gas Conversion, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021 (China); Tu, Jinchun, E-mail: tujinchun@hainu.edu.cn [State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228 (China)

    2017-02-28

    Highlights: • Porous NiCo{sub 2}O{sub 4} hollow nanospheres were synthesized via a facile “CEP” approach and the synthesis mechanism was discussed. • The NiCo{sub 2}O{sub 4} hollow nanospheres possess superior electron-transfer capability and electrocatalytic activity. • The sensitivity is as high as 1917 μA·mM{sup −1}·cm{sup −2} and the detection limit is as low as 0.6 μM (S/N = 3). - Abstract: In this paper, we report the fast synthesis of porous NiCo{sub 2}O{sub 4} hollow nanospheres via a polycrystalline Cu{sub 2}O-templated route based on the elaborately designed “coordinating etching and precipitating” process. The composition and morphology of the porous NiCo{sub 2}O{sub 4} hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo{sub 2}O{sub 4} was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni{sup 2+}/Ni{sup 3+} and Co{sup 2+}/Co{sup 3+} ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM{sup −1}·cm{sup −2} at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  9. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    Science.gov (United States)

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  10. Rapid growth of amorphous carbon films on the inner surface of micron-thick and hollow-core fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Longfei [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Liu, Dongping, E-mail: Dongping.liu@dlnu.edu.cn [Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electric Science, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Zhou, Xinwei [Department of Mechanical Engineering, Zhejiang University, Zhejiang 310007 (China); Song, Ying [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Niu, Jinhai; Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China)

    2013-10-01

    Ultrathick (> 25 μm) carbon films were obtained on the inner surface of hollow and micron-thick quartz fibers by confining CH{sub 4}/He or C{sub 2}H{sub 2}/He microplasmas in their hollow cores. The resulting carbon films were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The microplasma-enhanced chemical vapor deposition (CVD) technique resulted in the uniform growth of amorphous carbon films on the inner surface of very long (> 1 m) hollow-core fibers. Film deposition is performed by using microplasmas at atmospheric pressure and at 50 Pa. The carbon films obtained with the latter show the smooth inner surfaces and the well continuity across the film/optical fiber. Low-pressure CH{sub 4}/He and C{sub 2}H{sub 2}/He microplasmas can lead to a rapid growth (∼ 2.00 μm/min) of carbon films with their thickness of > 25 μm. The optical emission measurements show that various hydrocarbon species were formed in these depositing microplasmas due to the collisions between CH{sub 4}/C{sub 2}H{sub 2} molecules and energetic species. The microplasma-enhanced CVD technique running without the complicated fabrication processes shows its potentials for rapidly depositing the overlong carbon tubes with their inner diameters of tens of microns. - Highlights: • The microplasma device is applied for coating deposition inside hollow-core fibers. • The microplasma device results in > 25 μm-thick carbon films. • The microplasma device is simple for deposition of ultralong carbon tubes.

  11. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang

    2017-08-12

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  12. Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis

    KAUST Repository

    Ming, Fangwang; Liang, Hanfeng; Shi, Huanhuan; Mei, Gui; Xu, Xun; Wang, Zhoucheng

    2017-01-01

    In this work, we demonstrate that the electrocatalytic activity of transition metal chalcogenides can be greatly enhanced by simultaneously engineering the active sites, surface area, and conductivity. Using metal-organic frameworks-derived (Ni,Co)Se2/C hollow rhombic dodecahedra (HRD) as a demonstration, we show that the incorporation of Ni into CoSe2 could generates additional active sites, the hierarchical hollow structure promotes the electrolyte diffusion, the in-situ hybridization with C improves the conductivity. As a result, the (Ni,Co)Se2/C HRD exhibit superior performance toward the overall water-splitting electrocatalysis in 1M KOH with a cell voltage as low as 1.58V at the current density of 10mAcm−2, making the (Ni,Co)Se2/C HRD as a promising alternative to noble metal catalysts for water splitting.

  13. X-ray beam transfer between hollow fibers for long-distance transport

    International Nuclear Information System (INIS)

    Tanaka, Yoshihito; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi; Sawada, Kei; Kohmura, Yoshiki; Takahashi, Isao

    2016-01-01

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  14. X-ray beam transfer between hollow fibers for long-distance transport

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshihito, E-mail: tanaka@sci.u-hyogo.ac.jp; Matsushita, Ryuki; Shiraishi, Ryutaro; Hasegawa, Takayuki; Ishikawa, Kiyoshi [Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Sayo-gun, Hyogo 678-1297 (Japan); Sawada, Kei; Kohmura, Yoshiki [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Takahashi, Isao [Department of Physics, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 Japan (Japan)

    2016-07-27

    Fiber optics for controlling the x-ray beam trajectory has been examined at the synchrotron facility of SPring-8. Up to now, we have achieved beam deflection by several tens of milli-radian and axis shift of around 75 mm with a 1.5 m-long flexible hollow glass capillary. The achievable beam deflecting angle, axis shift, and timing delay are, in principle, proportional to the length, the square of length and the cube of length, respectively. Thus, for further applications, requiring larger beam shift and pulse delay, longer fibers are indispensable. In order to achieve long-distance transport using the fiber, we thus examined the connection transferring x-rays between fibers in an experimental hutch. The acceptance angle at the input end and the throughput efficiency of the second fiber is consistent with the consideration of the output beam divergence of the first fiber. The enhancement of the transfer efficiency is also discussed for the cases of a closer joint and the use of a refractive lens as a coupler.

  15. Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition

    NARCIS (Netherlands)

    Culfaz, P.Z.; Haddad, M.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared

  16. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts

    Directory of Open Access Journals (Sweden)

    Takashi Katagiri

    2018-03-01

    Full Text Available A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO2 measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO2 standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL light source is built using a gas cell with a hollow optical fiber for monitoring CO2 concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO2 concentration in human airways.

  17. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  18. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngso, J. K.; Lægsgaard, Jesper

    2014-01-01

    We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation...... of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined...... with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties. (C) 2014 Optical Society of America...

  19. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui

    2014-04-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  20. Design of robust hollow fiber membranes with high power density for osmotic energy production

    KAUST Repository

    Zhang, Sui; Sukitpaneenit, Panu; Chung, Neal Tai-Shung

    2014-01-01

    This study highlights the design strategy of highly asymmetric hollow fiber membranes that possess both characteristics of high flux and high mechanical strength to effectively reap the osmotic energy from seawater brine with an ultrahigh power density. An advanced co-extrusion technology was employed to fabricate the polyethersulfone (PES) hollow fiber supports with diversified structures from macrovoid to sponge-like. The microstructure of the supports is found critical for the stability and water permeability of the thin film composite (TFC) membranes. A high porosity in the porous layer is needed to reduce internal concentration polarization, while a thick and relatively dense skin layer underneath the TFC layer is required to maintain good mechanical stability and stress dissipation. The pore size of the supporting layer underneath the TFC layer must be small with a narrow pore size distribution to ensure the formation of a less-defective, highly permeable and mechanically stable TFC layer. The newly developed hollow fiber comprising high asymmetry, high porosity, and a thick skin layer with a small and narrow pore size distribution underneath the TFC layer produces a maximum power density of 24.3W/m2 at 20.0bar by using 1M NaCl as the concentrated brine and deionized (DI) water as the feed. The proposed design strategy for ultrahigh power density membranes clearly advances the osmotic energy production close to commercialization with a quite cost-effective and practicable approach. © 2013 Elsevier B.V.

  1. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  2. Polyoxadiazole hollow fibers for produced water treatment by direct contact membrane distillation

    KAUST Repository

    Xu, Jingli

    2018-01-08

    Treatment of produced water in the petroleum industry has been a challenge worldwide. In this study, we evaluated the use of direct contact membrane distillation (DCMD) for this purpose, removing oil and dissolved elements and supplying clean water from waste. We synthesized fluorinated polyoxadiazole, a highly hydrophobic polymer, to fabricate hollow fiber membranes, which were optimized and tested for simulated produced water and real produced water treatment. The process performance was investigated under different operating parameters, such as feed temperature, feed flow velocity and length of the membrane module for 4 days. The results indicate that by increasing feed temperature and feed flow rate the vapor flux increases. The flux decreased with increasing the length of the module due to the decrease of the driving force along the module. The fouling behavior, which corresponds to flux decline and cleaning efficiency of the membrane, was studied. The performance of the fabricated hollow fiber membranes was demonstrated for the treatment of produced water, complying with the industrial reuse and discharge limits.

  3. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  4. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  5. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  6. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  7. Commissioning of the first U.S. hollow fiber condensate filtration system

    International Nuclear Information System (INIS)

    Wilson, John A.; Mura, Michelle; Garcia, Susan E.; Giannelli, Joseph F.

    2008-01-01

    Exelon Corporation's Oyster Creek Generating Station, a boiling water reactor (BWR), is the first nuclear plant in the U.S. to install and operate a condensate filtration system using HFF (hollow fiber filter) technology developed in Japan. Oyster Creek is a 640 MW (electric)/1 930 MW (thermal) General Electric BWR-2 (non-jet pump plant) with cascaded heater drains. The plant began commercial operation in 1969, and is one of the two oldest operating commercial BWRs in the U.S. Both noble metal chemical addition (NMCA) and hydrogen injection are used for intergranular stress corrosion cracking (IGSCC) mitigation, and depleted zinc oxide (DZO) is injected for drywell radiation field control. The HFF filters, which were installed in preparation for the operating license renewal, were commissioned in November 2007 and are designed to treat 3 639 m 3 . h -1 (16 020 gallons per minute) using a total filtration surface area of 9 457 m 2 (101 796 ft 2 ). The particle retention rating of the hollow fibers is 0.14 μm, which is considerably smaller than the rating of 1-4 μm for filters commonly used in U.S. condensate filtration applications. System performance and monitoring results during the initial year of operation are reported, including the use of a special hollow fiber health monitoring sampling system. Feedwater and reactor water chemistry control and monitoring strategies and results are discussed, including the effects of the transition from the highest feedwater iron to among the lowest in the U.S. BWR fleet. The projected annual average feedwater iron concentration is -1 . Data on the impact of low iron operation on reactor coolant activated corrosion products and the ratio of 60 Co(soluble)/Zn(soluble), the key parameter used to suppress drywell radiation dose rates, are presented. The zinc control strategy and results are presented, including the effect of low feedwater iron on the reactor water to feedwater zinc concentration factor. The potential need and

  8. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper

    Directory of Open Access Journals (Sweden)

    Ruoyu Zhang

    2016-12-01

    Full Text Available Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10–20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm−2 at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm−2 at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.

  9. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  10. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

    Science.gov (United States)

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-09-01

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g-1 at 1 A g-1, and still keep a high value of 704 F g-1 even at 20 A g-1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg-1 at a power density of 800 W kg-1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min-1 g-1Ni for catalytic hydrolysis of NH3BH3 (AB).

  11. Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Antonio-Lopez, Jose Enrique; Van Newkirk, Amy

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers with a “negative-curvature” of the core-cladding boundary have been extensively studied over the past few years owing to their low loss and wide transmission bandwidths. The key unique feature of the HC-AR fiber is that the coupling between the core and cl...... a silica HC-AR fiber having a single ring of 7 non-touching capillaries, designed to have effectively single-mode operation and low loss from UV to near-IR....

  12. Daylight photocatalysis performance of biomorphic CeO2 hollow fibers prepared with lens cleaning paper as biotemplate

    International Nuclear Information System (INIS)

    Qian, Junchao; Chen, Feng; Wang, Fang; Zhao, Xiaobing; Chen, Zhigang

    2012-01-01

    Highlights: ► A novel, simple and eco-friendly approach for hierarchical, biomorphic CeO 2 hollow fibers with mesoporous tube walls is presented by using paper as template. ► The biomorphic CeO 2 fibers was composed of nanosheets with bimodal pore-size mesoporous distribution and exhibited high light-harvesting under sunlight irradiation. ► The CeO 2 microfibers biomimicking the natural plant structures have promising application for photodegradation of organic pollutants in water. -- Abstract: Hierarchical, biomorphic CeO 2 hollow fibers with mesoporous tube walls have been fabricated using lens cleaning paper as biotemplates. After sintered at 550 °C in air, the cellulosic fibers of paper were converted into micro-tubes composing of CeO 2 crystallites with grain size about 8 nm. The photocatalytic activity of the CeO 2 fibers was evaluated by photodegradation efficiency of methylene blue in aqueous solution under daylight irradiation. The characterized results show that the CeO 2 fibers faithfully replicated micro-fibrous structure derived from original template and possessed dramatic enhanced photocatalytic activity compared with bulk CeO 2 . This simple biotemplate method provides a cost-effective and eco-friendly route to obtain high performance photocatalysts.

  13. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    Science.gov (United States)

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime

    Science.gov (United States)

    Zhu, Chengzhang; Jiang, Zhifeng; Chen, Linlin; Qian, Kun; Xie, Jimin

    2017-03-01

    Novel hierarchical NiS2 hollow spheres modified by graphite-like carbon nitride were prepared using a facile L-cysteine-assisted solvothermal route. The NiS2/g-C3N4 composites exhibited excellent photocatalytic efficiency in rhodamine B, methyl orange and ciprofloxacin degradation as compared to single g-C3N4 and NiS2, which could be due to the synergistic effects of the unique hollow sphere-like structure, strong visible-light absorption and increased separation rate of the photoinduced electron-hole pairs at the intimate interface of heterojunctions. A suitable combination of g-C3N4 with NiS2 showed the best photocatalytic performance. In addition, an electron spin resonance and trapping experiment demonstrated that the photogenerated hydroxyl radicals and superoxide radicals were the two main photoactive species in photocatalysis. A possible photocatalytic mechanism of NiS2/g-C3N4 composites under visible light irradiation is also proposed. The strategy presented here can be extended to a general strategy for constructing 3D/2D heterostructured photocatalysts for broad applications in photocatalysis.

  15. Effect of bore fluid flow rate on formation and properties of hollow fibers

    Science.gov (United States)

    Alobaidy, Asrar A.; Sherhan, Bashir Y.; Barood, Areej D.; Alsalhy, Qusay F.

    2017-12-01

    In this work, for high performance and wide range of ultrafiltration applications, the effects of the most widely used values of internal coagulant flow rates (ICFR) (i.e., 2.6, 3.6, 4, 5, 7, 9, 11, and 13 ml/min) on the different features of the polyvinylchloride hollow fiber have been investigated. Both the idealized straight and the cylindrical pore with small effect of tortuosity were approximately obtained through the effect of ICFR. Atomic force microscope (AFM), scanning electron microscope (SEM), and ultrafiltration measurements were utilized to characterize the hollow fibers. The SEM and AFM results indicated that the cross-sectional morphology of the fibers is changed significantly with various ICFR. The structure of the inner surface was also changed from an open cellular structure to a porous structure by means of high pore density and small pore diameter. In addition, the membrane thickness was reduced by 314% with an increase in the ICFR from 2.6 to 13 ml/min. The pure water permeation flux was improved 17 times when ICFR was increased to 13 ml/min, while the BSA rejection remained within the acceptable range (from 93.4 to 90.4) when the ICFR was increased from 2.6 to 9 ml/min.

  16. Membrane distillation with porous metal hollow fibers for the concentration of thermo-sensitive solutions

    NARCIS (Netherlands)

    Shukla, Sushumna

    2014-01-01

    This thesis presents an original approach for the concentration of thermo-sensitive solutions: the Sweep Gas Membrane Distillation (SGMD) process. A new membrane contactor with metallic hollow fibers has been designed and allows the distillation process to be operational at low temperature. Heat is

  17. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  18. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  19. Method for the preparation of carbon fiber from polyolefin fiber precursor

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2017-11-28

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  20. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  1. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zeltner, R.; Russell, P. St.J. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Bykov, D. S.; Xie, S. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Euser, T. G. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  2. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  3. Maghemite nanoparticle-decorated hollow fiber electromembrane extraction combined with dispersive liquid-liquid microextraction for the determination of thymol from Carum copticum

    DEFF Research Database (Denmark)

    Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Bohlooli, Mousa

    2017-01-01

    BACKGROUND A novel technique using maghemite nanoparticle-decorated hollow fibers to assist electromembrane extraction is proposed. Electromembrane extraction combined with dispersive liquid–liquid microextraction (EME-DLLME) was applied for the extraction of thymol from Carum copticum, followed...... by gas chromatography with flame ionization detection (GC-FID). RESULTS The use of maghemite nanoparticle-decorated hollow fibers was found to improve the extraction efficiency of thymol significantly. Important operational parameters, including pH of acceptor phase, extraction time, voltage...

  4. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang; Wang, Bo; Lai, Zhiping

    2012-01-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  5. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability

    KAUST Repository

    Pan, Yichang

    2012-12-01

    Purification and recovery of hydrogen from hydrocarbons in refinery streams in the petrochemical industry is an emerging research field in the study of membrane gas separation. Hollow fiber membrane modules can be easily implemented into separation processes at the industrial scale. In this report, hollow yttria-stabilized zirconia (YSZ) fiber-supported zeolitic imidazole framework-8 (ZIF-8) membranes were successfully prepared using a mild and environmentally friendly seeded growth method. Our single-component permeation studies demonstrated that the membrane had a very high hydrogen permeance (~15×10 -7mol/m 2sPa) and an ideal selectivity of H 2/C 3H 8 of more than 1000 at room temperature. This high membrane permeability and selectivity caused serious concentration polarization in the separation of H 2/C 3H 8 mixtures, which led to almost 50% drop in both the H 2 permeance and the separation factor. Enhanced mixing on the feed side could reduce the effect of the concentration polarization. Our experimental data also indicated that the membranes had excellent reproducibility and long-term stability, indicating that the hollow fiber-supported ZIF-8 membranes developed in this study have great potential in industry-scale separation of hydrogen. © 2012 Elsevier B.V.

  6. The development of a high-throughput measurement method of octanol/water distribution coefficient based on hollow fiber membrane solvent microextraction technique.

    Science.gov (United States)

    Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin

    2014-09-15

    This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Performance and Fouling Control of Submerged Hollow Fiber (HF Systems: A Review

    Directory of Open Access Journals (Sweden)

    Ebrahim Akhondi

    2017-07-01

    Full Text Available The submerged membrane filtration concept is well-established for low-pressure microfiltration (MF and ultrafiltration (UF applications in the water industry, and has become a mainstream technology for surface-water treatment, pretreatment prior to reverse osmosis (RO, and membrane bioreactors (MBRs. Compared to submerged flat sheet (FS membranes, submerged hollow fiber (HF membranes are more common due to their advantages of higher packing density, the ability to induce movement by mechanisms such as bubbling, and the feasibility of backwashing. In view of the importance of submerged HF processes, this review aims to provide a comprehensive landscape of the current state-of-the-art systems, to serve as a guide for further improvements in submerged HF membranes and their applications. The topics covered include recent developments in submerged hollow fiber membrane systems, the challenges and developments in fouling-control methods, and treatment protocols for membrane permeability recovery. The highlighted research opportunities include optimizing the various means to manipulate the hydrodynamics for fouling mitigation, developing online monitoring devices, and extending the submerged HF concept beyond filtration.

  8. Facile synthesis of aluminum-doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolin, E-mail: liu_x_l@sina.cn [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Li, Dan; Mo, Qiaoling; Guo, Xiaoyu; Yang, Xiaoxiao [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Chen, Guoxin, E-mail: gxchen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang (China); Zhong, Shengwen [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China)

    2014-10-01

    Graphical abstract: LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes are prepared by templated transformation method using monodisperse MnCO{sub 3} microspheres as precursor. As a cathodic material for high voltage lithium ion batteries, the as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres are investigated by galvanostatic cycling (GC) approach to evaluate their electrochemical properties in the range of 2.7–4.8 V vs. Li/Li{sup +} at the current rate 1 C. - Highlights: • LNMO and LANMO hollow microspheres are synthesized by template method. • The as-synthesized hollow microspheres have particle-size of 2 μm. • The hollow structure is responsible for improved electrochemical performance. - Abstract: This paper presents the preparation of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and aluminum (Al) doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes using monodisperse MnCO{sub 3} microspheres as precursor and template, which were synthesized using MnSO{sub 4}·H{sub 2}O, NaHCO{sub 3} and ethanol in water at room temperature. XRD and morphology characterization results indicated that the as-prepared LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} were both spinel structure, and have particle sizes of 2–3 μm. The cathode electrochemical properties of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres (as 5 V cathodes) were evaluated and compared by galvanostatic cycling (GC) vs. Li/Li{sup +} at the current rate 1 C in 2.7–4.8 V. The specific initial capacities of all samples were in the range of 70–120 mA h g{sup −1}. Compared to undoped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}, Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow structures can effectively improve discharge capacity (up to 140 (±5) mA h g{sup −1}) and cycling stability (70

  9. Impact of geometrical parameters on the optical properties of negative curvature hollow-core fibers

    International Nuclear Information System (INIS)

    Alagashev, G K; Pryamikov, A D; Kosolapov, A F; Kolyadin, A N; Lukovkin, A Yu; Biriukov, A S

    2015-01-01

    We analyze the impact of geometrical parameters on such important optical characteristics of negative curvature hollow-core fibers (NCHCFs) as waveguide dispersion, waveguide losses and the structure of transmission bands. We consider both theoretically and experimentally the resonance effects and formation of band edges under bending in NCHCFs. (paper)

  10. PEBAX®/PAN Hollow Fiber Membranes for CO2/CH4 Separation

    Czech Academy of Sciences Publication Activity Database

    Esposito, E.; Clarizia, G.; Bernardo, P.; Jansen, J. C.; Sedláková, Zuzana; Izák, Pavel; Curcio, S.; de Cindio, B.; Tasselli, F.

    2015-01-01

    Roč. 94, SI (2015), s. 53-61 ISSN 0255-2701. [International Congress of Chemical and Process Engineering CHISA 2014 /21./ and Conference PRES 2014 /17./. Prague, 23.08.2014-27.08.2014] R&D Projects: GA ČR GA14-12695S Grant - others:INRP(IT) MicroPERLA:PON01_01840 Institutional support: RVO:67985858 Keywords : composite membrane * hollow fibers * CO2/CH4 separation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.154, year: 2015

  11. Molecular Gas-Filled Hollow Optical Fiber Lasers in the Near Infrared

    Science.gov (United States)

    2012-01-12

    Benabid, F., Roberts , P. J., Light, P. S., and Raymer , M. G., “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, 318...scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004). 16. F. Couny, F. Benabid, P. J. Roberts , P. S. Light, and M. G. Raymer ...Couny, F., Wang, Y. Y., Wheeler, N. V., Roberts , P. J., and Benabid, F., “Double photonic bandgap hollow-core photonic crystal fiber,” Opt

  12. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.; Adams, Ryan T.; Miller, Stephen J.; Koros, William J.

    2010-01-01

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2

  13. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  14. Toward Aerogel Electrodes of Superior Rate Performance in Supercapacitors through Engineered Hollow Nanoparticles of NiCo2O4.

    Science.gov (United States)

    Li, Jianjiang; Chen, Shuai; Zhu, Xiaoyi; She, Xilin; Liu, Tongchao; Zhang, Huawei; Komarneni, Sridhar; Yang, Dongjiang; Yao, Xiangdong

    2017-12-01

    A biomass-templated pathway is developed for scalable synthesis of NiCo 2 O 4 @carbon aerogel electrodes for supercapacitors, where NiCo 2 O 4 hollow nanoparticles with an average outer diameter of 30-40 nm are conjoined by graphitic carbon forming a 3D aerogel structure. This kind of NiCo 2 O 4 aerogel structure shows large specific surface area (167.8 m 2 g -1 ), high specific capacitance (903.2 F g -1 at a current density of 1 A g -1 ), outstanding rate performance (96.2% capacity retention from 1 to 10 A g -1 ), and excellent cycling stability (nearly without capacitance loss after 3000 cycles at 10 A g -1 ). The unique structure of the 3D hollow aerogel synergistically contributes to the high performance. For instance, the 3D interconnected porous structure of the aerogel is beneficial for electrolyte ion diffusion and for shortening the electron transport pathways, and thus can improve the rate performance. The conductive carbon joint greatly enhances the specific capacity, and the hollow structure prohibits the volume changes during the charge-discharge process to significantly improve the cycling stability. This work represents a giant step toward the preparation of high-performance commercial supercapacitors.

  15. The high surface energy of NiO {110} facets incorporated into TiO{sub 2} hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Cui, Hongzhi, E-mail: cuihongzhi1965@163.com; Song, Xiaojie; Wei, Na; Tian, Jian, E-mail: jiantian@sdust.edu.cn

    2017-02-28

    Highlights: • NiO/TiO{sub 2} hollow microspheres were fabricated by etching Ti plate. • The incorporated NiO nanoparticles exposed high surface energy {110} facets. • The p–n junction catalysts improved photoelectrochemical and photocatalytic activity. • Using this synthesis strategy, other mixed semiconducting metal oxide microspheres. - Abstract: We present a rational design for the controllable synthesis of NiO/TiO{sub 2} hollow microspheres (NTHMs) with Ti plate via a one-pot template-free synthesis strategy. Specifically, to enhance the formation of hollow microspheres, part of the titanium source is provided by the Ti plate. The hollow spherical NiO/TiO{sub 2} particles possess unique microstructural characteristics, namely, a higher specific surface area (∼65.82 m{sup 2} g{sup −1}), a larger mesoporous structure (∼7.79 nm), and hierarchical nanoarchitectures connected with mesopores within the shell (monodispersed size of ∼1 μm and shell thickness of ∼80 nm). In addition, as a cocatalyst for improved catalytic activity, the incorporated NiO nanoparticles with exposed high surface energy {110} facets displayed an outstanding performance. It has been proven that this facile nanostructure possesses remarkably high photoelectrochemical and photocatalytic activities. The main mechanism for enhancement of photocatalytic activity is attributed to the construction of p-n junctions with an inner electric field between TiO{sub 2} and NiO, which can dramatically enhance the separation efficiency of the photogenerated electron-hole pairs. This strategy could be applied to fabricate mixed metal oxide hollow microspheres toward the photoelectrochemical catalysis.

  16. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  17. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1994-01-01

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport

  18. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  19. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  20. Modeling of Hollow-Fiber Membrane System During Ultrafiltration

    International Nuclear Information System (INIS)

    EI-Bialy, S.H.

    2004-01-01

    The present study aims to evaluate the performance of hollow fiber membrane module during ultrafiltration of aqueous solutions. The model is represented by a set of differential equations for permeate and residue pressure drop and volumetric flow rates in the axial direction, beside the principle equations of both solvent and solute fluxes through the membrane, while osmotic pressure was neglected in model equations. The shell and tube module type was considered where feed pass in the shell and permeate in the bore side. Tortousily factor of membrane pores in addition to concentration polarization modulus were taken into account in calculations. The model was solved numerically with the help of suitable program in both co current and countercurrent flow pattern and comparison of results were carried out

  1. Clarification of Orange Press Liquors by PVDF Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2016-01-01

    Full Text Available Press liquors are typical by-products of the citrus juice processing characterized by a high content of organic compounds and associated problems of environmental impact, which imply high treatment costs. However, these wastes contain a great number of health promoting substances, including fibers, carotenoids and phenolic compounds (mainly flavonoids, whose recovery against waste-destruction technologies is very attractive for new business opportunities. In this work, the clarification of orange press liquor by using microfiltration (MF membranes is studied as a preliminary step to obtain a permeate stream enriched in antioxidant compounds which can be further processed to produce extracts of nutraceutical and/or pharmaceutical interest. MF poly(vinylidene fluoride (PVDF hollow fibers were prepared by the dry/wet spinning technique. A series of fibers was produced from the same polymeric dope, in order to investigate the effect of selected spinning parameters, i.e., bore fluid composition and flowrate, on their properties. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized for their mechanical properties, porosity, bubble point, pore size distribution and pure water permeability (PWP. Some of the produced fibers exhibited high permeability (pure water permeability ~530 L/m2·h·bar, coupled to good mechanical resistance and pore size in the range of MF membranes. These fibers were selected and used for the clarification of press liquor from orange peel processing. In optimized operating conditions, the selected fibers produced steady-state fluxes of about 41 L/m2·h with rejections towards polyphenols and total antioxidant activity of 4.1% and 1.4%, respectively.

  2. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    Science.gov (United States)

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  3. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    Directory of Open Access Journals (Sweden)

    Takuro Iwata

    2016-12-01

    Full Text Available A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  4. The evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water matrices

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data to support the evaluation of hollow-fiber ultrafiltration and celite concentration of enteroviruses, adenoviruses and bacteriophage from different water...

  5. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Daylight photocatalysis performance of biomorphic CeO{sub 2} hollow fibers prepared with lens cleaning paper as biotemplate

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Junchao; Chen, Feng [Department of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang (China); Wang, Fang; Zhao, Xiaobing [Department of Materials Science and Engineering, Changzhou University, 213164 Changzhou (China); Chen, Zhigang, E-mail: ziyou1900@gmail.com [Department of Material Science and Engineering, Jiangsu University, 212013 Zhenjiang (China); Jiangsu Key Laboratory for Environment Functional Materials, 215009 Suzhou University of Science and Technology, Suzhou (China); State Key laboratory of Crystal Material, Shandong University, 250100 Jinan (China)

    2012-08-15

    Highlights: ► A novel, simple and eco-friendly approach for hierarchical, biomorphic CeO{sub 2} hollow fibers with mesoporous tube walls is presented by using paper as template. ► The biomorphic CeO{sub 2} fibers was composed of nanosheets with bimodal pore-size mesoporous distribution and exhibited high light-harvesting under sunlight irradiation. ► The CeO{sub 2} microfibers biomimicking the natural plant structures have promising application for photodegradation of organic pollutants in water. -- Abstract: Hierarchical, biomorphic CeO{sub 2} hollow fibers with mesoporous tube walls have been fabricated using lens cleaning paper as biotemplates. After sintered at 550 °C in air, the cellulosic fibers of paper were converted into micro-tubes composing of CeO{sub 2} crystallites with grain size about 8 nm. The photocatalytic activity of the CeO{sub 2} fibers was evaluated by photodegradation efficiency of methylene blue in aqueous solution under daylight irradiation. The characterized results show that the CeO{sub 2} fibers faithfully replicated micro-fibrous structure derived from original template and possessed dramatic enhanced photocatalytic activity compared with bulk CeO{sub 2}. This simple biotemplate method provides a cost-effective and eco-friendly route to obtain high performance photocatalysts.

  7. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors

    Science.gov (United States)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li

    2017-09-01

    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  8. Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery

    NARCIS (Netherlands)

    Salamon, David; Da Silva Teixeira, Sandra; Dutczak, S.M.; Stamatialis, Dimitrios

    2014-01-01

    Nowadays, diffusion through scaffold and tissue usually limits transport, and forms potentially hypoxic regions. Several methods are used for preparation of 3D hydroxyapatite scaffolds, however, production of a scaffold including porous hollow fibers for nutrition delivery is difficult and

  9. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    Science.gov (United States)

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  10. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu; Li, Ming; Ren, Zhaohui; Zhu, Yihan; Han, Gaorong

    2017-01-01

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers

  11. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids.

    Science.gov (United States)

    Esrafili, Ali; Yamini, Yadollah; Shariati, Shahab

    2007-12-05

    The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 microL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 microg L(-1) with reasonable linearity (R2>0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 microg L(-1) (based on S/N=3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.

  12. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  13. Micromechanical Analysis of Crack Closure Mechanism for Intelligent Material Containing TiNi Fibers

    Science.gov (United States)

    Araki, Shigetoshi; Ono, Hiroyuki; Saito, Kenji

    In our previous study, the micromechanical modeling of an intelligent material containing TiNi fibers was performed and the stress intensity factor KI at the tip of the crack in the material was expressed in terms of the magnitude of the shape memory shrinkage of the fibers and the thermal expansion strain in the material. In this study, the value of KI at the tip of the crack in the TiNi/epoxy material is calculated numerically by using analytical expressions obtained in our first report. As a result, we find that the KI value decreases with increasing shrink strain of the fibers, and this tendency agrees with that of the experimental result obtained by Shimamoto etal.(Trans. Jpn. Soc. Mech. Eng., Vol. 65, No. 634 (1999), pp. 1282-1286). Moreover, there exists an optimal value of the shrink strain of the fibers to make the KI value zero. The change in KI with temperature during the heating process from the reference temperature to the inverse austenitic finishing temperature of TiNi fiber is also consistent with the experimental result. These results can be explained by the changes in the shrink strain, the thermal expansion strain, and the elastic moduli of TiNi fiber with temperature. These results may be useful in designing intelligent materials containing TiNi fibers from the viewpoint of crack closure.

  14. Structural Contraction of Zeolitic Imidazolate Frameworks: Membrane Application on Porous Metallic Hollow Fibers for Gas Separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Etxeberría-Benavides, Miren; David, Oana; Téllez, Carlos; Coronas, Joaquín

    2017-06-21

    Positive thermal expansion coefficients (TECs) of 52 × 10 -6 and 35 × 10 -6 K -1 were experimentally calculated in the -116 to 250 °C range for the III-phases of zeolitic imidazolate frameworks (ZIF) ZIF-9(Co) and ZIF-7(Zn), respectively, by means of the unit cell dimensions and volume of the materials in the monoclinic crystal system calculated from the XRD patterns. The unit cell dimensions and volume showed a significant expansion phenomenon as the temperature increased, by as much as 5.5% for ZIF-9-III in the studied range. To exploit the advantages of such thermal behavior, a new approach to the fabrication of ZIF-9-III membranes on thin, flexible, and highly porous nickel hollow fiber (Ni HF) supports by a versatile and easy-controllable microfluidic setup is herein reported. These Ni HF supports result from the sintering of 25-μm Ni particles and display very positive mechanical properties and bending resistance. As compared to the traditional polymer-based HF membranes, the ZIF metal-supported membrane exhibited good durability and robustness throughout its operation in a wide temperature range and after heating and cooling cycles. These benefits derive from (1) the pore-plugging membrane configuration resulting from the high porosity of the support and (2) the similarity between the TECs of the ZIF and the metallic support, both positive, which enhances their mutual compatibility. An increase in the H 2 /CO 2 separation selectivity at low temperatures (as high as 22.2 at -10 °C, along with 102 GPU permeance of H 2 ) was achieved, in agreement with the structural variations observed in the ZIF material.

  15. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    Science.gov (United States)

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  16. Fabrication of novel micro-nano carbonous composites based on self-made hollow activated carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kong Yuxia; Qiu Tingting [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Qiu Jun, E-mail: qiujun@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials of Education of Ministry, Shanghai 201804 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Hollow pipe and porous HACF with solid carbon net framework structure were successfully prepared by template method. Black-Right-Pointing-Pointer CNTs were grown successfully on the self-made HACF substrate by CVD techniques. Black-Right-Pointing-Pointer A novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. Black-Right-Pointing-Pointer The formation mechanism of micro phase HACF and nano phase CNTs were respectively discussed. - Abstract: The hollow activated carbon fibers (HACF) were prepared by using commercial polypropylene hollow fiber (PPHF) as the template, and phenol-formaldehyde resin (PF) as carbon precursors. Final HACF was formed through the thermal decomposition and carbonization of PF at 700 Degree-Sign C under the nitrogen atmosphere, and activation at 800 Degree-Sign C with carbon dioxide as the activating agent, consecutively. Then, carbon nanotubes (CNTs) were grown by chemical vapor deposition (CVD) techniques using the as-grown porous HACF as substrate. The growth process was achieved by pyrolyzing ethanol steam at 700 Degree-Sign C using nickel as catalyst. Finally, CNTs was grown successfully on the substrate, and a novel tree-like micro-nano carbonous structure CNTs/HACF was fabricated. The as-grown HACF and micro-nano CNTs/HACF were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG), respectively. Moreover, the formation mechanisms were also discussed.

  17. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  18. Multiwall carbon nanotube- zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples.

    Science.gov (United States)

    Yazdi, Mahnaz Nozohour; Yamini, Yadollah; Asiabi, Hamid

    2018-06-15

    The purpose of this study was to evaluate the application of hollow fiber solid-phase microextraction (HF-SPME) followed by HPLC-UV to determine the ultra-trace amounts of polycyclic aromatic hydrocarbons (PAHs) as model analytes in complex coffee and tea samples. HF-SPME can be effectively used as an alternative to the direct immersion SPME (DI-SPME) method in complex matrices. The DI-SPME method suffers from serious limitation in dirty and complicated matrices with low sample clean-up, while the HF-SPME method has high clean-up and selectivity due to the high porosity of hollow fiber that can pick out analyte from complicated matrices. As a hollow fiber sorbent, a novel multiwall carbon nanotube/zirconium oxide nanocomposite (MWCNT/ZrO 2 ) was fabricated. The excellent adsorption of PAHs on the sorbent was attributed to the dominant roles of π-π stacking interaction and hydrophobic interaction. Under the optimized extraction conditions, the wide linear range of 0.1-200 μg L -1 with coefficients of determination better than 0.998 and low detection limits of 0.033-0.16 μg L -1 with satisfactory precision (RSD tea samples were in the range of 92.0-106.0%. Compared to other methods, MWCNT/ZrO 2 hollow fiber solid phase microextraction demonstrated a good capability for determination of PAHs in complex coffee and tea samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Impact of operation conditions, foulant adsorption, and chemical cleaning on the nanomechanical properties of ultrafiltraion hollow fiber membranes

    KAUST Repository

    Gutierrez, Leonardo; Keucken, Alexander; Aubry, Cyril; Zaouri, Noor A.; Teychene, Benoit; Croue, Jean-Philippe

    2018-01-01

    This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was used to distinguish between

  20. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    Science.gov (United States)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  1. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR.

    Science.gov (United States)

    Wheeler, N V; Bradley, T D; Hayes, J R; Gouveia, M A; Liang, S; Chen, Y; Sandoghchi, S R; Abokhamis Mousavi, S M; Poletti, F; Petrovich, M N; Richardson, D J

    2017-07-01

    We report the fabrication and characterization of Kagome hollow-core antiresonant fibers, which combine low attenuation (as measured at ∼30  cm bend diameter) with a wide operating bandwidth and high modal purity. Record low attenuation values are reported: 12.3 dB/km, 13.9 dB/km, and 9.6 dB/km in three different fibers optimized for operation at 1 μm, 1.55 μm, and 2.5 μm, respectively. These fibers are excellent candidates for ultra-high power delivery at key laser wavelengths including 1.064 μm and 2.94 μm, as well as for applications in gas-based sensing and nonlinear optics.

  2. Osmotic Power Generation by Inner Selective Hollow Fiber Membranes: An investigation of thermodynamics, mass transfer, and module scale modelling

    KAUST Repository

    Xiong, Jun Ying

    2016-12-29

    A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.

  3. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang; Sun, Shipeng; Zhang, Sui; Chung, Neal Tai-Shung

    2014-01-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  4. Pressure retarded osmosis dual-layer hollow fiber membranes developed by co-casting method and ammonium persulfate (APS) treatment

    KAUST Repository

    Fu, Fengjiang

    2014-11-01

    Delamination and low water permeability are two issues limiting the applications of dual-layer hollow fiber membranes in the pressure retarded osmosis (PRO) process. In this work, we first developed a universal co-casting method that is able to co-cast highly viscous dope solutions to form homogeneous dual-layer flat sheet membranes. By employing this method prior to the tedious dual-layer hollow fiber spinning process, both time and material consumptions are significantly saved. The addition of polyvinylpyrrolidone (PVP) is found to eliminate delamination at the sacrifice of water flux. A new post-treatment method that involves flowing ammonium persulfate (APS) solution and DI water counter-currently is potentially to remove the PVP molecules entrapped in the substrate while keeps the integrity of the interface. As the APS concentration increases, the water flux in the PRO process is increased while the salt leakage is slightly decreased. With the optimized APS concentration of 5wt%, the post-treated membrane shows a maximum power density of 5.10W/m2 at a hydraulic pressure of 15.0bar when 1M NaCl and 10mM NaCl were used as the draw and feed solutions, respectively. To the extent of our knowledge, this is the best phase inversion dual-layer hollow fiber membrane with an outer selective layer for osmotic power generation. © 2014 Elsevier B.V.

  5. EFFECTS OF PRESSURE AND TEMPERATURE ON ULTRAFILTRATION HOLLOW FIBER MEMBRANE IN MOBILE WATER TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    ROSDIANAH RAMLI

    2016-07-01

    Full Text Available In Sabah, Malaysia, there are still high probability of limited clean water access in rural area and disaster site. Few villages had been affected in Pitas due to improper road access, thus building a water treatment plant there might not be feasible. Recently, Kundasang area had been affected by earthquake that caused water disruption to its people due to the damage in the underground pipes and water tanks. It has been known that membrane technology brought ease in making mobile water treatment system that can be transported to rural or disaster area. In this study, hollow fiber membrane used in a mobile water treatment system due to compact and ease setup. Hollow fiber membrane was fabricated into small module at 15 and 30 fibers to suit the mobile water treatment system for potable water production of at least 80 L/day per operation. The effects of transmembrane pressure (TMP and feed water temperature were investigated. It was found that permeate flux increases by more than 96% for both 15 and 30 fiber bundles with increasing pressure in the range of 0.25 to 3.0 bar but dropped when the pressure reached maximum. Lower temperature of 17 to 18˚C increase the water viscosity by 15% from normal temperature of water at 24˚C, making the permeate flux decreases. The fabricated modules effectively removed 96% turbidity of the surface water sample tested.

  6. Novel hollow fiber compressor for high power, multi-mJ ultrafast lasers

    International Nuclear Information System (INIS)

    Nagy, T.; Simon, P.; Schweinberger, W.; Sommer, A.; Schultze, M.; Kienberger, R.; Krausz, F.

    2010-01-01

    Complete text of publication follows. The current trends in ultrafast laser development include, besides the reduction of the pulse duration, also the up-scaling of the pulse energy and the increase of the repetition rate. Recently, multi-mJ, multi-kHz lasers delivering sub-30 fs pulses have become available. The compression of the output pulses of such lasers to sub-5 fs duration is a challenging task. In order to maintain good temporal contrast and beam profile, the preferred way for spectral broadening is to use noble-gas-filled hollow fibers. For launching multi-mJ pulses in the waveguide, its inner diameter has to be large in order to keep the intensity at low levels so that the ionization losses are still tolerable. For optimal in-coupling the differential pressure scheme is very favourable, which, however requires longer waveguide lengths to compensate for the reduced effective interaction length caused by the pressure gradient. Recently, a novel hollow fiber construction has been developed comprising a waveguide formed by a stretched flexible capillary tube. This special construction resolves the usual strong limitation of the length of the waveguide, provides excellent straightness, and inherently supports the differential pressure scheme. The only drawback of the flexible fiber unit to date was its susceptibility to thermal damage in case of high average power input beams. To solve this problem we present a novel composite fiber unit, which consists of a thick-walled taper followed by a long flexible fiber. This construction combines the advantages of both types: the high resistibility of the taper and the free length-scalability of a flexible fiber. In order to demonstrate the potential of the new fiber design, a 2 m long composite fiber with an inner diameter of 320 μm was placed at the output of a CPA Ti:Sa laser system comprising an oscillator, a grating-prism (grism) stretcher, two multi-pass amplifier stages and a compressor combining bulk glass

  7. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  8. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie; Labreche, Ying; Lively, Ryan P.; Lee, Jong Suk; Jones, Christopher W.; Koros, William J.

    2014-01-01

    -jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly

  9. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    Science.gov (United States)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  10. Preparation of hollow microspheres of Ce{sup 3+} doped NiCo ferrite with high microwave absorbing performance

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hong-zhen, E-mail: duanhz2000@163.com; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-15

    Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 µm and the particle size of the Ni{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was −18.8 dB at 5500 MHz. - Highlights: • Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method. • The influence of rare earth Ce{sup 3+} on the magnetic and absorbing properties of sample was studied. • When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively.

  11. Response surface methodology to evaluation the recovery of amylases by hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    João Baptista Severo Júnior

    2007-07-01

    Full Text Available This work aimed to study the pH and the transmembrane pressure effects during the recovery of alpha and beta amylases enzymes from corn malt (Zea mays by hollow fiber membrane. The optimal condition was obtained for a statistical model, established by response surface methodology (RSM. The response surface analysis showed that the best operation condition for amylolitics enzymes recovery by hollow fiber membrane was 0.05 bar and pH 5.00, while the enzymes were purified about of 26 times.Este trabalho objetivou estudar o efeito do pH e da pressão trans-membrana durante a recuperação das enzimas alfa e beta amilases do malte de milho (Zea mays por membranas de fibras ocas, a obtenção das condições ótimas foi feita por um modelo estatístico, estabelecido pela metodologia de superfície de resposta (RSM. A análise da superfície de resposta mostrou que as melhores condições operacionais para a recuperação das enzimas amiloliticas por membranas de fibras ocas foi 0,05 bar e pH 5,00; onde as enzimas foram purificadas cerca de 26 vezes.

  12. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  13. Numerical Study on Flow Characteristics of Hollow Fiber Membrane Module for Water Recovery Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Cheol; Shin, Weon Gyu [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Park, Hyun Seol; Lee, Hyung Keun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2017-08-15

    The purpose of this study is to analyze the flow characteristics when a staggered hollow fiber membrane module is modeled as a porous medium. The pressure-velocity equation was used for modeling the porous medium, using pressure drop data. In terms of flow characteristics, we compared the case of the 'porous medium' when the membrane module was modeled as a porous medium with the case of the 'membrane module' when considering the original shape of the membrane module. The difference in pressure drop between the 'porous medium' and 'membrane module' was less than 0.6%. However, the maximum flow velocity and mean turbulent kinetic energy of the 'porous medium' were 2.5 and 95 times larger than those of the 'membrane module,' respectively. Our results indicate that modeling the hollow fiber module as a porous medium is useful for predicting pressure drop, but not sufficient for predicting the maximum flow velocity and mean turbulent kinetic energy.

  14. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  15. Reduction of the barium concentration presents in liquid effluents by mean of non-dispersive extraction in hollow fiber modules

    International Nuclear Information System (INIS)

    Duperle Yaruro, Gladys; Pena, Dario Yesid; Escalante Hernandez, Humberto

    2008-01-01

    This work has been focused on the study of the viability of barium removal, present in a waste liquid phase, by means of non-dispersive extraction (NDE) in hollow fiber modules. An organic solution based on DEPHA (Bis-2-ethylhexyl phosphate) 30% (v/v), isopropilic alcohol 30% (v/v) and kerosene is used as selective extraction medium. For the extraction process was made a contactor with five hollow microporous propilenic fibers. A solution contained 100 ppm of BaCl 2 H 2 O, level concentration very equal as generated on the petroleum industrial wastes, is used as liquid phase. a efficiency of 95,25% is obtained when the NDE take place at pH = 9, and them 9 hours of process

  16. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  17. Spinning process variables and polymer solution effects in the die-swell phenomenon during hollow fiber membranes formation

    Directory of Open Access Journals (Sweden)

    Pereira C.C.

    2000-01-01

    Full Text Available During hollow fiber spinning many variables are involved whose effects are still not completely clear. However, its understanding is of great interest because the control of these variables may originate membranes with the desired morphologies and physical properties. In this work, the phase inversion process induced by the immersion precipitation technique was applied to prepare hollow fibers membranes. It was verified that some of the variables involved, can promote a visco-elastic polymer solution expansion, called die-swell phenomenon, which is undesired since it may lead to low reproducibility of the permeation properties. The effects of the distance between spinneret and precipitation bath, the bore liquid composition, and the polymer solution composition were analyzed and discussed in order to avoid this phenomenon. According to the results, it was verified that the parameters investigated might promote a delay precipitation, which restrained the visco-elastic expansion.

  18. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  19. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  20. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering.

    Science.gov (United States)

    Mohebbi-Kalhori, Davod; Behzadmehr, Amin; Doillon, Charles J; Hadjizadeh, Afra

    2012-09-01

    The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.

  1. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  2. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    Science.gov (United States)

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dali [Los Alamos National Laboratory; Orler, Bruce [Los Alamos National Laboratory; Tornga, Stephanie [Los Alamos National Laboratory; Welch, Cindy [Los Alamos National Laboratory

    2011-01-26

    Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr and reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study

  4. Analysis of aromatic amines in water samples by liquid-liquid-liquid microextraction with hollow fibers and high-performance liquid chromatography.

    Science.gov (United States)

    Zhao, Limian; Zhu, Lingyan; Lee, Hian Kee

    2002-07-19

    Liquid-liquid-liquid microextraction (LLLME) with hollow fibers in high-performance liquid chromatography (HPLC) has been applied as a rapid and sensitive quantitative method for the detection of four aromatic amines (3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline) in environmental water samples. The preconcentration procedure was induced by the pH difference inside and outside the hollow fiber. The target compounds were extracted from 4-ml aqueous sample (donor solution, pH approximately 13) through a microfilm of organic solvent (di-n-hexyl ether), immobilized in the pores of a hollow fiber (1.5 cm length x 0.6 mm I.D.), and finally into 4 microl of acid acceptor solution inside the fiber. After a prescribed period of time, the acceptor solution inside the fiber was withdrawn into the microsyringe and directly injected into the HPLC system for analysis. Factors relevant to the extraction procedure were studied. Up to 500-fold enrichment of analytes could be obtained under the optimized conditions (donor solution: 0.1 M sodium hydroxide solution with 20% sodium chloride and 2% acetone; organic phase: di-n-hexyl ether; acceptor solution: 0.5 M hydrochloric acid and 500 mM 18-crown-6 ether; extraction time of 30 min; stirring at 1,000 rev./min). The procedure also served as a sample clean-up step. The influence of humic acid on the extraction efficiency was also investigated, and more than 85% relative recoveries of the analytes at two different concentrations (20 and 100 microg/l) were achieved at various concentration of humic acid. This technique is a low cost, simple and fast approach to the analysis of polar compounds in aqueous samples.

  5. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    Science.gov (United States)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  6. The Permeation Property of Hollow Fiber Membrane in Environmental Monitoring of Noble Gases%中空纤维膜在环境惰性气体取样中的渗透性能

    Institute of Scientific and Technical Information of China (English)

    陆小军; 张艾明; 李园; 马雄楠; 张勇

    2013-01-01

    Two kinds of domestic commercial hollow fiber membrane materials were used to study the separation performance of the major components of the air including krypton .The result indicates that a polyimide hollow fiber membrane separation performance superior to the polysulfone hollow fiber membrane and can be used as an ideal material of hollow fiber rich krypton membrane .%研究了同温同压下,两种国产商业用中空纤维膜材料对空气各主要组成成分及氪的分离浓集性能,得到聚酰亚胺中空纤维膜选择分离性能优于聚砜中空纤维膜,可用作中空纤维富氪膜材料的结论。

  7. The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics

    Directory of Open Access Journals (Sweden)

    Jing Han

    2016-01-01

    Full Text Available In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 °C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.

  8. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  9. Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic liquid as the extractant

    International Nuclear Information System (INIS)

    Chen, Hui; Wang, Yun; Hu, Yutao; Ni, Liang; Liu, Yingying; Kang, Wenbing; Liu, Yan; Han, Juan

    2014-01-01

    A method is presented for hollow fiber liquid-phase microextraction (HF-LPME) of cadmium(II), which is chelated with 1-(2-pyridylazo)-2-naphthol (PAN) to obtain a hydrophobic complex which then is extracted into a polypropylene hollow fiber containing an ionic liquid in its pores which acts as the membrane phase. EDTA is then injected into the lumen of the membrane as an acceptor phase to trap the analyte. The extraction time (20 min), agitation (400 rpm at 25 °C), pH value (10.0), and the concentrations of PAN (2.5 ng mL −1 ) and EDTA (250 ng mL −1 ) were optimized. With a sample volume of 50 mL and a stripping volume of 15 μL, the enrichment factor is 162. Cadmium(II) was then quantified by graphite furnace AAS. The limit of detection is 0.12 pg mL −1 , the relative standard deviation is 5.2 %, and the linear working range extends from 4 to 45 pg mL −1 . The method was successfully applied to the determination of Cd(II) in environmental and food samples. (author)

  10. Development of a High Performance PES Ultrafiltration Hollow Fiber Membrane for Oily Wastewater Treatment Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Noor Adila Aluwi Shakir

    2015-12-01

    Full Text Available This study attempts to optimize the spinning process used for fabricating hollow fiber membranes using the response surface methodology (RSM. The spinning factors considered for the experimental design are the dope extrusion rate (DER, air gap length (AGL, coagulation bath temperature (CBT, bore fluid ratio (BFR, and post-treatment time (PT whilst the response investigated is rejection. The optimal spinning conditions promising the high rejection performance of polyethersulfone (PES ultrafiltration hollow fiber membranes for oily wastewater treatment are at the dope extrusion rate of 2.13 cm3/min, air gap length of 0 cm, coagulation bath temperature of 30 °C, and bore fluid ratio (NMP/H2O of 0.01/99.99 wt %. This study will ultimately enable the membrane fabricators to produce high-performance membranes that contribute towards the availability of a more sustainable water supply system.

  11. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong; Su, Jincai; Fu, Feng-Jiang; Mi, Baoxia; Chung, Neal Tai-Shung

    2013-01-01

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI

  12. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  13. Steady-state coupled transport of HNO3 through a hollow-fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Noble, R.D.; Danesi, P.R.

    1987-01-01

    Nitric acid removal from an aqueous stream was accomplished by continuously passing the fluid through a hollow fiber supported liquid membrane (SLM). The nitric acid was extracted through the membrane wall by coupled transport. The system was modeled as a series of (SLM)-continuous stirred tank reactor (CSTR) pairs. An approximate technique was used to predict the steady state nitric acid concentration in the system. The comparison with experimental data was very good

  14. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  15. Exploring the effect of nested capillaries on core-cladding mode resonances in hollow-core antiresonant fibers

    Science.gov (United States)

    Provino, Laurent; Taunay, Thierry

    2018-02-01

    Optimal suppression of higher-order modes (HOMs) in hollow-core antiresonant fibers comprising a single ring of thin-walled capillaries was previously studied, and can be achieved when the condition on the capillary-tocore diameter ratio is satisfied (d/D ≍ 0.68). Here we report on the conditions for maximizing the leakage losses of HOMs in hollow-core nested antiresonant node-less fibers, while preserving low confinement loss for the fundamental mode. Using an analytical model based on coupled capillary waveguides, as well as full-vector finite element modeling, we show that optimal d/D value leading to high leakage losses of HOMs, is strongly correlated to the size of nested capillaries. We also show that extremely high value of degree of HOM suppression (˜1200) at the resonant coupling is almost unchanged on a wide range of nested capillary diameter dN ested values. These results thus suggest the possibility of designing antiresonant fibers with nested elements, which show optimal guiding performances in terms of the HOM loss compared to that of the fundamental mode, for clearly defined paired values of the ratios dN ested/d and d/D. These can also tend towards a single-mode behavior only when the dimensionless parameter dN ested/d is less than 0.30, with identical wall thicknesses for all of the capillaries.

  16. Semi-analytical model for hollow-core anti-resonant fibers

    Directory of Open Access Journals (Sweden)

    Wei eDing

    2015-03-01

    Full Text Available We detailedly describe a recently-developed semi-analytical method to quantitatively calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs. Formation of equiphase interface at fiber’s outermost boundary and outward light emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis of this method. Our semi-analytical calculation results agree well with those of precise simulations and clarify the light leakage dependences on azimuthal angle, geometrical shape and polarization. Using this method, we show investigations on HC-ARFs having various core shapes (e.g. polygon, hypocycloid with single- and multi-layered core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical method provides clear physical insights into the light guidance in ARF and can play as a fast and useful design aid for better ARFs.

  17. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  18. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes

    NARCIS (Netherlands)

    Visser, Tymen; Koops, G.H.; Wessling, Matthias

    2005-01-01

    The paper describes the influence of a varying feed composition of CO2/CH4 and CO2/N2 mixtures on the gas separation performance of integrally skinned asymmetric PES/PI hollow fibers with an effective skin thickness of 0.27 ¿m. Normally, thin membrane structures (<3 ¿m) show accelerated

  19. Guidance and control of MIR TDL radiation via flexible hollow metallic rectangular pipes and fibers for possible LHS and other optical system compaction and integration

    Science.gov (United States)

    Yu, C.

    1983-01-01

    Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.

  20. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  1. Foulant analysis of hollow fine fiber (HFF) membranes in Red Sea SWRO plants using membrane punch autopsy (MPA)

    KAUST Repository

    Green, Troy N.

    2017-06-12

    Membrane punch autopsy (MPA) is a procedure for quantitative foulant analysis of hollow fine fiber (HFF) permeators. In the past, quantitative autopsies of membranes were restricted to spiral wound. This procedure was developed at SWCC laboratories and tested on permeators of two commercial Red Sea reverse osmosis plants. For membrane autopsies, stainless steel hollow bore picks were penetrated to membrane cores and fibers extracted for foulant analysis. Quantitative analysis of extracted materials contained inorganic and organic foulants including bacteria. Fourier transform infrared spectroscopy analysis confirmed the presence of organic fouling functional groups and scanning electron microscopy with energy dispersive X-ray spectroscopy in the presence of diatoms and silica most likely not from particulate sand. API analysis revealed the presence of Shewanella and two Vibrio microbial species confirmed by 16S rDNA sequence library. It was observed that fouling content of HFF cellulose triacetate (CTA) membranes were more than 800 times than polyamide spiral wound membranes.

  2. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Directory of Open Access Journals (Sweden)

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  3. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  4. High-throughput hydrolysis of starch during permeation across {alpha}-amylase-immobilized porous hollow-fiber membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi E-mail: marukyo@xtal.tf.chiba-u.ac.jp; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of {alpha}-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An {alpha}-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. {alpha}-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h{sup -1} for the {alpha}-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the {alpha}-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h{sup -1}; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the {alpha}-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the {alpha}-amylase-immobilized EA fiber.

  5. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    Science.gov (United States)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-02-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow, whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  6. High-throughput hydrolysis of starch during permeation across α-amylase-immobilized porous hollow-fiber membranes

    International Nuclear Information System (INIS)

    Miura, Suguru; Kubota, Noboru; Kawakita, Hidetaka; Saito, Kyoichi; Sugita, Kazuyuki; Watanabe, Kohei; Sugo, Takanobu

    2002-01-01

    Two kinds of supporting porous membranes, ethanolamine (EA) and phenol (Ph) fibers, for immobilization of α-amylase were prepared by radiation-induced graft polymerization of an epoxy-group-containing monomer, glycidyl methacrylate, onto a porous hollow-fiber membrane, and subsequent ring-opening with EA and Ph, respectively. An α-amylase solution was forced to permeate radially outward through the pores of the EA and Ph fibers. α-Amylase was captured at a density of 0.15 and 6.6 g/L of the membrane by the graft chain containing 2-hydroxyethylamino and phenyl groups, respectively. A permeation pressure of 0.10 MPa provided a space velocity of 780 and 1500 h -1 for the α-amylase-immobilized EA and Ph fibers, respectively. Quantitative hydrolysis of starch during permeation of a 20 g/L starch solution in the buffer across the α-amylase-immobilized Ph fiber was attained up to a space velocity of about 2000 h -1 ; this was achieved because of negligible diffusional mass-transfer resistance of the starch to the α-amylase due to convective flow/ whereas an enzyme reaction-controlled system was observed for the α-amylase-immobilized EA fiber.

  7. Hollow Fiber Supported Liquid Membrane Extraction Combined with HPLC-UV for Simultaneous Preconcentration and Determination of Urinary Hippuric Acid and Mandelic Acid

    Directory of Open Access Journals (Sweden)

    Abdulrahman Bahrami

    2017-02-01

    Full Text Available This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD (% values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens.

  8. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna; Werner, Craig M.; Jimenez Sandoval, Rodrigo J.; Chen, Wei; Jeon, Sungil; Logan, Bruce E.; Lai, Zhiping; Amy, Gary L.; Saikaly, Pascal

    2014-01-01

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  9. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions

    KAUST Repository

    Katuri, Krishna

    2014-11-04

    A new anaerobic treatment system that combined a microbial electrolysis cell (MEC) with membrane filtration using electrically conductive, porous, nickel-based hollow-fiber membranes (Ni-HFMs) was developed to treat low organic strength solution and recover energy in the form of biogas. This new system is called an anaerobic electrochemical membrane bioreactor (AnEMBR). The Ni-HFM served the dual function as the cathode for hydrogen evolution reaction (HER) and the membrane for filtration of the effluent. The AnEMBR system was operated for 70 days with synthetic acetate solution having a chemical oxygen demand (COD) of 320 mg/L. Removal of COD was >95% at all applied voltages tested. Up to 71% of the substrate energy was recovered at an applied voltage of 0.7 V as methane rich biogas (83% CH4; < 1% H2) due to biological conversion of the hydrogen evolved at the cathode to methane. A combination of factors (hydrogen bubble formation, low cathode potential and localized high pH at the cathode surface) contributed to reduced membrane fouling in the AnEMBR compared to the control reactor (open circuit voltage). The net energy required to operate the AnEMBR system at an applied voltage of 0.7 V was significantly less (0.27 kWh/m3) than that typically needed for wastewater treatment using aerobic membrane bioreactors (1-2 kWh/m3).

  10. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  11. Development of Hollow-Fiber Liquid-Phase Microextraction Method for Determination of Urinary -Muconic Acid as a Biomarker of Benzene Exposure

    Directory of Open Access Journals (Sweden)

    Farhad Ghamari

    2016-01-01

    Full Text Available For the first time, hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography-ultraviolet was used to extract trans, trans -muconic acid, in urine samples of workers who had been exposed to benzene. The parameters affecting the metabolite extraction were optimized as follows: the volume of sample solution was 11 mL with pH 2, liquid membrane containing dihexyl ether as the supporter, 15% (w/v of trioctylphosphine oxide as the carrier, the time of extraction was 120 minutes, and stirring rate was 500 rpm. Organic phase impregnated in the pores of a hollow fiber was extracted into 24 μL solution of 0.05 mol L −1 Na 2 CO 3 located inside the lumen of the fiber. Under optimized conditions, a high enrichment factor of 153-182 folds, relative recovery of 83%-92%, and detection limit of 0.001 μg mL −1 were obtained. The method was successfully applied to the analysis of ttMA in real urine samples.

  12. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  13. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  14. Extraction of zirconium from simulated acidic nitrate waste using liquid membrane in hollow fiber contactor

    International Nuclear Information System (INIS)

    Pandey, G.; Chinchale, R.; Renjith, A.U.; Dixit, S.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2015-01-01

    The acidic waste raffinate stream of zirconium (Zr) purification plant contains about 2 gpl of Zr in about 2M free nitric acid. TBP, which is the most commonly used solvent in the nuclear industry, is not suitable for the extraction of Zr from this lean solution as its distribution coefficient is less than one. In house synthesized Mixed Alkyl Phosphine Oxide (MAPO) is a potential extractant for Zr from this lean stream. Intensification of this process for recovery of Zr has been attempted through use of efficient contactor, namely, hollow fiber module and efficient process, namely, simultaneous extraction and stripping across liquid membrane containing MAPO. Based on batch equilibrium studies selection of suitable concentration of extractant, composition of diluent, selection and concentration of strippant for the proposed liquid membrane system was made. The selected organic and strippant concentration was used to study suitability of application of Dispersion Liquid Membrane (DLM) in hollow fiber contactor for recovery Zr from solution simulated to Zr plant raffinate. Challenges related to stable operation of the liquid membrane system like stability of the organic phase in the micropores of lumen and stability of the dispersion during the pertraction were addressed through pressure balance across the lumen and choice of adequate dispersion condition respectively. (author)

  15. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...

  16. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  17. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  18. Realization of 7-cell hollow-core photonic crystal fibers with low loss in the region between 1.4 μm and 2.3 μm

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Jakobsen, C.

    2009-01-01

    Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm.......Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm....

  19. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.; Dose, Michelle E.; Xu, Liren; Vaughn, Justin T.; Johnson, J.R.; Thompson, Joshua A.; Zhang, Ke; Lydon, Megan E.; Lee, Jong-Suk; Liu, Lu; Hu, Zushou; Karvan, Oĝuz; Realff, Matthew J.; Koros, William J.

    2012-01-01

    FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order

  20. An ingenious design of lamellar Li1.2Mn0.54Ni0.13Co0.13O2 hollow nanosphere cathode for advanced lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Wu, Ruofei; Zhang, Junliang

    2017-01-01

    Highlights: •Lamellar Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 hollow nanospheres serve as a cathode for LIBs. •Unique lamella and hollow structures benefit the enhanced electrochemical performance. •Lamellar shells can provide a short lithium-ion diffusion pathway. •The sufficient void space can accommodate volumetric expansion and contraction. -- Abstract: Although very appealing in developing hollow structured lithium-rich layered transition-metal oxides as cathodes for lithium-ion batteries (LIBs), a great challenge lies in controlling the growth of transition metal elements with desired molar ratios while maintaining intact hollow structures during synthesis. Herein, we propose a scalable strategy to successfully synthesize novel lamellar Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 hollow (L-LMOH) nanosphere cathode for advanced lithium-ion batteries (LIBs). It is proved that the employment of sulfonated polystyrene (SPS) gel nanospheres as the template plays a key role in the formation of flower-like SPS@ Ni-Co-Mn-precursor nanospheres with desired molar ratios, and a subsequently delicate control in the heating rate leads to the intact L-LMOH nanospheres. It is demonstrated that the use of L-LMOH nanosphere cathode not only delivers outstanding reversible discharge capacities of 281.7 mAh g −1 at a current density of 20 mA g −1 and 136.6 mAh g −1 at 2000 mA g −1 , but also possess superior cycling stability with a capacity reservation of 80% at 2000 mA g −1 after 200 continuous cycles. It is well analyzed that the ingenious design of both unique lamella and hollow architectures synergistically benefits the significantly enhanced rate capability and cycling stability.

  1. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  2. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  3. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.

    2012-12-01

    Using a process-guided approach, a new 6FDA-based polyimide - 6FDA-DAM:DABA(4:1) - has been developed in the form of hollow fiber membranes for CO 2 recovery from post-combustion flue gas streams. Dense film studies on this polymer reveal a CO 2 permeability of 224 Barrers at 40°C at a CO 2 feed pressure of 10psia. The dense films exhibit an ideal CO 2/N 2 permselectivity of 20 at 40°C, which permits their use in a two-step counter-flow/sweep membrane process. Dry-jet, wet-quench, non-solvent-induced phase inversion spinning was used to create defect-free hollow fibers from 6FDA-DAM:DABA(4:1). Membranes with defect-free skin layers, approximately 415nm thick, were obtained with a pure CO 2 permeance of 520GPU at 30°C and an ideal CO 2/N 2 permselectivity of 24. Mixed gas permeation and wet gas permeation are presented for the fibers. The CO 2 permeance in the fibers was reduced by approximately a factor of 2 in feeds with 80% humidity. As a proof-of-concept path forward to increase CO 2 flux, we incorporated microporous ZIF-8 fillers into 6FDA-DAM:DABA(4:1) dense films. Our 6FDA-DAM:DABA(4:1)/ZIF-8 dense film composites (20wt% ZIF-8) had a CO 2 permeability of 550 Barrers and a CO 2/N 2 selectivity of 19 at 35°C. Good adhesion between the ZIF and the 6FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order-of-magnitude reductions in system footprint relative to spiral-wound modules, thereby making them attractive in current space-constrained coal-fired power stations. © 2012 Elsevier B.V.

  4. Determination of corrosion potential of coated hollow spheres

    International Nuclear Information System (INIS)

    Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek

    2008-01-01

    Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )

  5. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    Science.gov (United States)

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  6. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei; Li, Xue; Liu, Ying Da; Chung, Neal Tai-Shung

    2016-01-01

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  7. Robust outer-selective thin-film composite polyethersulfone hollow fiber membranes with low reverse salt flux for renewable salinity-gradient energy generation

    KAUST Repository

    Cheng, Zhen Lei

    2016-01-08

    This study reports outer-selective thin-film composite (TFC) hollow fiber membranes with extremely low reverse salt fluxes and robustness for harvesting salinity-gradient energy from pressure retarded osmosis (PRO) processes. Almost defect-free polyamide layers with impressive low salt permeabilities were synthesized on top of robust polyethersulfone porous supports. The newly developed TFC-II membrane shows a maximum power density of 7.81 W m−2 using 1 M NaCl and DI water as feeds at 20 bar. Reproducible data obtained in the 2nd and 3rd runs confirm its stability under high hydraulic pressure differences. Comparing to other PRO membranes reported in the literature, the newly developed membrane exhibits not only the smallest slope between water flux decline and ΔPΔP increase but also the lowest ratio of reverse salt flux to water flux. Thus, the effective osmotic driving force could be well maintained even under high pressure operations. For the first time, the effect of feed pressure buildup induced by feed flowrate was evaluated towards PRO performance. A slight increment in feed pressure buildup was found to be beneficial to water flux and power density up to 10.06 W m−2 without comprising the reverse salt flux. We believe this study may open up new perspectives on outer-selective PRO hollow fiber membranes and provide useful insights to understand and design next-generation outer-selective TFC hollow fiber membranes for osmotic power generation.

  8. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor.

    Science.gov (United States)

    Lauterböck, B; Ortner, M; Haider, R; Fuchs, W

    2012-10-01

    The aim of the current study was to investigate the feasibility of membrane contactors for continuous ammonia (NH₃-N) removal in an anaerobic digestion process and to counteract ammonia inhibition. Two laboratory anaerobic digesters were fed slaughterhouse wastes with ammonium (NH₄⁺) concentrations ranging from 6 to 7.4 g/L. One reactor was used as reference reactor without any ammonia removal. In the second reactor, a hollow fiber membrane contactor module was used for continuous ammonia removal. The hollow fiber membranes were directly submerged into the digestate of the anaerobic reactor. Sulfuric acid was circulated in the lumen as an adsorbent solution. Using this set up, the NH₄⁺-N concentration in the membrane reactor was significantly reduced. Moreover the extraction of ammonia lowered the pH by 0.2 units. In combination that led to a lowering of the free NH₃-N concentration by about 70%. Ammonia inhibition in the reference reactor was observed when the concentration exceeded 6 g/L NH₄⁺-N or 1-1.2 g/L NH₃-N. In contrast, in the membrane reactor the volatile fatty acid concentration, an indicator for process stability, was much lower and a higher gas yield and better degradation was observed. The chosen approach offers an appealing technology to remove ammonia directly from media having high concentrations of solids and it can help to improve process efficiency in anaerobic digestion of ammonia rich substrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Latest developments on fibered MOPA in mJ range with hollow-core fiber beam delivery and fiber beam shaping used as seeder for large scale laser facilities (Conference Presentation)

    Science.gov (United States)

    Gleyze, Jean-François; Scol, Florent; Perrin, Arnaud; Gouriou, Pierre; Valentin, Constance; Bouwmans, Géraud; Hugonnot, Emmanuel

    2017-05-01

    The Laser Megajoule (LMJ) is a French large scale laser facility dedicated to inertial fusion and plasma physics research. LMJ front-ends are based on fiber laser technology at nanojoule range [1]. Scaling the energy of those fiber seeders to the millijoule range is a way to upgrade LMJ's front ends architecture and could also be used as seeder for lasers for ELI project for example. However, required performances are so restrictive (optical-signal-to-noise ratio higher than 50 dB, temporally-shaped nanosecond pulses and spatial single-mode top-hat beam output) that such fiber systems are very tricky to build. High-energy fiber amplifiers In 2015, we have demonstrated, an all-fiber MOPA prototype able to produce a millijoule seeder, but unfortunately not 100% conform for all LMJ's performances. A major difficulty was to manage the frequency modulation used to avoid stimulated Brillouin scattering, to amplitude modulation (FM-AM) conversion, this limits the energy at 170µJ. For upgrading the energy to the millijoule range, it's necessary to use an amplifier with a larger core fiber. However, this fiber must still be flexible; polarization maintaining and exhibit a strictly single-mode behaviour. We are thus developing a new amplifier architecture based on an Yb-doped tapered fiber: its core diameter is from a narrow input to a wide output (MFD 8 to 26 µm). A S² measurement on a 2,5m long tapered fiber rolled-up on 22 cm diameter confirmed that this original geometry allows obtaining strictly single-mode behaviour. In a 1 kHz repetition rate regime, we already obtain 750 µJ pulses, and we are on the way to mJ, respecting LMJ performances. Beam delivery In LMJ architecture the distance between the nanojoule fiber seeder and the amplifier stages is about 16 m. Beam delivery is achieved with a standard PM fiber, such a solution is no longer achievable with hundreds of kilowatt peak powers. An efficient way to minimize nonlinear effects is to use hollow-core (HC

  10. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo{sub 2}O{sub 4} nanoparticles for high- performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu, E-mail: wangy@cqu.edu.cn

    2017-05-01

    Highlights: • Flower-like NiCo{sub 2}O{sub 4}@carbon nanosphere is firstly synthesized for Li-ion batteries. • The nanostructure exhibits the unique feature of hollow NiCo{sub 2}O{sub 4} nanoparticles embedded inside and graphitized carbon layers coating outside. • The sample reveals stable structure, large specific surface area and good electrical conductivity. • The composite exhibits superior rate capability, cycling capacity and excellent Coulombic efficiency. - Abstract: The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo{sub 2}O{sub 4} nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  11. Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers

    Science.gov (United States)

    Dry, Carolyn M.; McMillan, William

    1996-05-01

    This was an investigation into the feasibility of using liquid core optical fibers for the detection and self repair of cracking in cement or polymer materials generated by dynamic or static loading. These experiments relied on our current research sponsored by the National Science Foundation. That work on the concept of internal adhesive delivery from hollow fibers for repair was here combined with the nondestructive fiber optic analysis of crack location and volume. The combination of the ability to remotely measure crack occurrence in real time and determine the location and volume of crack damage in the matrix is unique in the field of optic sensors. The combination of this with crack repair, rebonding of any detached or broken fibers, and replenishment of liquid core chemicals, when necessary, make this a potentially powerful sensing and repair tool. Work on this research topic was sponsored by the University of Illinois.

  12. Strong Light Localization and a Peculiar Feature of Light Leakage in the Negative Curvature Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Andrey D. Pryamikov

    2017-11-01

    Full Text Available In this paper we would like to continue a discussion started in our previous work and devoted to the mechanism of light localization in hollow core microstructured fibers with a noncircular core-cladding boundary. It has been shown in many works that, for waveguide microstructures with different types of core-cladding boundary shape, the positions of the transmission bands’ edges can be predicted by applying the well-known anti–resonant reflecting optical waveguide (ARROW model. At the same time, the ARROW model cannot explain the strong light localization and guiding at high material loss inside the transmission bands which are observed in negative curvature hollow core fibers, for example. In this paper we want to clarify our previous findings and consider the light localization process from another point of view, namely, by comparing the light leakage process in waveguide microstructures with different shapes of the core-cladding boundary. The results are discussed based on the ARROW model and a new approach associated with the consideration of spatial dispersion occurring under the interaction of the air core mode with the core-cladding boundary.

  13. A Microfiltration Polymer-Based Hollow-Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water

    KAUST Repository

    Katuri, Krishna; Bettahalli Narasimha, Murthy Srivatsa; Wang, Xianbin; Matar, Gerald; Chisca, Stefan; Nunes, Suzana Pereira; Saikaly, Pascal

    2016-01-01

    A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world's population increases).

  14. A Microfiltration Polymer-Based Hollow-Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water

    KAUST Repository

    Katuri, Krishna

    2016-09-12

    A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world\\'s population increases).

  15. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  16. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu, E-mail: mgoto@nuce.nagoya-u.ac.jp [Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Machmudah, Siti [Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan and Department of Chemical Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia); Okubayashi, Satoko [Department of Advanced Fibro-Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan (Japan); Fukuzato, Ryuichi [SCF Techno-Link, Inc., Ashiya 659-0033 (Japan)

    2014-02-24

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO{sub 2}) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO{sub 2}, PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes.

  17. Fabrication of micro-hollow fiber by electrospinning process in near-critical carbon dioxide

    International Nuclear Information System (INIS)

    Okamoto, Koichi; Wahyudiono,; Kanda, Hideki; Goto, Motonobu; Machmudah, Siti; Okubayashi, Satoko; Fukuzato, Ryuichi

    2014-01-01

    Electrospinning is a simple technique that has gained much attention because of its capability and feasibility in the fabrication of large quantities of fibers from polymer with diameters ranging in nano-microscale. These fibers provided high surface area to volume ratios, and it was of considerable interest for many applications, such as nanoparticle carriers in controlled release, scaffolds in tissue engineering, wound dressings, military wear with chemical and biological toxin-resistance, nanofibrous membranes or filters, and electronic sensors. Recently there has been a great deal of progress in the potential applications of hollow fibers in microfluids, photonics, and energy storage. In this work, electrospinning was conducted under high-pressure carbon dioxide (CO 2 ) to reduce the viscosity of polymer solution. The experiments were conducted at 313 K and ∼8.0 MPa. Polymer solution containing 5 wt% polymers which prepared in dichloromethane (DCM) with polyvinylpyrrolidone (PVP) to poly-L-lactic acid (PLLA) ratio 80:20 was used as a feed solution. The applied voltage was 15 kV and the distance of nozzle and collector was 8 cm. The morphology and structure of the fibers produced were observed using scanning electron microscopy (SEM). Under pressurized CO 2 , PVP electrospun was produced without bead formation with diameter ranges of 608.50 - 7943.19 nm. These behaviors hold the potential to considerably improve devolatilization electrospinning processes

  18. Hollow-core fiber sensing technique for pipeline leak detection

    Science.gov (United States)

    Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy

    2018-02-01

    Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.

  19. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance

    International Nuclear Information System (INIS)

    Zhang, Shuna; Zhang, Shujuan; Song, Limin; Wu, Xiaoqing; Fang, Sheng

    2014-01-01

    Graphical abstract: Three-dimensional interconnected nickel phosphide networks with hollow microstructures and desulfurization performance. - Highlights: • Three-dimensional Ni 2 P has been prepared using foam nickel as a template. • The microstructures interconnected and formed sponge-like porous networks. • Three-dimensional Ni 2 P shows superior hydrodesulfurization activity. - Abstract: Three-dimensional microstructured nickel phosphide (Ni 2 P) was fabricated by the reaction between foam nickel (Ni) and phosphorus red. The as-prepared Ni 2 P samples, as interconnected networks, maintained the original mesh structure of foamed nickel. The crystal structure and morphology of the as-synthesized Ni 2 P were characterized by X-ray diffraction, scanning electron microscopy, automatic mercury porosimetry and X-ray photoelectron spectroscopy. The SEM study showed adjacent hollow branches were mutually interconnected to form sponge-like networks. The investigation on pore structure provided detailed information for the hollow microstructures. The growth mechanism for the three-dimensionally structured Ni 2 P was postulated and discussed in detail. To investigate its catalytic properties, SiO 2 supported three-dimensional Ni 2 P was prepared successfully and evaluated for the hydrodesulfurization (HDS) of dibenzothiophene (DBT). DBT molecules were mostly hydrogenated and then desulfurized by Ni 2 P/SiO 2

  1. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Science.gov (United States)

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  2. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering

    International Nuclear Information System (INIS)

    Wang, Zefeng; Yu, Fei; Wadsworth, William J; Knight, Jonathan C

    2014-01-01

    We report here efficient 1.9 μm emission by pure stimulated vibrational Raman scattering in a hydrogen-filled anti-resonant hollow-core fiber pumped with a 1064 nm microchip laser. A maximum quantum conversion efficiency ∼48% was achieved by using a 6.5 m length of fiber filled with 23 bar hydrogen, with a maximum peak output power >2 kW. By properly designing the transmission bands of the fiber, selecting alternative pump sources and active gases, the emission wavelength could be extended into the mid-infrared. This provides a potential route for generating efficient, compact, broadly tunable, high power, and narrow linewidth mid-infrared fiber gas lasers with broad application in defense, environmental, and medical monitoring. (letter)

  3. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    Directory of Open Access Journals (Sweden)

    James A. Harrington

    2013-01-01

    Full Text Available We report on single mode optical transmission of hollow core glass waveguides (HWG coupled with an external cavity mid-IR quantum cascade lasers (QCLs. The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.

  4. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    Science.gov (United States)

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  5. Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Chengbin; Guo, Hong; Hu, Zhigao; Yang, Pingxiong [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai 200083 (China); Liu, Aiyun [Department of Physics, Shanghai Normal University, 100 Gui Lin Road, Shanghai 200234 (China); Shi, Yiwei [School of Information Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2014-07-07

    A durable metallic attenuated total reflection (ATR) hollow fiber (bore size: 1.45 mm, wall thickness: 50 μm) was designed and fabricated based on a nickel capillary tube and hexagonal germanium dioxide (GeO{sub 2}). The anomalous dispersion of the hexagonal GeO{sub 2} layer grown inside a nickel tube achieves low-loss light transmission at two peak-power wavelengths for CO{sub 2} laser devices (10.2 and 10.6 μm). An 11–28 W, 10.2 or 10.6 μm CO{sub 2} laser power was steadily delivered via a fiber elastically bent from 0° to 90° (radius: 45 cm) for over 40 min (transmission loss: 0.22 to 4.2 dB/m). Theoretically fitting the measured temperatures showed that front-end clipping caused greater thermal loading than the distributed mode absorption. The maximum external temperature of a nickel ATR fiber is much lower than that of a silica glass ATR fiber owing to their different heat dissipation abilities. The HE{sub 11} mode purity of the output beam profiles decreased from 90.3% to 44.7% as the bending angle increased from 0° to 90°. Large core sizes and wall roughnesses (scattering loss 0.04 dB/m) contributed to mode mixing and excess losses that were above the value predicted by the classical Marcatili and Schmeltzer equation (0.024–0.037 dB/m).

  6. Evaluation of hollow fiber culture for large-scale production of mouse embryonic stem cell-derived hematopoietic stem cells.

    Science.gov (United States)

    Nakano, Yu; Iwanaga, Shinya; Mizumoto, Hiroshi; Kajiwara, Toshihisa

    2018-03-03

    Hematopoietic stem cells (HSCs) have the ability to differentiate into all types of blood cells and can be transplanted to treat blood disorders. However, it is difficult to obtain HSCs in large quantities because of the shortage of donors. Recent efforts have focused on acquiring HSCs by differentiation of pluripotent stem cells. As a conventional differentiation method of pluripotent stem cells, the formation of embryoid bodies (EBs) is often employed. However, the size of EBs is limited by depletion of oxygen and nutrients, which prevents them from being efficient for the production of HSCs. In this study, we developed a large-scale hematopoietic differentiation approach for mouse embryonic stem (ES) cells by applying a hollow fiber (HF)/organoid culture method. Cylindrical organoids, which had the potential for further spontaneous differentiation, were established inside of hollow fibers. Using this method, we improved the proliferation rate of mouse ES cells to produce an increased HSC population and achieved around a 40-fold higher production volume of HSCs in HF culture than in conventional EB culture. Therefore, the HF/organoid culture method may be a new mass culture method to acquire pluripotent stem cell-derived HSCs.

  7. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  8. Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching

    Directory of Open Access Journals (Sweden)

    Ilya Borisov

    2017-02-01

    Full Text Available For the development of high efficiency porous supports for composite membrane preparation, polysulfone (PSf hollow fiber membranes (outer diameter 1.57 mm, inner diameter 1.12 mm were modified by air plasma using the low temperature plasma treatment pilot plant which is easily scalable to industrial level and the Piranha etch (H2O2 + H2SO4. Chemical and plasma modification affected only surface layers and did not cause PSf chemical structure change. The modifications led to surface roughness decrease, which is of great importance for further thin film composite (TFC membranes fabrication by dense selective layer coating, and also reduced water and ethylene glycol contact angle values for modified hollow fibers surface. Furthermore, the membranes surface energy increased two-fold. The Piranha mixture chemical modification did not change the membranes average pore size and gas permeance values, while air plasma treatment increased pore size 1.5-fold and also 2 order enhanced membranes surface porosity. Since membranes surface porosity increased due to air plasma treatment the modified membranes were used as efficient supports for preparation of high permeance TFC membranes by using poly[1-(trimethylsilyl-1-propyne] as an example for selective layer fabrication.

  9. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    Science.gov (United States)

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation.

  10. Characterization of morphology controlled polyethersulfone hollow fiber membranes by the addition of polyethylene glycol to the dope and bore liquid solution

    NARCIS (Netherlands)

    Koops, G.H.; Liu, Y.; Liu, Y.; Strathmann, H.

    2003-01-01

    The preparation of polyethersulfone (PES) hollow fiber membranes has been studied using N-methylpyrrolidone (NMP) as solvent, polyethylene glycol 400 (PEG 400) as weak nonsolvent and water as strong nonsolvent. When PEG 400 is used as polymeric additive to the spinning dope the viscosity of the PES

  11. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ting [College of Textiles, Donghua University, Shanghai 201620 (China); Cao, Shengbin [College of Textiles, Donghua University, Shanghai 201620 (China); School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306 (China); Xu, Guangbiao, E-mail: guangbiao_xu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science and Technology Ministry of Education, Donghua University, Shanghai 201620 (China)

    2016-03-15

    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  12. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    International Nuclear Information System (INIS)

    Dong, Ting; Cao, Shengbin; Xu, Guangbiao

    2016-01-01

    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.

  13. Fabrication of nanocrystalline hydroxyapatite doped degradable composite hollow fiber for guided and biomimetic bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ning [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Nichols, Heather L. [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Tylor, Shila [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States); Wen Xuejun [Department of Bioengineering, Clemson University, Clemson, SC, 29634 (United States)]. E-mail: xjwen@clemson.edu

    2007-04-15

    Natural bone tissue possesses a nanocomposite structure interwoven in a three-dimensional (3-D) matrix, which plays critical roles in conferring appropriate physical and biological properties to the bone tissue. Single type of material may not be sufficient to mimic the composition, structure and properties of native bone, therefore, composite materials consisting of both polymers, bioceramics, and other inorganic materials have to be designed. Among a variety of candidate materials, polymer-nanoparticle composites appear most promising for bone tissue engineering applications because of superior mechanical properties, improved durability, and surface bioactivity when compared with conventional polymers or composites. The long term objective of this project is to use highly aligned, bioactive, biodegradable scaffold mimicking natural histological structure of human long bone, and to engineer and regenerate human long bone both in vitro and in vivo. In this study, bioactive, degradable, and highly permeable composite hollow fiber membranes (HFMs) were fabricated using a wet phase phase-inversion approach. The structure of the hollow fiber membranes was examined using scanning electron microscopy (SEM); degradation behavior was examined using weigh loss assay, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC); and bioactivity was evaluated with the amount of calcium deposition from the culture media onto HFM surface. Doping PLGA HFMs with nanoHA results in a more bioactive and slower degrading HFM than pure PLGA HFMs.

  14. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  15. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  16. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    Science.gov (United States)

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

  17. Three-phase molecularly imprinted sol-gel based hollow fiber liquid-phase microextraction combined with liquid chromatography-tandem mass spectrometry for enrichment and selective determination of a tentative lung cancer biomarker.

    Science.gov (United States)

    Moein, Mohammad Mahdi; Javanbakht, Mehran; Karimi, Mohammad; Akbari-Adergani, Behrouz; Abdel-Rehim, Mohamed

    2015-07-15

    In the present study, the modification of a polysulfone hollow fiber membrane with in situ molecularly imprinted sol-gel process (as a novel and one-step method) was prepared and investigated. 3-(propylmethacrylate)trimethoxysilane (3PMTMOS) as an inorganic precursor was used for preparation of molecularly imprinted sol-gel. The modified molecularly imprinted sol-gel hollow fiber membrane (MSHM) was used for the liquid-phase microextraction (LPME) of hippuric acid (HA) in human plasma and urine samples. MSHM as a selective, robust, and durable tool was used for at least 50 extractions without significant decrease in the extraction efficiency. The non-molecularly imprinted sol-gel hollow fiber membrane (NSHM) as blank hollow fiber membrane was prepared by the same process, only without HA. To achieve the best condition, influential parameters on the extraction efficiency were thoroughly investigated. The capability of this robust, green, and simple method for extraction of HA was successfully accomplished with LC/MS/MS. The limits of detection (LOD) and quantification (LOQ) in human plasma and urine samples were 0.3 and 1.0nmolL(-1), respectively. The standard calibration curves were obtained within the concentration range 1-2000nmolL(-1) for HA in human plasma and urine. The coefficients of determination (r(2)) were ≥0.998. The obtained data exhibited recoveries were higher than 89% for the extraction of HA in human plasma and urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Compression of realistic laser pulses in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...... amplification. It is shown that the parabolic pulses are superior for compression of high-quality femtosecond pulses up to the few-megawatts level. With peak powers of 5-10 MW or higher, there is no significant difference in power scaling and pulse quality between the two pulse types for comparable values...... of power, duration, and bandwidth. The same conclusion is found for the peak power and energy of solitons formed beyond the point of maximal compression. Long-pass filtering of these solitons is shown to be a promising route to clean solitonlike output pulses with peak powers of several MW....

  19. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  20. Direct-write PVDF nonwoven fiber fabric energy harvesters via the hollow cylindrical near-field electrospinning process

    International Nuclear Information System (INIS)

    Liu, Z H; Pan, C T; Ou, Z Y; Lin, L W; Huang, J C

    2014-01-01

    One-dimensional piezoelectric nanomaterials have attracted great attention in recent years for their possible applications in mechanical energy scavenging devices. However, it is difficult to control the structural diameter, length, and density of these fibers fabricated by micro/nano-technologies. This work presents a hollow cylindrical near-field electrospinning (HCNFES) process to address production and performance issues encountered previously in either far-field electrospinning (FFES) or near-field electrospinning (NFES) processes. Oriented polyvinylidene fluoride (PVDF) fibers in the form of nonwoven fabric have been directly written on a glass tube for aligned piezoelectricity. Under a high in situ electrical poling field and strong mechanical stretching (the tangential speed on the glass tube collector is about 1989.3 mm s −1 ), the HCNFES process is able to uniformly deposit large arrays of PVDF fibers with good concentrations of piezoelectric β-phase. The nonwoven fiber fabric (NFF) is transferred onto a polyethylene terephthalate (PET) substrate and fixed at both ends using copper foil electrodes as a flexible textile-fiber-based PVDF energy harvester. Repeated stretching and releasing of PVDF NFF with a strain of 0.05% at 7 Hz produces a maximum peak voltage and current at 76 mV and 39 nA, respectively. (paper)

  1. Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Pagán, Ángel E. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Stahl, Alexander M. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Chemistry, Stanford University, Stanford, CA (United States); Ramseier, Michelle L. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Chemical Engineering, Stanford University, Stanford, CA (United States); Behn, Anthony W. [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Yang, Yunzhi, E-mail: ypyang@stanford.edu [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States); Department of Bioengineering, Stanford University, Stanford, CA (United States)

    2016-07-01

    The design of bioresorbable synthetic small diameter (< 6 mm) vascular grafts (SDVGs) capable of sustaining long-term patency and endothelialization is a daunting challenge in vascular tissue engineering. Here, we synthesized a family of biocompatible and biodegradable polycaprolactone (PCL) urethane macromers to fabricate hollow fiber membranes (HFMs) as SDVG candidates, and characterized their mechanical properties, degradability, hemocompatibility, and endothelial development. The HFMs had smooth surfaces and porous internal structures. Their tensile stiffness ranged from 0.09 to 0.11 N/mm and their maximum tensile force from 0.86 to 1.03 N, with minimum failure strains of approximately 130%. Permeability varied from 1 to 14 × 10{sup −6} cm/s, burst pressures from 1158 to 1468 mm Hg, and compliance from 0.52 to 1.48%/100 mm Hg. The suture retention forces ranged from 0.55 to 0.81 N. HFMs had slow degradation profiles, with 15 to 30% degradation after 8 weeks. Human endothelial cells proliferated well on the HFMs, creating stable cell layer coverage. Hemocompatibility studies demonstrated low hemolysis (< 2%), platelet activation, and protein adsorption. There were no significant differences in the hemocompatibility of HFMs in the absence and presence of endothelial layers. These encouraging results suggest great promise of our newly developed materials and biodegradable elastomeric HFMs as SDVG candidates. - Highlights: • Polyester urethane hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties varied according to composition. • HFM inner and outer surfaces were successfully seeded with cells. • HFMs showed excellent hemocompatibility in vitro. • HFM has the potential to be used for small diameter vascular grafts.

  2. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Pagán, Ángel E.; Kang, Yunqing [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Findlay, Michael W. [Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA (United States); University of Melbourne Department of Surgery, Royal Melbourne Hospital, Parkville, VIC (Australia); Yang, Yunzhi, E-mail: ypyang@stanford.edu [Department of Orthopedic Surgery, Stanford University, Stanford, CA (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA (United States)

    2015-04-01

    Engineering of small diameter (< 6 mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5 × 10{sup −6} cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. - Highlights: • Hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties could be tailored through adjustments to fabrication parameters. • Properties could match or exceed those of blood vessels. • HFM showed excellent compatibility in vitro. • HFMs have the potential to be used for small diameter vascular grafts.

  3. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes

    International Nuclear Information System (INIS)

    Mercado-Pagán, Ángel E.; Kang, Yunqing; Findlay, Michael W.; Yang, Yunzhi

    2015-01-01

    Engineering of small diameter (< 6 mm) vascular grafts (SDVGs) for clinical use remains a significant challenge. Here, elastomeric polyester urethane (PEU)-based hollow fiber membranes (HFMs) are presented as an SDVG candidate to target the limitations of current technologies and improve tissue engineering designs. HFMs are fabricated by a simple phase inversion method. HFM dimensions are tailored through adjustments to fabrication parameters. The walls of HFMs are highly porous. The HFMs are very elastic, with moduli ranging from 1–4 MPa, strengths from 1–5 MPa, and max strains from 300–500%. Permeability of the HFMs varies from 0.5–3.5 × 10 −6 cm/s, while burst pressure varies from 25 to 35 psi. The suture retention forces of HFMs are in the range of 0.8 to 1.2 N. These properties match those of blood vessels. A slow degradation profile is observed for all HFMs, with 71 to 78% of the original mass remaining after 8 weeks, providing a suitable profile for potential cellular incorporation and tissue replacement. Both human endothelial cells and human mesenchymal stem cells proliferate well in the presence of HFMs up to 7 days. These results demonstrate a promising customizable PEU HFMs for small diameter vascular repair and tissue engineering applications. - Highlights: • Hollow fiber membranes (HFMs) were fabricated and evaluated. • HFM properties could be tailored through adjustments to fabrication parameters. • Properties could match or exceed those of blood vessels. • HFM showed excellent compatibility in vitro. • HFMs have the potential to be used for small diameter vascular grafts

  4. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood

    OpenAIRE

    Arazawa, D. T.; Kimmel, J. D.; Finn, M.C.; Federspiel, W. J.

    2015-01-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (< 500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3−), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal ...

  5. Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

    Directory of Open Access Journals (Sweden)

    Mohammad Mesbah

    2017-10-01

    Full Text Available Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite element method (FEM. To ensure the accuracy of the developed model, the simulation results were validated using the reported experimental data for potassium glycinate (PG, monoethanol amine (MEA, and methyldiethanol amine (MDEA. The results of the proposed model indicated that PG absorbent has the highest removal efficiency of CO2, followed by potassium threonate (PT, MEA, amino-2-methyl-1-propanol (AMP, diethanol amine (DEA, and MDEA in sequence. In addition, the results revealed that the CO2 removal efficiency was favored by absorbent flow rate and liquid temperature, while the gas flow rate has a reverse effect. The simulation results proved that the hollow fiber membrane contactors have a good potential in the area of CO2 capture.

  6. Optimization of the contents of hollow glass microsphere and sodium hexametaphosphate for glass fiber vacuum insulation panel

    Science.gov (United States)

    Li, C. D.; Chen, Z. F.; Zhou, J. M.

    2016-07-01

    In this paper, various additive amounts of hollow glass microspheres (HGMs) and sodium hexametaphosphate (SHMP) powders were blended with flame attenuated glass wool (FAGW) to form hybrid core materials (HCMs) through the wet method. Among them, the SHMP was dissolved in the glass fiber suspension and coated on the surface of glass fibers while the HGMs were insoluble in the glass fiber suspension and filled in the fiber-fiber pores. The average pore diameter of the FAGW/HGM HCMs was 8-11 μm which was near the same as that of flame attenuated glass fiber mats (FAGMs, i.e., 10.5 µm). The tensile strength of the SHMP coated FAGMs was enhanced from 160 N/m to 370 N/m when SHMP content increased from 0 wt.% to 0.2 wt.%. By contrast, the tensile strength of the FAGW/HGM HCMs decreased from 160 N/m to 40 N/m when HGM content increased from 0 wt.% to 50 wt.%. Both the FAGW/HGM HCMs and SHMP coated FAGMs were vacuumed completely to form vacuum insulation panels (VIPs). The results showed that both the addition of SHMP and HGM led a slight increase in the thermal conductivity of the corresponding VIPs. To obtain a high-quality VIP, the optimal SHMP content and HGM content in glass fiber suspension was 0.12-0.2 wt.% and 0 wt.%.

  7. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  8. Shape-engineerable composite fibers and their supercapacitor application

    Science.gov (United States)

    Kim, Kang Min; Lee, Jae Ah; Sim, Hyeon Jun; Kim, Kyung-Ah; Jalili, Rouhollah; Spinks, Geoffrey M.; Kim, Seon Jeong

    2016-01-01

    Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 +/- 64 S cm-1) and areal capacitance (2.38 mF cm-2).Due to excellent electrical and mechanical properties of carbon nano materials, it is of great interest to fabricate flexible, high conductive, and shape engineered carbon based fibers. As part of these approaches, hollow, twist, ribbon, and other various shapes of carbon based fibers have been researched for various functionality and application. In this paper, we suggest simple and effective method to control the fiber shape. We fabricate the three different shapes of hollow, twisted, and ribbon shaped fibers from wet spun giant graphene oxide (GGO)/single walled-nanotubes (SWNTs)/poly(vinyl alcohol) (PVA) gels. Each shaped fibers exhibit different mechanical properties. The average specific strengthes of the hollow, twist, and ribbon fibers presented here are 126.5, 106.9, and 38.0 MPa while strain are 9.3, 13.5, and 5%, respectively. Especially, the ribbon fiber shows high electrical conductivity (524 +/- 64 S cm-1) and areal capacitance (2.38 mF cm-2). Electronic supplementary information (ESI) available

  9. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules.

    Science.gov (United States)

    Shen, Chong; Zhang, Guoliang; Wang, Qichen; Meng, Qin

    2015-09-09

    Collagen, the most used natural biomacromolecule, has been extensively utilized to make scaffolds for cell cultures in tissue engineering, but has never been fabricated into the configuration of a hollow fiber (HF) for cell culture due to its poor mechanical properties. In this study, renal tubular cell-laden collagen hollow fiber (Col HF) was fabricated by dissolving sacrificial Ca-alginate cores from collagen shells strengthened by carbodiimide cross-linking. The inner/outer diameters of the Col HF were precisely controlled by the flow rates of core alginate/shell collagen solution in the microfluidic device. As found, the renal tubular cells self-assembled into renal tubules with diameters of 50-200 μm post to the culture in Col HF for 10 days. According to the 3D reconstructed confocal images or HE staining, the renal cells appeared as a tight tubular monolayer on the Col HF inner surface, sustaining more 3D cell morphology than the cell layer on the 2D flat collagen gel surface. Moreover, compared with the cultures in either a Transwell or polymer HF membrane, the renal tubules in Col HF exhibited at least 1-fold higher activity on brush border enzymes of alkaline phosphatase and γ-glutamyltransferase, consistent with their gene expressions. The enhancement occurred similarly on multidrug resistance protein 2 and glucose uptake. Such bioengineered renal tubules in Col HF will present great potential as alternatives to synthetic HF in both clinical use and pharmaceutical investigation.

  10. FeCoNi coated glass fibers in composite sheets for electromagnetic absorption and shielding behaviors

    Science.gov (United States)

    Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon

    2017-09-01

    To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.

  11. Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography.

    Science.gov (United States)

    Wu, Yunli; Hu, Bin

    2009-11-06

    A simple, selective, sensitive and inexpensive method of hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with high performance liquid chromatography (HPLC)-ultraviolet (UV) detection was developed for the determination of four acidic phytohormones (salicylic acid (SA), indole-3-acetic acid (IAA), (+/-) abscisic acid (ABA) and (+/-) jasmonic acid (JA)) in natural coconut juice. To the best of our knowledge, this is the first report on the use of liquid phase microextraction (LPME) as a sample pretreatment technique for the simultaneous analysis of several phytohormones. Using phenetole to fill the pores of hollow fiber as the organic phase, 0.1molL(-1) NaOH solution in the lumen of hollow fiber as the acceptor phase and 1molL(-1) HCl as the donor phase, a simultaneous preconcentration of four target phytohormones was realized. The acceptor phase was finally withdrawn into the microsyringe and directly injected into HPLC for the separation and quantification of the target phytohormones. The factors affecting the extraction efficiency of four phytohormones by HF-LLLME were optimized with orthogonal design experiment, and the data was analyzed by Statistical Product and Service Solutions (SPSS) software. Under the optimized conditions, the enrichment factors for SA, IAA, ABA and JA were 243, 215, 52 and 48, with the detection limits (S/N=3) of 4.6, 1.3, 0.9ngmL(-1) and 8.8 microg mL(-1), respectively. The relative standard deviations (RSDs, n=7) were 7.9, 4.9, 6.8% at 50ngmL(-1) level for SA, IAA, ABA and 8.4% at 500 microg mL(-1) for JA, respectively. To evaluate the accuracy of the method, the developed method was applied for the simultaneous analysis of several phytohormones in five natural coconut juice samples, and the recoveries for the spiked samples were in the range of 88.3-119.1%.

  12. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  14. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2017-01-01

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al 3 Ti and Al 3 Ni. In addition, a small quantity of TiO 2 phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al 3 Ti, Al 3 Ni, and TiO 2 phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  15. Interfacial characteristics and fracture behavior of spark-plasma-sintered TiNi fiber-reinforced 2024Al matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Peng, E-mail: dongpeng@tyut.edu.cn [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Wang, Zhe [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Wenxian [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan 030024 (China); Chen, Shaoping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Jun [Department of Mechanical Engineering, Pennsylvania State University Erie, Erie, PA 16563 (United States)

    2017-04-13

    Embedding of shape memory alloy (SMA) fibers into materials to fabricate SMA composites has attracted considerable attention because of the potential applicability of these composites in smart systems and structures. In this study, 2024Al matrix composites reinforced by continuous TiNi SMA fibers were fabricated using spark plasma sintering (SPS). The interface between the fibers and matrix consisted of a bilayer. The layer close to the fiber consisted of a multiple phase mixture, and the other layer exhibited a periodic morphology resulting from the alternating phases of Al{sub 3}Ti and Al{sub 3}Ni. In addition, a small quantity of TiO{sub 2} phases was also observed in the interface layer. Based on detailed interface studies of the orientation relationships between the Al{sub 3}Ti, Al{sub 3}Ni, and TiO{sub 2} phases and the atomic correspondence at phase boundaries, the effects of the interface phases on the fracture behavior of the composites were demonstrated.

  16. Hollow fiber membrane contactors for CO2 capture: modeling and up-scaling to CO2 capture for an 800 MWe coal power station

    NARCIS (Netherlands)

    Kimball, E.; Al-Azki, A.; Gomez, A.; Goetheer, E.L.V.; Booth, N.; Adams, D.; Ferre, D.

    2014-01-01

    A techno-economic analysis was completed to compare the use of Hollow Fiber Membrane Modules (HFMM) with the more conventional structured packing columns as the absorber in amine-based CO2capture systems for power plants. In order to simulate the operation of industrial scale HFMMsystems, a

  17. Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications

    KAUST Repository

    Xiong, Jun Ying

    2016-01-15

    Pressure retarded osmosis (PRO) is a promising technology to harvest renewable osmotic energy using a semipermeable membrane. However, a significant flux reduction has been always observed that severely shrinks the harvestable power to a level only marginally higher or even lower than the economically feasible value. This work focuses on the elucidation of various underlying mechanisms responsible for the flux reduction. First, both inner-selective and outer-selective thin film composite (TFC) hollow fiber membranes are employed to examine how the fundamental internal factors (such as the surface salinity of the selective layer at the feed side (CF,m) and its components) interact with one another under the fixed bulk salinity gradient, resulting in various behaviours of external performance indexes such as water flux, reverse salt flux, and power density. Then, the research is extended to investigate the effects of the growing bulk feed salinity due to the accumulated reverse salt flux along PRO modules. Finally, the insights obtained from the prior two stationary conditions are combined with the advanced nucleation theory to elucidate the dynamic scaling process by visualizing how the multiple fundamental factors (such as local supersaturation, nucleation rate and nuclei size) evolve and interplay with one another in various membrane regimes during the whole scaling process. To our best knowledge, it is the first time that the advanced nucleation theory is applied to study the PRO scaling kinetics in order to provide subtle and clear pictures of the events occurring inside the membrane. This study may provide useful insights to design more suitable TFC hollow fiber membranes and to operate them with enhanced water flux so that the PRO process may become more promising in the near future.

  18. Bis(trifluoromethylsulfonyl)imide-based frozen ionic liquid for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites.

    Science.gov (United States)

    Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi

    2017-08-01

    1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pertraction of Penicillin G in Hollow Fiber Contained Liquid Membranes

    International Nuclear Information System (INIS)

    Miesiac, I.; Szymanowski, J.

    1998-01-01

    Pertraction of Penicillin G in Hollow Fiber Contained Liquid Membranes was investigated in a system consisting of 2 Liqui Cel 106 modules from Hoechst Celanese. The flux of Pen G depended upon the content of n-octanol and of Amberlite LA2 in kerosene used as a membrane phase. During the pertraction of Pen G in HFCLM system the pH difference between the both buffered aqueous phases diminished proportionally to the contact time with the membrane phase. The flux of citric acid used as a buffer component in the feed phase attained 11.8 mM/m 2 x h and was comparable with the flux of Pen G equal to 18.4 mM/m 2 x h. In order to eliminate the undesired transport of citric acid, CO 2 was used as a volatile buffer component. Although the pH values were stabilised in the range of 5.47 and 7.45 in the feed and strip phase, respectively, the achieved Pen G flux was significantly lower. (author)

  20. Characterization of water-in-oil emulsions produced with microporous hollow polypropylene fibers

    Directory of Open Access Journals (Sweden)

    HELMAR SCHUBERT

    2000-11-01

    Full Text Available The preparation of fine and monodispersed water-in-oil (W/O emulsions by utilizing hydrophobic hollow polypropylene fibers with 0.4 mm pores was investigated in this work. The experiments were carried out using demineralized water as the disperse phase, mineral oil Velocite No. 3 as the continuous phase, and polyglycerol polyricinoleate (PGPR 90 in the concentration range of 2.5 – 10 wt % as the oil-soluble emulsifier. The size of the water droplets in the prepared emulsions and the droplet size distribution strongly depend on the content of the disperse phase, the transmembrane pressure difference, and the emulsifier concentration. Stable emulsions with a very narrow droplet size distribution and a mean droplet diameter lower than 0.27 µm were produced using 10 wt % PGPR 90 at a pressure difference below 30 kPa.

  1. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  2. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.

    Science.gov (United States)

    Han, Gang; de Wit, Jos S; Chung, Tai-Shung

    2015-09-15

    By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal

    2018-01-01

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  4. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna

    2018-04-30

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  5. Hollow Fiber Flight Prototype Spacesuit Water Membrane Evaporator Design and Testing

    Science.gov (United States)

    Bue, Grant; Vogel, Matt; Makinen, Janice; Tsioulos, Gus

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform thermal control for advanced spacesuits and to take advantage of recent advances in micropore membrane technology. This results in a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. The Membrana Celgard X50-215 microporous hollow-fiber (HoFi) membrane was selected after recent extensive testing as the most suitable candidate among commercial alternatives for continued SWME prototype development. The current design was based on a previous design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape. This was developed into a full-scale prototype consisting of 14,300 tube bundled into 30 stacks, each of which is formed into a chevron shape and separated by spacers and organized into three sectors of 10 nested stacks. The new design replaced metal components with plastic ones, and has a custom built flight like backpressure valve mounted on the side of the SWME housing to reduce backpressure when fully open. The spacers that provided separation of the chevron fiber stacks were eliminated. Vacuum chamber testing showed improved heat rejection as a function of inlet water temperature and water vapor backpressure compared with the previous design. Other tests pushed the limits of tolerance to freezing and showed suitability to reject heat in a Mars pressure environment with and without a sweep gas. Tolerance to contamination by constituents expected to be found in potable water produced by distillation processes was tested in a conventional way by allowing constituents to accumulate in the coolant as evaporation occurs. For this purpose, the SWME cartridge has endured an equivalent of 30 EVAs exposure and demonstrated minimal performance decline.

  6. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.

    2011-03-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  7. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.; Bhandari, Dhaval A.; Miller, Stephen J.; Koros, William J.

    2011-01-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  8. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Varanusupakul, Pakorn [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)], E-mail: pakorn.v@chula.ac.th; Vora-adisak, Narongchai; Pulpoka, Bancha [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)

    2007-08-15

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na{sub 2}SO{sub 4}. The linear calibration curves were observed for the concentrations ranging from 1 to 300 {mu}g L{sup -1} with the correlation coefficients (R{sup 2}) being greater than 0.99. The method detection limits of most analytes were below 1 {mu}g L{sup -1} except DCAA and MCAA that were 2 and 18 {mu}g L{sup -1}, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  9. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  10. Fabrication and Characterization of Polymeric Hollow Fiber Membranes with Nano-scale Pore Sizes

    International Nuclear Information System (INIS)

    Amir Mansourizadeh; Ahmad Fauzi Ismail

    2011-01-01

    Porous polyvinylidene fluoride (PVDF) and polysulfide (PSF) hollow fiber membranes were fabricated via a wet spinning method. The membranes were characterized in terms of gas permeability, wetting pressure, overall porosity and water contact angle. The morphology of the membranes was examined by FESEM. From gas permeation test, mean pore sizes of 7.3 and 9.6 nm were obtained for PSF and PVDF membrane, respectively. Using low polymer concentration in the dopes, the membranes demonstrated a relatively high overall porosity of 77 %. From FESEM examination, the PSF membrane presented a denser outer skin layer, which resulted in significantly lower N 2 permeance. Therefore, due to the high hydrophobicity and nano-scale pore sizes of the PVDF membrane, a good wetting pressure of 4.5x10 -5 Pa was achieved. (author)

  11. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  12. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity.

    Science.gov (United States)

    Zou, Jingyun; Liu, Dandan; Zhao, Jingna; Hou, Ligan; Liu, Tong; Zhang, Xiaohua; Zhao, Yonghao; Zhu, Yuntian T; Li, Qingwen

    2018-03-07

    Carbon nanotube (CNT) fiber has not shown its advantage as next-generation light-weight conductor due to the large contact resistance between CNTs, as reflected by its low conductivity and ampacity. Coating CNT fiber with a metal layer like Cu has become an effective solution to this problem. However, the weak CNT-Cu interfacial bonding significantly limits the mechanical and electrical performances. Here, we report that a strong CNT-Cu interface can be formed by introducing a Ni nanobuffer layer before depositing the Cu layer. The Ni nanobuffer layer remarkably promotes the load and heat transfer efficiencies between the CNT fiber and Cu layer and improves the quality of the deposited Cu layer. As a result, the new composite fiber with a 2 μm thick Cu layer can exhibit a superhigh effective strength >800 MPa, electrical conductivity >2 × 10 7 S/m, and ampacity >1 × 10 5 A/cm 2 . The composite fiber can also sustain 10 000 times of bending and continuously work for 100 h at 90% ampacity.

  13. Effects of push/pull perfusion and ultrasonication on the extraction efficiencies of phthalate esters in sports drink samples using on-line hollow-fiber liquid-phase microextraction.

    Science.gov (United States)

    Chao, Yu-Ying; Lee, Chien-Hung; Chien, Tzu-Yang; Shih, Yu-Hsuan; Lu, Yin-An; Kuo, Ting-Hsuan; Huang, Yeou-Lih

    2013-08-28

    In previous studies, we developed a process, on-line ultrasound-assisted push/pull perfusion hollow-fiber liquid-phase microextraction (UA-PPP-HF-LPME), combining the techniques of push/pull perfusion (PPP) and ultrasonication with hollow-fiber liquid-phase microextraction (HF-LPME), to achieve rapid extraction of acidic phenols from water samples. In this present study, we further evaluated three more-advanced and novel effects of PPP and ultrasonication on the extraction efficiencies of neutral high-molecular-weight phthalate esters (HPAEs) in sports drinks. First, we found that inner-fiber fluid leakage occurs only in push-only perfusion-based and pull-only perfusion-based HF-LPME, but not in the PPP mode. Second, we identified a significant negative interaction between ultrasonication and temperature. Third, we found that the extraction time of the newly proposed system could be shortened by more than 93%. From an investigation of the factors affecting UA-PPP-HF-LPME, we established optimal extraction conditions and achieved acceptable on-line enrichment factors of 92-146 for HPAEs with a sampling time of just 2 min.

  14. Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L; Chen, DC; Ding, Y; Wang, ZL; Zeng, ZZ; Liu, ML

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)(2) nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)(2)/ NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 rnA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  15. Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Liang; Chen, Dongchang; Ding, Yong; Wang, Zhong Lin; Zeng, Zhengzhi; Liu, Meilin

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)2 nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)2/NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 mA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  16. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    Science.gov (United States)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  17. Radial-firing optical fiber tip containing conical-shaped air-pocket for biomedical applications.

    Science.gov (United States)

    Lee, Seung Ho; Ryu, Yong-Tak; Son, Dong Hoon; Jeong, Seongmook; Kim, Youngwoong; Ju, Seongmin; Kim, Bok Hyeon; Han, Won-Taek

    2015-08-10

    We report a novel radial-firing optical fiber tip containing a conical-shaped air-pocket fabricated by deforming a hollow optical fiber using electric arc-discharge process. The hollow optical fiber was fusion spliced with a conventional optical fiber, simultaneously deforming into the intagliated conical-shaped region along the longitudinal fiber-axis of the fiber due to the gradual collapse of the cavity of the hollow optical fiber. Then the distal-end of the hollow optical fiber was sealed by the additional arc-discharge in order to obstruct the inflow of an external bio-substance or liquid to the inner air surface during the surgical operations, resulting in the formation of encased air-pocket in the silica glass fiber. Due to the total internal reflection of the laser beam at the conical-shaped air surface, the laser beam (λ = 632.8 nm) was deflected to the circumferential direction up to 87 degree with respect to the fiber-axis.

  18. Hollow Fiber Spacesuit Water Membrane Evaporator Development and Testing for Advanced Spacesuits

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Tsioulos, Gus; Settles, Joseph; Colunga, Aaron; Vogel, Matthew; Vonau, Walt

    2010-01-01

    The spacesuit water membrane evaporator (SWME) is being developed to perform the thermal control function for advanced spacesuits to take advantage of recent advances in micropore membrane technology in providing a robust heat-rejection device that is potentially less sensitive to contamination than is the sublimator. Principles of a sheet membrane SWME design were demonstrated using a prototypic test article that was tested in a vacuum chamber at JSC in July 1999. The Membrana Celgard X50-215 microporous hollow fiber (HoFi) membrane was selected after recent contamination tests as the most suitable candidate among commercial alternatives for HoFi SWME prototype development. A design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype consisting 14,300 tube bundled into 30 stacks, each of which are formed into a chevron shape and separated by spacers and organized into three sectors of ten nested stacks. Vacuum chamber testing has been performed characterize heat rejection as a function of inlet water temperature and water vapor backpressure and to show contamination resistance to the constituents expected to be found in potable water produced by the distillation processes. Other tests showed the tolerance to freezing and suitability to reject heat in a Mars pressure environment.

  19. Nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Tao, Yan; Ruiyi, Li; Tingting, Yang; Zaijun, Li

    2015-01-01

    Graphical abstract: We report a new template synthesis of nickel/cobalt layered double hydroxides (Ni/Co-LDH) without any adscititious alkali source, oxidant and step for removal of the template. The perfect match between generation rate of Ni/Co-LDH nanoflakes and removal rate of template creates elaborate three-dimensional architecture with well-defined hollow interior and hydrangea-like exterior. The unique structure improves faradaic redox reaction and mass transfer during the redox process, thus the Ni/Co-LDH electrode provides excellent electrochemical performance for supercapacitors. - Highlights: • The study demonstrated a new strategy for template synthesis of Ni/Co-LDH without any adscititious alkali source, oxidant and step for removal of the template. • The perfect match between generation rate of Ni/Co-LDH nanoflakes and removal rate of SiO 2 template create hollow microspheres with hydrangea-like morphology. • The unique structure of Ni/Co-LDH will greatly improve faradaic redox reaction and mass transfer during the redox process. • The Ni/Co-LDH electrode displays high specific capacitance, good charge/discharge capability, large energy density and superior cycle stability. • The study provides a prominent approach to fabricate various hollow nanomaterials for supercapacitors, Li-ion batteries, catalyst and sensors. - Abstract: Electroactive materials with hollow nanostructures received great attractiveness due to large surface area, low density and superior structure permeablity. The paper reported a new template synthesis of nickel/cobalt layered double hydroxides (Ni/Co-LDH) without any adscititious alkali source, oxidant and step for removal of the template. Nickel nitrate, cobalt nitrate and SiO 2 nanosphere were dispersed in an ethanol solution. Then, the mixed soution was heated at 160 °C for 6 h to obtain Ni/Co-LDH product. During the process, ethanol and nitrate underwent a redox reaction releasing hydroxide ions, which will react

  20. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  1. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    International Nuclear Information System (INIS)

    Nomngongo, Philiswa N.; Ngila, J. Catherine

    2014-01-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L −1 , n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L −1 and 0.3–0.9 μg L −1 , respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ

  2. Determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline by inductively coupled plasma mass spectrometry after sample clean up with hollow fiber solid phase microextraction system

    Energy Technology Data Exchange (ETDEWEB)

    Nomngongo, Philiswa N.; Ngila, J. Catherine, E-mail: jcngila@uj.ac.za

    2014-08-01

    This study reports a simple and efficient method for the determination of trace Cd, Cu, Fe, Pb and Zn in diesel and gasoline samples by inductively coupled plasma mass spectrometry after matrix removal and analyte pre-concentration using hollow fiber-solid phase microextraction (HF–SPME). The optimization of HF-SPME procedure was carried out using two-level full factorial and central composite designs. Four factors (variables), that are, sample solution pH, acceptor phase amount, extraction time and eluent concentration were optimized. Under the optimized experimental conditions, the precision was ≤ 3% (C = 10 μg L{sup −1}, n = 15), limits of detection and quantification ranged from 0.1 to 0.3 μg L{sup −1} and 0.3–0.9 μg L{sup −1}, respectively, and the maximum preconcentration factor was 30. The HF-SPME method was applied for the determination of trace metals in real gasoline and diesel samples. - Highlights: • Hollow fiber solid phase microextraction of metal ions in diesel and gasoline • Use of hollow fiber-supported sol–gel combined with cation exchange resin • Optimization of HF-SPME using multivariate techniques • Determination of Cd, Cu, Fe, Pb and Zn using ICP–MS • Relatively low LOD and LOQ.

  3. NMR and MRI of continuously dissolved hyperpolarized {sup 129}Xe by means of hollow fibers

    Energy Technology Data Exchange (ETDEWEB)

    Amor, Nadia; Kueppers, Markus; Bluemich, Bernhard [ITMC of RWTH Aachen University (Germany); Hamilton, Kathrin; Schmitz-Rode, Thomas; Steinseifer, Ulrich [HIA of RWTH Aachen University (Germany); Appelt, Stephan [Research Center Juelich (Germany)

    2011-07-01

    Various methods of hyperpolarizing (HP) spin systems have been developed during the last years to increase the intrinsically low sensitivity of NMR by several orders of magnitude. Among them is the hyperpolarization of {sup 129}Xe via Spin Exchange Optical Pumping (SEOP). NMR of HP {sup 129}Xe is of great interest because of its good solubility and its very sensitive chemical shift. The main obstacle for many applications is the efficient and continuous dissolution into carrier agents without formation of foams or bubbles. It has been overcome by the so-called ''xenonizer'' setups. They mainly consist of commercially available hollow fiber membranes typically used in clinical oxygenators. A purpose-built xenonizer setup has been developed and analyzed in detail by NMR spectroscopy and MRI for varying fiber materials as well as for different fluids, including bio-relevant fluids such as blood, plasma, and erythrocytes. As a result, the xenonizer technology could be further understood and improved, and new applications of HP {sup 129}Xe for medical NMR were explored.

  4. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  5. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  6. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  7. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  8. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  9. Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application

    International Nuclear Information System (INIS)

    Chandrasekaran, Nivedhini Iswarya; Muthukumar, Harshiny; Sekar, Aiswarya Devi; Manickam, Matheswaran

    2017-01-01

    Hollow triple layered Ni-Al-Mn hydroxide nanocomposite is a promising electrode material with high capacitance value. Moreover, the material provides a high energy density with good cycling stability. Here we demonstrate the facile method for preparation of hollow layered triple hydroxide material in a combination of Nickel, Aluminium and Manganese with high surface area and mesoporous nature. Owing to its high electrode area and fast electron-ion transfer nature, the hollow Ni-Al-Mn hydroxide exhibits the high capacitance of 1756 F/g at 4 A/g and retains its capacitance value upto 89.5% of initial values after 4000 cycles. Additionally, it provides a higher energy density of 239.0795 Wh/kg at a power density of 1980 W/kg. HLTH of Ni-Al-Mn nanocomposite provides a better capacitance effect. Finally, this material provides a general approach for designing supercapacitor with tunable nanostructure and enhanced supercapacitor behaviour has a large application in energy storage and conversion devices. - Highlights: • An approach to acquire a hollow Ni-Al-Mn layered triple hydroxide is presented. • HLTH shows a large surface area suitable for electrochemical performance. • Exhibits high energy density of 239.07 Wh/kg at a power density of 1980 W/kg. • Recorded specific capacitance of 1756 F/g at current density 4 A/g. • HLTH retains 89.5% of initial capacitance values after 4000 cycles.

  10. Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekaran, Nivedhini Iswarya; Muthukumar, Harshiny; Sekar, Aiswarya Devi; Manickam, Matheswaran, E-mail: math.chem95@gmail.com

    2017-07-01

    Hollow triple layered Ni-Al-Mn hydroxide nanocomposite is a promising electrode material with high capacitance value. Moreover, the material provides a high energy density with good cycling stability. Here we demonstrate the facile method for preparation of hollow layered triple hydroxide material in a combination of Nickel, Aluminium and Manganese with high surface area and mesoporous nature. Owing to its high electrode area and fast electron-ion transfer nature, the hollow Ni-Al-Mn hydroxide exhibits the high capacitance of 1756 F/g at 4 A/g and retains its capacitance value upto 89.5% of initial values after 4000 cycles. Additionally, it provides a higher energy density of 239.0795 Wh/kg at a power density of 1980 W/kg. HLTH of Ni-Al-Mn nanocomposite provides a better capacitance effect. Finally, this material provides a general approach for designing supercapacitor with tunable nanostructure and enhanced supercapacitor behaviour has a large application in energy storage and conversion devices. - Highlights: • An approach to acquire a hollow Ni-Al-Mn layered triple hydroxide is presented. • HLTH shows a large surface area suitable for electrochemical performance. • Exhibits high energy density of 239.07 Wh/kg at a power density of 1980 W/kg. • Recorded specific capacitance of 1756 F/g at current density 4 A/g. • HLTH retains 89.5% of initial capacitance values after 4000 cycles.

  11. Hollow-fiber membrane bioreactor for the treatment of high-strength landfill leachate

    KAUST Repository

    Rizkallah, Marwan

    2013-07-15

    Performance assessment of membrane bioreactor (MBR) technology for the treatability of high-strength landfill leachate is relatively limited or lacking. This study examines the feasibility of treating high-strength landfill leachate using a hollow-fiber MBR. For this purpose, a laboratory-scale MBR was constructed and operated to treat leachate with a chemical oxygen demand (COD) of 9000-11,000 mg/l, a 5-day biochemical oxygen demand (BOD5) of 4000-6,000 mg/l, volatile suspended solids (VSS) of 300-500 mg/l, total nitrogen (TN) of 2000-6000 mg/l, and an ammonia-nitrogen (NH3-N) of 1800-4000 mg/l. VSS was used with the BOD and COD data to simulate the biological activity in the activated sludge. Removal efficiencies > 95-99% for BOD5, VSS, TN and NH3-N were attained. The coupled experimental and simulation results contribute in filling a gap in managing high-strength landfill leachate and providing guidelines for corresponding MBR application. © The Author(s) 2013.

  12. Polyethersulfone flat sheet and hollow fiber membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-06-10

    We fabricated flat-sheet and hollow fiber membranes from polyethersulfone (PES) solutions in two ionic liquids: 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP) and 1,3-dimethylimidazolium dimethyl phosphate ([MMIM]DMP). The solvents are non-volatile and less toxic than organic solvents, such as dimethylformamide (DMF). The membranes morphologies were compared with those of membranes prepared from solutions in DMF, using electron microscopy. Water permeance, solute rejection and mechanical strengths were evaluated. Membranes were applied to DNA separation. While membranes based on PES were successfully prepared, polysulfone (PSf) does not dissolve in the same ionic liquids. The discrepancy between PES and PSf could not be explained using classical Flory-Huggins theory, which does not consider the coulombic contributions in ionic liquids. The differences in solubility could be understood, by applying density functional theory to estimate the interaction energy between the different polymers and solvents. The theoretical results were supported by experimental measurements of intrinsic viscosity and dynamic light scattering (DLS).

  13. Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones.

    Science.gov (United States)

    Song, Xin-Yue; Ha, Wei; Chen, Juan; Shi, Yan-Ping

    2014-12-29

    A new, efficient, and environmental friendly solid-phase microextraction (SPME) medium based on β-cyclodextrin (β-CD)-modified carbon nanotubes (CNTs) and a hollow fiber (HF) was prepared. Functionalized β-CD was covalently linked to the surface of the carboxylic CNTs and then the obtained nanocomposite was immobilized into the wall pores of HFs under ultrasonic-assisted effect. The scanning electron microscope was used to inspect surface characteristics of fibers, demonstrating the presence of nanocomposites in their wall pores. The reinforced HF was employed in SPME, and its extraction performance was evaluated by analyzing 1-naphthaleneacetic acid (NAA) and 2-naphthoxyacetic acid (2-NOA) in vegetables. Without any tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent immobilized in HFs and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimized extraction conditions, the method provided 275- and 283-fold enrichment factors of NAA and 2-NOA, low limits of detection and quantification (at an ngg(-1) level), satisfactory spiked recoveries, good inter-fiber repeatability, and batch-to-batch reproducibility. The selectivity of the developed fiber was investigated to three structurally similar compounds and two reference compounds with recognition coefficients up to 3.18. The obtained results indicate that the newly developed fiber is a feasible, selective, green, and cost-effective microextraction medium and could be successfully applied for extraction and determination of naphthalene-derived plant hormones in complex matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  15. An improved hollow fiber solvent-stir bar microextraction for the preconcentration of anabolic steroids in biological matrix with determination by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Liu, Wei; Zhang, Lan; Fan, Liangbiao; Lin, Zian; Cai, Yimin; Wei, Zhenyi; Chen, Guonan

    2012-04-13

    In this paper, a convenient and self-assembled hollow fiber solvent-stir bar microextraction (HF-SSBME) device was developed, which could stir by itself. In the extraction process, the proposed device made the solvent "bar" not floating at the sample solution and exposing to air while organic solvents outside hollow fiber always wrapped with donor phase solvent, which reduced the vaporization of organic solvents. This design could improve the precisions and recoveries of experiments. For evaluating the device, seven anabolic steroids (prasterone, 5α-androstane-3α, 17β-diol, methandriol, 19-norandrostenediol, androstenediol, methyltestosterone and methandienone) were used as model analytes and extraction conditions such as type and volume of organic solvents, agitation speed, extraction time, extraction temperature and salt addition were studied in detail. Under the optimum conditions (15 μL toluene, 40 °C, stirring at 750 rpm for 30 min with 1.5 g sodium chloride addition in 20.0 mL donor phase), the linear ranges of anabolic steroids were 0.25-200 ng mL(-1) with gas chromatography-mass spectrometry. The limits of detection were lower than 0.10 ng mL(-1). The recoveries and precisions in spiked urine and hair samples were between 73.97-93.56% and 2.18-4.47% (n=5). HF-SSBME method combined the intrinsical merits of hollow fiber with the superiority of the proposed self-stirring device which can be developed to two-phase, three-phase and in situ derivatization modes with wide prospect of application. Besides, the pedestal of this proposed device can be converted to fix stir bar in stir bar sorptive extraction (SBSE) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    International Nuclear Information System (INIS)

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-01-01

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  17. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  18. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  19. Combined raman and IR fiber-based sensor for gas detection

    Science.gov (United States)

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  20. Application of carbon nanotubes modified with a Keggin polyoxometalate as a new sorbent for the hollow-fiber micro-solid-phase extraction of trace naproxen in hair samples with fluorescence spectrophotometry using factorial experimental design.

    Science.gov (United States)

    Naddaf, Ezzat; Ebrahimi, Mahmoud; Es'haghi, Zarrin; Bamoharram, Fatemeh Farrash

    2015-07-01

    A sensitive technique to determinate naproxen in hair samples was developed using hollow-fiber micro-solid-phase combined with fluorescence spectrophotometry. The incorporation of multi-walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol-gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow-fiber micro-solid-phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (4(6) ) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2-10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103-95%. The relative standard deviation for fiber-to-fiber repeatability was 3.9%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications.

    Science.gov (United States)

    Du, Xuan; Zhao, Wei; Wang, Yi; Wang, Chengyang; Chen, Mingming; Qi, Tao; Hua, Chao; Ma, Mingguo

    2013-12-01

    Activated carbon hollow fibers (ACHFs) with high surface area were prepared from inexpensive, renewable ramie fibers (RFs) by a single-step activation method under lower temperature than that of other reports. The effects of activation conditions on the pore structure and turbostratic structure of ACHFs were investigated systematically. The results show that ACHFs surface area decreased but micropore volume and conductivity increased as the increase of activation temperature and activation time. The electrochemical measurements of supercapacitors fabricated from these ACHFs electrodes reveal that the electrochemical properties improved with the enhancing of activation degree. However, too high activation temperature can make the ion diffusion resistance increase. It suggests that pore structure and conductivity are as important as surface area to decide the electrochemical performances of ACHFs electrode materials. A maximum capacity of 287 F g(-1) at 50 mA g(-1) was obtained for the ACHFs electrode prepared under suitable conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mohammed F.; Biancalana, Fabio [Max Planck Institute for the Science of Light, Guenther-Scharowsky Str. 1, DE-91058 Erlangen (Germany)

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  3. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  4. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing, E-mail: siqingxia@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Li Haixiang; Zhang Zhiqiang [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang Yanhao [College of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101 (China); Yang Xin; Jia Renyong; Xie Kang; Xu Xiaotian [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2011-08-30

    Highlights: {yields} We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. {yields} Biotransformation pathway of p-CNB in the reactor was investigated in this study. {yields} Nitrate and sulfate competed more strongly for hydrogen than p-CNB. {yields} This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H{sub 2} as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m{sup 2} d. The H{sub 2} availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  5. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR...

  6. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  7. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  8. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  9. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  10. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  11. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    Science.gov (United States)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  12. Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Sarah E. [Univ. of Arizona, Tucson, AZ (United States); Mirchandani, Sera [Univ. of Arizona, Tucson, AZ (United States); Karanikola, Vasiliki [Univ. of Arizona, Tucson, AZ (United States); Arnold, Robert G. [Univ. of Arizona, Tucson, AZ (United States); Saez, Eduardo [Univ. of Arizona, Tucson, AZ (United States)

    2017-09-01

    Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdeveloped infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.

  13. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2017-04-01

    Full Text Available In this work, poly(ethersulfone (PES ultrafiltration (UF hollow fibers (HF were modified by introducing TiO2 nanoparticles (TiO2-NPs in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with suitable properties were investigated. PEO–PPO–PEO (Poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol, Pluronic® (Sigma-Aldrich, Milan, Italy was finally selected as the additive and a suitable dope composition was identified. After the detection of an appropriate dope composition and the optimization of the spinning parameters, PES-TiO2 HF was produced. The optimized composition was employed for preparing the mixed matrix HF loaded with TiO2 NPs. The effect of different TiO2 NP (0.3–1 wt % concentrations and bore fluid compositions on the fiber morphology and properties were explored. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized by measuring: pore size diameters and thickness, porosity, and pure water permeability (PWP. The photocatalytic activity of the new membranes was also tested by UV light irradiation. The model “foulant” methylene blue (MB was used in order to prove the efficiency of the novel UF membrane for dye photo-degradation.

  14. Removal of humic acid by a new type of electrical hollow-fiber microfiltration (E-HFMF)

    Science.gov (United States)

    Shang, Ran; Deng, Hui-ping; Hu, Jing-yi

    2010-11-01

    Low pressure membrane filtration, such as microfiltration, was widely used in the field of drinking water purification in the past few decades. Traditional microfiltration membranes are not efficient enough in the removal of natural organic matters (NOM) from raw water. Moreover, they tend to be fouled by the NOM and the filtration age of the membranes is thus shrinked. To tackle these problems, a new type of electrical hollow-fiber microfiltration module (E-HFMF) was designed. In the E-HFMF module, the hollow-fiber microfiltration membranes were placed into the radialized electrical field which functioned from the centre to the exterior of the cylindrical cavity. The main goal of the present study was to evaluate the efficiency of E-HFMF to remove the humic acid (HA, one of the main components of NOM). According to the parallel tests compared with the traditional microfiltration, the removal rate of humic acid was raised to 70%˜85% in terms of UV-254 and to 60%˜75% in terms of DOC when filtrating with the E-HFMF, while the removal rates of humic acid were 10%˜20% and 1%˜10% respectively when filtrating with the traditional microfiltration. The negative charged humic acid moved to the anode because of the electrophoresis, so few humic acid could be able to permeate through the membrane. The electrophoresis mobility of the humic acid permeating through the traditional microfiltration decreased by 19%, while the same index from the E-HFMF decreased by 75%. This indicated that the electrophoresis played a significant role on removing the humic acid. According to the gel permeate chromatograph analysis, humic acid aggregated in an electric field and thus forms loose and permeable cake layer on the membrane surface, which also relieved membrane fouling. Meanwhile, the negative charged humic acid migrating to the anode at the center minimized the deposition onto the membrane surface, and eliminated the membrane fouling as a result. During the E-HFMF filtration, the

  15. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  16. Enhanced Microwave Absorption and Surface Wave Attenuation Properties of Co0.5Ni0.5Fe2O4 Fibers/Reduced Graphene Oxide Composites

    Directory of Open Access Journals (Sweden)

    Yinrui Li

    2018-03-01

    Full Text Available Co0.5Ni0.5Fe2O4 fibers with a diameter of about 270 nm and a length of about 10 μm were synthesized by a microemulsion-mediated solvothermal method with subsequent heat treatment. The Co0.5Ni0.5Fe2O4 fibers/reduced graphene oxide (RGO composite was prepared by a facile in-situ chemical reduction method. The crystalline structures and morphologies were investigated based on X-ray diffraction patterns and scanning electron microscopy. Magnetization measurements were carried out using a vibrating sample magnetometer at room temperature. Co0.5Ni0.5Fe2O4 fibers/RGO composites achieve both a wider and stronger absorption and an adjustable surface wave attenuation compared with Co0.5Ni0.5Fe2O4 fibers, indicating the potential for application as advanced microwave absorbers.

  17. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  18. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Salicylic acid determination in estuarine and riverine waters using hollow fiber liquid-phase microextraction and capillary zone electrophoresis.

    Science.gov (United States)

    da Silva, Gilmar Silvério; Lima, Diana L D; Esteves, Valdemar Inocêncio

    2017-06-01

    A low-cost methodology using hollow fiber liquid-phase microextraction (HF-LPME) and capillary zone electrophoresis (CZE) with UV-Vis detector was developed to analyze the salicylic acid (SA) in estuarine and riverine waters. The technique is easy-to-use and rapid, and demands little volume of organic solvent. The extraction was carried out using a polypropylene membrane supporting into octan-1-ol. HF-LPME under optimized conditions (donor solution sample pH 2, acceptor solution pH 14, sample volume 25 mL, fiber length 10 cm, acceptor volume 25 μL, extraction time 3 h and stirring speed 350 rpm) presented high enrichment factor (407 times) and good recovery in real water samples (from 88 to 110%). A limit of detection of 2.6 μg L -1 was achieved using CZE with UV-Vis detector as quantification method. The method was applied to direct quantification of SA in environmental complex estuarine and riverine water matrices.

  20. Flexible optical fiber sensor based on polyurethane

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    Polyurethane (PU) based hollow core fibers are investigated as optical sensors. The flexibility of PU fibers makes it suitable for sensing mechanical perturbations. We fabricated a PU fiber using the fiber drawing method, characterized the fiber and experimentally demonstrated a simple way...... to measure deformation, in the form of applied pressure....

  1. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  2. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  3. Mach-Zehnder atom interferometer inside an optical fiber

    Science.gov (United States)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  4. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  5. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities

    Science.gov (United States)

    Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao

    2017-10-01

    Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.

  6. Hollow fiber based liquid-phase microextraction for the determination of mercury traces in water samples by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Rivas, Ricardo E. [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence ' Campus Mare Nostrum' , University of Murcia, E-30071 Murcia (Spain)

    2012-09-19

    Highlight: Black-Right-Pointing-Pointer Hg (II) traces are preconcentrated by means of a three-phase liquid microextraction system. Black-Right-Pointing-Pointer PAN and ammonium iodide are used in the donor and acceptor phase, respectively. Black-Right-Pointing-Pointer Hollow-fiber pores are continuously fed with toluene placed in the lumen. Black-Right-Pointing-Pointer Mercuric ions can be measured in waters below the {mu}g L{sup -1} level. - Abstract: A three-phase liquid microextraction procedure for the determination of mercury at low concentrations is discussed. To the aqueous sample placed at pH 7 by means of a phosphate buffer, 0.002% (m/v) 1-(2-pyridylazo)-2-naphthol (PAN) is incorporated, and the mixture submitted to microextraction with a hollow-fiber impregnated with toluene and whose lumen contains a 0.05 mol L{sup -1} ammonium iodide solution. The final measurement of the extract is carried out by electrothermal atomic absorption spectrometry (300 Degree-Sign C and 1100 Degree-Sign C for the calcination and atomization temperatures, respectively). The pyrolytic graphite atomizer is coated electrolytically with palladium. An enrichment factor of 270, which results in a 0.06 {mu}g L{sup -1} mercury for the detection limit is obtained. The relative standard deviation at the 1 {mu}g L{sup -1} mercury level is 3.2% (n = 5). The reliability of the procedure is verified by analyzing waters as well as six certified reference materials.

  7. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  8. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection.

    Science.gov (United States)

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A

    2018-02-06

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.

  9. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection

    Directory of Open Access Journals (Sweden)

    Mona Nissen

    2018-02-01

    Full Text Available Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX and sodium salicylate (SS, were detectable down to 0.1 µM (26 ppb and 0.4 µM (64 ppb, respectively, with the potential to reach significantly lower detection limits for further device integration.

  10. Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.

    Science.gov (United States)

    Kino, Saiko; Omori, Suguru; Katagiri, Takashi; Matsuura, Yuji

    2016-02-01

    A mid-infrared attenuated total reflection (ATR) spectroscopy system employing hollow optical fibers and a trapezoidal multi-reflection ATR prism has been developed to measure blood glucose levels. Using a multi-reflection prism brought about higher sensitivity, and the flat and wide contact surface of the prism resulted in higher measurement reproducibility. An analysis of in vivo measurements of human inner lip mucosa revealed clear signatures of glucose in the difference spectra between ones taken during the fasting state and ones taken after ingestion of glucose solutions. A calibration plot based on the absorption peak at 1155 cm(-1) that originates from the pyranose ring structure of glucose gave measurement errors less than 20%.

  11. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    Science.gov (United States)

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  12. Self-assembled nano- to micron-size fibers from molten R11Ni4In9 intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Provino, Alessia; Manfrinetti, Pietro; Gschneidner, Karl A; Dhar, Sudesh K; Schlagel, Deborah L; Lograsso, Thomas A; Miller, Gordon J; Thimmaiah, Srinivasa; Wang, Hui; Russell, Alan M; Becker, Andrew; Mudryk, Yaroslav

    2014-07-01

    A study of the formation of Gd11M4In9 (M = Ni, Pd, Pt) and R11Ni4In9 (R = rare earth) compounds revealed a unique and peculiar property, which is to naturally crystallize in a bundle of self-assembled fibers when cooled from the melt. The fibers, which are nano- to millimeters in cross-section and approximate to 11-40 mm long, grow unidirectionally along a temperature gradient. These compounds adopt the orthorhombic Nd11Pd4In9 structure type (oC48-Cmmm). This structure is layered, with slabs of R atoms alternating with slabs of Ni/In atoms along a short c-axis (much shorter than either the a- or b-axis). The growth direction of the fibers is along the crystallographic c-axis, orthogonal to the a-b plane. Two strong and short In In bonds lie in the a-b plane, which are even shorter than in In metal. Integrated crystal orbital Hamilton population calculations show that the In In bonds create isolated "R8Ni4In9" rods growing along the c-axis, with the In In bonds being part of the rods. This appears to be an important factor explaining the microfibrous nature of these phases. Some physical properties have been measured on the Gd11Ni4In9 homolog. The compound orders ferrimagnetically at T-c approximate to 88 K, and at lower temperatures (46 and 10 K), two other magnetic anomalies were observed, probably due to spin reorientations. As expected from the bonding features, the mechanical, magnetic and electrical properties are strongly anisotropic. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Silicon carbide hollow fiber membranes: obtainment and characterization; Membranas de fibra oca de carbeto de silicio: obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.S.L.; Ferreira, R.S.B.; Araujo, B.A.; Medeiros, K.M.; Lucena, H.L.; Araujo, E.M., E-mail: sandriely_sonaly@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Silicon carbide is a promising material for the production of membranes due to its high melting temperature, thermal shock resistance, excellent mechanical and chemical stability. So, this study aims to characterize silicon carbide membranes in order to apply them in the separation of oil-water. A solution (SiC + PES + 1-Methyl- 2-Pyrrolidone) and through the extrusion technique by immersion precipitation membranes were obtained with hollow fiber geometry was prepared. And then sintered at 1500 ° C. For the characterization analyzes were made XRD, FTIR and SEM to evaluate the morphology and composition of the membranes obtained before and after sintering. (author)

  14. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  15. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    International Nuclear Information System (INIS)

    Monier, M.; Ayad, D.M.; Sarhan, A.A.

    2010-01-01

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  16. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  17. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  18. Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Hu, Xingru; Liu, Chao; Li, Jiansheng; Luo, Rui; Jiang, Hui; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-10-20

    In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20-1.15ngL -1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Drexel University, Philadelphia, PA (United States); Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Ayad, D.M.; Sarhan, A.A. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  20. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    Science.gov (United States)

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. 2009 Elsevier B.V. All rights reserved.